2 * Disk Array driver for HP Smart Array controllers.
3 * (C) Copyright 2000, 2007 Hewlett-Packard Development Company, L.P.
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; version 2 of the License.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
19 * Questions/Comments/Bugfixes to iss_storagedev@hp.com
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/types.h>
26 #include <linux/pci.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/major.h>
32 #include <linux/bio.h>
33 #include <linux/blkpg.h>
34 #include <linux/timer.h>
35 #include <linux/proc_fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/init.h>
38 #include <linux/jiffies.h>
39 #include <linux/hdreg.h>
40 #include <linux/spinlock.h>
41 #include <linux/compat.h>
42 #include <linux/mutex.h>
43 #include <asm/uaccess.h>
46 #include <linux/dma-mapping.h>
47 #include <linux/blkdev.h>
48 #include <linux/genhd.h>
49 #include <linux/completion.h>
50 #include <scsi/scsi.h>
52 #include <scsi/scsi_ioctl.h>
53 #include <linux/cdrom.h>
54 #include <linux/scatterlist.h>
55 #include <linux/kthread.h>
57 #define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin))
58 #define DRIVER_NAME "HP CISS Driver (v 3.6.26)"
59 #define DRIVER_VERSION CCISS_DRIVER_VERSION(3, 6, 26)
61 /* Embedded module documentation macros - see modules.h */
62 MODULE_AUTHOR("Hewlett-Packard Company");
63 MODULE_DESCRIPTION("Driver for HP Smart Array Controllers");
64 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
65 MODULE_VERSION("3.6.26");
66 MODULE_LICENSE("GPL");
68 static DEFINE_MUTEX(cciss_mutex
);
69 static struct proc_dir_entry
*proc_cciss
;
71 #include "cciss_cmd.h"
73 #include <linux/cciss_ioctl.h>
75 /* define the PCI info for the cards we can control */
76 static const struct pci_device_id cciss_pci_device_id
[] = {
77 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISS
, 0x0E11, 0x4070},
78 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISSB
, 0x0E11, 0x4080},
79 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISSB
, 0x0E11, 0x4082},
80 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISSB
, 0x0E11, 0x4083},
81 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISSC
, 0x0E11, 0x4091},
82 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISSC
, 0x0E11, 0x409A},
83 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISSC
, 0x0E11, 0x409B},
84 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISSC
, 0x0E11, 0x409C},
85 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISSC
, 0x0E11, 0x409D},
86 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSA
, 0x103C, 0x3225},
87 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSC
, 0x103C, 0x3223},
88 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSC
, 0x103C, 0x3234},
89 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSC
, 0x103C, 0x3235},
90 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSD
, 0x103C, 0x3211},
91 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSD
, 0x103C, 0x3212},
92 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSD
, 0x103C, 0x3213},
93 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSD
, 0x103C, 0x3214},
94 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSD
, 0x103C, 0x3215},
95 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSC
, 0x103C, 0x3237},
96 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSC
, 0x103C, 0x323D},
100 MODULE_DEVICE_TABLE(pci
, cciss_pci_device_id
);
102 /* board_id = Subsystem Device ID & Vendor ID
103 * product = Marketing Name for the board
104 * access = Address of the struct of function pointers
106 static struct board_type products
[] = {
107 {0x40700E11, "Smart Array 5300", &SA5_access
},
108 {0x40800E11, "Smart Array 5i", &SA5B_access
},
109 {0x40820E11, "Smart Array 532", &SA5B_access
},
110 {0x40830E11, "Smart Array 5312", &SA5B_access
},
111 {0x409A0E11, "Smart Array 641", &SA5_access
},
112 {0x409B0E11, "Smart Array 642", &SA5_access
},
113 {0x409C0E11, "Smart Array 6400", &SA5_access
},
114 {0x409D0E11, "Smart Array 6400 EM", &SA5_access
},
115 {0x40910E11, "Smart Array 6i", &SA5_access
},
116 {0x3225103C, "Smart Array P600", &SA5_access
},
117 {0x3223103C, "Smart Array P800", &SA5_access
},
118 {0x3234103C, "Smart Array P400", &SA5_access
},
119 {0x3235103C, "Smart Array P400i", &SA5_access
},
120 {0x3211103C, "Smart Array E200i", &SA5_access
},
121 {0x3212103C, "Smart Array E200", &SA5_access
},
122 {0x3213103C, "Smart Array E200i", &SA5_access
},
123 {0x3214103C, "Smart Array E200i", &SA5_access
},
124 {0x3215103C, "Smart Array E200i", &SA5_access
},
125 {0x3237103C, "Smart Array E500", &SA5_access
},
126 {0x3223103C, "Smart Array P800", &SA5_access
},
127 {0x3234103C, "Smart Array P400", &SA5_access
},
128 {0x323D103C, "Smart Array P700m", &SA5_access
},
131 /* How long to wait (in milliseconds) for board to go into simple mode */
132 #define MAX_CONFIG_WAIT 30000
133 #define MAX_IOCTL_CONFIG_WAIT 1000
135 /*define how many times we will try a command because of bus resets */
136 #define MAX_CMD_RETRIES 3
140 /* Originally cciss driver only supports 8 major numbers */
141 #define MAX_CTLR_ORIG 8
143 static ctlr_info_t
*hba
[MAX_CTLR
];
145 static struct task_struct
*cciss_scan_thread
;
146 static DEFINE_MUTEX(scan_mutex
);
147 static LIST_HEAD(scan_q
);
149 static void do_cciss_request(struct request_queue
*q
);
150 static irqreturn_t
do_cciss_intx(int irq
, void *dev_id
);
151 static irqreturn_t
do_cciss_msix_intr(int irq
, void *dev_id
);
152 static int cciss_open(struct block_device
*bdev
, fmode_t mode
);
153 static int cciss_unlocked_open(struct block_device
*bdev
, fmode_t mode
);
154 static int cciss_release(struct gendisk
*disk
, fmode_t mode
);
155 static int do_ioctl(struct block_device
*bdev
, fmode_t mode
,
156 unsigned int cmd
, unsigned long arg
);
157 static int cciss_ioctl(struct block_device
*bdev
, fmode_t mode
,
158 unsigned int cmd
, unsigned long arg
);
159 static int cciss_getgeo(struct block_device
*bdev
, struct hd_geometry
*geo
);
161 static int cciss_revalidate(struct gendisk
*disk
);
162 static int rebuild_lun_table(ctlr_info_t
*h
, int first_time
, int via_ioctl
);
163 static int deregister_disk(ctlr_info_t
*h
, int drv_index
,
164 int clear_all
, int via_ioctl
);
166 static void cciss_read_capacity(ctlr_info_t
*h
, int logvol
,
167 sector_t
*total_size
, unsigned int *block_size
);
168 static void cciss_read_capacity_16(ctlr_info_t
*h
, int logvol
,
169 sector_t
*total_size
, unsigned int *block_size
);
170 static void cciss_geometry_inquiry(ctlr_info_t
*h
, int logvol
,
172 unsigned int block_size
, InquiryData_struct
*inq_buff
,
173 drive_info_struct
*drv
);
174 static void __devinit
cciss_interrupt_mode(ctlr_info_t
*);
175 static void start_io(ctlr_info_t
*h
);
176 static int sendcmd_withirq(ctlr_info_t
*h
, __u8 cmd
, void *buff
, size_t size
,
177 __u8 page_code
, unsigned char scsi3addr
[],
179 static int sendcmd_withirq_core(ctlr_info_t
*h
, CommandList_struct
*c
,
181 static int process_sendcmd_error(ctlr_info_t
*h
, CommandList_struct
*c
);
183 static int add_to_scan_list(struct ctlr_info
*h
);
184 static int scan_thread(void *data
);
185 static int check_for_unit_attention(ctlr_info_t
*h
, CommandList_struct
*c
);
186 static void cciss_hba_release(struct device
*dev
);
187 static void cciss_device_release(struct device
*dev
);
188 static void cciss_free_gendisk(ctlr_info_t
*h
, int drv_index
);
189 static void cciss_free_drive_info(ctlr_info_t
*h
, int drv_index
);
190 static inline u32
next_command(ctlr_info_t
*h
);
191 static int __devinit
cciss_find_cfg_addrs(struct pci_dev
*pdev
,
192 void __iomem
*vaddr
, u32
*cfg_base_addr
, u64
*cfg_base_addr_index
,
194 static int __devinit
cciss_pci_find_memory_BAR(struct pci_dev
*pdev
,
195 unsigned long *memory_bar
);
198 /* performant mode helper functions */
199 static void calc_bucket_map(int *bucket
, int num_buckets
, int nsgs
,
201 static void cciss_put_controller_into_performant_mode(ctlr_info_t
*h
);
203 #ifdef CONFIG_PROC_FS
204 static void cciss_procinit(ctlr_info_t
*h
);
206 static void cciss_procinit(ctlr_info_t
*h
)
209 #endif /* CONFIG_PROC_FS */
212 static int cciss_compat_ioctl(struct block_device
*, fmode_t
,
213 unsigned, unsigned long);
216 static const struct block_device_operations cciss_fops
= {
217 .owner
= THIS_MODULE
,
218 .open
= cciss_unlocked_open
,
219 .release
= cciss_release
,
221 .getgeo
= cciss_getgeo
,
223 .compat_ioctl
= cciss_compat_ioctl
,
225 .revalidate_disk
= cciss_revalidate
,
228 /* set_performant_mode: Modify the tag for cciss performant
229 * set bit 0 for pull model, bits 3-1 for block fetch
232 static void set_performant_mode(ctlr_info_t
*h
, CommandList_struct
*c
)
234 if (likely(h
->transMethod
== CFGTBL_Trans_Performant
))
235 c
->busaddr
|= 1 | (h
->blockFetchTable
[c
->Header
.SGList
] << 1);
239 * Enqueuing and dequeuing functions for cmdlists.
241 static inline void addQ(struct list_head
*list
, CommandList_struct
*c
)
243 list_add_tail(&c
->list
, list
);
246 static inline void removeQ(CommandList_struct
*c
)
249 * After kexec/dump some commands might still
250 * be in flight, which the firmware will try
251 * to complete. Resetting the firmware doesn't work
252 * with old fw revisions, so we have to mark
253 * them off as 'stale' to prevent the driver from
256 if (WARN_ON(list_empty(&c
->list
))) {
257 c
->cmd_type
= CMD_MSG_STALE
;
261 list_del_init(&c
->list
);
264 static void enqueue_cmd_and_start_io(ctlr_info_t
*h
,
265 CommandList_struct
*c
)
268 set_performant_mode(h
, c
);
269 spin_lock_irqsave(&h
->lock
, flags
);
272 if (h
->Qdepth
> h
->maxQsinceinit
)
273 h
->maxQsinceinit
= h
->Qdepth
;
275 spin_unlock_irqrestore(&h
->lock
, flags
);
278 static void cciss_free_sg_chain_blocks(SGDescriptor_struct
**cmd_sg_list
,
285 for (i
= 0; i
< nr_cmds
; i
++) {
286 kfree(cmd_sg_list
[i
]);
287 cmd_sg_list
[i
] = NULL
;
292 static SGDescriptor_struct
**cciss_allocate_sg_chain_blocks(
293 ctlr_info_t
*h
, int chainsize
, int nr_cmds
)
296 SGDescriptor_struct
**cmd_sg_list
;
301 cmd_sg_list
= kmalloc(sizeof(*cmd_sg_list
) * nr_cmds
, GFP_KERNEL
);
305 /* Build up chain blocks for each command */
306 for (j
= 0; j
< nr_cmds
; j
++) {
307 /* Need a block of chainsized s/g elements. */
308 cmd_sg_list
[j
] = kmalloc((chainsize
*
309 sizeof(*cmd_sg_list
[j
])), GFP_KERNEL
);
310 if (!cmd_sg_list
[j
]) {
311 dev_err(&h
->pdev
->dev
, "Cannot get memory "
312 "for s/g chains.\n");
318 cciss_free_sg_chain_blocks(cmd_sg_list
, nr_cmds
);
322 static void cciss_unmap_sg_chain_block(ctlr_info_t
*h
, CommandList_struct
*c
)
324 SGDescriptor_struct
*chain_sg
;
327 if (c
->Header
.SGTotal
<= h
->max_cmd_sgentries
)
330 chain_sg
= &c
->SG
[h
->max_cmd_sgentries
- 1];
331 temp64
.val32
.lower
= chain_sg
->Addr
.lower
;
332 temp64
.val32
.upper
= chain_sg
->Addr
.upper
;
333 pci_unmap_single(h
->pdev
, temp64
.val
, chain_sg
->Len
, PCI_DMA_TODEVICE
);
336 static void cciss_map_sg_chain_block(ctlr_info_t
*h
, CommandList_struct
*c
,
337 SGDescriptor_struct
*chain_block
, int len
)
339 SGDescriptor_struct
*chain_sg
;
342 chain_sg
= &c
->SG
[h
->max_cmd_sgentries
- 1];
343 chain_sg
->Ext
= CCISS_SG_CHAIN
;
345 temp64
.val
= pci_map_single(h
->pdev
, chain_block
, len
,
347 chain_sg
->Addr
.lower
= temp64
.val32
.lower
;
348 chain_sg
->Addr
.upper
= temp64
.val32
.upper
;
351 #include "cciss_scsi.c" /* For SCSI tape support */
353 static const char *raid_label
[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
356 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label)-1)
358 #ifdef CONFIG_PROC_FS
361 * Report information about this controller.
363 #define ENG_GIG 1000000000
364 #define ENG_GIG_FACTOR (ENG_GIG/512)
365 #define ENGAGE_SCSI "engage scsi"
367 static void cciss_seq_show_header(struct seq_file
*seq
)
369 ctlr_info_t
*h
= seq
->private;
371 seq_printf(seq
, "%s: HP %s Controller\n"
372 "Board ID: 0x%08lx\n"
373 "Firmware Version: %c%c%c%c\n"
375 "Logical drives: %d\n"
376 "Current Q depth: %d\n"
377 "Current # commands on controller: %d\n"
378 "Max Q depth since init: %d\n"
379 "Max # commands on controller since init: %d\n"
380 "Max SG entries since init: %d\n",
383 (unsigned long)h
->board_id
,
384 h
->firm_ver
[0], h
->firm_ver
[1], h
->firm_ver
[2],
385 h
->firm_ver
[3], (unsigned int)h
->intr
[PERF_MODE_INT
],
387 h
->Qdepth
, h
->commands_outstanding
,
388 h
->maxQsinceinit
, h
->max_outstanding
, h
->maxSG
);
390 #ifdef CONFIG_CISS_SCSI_TAPE
391 cciss_seq_tape_report(seq
, h
);
392 #endif /* CONFIG_CISS_SCSI_TAPE */
395 static void *cciss_seq_start(struct seq_file
*seq
, loff_t
*pos
)
397 ctlr_info_t
*h
= seq
->private;
400 /* prevent displaying bogus info during configuration
401 * or deconfiguration of a logical volume
403 spin_lock_irqsave(&h
->lock
, flags
);
404 if (h
->busy_configuring
) {
405 spin_unlock_irqrestore(&h
->lock
, flags
);
406 return ERR_PTR(-EBUSY
);
408 h
->busy_configuring
= 1;
409 spin_unlock_irqrestore(&h
->lock
, flags
);
412 cciss_seq_show_header(seq
);
417 static int cciss_seq_show(struct seq_file
*seq
, void *v
)
419 sector_t vol_sz
, vol_sz_frac
;
420 ctlr_info_t
*h
= seq
->private;
421 unsigned ctlr
= h
->ctlr
;
423 drive_info_struct
*drv
= h
->drv
[*pos
];
425 if (*pos
> h
->highest_lun
)
428 if (drv
== NULL
) /* it's possible for h->drv[] to have holes. */
434 vol_sz
= drv
->nr_blocks
;
435 vol_sz_frac
= sector_div(vol_sz
, ENG_GIG_FACTOR
);
437 sector_div(vol_sz_frac
, ENG_GIG_FACTOR
);
439 if (drv
->raid_level
< 0 || drv
->raid_level
> RAID_UNKNOWN
)
440 drv
->raid_level
= RAID_UNKNOWN
;
441 seq_printf(seq
, "cciss/c%dd%d:"
442 "\t%4u.%02uGB\tRAID %s\n",
443 ctlr
, (int) *pos
, (int)vol_sz
, (int)vol_sz_frac
,
444 raid_label
[drv
->raid_level
]);
448 static void *cciss_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
450 ctlr_info_t
*h
= seq
->private;
452 if (*pos
> h
->highest_lun
)
459 static void cciss_seq_stop(struct seq_file
*seq
, void *v
)
461 ctlr_info_t
*h
= seq
->private;
463 /* Only reset h->busy_configuring if we succeeded in setting
464 * it during cciss_seq_start. */
465 if (v
== ERR_PTR(-EBUSY
))
468 h
->busy_configuring
= 0;
471 static const struct seq_operations cciss_seq_ops
= {
472 .start
= cciss_seq_start
,
473 .show
= cciss_seq_show
,
474 .next
= cciss_seq_next
,
475 .stop
= cciss_seq_stop
,
478 static int cciss_seq_open(struct inode
*inode
, struct file
*file
)
480 int ret
= seq_open(file
, &cciss_seq_ops
);
481 struct seq_file
*seq
= file
->private_data
;
484 seq
->private = PDE(inode
)->data
;
490 cciss_proc_write(struct file
*file
, const char __user
*buf
,
491 size_t length
, loff_t
*ppos
)
496 #ifndef CONFIG_CISS_SCSI_TAPE
500 if (!buf
|| length
> PAGE_SIZE
- 1)
503 buffer
= (char *)__get_free_page(GFP_KERNEL
);
508 if (copy_from_user(buffer
, buf
, length
))
510 buffer
[length
] = '\0';
512 #ifdef CONFIG_CISS_SCSI_TAPE
513 if (strncmp(ENGAGE_SCSI
, buffer
, sizeof ENGAGE_SCSI
- 1) == 0) {
514 struct seq_file
*seq
= file
->private_data
;
515 ctlr_info_t
*h
= seq
->private;
517 err
= cciss_engage_scsi(h
);
521 #endif /* CONFIG_CISS_SCSI_TAPE */
523 /* might be nice to have "disengage" too, but it's not
524 safely possible. (only 1 module use count, lock issues.) */
527 free_page((unsigned long)buffer
);
531 static const struct file_operations cciss_proc_fops
= {
532 .owner
= THIS_MODULE
,
533 .open
= cciss_seq_open
,
536 .release
= seq_release
,
537 .write
= cciss_proc_write
,
540 static void __devinit
cciss_procinit(ctlr_info_t
*h
)
542 struct proc_dir_entry
*pde
;
544 if (proc_cciss
== NULL
)
545 proc_cciss
= proc_mkdir("driver/cciss", NULL
);
548 pde
= proc_create_data(h
->devname
, S_IWUSR
| S_IRUSR
| S_IRGRP
|
550 &cciss_proc_fops
, h
);
552 #endif /* CONFIG_PROC_FS */
554 #define MAX_PRODUCT_NAME_LEN 19
556 #define to_hba(n) container_of(n, struct ctlr_info, dev)
557 #define to_drv(n) container_of(n, drive_info_struct, dev)
559 static ssize_t
host_store_rescan(struct device
*dev
,
560 struct device_attribute
*attr
,
561 const char *buf
, size_t count
)
563 struct ctlr_info
*h
= to_hba(dev
);
566 wake_up_process(cciss_scan_thread
);
567 wait_for_completion_interruptible(&h
->scan_wait
);
571 static DEVICE_ATTR(rescan
, S_IWUSR
, NULL
, host_store_rescan
);
573 static ssize_t
dev_show_unique_id(struct device
*dev
,
574 struct device_attribute
*attr
,
577 drive_info_struct
*drv
= to_drv(dev
);
578 struct ctlr_info
*h
= to_hba(drv
->dev
.parent
);
583 spin_lock_irqsave(&h
->lock
, flags
);
584 if (h
->busy_configuring
)
587 memcpy(sn
, drv
->serial_no
, sizeof(sn
));
588 spin_unlock_irqrestore(&h
->lock
, flags
);
593 return snprintf(buf
, 16 * 2 + 2,
594 "%02X%02X%02X%02X%02X%02X%02X%02X"
595 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
596 sn
[0], sn
[1], sn
[2], sn
[3],
597 sn
[4], sn
[5], sn
[6], sn
[7],
598 sn
[8], sn
[9], sn
[10], sn
[11],
599 sn
[12], sn
[13], sn
[14], sn
[15]);
601 static DEVICE_ATTR(unique_id
, S_IRUGO
, dev_show_unique_id
, NULL
);
603 static ssize_t
dev_show_vendor(struct device
*dev
,
604 struct device_attribute
*attr
,
607 drive_info_struct
*drv
= to_drv(dev
);
608 struct ctlr_info
*h
= to_hba(drv
->dev
.parent
);
609 char vendor
[VENDOR_LEN
+ 1];
613 spin_lock_irqsave(&h
->lock
, flags
);
614 if (h
->busy_configuring
)
617 memcpy(vendor
, drv
->vendor
, VENDOR_LEN
+ 1);
618 spin_unlock_irqrestore(&h
->lock
, flags
);
623 return snprintf(buf
, sizeof(vendor
) + 1, "%s\n", drv
->vendor
);
625 static DEVICE_ATTR(vendor
, S_IRUGO
, dev_show_vendor
, NULL
);
627 static ssize_t
dev_show_model(struct device
*dev
,
628 struct device_attribute
*attr
,
631 drive_info_struct
*drv
= to_drv(dev
);
632 struct ctlr_info
*h
= to_hba(drv
->dev
.parent
);
633 char model
[MODEL_LEN
+ 1];
637 spin_lock_irqsave(&h
->lock
, flags
);
638 if (h
->busy_configuring
)
641 memcpy(model
, drv
->model
, MODEL_LEN
+ 1);
642 spin_unlock_irqrestore(&h
->lock
, flags
);
647 return snprintf(buf
, sizeof(model
) + 1, "%s\n", drv
->model
);
649 static DEVICE_ATTR(model
, S_IRUGO
, dev_show_model
, NULL
);
651 static ssize_t
dev_show_rev(struct device
*dev
,
652 struct device_attribute
*attr
,
655 drive_info_struct
*drv
= to_drv(dev
);
656 struct ctlr_info
*h
= to_hba(drv
->dev
.parent
);
657 char rev
[REV_LEN
+ 1];
661 spin_lock_irqsave(&h
->lock
, flags
);
662 if (h
->busy_configuring
)
665 memcpy(rev
, drv
->rev
, REV_LEN
+ 1);
666 spin_unlock_irqrestore(&h
->lock
, flags
);
671 return snprintf(buf
, sizeof(rev
) + 1, "%s\n", drv
->rev
);
673 static DEVICE_ATTR(rev
, S_IRUGO
, dev_show_rev
, NULL
);
675 static ssize_t
cciss_show_lunid(struct device
*dev
,
676 struct device_attribute
*attr
, char *buf
)
678 drive_info_struct
*drv
= to_drv(dev
);
679 struct ctlr_info
*h
= to_hba(drv
->dev
.parent
);
681 unsigned char lunid
[8];
683 spin_lock_irqsave(&h
->lock
, flags
);
684 if (h
->busy_configuring
) {
685 spin_unlock_irqrestore(&h
->lock
, flags
);
689 spin_unlock_irqrestore(&h
->lock
, flags
);
692 memcpy(lunid
, drv
->LunID
, sizeof(lunid
));
693 spin_unlock_irqrestore(&h
->lock
, flags
);
694 return snprintf(buf
, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
695 lunid
[0], lunid
[1], lunid
[2], lunid
[3],
696 lunid
[4], lunid
[5], lunid
[6], lunid
[7]);
698 static DEVICE_ATTR(lunid
, S_IRUGO
, cciss_show_lunid
, NULL
);
700 static ssize_t
cciss_show_raid_level(struct device
*dev
,
701 struct device_attribute
*attr
, char *buf
)
703 drive_info_struct
*drv
= to_drv(dev
);
704 struct ctlr_info
*h
= to_hba(drv
->dev
.parent
);
708 spin_lock_irqsave(&h
->lock
, flags
);
709 if (h
->busy_configuring
) {
710 spin_unlock_irqrestore(&h
->lock
, flags
);
713 raid
= drv
->raid_level
;
714 spin_unlock_irqrestore(&h
->lock
, flags
);
715 if (raid
< 0 || raid
> RAID_UNKNOWN
)
718 return snprintf(buf
, strlen(raid_label
[raid
]) + 7, "RAID %s\n",
721 static DEVICE_ATTR(raid_level
, S_IRUGO
, cciss_show_raid_level
, NULL
);
723 static ssize_t
cciss_show_usage_count(struct device
*dev
,
724 struct device_attribute
*attr
, char *buf
)
726 drive_info_struct
*drv
= to_drv(dev
);
727 struct ctlr_info
*h
= to_hba(drv
->dev
.parent
);
731 spin_lock_irqsave(&h
->lock
, flags
);
732 if (h
->busy_configuring
) {
733 spin_unlock_irqrestore(&h
->lock
, flags
);
736 count
= drv
->usage_count
;
737 spin_unlock_irqrestore(&h
->lock
, flags
);
738 return snprintf(buf
, 20, "%d\n", count
);
740 static DEVICE_ATTR(usage_count
, S_IRUGO
, cciss_show_usage_count
, NULL
);
742 static struct attribute
*cciss_host_attrs
[] = {
743 &dev_attr_rescan
.attr
,
747 static struct attribute_group cciss_host_attr_group
= {
748 .attrs
= cciss_host_attrs
,
751 static const struct attribute_group
*cciss_host_attr_groups
[] = {
752 &cciss_host_attr_group
,
756 static struct device_type cciss_host_type
= {
757 .name
= "cciss_host",
758 .groups
= cciss_host_attr_groups
,
759 .release
= cciss_hba_release
,
762 static struct attribute
*cciss_dev_attrs
[] = {
763 &dev_attr_unique_id
.attr
,
764 &dev_attr_model
.attr
,
765 &dev_attr_vendor
.attr
,
767 &dev_attr_lunid
.attr
,
768 &dev_attr_raid_level
.attr
,
769 &dev_attr_usage_count
.attr
,
773 static struct attribute_group cciss_dev_attr_group
= {
774 .attrs
= cciss_dev_attrs
,
777 static const struct attribute_group
*cciss_dev_attr_groups
[] = {
778 &cciss_dev_attr_group
,
782 static struct device_type cciss_dev_type
= {
783 .name
= "cciss_device",
784 .groups
= cciss_dev_attr_groups
,
785 .release
= cciss_device_release
,
788 static struct bus_type cciss_bus_type
= {
793 * cciss_hba_release is called when the reference count
794 * of h->dev goes to zero.
796 static void cciss_hba_release(struct device
*dev
)
799 * nothing to do, but need this to avoid a warning
800 * about not having a release handler from lib/kref.c.
805 * Initialize sysfs entry for each controller. This sets up and registers
806 * the 'cciss#' directory for each individual controller under
807 * /sys/bus/pci/devices/<dev>/.
809 static int cciss_create_hba_sysfs_entry(struct ctlr_info
*h
)
811 device_initialize(&h
->dev
);
812 h
->dev
.type
= &cciss_host_type
;
813 h
->dev
.bus
= &cciss_bus_type
;
814 dev_set_name(&h
->dev
, "%s", h
->devname
);
815 h
->dev
.parent
= &h
->pdev
->dev
;
817 return device_add(&h
->dev
);
821 * Remove sysfs entries for an hba.
823 static void cciss_destroy_hba_sysfs_entry(struct ctlr_info
*h
)
826 put_device(&h
->dev
); /* final put. */
829 /* cciss_device_release is called when the reference count
830 * of h->drv[x]dev goes to zero.
832 static void cciss_device_release(struct device
*dev
)
834 drive_info_struct
*drv
= to_drv(dev
);
839 * Initialize sysfs for each logical drive. This sets up and registers
840 * the 'c#d#' directory for each individual logical drive under
841 * /sys/bus/pci/devices/<dev/ccis#/. We also create a link from
842 * /sys/block/cciss!c#d# to this entry.
844 static long cciss_create_ld_sysfs_entry(struct ctlr_info
*h
,
849 if (h
->drv
[drv_index
]->device_initialized
)
852 dev
= &h
->drv
[drv_index
]->dev
;
853 device_initialize(dev
);
854 dev
->type
= &cciss_dev_type
;
855 dev
->bus
= &cciss_bus_type
;
856 dev_set_name(dev
, "c%dd%d", h
->ctlr
, drv_index
);
857 dev
->parent
= &h
->dev
;
858 h
->drv
[drv_index
]->device_initialized
= 1;
859 return device_add(dev
);
863 * Remove sysfs entries for a logical drive.
865 static void cciss_destroy_ld_sysfs_entry(struct ctlr_info
*h
, int drv_index
,
868 struct device
*dev
= &h
->drv
[drv_index
]->dev
;
870 /* special case for c*d0, we only destroy it on controller exit */
871 if (drv_index
== 0 && !ctlr_exiting
)
875 put_device(dev
); /* the "final" put. */
876 h
->drv
[drv_index
] = NULL
;
880 * For operations that cannot sleep, a command block is allocated at init,
881 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
882 * which ones are free or in use.
884 static CommandList_struct
*cmd_alloc(ctlr_info_t
*h
)
886 CommandList_struct
*c
;
889 dma_addr_t cmd_dma_handle
, err_dma_handle
;
892 i
= find_first_zero_bit(h
->cmd_pool_bits
, h
->nr_cmds
);
895 } while (test_and_set_bit(i
& (BITS_PER_LONG
- 1),
896 h
->cmd_pool_bits
+ (i
/ BITS_PER_LONG
)) != 0);
898 memset(c
, 0, sizeof(CommandList_struct
));
899 cmd_dma_handle
= h
->cmd_pool_dhandle
+ i
* sizeof(CommandList_struct
);
900 c
->err_info
= h
->errinfo_pool
+ i
;
901 memset(c
->err_info
, 0, sizeof(ErrorInfo_struct
));
902 err_dma_handle
= h
->errinfo_pool_dhandle
903 + i
* sizeof(ErrorInfo_struct
);
908 INIT_LIST_HEAD(&c
->list
);
909 c
->busaddr
= (__u32
) cmd_dma_handle
;
910 temp64
.val
= (__u64
) err_dma_handle
;
911 c
->ErrDesc
.Addr
.lower
= temp64
.val32
.lower
;
912 c
->ErrDesc
.Addr
.upper
= temp64
.val32
.upper
;
913 c
->ErrDesc
.Len
= sizeof(ErrorInfo_struct
);
919 /* allocate a command using pci_alloc_consistent, used for ioctls,
920 * etc., not for the main i/o path.
922 static CommandList_struct
*cmd_special_alloc(ctlr_info_t
*h
)
924 CommandList_struct
*c
;
926 dma_addr_t cmd_dma_handle
, err_dma_handle
;
928 c
= (CommandList_struct
*) pci_alloc_consistent(h
->pdev
,
929 sizeof(CommandList_struct
), &cmd_dma_handle
);
932 memset(c
, 0, sizeof(CommandList_struct
));
936 c
->err_info
= (ErrorInfo_struct
*)
937 pci_alloc_consistent(h
->pdev
, sizeof(ErrorInfo_struct
),
940 if (c
->err_info
== NULL
) {
941 pci_free_consistent(h
->pdev
,
942 sizeof(CommandList_struct
), c
, cmd_dma_handle
);
945 memset(c
->err_info
, 0, sizeof(ErrorInfo_struct
));
947 INIT_LIST_HEAD(&c
->list
);
948 c
->busaddr
= (__u32
) cmd_dma_handle
;
949 temp64
.val
= (__u64
) err_dma_handle
;
950 c
->ErrDesc
.Addr
.lower
= temp64
.val32
.lower
;
951 c
->ErrDesc
.Addr
.upper
= temp64
.val32
.upper
;
952 c
->ErrDesc
.Len
= sizeof(ErrorInfo_struct
);
958 static void cmd_free(ctlr_info_t
*h
, CommandList_struct
*c
)
963 clear_bit(i
& (BITS_PER_LONG
- 1),
964 h
->cmd_pool_bits
+ (i
/ BITS_PER_LONG
));
968 static void cmd_special_free(ctlr_info_t
*h
, CommandList_struct
*c
)
972 temp64
.val32
.lower
= c
->ErrDesc
.Addr
.lower
;
973 temp64
.val32
.upper
= c
->ErrDesc
.Addr
.upper
;
974 pci_free_consistent(h
->pdev
, sizeof(ErrorInfo_struct
),
975 c
->err_info
, (dma_addr_t
) temp64
.val
);
976 pci_free_consistent(h
->pdev
, sizeof(CommandList_struct
),
977 c
, (dma_addr_t
) c
->busaddr
);
980 static inline ctlr_info_t
*get_host(struct gendisk
*disk
)
982 return disk
->queue
->queuedata
;
985 static inline drive_info_struct
*get_drv(struct gendisk
*disk
)
987 return disk
->private_data
;
991 * Open. Make sure the device is really there.
993 static int cciss_open(struct block_device
*bdev
, fmode_t mode
)
995 ctlr_info_t
*h
= get_host(bdev
->bd_disk
);
996 drive_info_struct
*drv
= get_drv(bdev
->bd_disk
);
998 dev_dbg(&h
->pdev
->dev
, "cciss_open %s\n", bdev
->bd_disk
->disk_name
);
999 if (drv
->busy_configuring
)
1002 * Root is allowed to open raw volume zero even if it's not configured
1003 * so array config can still work. Root is also allowed to open any
1004 * volume that has a LUN ID, so it can issue IOCTL to reread the
1005 * disk information. I don't think I really like this
1006 * but I'm already using way to many device nodes to claim another one
1007 * for "raw controller".
1009 if (drv
->heads
== 0) {
1010 if (MINOR(bdev
->bd_dev
) != 0) { /* not node 0? */
1011 /* if not node 0 make sure it is a partition = 0 */
1012 if (MINOR(bdev
->bd_dev
) & 0x0f) {
1014 /* if it is, make sure we have a LUN ID */
1015 } else if (memcmp(drv
->LunID
, CTLR_LUNID
,
1016 sizeof(drv
->LunID
))) {
1020 if (!capable(CAP_SYS_ADMIN
))
1028 static int cciss_unlocked_open(struct block_device
*bdev
, fmode_t mode
)
1032 mutex_lock(&cciss_mutex
);
1033 ret
= cciss_open(bdev
, mode
);
1034 mutex_unlock(&cciss_mutex
);
1040 * Close. Sync first.
1042 static int cciss_release(struct gendisk
*disk
, fmode_t mode
)
1045 drive_info_struct
*drv
;
1047 mutex_lock(&cciss_mutex
);
1049 drv
= get_drv(disk
);
1050 dev_dbg(&h
->pdev
->dev
, "cciss_release %s\n", disk
->disk_name
);
1053 mutex_unlock(&cciss_mutex
);
1057 static int do_ioctl(struct block_device
*bdev
, fmode_t mode
,
1058 unsigned cmd
, unsigned long arg
)
1061 mutex_lock(&cciss_mutex
);
1062 ret
= cciss_ioctl(bdev
, mode
, cmd
, arg
);
1063 mutex_unlock(&cciss_mutex
);
1067 #ifdef CONFIG_COMPAT
1069 static int cciss_ioctl32_passthru(struct block_device
*bdev
, fmode_t mode
,
1070 unsigned cmd
, unsigned long arg
);
1071 static int cciss_ioctl32_big_passthru(struct block_device
*bdev
, fmode_t mode
,
1072 unsigned cmd
, unsigned long arg
);
1074 static int cciss_compat_ioctl(struct block_device
*bdev
, fmode_t mode
,
1075 unsigned cmd
, unsigned long arg
)
1078 case CCISS_GETPCIINFO
:
1079 case CCISS_GETINTINFO
:
1080 case CCISS_SETINTINFO
:
1081 case CCISS_GETNODENAME
:
1082 case CCISS_SETNODENAME
:
1083 case CCISS_GETHEARTBEAT
:
1084 case CCISS_GETBUSTYPES
:
1085 case CCISS_GETFIRMVER
:
1086 case CCISS_GETDRIVVER
:
1087 case CCISS_REVALIDVOLS
:
1088 case CCISS_DEREGDISK
:
1089 case CCISS_REGNEWDISK
:
1091 case CCISS_RESCANDISK
:
1092 case CCISS_GETLUNINFO
:
1093 return do_ioctl(bdev
, mode
, cmd
, arg
);
1095 case CCISS_PASSTHRU32
:
1096 return cciss_ioctl32_passthru(bdev
, mode
, cmd
, arg
);
1097 case CCISS_BIG_PASSTHRU32
:
1098 return cciss_ioctl32_big_passthru(bdev
, mode
, cmd
, arg
);
1101 return -ENOIOCTLCMD
;
1105 static int cciss_ioctl32_passthru(struct block_device
*bdev
, fmode_t mode
,
1106 unsigned cmd
, unsigned long arg
)
1108 IOCTL32_Command_struct __user
*arg32
=
1109 (IOCTL32_Command_struct __user
*) arg
;
1110 IOCTL_Command_struct arg64
;
1111 IOCTL_Command_struct __user
*p
= compat_alloc_user_space(sizeof(arg64
));
1117 copy_from_user(&arg64
.LUN_info
, &arg32
->LUN_info
,
1118 sizeof(arg64
.LUN_info
));
1120 copy_from_user(&arg64
.Request
, &arg32
->Request
,
1121 sizeof(arg64
.Request
));
1123 copy_from_user(&arg64
.error_info
, &arg32
->error_info
,
1124 sizeof(arg64
.error_info
));
1125 err
|= get_user(arg64
.buf_size
, &arg32
->buf_size
);
1126 err
|= get_user(cp
, &arg32
->buf
);
1127 arg64
.buf
= compat_ptr(cp
);
1128 err
|= copy_to_user(p
, &arg64
, sizeof(arg64
));
1133 err
= do_ioctl(bdev
, mode
, CCISS_PASSTHRU
, (unsigned long)p
);
1137 copy_in_user(&arg32
->error_info
, &p
->error_info
,
1138 sizeof(arg32
->error_info
));
1144 static int cciss_ioctl32_big_passthru(struct block_device
*bdev
, fmode_t mode
,
1145 unsigned cmd
, unsigned long arg
)
1147 BIG_IOCTL32_Command_struct __user
*arg32
=
1148 (BIG_IOCTL32_Command_struct __user
*) arg
;
1149 BIG_IOCTL_Command_struct arg64
;
1150 BIG_IOCTL_Command_struct __user
*p
=
1151 compat_alloc_user_space(sizeof(arg64
));
1155 memset(&arg64
, 0, sizeof(arg64
));
1158 copy_from_user(&arg64
.LUN_info
, &arg32
->LUN_info
,
1159 sizeof(arg64
.LUN_info
));
1161 copy_from_user(&arg64
.Request
, &arg32
->Request
,
1162 sizeof(arg64
.Request
));
1164 copy_from_user(&arg64
.error_info
, &arg32
->error_info
,
1165 sizeof(arg64
.error_info
));
1166 err
|= get_user(arg64
.buf_size
, &arg32
->buf_size
);
1167 err
|= get_user(arg64
.malloc_size
, &arg32
->malloc_size
);
1168 err
|= get_user(cp
, &arg32
->buf
);
1169 arg64
.buf
= compat_ptr(cp
);
1170 err
|= copy_to_user(p
, &arg64
, sizeof(arg64
));
1175 err
= do_ioctl(bdev
, mode
, CCISS_BIG_PASSTHRU
, (unsigned long)p
);
1179 copy_in_user(&arg32
->error_info
, &p
->error_info
,
1180 sizeof(arg32
->error_info
));
1187 static int cciss_getgeo(struct block_device
*bdev
, struct hd_geometry
*geo
)
1189 drive_info_struct
*drv
= get_drv(bdev
->bd_disk
);
1191 if (!drv
->cylinders
)
1194 geo
->heads
= drv
->heads
;
1195 geo
->sectors
= drv
->sectors
;
1196 geo
->cylinders
= drv
->cylinders
;
1200 static void check_ioctl_unit_attention(ctlr_info_t
*h
, CommandList_struct
*c
)
1202 if (c
->err_info
->CommandStatus
== CMD_TARGET_STATUS
&&
1203 c
->err_info
->ScsiStatus
!= SAM_STAT_CHECK_CONDITION
)
1204 (void)check_for_unit_attention(h
, c
);
1207 static int cciss_getpciinfo(ctlr_info_t
*h
, void __user
*argp
)
1209 cciss_pci_info_struct pciinfo
;
1213 pciinfo
.domain
= pci_domain_nr(h
->pdev
->bus
);
1214 pciinfo
.bus
= h
->pdev
->bus
->number
;
1215 pciinfo
.dev_fn
= h
->pdev
->devfn
;
1216 pciinfo
.board_id
= h
->board_id
;
1217 if (copy_to_user(argp
, &pciinfo
, sizeof(cciss_pci_info_struct
)))
1222 static int cciss_getintinfo(ctlr_info_t
*h
, void __user
*argp
)
1224 cciss_coalint_struct intinfo
;
1228 intinfo
.delay
= readl(&h
->cfgtable
->HostWrite
.CoalIntDelay
);
1229 intinfo
.count
= readl(&h
->cfgtable
->HostWrite
.CoalIntCount
);
1231 (argp
, &intinfo
, sizeof(cciss_coalint_struct
)))
1236 static int cciss_setintinfo(ctlr_info_t
*h
, void __user
*argp
)
1238 cciss_coalint_struct intinfo
;
1239 unsigned long flags
;
1244 if (!capable(CAP_SYS_ADMIN
))
1246 if (copy_from_user(&intinfo
, argp
, sizeof(intinfo
)))
1248 if ((intinfo
.delay
== 0) && (intinfo
.count
== 0))
1250 spin_lock_irqsave(&h
->lock
, flags
);
1251 /* Update the field, and then ring the doorbell */
1252 writel(intinfo
.delay
, &(h
->cfgtable
->HostWrite
.CoalIntDelay
));
1253 writel(intinfo
.count
, &(h
->cfgtable
->HostWrite
.CoalIntCount
));
1254 writel(CFGTBL_ChangeReq
, h
->vaddr
+ SA5_DOORBELL
);
1256 for (i
= 0; i
< MAX_IOCTL_CONFIG_WAIT
; i
++) {
1257 if (!(readl(h
->vaddr
+ SA5_DOORBELL
) & CFGTBL_ChangeReq
))
1259 udelay(1000); /* delay and try again */
1261 spin_unlock_irqrestore(&h
->lock
, flags
);
1262 if (i
>= MAX_IOCTL_CONFIG_WAIT
)
1267 static int cciss_getnodename(ctlr_info_t
*h
, void __user
*argp
)
1269 NodeName_type NodeName
;
1274 for (i
= 0; i
< 16; i
++)
1275 NodeName
[i
] = readb(&h
->cfgtable
->ServerName
[i
]);
1276 if (copy_to_user(argp
, NodeName
, sizeof(NodeName_type
)))
1281 static int cciss_setnodename(ctlr_info_t
*h
, void __user
*argp
)
1283 NodeName_type NodeName
;
1284 unsigned long flags
;
1289 if (!capable(CAP_SYS_ADMIN
))
1291 if (copy_from_user(NodeName
, argp
, sizeof(NodeName_type
)))
1293 spin_lock_irqsave(&h
->lock
, flags
);
1294 /* Update the field, and then ring the doorbell */
1295 for (i
= 0; i
< 16; i
++)
1296 writeb(NodeName
[i
], &h
->cfgtable
->ServerName
[i
]);
1297 writel(CFGTBL_ChangeReq
, h
->vaddr
+ SA5_DOORBELL
);
1298 for (i
= 0; i
< MAX_IOCTL_CONFIG_WAIT
; i
++) {
1299 if (!(readl(h
->vaddr
+ SA5_DOORBELL
) & CFGTBL_ChangeReq
))
1301 udelay(1000); /* delay and try again */
1303 spin_unlock_irqrestore(&h
->lock
, flags
);
1304 if (i
>= MAX_IOCTL_CONFIG_WAIT
)
1309 static int cciss_getheartbeat(ctlr_info_t
*h
, void __user
*argp
)
1311 Heartbeat_type heartbeat
;
1315 heartbeat
= readl(&h
->cfgtable
->HeartBeat
);
1316 if (copy_to_user(argp
, &heartbeat
, sizeof(Heartbeat_type
)))
1321 static int cciss_getbustypes(ctlr_info_t
*h
, void __user
*argp
)
1323 BusTypes_type BusTypes
;
1327 BusTypes
= readl(&h
->cfgtable
->BusTypes
);
1328 if (copy_to_user(argp
, &BusTypes
, sizeof(BusTypes_type
)))
1333 static int cciss_getfirmver(ctlr_info_t
*h
, void __user
*argp
)
1335 FirmwareVer_type firmware
;
1339 memcpy(firmware
, h
->firm_ver
, 4);
1342 (argp
, firmware
, sizeof(FirmwareVer_type
)))
1347 static int cciss_getdrivver(ctlr_info_t
*h
, void __user
*argp
)
1349 DriverVer_type DriverVer
= DRIVER_VERSION
;
1353 if (copy_to_user(argp
, &DriverVer
, sizeof(DriverVer_type
)))
1358 static int cciss_getluninfo(ctlr_info_t
*h
,
1359 struct gendisk
*disk
, void __user
*argp
)
1361 LogvolInfo_struct luninfo
;
1362 drive_info_struct
*drv
= get_drv(disk
);
1366 memcpy(&luninfo
.LunID
, drv
->LunID
, sizeof(luninfo
.LunID
));
1367 luninfo
.num_opens
= drv
->usage_count
;
1368 luninfo
.num_parts
= 0;
1369 if (copy_to_user(argp
, &luninfo
, sizeof(LogvolInfo_struct
)))
1374 static int cciss_passthru(ctlr_info_t
*h
, void __user
*argp
)
1376 IOCTL_Command_struct iocommand
;
1377 CommandList_struct
*c
;
1380 DECLARE_COMPLETION_ONSTACK(wait
);
1385 if (!capable(CAP_SYS_RAWIO
))
1389 (&iocommand
, argp
, sizeof(IOCTL_Command_struct
)))
1391 if ((iocommand
.buf_size
< 1) &&
1392 (iocommand
.Request
.Type
.Direction
!= XFER_NONE
)) {
1395 if (iocommand
.buf_size
> 0) {
1396 buff
= kmalloc(iocommand
.buf_size
, GFP_KERNEL
);
1400 if (iocommand
.Request
.Type
.Direction
== XFER_WRITE
) {
1401 /* Copy the data into the buffer we created */
1402 if (copy_from_user(buff
, iocommand
.buf
, iocommand
.buf_size
)) {
1407 memset(buff
, 0, iocommand
.buf_size
);
1409 c
= cmd_special_alloc(h
);
1414 /* Fill in the command type */
1415 c
->cmd_type
= CMD_IOCTL_PEND
;
1416 /* Fill in Command Header */
1417 c
->Header
.ReplyQueue
= 0; /* unused in simple mode */
1418 if (iocommand
.buf_size
> 0) { /* buffer to fill */
1419 c
->Header
.SGList
= 1;
1420 c
->Header
.SGTotal
= 1;
1421 } else { /* no buffers to fill */
1422 c
->Header
.SGList
= 0;
1423 c
->Header
.SGTotal
= 0;
1425 c
->Header
.LUN
= iocommand
.LUN_info
;
1426 /* use the kernel address the cmd block for tag */
1427 c
->Header
.Tag
.lower
= c
->busaddr
;
1429 /* Fill in Request block */
1430 c
->Request
= iocommand
.Request
;
1432 /* Fill in the scatter gather information */
1433 if (iocommand
.buf_size
> 0) {
1434 temp64
.val
= pci_map_single(h
->pdev
, buff
,
1435 iocommand
.buf_size
, PCI_DMA_BIDIRECTIONAL
);
1436 c
->SG
[0].Addr
.lower
= temp64
.val32
.lower
;
1437 c
->SG
[0].Addr
.upper
= temp64
.val32
.upper
;
1438 c
->SG
[0].Len
= iocommand
.buf_size
;
1439 c
->SG
[0].Ext
= 0; /* we are not chaining */
1443 enqueue_cmd_and_start_io(h
, c
);
1444 wait_for_completion(&wait
);
1446 /* unlock the buffers from DMA */
1447 temp64
.val32
.lower
= c
->SG
[0].Addr
.lower
;
1448 temp64
.val32
.upper
= c
->SG
[0].Addr
.upper
;
1449 pci_unmap_single(h
->pdev
, (dma_addr_t
) temp64
.val
, iocommand
.buf_size
,
1450 PCI_DMA_BIDIRECTIONAL
);
1451 check_ioctl_unit_attention(h
, c
);
1453 /* Copy the error information out */
1454 iocommand
.error_info
= *(c
->err_info
);
1455 if (copy_to_user(argp
, &iocommand
, sizeof(IOCTL_Command_struct
))) {
1457 cmd_special_free(h
, c
);
1461 if (iocommand
.Request
.Type
.Direction
== XFER_READ
) {
1462 /* Copy the data out of the buffer we created */
1463 if (copy_to_user(iocommand
.buf
, buff
, iocommand
.buf_size
)) {
1465 cmd_special_free(h
, c
);
1470 cmd_special_free(h
, c
);
1474 static int cciss_bigpassthru(ctlr_info_t
*h
, void __user
*argp
)
1476 BIG_IOCTL_Command_struct
*ioc
;
1477 CommandList_struct
*c
;
1478 unsigned char **buff
= NULL
;
1479 int *buff_size
= NULL
;
1484 DECLARE_COMPLETION_ONSTACK(wait
);
1487 BYTE __user
*data_ptr
;
1491 if (!capable(CAP_SYS_RAWIO
))
1493 ioc
= (BIG_IOCTL_Command_struct
*)
1494 kmalloc(sizeof(*ioc
), GFP_KERNEL
);
1499 if (copy_from_user(ioc
, argp
, sizeof(*ioc
))) {
1503 if ((ioc
->buf_size
< 1) &&
1504 (ioc
->Request
.Type
.Direction
!= XFER_NONE
)) {
1508 /* Check kmalloc limits using all SGs */
1509 if (ioc
->malloc_size
> MAX_KMALLOC_SIZE
) {
1513 if (ioc
->buf_size
> ioc
->malloc_size
* MAXSGENTRIES
) {
1517 buff
= kzalloc(MAXSGENTRIES
* sizeof(char *), GFP_KERNEL
);
1522 buff_size
= kmalloc(MAXSGENTRIES
* sizeof(int), GFP_KERNEL
);
1527 left
= ioc
->buf_size
;
1528 data_ptr
= ioc
->buf
;
1530 sz
= (left
> ioc
->malloc_size
) ? ioc
->malloc_size
: left
;
1531 buff_size
[sg_used
] = sz
;
1532 buff
[sg_used
] = kmalloc(sz
, GFP_KERNEL
);
1533 if (buff
[sg_used
] == NULL
) {
1537 if (ioc
->Request
.Type
.Direction
== XFER_WRITE
) {
1538 if (copy_from_user(buff
[sg_used
], data_ptr
, sz
)) {
1543 memset(buff
[sg_used
], 0, sz
);
1549 c
= cmd_special_alloc(h
);
1554 c
->cmd_type
= CMD_IOCTL_PEND
;
1555 c
->Header
.ReplyQueue
= 0;
1556 c
->Header
.SGList
= sg_used
;
1557 c
->Header
.SGTotal
= sg_used
;
1558 c
->Header
.LUN
= ioc
->LUN_info
;
1559 c
->Header
.Tag
.lower
= c
->busaddr
;
1561 c
->Request
= ioc
->Request
;
1562 for (i
= 0; i
< sg_used
; i
++) {
1563 temp64
.val
= pci_map_single(h
->pdev
, buff
[i
], buff_size
[i
],
1564 PCI_DMA_BIDIRECTIONAL
);
1565 c
->SG
[i
].Addr
.lower
= temp64
.val32
.lower
;
1566 c
->SG
[i
].Addr
.upper
= temp64
.val32
.upper
;
1567 c
->SG
[i
].Len
= buff_size
[i
];
1568 c
->SG
[i
].Ext
= 0; /* we are not chaining */
1571 enqueue_cmd_and_start_io(h
, c
);
1572 wait_for_completion(&wait
);
1573 /* unlock the buffers from DMA */
1574 for (i
= 0; i
< sg_used
; i
++) {
1575 temp64
.val32
.lower
= c
->SG
[i
].Addr
.lower
;
1576 temp64
.val32
.upper
= c
->SG
[i
].Addr
.upper
;
1577 pci_unmap_single(h
->pdev
,
1578 (dma_addr_t
) temp64
.val
, buff_size
[i
],
1579 PCI_DMA_BIDIRECTIONAL
);
1581 check_ioctl_unit_attention(h
, c
);
1582 /* Copy the error information out */
1583 ioc
->error_info
= *(c
->err_info
);
1584 if (copy_to_user(argp
, ioc
, sizeof(*ioc
))) {
1585 cmd_special_free(h
, c
);
1589 if (ioc
->Request
.Type
.Direction
== XFER_READ
) {
1590 /* Copy the data out of the buffer we created */
1591 BYTE __user
*ptr
= ioc
->buf
;
1592 for (i
= 0; i
< sg_used
; i
++) {
1593 if (copy_to_user(ptr
, buff
[i
], buff_size
[i
])) {
1594 cmd_special_free(h
, c
);
1598 ptr
+= buff_size
[i
];
1601 cmd_special_free(h
, c
);
1605 for (i
= 0; i
< sg_used
; i
++)
1614 static int cciss_ioctl(struct block_device
*bdev
, fmode_t mode
,
1615 unsigned int cmd
, unsigned long arg
)
1617 struct gendisk
*disk
= bdev
->bd_disk
;
1618 ctlr_info_t
*h
= get_host(disk
);
1619 void __user
*argp
= (void __user
*)arg
;
1621 dev_dbg(&h
->pdev
->dev
, "cciss_ioctl: Called with cmd=%x %lx\n",
1624 case CCISS_GETPCIINFO
:
1625 return cciss_getpciinfo(h
, argp
);
1626 case CCISS_GETINTINFO
:
1627 return cciss_getintinfo(h
, argp
);
1628 case CCISS_SETINTINFO
:
1629 return cciss_setintinfo(h
, argp
);
1630 case CCISS_GETNODENAME
:
1631 return cciss_getnodename(h
, argp
);
1632 case CCISS_SETNODENAME
:
1633 return cciss_setnodename(h
, argp
);
1634 case CCISS_GETHEARTBEAT
:
1635 return cciss_getheartbeat(h
, argp
);
1636 case CCISS_GETBUSTYPES
:
1637 return cciss_getbustypes(h
, argp
);
1638 case CCISS_GETFIRMVER
:
1639 return cciss_getfirmver(h
, argp
);
1640 case CCISS_GETDRIVVER
:
1641 return cciss_getdrivver(h
, argp
);
1642 case CCISS_DEREGDISK
:
1644 case CCISS_REVALIDVOLS
:
1645 return rebuild_lun_table(h
, 0, 1);
1646 case CCISS_GETLUNINFO
:
1647 return cciss_getluninfo(h
, disk
, argp
);
1648 case CCISS_PASSTHRU
:
1649 return cciss_passthru(h
, argp
);
1650 case CCISS_BIG_PASSTHRU
:
1651 return cciss_bigpassthru(h
, argp
);
1653 /* scsi_cmd_ioctl handles these, below, though some are not */
1654 /* very meaningful for cciss. SG_IO is the main one people want. */
1656 case SG_GET_VERSION_NUM
:
1657 case SG_SET_TIMEOUT
:
1658 case SG_GET_TIMEOUT
:
1659 case SG_GET_RESERVED_SIZE
:
1660 case SG_SET_RESERVED_SIZE
:
1661 case SG_EMULATED_HOST
:
1663 case SCSI_IOCTL_SEND_COMMAND
:
1664 return scsi_cmd_ioctl(disk
->queue
, disk
, mode
, cmd
, argp
);
1666 /* scsi_cmd_ioctl would normally handle these, below, but */
1667 /* they aren't a good fit for cciss, as CD-ROMs are */
1668 /* not supported, and we don't have any bus/target/lun */
1669 /* which we present to the kernel. */
1671 case CDROM_SEND_PACKET
:
1672 case CDROMCLOSETRAY
:
1674 case SCSI_IOCTL_GET_IDLUN
:
1675 case SCSI_IOCTL_GET_BUS_NUMBER
:
1681 static void cciss_check_queues(ctlr_info_t
*h
)
1683 int start_queue
= h
->next_to_run
;
1686 /* check to see if we have maxed out the number of commands that can
1687 * be placed on the queue. If so then exit. We do this check here
1688 * in case the interrupt we serviced was from an ioctl and did not
1689 * free any new commands.
1691 if ((find_first_zero_bit(h
->cmd_pool_bits
, h
->nr_cmds
)) == h
->nr_cmds
)
1694 /* We have room on the queue for more commands. Now we need to queue
1695 * them up. We will also keep track of the next queue to run so
1696 * that every queue gets a chance to be started first.
1698 for (i
= 0; i
< h
->highest_lun
+ 1; i
++) {
1699 int curr_queue
= (start_queue
+ i
) % (h
->highest_lun
+ 1);
1700 /* make sure the disk has been added and the drive is real
1701 * because this can be called from the middle of init_one.
1703 if (!h
->drv
[curr_queue
])
1705 if (!(h
->drv
[curr_queue
]->queue
) ||
1706 !(h
->drv
[curr_queue
]->heads
))
1708 blk_start_queue(h
->gendisk
[curr_queue
]->queue
);
1710 /* check to see if we have maxed out the number of commands
1711 * that can be placed on the queue.
1713 if ((find_first_zero_bit(h
->cmd_pool_bits
, h
->nr_cmds
)) == h
->nr_cmds
) {
1714 if (curr_queue
== start_queue
) {
1716 (start_queue
+ 1) % (h
->highest_lun
+ 1);
1719 h
->next_to_run
= curr_queue
;
1726 static void cciss_softirq_done(struct request
*rq
)
1728 CommandList_struct
*c
= rq
->completion_data
;
1729 ctlr_info_t
*h
= hba
[c
->ctlr
];
1730 SGDescriptor_struct
*curr_sg
= c
->SG
;
1732 unsigned long flags
;
1736 if (c
->Request
.Type
.Direction
== XFER_READ
)
1737 ddir
= PCI_DMA_FROMDEVICE
;
1739 ddir
= PCI_DMA_TODEVICE
;
1741 /* command did not need to be retried */
1742 /* unmap the DMA mapping for all the scatter gather elements */
1743 for (i
= 0; i
< c
->Header
.SGList
; i
++) {
1744 if (curr_sg
[sg_index
].Ext
== CCISS_SG_CHAIN
) {
1745 cciss_unmap_sg_chain_block(h
, c
);
1746 /* Point to the next block */
1747 curr_sg
= h
->cmd_sg_list
[c
->cmdindex
];
1750 temp64
.val32
.lower
= curr_sg
[sg_index
].Addr
.lower
;
1751 temp64
.val32
.upper
= curr_sg
[sg_index
].Addr
.upper
;
1752 pci_unmap_page(h
->pdev
, temp64
.val
, curr_sg
[sg_index
].Len
,
1757 dev_dbg(&h
->pdev
->dev
, "Done with %p\n", rq
);
1759 /* set the residual count for pc requests */
1760 if (rq
->cmd_type
== REQ_TYPE_BLOCK_PC
)
1761 rq
->resid_len
= c
->err_info
->ResidualCnt
;
1763 blk_end_request_all(rq
, (rq
->errors
== 0) ? 0 : -EIO
);
1765 spin_lock_irqsave(&h
->lock
, flags
);
1767 cciss_check_queues(h
);
1768 spin_unlock_irqrestore(&h
->lock
, flags
);
1771 static inline void log_unit_to_scsi3addr(ctlr_info_t
*h
,
1772 unsigned char scsi3addr
[], uint32_t log_unit
)
1774 memcpy(scsi3addr
, h
->drv
[log_unit
]->LunID
,
1775 sizeof(h
->drv
[log_unit
]->LunID
));
1778 /* This function gets the SCSI vendor, model, and revision of a logical drive
1779 * via the inquiry page 0. Model, vendor, and rev are set to empty strings if
1780 * they cannot be read.
1782 static void cciss_get_device_descr(ctlr_info_t
*h
, int logvol
,
1783 char *vendor
, char *model
, char *rev
)
1786 InquiryData_struct
*inq_buf
;
1787 unsigned char scsi3addr
[8];
1793 inq_buf
= kzalloc(sizeof(InquiryData_struct
), GFP_KERNEL
);
1797 log_unit_to_scsi3addr(h
, scsi3addr
, logvol
);
1798 rc
= sendcmd_withirq(h
, CISS_INQUIRY
, inq_buf
, sizeof(*inq_buf
), 0,
1799 scsi3addr
, TYPE_CMD
);
1801 memcpy(vendor
, &inq_buf
->data_byte
[8], VENDOR_LEN
);
1802 vendor
[VENDOR_LEN
] = '\0';
1803 memcpy(model
, &inq_buf
->data_byte
[16], MODEL_LEN
);
1804 model
[MODEL_LEN
] = '\0';
1805 memcpy(rev
, &inq_buf
->data_byte
[32], REV_LEN
);
1806 rev
[REV_LEN
] = '\0';
1813 /* This function gets the serial number of a logical drive via
1814 * inquiry page 0x83. Serial no. is 16 bytes. If the serial
1815 * number cannot be had, for whatever reason, 16 bytes of 0xff
1816 * are returned instead.
1818 static void cciss_get_serial_no(ctlr_info_t
*h
, int logvol
,
1819 unsigned char *serial_no
, int buflen
)
1821 #define PAGE_83_INQ_BYTES 64
1824 unsigned char scsi3addr
[8];
1828 memset(serial_no
, 0xff, buflen
);
1829 buf
= kzalloc(PAGE_83_INQ_BYTES
, GFP_KERNEL
);
1832 memset(serial_no
, 0, buflen
);
1833 log_unit_to_scsi3addr(h
, scsi3addr
, logvol
);
1834 rc
= sendcmd_withirq(h
, CISS_INQUIRY
, buf
,
1835 PAGE_83_INQ_BYTES
, 0x83, scsi3addr
, TYPE_CMD
);
1837 memcpy(serial_no
, &buf
[8], buflen
);
1843 * cciss_add_disk sets up the block device queue for a logical drive
1845 static int cciss_add_disk(ctlr_info_t
*h
, struct gendisk
*disk
,
1848 disk
->queue
= blk_init_queue(do_cciss_request
, &h
->lock
);
1850 goto init_queue_failure
;
1851 sprintf(disk
->disk_name
, "cciss/c%dd%d", h
->ctlr
, drv_index
);
1852 disk
->major
= h
->major
;
1853 disk
->first_minor
= drv_index
<< NWD_SHIFT
;
1854 disk
->fops
= &cciss_fops
;
1855 if (cciss_create_ld_sysfs_entry(h
, drv_index
))
1857 disk
->private_data
= h
->drv
[drv_index
];
1858 disk
->driverfs_dev
= &h
->drv
[drv_index
]->dev
;
1860 /* Set up queue information */
1861 blk_queue_bounce_limit(disk
->queue
, h
->pdev
->dma_mask
);
1863 /* This is a hardware imposed limit. */
1864 blk_queue_max_segments(disk
->queue
, h
->maxsgentries
);
1866 blk_queue_max_hw_sectors(disk
->queue
, h
->cciss_max_sectors
);
1868 blk_queue_softirq_done(disk
->queue
, cciss_softirq_done
);
1870 disk
->queue
->queuedata
= h
;
1872 blk_queue_logical_block_size(disk
->queue
,
1873 h
->drv
[drv_index
]->block_size
);
1875 /* Make sure all queue data is written out before */
1876 /* setting h->drv[drv_index]->queue, as setting this */
1877 /* allows the interrupt handler to start the queue */
1879 h
->drv
[drv_index
]->queue
= disk
->queue
;
1884 blk_cleanup_queue(disk
->queue
);
1890 /* This function will check the usage_count of the drive to be updated/added.
1891 * If the usage_count is zero and it is a heretofore unknown drive, or,
1892 * the drive's capacity, geometry, or serial number has changed,
1893 * then the drive information will be updated and the disk will be
1894 * re-registered with the kernel. If these conditions don't hold,
1895 * then it will be left alone for the next reboot. The exception to this
1896 * is disk 0 which will always be left registered with the kernel since it
1897 * is also the controller node. Any changes to disk 0 will show up on
1900 static void cciss_update_drive_info(ctlr_info_t
*h
, int drv_index
,
1901 int first_time
, int via_ioctl
)
1903 struct gendisk
*disk
;
1904 InquiryData_struct
*inq_buff
= NULL
;
1905 unsigned int block_size
;
1906 sector_t total_size
;
1907 unsigned long flags
= 0;
1909 drive_info_struct
*drvinfo
;
1911 /* Get information about the disk and modify the driver structure */
1912 inq_buff
= kmalloc(sizeof(InquiryData_struct
), GFP_KERNEL
);
1913 drvinfo
= kzalloc(sizeof(*drvinfo
), GFP_KERNEL
);
1914 if (inq_buff
== NULL
|| drvinfo
== NULL
)
1917 /* testing to see if 16-byte CDBs are already being used */
1918 if (h
->cciss_read
== CCISS_READ_16
) {
1919 cciss_read_capacity_16(h
, drv_index
,
1920 &total_size
, &block_size
);
1923 cciss_read_capacity(h
, drv_index
, &total_size
, &block_size
);
1924 /* if read_capacity returns all F's this volume is >2TB */
1925 /* in size so we switch to 16-byte CDB's for all */
1926 /* read/write ops */
1927 if (total_size
== 0xFFFFFFFFULL
) {
1928 cciss_read_capacity_16(h
, drv_index
,
1929 &total_size
, &block_size
);
1930 h
->cciss_read
= CCISS_READ_16
;
1931 h
->cciss_write
= CCISS_WRITE_16
;
1933 h
->cciss_read
= CCISS_READ_10
;
1934 h
->cciss_write
= CCISS_WRITE_10
;
1938 cciss_geometry_inquiry(h
, drv_index
, total_size
, block_size
,
1940 drvinfo
->block_size
= block_size
;
1941 drvinfo
->nr_blocks
= total_size
+ 1;
1943 cciss_get_device_descr(h
, drv_index
, drvinfo
->vendor
,
1944 drvinfo
->model
, drvinfo
->rev
);
1945 cciss_get_serial_no(h
, drv_index
, drvinfo
->serial_no
,
1946 sizeof(drvinfo
->serial_no
));
1947 /* Save the lunid in case we deregister the disk, below. */
1948 memcpy(drvinfo
->LunID
, h
->drv
[drv_index
]->LunID
,
1949 sizeof(drvinfo
->LunID
));
1951 /* Is it the same disk we already know, and nothing's changed? */
1952 if (h
->drv
[drv_index
]->raid_level
!= -1 &&
1953 ((memcmp(drvinfo
->serial_no
,
1954 h
->drv
[drv_index
]->serial_no
, 16) == 0) &&
1955 drvinfo
->block_size
== h
->drv
[drv_index
]->block_size
&&
1956 drvinfo
->nr_blocks
== h
->drv
[drv_index
]->nr_blocks
&&
1957 drvinfo
->heads
== h
->drv
[drv_index
]->heads
&&
1958 drvinfo
->sectors
== h
->drv
[drv_index
]->sectors
&&
1959 drvinfo
->cylinders
== h
->drv
[drv_index
]->cylinders
))
1960 /* The disk is unchanged, nothing to update */
1963 /* If we get here it's not the same disk, or something's changed,
1964 * so we need to * deregister it, and re-register it, if it's not
1966 * If the disk already exists then deregister it before proceeding
1967 * (unless it's the first disk (for the controller node).
1969 if (h
->drv
[drv_index
]->raid_level
!= -1 && drv_index
!= 0) {
1970 dev_warn(&h
->pdev
->dev
, "disk %d has changed.\n", drv_index
);
1971 spin_lock_irqsave(&h
->lock
, flags
);
1972 h
->drv
[drv_index
]->busy_configuring
= 1;
1973 spin_unlock_irqrestore(&h
->lock
, flags
);
1975 /* deregister_disk sets h->drv[drv_index]->queue = NULL
1976 * which keeps the interrupt handler from starting
1979 ret
= deregister_disk(h
, drv_index
, 0, via_ioctl
);
1982 /* If the disk is in use return */
1986 /* Save the new information from cciss_geometry_inquiry
1987 * and serial number inquiry. If the disk was deregistered
1988 * above, then h->drv[drv_index] will be NULL.
1990 if (h
->drv
[drv_index
] == NULL
) {
1991 drvinfo
->device_initialized
= 0;
1992 h
->drv
[drv_index
] = drvinfo
;
1993 drvinfo
= NULL
; /* so it won't be freed below. */
1995 /* special case for cxd0 */
1996 h
->drv
[drv_index
]->block_size
= drvinfo
->block_size
;
1997 h
->drv
[drv_index
]->nr_blocks
= drvinfo
->nr_blocks
;
1998 h
->drv
[drv_index
]->heads
= drvinfo
->heads
;
1999 h
->drv
[drv_index
]->sectors
= drvinfo
->sectors
;
2000 h
->drv
[drv_index
]->cylinders
= drvinfo
->cylinders
;
2001 h
->drv
[drv_index
]->raid_level
= drvinfo
->raid_level
;
2002 memcpy(h
->drv
[drv_index
]->serial_no
, drvinfo
->serial_no
, 16);
2003 memcpy(h
->drv
[drv_index
]->vendor
, drvinfo
->vendor
,
2005 memcpy(h
->drv
[drv_index
]->model
, drvinfo
->model
, MODEL_LEN
+ 1);
2006 memcpy(h
->drv
[drv_index
]->rev
, drvinfo
->rev
, REV_LEN
+ 1);
2010 disk
= h
->gendisk
[drv_index
];
2011 set_capacity(disk
, h
->drv
[drv_index
]->nr_blocks
);
2013 /* If it's not disk 0 (drv_index != 0)
2014 * or if it was disk 0, but there was previously
2015 * no actual corresponding configured logical drive
2016 * (raid_leve == -1) then we want to update the
2017 * logical drive's information.
2019 if (drv_index
|| first_time
) {
2020 if (cciss_add_disk(h
, disk
, drv_index
) != 0) {
2021 cciss_free_gendisk(h
, drv_index
);
2022 cciss_free_drive_info(h
, drv_index
);
2023 dev_warn(&h
->pdev
->dev
, "could not update disk %d\n",
2034 dev_err(&h
->pdev
->dev
, "out of memory\n");
2038 /* This function will find the first index of the controllers drive array
2039 * that has a null drv pointer and allocate the drive info struct and
2040 * will return that index This is where new drives will be added.
2041 * If the index to be returned is greater than the highest_lun index for
2042 * the controller then highest_lun is set * to this new index.
2043 * If there are no available indexes or if tha allocation fails, then -1
2044 * is returned. * "controller_node" is used to know if this is a real
2045 * logical drive, or just the controller node, which determines if this
2046 * counts towards highest_lun.
2048 static int cciss_alloc_drive_info(ctlr_info_t
*h
, int controller_node
)
2051 drive_info_struct
*drv
;
2053 /* Search for an empty slot for our drive info */
2054 for (i
= 0; i
< CISS_MAX_LUN
; i
++) {
2056 /* if not cxd0 case, and it's occupied, skip it. */
2057 if (h
->drv
[i
] && i
!= 0)
2060 * If it's cxd0 case, and drv is alloc'ed already, and a
2061 * disk is configured there, skip it.
2063 if (i
== 0 && h
->drv
[i
] && h
->drv
[i
]->raid_level
!= -1)
2067 * We've found an empty slot. Update highest_lun
2068 * provided this isn't just the fake cxd0 controller node.
2070 if (i
> h
->highest_lun
&& !controller_node
)
2073 /* If adding a real disk at cxd0, and it's already alloc'ed */
2074 if (i
== 0 && h
->drv
[i
] != NULL
)
2078 * Found an empty slot, not already alloc'ed. Allocate it.
2079 * Mark it with raid_level == -1, so we know it's new later on.
2081 drv
= kzalloc(sizeof(*drv
), GFP_KERNEL
);
2084 drv
->raid_level
= -1; /* so we know it's new */
2091 static void cciss_free_drive_info(ctlr_info_t
*h
, int drv_index
)
2093 kfree(h
->drv
[drv_index
]);
2094 h
->drv
[drv_index
] = NULL
;
2097 static void cciss_free_gendisk(ctlr_info_t
*h
, int drv_index
)
2099 put_disk(h
->gendisk
[drv_index
]);
2100 h
->gendisk
[drv_index
] = NULL
;
2103 /* cciss_add_gendisk finds a free hba[]->drv structure
2104 * and allocates a gendisk if needed, and sets the lunid
2105 * in the drvinfo structure. It returns the index into
2106 * the ->drv[] array, or -1 if none are free.
2107 * is_controller_node indicates whether highest_lun should
2108 * count this disk, or if it's only being added to provide
2109 * a means to talk to the controller in case no logical
2110 * drives have yet been configured.
2112 static int cciss_add_gendisk(ctlr_info_t
*h
, unsigned char lunid
[],
2113 int controller_node
)
2117 drv_index
= cciss_alloc_drive_info(h
, controller_node
);
2118 if (drv_index
== -1)
2121 /*Check if the gendisk needs to be allocated */
2122 if (!h
->gendisk
[drv_index
]) {
2123 h
->gendisk
[drv_index
] =
2124 alloc_disk(1 << NWD_SHIFT
);
2125 if (!h
->gendisk
[drv_index
]) {
2126 dev_err(&h
->pdev
->dev
,
2127 "could not allocate a new disk %d\n",
2129 goto err_free_drive_info
;
2132 memcpy(h
->drv
[drv_index
]->LunID
, lunid
,
2133 sizeof(h
->drv
[drv_index
]->LunID
));
2134 if (cciss_create_ld_sysfs_entry(h
, drv_index
))
2136 /* Don't need to mark this busy because nobody */
2137 /* else knows about this disk yet to contend */
2138 /* for access to it. */
2139 h
->drv
[drv_index
]->busy_configuring
= 0;
2144 cciss_free_gendisk(h
, drv_index
);
2145 err_free_drive_info
:
2146 cciss_free_drive_info(h
, drv_index
);
2150 /* This is for the special case of a controller which
2151 * has no logical drives. In this case, we still need
2152 * to register a disk so the controller can be accessed
2153 * by the Array Config Utility.
2155 static void cciss_add_controller_node(ctlr_info_t
*h
)
2157 struct gendisk
*disk
;
2160 if (h
->gendisk
[0] != NULL
) /* already did this? Then bail. */
2163 drv_index
= cciss_add_gendisk(h
, CTLR_LUNID
, 1);
2164 if (drv_index
== -1)
2166 h
->drv
[drv_index
]->block_size
= 512;
2167 h
->drv
[drv_index
]->nr_blocks
= 0;
2168 h
->drv
[drv_index
]->heads
= 0;
2169 h
->drv
[drv_index
]->sectors
= 0;
2170 h
->drv
[drv_index
]->cylinders
= 0;
2171 h
->drv
[drv_index
]->raid_level
= -1;
2172 memset(h
->drv
[drv_index
]->serial_no
, 0, 16);
2173 disk
= h
->gendisk
[drv_index
];
2174 if (cciss_add_disk(h
, disk
, drv_index
) == 0)
2176 cciss_free_gendisk(h
, drv_index
);
2177 cciss_free_drive_info(h
, drv_index
);
2179 dev_warn(&h
->pdev
->dev
, "could not add disk 0.\n");
2183 /* This function will add and remove logical drives from the Logical
2184 * drive array of the controller and maintain persistency of ordering
2185 * so that mount points are preserved until the next reboot. This allows
2186 * for the removal of logical drives in the middle of the drive array
2187 * without a re-ordering of those drives.
2189 * h = The controller to perform the operations on
2191 static int rebuild_lun_table(ctlr_info_t
*h
, int first_time
,
2195 ReportLunData_struct
*ld_buff
= NULL
;
2201 unsigned char lunid
[8] = CTLR_LUNID
;
2202 unsigned long flags
;
2204 if (!capable(CAP_SYS_RAWIO
))
2207 /* Set busy_configuring flag for this operation */
2208 spin_lock_irqsave(&h
->lock
, flags
);
2209 if (h
->busy_configuring
) {
2210 spin_unlock_irqrestore(&h
->lock
, flags
);
2213 h
->busy_configuring
= 1;
2214 spin_unlock_irqrestore(&h
->lock
, flags
);
2216 ld_buff
= kzalloc(sizeof(ReportLunData_struct
), GFP_KERNEL
);
2217 if (ld_buff
== NULL
)
2220 return_code
= sendcmd_withirq(h
, CISS_REPORT_LOG
, ld_buff
,
2221 sizeof(ReportLunData_struct
),
2222 0, CTLR_LUNID
, TYPE_CMD
);
2224 if (return_code
== IO_OK
)
2225 listlength
= be32_to_cpu(*(__be32
*) ld_buff
->LUNListLength
);
2226 else { /* reading number of logical volumes failed */
2227 dev_warn(&h
->pdev
->dev
,
2228 "report logical volume command failed\n");
2233 num_luns
= listlength
/ 8; /* 8 bytes per entry */
2234 if (num_luns
> CISS_MAX_LUN
) {
2235 num_luns
= CISS_MAX_LUN
;
2236 dev_warn(&h
->pdev
->dev
, "more luns configured"
2237 " on controller than can be handled by"
2242 cciss_add_controller_node(h
);
2244 /* Compare controller drive array to driver's drive array
2245 * to see if any drives are missing on the controller due
2246 * to action of Array Config Utility (user deletes drive)
2247 * and deregister logical drives which have disappeared.
2249 for (i
= 0; i
<= h
->highest_lun
; i
++) {
2253 /* skip holes in the array from already deleted drives */
2254 if (h
->drv
[i
] == NULL
)
2257 for (j
= 0; j
< num_luns
; j
++) {
2258 memcpy(lunid
, &ld_buff
->LUN
[j
][0], sizeof(lunid
));
2259 if (memcmp(h
->drv
[i
]->LunID
, lunid
,
2260 sizeof(lunid
)) == 0) {
2266 /* Deregister it from the OS, it's gone. */
2267 spin_lock_irqsave(&h
->lock
, flags
);
2268 h
->drv
[i
]->busy_configuring
= 1;
2269 spin_unlock_irqrestore(&h
->lock
, flags
);
2270 return_code
= deregister_disk(h
, i
, 1, via_ioctl
);
2271 if (h
->drv
[i
] != NULL
)
2272 h
->drv
[i
]->busy_configuring
= 0;
2276 /* Compare controller drive array to driver's drive array.
2277 * Check for updates in the drive information and any new drives
2278 * on the controller due to ACU adding logical drives, or changing
2279 * a logical drive's size, etc. Reregister any new/changed drives
2281 for (i
= 0; i
< num_luns
; i
++) {
2286 memcpy(lunid
, &ld_buff
->LUN
[i
][0], sizeof(lunid
));
2287 /* Find if the LUN is already in the drive array
2288 * of the driver. If so then update its info
2289 * if not in use. If it does not exist then find
2290 * the first free index and add it.
2292 for (j
= 0; j
<= h
->highest_lun
; j
++) {
2293 if (h
->drv
[j
] != NULL
&&
2294 memcmp(h
->drv
[j
]->LunID
, lunid
,
2295 sizeof(h
->drv
[j
]->LunID
)) == 0) {
2302 /* check if the drive was found already in the array */
2304 drv_index
= cciss_add_gendisk(h
, lunid
, 0);
2305 if (drv_index
== -1)
2308 cciss_update_drive_info(h
, drv_index
, first_time
, via_ioctl
);
2313 h
->busy_configuring
= 0;
2314 /* We return -1 here to tell the ACU that we have registered/updated
2315 * all of the drives that we can and to keep it from calling us
2320 dev_err(&h
->pdev
->dev
, "out of memory\n");
2321 h
->busy_configuring
= 0;
2325 static void cciss_clear_drive_info(drive_info_struct
*drive_info
)
2327 /* zero out the disk size info */
2328 drive_info
->nr_blocks
= 0;
2329 drive_info
->block_size
= 0;
2330 drive_info
->heads
= 0;
2331 drive_info
->sectors
= 0;
2332 drive_info
->cylinders
= 0;
2333 drive_info
->raid_level
= -1;
2334 memset(drive_info
->serial_no
, 0, sizeof(drive_info
->serial_no
));
2335 memset(drive_info
->model
, 0, sizeof(drive_info
->model
));
2336 memset(drive_info
->rev
, 0, sizeof(drive_info
->rev
));
2337 memset(drive_info
->vendor
, 0, sizeof(drive_info
->vendor
));
2339 * don't clear the LUNID though, we need to remember which
2344 /* This function will deregister the disk and it's queue from the
2345 * kernel. It must be called with the controller lock held and the
2346 * drv structures busy_configuring flag set. It's parameters are:
2348 * disk = This is the disk to be deregistered
2349 * drv = This is the drive_info_struct associated with the disk to be
2350 * deregistered. It contains information about the disk used
2352 * clear_all = This flag determines whether or not the disk information
2353 * is going to be completely cleared out and the highest_lun
2354 * reset. Sometimes we want to clear out information about
2355 * the disk in preparation for re-adding it. In this case
2356 * the highest_lun should be left unchanged and the LunID
2357 * should not be cleared.
2359 * This indicates whether we've reached this path via ioctl.
2360 * This affects the maximum usage count allowed for c0d0 to be messed with.
2361 * If this path is reached via ioctl(), then the max_usage_count will
2362 * be 1, as the process calling ioctl() has got to have the device open.
2363 * If we get here via sysfs, then the max usage count will be zero.
2365 static int deregister_disk(ctlr_info_t
*h
, int drv_index
,
2366 int clear_all
, int via_ioctl
)
2369 struct gendisk
*disk
;
2370 drive_info_struct
*drv
;
2371 int recalculate_highest_lun
;
2373 if (!capable(CAP_SYS_RAWIO
))
2376 drv
= h
->drv
[drv_index
];
2377 disk
= h
->gendisk
[drv_index
];
2379 /* make sure logical volume is NOT is use */
2380 if (clear_all
|| (h
->gendisk
[0] == disk
)) {
2381 if (drv
->usage_count
> via_ioctl
)
2383 } else if (drv
->usage_count
> 0)
2386 recalculate_highest_lun
= (drv
== h
->drv
[h
->highest_lun
]);
2388 /* invalidate the devices and deregister the disk. If it is disk
2389 * zero do not deregister it but just zero out it's values. This
2390 * allows us to delete disk zero but keep the controller registered.
2392 if (h
->gendisk
[0] != disk
) {
2393 struct request_queue
*q
= disk
->queue
;
2394 if (disk
->flags
& GENHD_FL_UP
) {
2395 cciss_destroy_ld_sysfs_entry(h
, drv_index
, 0);
2399 blk_cleanup_queue(q
);
2400 /* If clear_all is set then we are deleting the logical
2401 * drive, not just refreshing its info. For drives
2402 * other than disk 0 we will call put_disk. We do not
2403 * do this for disk 0 as we need it to be able to
2404 * configure the controller.
2407 /* This isn't pretty, but we need to find the
2408 * disk in our array and NULL our the pointer.
2409 * This is so that we will call alloc_disk if
2410 * this index is used again later.
2412 for (i
=0; i
< CISS_MAX_LUN
; i
++){
2413 if (h
->gendisk
[i
] == disk
) {
2414 h
->gendisk
[i
] = NULL
;
2421 set_capacity(disk
, 0);
2422 cciss_clear_drive_info(drv
);
2427 /* if it was the last disk, find the new hightest lun */
2428 if (clear_all
&& recalculate_highest_lun
) {
2429 int newhighest
= -1;
2430 for (i
= 0; i
<= h
->highest_lun
; i
++) {
2431 /* if the disk has size > 0, it is available */
2432 if (h
->drv
[i
] && h
->drv
[i
]->heads
)
2435 h
->highest_lun
= newhighest
;
2440 static int fill_cmd(ctlr_info_t
*h
, CommandList_struct
*c
, __u8 cmd
, void *buff
,
2441 size_t size
, __u8 page_code
, unsigned char *scsi3addr
,
2444 u64bit buff_dma_handle
;
2447 c
->cmd_type
= CMD_IOCTL_PEND
;
2448 c
->Header
.ReplyQueue
= 0;
2450 c
->Header
.SGList
= 1;
2451 c
->Header
.SGTotal
= 1;
2453 c
->Header
.SGList
= 0;
2454 c
->Header
.SGTotal
= 0;
2456 c
->Header
.Tag
.lower
= c
->busaddr
;
2457 memcpy(c
->Header
.LUN
.LunAddrBytes
, scsi3addr
, 8);
2459 c
->Request
.Type
.Type
= cmd_type
;
2460 if (cmd_type
== TYPE_CMD
) {
2463 /* are we trying to read a vital product page */
2464 if (page_code
!= 0) {
2465 c
->Request
.CDB
[1] = 0x01;
2466 c
->Request
.CDB
[2] = page_code
;
2468 c
->Request
.CDBLen
= 6;
2469 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2470 c
->Request
.Type
.Direction
= XFER_READ
;
2471 c
->Request
.Timeout
= 0;
2472 c
->Request
.CDB
[0] = CISS_INQUIRY
;
2473 c
->Request
.CDB
[4] = size
& 0xFF;
2475 case CISS_REPORT_LOG
:
2476 case CISS_REPORT_PHYS
:
2477 /* Talking to controller so It's a physical command
2478 mode = 00 target = 0. Nothing to write.
2480 c
->Request
.CDBLen
= 12;
2481 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2482 c
->Request
.Type
.Direction
= XFER_READ
;
2483 c
->Request
.Timeout
= 0;
2484 c
->Request
.CDB
[0] = cmd
;
2485 c
->Request
.CDB
[6] = (size
>> 24) & 0xFF; /* MSB */
2486 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
2487 c
->Request
.CDB
[8] = (size
>> 8) & 0xFF;
2488 c
->Request
.CDB
[9] = size
& 0xFF;
2491 case CCISS_READ_CAPACITY
:
2492 c
->Request
.CDBLen
= 10;
2493 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2494 c
->Request
.Type
.Direction
= XFER_READ
;
2495 c
->Request
.Timeout
= 0;
2496 c
->Request
.CDB
[0] = cmd
;
2498 case CCISS_READ_CAPACITY_16
:
2499 c
->Request
.CDBLen
= 16;
2500 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2501 c
->Request
.Type
.Direction
= XFER_READ
;
2502 c
->Request
.Timeout
= 0;
2503 c
->Request
.CDB
[0] = cmd
;
2504 c
->Request
.CDB
[1] = 0x10;
2505 c
->Request
.CDB
[10] = (size
>> 24) & 0xFF;
2506 c
->Request
.CDB
[11] = (size
>> 16) & 0xFF;
2507 c
->Request
.CDB
[12] = (size
>> 8) & 0xFF;
2508 c
->Request
.CDB
[13] = size
& 0xFF;
2509 c
->Request
.Timeout
= 0;
2510 c
->Request
.CDB
[0] = cmd
;
2512 case CCISS_CACHE_FLUSH
:
2513 c
->Request
.CDBLen
= 12;
2514 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2515 c
->Request
.Type
.Direction
= XFER_WRITE
;
2516 c
->Request
.Timeout
= 0;
2517 c
->Request
.CDB
[0] = BMIC_WRITE
;
2518 c
->Request
.CDB
[6] = BMIC_CACHE_FLUSH
;
2520 case TEST_UNIT_READY
:
2521 c
->Request
.CDBLen
= 6;
2522 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2523 c
->Request
.Type
.Direction
= XFER_NONE
;
2524 c
->Request
.Timeout
= 0;
2527 dev_warn(&h
->pdev
->dev
, "Unknown Command 0x%c\n", cmd
);
2530 } else if (cmd_type
== TYPE_MSG
) {
2532 case 0: /* ABORT message */
2533 c
->Request
.CDBLen
= 12;
2534 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2535 c
->Request
.Type
.Direction
= XFER_WRITE
;
2536 c
->Request
.Timeout
= 0;
2537 c
->Request
.CDB
[0] = cmd
; /* abort */
2538 c
->Request
.CDB
[1] = 0; /* abort a command */
2539 /* buff contains the tag of the command to abort */
2540 memcpy(&c
->Request
.CDB
[4], buff
, 8);
2542 case 1: /* RESET message */
2543 c
->Request
.CDBLen
= 16;
2544 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2545 c
->Request
.Type
.Direction
= XFER_NONE
;
2546 c
->Request
.Timeout
= 0;
2547 memset(&c
->Request
.CDB
[0], 0, sizeof(c
->Request
.CDB
));
2548 c
->Request
.CDB
[0] = cmd
; /* reset */
2549 c
->Request
.CDB
[1] = 0x03; /* reset a target */
2551 case 3: /* No-Op message */
2552 c
->Request
.CDBLen
= 1;
2553 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2554 c
->Request
.Type
.Direction
= XFER_WRITE
;
2555 c
->Request
.Timeout
= 0;
2556 c
->Request
.CDB
[0] = cmd
;
2559 dev_warn(&h
->pdev
->dev
,
2560 "unknown message type %d\n", cmd
);
2564 dev_warn(&h
->pdev
->dev
, "unknown command type %d\n", cmd_type
);
2567 /* Fill in the scatter gather information */
2569 buff_dma_handle
.val
= (__u64
) pci_map_single(h
->pdev
,
2571 PCI_DMA_BIDIRECTIONAL
);
2572 c
->SG
[0].Addr
.lower
= buff_dma_handle
.val32
.lower
;
2573 c
->SG
[0].Addr
.upper
= buff_dma_handle
.val32
.upper
;
2574 c
->SG
[0].Len
= size
;
2575 c
->SG
[0].Ext
= 0; /* we are not chaining */
2580 static int check_target_status(ctlr_info_t
*h
, CommandList_struct
*c
)
2582 switch (c
->err_info
->ScsiStatus
) {
2585 case SAM_STAT_CHECK_CONDITION
:
2586 switch (0xf & c
->err_info
->SenseInfo
[2]) {
2587 case 0: return IO_OK
; /* no sense */
2588 case 1: return IO_OK
; /* recovered error */
2590 if (check_for_unit_attention(h
, c
))
2591 return IO_NEEDS_RETRY
;
2592 dev_warn(&h
->pdev
->dev
, "cmd 0x%02x "
2593 "check condition, sense key = 0x%02x\n",
2594 c
->Request
.CDB
[0], c
->err_info
->SenseInfo
[2]);
2598 dev_warn(&h
->pdev
->dev
, "cmd 0x%02x"
2599 "scsi status = 0x%02x\n",
2600 c
->Request
.CDB
[0], c
->err_info
->ScsiStatus
);
2606 static int process_sendcmd_error(ctlr_info_t
*h
, CommandList_struct
*c
)
2608 int return_status
= IO_OK
;
2610 if (c
->err_info
->CommandStatus
== CMD_SUCCESS
)
2613 switch (c
->err_info
->CommandStatus
) {
2614 case CMD_TARGET_STATUS
:
2615 return_status
= check_target_status(h
, c
);
2617 case CMD_DATA_UNDERRUN
:
2618 case CMD_DATA_OVERRUN
:
2619 /* expected for inquiry and report lun commands */
2622 dev_warn(&h
->pdev
->dev
, "cmd 0x%02x is "
2623 "reported invalid\n", c
->Request
.CDB
[0]);
2624 return_status
= IO_ERROR
;
2626 case CMD_PROTOCOL_ERR
:
2627 dev_warn(&h
->pdev
->dev
, "cmd 0x%02x has "
2628 "protocol error\n", c
->Request
.CDB
[0]);
2629 return_status
= IO_ERROR
;
2631 case CMD_HARDWARE_ERR
:
2632 dev_warn(&h
->pdev
->dev
, "cmd 0x%02x had "
2633 " hardware error\n", c
->Request
.CDB
[0]);
2634 return_status
= IO_ERROR
;
2636 case CMD_CONNECTION_LOST
:
2637 dev_warn(&h
->pdev
->dev
, "cmd 0x%02x had "
2638 "connection lost\n", c
->Request
.CDB
[0]);
2639 return_status
= IO_ERROR
;
2642 dev_warn(&h
->pdev
->dev
, "cmd 0x%02x was "
2643 "aborted\n", c
->Request
.CDB
[0]);
2644 return_status
= IO_ERROR
;
2646 case CMD_ABORT_FAILED
:
2647 dev_warn(&h
->pdev
->dev
, "cmd 0x%02x reports "
2648 "abort failed\n", c
->Request
.CDB
[0]);
2649 return_status
= IO_ERROR
;
2651 case CMD_UNSOLICITED_ABORT
:
2652 dev_warn(&h
->pdev
->dev
, "unsolicited abort 0x%02x\n",
2654 return_status
= IO_NEEDS_RETRY
;
2657 dev_warn(&h
->pdev
->dev
, "cmd 0x%02x returned "
2658 "unknown status %x\n", c
->Request
.CDB
[0],
2659 c
->err_info
->CommandStatus
);
2660 return_status
= IO_ERROR
;
2662 return return_status
;
2665 static int sendcmd_withirq_core(ctlr_info_t
*h
, CommandList_struct
*c
,
2668 DECLARE_COMPLETION_ONSTACK(wait
);
2669 u64bit buff_dma_handle
;
2670 int return_status
= IO_OK
;
2674 enqueue_cmd_and_start_io(h
, c
);
2676 wait_for_completion(&wait
);
2678 if (c
->err_info
->CommandStatus
== 0 || !attempt_retry
)
2681 return_status
= process_sendcmd_error(h
, c
);
2683 if (return_status
== IO_NEEDS_RETRY
&&
2684 c
->retry_count
< MAX_CMD_RETRIES
) {
2685 dev_warn(&h
->pdev
->dev
, "retrying 0x%02x\n",
2688 /* erase the old error information */
2689 memset(c
->err_info
, 0, sizeof(ErrorInfo_struct
));
2690 return_status
= IO_OK
;
2691 INIT_COMPLETION(wait
);
2696 /* unlock the buffers from DMA */
2697 buff_dma_handle
.val32
.lower
= c
->SG
[0].Addr
.lower
;
2698 buff_dma_handle
.val32
.upper
= c
->SG
[0].Addr
.upper
;
2699 pci_unmap_single(h
->pdev
, (dma_addr_t
) buff_dma_handle
.val
,
2700 c
->SG
[0].Len
, PCI_DMA_BIDIRECTIONAL
);
2701 return return_status
;
2704 static int sendcmd_withirq(ctlr_info_t
*h
, __u8 cmd
, void *buff
, size_t size
,
2705 __u8 page_code
, unsigned char scsi3addr
[],
2708 CommandList_struct
*c
;
2711 c
= cmd_special_alloc(h
);
2714 return_status
= fill_cmd(h
, c
, cmd
, buff
, size
, page_code
,
2715 scsi3addr
, cmd_type
);
2716 if (return_status
== IO_OK
)
2717 return_status
= sendcmd_withirq_core(h
, c
, 1);
2719 cmd_special_free(h
, c
);
2720 return return_status
;
2723 static void cciss_geometry_inquiry(ctlr_info_t
*h
, int logvol
,
2724 sector_t total_size
,
2725 unsigned int block_size
,
2726 InquiryData_struct
*inq_buff
,
2727 drive_info_struct
*drv
)
2731 unsigned char scsi3addr
[8];
2733 memset(inq_buff
, 0, sizeof(InquiryData_struct
));
2734 log_unit_to_scsi3addr(h
, scsi3addr
, logvol
);
2735 return_code
= sendcmd_withirq(h
, CISS_INQUIRY
, inq_buff
,
2736 sizeof(*inq_buff
), 0xC1, scsi3addr
, TYPE_CMD
);
2737 if (return_code
== IO_OK
) {
2738 if (inq_buff
->data_byte
[8] == 0xFF) {
2739 dev_warn(&h
->pdev
->dev
,
2740 "reading geometry failed, volume "
2741 "does not support reading geometry\n");
2743 drv
->sectors
= 32; /* Sectors per track */
2744 drv
->cylinders
= total_size
+ 1;
2745 drv
->raid_level
= RAID_UNKNOWN
;
2747 drv
->heads
= inq_buff
->data_byte
[6];
2748 drv
->sectors
= inq_buff
->data_byte
[7];
2749 drv
->cylinders
= (inq_buff
->data_byte
[4] & 0xff) << 8;
2750 drv
->cylinders
+= inq_buff
->data_byte
[5];
2751 drv
->raid_level
= inq_buff
->data_byte
[8];
2753 drv
->block_size
= block_size
;
2754 drv
->nr_blocks
= total_size
+ 1;
2755 t
= drv
->heads
* drv
->sectors
;
2757 sector_t real_size
= total_size
+ 1;
2758 unsigned long rem
= sector_div(real_size
, t
);
2761 drv
->cylinders
= real_size
;
2763 } else { /* Get geometry failed */
2764 dev_warn(&h
->pdev
->dev
, "reading geometry failed\n");
2769 cciss_read_capacity(ctlr_info_t
*h
, int logvol
, sector_t
*total_size
,
2770 unsigned int *block_size
)
2772 ReadCapdata_struct
*buf
;
2774 unsigned char scsi3addr
[8];
2776 buf
= kzalloc(sizeof(ReadCapdata_struct
), GFP_KERNEL
);
2778 dev_warn(&h
->pdev
->dev
, "out of memory\n");
2782 log_unit_to_scsi3addr(h
, scsi3addr
, logvol
);
2783 return_code
= sendcmd_withirq(h
, CCISS_READ_CAPACITY
, buf
,
2784 sizeof(ReadCapdata_struct
), 0, scsi3addr
, TYPE_CMD
);
2785 if (return_code
== IO_OK
) {
2786 *total_size
= be32_to_cpu(*(__be32
*) buf
->total_size
);
2787 *block_size
= be32_to_cpu(*(__be32
*) buf
->block_size
);
2788 } else { /* read capacity command failed */
2789 dev_warn(&h
->pdev
->dev
, "read capacity failed\n");
2791 *block_size
= BLOCK_SIZE
;
2796 static void cciss_read_capacity_16(ctlr_info_t
*h
, int logvol
,
2797 sector_t
*total_size
, unsigned int *block_size
)
2799 ReadCapdata_struct_16
*buf
;
2801 unsigned char scsi3addr
[8];
2803 buf
= kzalloc(sizeof(ReadCapdata_struct_16
), GFP_KERNEL
);
2805 dev_warn(&h
->pdev
->dev
, "out of memory\n");
2809 log_unit_to_scsi3addr(h
, scsi3addr
, logvol
);
2810 return_code
= sendcmd_withirq(h
, CCISS_READ_CAPACITY_16
,
2811 buf
, sizeof(ReadCapdata_struct_16
),
2812 0, scsi3addr
, TYPE_CMD
);
2813 if (return_code
== IO_OK
) {
2814 *total_size
= be64_to_cpu(*(__be64
*) buf
->total_size
);
2815 *block_size
= be32_to_cpu(*(__be32
*) buf
->block_size
);
2816 } else { /* read capacity command failed */
2817 dev_warn(&h
->pdev
->dev
, "read capacity failed\n");
2819 *block_size
= BLOCK_SIZE
;
2821 dev_info(&h
->pdev
->dev
, " blocks= %llu block_size= %d\n",
2822 (unsigned long long)*total_size
+1, *block_size
);
2826 static int cciss_revalidate(struct gendisk
*disk
)
2828 ctlr_info_t
*h
= get_host(disk
);
2829 drive_info_struct
*drv
= get_drv(disk
);
2832 unsigned int block_size
;
2833 sector_t total_size
;
2834 InquiryData_struct
*inq_buff
= NULL
;
2836 for (logvol
= 0; logvol
<= h
->highest_lun
; logvol
++) {
2837 if (!h
->drv
[logvol
])
2839 if (memcmp(h
->drv
[logvol
]->LunID
, drv
->LunID
,
2840 sizeof(drv
->LunID
)) == 0) {
2849 inq_buff
= kmalloc(sizeof(InquiryData_struct
), GFP_KERNEL
);
2850 if (inq_buff
== NULL
) {
2851 dev_warn(&h
->pdev
->dev
, "out of memory\n");
2854 if (h
->cciss_read
== CCISS_READ_10
) {
2855 cciss_read_capacity(h
, logvol
,
2856 &total_size
, &block_size
);
2858 cciss_read_capacity_16(h
, logvol
,
2859 &total_size
, &block_size
);
2861 cciss_geometry_inquiry(h
, logvol
, total_size
, block_size
,
2864 blk_queue_logical_block_size(drv
->queue
, drv
->block_size
);
2865 set_capacity(disk
, drv
->nr_blocks
);
2872 * Map (physical) PCI mem into (virtual) kernel space
2874 static void __iomem
*remap_pci_mem(ulong base
, ulong size
)
2876 ulong page_base
= ((ulong
) base
) & PAGE_MASK
;
2877 ulong page_offs
= ((ulong
) base
) - page_base
;
2878 void __iomem
*page_remapped
= ioremap(page_base
, page_offs
+ size
);
2880 return page_remapped
? (page_remapped
+ page_offs
) : NULL
;
2884 * Takes jobs of the Q and sends them to the hardware, then puts it on
2885 * the Q to wait for completion.
2887 static void start_io(ctlr_info_t
*h
)
2889 CommandList_struct
*c
;
2891 while (!list_empty(&h
->reqQ
)) {
2892 c
= list_entry(h
->reqQ
.next
, CommandList_struct
, list
);
2893 /* can't do anything if fifo is full */
2894 if ((h
->access
.fifo_full(h
))) {
2895 dev_warn(&h
->pdev
->dev
, "fifo full\n");
2899 /* Get the first entry from the Request Q */
2903 /* Tell the controller execute command */
2904 h
->access
.submit_command(h
, c
);
2906 /* Put job onto the completed Q */
2911 /* Assumes that h->lock is held. */
2912 /* Zeros out the error record and then resends the command back */
2913 /* to the controller */
2914 static inline void resend_cciss_cmd(ctlr_info_t
*h
, CommandList_struct
*c
)
2916 /* erase the old error information */
2917 memset(c
->err_info
, 0, sizeof(ErrorInfo_struct
));
2919 /* add it to software queue and then send it to the controller */
2922 if (h
->Qdepth
> h
->maxQsinceinit
)
2923 h
->maxQsinceinit
= h
->Qdepth
;
2928 static inline unsigned int make_status_bytes(unsigned int scsi_status_byte
,
2929 unsigned int msg_byte
, unsigned int host_byte
,
2930 unsigned int driver_byte
)
2932 /* inverse of macros in scsi.h */
2933 return (scsi_status_byte
& 0xff) |
2934 ((msg_byte
& 0xff) << 8) |
2935 ((host_byte
& 0xff) << 16) |
2936 ((driver_byte
& 0xff) << 24);
2939 static inline int evaluate_target_status(ctlr_info_t
*h
,
2940 CommandList_struct
*cmd
, int *retry_cmd
)
2942 unsigned char sense_key
;
2943 unsigned char status_byte
, msg_byte
, host_byte
, driver_byte
;
2947 /* If we get in here, it means we got "target status", that is, scsi status */
2948 status_byte
= cmd
->err_info
->ScsiStatus
;
2949 driver_byte
= DRIVER_OK
;
2950 msg_byte
= cmd
->err_info
->CommandStatus
; /* correct? seems too device specific */
2952 if (cmd
->rq
->cmd_type
== REQ_TYPE_BLOCK_PC
)
2953 host_byte
= DID_PASSTHROUGH
;
2957 error_value
= make_status_bytes(status_byte
, msg_byte
,
2958 host_byte
, driver_byte
);
2960 if (cmd
->err_info
->ScsiStatus
!= SAM_STAT_CHECK_CONDITION
) {
2961 if (cmd
->rq
->cmd_type
!= REQ_TYPE_BLOCK_PC
)
2962 dev_warn(&h
->pdev
->dev
, "cmd %p "
2963 "has SCSI Status 0x%x\n",
2964 cmd
, cmd
->err_info
->ScsiStatus
);
2968 /* check the sense key */
2969 sense_key
= 0xf & cmd
->err_info
->SenseInfo
[2];
2970 /* no status or recovered error */
2971 if (((sense_key
== 0x0) || (sense_key
== 0x1)) &&
2972 (cmd
->rq
->cmd_type
!= REQ_TYPE_BLOCK_PC
))
2975 if (check_for_unit_attention(h
, cmd
)) {
2976 *retry_cmd
= !(cmd
->rq
->cmd_type
== REQ_TYPE_BLOCK_PC
);
2980 /* Not SG_IO or similar? */
2981 if (cmd
->rq
->cmd_type
!= REQ_TYPE_BLOCK_PC
) {
2982 if (error_value
!= 0)
2983 dev_warn(&h
->pdev
->dev
, "cmd %p has CHECK CONDITION"
2984 " sense key = 0x%x\n", cmd
, sense_key
);
2988 /* SG_IO or similar, copy sense data back */
2989 if (cmd
->rq
->sense
) {
2990 if (cmd
->rq
->sense_len
> cmd
->err_info
->SenseLen
)
2991 cmd
->rq
->sense_len
= cmd
->err_info
->SenseLen
;
2992 memcpy(cmd
->rq
->sense
, cmd
->err_info
->SenseInfo
,
2993 cmd
->rq
->sense_len
);
2995 cmd
->rq
->sense_len
= 0;
3000 /* checks the status of the job and calls complete buffers to mark all
3001 * buffers for the completed job. Note that this function does not need
3002 * to hold the hba/queue lock.
3004 static inline void complete_command(ctlr_info_t
*h
, CommandList_struct
*cmd
,
3008 struct request
*rq
= cmd
->rq
;
3013 rq
->errors
= make_status_bytes(0, 0, 0, DRIVER_TIMEOUT
);
3015 if (cmd
->err_info
->CommandStatus
== 0) /* no error has occurred */
3016 goto after_error_processing
;
3018 switch (cmd
->err_info
->CommandStatus
) {
3019 case CMD_TARGET_STATUS
:
3020 rq
->errors
= evaluate_target_status(h
, cmd
, &retry_cmd
);
3022 case CMD_DATA_UNDERRUN
:
3023 if (cmd
->rq
->cmd_type
== REQ_TYPE_FS
) {
3024 dev_warn(&h
->pdev
->dev
, "cmd %p has"
3025 " completed with data underrun "
3027 cmd
->rq
->resid_len
= cmd
->err_info
->ResidualCnt
;
3030 case CMD_DATA_OVERRUN
:
3031 if (cmd
->rq
->cmd_type
== REQ_TYPE_FS
)
3032 dev_warn(&h
->pdev
->dev
, "cciss: cmd %p has"
3033 " completed with data overrun "
3037 dev_warn(&h
->pdev
->dev
, "cciss: cmd %p is "
3038 "reported invalid\n", cmd
);
3039 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
3040 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
3041 (cmd
->rq
->cmd_type
== REQ_TYPE_BLOCK_PC
) ?
3042 DID_PASSTHROUGH
: DID_ERROR
);
3044 case CMD_PROTOCOL_ERR
:
3045 dev_warn(&h
->pdev
->dev
, "cciss: cmd %p has "
3046 "protocol error\n", cmd
);
3047 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
3048 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
3049 (cmd
->rq
->cmd_type
== REQ_TYPE_BLOCK_PC
) ?
3050 DID_PASSTHROUGH
: DID_ERROR
);
3052 case CMD_HARDWARE_ERR
:
3053 dev_warn(&h
->pdev
->dev
, "cciss: cmd %p had "
3054 " hardware error\n", cmd
);
3055 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
3056 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
3057 (cmd
->rq
->cmd_type
== REQ_TYPE_BLOCK_PC
) ?
3058 DID_PASSTHROUGH
: DID_ERROR
);
3060 case CMD_CONNECTION_LOST
:
3061 dev_warn(&h
->pdev
->dev
, "cciss: cmd %p had "
3062 "connection lost\n", cmd
);
3063 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
3064 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
3065 (cmd
->rq
->cmd_type
== REQ_TYPE_BLOCK_PC
) ?
3066 DID_PASSTHROUGH
: DID_ERROR
);
3069 dev_warn(&h
->pdev
->dev
, "cciss: cmd %p was "
3071 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
3072 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
3073 (cmd
->rq
->cmd_type
== REQ_TYPE_BLOCK_PC
) ?
3074 DID_PASSTHROUGH
: DID_ABORT
);
3076 case CMD_ABORT_FAILED
:
3077 dev_warn(&h
->pdev
->dev
, "cciss: cmd %p reports "
3078 "abort failed\n", cmd
);
3079 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
3080 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
3081 (cmd
->rq
->cmd_type
== REQ_TYPE_BLOCK_PC
) ?
3082 DID_PASSTHROUGH
: DID_ERROR
);
3084 case CMD_UNSOLICITED_ABORT
:
3085 dev_warn(&h
->pdev
->dev
, "cciss%d: unsolicited "
3086 "abort %p\n", h
->ctlr
, cmd
);
3087 if (cmd
->retry_count
< MAX_CMD_RETRIES
) {
3089 dev_warn(&h
->pdev
->dev
, "retrying %p\n", cmd
);
3092 dev_warn(&h
->pdev
->dev
,
3093 "%p retried too many times\n", cmd
);
3094 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
3095 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
3096 (cmd
->rq
->cmd_type
== REQ_TYPE_BLOCK_PC
) ?
3097 DID_PASSTHROUGH
: DID_ABORT
);
3100 dev_warn(&h
->pdev
->dev
, "cmd %p timedout\n", cmd
);
3101 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
3102 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
3103 (cmd
->rq
->cmd_type
== REQ_TYPE_BLOCK_PC
) ?
3104 DID_PASSTHROUGH
: DID_ERROR
);
3107 dev_warn(&h
->pdev
->dev
, "cmd %p returned "
3108 "unknown status %x\n", cmd
,
3109 cmd
->err_info
->CommandStatus
);
3110 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
3111 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
3112 (cmd
->rq
->cmd_type
== REQ_TYPE_BLOCK_PC
) ?
3113 DID_PASSTHROUGH
: DID_ERROR
);
3116 after_error_processing
:
3118 /* We need to return this command */
3120 resend_cciss_cmd(h
, cmd
);
3123 cmd
->rq
->completion_data
= cmd
;
3124 blk_complete_request(cmd
->rq
);
3127 static inline u32
cciss_tag_contains_index(u32 tag
)
3129 #define DIRECT_LOOKUP_BIT 0x10
3130 return tag
& DIRECT_LOOKUP_BIT
;
3133 static inline u32
cciss_tag_to_index(u32 tag
)
3135 #define DIRECT_LOOKUP_SHIFT 5
3136 return tag
>> DIRECT_LOOKUP_SHIFT
;
3139 static inline u32
cciss_tag_discard_error_bits(u32 tag
)
3141 #define CCISS_ERROR_BITS 0x03
3142 return tag
& ~CCISS_ERROR_BITS
;
3145 static inline void cciss_mark_tag_indexed(u32
*tag
)
3147 *tag
|= DIRECT_LOOKUP_BIT
;
3150 static inline void cciss_set_tag_index(u32
*tag
, u32 index
)
3152 *tag
|= (index
<< DIRECT_LOOKUP_SHIFT
);
3156 * Get a request and submit it to the controller.
3158 static void do_cciss_request(struct request_queue
*q
)
3160 ctlr_info_t
*h
= q
->queuedata
;
3161 CommandList_struct
*c
;
3164 struct request
*creq
;
3166 struct scatterlist
*tmp_sg
;
3167 SGDescriptor_struct
*curr_sg
;
3168 drive_info_struct
*drv
;
3174 creq
= blk_peek_request(q
);
3178 BUG_ON(creq
->nr_phys_segments
> h
->maxsgentries
);
3184 blk_start_request(creq
);
3186 tmp_sg
= h
->scatter_list
[c
->cmdindex
];
3187 spin_unlock_irq(q
->queue_lock
);
3189 c
->cmd_type
= CMD_RWREQ
;
3192 /* fill in the request */
3193 drv
= creq
->rq_disk
->private_data
;
3194 c
->Header
.ReplyQueue
= 0; /* unused in simple mode */
3195 /* got command from pool, so use the command block index instead */
3196 /* for direct lookups. */
3197 /* The first 2 bits are reserved for controller error reporting. */
3198 cciss_set_tag_index(&c
->Header
.Tag
.lower
, c
->cmdindex
);
3199 cciss_mark_tag_indexed(&c
->Header
.Tag
.lower
);
3200 memcpy(&c
->Header
.LUN
, drv
->LunID
, sizeof(drv
->LunID
));
3201 c
->Request
.CDBLen
= 10; /* 12 byte commands not in FW yet; */
3202 c
->Request
.Type
.Type
= TYPE_CMD
; /* It is a command. */
3203 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
3204 c
->Request
.Type
.Direction
=
3205 (rq_data_dir(creq
) == READ
) ? XFER_READ
: XFER_WRITE
;
3206 c
->Request
.Timeout
= 0; /* Don't time out */
3208 (rq_data_dir(creq
) == READ
) ? h
->cciss_read
: h
->cciss_write
;
3209 start_blk
= blk_rq_pos(creq
);
3210 dev_dbg(&h
->pdev
->dev
, "sector =%d nr_sectors=%d\n",
3211 (int)blk_rq_pos(creq
), (int)blk_rq_sectors(creq
));
3212 sg_init_table(tmp_sg
, h
->maxsgentries
);
3213 seg
= blk_rq_map_sg(q
, creq
, tmp_sg
);
3215 /* get the DMA records for the setup */
3216 if (c
->Request
.Type
.Direction
== XFER_READ
)
3217 dir
= PCI_DMA_FROMDEVICE
;
3219 dir
= PCI_DMA_TODEVICE
;
3225 for (i
= 0; i
< seg
; i
++) {
3226 if (((sg_index
+1) == (h
->max_cmd_sgentries
)) &&
3227 !chained
&& ((seg
- i
) > 1)) {
3228 /* Point to next chain block. */
3229 curr_sg
= h
->cmd_sg_list
[c
->cmdindex
];
3233 curr_sg
[sg_index
].Len
= tmp_sg
[i
].length
;
3234 temp64
.val
= (__u64
) pci_map_page(h
->pdev
, sg_page(&tmp_sg
[i
]),
3236 tmp_sg
[i
].length
, dir
);
3237 curr_sg
[sg_index
].Addr
.lower
= temp64
.val32
.lower
;
3238 curr_sg
[sg_index
].Addr
.upper
= temp64
.val32
.upper
;
3239 curr_sg
[sg_index
].Ext
= 0; /* we are not chaining */
3243 cciss_map_sg_chain_block(h
, c
, h
->cmd_sg_list
[c
->cmdindex
],
3244 (seg
- (h
->max_cmd_sgentries
- 1)) *
3245 sizeof(SGDescriptor_struct
));
3247 /* track how many SG entries we are using */
3251 dev_dbg(&h
->pdev
->dev
, "Submitting %u sectors in %d segments "
3253 blk_rq_sectors(creq
), seg
, chained
);
3255 c
->Header
.SGTotal
= seg
+ chained
;
3256 if (seg
<= h
->max_cmd_sgentries
)
3257 c
->Header
.SGList
= c
->Header
.SGTotal
;
3259 c
->Header
.SGList
= h
->max_cmd_sgentries
;
3260 set_performant_mode(h
, c
);
3262 if (likely(creq
->cmd_type
== REQ_TYPE_FS
)) {
3263 if(h
->cciss_read
== CCISS_READ_10
) {
3264 c
->Request
.CDB
[1] = 0;
3265 c
->Request
.CDB
[2] = (start_blk
>> 24) & 0xff; /* MSB */
3266 c
->Request
.CDB
[3] = (start_blk
>> 16) & 0xff;
3267 c
->Request
.CDB
[4] = (start_blk
>> 8) & 0xff;
3268 c
->Request
.CDB
[5] = start_blk
& 0xff;
3269 c
->Request
.CDB
[6] = 0; /* (sect >> 24) & 0xff; MSB */
3270 c
->Request
.CDB
[7] = (blk_rq_sectors(creq
) >> 8) & 0xff;
3271 c
->Request
.CDB
[8] = blk_rq_sectors(creq
) & 0xff;
3272 c
->Request
.CDB
[9] = c
->Request
.CDB
[11] = c
->Request
.CDB
[12] = 0;
3274 u32 upper32
= upper_32_bits(start_blk
);
3276 c
->Request
.CDBLen
= 16;
3277 c
->Request
.CDB
[1]= 0;
3278 c
->Request
.CDB
[2]= (upper32
>> 24) & 0xff; /* MSB */
3279 c
->Request
.CDB
[3]= (upper32
>> 16) & 0xff;
3280 c
->Request
.CDB
[4]= (upper32
>> 8) & 0xff;
3281 c
->Request
.CDB
[5]= upper32
& 0xff;
3282 c
->Request
.CDB
[6]= (start_blk
>> 24) & 0xff;
3283 c
->Request
.CDB
[7]= (start_blk
>> 16) & 0xff;
3284 c
->Request
.CDB
[8]= (start_blk
>> 8) & 0xff;
3285 c
->Request
.CDB
[9]= start_blk
& 0xff;
3286 c
->Request
.CDB
[10]= (blk_rq_sectors(creq
) >> 24) & 0xff;
3287 c
->Request
.CDB
[11]= (blk_rq_sectors(creq
) >> 16) & 0xff;
3288 c
->Request
.CDB
[12]= (blk_rq_sectors(creq
) >> 8) & 0xff;
3289 c
->Request
.CDB
[13]= blk_rq_sectors(creq
) & 0xff;
3290 c
->Request
.CDB
[14] = c
->Request
.CDB
[15] = 0;
3292 } else if (creq
->cmd_type
== REQ_TYPE_BLOCK_PC
) {
3293 c
->Request
.CDBLen
= creq
->cmd_len
;
3294 memcpy(c
->Request
.CDB
, creq
->cmd
, BLK_MAX_CDB
);
3296 dev_warn(&h
->pdev
->dev
, "bad request type %d\n",
3301 spin_lock_irq(q
->queue_lock
);
3305 if (h
->Qdepth
> h
->maxQsinceinit
)
3306 h
->maxQsinceinit
= h
->Qdepth
;
3312 /* We will already have the driver lock here so not need
3318 static inline unsigned long get_next_completion(ctlr_info_t
*h
)
3320 return h
->access
.command_completed(h
);
3323 static inline int interrupt_pending(ctlr_info_t
*h
)
3325 return h
->access
.intr_pending(h
);
3328 static inline long interrupt_not_for_us(ctlr_info_t
*h
)
3330 return ((h
->access
.intr_pending(h
) == 0) ||
3331 (h
->interrupts_enabled
== 0));
3334 static inline int bad_tag(ctlr_info_t
*h
, u32 tag_index
,
3337 if (unlikely(tag_index
>= h
->nr_cmds
)) {
3338 dev_warn(&h
->pdev
->dev
, "bad tag 0x%08x ignored.\n", raw_tag
);
3344 static inline void finish_cmd(ctlr_info_t
*h
, CommandList_struct
*c
,
3348 if (likely(c
->cmd_type
== CMD_RWREQ
))
3349 complete_command(h
, c
, 0);
3350 else if (c
->cmd_type
== CMD_IOCTL_PEND
)
3351 complete(c
->waiting
);
3352 #ifdef CONFIG_CISS_SCSI_TAPE
3353 else if (c
->cmd_type
== CMD_SCSI
)
3354 complete_scsi_command(c
, 0, raw_tag
);
3358 static inline u32
next_command(ctlr_info_t
*h
)
3362 if (unlikely(h
->transMethod
!= CFGTBL_Trans_Performant
))
3363 return h
->access
.command_completed(h
);
3365 if ((*(h
->reply_pool_head
) & 1) == (h
->reply_pool_wraparound
)) {
3366 a
= *(h
->reply_pool_head
); /* Next cmd in ring buffer */
3367 (h
->reply_pool_head
)++;
3368 h
->commands_outstanding
--;
3372 /* Check for wraparound */
3373 if (h
->reply_pool_head
== (h
->reply_pool
+ h
->max_commands
)) {
3374 h
->reply_pool_head
= h
->reply_pool
;
3375 h
->reply_pool_wraparound
^= 1;
3380 /* process completion of an indexed ("direct lookup") command */
3381 static inline u32
process_indexed_cmd(ctlr_info_t
*h
, u32 raw_tag
)
3384 CommandList_struct
*c
;
3386 tag_index
= cciss_tag_to_index(raw_tag
);
3387 if (bad_tag(h
, tag_index
, raw_tag
))
3388 return next_command(h
);
3389 c
= h
->cmd_pool
+ tag_index
;
3390 finish_cmd(h
, c
, raw_tag
);
3391 return next_command(h
);
3394 /* process completion of a non-indexed command */
3395 static inline u32
process_nonindexed_cmd(ctlr_info_t
*h
, u32 raw_tag
)
3398 CommandList_struct
*c
= NULL
;
3399 __u32 busaddr_masked
, tag_masked
;
3401 tag
= cciss_tag_discard_error_bits(raw_tag
);
3402 list_for_each_entry(c
, &h
->cmpQ
, list
) {
3403 busaddr_masked
= cciss_tag_discard_error_bits(c
->busaddr
);
3404 tag_masked
= cciss_tag_discard_error_bits(tag
);
3405 if (busaddr_masked
== tag_masked
) {
3406 finish_cmd(h
, c
, raw_tag
);
3407 return next_command(h
);
3410 bad_tag(h
, h
->nr_cmds
+ 1, raw_tag
);
3411 return next_command(h
);
3414 static irqreturn_t
do_cciss_intx(int irq
, void *dev_id
)
3416 ctlr_info_t
*h
= dev_id
;
3417 unsigned long flags
;
3420 if (interrupt_not_for_us(h
))
3422 spin_lock_irqsave(&h
->lock
, flags
);
3423 while (interrupt_pending(h
)) {
3424 raw_tag
= get_next_completion(h
);
3425 while (raw_tag
!= FIFO_EMPTY
) {
3426 if (cciss_tag_contains_index(raw_tag
))
3427 raw_tag
= process_indexed_cmd(h
, raw_tag
);
3429 raw_tag
= process_nonindexed_cmd(h
, raw_tag
);
3432 spin_unlock_irqrestore(&h
->lock
, flags
);
3436 /* Add a second interrupt handler for MSI/MSI-X mode. In this mode we never
3437 * check the interrupt pending register because it is not set.
3439 static irqreturn_t
do_cciss_msix_intr(int irq
, void *dev_id
)
3441 ctlr_info_t
*h
= dev_id
;
3442 unsigned long flags
;
3445 spin_lock_irqsave(&h
->lock
, flags
);
3446 raw_tag
= get_next_completion(h
);
3447 while (raw_tag
!= FIFO_EMPTY
) {
3448 if (cciss_tag_contains_index(raw_tag
))
3449 raw_tag
= process_indexed_cmd(h
, raw_tag
);
3451 raw_tag
= process_nonindexed_cmd(h
, raw_tag
);
3453 spin_unlock_irqrestore(&h
->lock
, flags
);
3458 * add_to_scan_list() - add controller to rescan queue
3459 * @h: Pointer to the controller.
3461 * Adds the controller to the rescan queue if not already on the queue.
3463 * returns 1 if added to the queue, 0 if skipped (could be on the
3464 * queue already, or the controller could be initializing or shutting
3467 static int add_to_scan_list(struct ctlr_info
*h
)
3469 struct ctlr_info
*test_h
;
3473 if (h
->busy_initializing
)
3476 if (!mutex_trylock(&h
->busy_shutting_down
))
3479 mutex_lock(&scan_mutex
);
3480 list_for_each_entry(test_h
, &scan_q
, scan_list
) {
3486 if (!found
&& !h
->busy_scanning
) {
3487 INIT_COMPLETION(h
->scan_wait
);
3488 list_add_tail(&h
->scan_list
, &scan_q
);
3491 mutex_unlock(&scan_mutex
);
3492 mutex_unlock(&h
->busy_shutting_down
);
3498 * remove_from_scan_list() - remove controller from rescan queue
3499 * @h: Pointer to the controller.
3501 * Removes the controller from the rescan queue if present. Blocks if
3502 * the controller is currently conducting a rescan. The controller
3503 * can be in one of three states:
3504 * 1. Doesn't need a scan
3505 * 2. On the scan list, but not scanning yet (we remove it)
3506 * 3. Busy scanning (and not on the list). In this case we want to wait for
3507 * the scan to complete to make sure the scanning thread for this
3508 * controller is completely idle.
3510 static void remove_from_scan_list(struct ctlr_info
*h
)
3512 struct ctlr_info
*test_h
, *tmp_h
;
3514 mutex_lock(&scan_mutex
);
3515 list_for_each_entry_safe(test_h
, tmp_h
, &scan_q
, scan_list
) {
3516 if (test_h
== h
) { /* state 2. */
3517 list_del(&h
->scan_list
);
3518 complete_all(&h
->scan_wait
);
3519 mutex_unlock(&scan_mutex
);
3523 if (h
->busy_scanning
) { /* state 3. */
3524 mutex_unlock(&scan_mutex
);
3525 wait_for_completion(&h
->scan_wait
);
3526 } else { /* state 1, nothing to do. */
3527 mutex_unlock(&scan_mutex
);
3532 * scan_thread() - kernel thread used to rescan controllers
3535 * A kernel thread used scan for drive topology changes on
3536 * controllers. The thread processes only one controller at a time
3537 * using a queue. Controllers are added to the queue using
3538 * add_to_scan_list() and removed from the queue either after done
3539 * processing or using remove_from_scan_list().
3543 static int scan_thread(void *data
)
3545 struct ctlr_info
*h
;
3548 set_current_state(TASK_INTERRUPTIBLE
);
3550 if (kthread_should_stop())
3554 mutex_lock(&scan_mutex
);
3555 if (list_empty(&scan_q
)) {
3556 mutex_unlock(&scan_mutex
);
3560 h
= list_entry(scan_q
.next
,
3563 list_del(&h
->scan_list
);
3564 h
->busy_scanning
= 1;
3565 mutex_unlock(&scan_mutex
);
3567 rebuild_lun_table(h
, 0, 0);
3568 complete_all(&h
->scan_wait
);
3569 mutex_lock(&scan_mutex
);
3570 h
->busy_scanning
= 0;
3571 mutex_unlock(&scan_mutex
);
3578 static int check_for_unit_attention(ctlr_info_t
*h
, CommandList_struct
*c
)
3580 if (c
->err_info
->SenseInfo
[2] != UNIT_ATTENTION
)
3583 switch (c
->err_info
->SenseInfo
[12]) {
3585 dev_warn(&h
->pdev
->dev
, "a state change "
3586 "detected, command retried\n");
3590 dev_warn(&h
->pdev
->dev
, "LUN failure "
3591 "detected, action required\n");
3594 case REPORT_LUNS_CHANGED
:
3595 dev_warn(&h
->pdev
->dev
, "report LUN data changed\n");
3597 * Here, we could call add_to_scan_list and wake up the scan thread,
3598 * except that it's quite likely that we will get more than one
3599 * REPORT_LUNS_CHANGED condition in quick succession, which means
3600 * that those which occur after the first one will likely happen
3601 * *during* the scan_thread's rescan. And the rescan code is not
3602 * robust enough to restart in the middle, undoing what it has already
3603 * done, and it's not clear that it's even possible to do this, since
3604 * part of what it does is notify the block layer, which starts
3605 * doing it's own i/o to read partition tables and so on, and the
3606 * driver doesn't have visibility to know what might need undoing.
3607 * In any event, if possible, it is horribly complicated to get right
3608 * so we just don't do it for now.
3610 * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
3614 case POWER_OR_RESET
:
3615 dev_warn(&h
->pdev
->dev
,
3616 "a power on or device reset detected\n");
3619 case UNIT_ATTENTION_CLEARED
:
3620 dev_warn(&h
->pdev
->dev
,
3621 "unit attention cleared by another initiator\n");
3625 dev_warn(&h
->pdev
->dev
, "unknown unit attention detected\n");
3631 * We cannot read the structure directly, for portability we must use
3633 * This is for debug only.
3635 static void print_cfg_table(ctlr_info_t
*h
)
3639 CfgTable_struct
*tb
= h
->cfgtable
;
3641 dev_dbg(&h
->pdev
->dev
, "Controller Configuration information\n");
3642 dev_dbg(&h
->pdev
->dev
, "------------------------------------\n");
3643 for (i
= 0; i
< 4; i
++)
3644 temp_name
[i
] = readb(&(tb
->Signature
[i
]));
3645 temp_name
[4] = '\0';
3646 dev_dbg(&h
->pdev
->dev
, " Signature = %s\n", temp_name
);
3647 dev_dbg(&h
->pdev
->dev
, " Spec Number = %d\n",
3648 readl(&(tb
->SpecValence
)));
3649 dev_dbg(&h
->pdev
->dev
, " Transport methods supported = 0x%x\n",
3650 readl(&(tb
->TransportSupport
)));
3651 dev_dbg(&h
->pdev
->dev
, " Transport methods active = 0x%x\n",
3652 readl(&(tb
->TransportActive
)));
3653 dev_dbg(&h
->pdev
->dev
, " Requested transport Method = 0x%x\n",
3654 readl(&(tb
->HostWrite
.TransportRequest
)));
3655 dev_dbg(&h
->pdev
->dev
, " Coalesce Interrupt Delay = 0x%x\n",
3656 readl(&(tb
->HostWrite
.CoalIntDelay
)));
3657 dev_dbg(&h
->pdev
->dev
, " Coalesce Interrupt Count = 0x%x\n",
3658 readl(&(tb
->HostWrite
.CoalIntCount
)));
3659 dev_dbg(&h
->pdev
->dev
, " Max outstanding commands = 0x%d\n",
3660 readl(&(tb
->CmdsOutMax
)));
3661 dev_dbg(&h
->pdev
->dev
, " Bus Types = 0x%x\n",
3662 readl(&(tb
->BusTypes
)));
3663 for (i
= 0; i
< 16; i
++)
3664 temp_name
[i
] = readb(&(tb
->ServerName
[i
]));
3665 temp_name
[16] = '\0';
3666 dev_dbg(&h
->pdev
->dev
, " Server Name = %s\n", temp_name
);
3667 dev_dbg(&h
->pdev
->dev
, " Heartbeat Counter = 0x%x\n\n\n",
3668 readl(&(tb
->HeartBeat
)));
3671 static int find_PCI_BAR_index(struct pci_dev
*pdev
, unsigned long pci_bar_addr
)
3673 int i
, offset
, mem_type
, bar_type
;
3674 if (pci_bar_addr
== PCI_BASE_ADDRESS_0
) /* looking for BAR zero? */
3677 for (i
= 0; i
< DEVICE_COUNT_RESOURCE
; i
++) {
3678 bar_type
= pci_resource_flags(pdev
, i
) & PCI_BASE_ADDRESS_SPACE
;
3679 if (bar_type
== PCI_BASE_ADDRESS_SPACE_IO
)
3682 mem_type
= pci_resource_flags(pdev
, i
) &
3683 PCI_BASE_ADDRESS_MEM_TYPE_MASK
;
3685 case PCI_BASE_ADDRESS_MEM_TYPE_32
:
3686 case PCI_BASE_ADDRESS_MEM_TYPE_1M
:
3687 offset
+= 4; /* 32 bit */
3689 case PCI_BASE_ADDRESS_MEM_TYPE_64
:
3692 default: /* reserved in PCI 2.2 */
3693 dev_warn(&pdev
->dev
,
3694 "Base address is invalid\n");
3699 if (offset
== pci_bar_addr
- PCI_BASE_ADDRESS_0
)
3705 /* Fill in bucket_map[], given nsgs (the max number of
3706 * scatter gather elements supported) and bucket[],
3707 * which is an array of 8 integers. The bucket[] array
3708 * contains 8 different DMA transfer sizes (in 16
3709 * byte increments) which the controller uses to fetch
3710 * commands. This function fills in bucket_map[], which
3711 * maps a given number of scatter gather elements to one of
3712 * the 8 DMA transfer sizes. The point of it is to allow the
3713 * controller to only do as much DMA as needed to fetch the
3714 * command, with the DMA transfer size encoded in the lower
3715 * bits of the command address.
3717 static void calc_bucket_map(int bucket
[], int num_buckets
,
3718 int nsgs
, int *bucket_map
)
3722 /* even a command with 0 SGs requires 4 blocks */
3723 #define MINIMUM_TRANSFER_BLOCKS 4
3724 #define NUM_BUCKETS 8
3725 /* Note, bucket_map must have nsgs+1 entries. */
3726 for (i
= 0; i
<= nsgs
; i
++) {
3727 /* Compute size of a command with i SG entries */
3728 size
= i
+ MINIMUM_TRANSFER_BLOCKS
;
3729 b
= num_buckets
; /* Assume the biggest bucket */
3730 /* Find the bucket that is just big enough */
3731 for (j
= 0; j
< 8; j
++) {
3732 if (bucket
[j
] >= size
) {
3737 /* for a command with i SG entries, use bucket b. */
3742 static void __devinit
cciss_wait_for_mode_change_ack(ctlr_info_t
*h
)
3746 /* under certain very rare conditions, this can take awhile.
3747 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3748 * as we enter this code.) */
3749 for (i
= 0; i
< MAX_CONFIG_WAIT
; i
++) {
3750 if (!(readl(h
->vaddr
+ SA5_DOORBELL
) & CFGTBL_ChangeReq
))
3752 usleep_range(10000, 20000);
3756 static __devinit
void cciss_enter_performant_mode(ctlr_info_t
*h
)
3758 /* This is a bit complicated. There are 8 registers on
3759 * the controller which we write to to tell it 8 different
3760 * sizes of commands which there may be. It's a way of
3761 * reducing the DMA done to fetch each command. Encoded into
3762 * each command's tag are 3 bits which communicate to the controller
3763 * which of the eight sizes that command fits within. The size of
3764 * each command depends on how many scatter gather entries there are.
3765 * Each SG entry requires 16 bytes. The eight registers are programmed
3766 * with the number of 16-byte blocks a command of that size requires.
3767 * The smallest command possible requires 5 such 16 byte blocks.
3768 * the largest command possible requires MAXSGENTRIES + 4 16-byte
3769 * blocks. Note, this only extends to the SG entries contained
3770 * within the command block, and does not extend to chained blocks
3771 * of SG elements. bft[] contains the eight values we write to
3772 * the registers. They are not evenly distributed, but have more
3773 * sizes for small commands, and fewer sizes for larger commands.
3776 int bft
[8] = { 5, 6, 8, 10, 12, 20, 28, MAXSGENTRIES
+ 4};
3778 * 5 = 1 s/g entry or 4k
3779 * 6 = 2 s/g entry or 8k
3780 * 8 = 4 s/g entry or 16k
3781 * 10 = 6 s/g entry or 24k
3783 unsigned long register_value
;
3784 BUILD_BUG_ON(28 > MAXSGENTRIES
+ 4);
3786 h
->reply_pool_wraparound
= 1; /* spec: init to 1 */
3788 /* Controller spec: zero out this buffer. */
3789 memset(h
->reply_pool
, 0, h
->max_commands
* sizeof(__u64
));
3790 h
->reply_pool_head
= h
->reply_pool
;
3792 trans_offset
= readl(&(h
->cfgtable
->TransMethodOffset
));
3793 calc_bucket_map(bft
, ARRAY_SIZE(bft
), h
->maxsgentries
,
3794 h
->blockFetchTable
);
3795 writel(bft
[0], &h
->transtable
->BlockFetch0
);
3796 writel(bft
[1], &h
->transtable
->BlockFetch1
);
3797 writel(bft
[2], &h
->transtable
->BlockFetch2
);
3798 writel(bft
[3], &h
->transtable
->BlockFetch3
);
3799 writel(bft
[4], &h
->transtable
->BlockFetch4
);
3800 writel(bft
[5], &h
->transtable
->BlockFetch5
);
3801 writel(bft
[6], &h
->transtable
->BlockFetch6
);
3802 writel(bft
[7], &h
->transtable
->BlockFetch7
);
3804 /* size of controller ring buffer */
3805 writel(h
->max_commands
, &h
->transtable
->RepQSize
);
3806 writel(1, &h
->transtable
->RepQCount
);
3807 writel(0, &h
->transtable
->RepQCtrAddrLow32
);
3808 writel(0, &h
->transtable
->RepQCtrAddrHigh32
);
3809 writel(h
->reply_pool_dhandle
, &h
->transtable
->RepQAddr0Low32
);
3810 writel(0, &h
->transtable
->RepQAddr0High32
);
3811 writel(CFGTBL_Trans_Performant
,
3812 &(h
->cfgtable
->HostWrite
.TransportRequest
));
3814 writel(CFGTBL_ChangeReq
, h
->vaddr
+ SA5_DOORBELL
);
3815 cciss_wait_for_mode_change_ack(h
);
3816 register_value
= readl(&(h
->cfgtable
->TransportActive
));
3817 if (!(register_value
& CFGTBL_Trans_Performant
))
3818 dev_warn(&h
->pdev
->dev
, "cciss: unable to get board into"
3819 " performant mode\n");
3822 static void __devinit
cciss_put_controller_into_performant_mode(ctlr_info_t
*h
)
3824 __u32 trans_support
;
3826 dev_dbg(&h
->pdev
->dev
, "Trying to put board into Performant mode\n");
3827 /* Attempt to put controller into performant mode if supported */
3828 /* Does board support performant mode? */
3829 trans_support
= readl(&(h
->cfgtable
->TransportSupport
));
3830 if (!(trans_support
& PERFORMANT_MODE
))
3833 dev_dbg(&h
->pdev
->dev
, "Placing controller into performant mode\n");
3834 /* Performant mode demands commands on a 32 byte boundary
3835 * pci_alloc_consistent aligns on page boundarys already.
3836 * Just need to check if divisible by 32
3838 if ((sizeof(CommandList_struct
) % 32) != 0) {
3839 dev_warn(&h
->pdev
->dev
, "%s %d %s\n",
3840 "cciss info: command size[",
3841 (int)sizeof(CommandList_struct
),
3842 "] not divisible by 32, no performant mode..\n");
3846 /* Performant mode ring buffer and supporting data structures */
3847 h
->reply_pool
= (__u64
*)pci_alloc_consistent(
3848 h
->pdev
, h
->max_commands
* sizeof(__u64
),
3849 &(h
->reply_pool_dhandle
));
3851 /* Need a block fetch table for performant mode */
3852 h
->blockFetchTable
= kmalloc(((h
->maxsgentries
+1) *
3853 sizeof(__u32
)), GFP_KERNEL
);
3855 if ((h
->reply_pool
== NULL
) || (h
->blockFetchTable
== NULL
))
3858 cciss_enter_performant_mode(h
);
3860 /* Change the access methods to the performant access methods */
3861 h
->access
= SA5_performant_access
;
3862 h
->transMethod
= CFGTBL_Trans_Performant
;
3866 kfree(h
->blockFetchTable
);
3868 pci_free_consistent(h
->pdev
,
3869 h
->max_commands
* sizeof(__u64
),
3871 h
->reply_pool_dhandle
);
3874 } /* cciss_put_controller_into_performant_mode */
3876 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
3877 * controllers that are capable. If not, we use IO-APIC mode.
3880 static void __devinit
cciss_interrupt_mode(ctlr_info_t
*h
)
3882 #ifdef CONFIG_PCI_MSI
3884 struct msix_entry cciss_msix_entries
[4] = { {0, 0}, {0, 1},
3888 /* Some boards advertise MSI but don't really support it */
3889 if ((h
->board_id
== 0x40700E11) || (h
->board_id
== 0x40800E11) ||
3890 (h
->board_id
== 0x40820E11) || (h
->board_id
== 0x40830E11))
3891 goto default_int_mode
;
3893 if (pci_find_capability(h
->pdev
, PCI_CAP_ID_MSIX
)) {
3894 err
= pci_enable_msix(h
->pdev
, cciss_msix_entries
, 4);
3896 h
->intr
[0] = cciss_msix_entries
[0].vector
;
3897 h
->intr
[1] = cciss_msix_entries
[1].vector
;
3898 h
->intr
[2] = cciss_msix_entries
[2].vector
;
3899 h
->intr
[3] = cciss_msix_entries
[3].vector
;
3904 dev_warn(&h
->pdev
->dev
,
3905 "only %d MSI-X vectors available\n", err
);
3906 goto default_int_mode
;
3908 dev_warn(&h
->pdev
->dev
,
3909 "MSI-X init failed %d\n", err
);
3910 goto default_int_mode
;
3913 if (pci_find_capability(h
->pdev
, PCI_CAP_ID_MSI
)) {
3914 if (!pci_enable_msi(h
->pdev
))
3917 dev_warn(&h
->pdev
->dev
, "MSI init failed\n");
3920 #endif /* CONFIG_PCI_MSI */
3921 /* if we get here we're going to use the default interrupt mode */
3922 h
->intr
[PERF_MODE_INT
] = h
->pdev
->irq
;
3926 static int __devinit
cciss_lookup_board_id(struct pci_dev
*pdev
, u32
*board_id
)
3929 u32 subsystem_vendor_id
, subsystem_device_id
;
3931 subsystem_vendor_id
= pdev
->subsystem_vendor
;
3932 subsystem_device_id
= pdev
->subsystem_device
;
3933 *board_id
= ((subsystem_device_id
<< 16) & 0xffff0000) |
3934 subsystem_vendor_id
;
3936 for (i
= 0; i
< ARRAY_SIZE(products
); i
++)
3937 if (*board_id
== products
[i
].board_id
)
3939 dev_warn(&pdev
->dev
, "unrecognized board ID: 0x%08x, ignoring.\n",
3944 static inline bool cciss_board_disabled(ctlr_info_t
*h
)
3948 (void) pci_read_config_word(h
->pdev
, PCI_COMMAND
, &command
);
3949 return ((command
& PCI_COMMAND_MEMORY
) == 0);
3952 static int __devinit
cciss_pci_find_memory_BAR(struct pci_dev
*pdev
,
3953 unsigned long *memory_bar
)
3957 for (i
= 0; i
< DEVICE_COUNT_RESOURCE
; i
++)
3958 if (pci_resource_flags(pdev
, i
) & IORESOURCE_MEM
) {
3959 /* addressing mode bits already removed */
3960 *memory_bar
= pci_resource_start(pdev
, i
);
3961 dev_dbg(&pdev
->dev
, "memory BAR = %lx\n",
3965 dev_warn(&pdev
->dev
, "no memory BAR found\n");
3969 static int __devinit
cciss_wait_for_board_state(struct pci_dev
*pdev
,
3970 void __iomem
*vaddr
, int wait_for_ready
)
3971 #define BOARD_READY 1
3972 #define BOARD_NOT_READY 0
3978 iterations
= CCISS_BOARD_READY_ITERATIONS
;
3980 iterations
= CCISS_BOARD_NOT_READY_ITERATIONS
;
3982 for (i
= 0; i
< iterations
; i
++) {
3983 scratchpad
= readl(vaddr
+ SA5_SCRATCHPAD_OFFSET
);
3984 if (wait_for_ready
) {
3985 if (scratchpad
== CCISS_FIRMWARE_READY
)
3988 if (scratchpad
!= CCISS_FIRMWARE_READY
)
3991 msleep(CCISS_BOARD_READY_POLL_INTERVAL_MSECS
);
3993 dev_warn(&pdev
->dev
, "board not ready, timed out.\n");
3997 static int __devinit
cciss_find_cfg_addrs(struct pci_dev
*pdev
,
3998 void __iomem
*vaddr
, u32
*cfg_base_addr
, u64
*cfg_base_addr_index
,
4001 *cfg_base_addr
= readl(vaddr
+ SA5_CTCFG_OFFSET
);
4002 *cfg_offset
= readl(vaddr
+ SA5_CTMEM_OFFSET
);
4003 *cfg_base_addr
&= (u32
) 0x0000ffff;
4004 *cfg_base_addr_index
= find_PCI_BAR_index(pdev
, *cfg_base_addr
);
4005 if (*cfg_base_addr_index
== -1) {
4006 dev_warn(&pdev
->dev
, "cannot find cfg_base_addr_index, "
4007 "*cfg_base_addr = 0x%08x\n", *cfg_base_addr
);
4013 static int __devinit
cciss_find_cfgtables(ctlr_info_t
*h
)
4017 u64 cfg_base_addr_index
;
4021 rc
= cciss_find_cfg_addrs(h
->pdev
, h
->vaddr
, &cfg_base_addr
,
4022 &cfg_base_addr_index
, &cfg_offset
);
4025 h
->cfgtable
= remap_pci_mem(pci_resource_start(h
->pdev
,
4026 cfg_base_addr_index
) + cfg_offset
, sizeof(h
->cfgtable
));
4029 /* Find performant mode table. */
4030 trans_offset
= readl(&h
->cfgtable
->TransMethodOffset
);
4031 h
->transtable
= remap_pci_mem(pci_resource_start(h
->pdev
,
4032 cfg_base_addr_index
)+cfg_offset
+trans_offset
,
4033 sizeof(*h
->transtable
));
4039 static void __devinit
cciss_get_max_perf_mode_cmds(struct ctlr_info
*h
)
4041 h
->max_commands
= readl(&(h
->cfgtable
->MaxPerformantModeCommands
));
4043 /* Limit commands in memory limited kdump scenario. */
4044 if (reset_devices
&& h
->max_commands
> 32)
4045 h
->max_commands
= 32;
4047 if (h
->max_commands
< 16) {
4048 dev_warn(&h
->pdev
->dev
, "Controller reports "
4049 "max supported commands of %d, an obvious lie. "
4050 "Using 16. Ensure that firmware is up to date.\n",
4052 h
->max_commands
= 16;
4056 /* Interrogate the hardware for some limits:
4057 * max commands, max SG elements without chaining, and with chaining,
4058 * SG chain block size, etc.
4060 static void __devinit
cciss_find_board_params(ctlr_info_t
*h
)
4062 cciss_get_max_perf_mode_cmds(h
);
4063 h
->nr_cmds
= h
->max_commands
- 4; /* Allow room for some ioctls */
4064 h
->maxsgentries
= readl(&(h
->cfgtable
->MaxSGElements
));
4066 * Limit in-command s/g elements to 32 save dma'able memory.
4067 * Howvever spec says if 0, use 31
4069 h
->max_cmd_sgentries
= 31;
4070 if (h
->maxsgentries
> 512) {
4071 h
->max_cmd_sgentries
= 32;
4072 h
->chainsize
= h
->maxsgentries
- h
->max_cmd_sgentries
+ 1;
4073 h
->maxsgentries
--; /* save one for chain pointer */
4075 h
->maxsgentries
= 31; /* default to traditional values */
4080 static inline bool CISS_signature_present(ctlr_info_t
*h
)
4082 if ((readb(&h
->cfgtable
->Signature
[0]) != 'C') ||
4083 (readb(&h
->cfgtable
->Signature
[1]) != 'I') ||
4084 (readb(&h
->cfgtable
->Signature
[2]) != 'S') ||
4085 (readb(&h
->cfgtable
->Signature
[3]) != 'S')) {
4086 dev_warn(&h
->pdev
->dev
, "not a valid CISS config table\n");
4092 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
4093 static inline void cciss_enable_scsi_prefetch(ctlr_info_t
*h
)
4098 prefetch
= readl(&(h
->cfgtable
->SCSI_Prefetch
));
4100 writel(prefetch
, &(h
->cfgtable
->SCSI_Prefetch
));
4104 /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result
4105 * in a prefetch beyond physical memory.
4107 static inline void cciss_p600_dma_prefetch_quirk(ctlr_info_t
*h
)
4112 if (h
->board_id
!= 0x3225103C)
4114 dma_prefetch
= readl(h
->vaddr
+ I2O_DMA1_CFG
);
4115 dma_prefetch
|= 0x8000;
4116 writel(dma_prefetch
, h
->vaddr
+ I2O_DMA1_CFG
);
4117 pci_read_config_dword(h
->pdev
, PCI_COMMAND_PARITY
, &dma_refetch
);
4119 pci_write_config_dword(h
->pdev
, PCI_COMMAND_PARITY
, dma_refetch
);
4122 static int __devinit
cciss_pci_init(ctlr_info_t
*h
)
4124 int prod_index
, err
;
4126 prod_index
= cciss_lookup_board_id(h
->pdev
, &h
->board_id
);
4129 h
->product_name
= products
[prod_index
].product_name
;
4130 h
->access
= *(products
[prod_index
].access
);
4132 if (cciss_board_disabled(h
)) {
4133 dev_warn(&h
->pdev
->dev
, "controller appears to be disabled\n");
4136 err
= pci_enable_device(h
->pdev
);
4138 dev_warn(&h
->pdev
->dev
, "Unable to Enable PCI device\n");
4142 err
= pci_request_regions(h
->pdev
, "cciss");
4144 dev_warn(&h
->pdev
->dev
,
4145 "Cannot obtain PCI resources, aborting\n");
4149 dev_dbg(&h
->pdev
->dev
, "irq = %x\n", h
->pdev
->irq
);
4150 dev_dbg(&h
->pdev
->dev
, "board_id = %x\n", h
->board_id
);
4152 /* If the kernel supports MSI/MSI-X we will try to enable that functionality,
4153 * else we use the IO-APIC interrupt assigned to us by system ROM.
4155 cciss_interrupt_mode(h
);
4156 err
= cciss_pci_find_memory_BAR(h
->pdev
, &h
->paddr
);
4158 goto err_out_free_res
;
4159 h
->vaddr
= remap_pci_mem(h
->paddr
, 0x250);
4162 goto err_out_free_res
;
4164 err
= cciss_wait_for_board_state(h
->pdev
, h
->vaddr
, BOARD_READY
);
4166 goto err_out_free_res
;
4167 err
= cciss_find_cfgtables(h
);
4169 goto err_out_free_res
;
4171 cciss_find_board_params(h
);
4173 if (!CISS_signature_present(h
)) {
4175 goto err_out_free_res
;
4177 cciss_enable_scsi_prefetch(h
);
4178 cciss_p600_dma_prefetch_quirk(h
);
4179 cciss_put_controller_into_performant_mode(h
);
4184 * Deliberately omit pci_disable_device(): it does something nasty to
4185 * Smart Array controllers that pci_enable_device does not undo
4188 iounmap(h
->transtable
);
4190 iounmap(h
->cfgtable
);
4193 pci_release_regions(h
->pdev
);
4197 /* Function to find the first free pointer into our hba[] array
4198 * Returns -1 if no free entries are left.
4200 static int alloc_cciss_hba(struct pci_dev
*pdev
)
4204 for (i
= 0; i
< MAX_CTLR
; i
++) {
4208 h
= kzalloc(sizeof(ctlr_info_t
), GFP_KERNEL
);
4215 dev_warn(&pdev
->dev
, "This driver supports a maximum"
4216 " of %d controllers.\n", MAX_CTLR
);
4219 dev_warn(&pdev
->dev
, "out of memory.\n");
4223 static void free_hba(ctlr_info_t
*h
)
4227 hba
[h
->ctlr
] = NULL
;
4228 for (i
= 0; i
< h
->highest_lun
+ 1; i
++)
4229 if (h
->gendisk
[i
] != NULL
)
4230 put_disk(h
->gendisk
[i
]);
4234 /* Send a message CDB to the firmware. */
4235 static __devinit
int cciss_message(struct pci_dev
*pdev
, unsigned char opcode
, unsigned char type
)
4238 CommandListHeader_struct CommandHeader
;
4239 RequestBlock_struct Request
;
4240 ErrDescriptor_struct ErrorDescriptor
;
4242 static const size_t cmd_sz
= sizeof(Command
) + sizeof(ErrorInfo_struct
);
4245 uint32_t paddr32
, tag
;
4246 void __iomem
*vaddr
;
4249 vaddr
= ioremap_nocache(pci_resource_start(pdev
, 0), pci_resource_len(pdev
, 0));
4253 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
4254 CCISS commands, so they must be allocated from the lower 4GiB of
4256 err
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(32));
4262 cmd
= pci_alloc_consistent(pdev
, cmd_sz
, &paddr64
);
4268 /* This must fit, because of the 32-bit consistent DMA mask. Also,
4269 although there's no guarantee, we assume that the address is at
4270 least 4-byte aligned (most likely, it's page-aligned). */
4273 cmd
->CommandHeader
.ReplyQueue
= 0;
4274 cmd
->CommandHeader
.SGList
= 0;
4275 cmd
->CommandHeader
.SGTotal
= 0;
4276 cmd
->CommandHeader
.Tag
.lower
= paddr32
;
4277 cmd
->CommandHeader
.Tag
.upper
= 0;
4278 memset(&cmd
->CommandHeader
.LUN
.LunAddrBytes
, 0, 8);
4280 cmd
->Request
.CDBLen
= 16;
4281 cmd
->Request
.Type
.Type
= TYPE_MSG
;
4282 cmd
->Request
.Type
.Attribute
= ATTR_HEADOFQUEUE
;
4283 cmd
->Request
.Type
.Direction
= XFER_NONE
;
4284 cmd
->Request
.Timeout
= 0; /* Don't time out */
4285 cmd
->Request
.CDB
[0] = opcode
;
4286 cmd
->Request
.CDB
[1] = type
;
4287 memset(&cmd
->Request
.CDB
[2], 0, 14); /* the rest of the CDB is reserved */
4289 cmd
->ErrorDescriptor
.Addr
.lower
= paddr32
+ sizeof(Command
);
4290 cmd
->ErrorDescriptor
.Addr
.upper
= 0;
4291 cmd
->ErrorDescriptor
.Len
= sizeof(ErrorInfo_struct
);
4293 writel(paddr32
, vaddr
+ SA5_REQUEST_PORT_OFFSET
);
4295 for (i
= 0; i
< 10; i
++) {
4296 tag
= readl(vaddr
+ SA5_REPLY_PORT_OFFSET
);
4297 if ((tag
& ~3) == paddr32
)
4299 schedule_timeout_uninterruptible(HZ
);
4304 /* we leak the DMA buffer here ... no choice since the controller could
4305 still complete the command. */
4308 "controller message %02x:%02x timed out\n",
4313 pci_free_consistent(pdev
, cmd_sz
, cmd
, paddr64
);
4316 dev_err(&pdev
->dev
, "controller message %02x:%02x failed\n",
4321 dev_info(&pdev
->dev
, "controller message %02x:%02x succeeded\n",
4326 #define cciss_soft_reset_controller(p) cciss_message(p, 1, 0)
4327 #define cciss_noop(p) cciss_message(p, 3, 0)
4329 static int cciss_controller_hard_reset(struct pci_dev
*pdev
,
4330 void * __iomem vaddr
, bool use_doorbell
)
4336 /* For everything after the P600, the PCI power state method
4337 * of resetting the controller doesn't work, so we have this
4338 * other way using the doorbell register.
4340 dev_info(&pdev
->dev
, "using doorbell to reset controller\n");
4341 writel(DOORBELL_CTLR_RESET
, vaddr
+ SA5_DOORBELL
);
4343 } else { /* Try to do it the PCI power state way */
4345 /* Quoting from the Open CISS Specification: "The Power
4346 * Management Control/Status Register (CSR) controls the power
4347 * state of the device. The normal operating state is D0,
4348 * CSR=00h. The software off state is D3, CSR=03h. To reset
4349 * the controller, place the interface device in D3 then to D0,
4350 * this causes a secondary PCI reset which will reset the
4353 pos
= pci_find_capability(pdev
, PCI_CAP_ID_PM
);
4356 "cciss_controller_hard_reset: "
4357 "PCI PM not supported\n");
4360 dev_info(&pdev
->dev
, "using PCI PM to reset controller\n");
4361 /* enter the D3hot power management state */
4362 pci_read_config_word(pdev
, pos
+ PCI_PM_CTRL
, &pmcsr
);
4363 pmcsr
&= ~PCI_PM_CTRL_STATE_MASK
;
4365 pci_write_config_word(pdev
, pos
+ PCI_PM_CTRL
, pmcsr
);
4369 /* enter the D0 power management state */
4370 pmcsr
&= ~PCI_PM_CTRL_STATE_MASK
;
4372 pci_write_config_word(pdev
, pos
+ PCI_PM_CTRL
, pmcsr
);
4379 /* This does a hard reset of the controller using PCI power management
4380 * states or using the doorbell register. */
4381 static __devinit
int cciss_kdump_hard_reset_controller(struct pci_dev
*pdev
)
4385 u64 cfg_base_addr_index
;
4386 void __iomem
*vaddr
;
4387 unsigned long paddr
;
4388 u32 misc_fw_support
, active_transport
;
4390 CfgTable_struct __iomem
*cfgtable
;
4393 u16 command_register
;
4395 /* For controllers as old a the p600, this is very nearly
4398 * pci_save_state(pci_dev);
4399 * pci_set_power_state(pci_dev, PCI_D3hot);
4400 * pci_set_power_state(pci_dev, PCI_D0);
4401 * pci_restore_state(pci_dev);
4403 * For controllers newer than the P600, the pci power state
4404 * method of resetting doesn't work so we have another way
4405 * using the doorbell register.
4408 /* Exclude 640x boards. These are two pci devices in one slot
4409 * which share a battery backed cache module. One controls the
4410 * cache, the other accesses the cache through the one that controls
4411 * it. If we reset the one controlling the cache, the other will
4412 * likely not be happy. Just forbid resetting this conjoined mess.
4414 cciss_lookup_board_id(pdev
, &board_id
);
4415 if (board_id
== 0x409C0E11 || board_id
== 0x409D0E11) {
4416 dev_warn(&pdev
->dev
, "Cannot reset Smart Array 640x "
4417 "due to shared cache module.");
4421 /* Save the PCI command register */
4422 pci_read_config_word(pdev
, 4, &command_register
);
4423 /* Turn the board off. This is so that later pci_restore_state()
4424 * won't turn the board on before the rest of config space is ready.
4426 pci_disable_device(pdev
);
4427 pci_save_state(pdev
);
4429 /* find the first memory BAR, so we can find the cfg table */
4430 rc
= cciss_pci_find_memory_BAR(pdev
, &paddr
);
4433 vaddr
= remap_pci_mem(paddr
, 0x250);
4437 /* find cfgtable in order to check if reset via doorbell is supported */
4438 rc
= cciss_find_cfg_addrs(pdev
, vaddr
, &cfg_base_addr
,
4439 &cfg_base_addr_index
, &cfg_offset
);
4442 cfgtable
= remap_pci_mem(pci_resource_start(pdev
,
4443 cfg_base_addr_index
) + cfg_offset
, sizeof(*cfgtable
));
4449 /* If reset via doorbell register is supported, use that. */
4450 misc_fw_support
= readl(&cfgtable
->misc_fw_support
);
4451 use_doorbell
= misc_fw_support
& MISC_FW_DOORBELL_RESET
;
4453 /* The doorbell reset seems to cause lockups on some Smart
4454 * Arrays (e.g. P410, P410i, maybe others). Until this is
4455 * fixed or at least isolated, avoid the doorbell reset.
4459 rc
= cciss_controller_hard_reset(pdev
, vaddr
, use_doorbell
);
4461 goto unmap_cfgtable
;
4462 pci_restore_state(pdev
);
4463 rc
= pci_enable_device(pdev
);
4465 dev_warn(&pdev
->dev
, "failed to enable device.\n");
4466 goto unmap_cfgtable
;
4468 pci_write_config_word(pdev
, 4, command_register
);
4470 /* Some devices (notably the HP Smart Array 5i Controller)
4471 need a little pause here */
4472 msleep(CCISS_POST_RESET_PAUSE_MSECS
);
4474 /* Wait for board to become not ready, then ready. */
4475 dev_info(&pdev
->dev
, "Waiting for board to become ready.\n");
4476 rc
= cciss_wait_for_board_state(pdev
, vaddr
, BOARD_NOT_READY
);
4477 if (rc
) /* Don't bail, might be E500, etc. which can't be reset */
4478 dev_warn(&pdev
->dev
,
4479 "failed waiting for board to become not ready\n");
4480 rc
= cciss_wait_for_board_state(pdev
, vaddr
, BOARD_READY
);
4482 dev_warn(&pdev
->dev
,
4483 "failed waiting for board to become ready\n");
4484 goto unmap_cfgtable
;
4486 dev_info(&pdev
->dev
, "board ready.\n");
4488 /* Controller should be in simple mode at this point. If it's not,
4489 * It means we're on one of those controllers which doesn't support
4490 * the doorbell reset method and on which the PCI power management reset
4491 * method doesn't work (P800, for example.)
4492 * In those cases, don't try to proceed, as it generally doesn't work.
4494 active_transport
= readl(&cfgtable
->TransportActive
);
4495 if (active_transport
& PERFORMANT_MODE
) {
4496 dev_warn(&pdev
->dev
, "Unable to successfully reset controller,"
4497 " Ignoring controller.\n");
4509 static __devinit
int cciss_init_reset_devices(struct pci_dev
*pdev
)
4516 /* Reset the controller with a PCI power-cycle or via doorbell */
4517 rc
= cciss_kdump_hard_reset_controller(pdev
);
4519 /* -ENOTSUPP here means we cannot reset the controller
4520 * but it's already (and still) up and running in
4521 * "performant mode". Or, it might be 640x, which can't reset
4522 * due to concerns about shared bbwc between 6402/6404 pair.
4524 if (rc
== -ENOTSUPP
)
4525 return 0; /* just try to do the kdump anyhow. */
4529 /* Now try to get the controller to respond to a no-op */
4530 for (i
= 0; i
< CCISS_POST_RESET_NOOP_RETRIES
; i
++) {
4531 if (cciss_noop(pdev
) == 0)
4534 dev_warn(&pdev
->dev
, "no-op failed%s\n",
4535 (i
< CCISS_POST_RESET_NOOP_RETRIES
- 1 ?
4536 "; re-trying" : ""));
4537 msleep(CCISS_POST_RESET_NOOP_INTERVAL_MSECS
);
4543 * This is it. Find all the controllers and register them. I really hate
4544 * stealing all these major device numbers.
4545 * returns the number of block devices registered.
4547 static int __devinit
cciss_init_one(struct pci_dev
*pdev
,
4548 const struct pci_device_id
*ent
)
4554 int dac
, return_code
;
4555 InquiryData_struct
*inq_buff
;
4558 rc
= cciss_init_reset_devices(pdev
);
4561 i
= alloc_cciss_hba(pdev
);
4567 h
->busy_initializing
= 1;
4568 INIT_LIST_HEAD(&h
->cmpQ
);
4569 INIT_LIST_HEAD(&h
->reqQ
);
4570 mutex_init(&h
->busy_shutting_down
);
4572 if (cciss_pci_init(h
) != 0)
4573 goto clean_no_release_regions
;
4575 sprintf(h
->devname
, "cciss%d", i
);
4578 init_completion(&h
->scan_wait
);
4580 if (cciss_create_hba_sysfs_entry(h
))
4583 /* configure PCI DMA stuff */
4584 if (!pci_set_dma_mask(pdev
, DMA_BIT_MASK(64)))
4586 else if (!pci_set_dma_mask(pdev
, DMA_BIT_MASK(32)))
4589 dev_err(&h
->pdev
->dev
, "no suitable DMA available\n");
4594 * register with the major number, or get a dynamic major number
4595 * by passing 0 as argument. This is done for greater than
4596 * 8 controller support.
4598 if (i
< MAX_CTLR_ORIG
)
4599 h
->major
= COMPAQ_CISS_MAJOR
+ i
;
4600 rc
= register_blkdev(h
->major
, h
->devname
);
4601 if (rc
== -EBUSY
|| rc
== -EINVAL
) {
4602 dev_err(&h
->pdev
->dev
,
4603 "Unable to get major number %d for %s "
4604 "on hba %d\n", h
->major
, h
->devname
, i
);
4607 if (i
>= MAX_CTLR_ORIG
)
4611 /* make sure the board interrupts are off */
4612 h
->access
.set_intr_mask(h
, CCISS_INTR_OFF
);
4613 if (h
->msi_vector
|| h
->msix_vector
) {
4614 if (request_irq(h
->intr
[PERF_MODE_INT
],
4616 IRQF_DISABLED
, h
->devname
, h
)) {
4617 dev_err(&h
->pdev
->dev
, "Unable to get irq %d for %s\n",
4618 h
->intr
[PERF_MODE_INT
], h
->devname
);
4622 if (request_irq(h
->intr
[PERF_MODE_INT
], do_cciss_intx
,
4623 IRQF_DISABLED
, h
->devname
, h
)) {
4624 dev_err(&h
->pdev
->dev
, "Unable to get irq %d for %s\n",
4625 h
->intr
[PERF_MODE_INT
], h
->devname
);
4630 dev_info(&h
->pdev
->dev
, "%s: <0x%x> at PCI %s IRQ %d%s using DAC\n",
4631 h
->devname
, pdev
->device
, pci_name(pdev
),
4632 h
->intr
[PERF_MODE_INT
], dac
? "" : " not");
4635 kmalloc(DIV_ROUND_UP(h
->nr_cmds
, BITS_PER_LONG
)
4636 * sizeof(unsigned long), GFP_KERNEL
);
4637 h
->cmd_pool
= (CommandList_struct
*)
4638 pci_alloc_consistent(h
->pdev
,
4639 h
->nr_cmds
* sizeof(CommandList_struct
),
4640 &(h
->cmd_pool_dhandle
));
4641 h
->errinfo_pool
= (ErrorInfo_struct
*)
4642 pci_alloc_consistent(h
->pdev
,
4643 h
->nr_cmds
* sizeof(ErrorInfo_struct
),
4644 &(h
->errinfo_pool_dhandle
));
4645 if ((h
->cmd_pool_bits
== NULL
)
4646 || (h
->cmd_pool
== NULL
)
4647 || (h
->errinfo_pool
== NULL
)) {
4648 dev_err(&h
->pdev
->dev
, "out of memory");
4652 /* Need space for temp scatter list */
4653 h
->scatter_list
= kmalloc(h
->max_commands
*
4654 sizeof(struct scatterlist
*),
4656 if (!h
->scatter_list
)
4659 for (k
= 0; k
< h
->nr_cmds
; k
++) {
4660 h
->scatter_list
[k
] = kmalloc(sizeof(struct scatterlist
) *
4663 if (h
->scatter_list
[k
] == NULL
) {
4664 dev_err(&h
->pdev
->dev
,
4665 "could not allocate s/g lists\n");
4669 h
->cmd_sg_list
= cciss_allocate_sg_chain_blocks(h
,
4670 h
->chainsize
, h
->nr_cmds
);
4671 if (!h
->cmd_sg_list
&& h
->chainsize
> 0)
4674 spin_lock_init(&h
->lock
);
4676 /* Initialize the pdev driver private data.
4677 have it point to h. */
4678 pci_set_drvdata(pdev
, h
);
4679 /* command and error info recs zeroed out before
4681 memset(h
->cmd_pool_bits
, 0,
4682 DIV_ROUND_UP(h
->nr_cmds
, BITS_PER_LONG
)
4683 * sizeof(unsigned long));
4686 h
->highest_lun
= -1;
4687 for (j
= 0; j
< CISS_MAX_LUN
; j
++) {
4689 h
->gendisk
[j
] = NULL
;
4692 cciss_scsi_setup(h
);
4694 /* Turn the interrupts on so we can service requests */
4695 h
->access
.set_intr_mask(h
, CCISS_INTR_ON
);
4697 /* Get the firmware version */
4698 inq_buff
= kzalloc(sizeof(InquiryData_struct
), GFP_KERNEL
);
4699 if (inq_buff
== NULL
) {
4700 dev_err(&h
->pdev
->dev
, "out of memory\n");
4704 return_code
= sendcmd_withirq(h
, CISS_INQUIRY
, inq_buff
,
4705 sizeof(InquiryData_struct
), 0, CTLR_LUNID
, TYPE_CMD
);
4706 if (return_code
== IO_OK
) {
4707 h
->firm_ver
[0] = inq_buff
->data_byte
[32];
4708 h
->firm_ver
[1] = inq_buff
->data_byte
[33];
4709 h
->firm_ver
[2] = inq_buff
->data_byte
[34];
4710 h
->firm_ver
[3] = inq_buff
->data_byte
[35];
4711 } else { /* send command failed */
4712 dev_warn(&h
->pdev
->dev
, "unable to determine firmware"
4713 " version of controller\n");
4719 h
->cciss_max_sectors
= 8192;
4721 rebuild_lun_table(h
, 1, 0);
4722 h
->busy_initializing
= 0;
4726 kfree(h
->cmd_pool_bits
);
4727 /* Free up sg elements */
4728 for (k
-- ; k
>= 0; k
--)
4729 kfree(h
->scatter_list
[k
]);
4730 kfree(h
->scatter_list
);
4731 cciss_free_sg_chain_blocks(h
->cmd_sg_list
, h
->nr_cmds
);
4733 pci_free_consistent(h
->pdev
,
4734 h
->nr_cmds
* sizeof(CommandList_struct
),
4735 h
->cmd_pool
, h
->cmd_pool_dhandle
);
4736 if (h
->errinfo_pool
)
4737 pci_free_consistent(h
->pdev
,
4738 h
->nr_cmds
* sizeof(ErrorInfo_struct
),
4740 h
->errinfo_pool_dhandle
);
4741 free_irq(h
->intr
[PERF_MODE_INT
], h
);
4743 unregister_blkdev(h
->major
, h
->devname
);
4745 cciss_destroy_hba_sysfs_entry(h
);
4747 pci_release_regions(pdev
);
4748 clean_no_release_regions
:
4749 h
->busy_initializing
= 0;
4752 * Deliberately omit pci_disable_device(): it does something nasty to
4753 * Smart Array controllers that pci_enable_device does not undo
4755 pci_set_drvdata(pdev
, NULL
);
4760 static void cciss_shutdown(struct pci_dev
*pdev
)
4766 h
= pci_get_drvdata(pdev
);
4767 flush_buf
= kzalloc(4, GFP_KERNEL
);
4769 dev_warn(&h
->pdev
->dev
, "cache not flushed, out of memory.\n");
4772 /* write all data in the battery backed cache to disk */
4773 memset(flush_buf
, 0, 4);
4774 return_code
= sendcmd_withirq(h
, CCISS_CACHE_FLUSH
, flush_buf
,
4775 4, 0, CTLR_LUNID
, TYPE_CMD
);
4777 if (return_code
!= IO_OK
)
4778 dev_warn(&h
->pdev
->dev
, "Error flushing cache\n");
4779 h
->access
.set_intr_mask(h
, CCISS_INTR_OFF
);
4780 free_irq(h
->intr
[PERF_MODE_INT
], h
);
4783 static void __devexit
cciss_remove_one(struct pci_dev
*pdev
)
4788 if (pci_get_drvdata(pdev
) == NULL
) {
4789 dev_err(&pdev
->dev
, "Unable to remove device\n");
4793 h
= pci_get_drvdata(pdev
);
4795 if (hba
[i
] == NULL
) {
4796 dev_err(&pdev
->dev
, "device appears to already be removed\n");
4800 mutex_lock(&h
->busy_shutting_down
);
4802 remove_from_scan_list(h
);
4803 remove_proc_entry(h
->devname
, proc_cciss
);
4804 unregister_blkdev(h
->major
, h
->devname
);
4806 /* remove it from the disk list */
4807 for (j
= 0; j
< CISS_MAX_LUN
; j
++) {
4808 struct gendisk
*disk
= h
->gendisk
[j
];
4810 struct request_queue
*q
= disk
->queue
;
4812 if (disk
->flags
& GENHD_FL_UP
) {
4813 cciss_destroy_ld_sysfs_entry(h
, j
, 1);
4817 blk_cleanup_queue(q
);
4821 #ifdef CONFIG_CISS_SCSI_TAPE
4822 cciss_unregister_scsi(h
); /* unhook from SCSI subsystem */
4825 cciss_shutdown(pdev
);
4827 #ifdef CONFIG_PCI_MSI
4829 pci_disable_msix(h
->pdev
);
4830 else if (h
->msi_vector
)
4831 pci_disable_msi(h
->pdev
);
4832 #endif /* CONFIG_PCI_MSI */
4834 iounmap(h
->transtable
);
4835 iounmap(h
->cfgtable
);
4838 pci_free_consistent(h
->pdev
, h
->nr_cmds
* sizeof(CommandList_struct
),
4839 h
->cmd_pool
, h
->cmd_pool_dhandle
);
4840 pci_free_consistent(h
->pdev
, h
->nr_cmds
* sizeof(ErrorInfo_struct
),
4841 h
->errinfo_pool
, h
->errinfo_pool_dhandle
);
4842 kfree(h
->cmd_pool_bits
);
4843 /* Free up sg elements */
4844 for (j
= 0; j
< h
->nr_cmds
; j
++)
4845 kfree(h
->scatter_list
[j
]);
4846 kfree(h
->scatter_list
);
4847 cciss_free_sg_chain_blocks(h
->cmd_sg_list
, h
->nr_cmds
);
4849 * Deliberately omit pci_disable_device(): it does something nasty to
4850 * Smart Array controllers that pci_enable_device does not undo
4852 pci_release_regions(pdev
);
4853 pci_set_drvdata(pdev
, NULL
);
4854 cciss_destroy_hba_sysfs_entry(h
);
4855 mutex_unlock(&h
->busy_shutting_down
);
4859 static struct pci_driver cciss_pci_driver
= {
4861 .probe
= cciss_init_one
,
4862 .remove
= __devexit_p(cciss_remove_one
),
4863 .id_table
= cciss_pci_device_id
, /* id_table */
4864 .shutdown
= cciss_shutdown
,
4868 * This is it. Register the PCI driver information for the cards we control
4869 * the OS will call our registered routines when it finds one of our cards.
4871 static int __init
cciss_init(void)
4876 * The hardware requires that commands are aligned on a 64-bit
4877 * boundary. Given that we use pci_alloc_consistent() to allocate an
4878 * array of them, the size must be a multiple of 8 bytes.
4880 BUILD_BUG_ON(sizeof(CommandList_struct
) % COMMANDLIST_ALIGNMENT
);
4881 printk(KERN_INFO DRIVER_NAME
"\n");
4883 err
= bus_register(&cciss_bus_type
);
4887 /* Start the scan thread */
4888 cciss_scan_thread
= kthread_run(scan_thread
, NULL
, "cciss_scan");
4889 if (IS_ERR(cciss_scan_thread
)) {
4890 err
= PTR_ERR(cciss_scan_thread
);
4891 goto err_bus_unregister
;
4894 /* Register for our PCI devices */
4895 err
= pci_register_driver(&cciss_pci_driver
);
4897 goto err_thread_stop
;
4902 kthread_stop(cciss_scan_thread
);
4904 bus_unregister(&cciss_bus_type
);
4909 static void __exit
cciss_cleanup(void)
4913 pci_unregister_driver(&cciss_pci_driver
);
4914 /* double check that all controller entrys have been removed */
4915 for (i
= 0; i
< MAX_CTLR
; i
++) {
4916 if (hba
[i
] != NULL
) {
4917 dev_warn(&hba
[i
]->pdev
->dev
,
4918 "had to remove controller\n");
4919 cciss_remove_one(hba
[i
]->pdev
);
4922 kthread_stop(cciss_scan_thread
);
4924 remove_proc_entry("driver/cciss", NULL
);
4925 bus_unregister(&cciss_bus_type
);
4928 module_init(cciss_init
);
4929 module_exit(cciss_cleanup
);