proc: Fix proc_sys_prune_dcache to hold a sb reference
[cris-mirror.git] / drivers / media / rc / rc-main.c
blob6ec73357fa474728aa26692533e232ca8e55ee05
1 /* rc-main.c - Remote Controller core module
3 * Copyright (C) 2009-2010 by Mauro Carvalho Chehab
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation version 2 of the License.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17 #include <media/rc-core.h>
18 #include <linux/atomic.h>
19 #include <linux/spinlock.h>
20 #include <linux/delay.h>
21 #include <linux/input.h>
22 #include <linux/leds.h>
23 #include <linux/slab.h>
24 #include <linux/idr.h>
25 #include <linux/device.h>
26 #include <linux/module.h>
27 #include "rc-core-priv.h"
29 /* Sizes are in bytes, 256 bytes allows for 32 entries on x64 */
30 #define IR_TAB_MIN_SIZE 256
31 #define IR_TAB_MAX_SIZE 8192
32 #define RC_DEV_MAX 256
34 /* FIXME: IR_KEYPRESS_TIMEOUT should be protocol specific */
35 #define IR_KEYPRESS_TIMEOUT 250
37 /* Used to keep track of known keymaps */
38 static LIST_HEAD(rc_map_list);
39 static DEFINE_SPINLOCK(rc_map_lock);
40 static struct led_trigger *led_feedback;
42 /* Used to keep track of rc devices */
43 static DEFINE_IDA(rc_ida);
45 static struct rc_map_list *seek_rc_map(const char *name)
47 struct rc_map_list *map = NULL;
49 spin_lock(&rc_map_lock);
50 list_for_each_entry(map, &rc_map_list, list) {
51 if (!strcmp(name, map->map.name)) {
52 spin_unlock(&rc_map_lock);
53 return map;
56 spin_unlock(&rc_map_lock);
58 return NULL;
61 struct rc_map *rc_map_get(const char *name)
64 struct rc_map_list *map;
66 map = seek_rc_map(name);
67 #ifdef CONFIG_MODULES
68 if (!map) {
69 int rc = request_module("%s", name);
70 if (rc < 0) {
71 pr_err("Couldn't load IR keymap %s\n", name);
72 return NULL;
74 msleep(20); /* Give some time for IR to register */
76 map = seek_rc_map(name);
78 #endif
79 if (!map) {
80 pr_err("IR keymap %s not found\n", name);
81 return NULL;
84 printk(KERN_INFO "Registered IR keymap %s\n", map->map.name);
86 return &map->map;
88 EXPORT_SYMBOL_GPL(rc_map_get);
90 int rc_map_register(struct rc_map_list *map)
92 spin_lock(&rc_map_lock);
93 list_add_tail(&map->list, &rc_map_list);
94 spin_unlock(&rc_map_lock);
95 return 0;
97 EXPORT_SYMBOL_GPL(rc_map_register);
99 void rc_map_unregister(struct rc_map_list *map)
101 spin_lock(&rc_map_lock);
102 list_del(&map->list);
103 spin_unlock(&rc_map_lock);
105 EXPORT_SYMBOL_GPL(rc_map_unregister);
108 static struct rc_map_table empty[] = {
109 { 0x2a, KEY_COFFEE },
112 static struct rc_map_list empty_map = {
113 .map = {
114 .scan = empty,
115 .size = ARRAY_SIZE(empty),
116 .rc_type = RC_TYPE_UNKNOWN, /* Legacy IR type */
117 .name = RC_MAP_EMPTY,
122 * ir_create_table() - initializes a scancode table
123 * @rc_map: the rc_map to initialize
124 * @name: name to assign to the table
125 * @rc_type: ir type to assign to the new table
126 * @size: initial size of the table
127 * @return: zero on success or a negative error code
129 * This routine will initialize the rc_map and will allocate
130 * memory to hold at least the specified number of elements.
132 static int ir_create_table(struct rc_map *rc_map,
133 const char *name, u64 rc_type, size_t size)
135 rc_map->name = kstrdup(name, GFP_KERNEL);
136 if (!rc_map->name)
137 return -ENOMEM;
138 rc_map->rc_type = rc_type;
139 rc_map->alloc = roundup_pow_of_two(size * sizeof(struct rc_map_table));
140 rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
141 rc_map->scan = kmalloc(rc_map->alloc, GFP_KERNEL);
142 if (!rc_map->scan) {
143 kfree(rc_map->name);
144 rc_map->name = NULL;
145 return -ENOMEM;
148 IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n",
149 rc_map->size, rc_map->alloc);
150 return 0;
154 * ir_free_table() - frees memory allocated by a scancode table
155 * @rc_map: the table whose mappings need to be freed
157 * This routine will free memory alloctaed for key mappings used by given
158 * scancode table.
160 static void ir_free_table(struct rc_map *rc_map)
162 rc_map->size = 0;
163 kfree(rc_map->name);
164 rc_map->name = NULL;
165 kfree(rc_map->scan);
166 rc_map->scan = NULL;
170 * ir_resize_table() - resizes a scancode table if necessary
171 * @rc_map: the rc_map to resize
172 * @gfp_flags: gfp flags to use when allocating memory
173 * @return: zero on success or a negative error code
175 * This routine will shrink the rc_map if it has lots of
176 * unused entries and grow it if it is full.
178 static int ir_resize_table(struct rc_map *rc_map, gfp_t gfp_flags)
180 unsigned int oldalloc = rc_map->alloc;
181 unsigned int newalloc = oldalloc;
182 struct rc_map_table *oldscan = rc_map->scan;
183 struct rc_map_table *newscan;
185 if (rc_map->size == rc_map->len) {
186 /* All entries in use -> grow keytable */
187 if (rc_map->alloc >= IR_TAB_MAX_SIZE)
188 return -ENOMEM;
190 newalloc *= 2;
191 IR_dprintk(1, "Growing table to %u bytes\n", newalloc);
194 if ((rc_map->len * 3 < rc_map->size) && (oldalloc > IR_TAB_MIN_SIZE)) {
195 /* Less than 1/3 of entries in use -> shrink keytable */
196 newalloc /= 2;
197 IR_dprintk(1, "Shrinking table to %u bytes\n", newalloc);
200 if (newalloc == oldalloc)
201 return 0;
203 newscan = kmalloc(newalloc, gfp_flags);
204 if (!newscan) {
205 IR_dprintk(1, "Failed to kmalloc %u bytes\n", newalloc);
206 return -ENOMEM;
209 memcpy(newscan, rc_map->scan, rc_map->len * sizeof(struct rc_map_table));
210 rc_map->scan = newscan;
211 rc_map->alloc = newalloc;
212 rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
213 kfree(oldscan);
214 return 0;
218 * ir_update_mapping() - set a keycode in the scancode->keycode table
219 * @dev: the struct rc_dev device descriptor
220 * @rc_map: scancode table to be adjusted
221 * @index: index of the mapping that needs to be updated
222 * @keycode: the desired keycode
223 * @return: previous keycode assigned to the mapping
225 * This routine is used to update scancode->keycode mapping at given
226 * position.
228 static unsigned int ir_update_mapping(struct rc_dev *dev,
229 struct rc_map *rc_map,
230 unsigned int index,
231 unsigned int new_keycode)
233 int old_keycode = rc_map->scan[index].keycode;
234 int i;
236 /* Did the user wish to remove the mapping? */
237 if (new_keycode == KEY_RESERVED || new_keycode == KEY_UNKNOWN) {
238 IR_dprintk(1, "#%d: Deleting scan 0x%04x\n",
239 index, rc_map->scan[index].scancode);
240 rc_map->len--;
241 memmove(&rc_map->scan[index], &rc_map->scan[index+ 1],
242 (rc_map->len - index) * sizeof(struct rc_map_table));
243 } else {
244 IR_dprintk(1, "#%d: %s scan 0x%04x with key 0x%04x\n",
245 index,
246 old_keycode == KEY_RESERVED ? "New" : "Replacing",
247 rc_map->scan[index].scancode, new_keycode);
248 rc_map->scan[index].keycode = new_keycode;
249 __set_bit(new_keycode, dev->input_dev->keybit);
252 if (old_keycode != KEY_RESERVED) {
253 /* A previous mapping was updated... */
254 __clear_bit(old_keycode, dev->input_dev->keybit);
255 /* ... but another scancode might use the same keycode */
256 for (i = 0; i < rc_map->len; i++) {
257 if (rc_map->scan[i].keycode == old_keycode) {
258 __set_bit(old_keycode, dev->input_dev->keybit);
259 break;
263 /* Possibly shrink the keytable, failure is not a problem */
264 ir_resize_table(rc_map, GFP_ATOMIC);
267 return old_keycode;
271 * ir_establish_scancode() - set a keycode in the scancode->keycode table
272 * @dev: the struct rc_dev device descriptor
273 * @rc_map: scancode table to be searched
274 * @scancode: the desired scancode
275 * @resize: controls whether we allowed to resize the table to
276 * accommodate not yet present scancodes
277 * @return: index of the mapping containing scancode in question
278 * or -1U in case of failure.
280 * This routine is used to locate given scancode in rc_map.
281 * If scancode is not yet present the routine will allocate a new slot
282 * for it.
284 static unsigned int ir_establish_scancode(struct rc_dev *dev,
285 struct rc_map *rc_map,
286 unsigned int scancode,
287 bool resize)
289 unsigned int i;
292 * Unfortunately, some hardware-based IR decoders don't provide
293 * all bits for the complete IR code. In general, they provide only
294 * the command part of the IR code. Yet, as it is possible to replace
295 * the provided IR with another one, it is needed to allow loading
296 * IR tables from other remotes. So, we support specifying a mask to
297 * indicate the valid bits of the scancodes.
299 if (dev->scancode_mask)
300 scancode &= dev->scancode_mask;
302 /* First check if we already have a mapping for this ir command */
303 for (i = 0; i < rc_map->len; i++) {
304 if (rc_map->scan[i].scancode == scancode)
305 return i;
307 /* Keytable is sorted from lowest to highest scancode */
308 if (rc_map->scan[i].scancode >= scancode)
309 break;
312 /* No previous mapping found, we might need to grow the table */
313 if (rc_map->size == rc_map->len) {
314 if (!resize || ir_resize_table(rc_map, GFP_ATOMIC))
315 return -1U;
318 /* i is the proper index to insert our new keycode */
319 if (i < rc_map->len)
320 memmove(&rc_map->scan[i + 1], &rc_map->scan[i],
321 (rc_map->len - i) * sizeof(struct rc_map_table));
322 rc_map->scan[i].scancode = scancode;
323 rc_map->scan[i].keycode = KEY_RESERVED;
324 rc_map->len++;
326 return i;
330 * ir_setkeycode() - set a keycode in the scancode->keycode table
331 * @idev: the struct input_dev device descriptor
332 * @scancode: the desired scancode
333 * @keycode: result
334 * @return: -EINVAL if the keycode could not be inserted, otherwise zero.
336 * This routine is used to handle evdev EVIOCSKEY ioctl.
338 static int ir_setkeycode(struct input_dev *idev,
339 const struct input_keymap_entry *ke,
340 unsigned int *old_keycode)
342 struct rc_dev *rdev = input_get_drvdata(idev);
343 struct rc_map *rc_map = &rdev->rc_map;
344 unsigned int index;
345 unsigned int scancode;
346 int retval = 0;
347 unsigned long flags;
349 spin_lock_irqsave(&rc_map->lock, flags);
351 if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
352 index = ke->index;
353 if (index >= rc_map->len) {
354 retval = -EINVAL;
355 goto out;
357 } else {
358 retval = input_scancode_to_scalar(ke, &scancode);
359 if (retval)
360 goto out;
362 index = ir_establish_scancode(rdev, rc_map, scancode, true);
363 if (index >= rc_map->len) {
364 retval = -ENOMEM;
365 goto out;
369 *old_keycode = ir_update_mapping(rdev, rc_map, index, ke->keycode);
371 out:
372 spin_unlock_irqrestore(&rc_map->lock, flags);
373 return retval;
377 * ir_setkeytable() - sets several entries in the scancode->keycode table
378 * @dev: the struct rc_dev device descriptor
379 * @to: the struct rc_map to copy entries to
380 * @from: the struct rc_map to copy entries from
381 * @return: -ENOMEM if all keycodes could not be inserted, otherwise zero.
383 * This routine is used to handle table initialization.
385 static int ir_setkeytable(struct rc_dev *dev,
386 const struct rc_map *from)
388 struct rc_map *rc_map = &dev->rc_map;
389 unsigned int i, index;
390 int rc;
392 rc = ir_create_table(rc_map, from->name,
393 from->rc_type, from->size);
394 if (rc)
395 return rc;
397 IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n",
398 rc_map->size, rc_map->alloc);
400 for (i = 0; i < from->size; i++) {
401 index = ir_establish_scancode(dev, rc_map,
402 from->scan[i].scancode, false);
403 if (index >= rc_map->len) {
404 rc = -ENOMEM;
405 break;
408 ir_update_mapping(dev, rc_map, index,
409 from->scan[i].keycode);
412 if (rc)
413 ir_free_table(rc_map);
415 return rc;
419 * ir_lookup_by_scancode() - locate mapping by scancode
420 * @rc_map: the struct rc_map to search
421 * @scancode: scancode to look for in the table
422 * @return: index in the table, -1U if not found
424 * This routine performs binary search in RC keykeymap table for
425 * given scancode.
427 static unsigned int ir_lookup_by_scancode(const struct rc_map *rc_map,
428 unsigned int scancode)
430 int start = 0;
431 int end = rc_map->len - 1;
432 int mid;
434 while (start <= end) {
435 mid = (start + end) / 2;
436 if (rc_map->scan[mid].scancode < scancode)
437 start = mid + 1;
438 else if (rc_map->scan[mid].scancode > scancode)
439 end = mid - 1;
440 else
441 return mid;
444 return -1U;
448 * ir_getkeycode() - get a keycode from the scancode->keycode table
449 * @idev: the struct input_dev device descriptor
450 * @scancode: the desired scancode
451 * @keycode: used to return the keycode, if found, or KEY_RESERVED
452 * @return: always returns zero.
454 * This routine is used to handle evdev EVIOCGKEY ioctl.
456 static int ir_getkeycode(struct input_dev *idev,
457 struct input_keymap_entry *ke)
459 struct rc_dev *rdev = input_get_drvdata(idev);
460 struct rc_map *rc_map = &rdev->rc_map;
461 struct rc_map_table *entry;
462 unsigned long flags;
463 unsigned int index;
464 unsigned int scancode;
465 int retval;
467 spin_lock_irqsave(&rc_map->lock, flags);
469 if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
470 index = ke->index;
471 } else {
472 retval = input_scancode_to_scalar(ke, &scancode);
473 if (retval)
474 goto out;
476 index = ir_lookup_by_scancode(rc_map, scancode);
479 if (index < rc_map->len) {
480 entry = &rc_map->scan[index];
482 ke->index = index;
483 ke->keycode = entry->keycode;
484 ke->len = sizeof(entry->scancode);
485 memcpy(ke->scancode, &entry->scancode, sizeof(entry->scancode));
487 } else if (!(ke->flags & INPUT_KEYMAP_BY_INDEX)) {
489 * We do not really know the valid range of scancodes
490 * so let's respond with KEY_RESERVED to anything we
491 * do not have mapping for [yet].
493 ke->index = index;
494 ke->keycode = KEY_RESERVED;
495 } else {
496 retval = -EINVAL;
497 goto out;
500 retval = 0;
502 out:
503 spin_unlock_irqrestore(&rc_map->lock, flags);
504 return retval;
508 * rc_g_keycode_from_table() - gets the keycode that corresponds to a scancode
509 * @dev: the struct rc_dev descriptor of the device
510 * @scancode: the scancode to look for
511 * @return: the corresponding keycode, or KEY_RESERVED
513 * This routine is used by drivers which need to convert a scancode to a
514 * keycode. Normally it should not be used since drivers should have no
515 * interest in keycodes.
517 u32 rc_g_keycode_from_table(struct rc_dev *dev, u32 scancode)
519 struct rc_map *rc_map = &dev->rc_map;
520 unsigned int keycode;
521 unsigned int index;
522 unsigned long flags;
524 spin_lock_irqsave(&rc_map->lock, flags);
526 index = ir_lookup_by_scancode(rc_map, scancode);
527 keycode = index < rc_map->len ?
528 rc_map->scan[index].keycode : KEY_RESERVED;
530 spin_unlock_irqrestore(&rc_map->lock, flags);
532 if (keycode != KEY_RESERVED)
533 IR_dprintk(1, "%s: scancode 0x%04x keycode 0x%02x\n",
534 dev->input_name, scancode, keycode);
536 return keycode;
538 EXPORT_SYMBOL_GPL(rc_g_keycode_from_table);
541 * ir_do_keyup() - internal function to signal the release of a keypress
542 * @dev: the struct rc_dev descriptor of the device
543 * @sync: whether or not to call input_sync
545 * This function is used internally to release a keypress, it must be
546 * called with keylock held.
548 static void ir_do_keyup(struct rc_dev *dev, bool sync)
550 if (!dev->keypressed)
551 return;
553 IR_dprintk(1, "keyup key 0x%04x\n", dev->last_keycode);
554 input_report_key(dev->input_dev, dev->last_keycode, 0);
555 led_trigger_event(led_feedback, LED_OFF);
556 if (sync)
557 input_sync(dev->input_dev);
558 dev->keypressed = false;
562 * rc_keyup() - signals the release of a keypress
563 * @dev: the struct rc_dev descriptor of the device
565 * This routine is used to signal that a key has been released on the
566 * remote control.
568 void rc_keyup(struct rc_dev *dev)
570 unsigned long flags;
572 spin_lock_irqsave(&dev->keylock, flags);
573 ir_do_keyup(dev, true);
574 spin_unlock_irqrestore(&dev->keylock, flags);
576 EXPORT_SYMBOL_GPL(rc_keyup);
579 * ir_timer_keyup() - generates a keyup event after a timeout
580 * @cookie: a pointer to the struct rc_dev for the device
582 * This routine will generate a keyup event some time after a keydown event
583 * is generated when no further activity has been detected.
585 static void ir_timer_keyup(unsigned long cookie)
587 struct rc_dev *dev = (struct rc_dev *)cookie;
588 unsigned long flags;
591 * ir->keyup_jiffies is used to prevent a race condition if a
592 * hardware interrupt occurs at this point and the keyup timer
593 * event is moved further into the future as a result.
595 * The timer will then be reactivated and this function called
596 * again in the future. We need to exit gracefully in that case
597 * to allow the input subsystem to do its auto-repeat magic or
598 * a keyup event might follow immediately after the keydown.
600 spin_lock_irqsave(&dev->keylock, flags);
601 if (time_is_before_eq_jiffies(dev->keyup_jiffies))
602 ir_do_keyup(dev, true);
603 spin_unlock_irqrestore(&dev->keylock, flags);
607 * rc_repeat() - signals that a key is still pressed
608 * @dev: the struct rc_dev descriptor of the device
610 * This routine is used by IR decoders when a repeat message which does
611 * not include the necessary bits to reproduce the scancode has been
612 * received.
614 void rc_repeat(struct rc_dev *dev)
616 unsigned long flags;
618 spin_lock_irqsave(&dev->keylock, flags);
620 input_event(dev->input_dev, EV_MSC, MSC_SCAN, dev->last_scancode);
621 input_sync(dev->input_dev);
623 if (!dev->keypressed)
624 goto out;
626 dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT);
627 mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
629 out:
630 spin_unlock_irqrestore(&dev->keylock, flags);
632 EXPORT_SYMBOL_GPL(rc_repeat);
635 * ir_do_keydown() - internal function to process a keypress
636 * @dev: the struct rc_dev descriptor of the device
637 * @protocol: the protocol of the keypress
638 * @scancode: the scancode of the keypress
639 * @keycode: the keycode of the keypress
640 * @toggle: the toggle value of the keypress
642 * This function is used internally to register a keypress, it must be
643 * called with keylock held.
645 static void ir_do_keydown(struct rc_dev *dev, enum rc_type protocol,
646 u32 scancode, u32 keycode, u8 toggle)
648 bool new_event = (!dev->keypressed ||
649 dev->last_protocol != protocol ||
650 dev->last_scancode != scancode ||
651 dev->last_toggle != toggle);
653 if (new_event && dev->keypressed)
654 ir_do_keyup(dev, false);
656 input_event(dev->input_dev, EV_MSC, MSC_SCAN, scancode);
658 if (new_event && keycode != KEY_RESERVED) {
659 /* Register a keypress */
660 dev->keypressed = true;
661 dev->last_protocol = protocol;
662 dev->last_scancode = scancode;
663 dev->last_toggle = toggle;
664 dev->last_keycode = keycode;
666 IR_dprintk(1, "%s: key down event, key 0x%04x, protocol 0x%04x, scancode 0x%08x\n",
667 dev->input_name, keycode, protocol, scancode);
668 input_report_key(dev->input_dev, keycode, 1);
670 led_trigger_event(led_feedback, LED_FULL);
673 input_sync(dev->input_dev);
677 * rc_keydown() - generates input event for a key press
678 * @dev: the struct rc_dev descriptor of the device
679 * @protocol: the protocol for the keypress
680 * @scancode: the scancode for the keypress
681 * @toggle: the toggle value (protocol dependent, if the protocol doesn't
682 * support toggle values, this should be set to zero)
684 * This routine is used to signal that a key has been pressed on the
685 * remote control.
687 void rc_keydown(struct rc_dev *dev, enum rc_type protocol, u32 scancode, u8 toggle)
689 unsigned long flags;
690 u32 keycode = rc_g_keycode_from_table(dev, scancode);
692 spin_lock_irqsave(&dev->keylock, flags);
693 ir_do_keydown(dev, protocol, scancode, keycode, toggle);
695 if (dev->keypressed) {
696 dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT);
697 mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
699 spin_unlock_irqrestore(&dev->keylock, flags);
701 EXPORT_SYMBOL_GPL(rc_keydown);
704 * rc_keydown_notimeout() - generates input event for a key press without
705 * an automatic keyup event at a later time
706 * @dev: the struct rc_dev descriptor of the device
707 * @protocol: the protocol for the keypress
708 * @scancode: the scancode for the keypress
709 * @toggle: the toggle value (protocol dependent, if the protocol doesn't
710 * support toggle values, this should be set to zero)
712 * This routine is used to signal that a key has been pressed on the
713 * remote control. The driver must manually call rc_keyup() at a later stage.
715 void rc_keydown_notimeout(struct rc_dev *dev, enum rc_type protocol,
716 u32 scancode, u8 toggle)
718 unsigned long flags;
719 u32 keycode = rc_g_keycode_from_table(dev, scancode);
721 spin_lock_irqsave(&dev->keylock, flags);
722 ir_do_keydown(dev, protocol, scancode, keycode, toggle);
723 spin_unlock_irqrestore(&dev->keylock, flags);
725 EXPORT_SYMBOL_GPL(rc_keydown_notimeout);
728 * rc_validate_filter() - checks that the scancode and mask are valid and
729 * provides sensible defaults
730 * @dev: the struct rc_dev descriptor of the device
731 * @filter: the scancode and mask
732 * @return: 0 or -EINVAL if the filter is not valid
734 static int rc_validate_filter(struct rc_dev *dev,
735 struct rc_scancode_filter *filter)
737 static u32 masks[] = {
738 [RC_TYPE_RC5] = 0x1f7f,
739 [RC_TYPE_RC5X_20] = 0x1f7f3f,
740 [RC_TYPE_RC5_SZ] = 0x2fff,
741 [RC_TYPE_SONY12] = 0x1f007f,
742 [RC_TYPE_SONY15] = 0xff007f,
743 [RC_TYPE_SONY20] = 0x1fff7f,
744 [RC_TYPE_JVC] = 0xffff,
745 [RC_TYPE_NEC] = 0xffff,
746 [RC_TYPE_NECX] = 0xffffff,
747 [RC_TYPE_NEC32] = 0xffffffff,
748 [RC_TYPE_SANYO] = 0x1fffff,
749 [RC_TYPE_MCIR2_KBD] = 0xffff,
750 [RC_TYPE_MCIR2_MSE] = 0x1fffff,
751 [RC_TYPE_RC6_0] = 0xffff,
752 [RC_TYPE_RC6_6A_20] = 0xfffff,
753 [RC_TYPE_RC6_6A_24] = 0xffffff,
754 [RC_TYPE_RC6_6A_32] = 0xffffffff,
755 [RC_TYPE_RC6_MCE] = 0xffff7fff,
756 [RC_TYPE_SHARP] = 0x1fff,
758 u32 s = filter->data;
759 enum rc_type protocol = dev->wakeup_protocol;
761 switch (protocol) {
762 case RC_TYPE_NECX:
763 if ((((s >> 16) ^ ~(s >> 8)) & 0xff) == 0)
764 return -EINVAL;
765 break;
766 case RC_TYPE_NEC32:
767 if ((((s >> 24) ^ ~(s >> 16)) & 0xff) == 0)
768 return -EINVAL;
769 break;
770 case RC_TYPE_RC6_MCE:
771 if ((s & 0xffff0000) != 0x800f0000)
772 return -EINVAL;
773 break;
774 case RC_TYPE_RC6_6A_32:
775 if ((s & 0xffff0000) == 0x800f0000)
776 return -EINVAL;
777 break;
778 default:
779 break;
782 filter->data &= masks[protocol];
783 filter->mask &= masks[protocol];
786 * If we have to raw encode the IR for wakeup, we cannot have a mask
788 if (dev->encode_wakeup &&
789 filter->mask != 0 && filter->mask != masks[protocol])
790 return -EINVAL;
792 return 0;
795 int rc_open(struct rc_dev *rdev)
797 int rval = 0;
799 if (!rdev)
800 return -EINVAL;
802 mutex_lock(&rdev->lock);
804 if (!rdev->users++ && rdev->open != NULL)
805 rval = rdev->open(rdev);
807 if (rval)
808 rdev->users--;
810 mutex_unlock(&rdev->lock);
812 return rval;
814 EXPORT_SYMBOL_GPL(rc_open);
816 static int ir_open(struct input_dev *idev)
818 struct rc_dev *rdev = input_get_drvdata(idev);
820 return rc_open(rdev);
823 void rc_close(struct rc_dev *rdev)
825 if (rdev) {
826 mutex_lock(&rdev->lock);
828 if (!--rdev->users && rdev->close != NULL)
829 rdev->close(rdev);
831 mutex_unlock(&rdev->lock);
834 EXPORT_SYMBOL_GPL(rc_close);
836 static void ir_close(struct input_dev *idev)
838 struct rc_dev *rdev = input_get_drvdata(idev);
839 rc_close(rdev);
842 /* class for /sys/class/rc */
843 static char *rc_devnode(struct device *dev, umode_t *mode)
845 return kasprintf(GFP_KERNEL, "rc/%s", dev_name(dev));
848 static struct class rc_class = {
849 .name = "rc",
850 .devnode = rc_devnode,
854 * These are the protocol textual descriptions that are
855 * used by the sysfs protocols file. Note that the order
856 * of the entries is relevant.
858 static const struct {
859 u64 type;
860 const char *name;
861 const char *module_name;
862 } proto_names[] = {
863 { RC_BIT_NONE, "none", NULL },
864 { RC_BIT_OTHER, "other", NULL },
865 { RC_BIT_UNKNOWN, "unknown", NULL },
866 { RC_BIT_RC5 |
867 RC_BIT_RC5X_20, "rc-5", "ir-rc5-decoder" },
868 { RC_BIT_NEC |
869 RC_BIT_NECX |
870 RC_BIT_NEC32, "nec", "ir-nec-decoder" },
871 { RC_BIT_RC6_0 |
872 RC_BIT_RC6_6A_20 |
873 RC_BIT_RC6_6A_24 |
874 RC_BIT_RC6_6A_32 |
875 RC_BIT_RC6_MCE, "rc-6", "ir-rc6-decoder" },
876 { RC_BIT_JVC, "jvc", "ir-jvc-decoder" },
877 { RC_BIT_SONY12 |
878 RC_BIT_SONY15 |
879 RC_BIT_SONY20, "sony", "ir-sony-decoder" },
880 { RC_BIT_RC5_SZ, "rc-5-sz", "ir-rc5-decoder" },
881 { RC_BIT_SANYO, "sanyo", "ir-sanyo-decoder" },
882 { RC_BIT_SHARP, "sharp", "ir-sharp-decoder" },
883 { RC_BIT_MCIR2_KBD |
884 RC_BIT_MCIR2_MSE, "mce_kbd", "ir-mce_kbd-decoder" },
885 { RC_BIT_XMP, "xmp", "ir-xmp-decoder" },
886 { RC_BIT_CEC, "cec", NULL },
890 * struct rc_filter_attribute - Device attribute relating to a filter type.
891 * @attr: Device attribute.
892 * @type: Filter type.
893 * @mask: false for filter value, true for filter mask.
895 struct rc_filter_attribute {
896 struct device_attribute attr;
897 enum rc_filter_type type;
898 bool mask;
900 #define to_rc_filter_attr(a) container_of(a, struct rc_filter_attribute, attr)
902 #define RC_FILTER_ATTR(_name, _mode, _show, _store, _type, _mask) \
903 struct rc_filter_attribute dev_attr_##_name = { \
904 .attr = __ATTR(_name, _mode, _show, _store), \
905 .type = (_type), \
906 .mask = (_mask), \
909 static bool lirc_is_present(void)
911 #if defined(CONFIG_LIRC_MODULE)
912 struct module *lirc;
914 mutex_lock(&module_mutex);
915 lirc = find_module("lirc_dev");
916 mutex_unlock(&module_mutex);
918 return lirc ? true : false;
919 #elif defined(CONFIG_LIRC)
920 return true;
921 #else
922 return false;
923 #endif
927 * show_protocols() - shows the current IR protocol(s)
928 * @device: the device descriptor
929 * @mattr: the device attribute struct
930 * @buf: a pointer to the output buffer
932 * This routine is a callback routine for input read the IR protocol type(s).
933 * it is trigged by reading /sys/class/rc/rc?/protocols.
934 * It returns the protocol names of supported protocols.
935 * Enabled protocols are printed in brackets.
937 * dev->lock is taken to guard against races between device
938 * registration, store_protocols and show_protocols.
940 static ssize_t show_protocols(struct device *device,
941 struct device_attribute *mattr, char *buf)
943 struct rc_dev *dev = to_rc_dev(device);
944 u64 allowed, enabled;
945 char *tmp = buf;
946 int i;
948 /* Device is being removed */
949 if (!dev)
950 return -EINVAL;
952 if (!atomic_read(&dev->initialized))
953 return -ERESTARTSYS;
955 mutex_lock(&dev->lock);
957 enabled = dev->enabled_protocols;
958 allowed = dev->allowed_protocols;
959 if (dev->raw && !allowed)
960 allowed = ir_raw_get_allowed_protocols();
962 mutex_unlock(&dev->lock);
964 IR_dprintk(1, "%s: allowed - 0x%llx, enabled - 0x%llx\n",
965 __func__, (long long)allowed, (long long)enabled);
967 for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
968 if (allowed & enabled & proto_names[i].type)
969 tmp += sprintf(tmp, "[%s] ", proto_names[i].name);
970 else if (allowed & proto_names[i].type)
971 tmp += sprintf(tmp, "%s ", proto_names[i].name);
973 if (allowed & proto_names[i].type)
974 allowed &= ~proto_names[i].type;
977 if (dev->driver_type == RC_DRIVER_IR_RAW && lirc_is_present())
978 tmp += sprintf(tmp, "[lirc] ");
980 if (tmp != buf)
981 tmp--;
982 *tmp = '\n';
984 return tmp + 1 - buf;
988 * parse_protocol_change() - parses a protocol change request
989 * @protocols: pointer to the bitmask of current protocols
990 * @buf: pointer to the buffer with a list of changes
992 * Writing "+proto" will add a protocol to the protocol mask.
993 * Writing "-proto" will remove a protocol from protocol mask.
994 * Writing "proto" will enable only "proto".
995 * Writing "none" will disable all protocols.
996 * Returns the number of changes performed or a negative error code.
998 static int parse_protocol_change(u64 *protocols, const char *buf)
1000 const char *tmp;
1001 unsigned count = 0;
1002 bool enable, disable;
1003 u64 mask;
1004 int i;
1006 while ((tmp = strsep((char **)&buf, " \n")) != NULL) {
1007 if (!*tmp)
1008 break;
1010 if (*tmp == '+') {
1011 enable = true;
1012 disable = false;
1013 tmp++;
1014 } else if (*tmp == '-') {
1015 enable = false;
1016 disable = true;
1017 tmp++;
1018 } else {
1019 enable = false;
1020 disable = false;
1023 for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
1024 if (!strcasecmp(tmp, proto_names[i].name)) {
1025 mask = proto_names[i].type;
1026 break;
1030 if (i == ARRAY_SIZE(proto_names)) {
1031 if (!strcasecmp(tmp, "lirc"))
1032 mask = 0;
1033 else {
1034 IR_dprintk(1, "Unknown protocol: '%s'\n", tmp);
1035 return -EINVAL;
1039 count++;
1041 if (enable)
1042 *protocols |= mask;
1043 else if (disable)
1044 *protocols &= ~mask;
1045 else
1046 *protocols = mask;
1049 if (!count) {
1050 IR_dprintk(1, "Protocol not specified\n");
1051 return -EINVAL;
1054 return count;
1057 static void ir_raw_load_modules(u64 *protocols)
1059 u64 available;
1060 int i, ret;
1062 for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
1063 if (proto_names[i].type == RC_BIT_NONE ||
1064 proto_names[i].type & (RC_BIT_OTHER | RC_BIT_UNKNOWN))
1065 continue;
1067 available = ir_raw_get_allowed_protocols();
1068 if (!(*protocols & proto_names[i].type & ~available))
1069 continue;
1071 if (!proto_names[i].module_name) {
1072 pr_err("Can't enable IR protocol %s\n",
1073 proto_names[i].name);
1074 *protocols &= ~proto_names[i].type;
1075 continue;
1078 ret = request_module("%s", proto_names[i].module_name);
1079 if (ret < 0) {
1080 pr_err("Couldn't load IR protocol module %s\n",
1081 proto_names[i].module_name);
1082 *protocols &= ~proto_names[i].type;
1083 continue;
1085 msleep(20);
1086 available = ir_raw_get_allowed_protocols();
1087 if (!(*protocols & proto_names[i].type & ~available))
1088 continue;
1090 pr_err("Loaded IR protocol module %s, but protocol %s still not available\n",
1091 proto_names[i].module_name,
1092 proto_names[i].name);
1093 *protocols &= ~proto_names[i].type;
1098 * store_protocols() - changes the current/wakeup IR protocol(s)
1099 * @device: the device descriptor
1100 * @mattr: the device attribute struct
1101 * @buf: a pointer to the input buffer
1102 * @len: length of the input buffer
1104 * This routine is for changing the IR protocol type.
1105 * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]protocols.
1106 * See parse_protocol_change() for the valid commands.
1107 * Returns @len on success or a negative error code.
1109 * dev->lock is taken to guard against races between device
1110 * registration, store_protocols and show_protocols.
1112 static ssize_t store_protocols(struct device *device,
1113 struct device_attribute *mattr,
1114 const char *buf, size_t len)
1116 struct rc_dev *dev = to_rc_dev(device);
1117 u64 *current_protocols;
1118 struct rc_scancode_filter *filter;
1119 u64 old_protocols, new_protocols;
1120 ssize_t rc;
1122 /* Device is being removed */
1123 if (!dev)
1124 return -EINVAL;
1126 if (!atomic_read(&dev->initialized))
1127 return -ERESTARTSYS;
1129 IR_dprintk(1, "Normal protocol change requested\n");
1130 current_protocols = &dev->enabled_protocols;
1131 filter = &dev->scancode_filter;
1133 if (!dev->change_protocol) {
1134 IR_dprintk(1, "Protocol switching not supported\n");
1135 return -EINVAL;
1138 mutex_lock(&dev->lock);
1140 old_protocols = *current_protocols;
1141 new_protocols = old_protocols;
1142 rc = parse_protocol_change(&new_protocols, buf);
1143 if (rc < 0)
1144 goto out;
1146 rc = dev->change_protocol(dev, &new_protocols);
1147 if (rc < 0) {
1148 IR_dprintk(1, "Error setting protocols to 0x%llx\n",
1149 (long long)new_protocols);
1150 goto out;
1153 if (dev->driver_type == RC_DRIVER_IR_RAW)
1154 ir_raw_load_modules(&new_protocols);
1156 if (new_protocols != old_protocols) {
1157 *current_protocols = new_protocols;
1158 IR_dprintk(1, "Protocols changed to 0x%llx\n",
1159 (long long)new_protocols);
1163 * If a protocol change was attempted the filter may need updating, even
1164 * if the actual protocol mask hasn't changed (since the driver may have
1165 * cleared the filter).
1166 * Try setting the same filter with the new protocol (if any).
1167 * Fall back to clearing the filter.
1169 if (dev->s_filter && filter->mask) {
1170 if (new_protocols)
1171 rc = dev->s_filter(dev, filter);
1172 else
1173 rc = -1;
1175 if (rc < 0) {
1176 filter->data = 0;
1177 filter->mask = 0;
1178 dev->s_filter(dev, filter);
1182 rc = len;
1184 out:
1185 mutex_unlock(&dev->lock);
1186 return rc;
1190 * show_filter() - shows the current scancode filter value or mask
1191 * @device: the device descriptor
1192 * @attr: the device attribute struct
1193 * @buf: a pointer to the output buffer
1195 * This routine is a callback routine to read a scancode filter value or mask.
1196 * It is trigged by reading /sys/class/rc/rc?/[wakeup_]filter[_mask].
1197 * It prints the current scancode filter value or mask of the appropriate filter
1198 * type in hexadecimal into @buf and returns the size of the buffer.
1200 * Bits of the filter value corresponding to set bits in the filter mask are
1201 * compared against input scancodes and non-matching scancodes are discarded.
1203 * dev->lock is taken to guard against races between device registration,
1204 * store_filter and show_filter.
1206 static ssize_t show_filter(struct device *device,
1207 struct device_attribute *attr,
1208 char *buf)
1210 struct rc_dev *dev = to_rc_dev(device);
1211 struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1212 struct rc_scancode_filter *filter;
1213 u32 val;
1215 /* Device is being removed */
1216 if (!dev)
1217 return -EINVAL;
1219 if (!atomic_read(&dev->initialized))
1220 return -ERESTARTSYS;
1222 mutex_lock(&dev->lock);
1224 if (fattr->type == RC_FILTER_NORMAL)
1225 filter = &dev->scancode_filter;
1226 else
1227 filter = &dev->scancode_wakeup_filter;
1229 if (fattr->mask)
1230 val = filter->mask;
1231 else
1232 val = filter->data;
1233 mutex_unlock(&dev->lock);
1235 return sprintf(buf, "%#x\n", val);
1239 * store_filter() - changes the scancode filter value
1240 * @device: the device descriptor
1241 * @attr: the device attribute struct
1242 * @buf: a pointer to the input buffer
1243 * @len: length of the input buffer
1245 * This routine is for changing a scancode filter value or mask.
1246 * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]filter[_mask].
1247 * Returns -EINVAL if an invalid filter value for the current protocol was
1248 * specified or if scancode filtering is not supported by the driver, otherwise
1249 * returns @len.
1251 * Bits of the filter value corresponding to set bits in the filter mask are
1252 * compared against input scancodes and non-matching scancodes are discarded.
1254 * dev->lock is taken to guard against races between device registration,
1255 * store_filter and show_filter.
1257 static ssize_t store_filter(struct device *device,
1258 struct device_attribute *attr,
1259 const char *buf, size_t len)
1261 struct rc_dev *dev = to_rc_dev(device);
1262 struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1263 struct rc_scancode_filter new_filter, *filter;
1264 int ret;
1265 unsigned long val;
1266 int (*set_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter);
1268 /* Device is being removed */
1269 if (!dev)
1270 return -EINVAL;
1272 if (!atomic_read(&dev->initialized))
1273 return -ERESTARTSYS;
1275 ret = kstrtoul(buf, 0, &val);
1276 if (ret < 0)
1277 return ret;
1279 if (fattr->type == RC_FILTER_NORMAL) {
1280 set_filter = dev->s_filter;
1281 filter = &dev->scancode_filter;
1282 } else {
1283 set_filter = dev->s_wakeup_filter;
1284 filter = &dev->scancode_wakeup_filter;
1287 if (!set_filter)
1288 return -EINVAL;
1290 mutex_lock(&dev->lock);
1292 new_filter = *filter;
1293 if (fattr->mask)
1294 new_filter.mask = val;
1295 else
1296 new_filter.data = val;
1298 if (fattr->type == RC_FILTER_WAKEUP) {
1300 * Refuse to set a filter unless a protocol is enabled
1301 * and the filter is valid for that protocol
1303 if (dev->wakeup_protocol != RC_TYPE_UNKNOWN)
1304 ret = rc_validate_filter(dev, &new_filter);
1305 else
1306 ret = -EINVAL;
1308 if (ret != 0)
1309 goto unlock;
1312 if (fattr->type == RC_FILTER_NORMAL && !dev->enabled_protocols &&
1313 val) {
1314 /* refuse to set a filter unless a protocol is enabled */
1315 ret = -EINVAL;
1316 goto unlock;
1319 ret = set_filter(dev, &new_filter);
1320 if (ret < 0)
1321 goto unlock;
1323 *filter = new_filter;
1325 unlock:
1326 mutex_unlock(&dev->lock);
1327 return (ret < 0) ? ret : len;
1331 * This is the list of all variants of all protocols, which is used by
1332 * the wakeup_protocols sysfs entry. In the protocols sysfs entry some
1333 * some protocols are grouped together (e.g. nec = nec + necx + nec32).
1335 * For wakeup we need to know the exact protocol variant so the hardware
1336 * can be programmed exactly what to expect.
1338 static const char * const proto_variant_names[] = {
1339 [RC_TYPE_UNKNOWN] = "unknown",
1340 [RC_TYPE_OTHER] = "other",
1341 [RC_TYPE_RC5] = "rc-5",
1342 [RC_TYPE_RC5X_20] = "rc-5x-20",
1343 [RC_TYPE_RC5_SZ] = "rc-5-sz",
1344 [RC_TYPE_JVC] = "jvc",
1345 [RC_TYPE_SONY12] = "sony-12",
1346 [RC_TYPE_SONY15] = "sony-15",
1347 [RC_TYPE_SONY20] = "sony-20",
1348 [RC_TYPE_NEC] = "nec",
1349 [RC_TYPE_NECX] = "nec-x",
1350 [RC_TYPE_NEC32] = "nec-32",
1351 [RC_TYPE_SANYO] = "sanyo",
1352 [RC_TYPE_MCIR2_KBD] = "mcir2-kbd",
1353 [RC_TYPE_MCIR2_MSE] = "mcir2-mse",
1354 [RC_TYPE_RC6_0] = "rc-6-0",
1355 [RC_TYPE_RC6_6A_20] = "rc-6-6a-20",
1356 [RC_TYPE_RC6_6A_24] = "rc-6-6a-24",
1357 [RC_TYPE_RC6_6A_32] = "rc-6-6a-32",
1358 [RC_TYPE_RC6_MCE] = "rc-6-mce",
1359 [RC_TYPE_SHARP] = "sharp",
1360 [RC_TYPE_XMP] = "xmp",
1361 [RC_TYPE_CEC] = "cec",
1365 * show_wakeup_protocols() - shows the wakeup IR protocol
1366 * @device: the device descriptor
1367 * @mattr: the device attribute struct
1368 * @buf: a pointer to the output buffer
1370 * This routine is a callback routine for input read the IR protocol type(s).
1371 * it is trigged by reading /sys/class/rc/rc?/wakeup_protocols.
1372 * It returns the protocol names of supported protocols.
1373 * The enabled protocols are printed in brackets.
1375 * dev->lock is taken to guard against races between device
1376 * registration, store_protocols and show_protocols.
1378 static ssize_t show_wakeup_protocols(struct device *device,
1379 struct device_attribute *mattr,
1380 char *buf)
1382 struct rc_dev *dev = to_rc_dev(device);
1383 u64 allowed;
1384 enum rc_type enabled;
1385 char *tmp = buf;
1386 int i;
1388 /* Device is being removed */
1389 if (!dev)
1390 return -EINVAL;
1392 if (!atomic_read(&dev->initialized))
1393 return -ERESTARTSYS;
1395 mutex_lock(&dev->lock);
1397 allowed = dev->allowed_wakeup_protocols;
1398 enabled = dev->wakeup_protocol;
1400 mutex_unlock(&dev->lock);
1402 IR_dprintk(1, "%s: allowed - 0x%llx, enabled - %d\n",
1403 __func__, (long long)allowed, enabled);
1405 for (i = 0; i < ARRAY_SIZE(proto_variant_names); i++) {
1406 if (allowed & (1ULL << i)) {
1407 if (i == enabled)
1408 tmp += sprintf(tmp, "[%s] ",
1409 proto_variant_names[i]);
1410 else
1411 tmp += sprintf(tmp, "%s ",
1412 proto_variant_names[i]);
1416 if (tmp != buf)
1417 tmp--;
1418 *tmp = '\n';
1420 return tmp + 1 - buf;
1424 * store_wakeup_protocols() - changes the wakeup IR protocol(s)
1425 * @device: the device descriptor
1426 * @mattr: the device attribute struct
1427 * @buf: a pointer to the input buffer
1428 * @len: length of the input buffer
1430 * This routine is for changing the IR protocol type.
1431 * It is trigged by writing to /sys/class/rc/rc?/wakeup_protocols.
1432 * Returns @len on success or a negative error code.
1434 * dev->lock is taken to guard against races between device
1435 * registration, store_protocols and show_protocols.
1437 static ssize_t store_wakeup_protocols(struct device *device,
1438 struct device_attribute *mattr,
1439 const char *buf, size_t len)
1441 struct rc_dev *dev = to_rc_dev(device);
1442 enum rc_type protocol;
1443 ssize_t rc;
1444 u64 allowed;
1445 int i;
1447 /* Device is being removed */
1448 if (!dev)
1449 return -EINVAL;
1451 if (!atomic_read(&dev->initialized))
1452 return -ERESTARTSYS;
1454 mutex_lock(&dev->lock);
1456 allowed = dev->allowed_wakeup_protocols;
1458 if (sysfs_streq(buf, "none")) {
1459 protocol = RC_TYPE_UNKNOWN;
1460 } else {
1461 for (i = 0; i < ARRAY_SIZE(proto_variant_names); i++) {
1462 if ((allowed & (1ULL << i)) &&
1463 sysfs_streq(buf, proto_variant_names[i])) {
1464 protocol = i;
1465 break;
1469 if (i == ARRAY_SIZE(proto_variant_names)) {
1470 rc = -EINVAL;
1471 goto out;
1474 if (dev->encode_wakeup) {
1475 u64 mask = 1ULL << protocol;
1477 ir_raw_load_modules(&mask);
1478 if (!mask) {
1479 rc = -EINVAL;
1480 goto out;
1485 if (dev->wakeup_protocol != protocol) {
1486 dev->wakeup_protocol = protocol;
1487 IR_dprintk(1, "Wakeup protocol changed to %d\n", protocol);
1489 if (protocol == RC_TYPE_RC6_MCE)
1490 dev->scancode_wakeup_filter.data = 0x800f0000;
1491 else
1492 dev->scancode_wakeup_filter.data = 0;
1493 dev->scancode_wakeup_filter.mask = 0;
1495 rc = dev->s_wakeup_filter(dev, &dev->scancode_wakeup_filter);
1496 if (rc == 0)
1497 rc = len;
1498 } else {
1499 rc = len;
1502 out:
1503 mutex_unlock(&dev->lock);
1504 return rc;
1507 static void rc_dev_release(struct device *device)
1509 struct rc_dev *dev = to_rc_dev(device);
1511 kfree(dev);
1514 #define ADD_HOTPLUG_VAR(fmt, val...) \
1515 do { \
1516 int err = add_uevent_var(env, fmt, val); \
1517 if (err) \
1518 return err; \
1519 } while (0)
1521 static int rc_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1523 struct rc_dev *dev = to_rc_dev(device);
1525 if (dev->rc_map.name)
1526 ADD_HOTPLUG_VAR("NAME=%s", dev->rc_map.name);
1527 if (dev->driver_name)
1528 ADD_HOTPLUG_VAR("DRV_NAME=%s", dev->driver_name);
1530 return 0;
1534 * Static device attribute struct with the sysfs attributes for IR's
1536 static DEVICE_ATTR(protocols, 0644, show_protocols, store_protocols);
1537 static DEVICE_ATTR(wakeup_protocols, 0644, show_wakeup_protocols,
1538 store_wakeup_protocols);
1539 static RC_FILTER_ATTR(filter, S_IRUGO|S_IWUSR,
1540 show_filter, store_filter, RC_FILTER_NORMAL, false);
1541 static RC_FILTER_ATTR(filter_mask, S_IRUGO|S_IWUSR,
1542 show_filter, store_filter, RC_FILTER_NORMAL, true);
1543 static RC_FILTER_ATTR(wakeup_filter, S_IRUGO|S_IWUSR,
1544 show_filter, store_filter, RC_FILTER_WAKEUP, false);
1545 static RC_FILTER_ATTR(wakeup_filter_mask, S_IRUGO|S_IWUSR,
1546 show_filter, store_filter, RC_FILTER_WAKEUP, true);
1548 static struct attribute *rc_dev_protocol_attrs[] = {
1549 &dev_attr_protocols.attr,
1550 NULL,
1553 static struct attribute_group rc_dev_protocol_attr_grp = {
1554 .attrs = rc_dev_protocol_attrs,
1557 static struct attribute *rc_dev_filter_attrs[] = {
1558 &dev_attr_filter.attr.attr,
1559 &dev_attr_filter_mask.attr.attr,
1560 NULL,
1563 static struct attribute_group rc_dev_filter_attr_grp = {
1564 .attrs = rc_dev_filter_attrs,
1567 static struct attribute *rc_dev_wakeup_filter_attrs[] = {
1568 &dev_attr_wakeup_filter.attr.attr,
1569 &dev_attr_wakeup_filter_mask.attr.attr,
1570 &dev_attr_wakeup_protocols.attr,
1571 NULL,
1574 static struct attribute_group rc_dev_wakeup_filter_attr_grp = {
1575 .attrs = rc_dev_wakeup_filter_attrs,
1578 static struct device_type rc_dev_type = {
1579 .release = rc_dev_release,
1580 .uevent = rc_dev_uevent,
1583 struct rc_dev *rc_allocate_device(enum rc_driver_type type)
1585 struct rc_dev *dev;
1587 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1588 if (!dev)
1589 return NULL;
1591 if (type != RC_DRIVER_IR_RAW_TX) {
1592 dev->input_dev = input_allocate_device();
1593 if (!dev->input_dev) {
1594 kfree(dev);
1595 return NULL;
1598 dev->input_dev->getkeycode = ir_getkeycode;
1599 dev->input_dev->setkeycode = ir_setkeycode;
1600 input_set_drvdata(dev->input_dev, dev);
1602 setup_timer(&dev->timer_keyup, ir_timer_keyup,
1603 (unsigned long)dev);
1605 spin_lock_init(&dev->rc_map.lock);
1606 spin_lock_init(&dev->keylock);
1608 mutex_init(&dev->lock);
1610 dev->dev.type = &rc_dev_type;
1611 dev->dev.class = &rc_class;
1612 device_initialize(&dev->dev);
1614 dev->driver_type = type;
1616 __module_get(THIS_MODULE);
1617 return dev;
1619 EXPORT_SYMBOL_GPL(rc_allocate_device);
1621 void rc_free_device(struct rc_dev *dev)
1623 if (!dev)
1624 return;
1626 input_free_device(dev->input_dev);
1628 put_device(&dev->dev);
1630 /* kfree(dev) will be called by the callback function
1631 rc_dev_release() */
1633 module_put(THIS_MODULE);
1635 EXPORT_SYMBOL_GPL(rc_free_device);
1637 static void devm_rc_alloc_release(struct device *dev, void *res)
1639 rc_free_device(*(struct rc_dev **)res);
1642 struct rc_dev *devm_rc_allocate_device(struct device *dev,
1643 enum rc_driver_type type)
1645 struct rc_dev **dr, *rc;
1647 dr = devres_alloc(devm_rc_alloc_release, sizeof(*dr), GFP_KERNEL);
1648 if (!dr)
1649 return NULL;
1651 rc = rc_allocate_device(type);
1652 if (!rc) {
1653 devres_free(dr);
1654 return NULL;
1657 rc->dev.parent = dev;
1658 rc->managed_alloc = true;
1659 *dr = rc;
1660 devres_add(dev, dr);
1662 return rc;
1664 EXPORT_SYMBOL_GPL(devm_rc_allocate_device);
1666 static int rc_setup_rx_device(struct rc_dev *dev)
1668 int rc;
1669 struct rc_map *rc_map;
1670 u64 rc_type;
1672 if (!dev->map_name)
1673 return -EINVAL;
1675 rc_map = rc_map_get(dev->map_name);
1676 if (!rc_map)
1677 rc_map = rc_map_get(RC_MAP_EMPTY);
1678 if (!rc_map || !rc_map->scan || rc_map->size == 0)
1679 return -EINVAL;
1681 rc = ir_setkeytable(dev, rc_map);
1682 if (rc)
1683 return rc;
1685 rc_type = BIT_ULL(rc_map->rc_type);
1687 if (dev->change_protocol) {
1688 rc = dev->change_protocol(dev, &rc_type);
1689 if (rc < 0)
1690 goto out_table;
1691 dev->enabled_protocols = rc_type;
1694 if (dev->driver_type == RC_DRIVER_IR_RAW)
1695 ir_raw_load_modules(&rc_type);
1697 set_bit(EV_KEY, dev->input_dev->evbit);
1698 set_bit(EV_REP, dev->input_dev->evbit);
1699 set_bit(EV_MSC, dev->input_dev->evbit);
1700 set_bit(MSC_SCAN, dev->input_dev->mscbit);
1701 if (dev->open)
1702 dev->input_dev->open = ir_open;
1703 if (dev->close)
1704 dev->input_dev->close = ir_close;
1707 * Default delay of 250ms is too short for some protocols, especially
1708 * since the timeout is currently set to 250ms. Increase it to 500ms,
1709 * to avoid wrong repetition of the keycodes. Note that this must be
1710 * set after the call to input_register_device().
1712 dev->input_dev->rep[REP_DELAY] = 500;
1715 * As a repeat event on protocols like RC-5 and NEC take as long as
1716 * 110/114ms, using 33ms as a repeat period is not the right thing
1717 * to do.
1719 dev->input_dev->rep[REP_PERIOD] = 125;
1721 dev->input_dev->dev.parent = &dev->dev;
1722 memcpy(&dev->input_dev->id, &dev->input_id, sizeof(dev->input_id));
1723 dev->input_dev->phys = dev->input_phys;
1724 dev->input_dev->name = dev->input_name;
1726 /* rc_open will be called here */
1727 rc = input_register_device(dev->input_dev);
1728 if (rc)
1729 goto out_table;
1731 return 0;
1733 out_table:
1734 ir_free_table(&dev->rc_map);
1736 return rc;
1739 static void rc_free_rx_device(struct rc_dev *dev)
1741 if (!dev || dev->driver_type == RC_DRIVER_IR_RAW_TX)
1742 return;
1744 ir_free_table(&dev->rc_map);
1746 input_unregister_device(dev->input_dev);
1747 dev->input_dev = NULL;
1750 int rc_register_device(struct rc_dev *dev)
1752 static bool raw_init; /* 'false' default value, raw decoders loaded? */
1753 const char *path;
1754 int attr = 0;
1755 int minor;
1756 int rc;
1758 if (!dev)
1759 return -EINVAL;
1761 minor = ida_simple_get(&rc_ida, 0, RC_DEV_MAX, GFP_KERNEL);
1762 if (minor < 0)
1763 return minor;
1765 dev->minor = minor;
1766 dev_set_name(&dev->dev, "rc%u", dev->minor);
1767 dev_set_drvdata(&dev->dev, dev);
1768 atomic_set(&dev->initialized, 0);
1770 dev->dev.groups = dev->sysfs_groups;
1771 if (dev->driver_type != RC_DRIVER_IR_RAW_TX)
1772 dev->sysfs_groups[attr++] = &rc_dev_protocol_attr_grp;
1773 if (dev->s_filter)
1774 dev->sysfs_groups[attr++] = &rc_dev_filter_attr_grp;
1775 if (dev->s_wakeup_filter)
1776 dev->sysfs_groups[attr++] = &rc_dev_wakeup_filter_attr_grp;
1777 dev->sysfs_groups[attr++] = NULL;
1779 rc = device_add(&dev->dev);
1780 if (rc)
1781 goto out_unlock;
1783 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1784 dev_info(&dev->dev, "%s as %s\n",
1785 dev->input_name ?: "Unspecified device", path ?: "N/A");
1786 kfree(path);
1788 if (dev->driver_type == RC_DRIVER_IR_RAW ||
1789 dev->driver_type == RC_DRIVER_IR_RAW_TX) {
1790 if (!raw_init) {
1791 request_module_nowait("ir-lirc-codec");
1792 raw_init = true;
1794 rc = ir_raw_event_register(dev);
1795 if (rc < 0)
1796 goto out_dev;
1799 if (dev->driver_type != RC_DRIVER_IR_RAW_TX) {
1800 rc = rc_setup_rx_device(dev);
1801 if (rc)
1802 goto out_raw;
1805 /* Allow the RC sysfs nodes to be accessible */
1806 atomic_set(&dev->initialized, 1);
1808 IR_dprintk(1, "Registered rc%u (driver: %s)\n",
1809 dev->minor,
1810 dev->driver_name ? dev->driver_name : "unknown");
1812 return 0;
1814 out_raw:
1815 ir_raw_event_unregister(dev);
1816 out_dev:
1817 device_del(&dev->dev);
1818 out_unlock:
1819 ida_simple_remove(&rc_ida, minor);
1820 return rc;
1822 EXPORT_SYMBOL_GPL(rc_register_device);
1824 static void devm_rc_release(struct device *dev, void *res)
1826 rc_unregister_device(*(struct rc_dev **)res);
1829 int devm_rc_register_device(struct device *parent, struct rc_dev *dev)
1831 struct rc_dev **dr;
1832 int ret;
1834 dr = devres_alloc(devm_rc_release, sizeof(*dr), GFP_KERNEL);
1835 if (!dr)
1836 return -ENOMEM;
1838 ret = rc_register_device(dev);
1839 if (ret) {
1840 devres_free(dr);
1841 return ret;
1844 *dr = dev;
1845 devres_add(parent, dr);
1847 return 0;
1849 EXPORT_SYMBOL_GPL(devm_rc_register_device);
1851 void rc_unregister_device(struct rc_dev *dev)
1853 if (!dev)
1854 return;
1856 del_timer_sync(&dev->timer_keyup);
1858 if (dev->driver_type == RC_DRIVER_IR_RAW)
1859 ir_raw_event_unregister(dev);
1861 rc_free_rx_device(dev);
1863 device_del(&dev->dev);
1865 ida_simple_remove(&rc_ida, dev->minor);
1867 if (!dev->managed_alloc)
1868 rc_free_device(dev);
1871 EXPORT_SYMBOL_GPL(rc_unregister_device);
1874 * Init/exit code for the module. Basically, creates/removes /sys/class/rc
1877 static int __init rc_core_init(void)
1879 int rc = class_register(&rc_class);
1880 if (rc) {
1881 pr_err("rc_core: unable to register rc class\n");
1882 return rc;
1885 led_trigger_register_simple("rc-feedback", &led_feedback);
1886 rc_map_register(&empty_map);
1888 return 0;
1891 static void __exit rc_core_exit(void)
1893 class_unregister(&rc_class);
1894 led_trigger_unregister_simple(led_feedback);
1895 rc_map_unregister(&empty_map);
1898 subsys_initcall(rc_core_init);
1899 module_exit(rc_core_exit);
1901 int rc_core_debug; /* ir_debug level (0,1,2) */
1902 EXPORT_SYMBOL_GPL(rc_core_debug);
1903 module_param_named(debug, rc_core_debug, int, 0644);
1905 MODULE_AUTHOR("Mauro Carvalho Chehab");
1906 MODULE_LICENSE("GPL");