FRV: Use generic show_interrupts()
[cris-mirror.git] / drivers / crypto / mv_cesa.c
blobc99305afa58ab255042c2432f9114e9cc1792704
1 /*
2 * Support for Marvell's crypto engine which can be found on some Orion5X
3 * boards.
5 * Author: Sebastian Andrzej Siewior < sebastian at breakpoint dot cc >
6 * License: GPLv2
8 */
9 #include <crypto/aes.h>
10 #include <crypto/algapi.h>
11 #include <linux/crypto.h>
12 #include <linux/interrupt.h>
13 #include <linux/io.h>
14 #include <linux/kthread.h>
15 #include <linux/platform_device.h>
16 #include <linux/scatterlist.h>
17 #include <linux/slab.h>
18 #include <crypto/internal/hash.h>
19 #include <crypto/sha.h>
21 #include "mv_cesa.h"
23 #define MV_CESA "MV-CESA:"
24 #define MAX_HW_HASH_SIZE 0xFFFF
27 * STM:
28 * /---------------------------------------\
29 * | | request complete
30 * \./ |
31 * IDLE -> new request -> BUSY -> done -> DEQUEUE
32 * /°\ |
33 * | | more scatter entries
34 * \________________/
36 enum engine_status {
37 ENGINE_IDLE,
38 ENGINE_BUSY,
39 ENGINE_W_DEQUEUE,
42 /**
43 * struct req_progress - used for every crypt request
44 * @src_sg_it: sg iterator for src
45 * @dst_sg_it: sg iterator for dst
46 * @sg_src_left: bytes left in src to process (scatter list)
47 * @src_start: offset to add to src start position (scatter list)
48 * @crypt_len: length of current hw crypt/hash process
49 * @hw_nbytes: total bytes to process in hw for this request
50 * @copy_back: whether to copy data back (crypt) or not (hash)
51 * @sg_dst_left: bytes left dst to process in this scatter list
52 * @dst_start: offset to add to dst start position (scatter list)
53 * @hw_processed_bytes: number of bytes processed by hw (request).
55 * sg helper are used to iterate over the scatterlist. Since the size of the
56 * SRAM may be less than the scatter size, this struct struct is used to keep
57 * track of progress within current scatterlist.
59 struct req_progress {
60 struct sg_mapping_iter src_sg_it;
61 struct sg_mapping_iter dst_sg_it;
62 void (*complete) (void);
63 void (*process) (int is_first);
65 /* src mostly */
66 int sg_src_left;
67 int src_start;
68 int crypt_len;
69 int hw_nbytes;
70 /* dst mostly */
71 int copy_back;
72 int sg_dst_left;
73 int dst_start;
74 int hw_processed_bytes;
77 struct crypto_priv {
78 void __iomem *reg;
79 void __iomem *sram;
80 int irq;
81 struct task_struct *queue_th;
83 /* the lock protects queue and eng_st */
84 spinlock_t lock;
85 struct crypto_queue queue;
86 enum engine_status eng_st;
87 struct crypto_async_request *cur_req;
88 struct req_progress p;
89 int max_req_size;
90 int sram_size;
91 int has_sha1;
92 int has_hmac_sha1;
95 static struct crypto_priv *cpg;
97 struct mv_ctx {
98 u8 aes_enc_key[AES_KEY_LEN];
99 u32 aes_dec_key[8];
100 int key_len;
101 u32 need_calc_aes_dkey;
104 enum crypto_op {
105 COP_AES_ECB,
106 COP_AES_CBC,
109 struct mv_req_ctx {
110 enum crypto_op op;
111 int decrypt;
114 enum hash_op {
115 COP_SHA1,
116 COP_HMAC_SHA1
119 struct mv_tfm_hash_ctx {
120 struct crypto_shash *fallback;
121 struct crypto_shash *base_hash;
122 u32 ivs[2 * SHA1_DIGEST_SIZE / 4];
123 int count_add;
124 enum hash_op op;
127 struct mv_req_hash_ctx {
128 u64 count;
129 u32 state[SHA1_DIGEST_SIZE / 4];
130 u8 buffer[SHA1_BLOCK_SIZE];
131 int first_hash; /* marks that we don't have previous state */
132 int last_chunk; /* marks that this is the 'final' request */
133 int extra_bytes; /* unprocessed bytes in buffer */
134 enum hash_op op;
135 int count_add;
136 struct scatterlist dummysg;
139 static void compute_aes_dec_key(struct mv_ctx *ctx)
141 struct crypto_aes_ctx gen_aes_key;
142 int key_pos;
144 if (!ctx->need_calc_aes_dkey)
145 return;
147 crypto_aes_expand_key(&gen_aes_key, ctx->aes_enc_key, ctx->key_len);
149 key_pos = ctx->key_len + 24;
150 memcpy(ctx->aes_dec_key, &gen_aes_key.key_enc[key_pos], 4 * 4);
151 switch (ctx->key_len) {
152 case AES_KEYSIZE_256:
153 key_pos -= 2;
154 /* fall */
155 case AES_KEYSIZE_192:
156 key_pos -= 2;
157 memcpy(&ctx->aes_dec_key[4], &gen_aes_key.key_enc[key_pos],
158 4 * 4);
159 break;
161 ctx->need_calc_aes_dkey = 0;
164 static int mv_setkey_aes(struct crypto_ablkcipher *cipher, const u8 *key,
165 unsigned int len)
167 struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
168 struct mv_ctx *ctx = crypto_tfm_ctx(tfm);
170 switch (len) {
171 case AES_KEYSIZE_128:
172 case AES_KEYSIZE_192:
173 case AES_KEYSIZE_256:
174 break;
175 default:
176 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
177 return -EINVAL;
179 ctx->key_len = len;
180 ctx->need_calc_aes_dkey = 1;
182 memcpy(ctx->aes_enc_key, key, AES_KEY_LEN);
183 return 0;
186 static void copy_src_to_buf(struct req_progress *p, char *dbuf, int len)
188 int ret;
189 void *sbuf;
190 int copied = 0;
192 while (1) {
193 if (!p->sg_src_left) {
194 ret = sg_miter_next(&p->src_sg_it);
195 BUG_ON(!ret);
196 p->sg_src_left = p->src_sg_it.length;
197 p->src_start = 0;
200 sbuf = p->src_sg_it.addr + p->src_start;
202 if (p->sg_src_left <= len - copied) {
203 memcpy(dbuf + copied, sbuf, p->sg_src_left);
204 copied += p->sg_src_left;
205 p->sg_src_left = 0;
206 if (copied >= len)
207 break;
208 } else {
209 int copy_len = len - copied;
210 memcpy(dbuf + copied, sbuf, copy_len);
211 p->src_start += copy_len;
212 p->sg_src_left -= copy_len;
213 break;
218 static void setup_data_in(void)
220 struct req_progress *p = &cpg->p;
221 int data_in_sram =
222 min(p->hw_nbytes - p->hw_processed_bytes, cpg->max_req_size);
223 copy_src_to_buf(p, cpg->sram + SRAM_DATA_IN_START + p->crypt_len,
224 data_in_sram - p->crypt_len);
225 p->crypt_len = data_in_sram;
228 static void mv_process_current_q(int first_block)
230 struct ablkcipher_request *req = ablkcipher_request_cast(cpg->cur_req);
231 struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
232 struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
233 struct sec_accel_config op;
235 switch (req_ctx->op) {
236 case COP_AES_ECB:
237 op.config = CFG_OP_CRYPT_ONLY | CFG_ENCM_AES | CFG_ENC_MODE_ECB;
238 break;
239 case COP_AES_CBC:
240 default:
241 op.config = CFG_OP_CRYPT_ONLY | CFG_ENCM_AES | CFG_ENC_MODE_CBC;
242 op.enc_iv = ENC_IV_POINT(SRAM_DATA_IV) |
243 ENC_IV_BUF_POINT(SRAM_DATA_IV_BUF);
244 if (first_block)
245 memcpy(cpg->sram + SRAM_DATA_IV, req->info, 16);
246 break;
248 if (req_ctx->decrypt) {
249 op.config |= CFG_DIR_DEC;
250 memcpy(cpg->sram + SRAM_DATA_KEY_P, ctx->aes_dec_key,
251 AES_KEY_LEN);
252 } else {
253 op.config |= CFG_DIR_ENC;
254 memcpy(cpg->sram + SRAM_DATA_KEY_P, ctx->aes_enc_key,
255 AES_KEY_LEN);
258 switch (ctx->key_len) {
259 case AES_KEYSIZE_128:
260 op.config |= CFG_AES_LEN_128;
261 break;
262 case AES_KEYSIZE_192:
263 op.config |= CFG_AES_LEN_192;
264 break;
265 case AES_KEYSIZE_256:
266 op.config |= CFG_AES_LEN_256;
267 break;
269 op.enc_p = ENC_P_SRC(SRAM_DATA_IN_START) |
270 ENC_P_DST(SRAM_DATA_OUT_START);
271 op.enc_key_p = SRAM_DATA_KEY_P;
273 setup_data_in();
274 op.enc_len = cpg->p.crypt_len;
275 memcpy(cpg->sram + SRAM_CONFIG, &op,
276 sizeof(struct sec_accel_config));
278 writel(SRAM_CONFIG, cpg->reg + SEC_ACCEL_DESC_P0);
279 /* GO */
280 writel(SEC_CMD_EN_SEC_ACCL0, cpg->reg + SEC_ACCEL_CMD);
283 * XXX: add timer if the interrupt does not occur for some mystery
284 * reason
288 static void mv_crypto_algo_completion(void)
290 struct ablkcipher_request *req = ablkcipher_request_cast(cpg->cur_req);
291 struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
293 sg_miter_stop(&cpg->p.src_sg_it);
294 sg_miter_stop(&cpg->p.dst_sg_it);
296 if (req_ctx->op != COP_AES_CBC)
297 return ;
299 memcpy(req->info, cpg->sram + SRAM_DATA_IV_BUF, 16);
302 static void mv_process_hash_current(int first_block)
304 struct ahash_request *req = ahash_request_cast(cpg->cur_req);
305 struct mv_req_hash_ctx *req_ctx = ahash_request_ctx(req);
306 struct req_progress *p = &cpg->p;
307 struct sec_accel_config op = { 0 };
308 int is_last;
310 switch (req_ctx->op) {
311 case COP_SHA1:
312 default:
313 op.config = CFG_OP_MAC_ONLY | CFG_MACM_SHA1;
314 break;
315 case COP_HMAC_SHA1:
316 op.config = CFG_OP_MAC_ONLY | CFG_MACM_HMAC_SHA1;
317 break;
320 op.mac_src_p =
321 MAC_SRC_DATA_P(SRAM_DATA_IN_START) | MAC_SRC_TOTAL_LEN((u32)
322 req_ctx->
323 count);
325 setup_data_in();
327 op.mac_digest =
328 MAC_DIGEST_P(SRAM_DIGEST_BUF) | MAC_FRAG_LEN(p->crypt_len);
329 op.mac_iv =
330 MAC_INNER_IV_P(SRAM_HMAC_IV_IN) |
331 MAC_OUTER_IV_P(SRAM_HMAC_IV_OUT);
333 is_last = req_ctx->last_chunk
334 && (p->hw_processed_bytes + p->crypt_len >= p->hw_nbytes)
335 && (req_ctx->count <= MAX_HW_HASH_SIZE);
336 if (req_ctx->first_hash) {
337 if (is_last)
338 op.config |= CFG_NOT_FRAG;
339 else
340 op.config |= CFG_FIRST_FRAG;
342 req_ctx->first_hash = 0;
343 } else {
344 if (is_last)
345 op.config |= CFG_LAST_FRAG;
346 else
347 op.config |= CFG_MID_FRAG;
350 memcpy(cpg->sram + SRAM_CONFIG, &op, sizeof(struct sec_accel_config));
352 writel(SRAM_CONFIG, cpg->reg + SEC_ACCEL_DESC_P0);
353 /* GO */
354 writel(SEC_CMD_EN_SEC_ACCL0, cpg->reg + SEC_ACCEL_CMD);
357 * XXX: add timer if the interrupt does not occur for some mystery
358 * reason
362 static inline int mv_hash_import_sha1_ctx(const struct mv_req_hash_ctx *ctx,
363 struct shash_desc *desc)
365 int i;
366 struct sha1_state shash_state;
368 shash_state.count = ctx->count + ctx->count_add;
369 for (i = 0; i < 5; i++)
370 shash_state.state[i] = ctx->state[i];
371 memcpy(shash_state.buffer, ctx->buffer, sizeof(shash_state.buffer));
372 return crypto_shash_import(desc, &shash_state);
375 static int mv_hash_final_fallback(struct ahash_request *req)
377 const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
378 struct mv_req_hash_ctx *req_ctx = ahash_request_ctx(req);
379 struct {
380 struct shash_desc shash;
381 char ctx[crypto_shash_descsize(tfm_ctx->fallback)];
382 } desc;
383 int rc;
385 desc.shash.tfm = tfm_ctx->fallback;
386 desc.shash.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
387 if (unlikely(req_ctx->first_hash)) {
388 crypto_shash_init(&desc.shash);
389 crypto_shash_update(&desc.shash, req_ctx->buffer,
390 req_ctx->extra_bytes);
391 } else {
392 /* only SHA1 for now....
394 rc = mv_hash_import_sha1_ctx(req_ctx, &desc.shash);
395 if (rc)
396 goto out;
398 rc = crypto_shash_final(&desc.shash, req->result);
399 out:
400 return rc;
403 static void mv_hash_algo_completion(void)
405 struct ahash_request *req = ahash_request_cast(cpg->cur_req);
406 struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);
408 if (ctx->extra_bytes)
409 copy_src_to_buf(&cpg->p, ctx->buffer, ctx->extra_bytes);
410 sg_miter_stop(&cpg->p.src_sg_it);
412 ctx->state[0] = readl(cpg->reg + DIGEST_INITIAL_VAL_A);
413 ctx->state[1] = readl(cpg->reg + DIGEST_INITIAL_VAL_B);
414 ctx->state[2] = readl(cpg->reg + DIGEST_INITIAL_VAL_C);
415 ctx->state[3] = readl(cpg->reg + DIGEST_INITIAL_VAL_D);
416 ctx->state[4] = readl(cpg->reg + DIGEST_INITIAL_VAL_E);
418 if (likely(ctx->last_chunk)) {
419 if (likely(ctx->count <= MAX_HW_HASH_SIZE)) {
420 memcpy(req->result, cpg->sram + SRAM_DIGEST_BUF,
421 crypto_ahash_digestsize(crypto_ahash_reqtfm
422 (req)));
423 } else
424 mv_hash_final_fallback(req);
428 static void dequeue_complete_req(void)
430 struct crypto_async_request *req = cpg->cur_req;
431 void *buf;
432 int ret;
433 cpg->p.hw_processed_bytes += cpg->p.crypt_len;
434 if (cpg->p.copy_back) {
435 int need_copy_len = cpg->p.crypt_len;
436 int sram_offset = 0;
437 do {
438 int dst_copy;
440 if (!cpg->p.sg_dst_left) {
441 ret = sg_miter_next(&cpg->p.dst_sg_it);
442 BUG_ON(!ret);
443 cpg->p.sg_dst_left = cpg->p.dst_sg_it.length;
444 cpg->p.dst_start = 0;
447 buf = cpg->p.dst_sg_it.addr;
448 buf += cpg->p.dst_start;
450 dst_copy = min(need_copy_len, cpg->p.sg_dst_left);
452 memcpy(buf,
453 cpg->sram + SRAM_DATA_OUT_START + sram_offset,
454 dst_copy);
455 sram_offset += dst_copy;
456 cpg->p.sg_dst_left -= dst_copy;
457 need_copy_len -= dst_copy;
458 cpg->p.dst_start += dst_copy;
459 } while (need_copy_len > 0);
462 cpg->p.crypt_len = 0;
464 BUG_ON(cpg->eng_st != ENGINE_W_DEQUEUE);
465 if (cpg->p.hw_processed_bytes < cpg->p.hw_nbytes) {
466 /* process next scatter list entry */
467 cpg->eng_st = ENGINE_BUSY;
468 cpg->p.process(0);
469 } else {
470 cpg->p.complete();
471 cpg->eng_st = ENGINE_IDLE;
472 local_bh_disable();
473 req->complete(req, 0);
474 local_bh_enable();
478 static int count_sgs(struct scatterlist *sl, unsigned int total_bytes)
480 int i = 0;
481 size_t cur_len;
483 while (1) {
484 cur_len = sl[i].length;
485 ++i;
486 if (total_bytes > cur_len)
487 total_bytes -= cur_len;
488 else
489 break;
492 return i;
495 static void mv_start_new_crypt_req(struct ablkcipher_request *req)
497 struct req_progress *p = &cpg->p;
498 int num_sgs;
500 cpg->cur_req = &req->base;
501 memset(p, 0, sizeof(struct req_progress));
502 p->hw_nbytes = req->nbytes;
503 p->complete = mv_crypto_algo_completion;
504 p->process = mv_process_current_q;
505 p->copy_back = 1;
507 num_sgs = count_sgs(req->src, req->nbytes);
508 sg_miter_start(&p->src_sg_it, req->src, num_sgs, SG_MITER_FROM_SG);
510 num_sgs = count_sgs(req->dst, req->nbytes);
511 sg_miter_start(&p->dst_sg_it, req->dst, num_sgs, SG_MITER_TO_SG);
513 mv_process_current_q(1);
516 static void mv_start_new_hash_req(struct ahash_request *req)
518 struct req_progress *p = &cpg->p;
519 struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);
520 const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
521 int num_sgs, hw_bytes, old_extra_bytes, rc;
522 cpg->cur_req = &req->base;
523 memset(p, 0, sizeof(struct req_progress));
524 hw_bytes = req->nbytes + ctx->extra_bytes;
525 old_extra_bytes = ctx->extra_bytes;
527 if (unlikely(ctx->extra_bytes)) {
528 memcpy(cpg->sram + SRAM_DATA_IN_START, ctx->buffer,
529 ctx->extra_bytes);
530 p->crypt_len = ctx->extra_bytes;
533 memcpy(cpg->sram + SRAM_HMAC_IV_IN, tfm_ctx->ivs, sizeof(tfm_ctx->ivs));
535 if (unlikely(!ctx->first_hash)) {
536 writel(ctx->state[0], cpg->reg + DIGEST_INITIAL_VAL_A);
537 writel(ctx->state[1], cpg->reg + DIGEST_INITIAL_VAL_B);
538 writel(ctx->state[2], cpg->reg + DIGEST_INITIAL_VAL_C);
539 writel(ctx->state[3], cpg->reg + DIGEST_INITIAL_VAL_D);
540 writel(ctx->state[4], cpg->reg + DIGEST_INITIAL_VAL_E);
543 ctx->extra_bytes = hw_bytes % SHA1_BLOCK_SIZE;
544 if (ctx->extra_bytes != 0
545 && (!ctx->last_chunk || ctx->count > MAX_HW_HASH_SIZE))
546 hw_bytes -= ctx->extra_bytes;
547 else
548 ctx->extra_bytes = 0;
550 num_sgs = count_sgs(req->src, req->nbytes);
551 sg_miter_start(&p->src_sg_it, req->src, num_sgs, SG_MITER_FROM_SG);
553 if (hw_bytes) {
554 p->hw_nbytes = hw_bytes;
555 p->complete = mv_hash_algo_completion;
556 p->process = mv_process_hash_current;
558 mv_process_hash_current(1);
559 } else {
560 copy_src_to_buf(p, ctx->buffer + old_extra_bytes,
561 ctx->extra_bytes - old_extra_bytes);
562 sg_miter_stop(&p->src_sg_it);
563 if (ctx->last_chunk)
564 rc = mv_hash_final_fallback(req);
565 else
566 rc = 0;
567 cpg->eng_st = ENGINE_IDLE;
568 local_bh_disable();
569 req->base.complete(&req->base, rc);
570 local_bh_enable();
574 static int queue_manag(void *data)
576 cpg->eng_st = ENGINE_IDLE;
577 do {
578 struct crypto_async_request *async_req = NULL;
579 struct crypto_async_request *backlog;
581 __set_current_state(TASK_INTERRUPTIBLE);
583 if (cpg->eng_st == ENGINE_W_DEQUEUE)
584 dequeue_complete_req();
586 spin_lock_irq(&cpg->lock);
587 if (cpg->eng_st == ENGINE_IDLE) {
588 backlog = crypto_get_backlog(&cpg->queue);
589 async_req = crypto_dequeue_request(&cpg->queue);
590 if (async_req) {
591 BUG_ON(cpg->eng_st != ENGINE_IDLE);
592 cpg->eng_st = ENGINE_BUSY;
595 spin_unlock_irq(&cpg->lock);
597 if (backlog) {
598 backlog->complete(backlog, -EINPROGRESS);
599 backlog = NULL;
602 if (async_req) {
603 if (async_req->tfm->__crt_alg->cra_type !=
604 &crypto_ahash_type) {
605 struct ablkcipher_request *req =
606 container_of(async_req,
607 struct ablkcipher_request,
608 base);
609 mv_start_new_crypt_req(req);
610 } else {
611 struct ahash_request *req =
612 ahash_request_cast(async_req);
613 mv_start_new_hash_req(req);
615 async_req = NULL;
618 schedule();
620 } while (!kthread_should_stop());
621 return 0;
624 static int mv_handle_req(struct crypto_async_request *req)
626 unsigned long flags;
627 int ret;
629 spin_lock_irqsave(&cpg->lock, flags);
630 ret = crypto_enqueue_request(&cpg->queue, req);
631 spin_unlock_irqrestore(&cpg->lock, flags);
632 wake_up_process(cpg->queue_th);
633 return ret;
636 static int mv_enc_aes_ecb(struct ablkcipher_request *req)
638 struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
640 req_ctx->op = COP_AES_ECB;
641 req_ctx->decrypt = 0;
643 return mv_handle_req(&req->base);
646 static int mv_dec_aes_ecb(struct ablkcipher_request *req)
648 struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
649 struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
651 req_ctx->op = COP_AES_ECB;
652 req_ctx->decrypt = 1;
654 compute_aes_dec_key(ctx);
655 return mv_handle_req(&req->base);
658 static int mv_enc_aes_cbc(struct ablkcipher_request *req)
660 struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
662 req_ctx->op = COP_AES_CBC;
663 req_ctx->decrypt = 0;
665 return mv_handle_req(&req->base);
668 static int mv_dec_aes_cbc(struct ablkcipher_request *req)
670 struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
671 struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
673 req_ctx->op = COP_AES_CBC;
674 req_ctx->decrypt = 1;
676 compute_aes_dec_key(ctx);
677 return mv_handle_req(&req->base);
680 static int mv_cra_init(struct crypto_tfm *tfm)
682 tfm->crt_ablkcipher.reqsize = sizeof(struct mv_req_ctx);
683 return 0;
686 static void mv_init_hash_req_ctx(struct mv_req_hash_ctx *ctx, int op,
687 int is_last, unsigned int req_len,
688 int count_add)
690 memset(ctx, 0, sizeof(*ctx));
691 ctx->op = op;
692 ctx->count = req_len;
693 ctx->first_hash = 1;
694 ctx->last_chunk = is_last;
695 ctx->count_add = count_add;
698 static void mv_update_hash_req_ctx(struct mv_req_hash_ctx *ctx, int is_last,
699 unsigned req_len)
701 ctx->last_chunk = is_last;
702 ctx->count += req_len;
705 static int mv_hash_init(struct ahash_request *req)
707 const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
708 mv_init_hash_req_ctx(ahash_request_ctx(req), tfm_ctx->op, 0, 0,
709 tfm_ctx->count_add);
710 return 0;
713 static int mv_hash_update(struct ahash_request *req)
715 if (!req->nbytes)
716 return 0;
718 mv_update_hash_req_ctx(ahash_request_ctx(req), 0, req->nbytes);
719 return mv_handle_req(&req->base);
722 static int mv_hash_final(struct ahash_request *req)
724 struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);
725 /* dummy buffer of 4 bytes */
726 sg_init_one(&ctx->dummysg, ctx->buffer, 4);
727 /* I think I'm allowed to do that... */
728 ahash_request_set_crypt(req, &ctx->dummysg, req->result, 0);
729 mv_update_hash_req_ctx(ctx, 1, 0);
730 return mv_handle_req(&req->base);
733 static int mv_hash_finup(struct ahash_request *req)
735 if (!req->nbytes)
736 return mv_hash_final(req);
738 mv_update_hash_req_ctx(ahash_request_ctx(req), 1, req->nbytes);
739 return mv_handle_req(&req->base);
742 static int mv_hash_digest(struct ahash_request *req)
744 const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
745 mv_init_hash_req_ctx(ahash_request_ctx(req), tfm_ctx->op, 1,
746 req->nbytes, tfm_ctx->count_add);
747 return mv_handle_req(&req->base);
750 static void mv_hash_init_ivs(struct mv_tfm_hash_ctx *ctx, const void *istate,
751 const void *ostate)
753 const struct sha1_state *isha1_state = istate, *osha1_state = ostate;
754 int i;
755 for (i = 0; i < 5; i++) {
756 ctx->ivs[i] = cpu_to_be32(isha1_state->state[i]);
757 ctx->ivs[i + 5] = cpu_to_be32(osha1_state->state[i]);
761 static int mv_hash_setkey(struct crypto_ahash *tfm, const u8 * key,
762 unsigned int keylen)
764 int rc;
765 struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(&tfm->base);
766 int bs, ds, ss;
768 if (!ctx->base_hash)
769 return 0;
771 rc = crypto_shash_setkey(ctx->fallback, key, keylen);
772 if (rc)
773 return rc;
775 /* Can't see a way to extract the ipad/opad from the fallback tfm
776 so I'm basically copying code from the hmac module */
777 bs = crypto_shash_blocksize(ctx->base_hash);
778 ds = crypto_shash_digestsize(ctx->base_hash);
779 ss = crypto_shash_statesize(ctx->base_hash);
782 struct {
783 struct shash_desc shash;
784 char ctx[crypto_shash_descsize(ctx->base_hash)];
785 } desc;
786 unsigned int i;
787 char ipad[ss];
788 char opad[ss];
790 desc.shash.tfm = ctx->base_hash;
791 desc.shash.flags = crypto_shash_get_flags(ctx->base_hash) &
792 CRYPTO_TFM_REQ_MAY_SLEEP;
794 if (keylen > bs) {
795 int err;
797 err =
798 crypto_shash_digest(&desc.shash, key, keylen, ipad);
799 if (err)
800 return err;
802 keylen = ds;
803 } else
804 memcpy(ipad, key, keylen);
806 memset(ipad + keylen, 0, bs - keylen);
807 memcpy(opad, ipad, bs);
809 for (i = 0; i < bs; i++) {
810 ipad[i] ^= 0x36;
811 opad[i] ^= 0x5c;
814 rc = crypto_shash_init(&desc.shash) ? :
815 crypto_shash_update(&desc.shash, ipad, bs) ? :
816 crypto_shash_export(&desc.shash, ipad) ? :
817 crypto_shash_init(&desc.shash) ? :
818 crypto_shash_update(&desc.shash, opad, bs) ? :
819 crypto_shash_export(&desc.shash, opad);
821 if (rc == 0)
822 mv_hash_init_ivs(ctx, ipad, opad);
824 return rc;
828 static int mv_cra_hash_init(struct crypto_tfm *tfm, const char *base_hash_name,
829 enum hash_op op, int count_add)
831 const char *fallback_driver_name = tfm->__crt_alg->cra_name;
832 struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(tfm);
833 struct crypto_shash *fallback_tfm = NULL;
834 struct crypto_shash *base_hash = NULL;
835 int err = -ENOMEM;
837 ctx->op = op;
838 ctx->count_add = count_add;
840 /* Allocate a fallback and abort if it failed. */
841 fallback_tfm = crypto_alloc_shash(fallback_driver_name, 0,
842 CRYPTO_ALG_NEED_FALLBACK);
843 if (IS_ERR(fallback_tfm)) {
844 printk(KERN_WARNING MV_CESA
845 "Fallback driver '%s' could not be loaded!\n",
846 fallback_driver_name);
847 err = PTR_ERR(fallback_tfm);
848 goto out;
850 ctx->fallback = fallback_tfm;
852 if (base_hash_name) {
853 /* Allocate a hash to compute the ipad/opad of hmac. */
854 base_hash = crypto_alloc_shash(base_hash_name, 0,
855 CRYPTO_ALG_NEED_FALLBACK);
856 if (IS_ERR(base_hash)) {
857 printk(KERN_WARNING MV_CESA
858 "Base driver '%s' could not be loaded!\n",
859 base_hash_name);
860 err = PTR_ERR(base_hash);
861 goto err_bad_base;
864 ctx->base_hash = base_hash;
866 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
867 sizeof(struct mv_req_hash_ctx) +
868 crypto_shash_descsize(ctx->fallback));
869 return 0;
870 err_bad_base:
871 crypto_free_shash(fallback_tfm);
872 out:
873 return err;
876 static void mv_cra_hash_exit(struct crypto_tfm *tfm)
878 struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(tfm);
880 crypto_free_shash(ctx->fallback);
881 if (ctx->base_hash)
882 crypto_free_shash(ctx->base_hash);
885 static int mv_cra_hash_sha1_init(struct crypto_tfm *tfm)
887 return mv_cra_hash_init(tfm, NULL, COP_SHA1, 0);
890 static int mv_cra_hash_hmac_sha1_init(struct crypto_tfm *tfm)
892 return mv_cra_hash_init(tfm, "sha1", COP_HMAC_SHA1, SHA1_BLOCK_SIZE);
895 irqreturn_t crypto_int(int irq, void *priv)
897 u32 val;
899 val = readl(cpg->reg + SEC_ACCEL_INT_STATUS);
900 if (!(val & SEC_INT_ACCEL0_DONE))
901 return IRQ_NONE;
903 val &= ~SEC_INT_ACCEL0_DONE;
904 writel(val, cpg->reg + FPGA_INT_STATUS);
905 writel(val, cpg->reg + SEC_ACCEL_INT_STATUS);
906 BUG_ON(cpg->eng_st != ENGINE_BUSY);
907 cpg->eng_st = ENGINE_W_DEQUEUE;
908 wake_up_process(cpg->queue_th);
909 return IRQ_HANDLED;
912 struct crypto_alg mv_aes_alg_ecb = {
913 .cra_name = "ecb(aes)",
914 .cra_driver_name = "mv-ecb-aes",
915 .cra_priority = 300,
916 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
917 .cra_blocksize = 16,
918 .cra_ctxsize = sizeof(struct mv_ctx),
919 .cra_alignmask = 0,
920 .cra_type = &crypto_ablkcipher_type,
921 .cra_module = THIS_MODULE,
922 .cra_init = mv_cra_init,
923 .cra_u = {
924 .ablkcipher = {
925 .min_keysize = AES_MIN_KEY_SIZE,
926 .max_keysize = AES_MAX_KEY_SIZE,
927 .setkey = mv_setkey_aes,
928 .encrypt = mv_enc_aes_ecb,
929 .decrypt = mv_dec_aes_ecb,
934 struct crypto_alg mv_aes_alg_cbc = {
935 .cra_name = "cbc(aes)",
936 .cra_driver_name = "mv-cbc-aes",
937 .cra_priority = 300,
938 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
939 .cra_blocksize = AES_BLOCK_SIZE,
940 .cra_ctxsize = sizeof(struct mv_ctx),
941 .cra_alignmask = 0,
942 .cra_type = &crypto_ablkcipher_type,
943 .cra_module = THIS_MODULE,
944 .cra_init = mv_cra_init,
945 .cra_u = {
946 .ablkcipher = {
947 .ivsize = AES_BLOCK_SIZE,
948 .min_keysize = AES_MIN_KEY_SIZE,
949 .max_keysize = AES_MAX_KEY_SIZE,
950 .setkey = mv_setkey_aes,
951 .encrypt = mv_enc_aes_cbc,
952 .decrypt = mv_dec_aes_cbc,
957 struct ahash_alg mv_sha1_alg = {
958 .init = mv_hash_init,
959 .update = mv_hash_update,
960 .final = mv_hash_final,
961 .finup = mv_hash_finup,
962 .digest = mv_hash_digest,
963 .halg = {
964 .digestsize = SHA1_DIGEST_SIZE,
965 .base = {
966 .cra_name = "sha1",
967 .cra_driver_name = "mv-sha1",
968 .cra_priority = 300,
969 .cra_flags =
970 CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK,
971 .cra_blocksize = SHA1_BLOCK_SIZE,
972 .cra_ctxsize = sizeof(struct mv_tfm_hash_ctx),
973 .cra_init = mv_cra_hash_sha1_init,
974 .cra_exit = mv_cra_hash_exit,
975 .cra_module = THIS_MODULE,
980 struct ahash_alg mv_hmac_sha1_alg = {
981 .init = mv_hash_init,
982 .update = mv_hash_update,
983 .final = mv_hash_final,
984 .finup = mv_hash_finup,
985 .digest = mv_hash_digest,
986 .setkey = mv_hash_setkey,
987 .halg = {
988 .digestsize = SHA1_DIGEST_SIZE,
989 .base = {
990 .cra_name = "hmac(sha1)",
991 .cra_driver_name = "mv-hmac-sha1",
992 .cra_priority = 300,
993 .cra_flags =
994 CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK,
995 .cra_blocksize = SHA1_BLOCK_SIZE,
996 .cra_ctxsize = sizeof(struct mv_tfm_hash_ctx),
997 .cra_init = mv_cra_hash_hmac_sha1_init,
998 .cra_exit = mv_cra_hash_exit,
999 .cra_module = THIS_MODULE,
1004 static int mv_probe(struct platform_device *pdev)
1006 struct crypto_priv *cp;
1007 struct resource *res;
1008 int irq;
1009 int ret;
1011 if (cpg) {
1012 printk(KERN_ERR MV_CESA "Second crypto dev?\n");
1013 return -EEXIST;
1016 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "regs");
1017 if (!res)
1018 return -ENXIO;
1020 cp = kzalloc(sizeof(*cp), GFP_KERNEL);
1021 if (!cp)
1022 return -ENOMEM;
1024 spin_lock_init(&cp->lock);
1025 crypto_init_queue(&cp->queue, 50);
1026 cp->reg = ioremap(res->start, resource_size(res));
1027 if (!cp->reg) {
1028 ret = -ENOMEM;
1029 goto err;
1032 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "sram");
1033 if (!res) {
1034 ret = -ENXIO;
1035 goto err_unmap_reg;
1037 cp->sram_size = resource_size(res);
1038 cp->max_req_size = cp->sram_size - SRAM_CFG_SPACE;
1039 cp->sram = ioremap(res->start, cp->sram_size);
1040 if (!cp->sram) {
1041 ret = -ENOMEM;
1042 goto err_unmap_reg;
1045 irq = platform_get_irq(pdev, 0);
1046 if (irq < 0 || irq == NO_IRQ) {
1047 ret = irq;
1048 goto err_unmap_sram;
1050 cp->irq = irq;
1052 platform_set_drvdata(pdev, cp);
1053 cpg = cp;
1055 cp->queue_th = kthread_run(queue_manag, cp, "mv_crypto");
1056 if (IS_ERR(cp->queue_th)) {
1057 ret = PTR_ERR(cp->queue_th);
1058 goto err_unmap_sram;
1061 ret = request_irq(irq, crypto_int, IRQF_DISABLED, dev_name(&pdev->dev),
1062 cp);
1063 if (ret)
1064 goto err_thread;
1066 writel(SEC_INT_ACCEL0_DONE, cpg->reg + SEC_ACCEL_INT_MASK);
1067 writel(SEC_CFG_STOP_DIG_ERR, cpg->reg + SEC_ACCEL_CFG);
1069 ret = crypto_register_alg(&mv_aes_alg_ecb);
1070 if (ret)
1071 goto err_irq;
1073 ret = crypto_register_alg(&mv_aes_alg_cbc);
1074 if (ret)
1075 goto err_unreg_ecb;
1077 ret = crypto_register_ahash(&mv_sha1_alg);
1078 if (ret == 0)
1079 cpg->has_sha1 = 1;
1080 else
1081 printk(KERN_WARNING MV_CESA "Could not register sha1 driver\n");
1083 ret = crypto_register_ahash(&mv_hmac_sha1_alg);
1084 if (ret == 0) {
1085 cpg->has_hmac_sha1 = 1;
1086 } else {
1087 printk(KERN_WARNING MV_CESA
1088 "Could not register hmac-sha1 driver\n");
1091 return 0;
1092 err_unreg_ecb:
1093 crypto_unregister_alg(&mv_aes_alg_ecb);
1094 err_irq:
1095 free_irq(irq, cp);
1096 err_thread:
1097 kthread_stop(cp->queue_th);
1098 err_unmap_sram:
1099 iounmap(cp->sram);
1100 err_unmap_reg:
1101 iounmap(cp->reg);
1102 err:
1103 kfree(cp);
1104 cpg = NULL;
1105 platform_set_drvdata(pdev, NULL);
1106 return ret;
1109 static int mv_remove(struct platform_device *pdev)
1111 struct crypto_priv *cp = platform_get_drvdata(pdev);
1113 crypto_unregister_alg(&mv_aes_alg_ecb);
1114 crypto_unregister_alg(&mv_aes_alg_cbc);
1115 if (cp->has_sha1)
1116 crypto_unregister_ahash(&mv_sha1_alg);
1117 if (cp->has_hmac_sha1)
1118 crypto_unregister_ahash(&mv_hmac_sha1_alg);
1119 kthread_stop(cp->queue_th);
1120 free_irq(cp->irq, cp);
1121 memset(cp->sram, 0, cp->sram_size);
1122 iounmap(cp->sram);
1123 iounmap(cp->reg);
1124 kfree(cp);
1125 cpg = NULL;
1126 return 0;
1129 static struct platform_driver marvell_crypto = {
1130 .probe = mv_probe,
1131 .remove = mv_remove,
1132 .driver = {
1133 .owner = THIS_MODULE,
1134 .name = "mv_crypto",
1137 MODULE_ALIAS("platform:mv_crypto");
1139 static int __init mv_crypto_init(void)
1141 return platform_driver_register(&marvell_crypto);
1143 module_init(mv_crypto_init);
1145 static void __exit mv_crypto_exit(void)
1147 platform_driver_unregister(&marvell_crypto);
1149 module_exit(mv_crypto_exit);
1151 MODULE_AUTHOR("Sebastian Andrzej Siewior <sebastian@breakpoint.cc>");
1152 MODULE_DESCRIPTION("Support for Marvell's cryptographic engine");
1153 MODULE_LICENSE("GPL");