2 * Driver for OHCI 1394 controllers
4 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21 #include <linux/bitops.h>
22 #include <linux/bug.h>
23 #include <linux/compiler.h>
24 #include <linux/delay.h>
25 #include <linux/device.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/firewire.h>
28 #include <linux/firewire-constants.h>
29 #include <linux/init.h>
30 #include <linux/interrupt.h>
32 #include <linux/kernel.h>
33 #include <linux/list.h>
35 #include <linux/module.h>
36 #include <linux/moduleparam.h>
37 #include <linux/mutex.h>
38 #include <linux/pci.h>
39 #include <linux/pci_ids.h>
40 #include <linux/slab.h>
41 #include <linux/spinlock.h>
42 #include <linux/string.h>
43 #include <linux/time.h>
44 #include <linux/vmalloc.h>
46 #include <asm/byteorder.h>
48 #include <asm/system.h>
50 #ifdef CONFIG_PPC_PMAC
51 #include <asm/pmac_feature.h>
57 #define DESCRIPTOR_OUTPUT_MORE 0
58 #define DESCRIPTOR_OUTPUT_LAST (1 << 12)
59 #define DESCRIPTOR_INPUT_MORE (2 << 12)
60 #define DESCRIPTOR_INPUT_LAST (3 << 12)
61 #define DESCRIPTOR_STATUS (1 << 11)
62 #define DESCRIPTOR_KEY_IMMEDIATE (2 << 8)
63 #define DESCRIPTOR_PING (1 << 7)
64 #define DESCRIPTOR_YY (1 << 6)
65 #define DESCRIPTOR_NO_IRQ (0 << 4)
66 #define DESCRIPTOR_IRQ_ERROR (1 << 4)
67 #define DESCRIPTOR_IRQ_ALWAYS (3 << 4)
68 #define DESCRIPTOR_BRANCH_ALWAYS (3 << 2)
69 #define DESCRIPTOR_WAIT (3 << 0)
75 __le32 branch_address
;
77 __le16 transfer_status
;
78 } __attribute__((aligned(16)));
80 #define CONTROL_SET(regs) (regs)
81 #define CONTROL_CLEAR(regs) ((regs) + 4)
82 #define COMMAND_PTR(regs) ((regs) + 12)
83 #define CONTEXT_MATCH(regs) ((regs) + 16)
85 #define AR_BUFFER_SIZE (32*1024)
86 #define AR_BUFFERS_MIN DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
87 /* we need at least two pages for proper list management */
88 #define AR_BUFFERS (AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)
90 #define MAX_ASYNC_PAYLOAD 4096
91 #define MAX_AR_PACKET_SIZE (16 + MAX_ASYNC_PAYLOAD + 4)
92 #define AR_WRAPAROUND_PAGES DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
96 struct page
*pages
[AR_BUFFERS
];
98 struct descriptor
*descriptors
;
99 dma_addr_t descriptors_bus
;
101 unsigned int last_buffer_index
;
103 struct tasklet_struct tasklet
;
108 typedef int (*descriptor_callback_t
)(struct context
*ctx
,
109 struct descriptor
*d
,
110 struct descriptor
*last
);
113 * A buffer that contains a block of DMA-able coherent memory used for
114 * storing a portion of a DMA descriptor program.
116 struct descriptor_buffer
{
117 struct list_head list
;
118 dma_addr_t buffer_bus
;
121 struct descriptor buffer
[0];
125 struct fw_ohci
*ohci
;
127 int total_allocation
;
132 * List of page-sized buffers for storing DMA descriptors.
133 * Head of list contains buffers in use and tail of list contains
136 struct list_head buffer_list
;
139 * Pointer to a buffer inside buffer_list that contains the tail
140 * end of the current DMA program.
142 struct descriptor_buffer
*buffer_tail
;
145 * The descriptor containing the branch address of the first
146 * descriptor that has not yet been filled by the device.
148 struct descriptor
*last
;
151 * The last descriptor in the DMA program. It contains the branch
152 * address that must be updated upon appending a new descriptor.
154 struct descriptor
*prev
;
156 descriptor_callback_t callback
;
158 struct tasklet_struct tasklet
;
161 #define IT_HEADER_SY(v) ((v) << 0)
162 #define IT_HEADER_TCODE(v) ((v) << 4)
163 #define IT_HEADER_CHANNEL(v) ((v) << 8)
164 #define IT_HEADER_TAG(v) ((v) << 14)
165 #define IT_HEADER_SPEED(v) ((v) << 16)
166 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
169 struct fw_iso_context base
;
170 struct context context
;
173 size_t header_length
;
179 #define CONFIG_ROM_SIZE 1024
184 __iomem
char *registers
;
187 int request_generation
; /* for timestamping incoming requests */
189 unsigned int pri_req_max
;
192 bool csr_state_setclear_abdicate
;
196 * Spinlock for accessing fw_ohci data. Never call out of
197 * this driver with this lock held.
201 struct mutex phy_reg_mutex
;
204 dma_addr_t misc_buffer_bus
;
206 struct ar_context ar_request_ctx
;
207 struct ar_context ar_response_ctx
;
208 struct context at_request_ctx
;
209 struct context at_response_ctx
;
211 u32 it_context_support
;
212 u32 it_context_mask
; /* unoccupied IT contexts */
213 struct iso_context
*it_context_list
;
214 u64 ir_context_channels
; /* unoccupied channels */
215 u32 ir_context_support
;
216 u32 ir_context_mask
; /* unoccupied IR contexts */
217 struct iso_context
*ir_context_list
;
218 u64 mc_channels
; /* channels in use by the multichannel IR context */
222 dma_addr_t config_rom_bus
;
223 __be32
*next_config_rom
;
224 dma_addr_t next_config_rom_bus
;
228 dma_addr_t self_id_bus
;
229 struct tasklet_struct bus_reset_tasklet
;
231 u32 self_id_buffer
[512];
234 static inline struct fw_ohci
*fw_ohci(struct fw_card
*card
)
236 return container_of(card
, struct fw_ohci
, card
);
239 #define IT_CONTEXT_CYCLE_MATCH_ENABLE 0x80000000
240 #define IR_CONTEXT_BUFFER_FILL 0x80000000
241 #define IR_CONTEXT_ISOCH_HEADER 0x40000000
242 #define IR_CONTEXT_CYCLE_MATCH_ENABLE 0x20000000
243 #define IR_CONTEXT_MULTI_CHANNEL_MODE 0x10000000
244 #define IR_CONTEXT_DUAL_BUFFER_MODE 0x08000000
246 #define CONTEXT_RUN 0x8000
247 #define CONTEXT_WAKE 0x1000
248 #define CONTEXT_DEAD 0x0800
249 #define CONTEXT_ACTIVE 0x0400
251 #define OHCI1394_MAX_AT_REQ_RETRIES 0xf
252 #define OHCI1394_MAX_AT_RESP_RETRIES 0x2
253 #define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8
255 #define OHCI1394_REGISTER_SIZE 0x800
256 #define OHCI_LOOP_COUNT 500
257 #define OHCI1394_PCI_HCI_Control 0x40
258 #define SELF_ID_BUF_SIZE 0x800
259 #define OHCI_TCODE_PHY_PACKET 0x0e
260 #define OHCI_VERSION_1_1 0x010010
262 static char ohci_driver_name
[] = KBUILD_MODNAME
;
264 #define PCI_DEVICE_ID_AGERE_FW643 0x5901
265 #define PCI_DEVICE_ID_JMICRON_JMB38X_FW 0x2380
266 #define PCI_DEVICE_ID_TI_TSB12LV22 0x8009
268 #define QUIRK_CYCLE_TIMER 1
269 #define QUIRK_RESET_PACKET 2
270 #define QUIRK_BE_HEADERS 4
271 #define QUIRK_NO_1394A 8
272 #define QUIRK_NO_MSI 16
274 /* In case of multiple matches in ohci_quirks[], only the first one is used. */
275 static const struct {
276 unsigned short vendor
, device
, revision
, flags
;
278 {PCI_VENDOR_ID_AL
, PCI_ANY_ID
, PCI_ANY_ID
,
281 {PCI_VENDOR_ID_APPLE
, PCI_DEVICE_ID_APPLE_UNI_N_FW
, PCI_ANY_ID
,
284 {PCI_VENDOR_ID_ATT
, PCI_DEVICE_ID_AGERE_FW643
, 6,
287 {PCI_VENDOR_ID_JMICRON
, PCI_DEVICE_ID_JMICRON_JMB38X_FW
, PCI_ANY_ID
,
290 {PCI_VENDOR_ID_NEC
, PCI_ANY_ID
, PCI_ANY_ID
,
293 {PCI_VENDOR_ID_RICOH
, PCI_ANY_ID
, PCI_ANY_ID
,
296 {PCI_VENDOR_ID_TI
, PCI_DEVICE_ID_TI_TSB12LV22
, PCI_ANY_ID
,
297 QUIRK_CYCLE_TIMER
| QUIRK_RESET_PACKET
| QUIRK_NO_1394A
},
299 {PCI_VENDOR_ID_TI
, PCI_ANY_ID
, PCI_ANY_ID
,
302 {PCI_VENDOR_ID_VIA
, PCI_ANY_ID
, PCI_ANY_ID
,
303 QUIRK_CYCLE_TIMER
| QUIRK_NO_MSI
},
306 /* This overrides anything that was found in ohci_quirks[]. */
307 static int param_quirks
;
308 module_param_named(quirks
, param_quirks
, int, 0644);
309 MODULE_PARM_DESC(quirks
, "Chip quirks (default = 0"
310 ", nonatomic cycle timer = " __stringify(QUIRK_CYCLE_TIMER
)
311 ", reset packet generation = " __stringify(QUIRK_RESET_PACKET
)
312 ", AR/selfID endianess = " __stringify(QUIRK_BE_HEADERS
)
313 ", no 1394a enhancements = " __stringify(QUIRK_NO_1394A
)
314 ", disable MSI = " __stringify(QUIRK_NO_MSI
)
317 #define OHCI_PARAM_DEBUG_AT_AR 1
318 #define OHCI_PARAM_DEBUG_SELFIDS 2
319 #define OHCI_PARAM_DEBUG_IRQS 4
320 #define OHCI_PARAM_DEBUG_BUSRESETS 8 /* only effective before chip init */
322 #ifdef CONFIG_FIREWIRE_OHCI_DEBUG
324 static int param_debug
;
325 module_param_named(debug
, param_debug
, int, 0644);
326 MODULE_PARM_DESC(debug
, "Verbose logging (default = 0"
327 ", AT/AR events = " __stringify(OHCI_PARAM_DEBUG_AT_AR
)
328 ", self-IDs = " __stringify(OHCI_PARAM_DEBUG_SELFIDS
)
329 ", IRQs = " __stringify(OHCI_PARAM_DEBUG_IRQS
)
330 ", busReset events = " __stringify(OHCI_PARAM_DEBUG_BUSRESETS
)
331 ", or a combination, or all = -1)");
333 static void log_irqs(u32 evt
)
335 if (likely(!(param_debug
&
336 (OHCI_PARAM_DEBUG_IRQS
| OHCI_PARAM_DEBUG_BUSRESETS
))))
339 if (!(param_debug
& OHCI_PARAM_DEBUG_IRQS
) &&
340 !(evt
& OHCI1394_busReset
))
343 fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt
,
344 evt
& OHCI1394_selfIDComplete
? " selfID" : "",
345 evt
& OHCI1394_RQPkt
? " AR_req" : "",
346 evt
& OHCI1394_RSPkt
? " AR_resp" : "",
347 evt
& OHCI1394_reqTxComplete
? " AT_req" : "",
348 evt
& OHCI1394_respTxComplete
? " AT_resp" : "",
349 evt
& OHCI1394_isochRx
? " IR" : "",
350 evt
& OHCI1394_isochTx
? " IT" : "",
351 evt
& OHCI1394_postedWriteErr
? " postedWriteErr" : "",
352 evt
& OHCI1394_cycleTooLong
? " cycleTooLong" : "",
353 evt
& OHCI1394_cycle64Seconds
? " cycle64Seconds" : "",
354 evt
& OHCI1394_cycleInconsistent
? " cycleInconsistent" : "",
355 evt
& OHCI1394_regAccessFail
? " regAccessFail" : "",
356 evt
& OHCI1394_unrecoverableError
? " unrecoverableError" : "",
357 evt
& OHCI1394_busReset
? " busReset" : "",
358 evt
& ~(OHCI1394_selfIDComplete
| OHCI1394_RQPkt
|
359 OHCI1394_RSPkt
| OHCI1394_reqTxComplete
|
360 OHCI1394_respTxComplete
| OHCI1394_isochRx
|
361 OHCI1394_isochTx
| OHCI1394_postedWriteErr
|
362 OHCI1394_cycleTooLong
| OHCI1394_cycle64Seconds
|
363 OHCI1394_cycleInconsistent
|
364 OHCI1394_regAccessFail
| OHCI1394_busReset
)
368 static const char *speed
[] = {
369 [0] = "S100", [1] = "S200", [2] = "S400", [3] = "beta",
371 static const char *power
[] = {
372 [0] = "+0W", [1] = "+15W", [2] = "+30W", [3] = "+45W",
373 [4] = "-3W", [5] = " ?W", [6] = "-3..-6W", [7] = "-3..-10W",
375 static const char port
[] = { '.', '-', 'p', 'c', };
377 static char _p(u32
*s
, int shift
)
379 return port
[*s
>> shift
& 3];
382 static void log_selfids(int node_id
, int generation
, int self_id_count
, u32
*s
)
384 if (likely(!(param_debug
& OHCI_PARAM_DEBUG_SELFIDS
)))
387 fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
388 self_id_count
, generation
, node_id
);
390 for (; self_id_count
--; ++s
)
391 if ((*s
& 1 << 23) == 0)
392 fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
393 "%s gc=%d %s %s%s%s\n",
394 *s
, *s
>> 24 & 63, _p(s
, 6), _p(s
, 4), _p(s
, 2),
395 speed
[*s
>> 14 & 3], *s
>> 16 & 63,
396 power
[*s
>> 8 & 7], *s
>> 22 & 1 ? "L" : "",
397 *s
>> 11 & 1 ? "c" : "", *s
& 2 ? "i" : "");
399 fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
401 _p(s
, 16), _p(s
, 14), _p(s
, 12), _p(s
, 10),
402 _p(s
, 8), _p(s
, 6), _p(s
, 4), _p(s
, 2));
405 static const char *evts
[] = {
406 [0x00] = "evt_no_status", [0x01] = "-reserved-",
407 [0x02] = "evt_long_packet", [0x03] = "evt_missing_ack",
408 [0x04] = "evt_underrun", [0x05] = "evt_overrun",
409 [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
410 [0x08] = "evt_data_write", [0x09] = "evt_bus_reset",
411 [0x0a] = "evt_timeout", [0x0b] = "evt_tcode_err",
412 [0x0c] = "-reserved-", [0x0d] = "-reserved-",
413 [0x0e] = "evt_unknown", [0x0f] = "evt_flushed",
414 [0x10] = "-reserved-", [0x11] = "ack_complete",
415 [0x12] = "ack_pending ", [0x13] = "-reserved-",
416 [0x14] = "ack_busy_X", [0x15] = "ack_busy_A",
417 [0x16] = "ack_busy_B", [0x17] = "-reserved-",
418 [0x18] = "-reserved-", [0x19] = "-reserved-",
419 [0x1a] = "-reserved-", [0x1b] = "ack_tardy",
420 [0x1c] = "-reserved-", [0x1d] = "ack_data_error",
421 [0x1e] = "ack_type_error", [0x1f] = "-reserved-",
422 [0x20] = "pending/cancelled",
424 static const char *tcodes
[] = {
425 [0x0] = "QW req", [0x1] = "BW req",
426 [0x2] = "W resp", [0x3] = "-reserved-",
427 [0x4] = "QR req", [0x5] = "BR req",
428 [0x6] = "QR resp", [0x7] = "BR resp",
429 [0x8] = "cycle start", [0x9] = "Lk req",
430 [0xa] = "async stream packet", [0xb] = "Lk resp",
431 [0xc] = "-reserved-", [0xd] = "-reserved-",
432 [0xe] = "link internal", [0xf] = "-reserved-",
435 static void log_ar_at_event(char dir
, int speed
, u32
*header
, int evt
)
437 int tcode
= header
[0] >> 4 & 0xf;
440 if (likely(!(param_debug
& OHCI_PARAM_DEBUG_AT_AR
)))
443 if (unlikely(evt
>= ARRAY_SIZE(evts
)))
446 if (evt
== OHCI1394_evt_bus_reset
) {
447 fw_notify("A%c evt_bus_reset, generation %d\n",
448 dir
, (header
[2] >> 16) & 0xff);
453 case 0x0: case 0x6: case 0x8:
454 snprintf(specific
, sizeof(specific
), " = %08x",
455 be32_to_cpu((__force __be32
)header
[3]));
457 case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
458 snprintf(specific
, sizeof(specific
), " %x,%x",
459 header
[3] >> 16, header
[3] & 0xffff);
467 fw_notify("A%c %s, %s\n", dir
, evts
[evt
], tcodes
[tcode
]);
470 fw_notify("A%c %s, PHY %08x %08x\n",
471 dir
, evts
[evt
], header
[1], header
[2]);
473 case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
474 fw_notify("A%c spd %x tl %02x, "
477 dir
, speed
, header
[0] >> 10 & 0x3f,
478 header
[1] >> 16, header
[0] >> 16, evts
[evt
],
479 tcodes
[tcode
], header
[1] & 0xffff, header
[2], specific
);
482 fw_notify("A%c spd %x tl %02x, "
485 dir
, speed
, header
[0] >> 10 & 0x3f,
486 header
[1] >> 16, header
[0] >> 16, evts
[evt
],
487 tcodes
[tcode
], specific
);
493 #define param_debug 0
494 static inline void log_irqs(u32 evt
) {}
495 static inline void log_selfids(int node_id
, int generation
, int self_id_count
, u32
*s
) {}
496 static inline void log_ar_at_event(char dir
, int speed
, u32
*header
, int evt
) {}
498 #endif /* CONFIG_FIREWIRE_OHCI_DEBUG */
500 static inline void reg_write(const struct fw_ohci
*ohci
, int offset
, u32 data
)
502 writel(data
, ohci
->registers
+ offset
);
505 static inline u32
reg_read(const struct fw_ohci
*ohci
, int offset
)
507 return readl(ohci
->registers
+ offset
);
510 static inline void flush_writes(const struct fw_ohci
*ohci
)
512 /* Do a dummy read to flush writes. */
513 reg_read(ohci
, OHCI1394_Version
);
516 static int read_phy_reg(struct fw_ohci
*ohci
, int addr
)
521 reg_write(ohci
, OHCI1394_PhyControl
, OHCI1394_PhyControl_Read(addr
));
522 for (i
= 0; i
< 3 + 100; i
++) {
523 val
= reg_read(ohci
, OHCI1394_PhyControl
);
524 if (val
& OHCI1394_PhyControl_ReadDone
)
525 return OHCI1394_PhyControl_ReadData(val
);
528 * Try a few times without waiting. Sleeping is necessary
529 * only when the link/PHY interface is busy.
534 fw_error("failed to read phy reg\n");
539 static int write_phy_reg(const struct fw_ohci
*ohci
, int addr
, u32 val
)
543 reg_write(ohci
, OHCI1394_PhyControl
,
544 OHCI1394_PhyControl_Write(addr
, val
));
545 for (i
= 0; i
< 3 + 100; i
++) {
546 val
= reg_read(ohci
, OHCI1394_PhyControl
);
547 if (!(val
& OHCI1394_PhyControl_WritePending
))
553 fw_error("failed to write phy reg\n");
558 static int update_phy_reg(struct fw_ohci
*ohci
, int addr
,
559 int clear_bits
, int set_bits
)
561 int ret
= read_phy_reg(ohci
, addr
);
566 * The interrupt status bits are cleared by writing a one bit.
567 * Avoid clearing them unless explicitly requested in set_bits.
570 clear_bits
|= PHY_INT_STATUS_BITS
;
572 return write_phy_reg(ohci
, addr
, (ret
& ~clear_bits
) | set_bits
);
575 static int read_paged_phy_reg(struct fw_ohci
*ohci
, int page
, int addr
)
579 ret
= update_phy_reg(ohci
, 7, PHY_PAGE_SELECT
, page
<< 5);
583 return read_phy_reg(ohci
, addr
);
586 static int ohci_read_phy_reg(struct fw_card
*card
, int addr
)
588 struct fw_ohci
*ohci
= fw_ohci(card
);
591 mutex_lock(&ohci
->phy_reg_mutex
);
592 ret
= read_phy_reg(ohci
, addr
);
593 mutex_unlock(&ohci
->phy_reg_mutex
);
598 static int ohci_update_phy_reg(struct fw_card
*card
, int addr
,
599 int clear_bits
, int set_bits
)
601 struct fw_ohci
*ohci
= fw_ohci(card
);
604 mutex_lock(&ohci
->phy_reg_mutex
);
605 ret
= update_phy_reg(ohci
, addr
, clear_bits
, set_bits
);
606 mutex_unlock(&ohci
->phy_reg_mutex
);
611 static inline dma_addr_t
ar_buffer_bus(struct ar_context
*ctx
, unsigned int i
)
613 return page_private(ctx
->pages
[i
]);
616 static void ar_context_link_page(struct ar_context
*ctx
, unsigned int index
)
618 struct descriptor
*d
;
620 d
= &ctx
->descriptors
[index
];
621 d
->branch_address
&= cpu_to_le32(~0xf);
622 d
->res_count
= cpu_to_le16(PAGE_SIZE
);
623 d
->transfer_status
= 0;
625 wmb(); /* finish init of new descriptors before branch_address update */
626 d
= &ctx
->descriptors
[ctx
->last_buffer_index
];
627 d
->branch_address
|= cpu_to_le32(1);
629 ctx
->last_buffer_index
= index
;
631 reg_write(ctx
->ohci
, CONTROL_SET(ctx
->regs
), CONTEXT_WAKE
);
632 flush_writes(ctx
->ohci
);
635 static void ar_context_release(struct ar_context
*ctx
)
640 vm_unmap_ram(ctx
->buffer
, AR_BUFFERS
+ AR_WRAPAROUND_PAGES
);
642 for (i
= 0; i
< AR_BUFFERS
; i
++)
644 dma_unmap_page(ctx
->ohci
->card
.device
,
645 ar_buffer_bus(ctx
, i
),
646 PAGE_SIZE
, DMA_FROM_DEVICE
);
647 __free_page(ctx
->pages
[i
]);
651 static void ar_context_abort(struct ar_context
*ctx
, const char *error_msg
)
653 if (reg_read(ctx
->ohci
, CONTROL_CLEAR(ctx
->regs
)) & CONTEXT_RUN
) {
654 reg_write(ctx
->ohci
, CONTROL_CLEAR(ctx
->regs
), CONTEXT_RUN
);
655 flush_writes(ctx
->ohci
);
657 fw_error("AR error: %s; DMA stopped\n", error_msg
);
659 /* FIXME: restart? */
662 static inline unsigned int ar_next_buffer_index(unsigned int index
)
664 return (index
+ 1) % AR_BUFFERS
;
667 static inline unsigned int ar_prev_buffer_index(unsigned int index
)
669 return (index
- 1 + AR_BUFFERS
) % AR_BUFFERS
;
672 static inline unsigned int ar_first_buffer_index(struct ar_context
*ctx
)
674 return ar_next_buffer_index(ctx
->last_buffer_index
);
678 * We search for the buffer that contains the last AR packet DMA data written
681 static unsigned int ar_search_last_active_buffer(struct ar_context
*ctx
,
682 unsigned int *buffer_offset
)
684 unsigned int i
, next_i
, last
= ctx
->last_buffer_index
;
685 __le16 res_count
, next_res_count
;
687 i
= ar_first_buffer_index(ctx
);
688 res_count
= ACCESS_ONCE(ctx
->descriptors
[i
].res_count
);
690 /* A buffer that is not yet completely filled must be the last one. */
691 while (i
!= last
&& res_count
== 0) {
693 /* Peek at the next descriptor. */
694 next_i
= ar_next_buffer_index(i
);
695 rmb(); /* read descriptors in order */
696 next_res_count
= ACCESS_ONCE(
697 ctx
->descriptors
[next_i
].res_count
);
699 * If the next descriptor is still empty, we must stop at this
702 if (next_res_count
== cpu_to_le16(PAGE_SIZE
)) {
704 * The exception is when the DMA data for one packet is
705 * split over three buffers; in this case, the middle
706 * buffer's descriptor might be never updated by the
707 * controller and look still empty, and we have to peek
710 if (MAX_AR_PACKET_SIZE
> PAGE_SIZE
&& i
!= last
) {
711 next_i
= ar_next_buffer_index(next_i
);
713 next_res_count
= ACCESS_ONCE(
714 ctx
->descriptors
[next_i
].res_count
);
715 if (next_res_count
!= cpu_to_le16(PAGE_SIZE
))
716 goto next_buffer_is_active
;
722 next_buffer_is_active
:
724 res_count
= next_res_count
;
727 rmb(); /* read res_count before the DMA data */
729 *buffer_offset
= PAGE_SIZE
- le16_to_cpu(res_count
);
730 if (*buffer_offset
> PAGE_SIZE
) {
732 ar_context_abort(ctx
, "corrupted descriptor");
738 static void ar_sync_buffers_for_cpu(struct ar_context
*ctx
,
739 unsigned int end_buffer_index
,
740 unsigned int end_buffer_offset
)
744 i
= ar_first_buffer_index(ctx
);
745 while (i
!= end_buffer_index
) {
746 dma_sync_single_for_cpu(ctx
->ohci
->card
.device
,
747 ar_buffer_bus(ctx
, i
),
748 PAGE_SIZE
, DMA_FROM_DEVICE
);
749 i
= ar_next_buffer_index(i
);
751 if (end_buffer_offset
> 0)
752 dma_sync_single_for_cpu(ctx
->ohci
->card
.device
,
753 ar_buffer_bus(ctx
, i
),
754 end_buffer_offset
, DMA_FROM_DEVICE
);
757 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
758 #define cond_le32_to_cpu(v) \
759 (ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
761 #define cond_le32_to_cpu(v) le32_to_cpu(v)
764 static __le32
*handle_ar_packet(struct ar_context
*ctx
, __le32
*buffer
)
766 struct fw_ohci
*ohci
= ctx
->ohci
;
768 u32 status
, length
, tcode
;
771 p
.header
[0] = cond_le32_to_cpu(buffer
[0]);
772 p
.header
[1] = cond_le32_to_cpu(buffer
[1]);
773 p
.header
[2] = cond_le32_to_cpu(buffer
[2]);
775 tcode
= (p
.header
[0] >> 4) & 0x0f;
777 case TCODE_WRITE_QUADLET_REQUEST
:
778 case TCODE_READ_QUADLET_RESPONSE
:
779 p
.header
[3] = (__force __u32
) buffer
[3];
780 p
.header_length
= 16;
781 p
.payload_length
= 0;
784 case TCODE_READ_BLOCK_REQUEST
:
785 p
.header
[3] = cond_le32_to_cpu(buffer
[3]);
786 p
.header_length
= 16;
787 p
.payload_length
= 0;
790 case TCODE_WRITE_BLOCK_REQUEST
:
791 case TCODE_READ_BLOCK_RESPONSE
:
792 case TCODE_LOCK_REQUEST
:
793 case TCODE_LOCK_RESPONSE
:
794 p
.header
[3] = cond_le32_to_cpu(buffer
[3]);
795 p
.header_length
= 16;
796 p
.payload_length
= p
.header
[3] >> 16;
797 if (p
.payload_length
> MAX_ASYNC_PAYLOAD
) {
798 ar_context_abort(ctx
, "invalid packet length");
803 case TCODE_WRITE_RESPONSE
:
804 case TCODE_READ_QUADLET_REQUEST
:
805 case OHCI_TCODE_PHY_PACKET
:
806 p
.header_length
= 12;
807 p
.payload_length
= 0;
811 ar_context_abort(ctx
, "invalid tcode");
815 p
.payload
= (void *) buffer
+ p
.header_length
;
817 /* FIXME: What to do about evt_* errors? */
818 length
= (p
.header_length
+ p
.payload_length
+ 3) / 4;
819 status
= cond_le32_to_cpu(buffer
[length
]);
820 evt
= (status
>> 16) & 0x1f;
823 p
.speed
= (status
>> 21) & 0x7;
824 p
.timestamp
= status
& 0xffff;
825 p
.generation
= ohci
->request_generation
;
827 log_ar_at_event('R', p
.speed
, p
.header
, evt
);
830 * Several controllers, notably from NEC and VIA, forget to
831 * write ack_complete status at PHY packet reception.
833 if (evt
== OHCI1394_evt_no_status
&&
834 (p
.header
[0] & 0xff) == (OHCI1394_phy_tcode
<< 4))
835 p
.ack
= ACK_COMPLETE
;
838 * The OHCI bus reset handler synthesizes a PHY packet with
839 * the new generation number when a bus reset happens (see
840 * section 8.4.2.3). This helps us determine when a request
841 * was received and make sure we send the response in the same
842 * generation. We only need this for requests; for responses
843 * we use the unique tlabel for finding the matching
846 * Alas some chips sometimes emit bus reset packets with a
847 * wrong generation. We set the correct generation for these
848 * at a slightly incorrect time (in bus_reset_tasklet).
850 if (evt
== OHCI1394_evt_bus_reset
) {
851 if (!(ohci
->quirks
& QUIRK_RESET_PACKET
))
852 ohci
->request_generation
= (p
.header
[2] >> 16) & 0xff;
853 } else if (ctx
== &ohci
->ar_request_ctx
) {
854 fw_core_handle_request(&ohci
->card
, &p
);
856 fw_core_handle_response(&ohci
->card
, &p
);
859 return buffer
+ length
+ 1;
862 static void *handle_ar_packets(struct ar_context
*ctx
, void *p
, void *end
)
867 next
= handle_ar_packet(ctx
, p
);
876 static void ar_recycle_buffers(struct ar_context
*ctx
, unsigned int end_buffer
)
880 i
= ar_first_buffer_index(ctx
);
881 while (i
!= end_buffer
) {
882 dma_sync_single_for_device(ctx
->ohci
->card
.device
,
883 ar_buffer_bus(ctx
, i
),
884 PAGE_SIZE
, DMA_FROM_DEVICE
);
885 ar_context_link_page(ctx
, i
);
886 i
= ar_next_buffer_index(i
);
890 static void ar_context_tasklet(unsigned long data
)
892 struct ar_context
*ctx
= (struct ar_context
*)data
;
893 unsigned int end_buffer_index
, end_buffer_offset
;
900 end_buffer_index
= ar_search_last_active_buffer(ctx
,
902 ar_sync_buffers_for_cpu(ctx
, end_buffer_index
, end_buffer_offset
);
903 end
= ctx
->buffer
+ end_buffer_index
* PAGE_SIZE
+ end_buffer_offset
;
905 if (end_buffer_index
< ar_first_buffer_index(ctx
)) {
907 * The filled part of the overall buffer wraps around; handle
908 * all packets up to the buffer end here. If the last packet
909 * wraps around, its tail will be visible after the buffer end
910 * because the buffer start pages are mapped there again.
912 void *buffer_end
= ctx
->buffer
+ AR_BUFFERS
* PAGE_SIZE
;
913 p
= handle_ar_packets(ctx
, p
, buffer_end
);
916 /* adjust p to point back into the actual buffer */
917 p
-= AR_BUFFERS
* PAGE_SIZE
;
920 p
= handle_ar_packets(ctx
, p
, end
);
923 ar_context_abort(ctx
, "inconsistent descriptor");
928 ar_recycle_buffers(ctx
, end_buffer_index
);
936 static int ar_context_init(struct ar_context
*ctx
, struct fw_ohci
*ohci
,
937 unsigned int descriptors_offset
, u32 regs
)
941 struct page
*pages
[AR_BUFFERS
+ AR_WRAPAROUND_PAGES
];
942 struct descriptor
*d
;
946 tasklet_init(&ctx
->tasklet
, ar_context_tasklet
, (unsigned long)ctx
);
948 for (i
= 0; i
< AR_BUFFERS
; i
++) {
949 ctx
->pages
[i
] = alloc_page(GFP_KERNEL
| GFP_DMA32
);
952 dma_addr
= dma_map_page(ohci
->card
.device
, ctx
->pages
[i
],
953 0, PAGE_SIZE
, DMA_FROM_DEVICE
);
954 if (dma_mapping_error(ohci
->card
.device
, dma_addr
)) {
955 __free_page(ctx
->pages
[i
]);
956 ctx
->pages
[i
] = NULL
;
959 set_page_private(ctx
->pages
[i
], dma_addr
);
962 for (i
= 0; i
< AR_BUFFERS
; i
++)
963 pages
[i
] = ctx
->pages
[i
];
964 for (i
= 0; i
< AR_WRAPAROUND_PAGES
; i
++)
965 pages
[AR_BUFFERS
+ i
] = ctx
->pages
[i
];
966 ctx
->buffer
= vm_map_ram(pages
, AR_BUFFERS
+ AR_WRAPAROUND_PAGES
,
971 ctx
->descriptors
= ohci
->misc_buffer
+ descriptors_offset
;
972 ctx
->descriptors_bus
= ohci
->misc_buffer_bus
+ descriptors_offset
;
974 for (i
= 0; i
< AR_BUFFERS
; i
++) {
975 d
= &ctx
->descriptors
[i
];
976 d
->req_count
= cpu_to_le16(PAGE_SIZE
);
977 d
->control
= cpu_to_le16(DESCRIPTOR_INPUT_MORE
|
979 DESCRIPTOR_BRANCH_ALWAYS
);
980 d
->data_address
= cpu_to_le32(ar_buffer_bus(ctx
, i
));
981 d
->branch_address
= cpu_to_le32(ctx
->descriptors_bus
+
982 ar_next_buffer_index(i
) * sizeof(struct descriptor
));
988 ar_context_release(ctx
);
993 static void ar_context_run(struct ar_context
*ctx
)
997 for (i
= 0; i
< AR_BUFFERS
; i
++)
998 ar_context_link_page(ctx
, i
);
1000 ctx
->pointer
= ctx
->buffer
;
1002 reg_write(ctx
->ohci
, COMMAND_PTR(ctx
->regs
), ctx
->descriptors_bus
| 1);
1003 reg_write(ctx
->ohci
, CONTROL_SET(ctx
->regs
), CONTEXT_RUN
);
1004 flush_writes(ctx
->ohci
);
1007 static struct descriptor
*find_branch_descriptor(struct descriptor
*d
, int z
)
1011 b
= (le16_to_cpu(d
->control
) & DESCRIPTOR_BRANCH_ALWAYS
) >> 2;
1012 key
= (le16_to_cpu(d
->control
) & DESCRIPTOR_KEY_IMMEDIATE
) >> 8;
1014 /* figure out which descriptor the branch address goes in */
1015 if (z
== 2 && (b
== 3 || key
== 2))
1021 static void context_tasklet(unsigned long data
)
1023 struct context
*ctx
= (struct context
*) data
;
1024 struct descriptor
*d
, *last
;
1027 struct descriptor_buffer
*desc
;
1029 desc
= list_entry(ctx
->buffer_list
.next
,
1030 struct descriptor_buffer
, list
);
1032 while (last
->branch_address
!= 0) {
1033 struct descriptor_buffer
*old_desc
= desc
;
1034 address
= le32_to_cpu(last
->branch_address
);
1038 /* If the branch address points to a buffer outside of the
1039 * current buffer, advance to the next buffer. */
1040 if (address
< desc
->buffer_bus
||
1041 address
>= desc
->buffer_bus
+ desc
->used
)
1042 desc
= list_entry(desc
->list
.next
,
1043 struct descriptor_buffer
, list
);
1044 d
= desc
->buffer
+ (address
- desc
->buffer_bus
) / sizeof(*d
);
1045 last
= find_branch_descriptor(d
, z
);
1047 if (!ctx
->callback(ctx
, d
, last
))
1050 if (old_desc
!= desc
) {
1051 /* If we've advanced to the next buffer, move the
1052 * previous buffer to the free list. */
1053 unsigned long flags
;
1055 spin_lock_irqsave(&ctx
->ohci
->lock
, flags
);
1056 list_move_tail(&old_desc
->list
, &ctx
->buffer_list
);
1057 spin_unlock_irqrestore(&ctx
->ohci
->lock
, flags
);
1064 * Allocate a new buffer and add it to the list of free buffers for this
1065 * context. Must be called with ohci->lock held.
1067 static int context_add_buffer(struct context
*ctx
)
1069 struct descriptor_buffer
*desc
;
1070 dma_addr_t
uninitialized_var(bus_addr
);
1074 * 16MB of descriptors should be far more than enough for any DMA
1075 * program. This will catch run-away userspace or DoS attacks.
1077 if (ctx
->total_allocation
>= 16*1024*1024)
1080 desc
= dma_alloc_coherent(ctx
->ohci
->card
.device
, PAGE_SIZE
,
1081 &bus_addr
, GFP_ATOMIC
);
1085 offset
= (void *)&desc
->buffer
- (void *)desc
;
1086 desc
->buffer_size
= PAGE_SIZE
- offset
;
1087 desc
->buffer_bus
= bus_addr
+ offset
;
1090 list_add_tail(&desc
->list
, &ctx
->buffer_list
);
1091 ctx
->total_allocation
+= PAGE_SIZE
;
1096 static int context_init(struct context
*ctx
, struct fw_ohci
*ohci
,
1097 u32 regs
, descriptor_callback_t callback
)
1101 ctx
->total_allocation
= 0;
1103 INIT_LIST_HEAD(&ctx
->buffer_list
);
1104 if (context_add_buffer(ctx
) < 0)
1107 ctx
->buffer_tail
= list_entry(ctx
->buffer_list
.next
,
1108 struct descriptor_buffer
, list
);
1110 tasklet_init(&ctx
->tasklet
, context_tasklet
, (unsigned long)ctx
);
1111 ctx
->callback
= callback
;
1114 * We put a dummy descriptor in the buffer that has a NULL
1115 * branch address and looks like it's been sent. That way we
1116 * have a descriptor to append DMA programs to.
1118 memset(ctx
->buffer_tail
->buffer
, 0, sizeof(*ctx
->buffer_tail
->buffer
));
1119 ctx
->buffer_tail
->buffer
->control
= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST
);
1120 ctx
->buffer_tail
->buffer
->transfer_status
= cpu_to_le16(0x8011);
1121 ctx
->buffer_tail
->used
+= sizeof(*ctx
->buffer_tail
->buffer
);
1122 ctx
->last
= ctx
->buffer_tail
->buffer
;
1123 ctx
->prev
= ctx
->buffer_tail
->buffer
;
1128 static void context_release(struct context
*ctx
)
1130 struct fw_card
*card
= &ctx
->ohci
->card
;
1131 struct descriptor_buffer
*desc
, *tmp
;
1133 list_for_each_entry_safe(desc
, tmp
, &ctx
->buffer_list
, list
)
1134 dma_free_coherent(card
->device
, PAGE_SIZE
, desc
,
1136 ((void *)&desc
->buffer
- (void *)desc
));
1139 /* Must be called with ohci->lock held */
1140 static struct descriptor
*context_get_descriptors(struct context
*ctx
,
1141 int z
, dma_addr_t
*d_bus
)
1143 struct descriptor
*d
= NULL
;
1144 struct descriptor_buffer
*desc
= ctx
->buffer_tail
;
1146 if (z
* sizeof(*d
) > desc
->buffer_size
)
1149 if (z
* sizeof(*d
) > desc
->buffer_size
- desc
->used
) {
1150 /* No room for the descriptor in this buffer, so advance to the
1153 if (desc
->list
.next
== &ctx
->buffer_list
) {
1154 /* If there is no free buffer next in the list,
1156 if (context_add_buffer(ctx
) < 0)
1159 desc
= list_entry(desc
->list
.next
,
1160 struct descriptor_buffer
, list
);
1161 ctx
->buffer_tail
= desc
;
1164 d
= desc
->buffer
+ desc
->used
/ sizeof(*d
);
1165 memset(d
, 0, z
* sizeof(*d
));
1166 *d_bus
= desc
->buffer_bus
+ desc
->used
;
1171 static void context_run(struct context
*ctx
, u32 extra
)
1173 struct fw_ohci
*ohci
= ctx
->ohci
;
1175 reg_write(ohci
, COMMAND_PTR(ctx
->regs
),
1176 le32_to_cpu(ctx
->last
->branch_address
));
1177 reg_write(ohci
, CONTROL_CLEAR(ctx
->regs
), ~0);
1178 reg_write(ohci
, CONTROL_SET(ctx
->regs
), CONTEXT_RUN
| extra
);
1179 ctx
->running
= true;
1183 static void context_append(struct context
*ctx
,
1184 struct descriptor
*d
, int z
, int extra
)
1187 struct descriptor_buffer
*desc
= ctx
->buffer_tail
;
1189 d_bus
= desc
->buffer_bus
+ (d
- desc
->buffer
) * sizeof(*d
);
1191 desc
->used
+= (z
+ extra
) * sizeof(*d
);
1193 wmb(); /* finish init of new descriptors before branch_address update */
1194 ctx
->prev
->branch_address
= cpu_to_le32(d_bus
| z
);
1195 ctx
->prev
= find_branch_descriptor(d
, z
);
1197 reg_write(ctx
->ohci
, CONTROL_SET(ctx
->regs
), CONTEXT_WAKE
);
1198 flush_writes(ctx
->ohci
);
1201 static void context_stop(struct context
*ctx
)
1206 reg_write(ctx
->ohci
, CONTROL_CLEAR(ctx
->regs
), CONTEXT_RUN
);
1207 ctx
->running
= false;
1208 flush_writes(ctx
->ohci
);
1210 for (i
= 0; i
< 10; i
++) {
1211 reg
= reg_read(ctx
->ohci
, CONTROL_SET(ctx
->regs
));
1212 if ((reg
& CONTEXT_ACTIVE
) == 0)
1217 fw_error("Error: DMA context still active (0x%08x)\n", reg
);
1220 struct driver_data
{
1221 struct fw_packet
*packet
;
1225 * This function apppends a packet to the DMA queue for transmission.
1226 * Must always be called with the ochi->lock held to ensure proper
1227 * generation handling and locking around packet queue manipulation.
1229 static int at_context_queue_packet(struct context
*ctx
,
1230 struct fw_packet
*packet
)
1232 struct fw_ohci
*ohci
= ctx
->ohci
;
1233 dma_addr_t d_bus
, uninitialized_var(payload_bus
);
1234 struct driver_data
*driver_data
;
1235 struct descriptor
*d
, *last
;
1239 d
= context_get_descriptors(ctx
, 4, &d_bus
);
1241 packet
->ack
= RCODE_SEND_ERROR
;
1245 d
[0].control
= cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE
);
1246 d
[0].res_count
= cpu_to_le16(packet
->timestamp
);
1249 * The DMA format for asyncronous link packets is different
1250 * from the IEEE1394 layout, so shift the fields around
1254 tcode
= (packet
->header
[0] >> 4) & 0x0f;
1255 header
= (__le32
*) &d
[1];
1257 case TCODE_WRITE_QUADLET_REQUEST
:
1258 case TCODE_WRITE_BLOCK_REQUEST
:
1259 case TCODE_WRITE_RESPONSE
:
1260 case TCODE_READ_QUADLET_REQUEST
:
1261 case TCODE_READ_BLOCK_REQUEST
:
1262 case TCODE_READ_QUADLET_RESPONSE
:
1263 case TCODE_READ_BLOCK_RESPONSE
:
1264 case TCODE_LOCK_REQUEST
:
1265 case TCODE_LOCK_RESPONSE
:
1266 header
[0] = cpu_to_le32((packet
->header
[0] & 0xffff) |
1267 (packet
->speed
<< 16));
1268 header
[1] = cpu_to_le32((packet
->header
[1] & 0xffff) |
1269 (packet
->header
[0] & 0xffff0000));
1270 header
[2] = cpu_to_le32(packet
->header
[2]);
1272 if (TCODE_IS_BLOCK_PACKET(tcode
))
1273 header
[3] = cpu_to_le32(packet
->header
[3]);
1275 header
[3] = (__force __le32
) packet
->header
[3];
1277 d
[0].req_count
= cpu_to_le16(packet
->header_length
);
1280 case TCODE_LINK_INTERNAL
:
1281 header
[0] = cpu_to_le32((OHCI1394_phy_tcode
<< 4) |
1282 (packet
->speed
<< 16));
1283 header
[1] = cpu_to_le32(packet
->header
[1]);
1284 header
[2] = cpu_to_le32(packet
->header
[2]);
1285 d
[0].req_count
= cpu_to_le16(12);
1287 if (is_ping_packet(&packet
->header
[1]))
1288 d
[0].control
|= cpu_to_le16(DESCRIPTOR_PING
);
1291 case TCODE_STREAM_DATA
:
1292 header
[0] = cpu_to_le32((packet
->header
[0] & 0xffff) |
1293 (packet
->speed
<< 16));
1294 header
[1] = cpu_to_le32(packet
->header
[0] & 0xffff0000);
1295 d
[0].req_count
= cpu_to_le16(8);
1300 packet
->ack
= RCODE_SEND_ERROR
;
1304 driver_data
= (struct driver_data
*) &d
[3];
1305 driver_data
->packet
= packet
;
1306 packet
->driver_data
= driver_data
;
1308 if (packet
->payload_length
> 0) {
1310 dma_map_single(ohci
->card
.device
, packet
->payload
,
1311 packet
->payload_length
, DMA_TO_DEVICE
);
1312 if (dma_mapping_error(ohci
->card
.device
, payload_bus
)) {
1313 packet
->ack
= RCODE_SEND_ERROR
;
1316 packet
->payload_bus
= payload_bus
;
1317 packet
->payload_mapped
= true;
1319 d
[2].req_count
= cpu_to_le16(packet
->payload_length
);
1320 d
[2].data_address
= cpu_to_le32(payload_bus
);
1328 last
->control
|= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST
|
1329 DESCRIPTOR_IRQ_ALWAYS
|
1330 DESCRIPTOR_BRANCH_ALWAYS
);
1332 /* FIXME: Document how the locking works. */
1333 if (ohci
->generation
!= packet
->generation
) {
1334 if (packet
->payload_mapped
)
1335 dma_unmap_single(ohci
->card
.device
, payload_bus
,
1336 packet
->payload_length
, DMA_TO_DEVICE
);
1337 packet
->ack
= RCODE_GENERATION
;
1341 context_append(ctx
, d
, z
, 4 - z
);
1344 context_run(ctx
, 0);
1349 static void at_context_flush(struct context
*ctx
)
1351 tasklet_disable(&ctx
->tasklet
);
1353 ctx
->flushing
= true;
1354 context_tasklet((unsigned long)ctx
);
1355 ctx
->flushing
= false;
1357 tasklet_enable(&ctx
->tasklet
);
1360 static int handle_at_packet(struct context
*context
,
1361 struct descriptor
*d
,
1362 struct descriptor
*last
)
1364 struct driver_data
*driver_data
;
1365 struct fw_packet
*packet
;
1366 struct fw_ohci
*ohci
= context
->ohci
;
1369 if (last
->transfer_status
== 0 && !context
->flushing
)
1370 /* This descriptor isn't done yet, stop iteration. */
1373 driver_data
= (struct driver_data
*) &d
[3];
1374 packet
= driver_data
->packet
;
1376 /* This packet was cancelled, just continue. */
1379 if (packet
->payload_mapped
)
1380 dma_unmap_single(ohci
->card
.device
, packet
->payload_bus
,
1381 packet
->payload_length
, DMA_TO_DEVICE
);
1383 evt
= le16_to_cpu(last
->transfer_status
) & 0x1f;
1384 packet
->timestamp
= le16_to_cpu(last
->res_count
);
1386 log_ar_at_event('T', packet
->speed
, packet
->header
, evt
);
1389 case OHCI1394_evt_timeout
:
1390 /* Async response transmit timed out. */
1391 packet
->ack
= RCODE_CANCELLED
;
1394 case OHCI1394_evt_flushed
:
1396 * The packet was flushed should give same error as
1397 * when we try to use a stale generation count.
1399 packet
->ack
= RCODE_GENERATION
;
1402 case OHCI1394_evt_missing_ack
:
1403 if (context
->flushing
)
1404 packet
->ack
= RCODE_GENERATION
;
1407 * Using a valid (current) generation count, but the
1408 * node is not on the bus or not sending acks.
1410 packet
->ack
= RCODE_NO_ACK
;
1414 case ACK_COMPLETE
+ 0x10:
1415 case ACK_PENDING
+ 0x10:
1416 case ACK_BUSY_X
+ 0x10:
1417 case ACK_BUSY_A
+ 0x10:
1418 case ACK_BUSY_B
+ 0x10:
1419 case ACK_DATA_ERROR
+ 0x10:
1420 case ACK_TYPE_ERROR
+ 0x10:
1421 packet
->ack
= evt
- 0x10;
1424 case OHCI1394_evt_no_status
:
1425 if (context
->flushing
) {
1426 packet
->ack
= RCODE_GENERATION
;
1432 packet
->ack
= RCODE_SEND_ERROR
;
1436 packet
->callback(packet
, &ohci
->card
, packet
->ack
);
1441 #define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff)
1442 #define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f)
1443 #define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff)
1444 #define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff)
1445 #define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff)
1447 static void handle_local_rom(struct fw_ohci
*ohci
,
1448 struct fw_packet
*packet
, u32 csr
)
1450 struct fw_packet response
;
1451 int tcode
, length
, i
;
1453 tcode
= HEADER_GET_TCODE(packet
->header
[0]);
1454 if (TCODE_IS_BLOCK_PACKET(tcode
))
1455 length
= HEADER_GET_DATA_LENGTH(packet
->header
[3]);
1459 i
= csr
- CSR_CONFIG_ROM
;
1460 if (i
+ length
> CONFIG_ROM_SIZE
) {
1461 fw_fill_response(&response
, packet
->header
,
1462 RCODE_ADDRESS_ERROR
, NULL
, 0);
1463 } else if (!TCODE_IS_READ_REQUEST(tcode
)) {
1464 fw_fill_response(&response
, packet
->header
,
1465 RCODE_TYPE_ERROR
, NULL
, 0);
1467 fw_fill_response(&response
, packet
->header
, RCODE_COMPLETE
,
1468 (void *) ohci
->config_rom
+ i
, length
);
1471 fw_core_handle_response(&ohci
->card
, &response
);
1474 static void handle_local_lock(struct fw_ohci
*ohci
,
1475 struct fw_packet
*packet
, u32 csr
)
1477 struct fw_packet response
;
1478 int tcode
, length
, ext_tcode
, sel
, try;
1479 __be32
*payload
, lock_old
;
1480 u32 lock_arg
, lock_data
;
1482 tcode
= HEADER_GET_TCODE(packet
->header
[0]);
1483 length
= HEADER_GET_DATA_LENGTH(packet
->header
[3]);
1484 payload
= packet
->payload
;
1485 ext_tcode
= HEADER_GET_EXTENDED_TCODE(packet
->header
[3]);
1487 if (tcode
== TCODE_LOCK_REQUEST
&&
1488 ext_tcode
== EXTCODE_COMPARE_SWAP
&& length
== 8) {
1489 lock_arg
= be32_to_cpu(payload
[0]);
1490 lock_data
= be32_to_cpu(payload
[1]);
1491 } else if (tcode
== TCODE_READ_QUADLET_REQUEST
) {
1495 fw_fill_response(&response
, packet
->header
,
1496 RCODE_TYPE_ERROR
, NULL
, 0);
1500 sel
= (csr
- CSR_BUS_MANAGER_ID
) / 4;
1501 reg_write(ohci
, OHCI1394_CSRData
, lock_data
);
1502 reg_write(ohci
, OHCI1394_CSRCompareData
, lock_arg
);
1503 reg_write(ohci
, OHCI1394_CSRControl
, sel
);
1505 for (try = 0; try < 20; try++)
1506 if (reg_read(ohci
, OHCI1394_CSRControl
) & 0x80000000) {
1507 lock_old
= cpu_to_be32(reg_read(ohci
,
1509 fw_fill_response(&response
, packet
->header
,
1511 &lock_old
, sizeof(lock_old
));
1515 fw_error("swap not done (CSR lock timeout)\n");
1516 fw_fill_response(&response
, packet
->header
, RCODE_BUSY
, NULL
, 0);
1519 fw_core_handle_response(&ohci
->card
, &response
);
1522 static void handle_local_request(struct context
*ctx
, struct fw_packet
*packet
)
1526 if (ctx
== &ctx
->ohci
->at_request_ctx
) {
1527 packet
->ack
= ACK_PENDING
;
1528 packet
->callback(packet
, &ctx
->ohci
->card
, packet
->ack
);
1532 ((unsigned long long)
1533 HEADER_GET_OFFSET_HIGH(packet
->header
[1]) << 32) |
1535 csr
= offset
- CSR_REGISTER_BASE
;
1537 /* Handle config rom reads. */
1538 if (csr
>= CSR_CONFIG_ROM
&& csr
< CSR_CONFIG_ROM_END
)
1539 handle_local_rom(ctx
->ohci
, packet
, csr
);
1541 case CSR_BUS_MANAGER_ID
:
1542 case CSR_BANDWIDTH_AVAILABLE
:
1543 case CSR_CHANNELS_AVAILABLE_HI
:
1544 case CSR_CHANNELS_AVAILABLE_LO
:
1545 handle_local_lock(ctx
->ohci
, packet
, csr
);
1548 if (ctx
== &ctx
->ohci
->at_request_ctx
)
1549 fw_core_handle_request(&ctx
->ohci
->card
, packet
);
1551 fw_core_handle_response(&ctx
->ohci
->card
, packet
);
1555 if (ctx
== &ctx
->ohci
->at_response_ctx
) {
1556 packet
->ack
= ACK_COMPLETE
;
1557 packet
->callback(packet
, &ctx
->ohci
->card
, packet
->ack
);
1561 static void at_context_transmit(struct context
*ctx
, struct fw_packet
*packet
)
1563 unsigned long flags
;
1566 spin_lock_irqsave(&ctx
->ohci
->lock
, flags
);
1568 if (HEADER_GET_DESTINATION(packet
->header
[0]) == ctx
->ohci
->node_id
&&
1569 ctx
->ohci
->generation
== packet
->generation
) {
1570 spin_unlock_irqrestore(&ctx
->ohci
->lock
, flags
);
1571 handle_local_request(ctx
, packet
);
1575 ret
= at_context_queue_packet(ctx
, packet
);
1576 spin_unlock_irqrestore(&ctx
->ohci
->lock
, flags
);
1579 packet
->callback(packet
, &ctx
->ohci
->card
, packet
->ack
);
1583 static void detect_dead_context(struct fw_ohci
*ohci
,
1584 const char *name
, unsigned int regs
)
1588 ctl
= reg_read(ohci
, CONTROL_SET(regs
));
1589 if (ctl
& CONTEXT_DEAD
) {
1590 #ifdef CONFIG_FIREWIRE_OHCI_DEBUG
1591 fw_error("DMA context %s has stopped, error code: %s\n",
1592 name
, evts
[ctl
& 0x1f]);
1594 fw_error("DMA context %s has stopped, error code: %#x\n",
1600 static void handle_dead_contexts(struct fw_ohci
*ohci
)
1605 detect_dead_context(ohci
, "ATReq", OHCI1394_AsReqTrContextBase
);
1606 detect_dead_context(ohci
, "ATRsp", OHCI1394_AsRspTrContextBase
);
1607 detect_dead_context(ohci
, "ARReq", OHCI1394_AsReqRcvContextBase
);
1608 detect_dead_context(ohci
, "ARRsp", OHCI1394_AsRspRcvContextBase
);
1609 for (i
= 0; i
< 32; ++i
) {
1610 if (!(ohci
->it_context_support
& (1 << i
)))
1612 sprintf(name
, "IT%u", i
);
1613 detect_dead_context(ohci
, name
, OHCI1394_IsoXmitContextBase(i
));
1615 for (i
= 0; i
< 32; ++i
) {
1616 if (!(ohci
->ir_context_support
& (1 << i
)))
1618 sprintf(name
, "IR%u", i
);
1619 detect_dead_context(ohci
, name
, OHCI1394_IsoRcvContextBase(i
));
1621 /* TODO: maybe try to flush and restart the dead contexts */
1624 static u32
cycle_timer_ticks(u32 cycle_timer
)
1628 ticks
= cycle_timer
& 0xfff;
1629 ticks
+= 3072 * ((cycle_timer
>> 12) & 0x1fff);
1630 ticks
+= (3072 * 8000) * (cycle_timer
>> 25);
1636 * Some controllers exhibit one or more of the following bugs when updating the
1637 * iso cycle timer register:
1638 * - When the lowest six bits are wrapping around to zero, a read that happens
1639 * at the same time will return garbage in the lowest ten bits.
1640 * - When the cycleOffset field wraps around to zero, the cycleCount field is
1641 * not incremented for about 60 ns.
1642 * - Occasionally, the entire register reads zero.
1644 * To catch these, we read the register three times and ensure that the
1645 * difference between each two consecutive reads is approximately the same, i.e.
1646 * less than twice the other. Furthermore, any negative difference indicates an
1647 * error. (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1648 * execute, so we have enough precision to compute the ratio of the differences.)
1650 static u32
get_cycle_time(struct fw_ohci
*ohci
)
1657 c2
= reg_read(ohci
, OHCI1394_IsochronousCycleTimer
);
1659 if (ohci
->quirks
& QUIRK_CYCLE_TIMER
) {
1662 c2
= reg_read(ohci
, OHCI1394_IsochronousCycleTimer
);
1666 c2
= reg_read(ohci
, OHCI1394_IsochronousCycleTimer
);
1667 t0
= cycle_timer_ticks(c0
);
1668 t1
= cycle_timer_ticks(c1
);
1669 t2
= cycle_timer_ticks(c2
);
1672 } while ((diff01
<= 0 || diff12
<= 0 ||
1673 diff01
/ diff12
>= 2 || diff12
/ diff01
>= 2)
1681 * This function has to be called at least every 64 seconds. The bus_time
1682 * field stores not only the upper 25 bits of the BUS_TIME register but also
1683 * the most significant bit of the cycle timer in bit 6 so that we can detect
1684 * changes in this bit.
1686 static u32
update_bus_time(struct fw_ohci
*ohci
)
1688 u32 cycle_time_seconds
= get_cycle_time(ohci
) >> 25;
1690 if ((ohci
->bus_time
& 0x40) != (cycle_time_seconds
& 0x40))
1691 ohci
->bus_time
+= 0x40;
1693 return ohci
->bus_time
| cycle_time_seconds
;
1696 static void bus_reset_tasklet(unsigned long data
)
1698 struct fw_ohci
*ohci
= (struct fw_ohci
*)data
;
1699 int self_id_count
, i
, j
, reg
;
1700 int generation
, new_generation
;
1701 unsigned long flags
;
1702 void *free_rom
= NULL
;
1703 dma_addr_t free_rom_bus
= 0;
1706 reg
= reg_read(ohci
, OHCI1394_NodeID
);
1707 if (!(reg
& OHCI1394_NodeID_idValid
)) {
1708 fw_notify("node ID not valid, new bus reset in progress\n");
1711 if ((reg
& OHCI1394_NodeID_nodeNumber
) == 63) {
1712 fw_notify("malconfigured bus\n");
1715 ohci
->node_id
= reg
& (OHCI1394_NodeID_busNumber
|
1716 OHCI1394_NodeID_nodeNumber
);
1718 is_new_root
= (reg
& OHCI1394_NodeID_root
) != 0;
1719 if (!(ohci
->is_root
&& is_new_root
))
1720 reg_write(ohci
, OHCI1394_LinkControlSet
,
1721 OHCI1394_LinkControl_cycleMaster
);
1722 ohci
->is_root
= is_new_root
;
1724 reg
= reg_read(ohci
, OHCI1394_SelfIDCount
);
1725 if (reg
& OHCI1394_SelfIDCount_selfIDError
) {
1726 fw_notify("inconsistent self IDs\n");
1730 * The count in the SelfIDCount register is the number of
1731 * bytes in the self ID receive buffer. Since we also receive
1732 * the inverted quadlets and a header quadlet, we shift one
1733 * bit extra to get the actual number of self IDs.
1735 self_id_count
= (reg
>> 3) & 0xff;
1736 if (self_id_count
== 0 || self_id_count
> 252) {
1737 fw_notify("inconsistent self IDs\n");
1740 generation
= (cond_le32_to_cpu(ohci
->self_id_cpu
[0]) >> 16) & 0xff;
1743 for (i
= 1, j
= 0; j
< self_id_count
; i
+= 2, j
++) {
1744 if (ohci
->self_id_cpu
[i
] != ~ohci
->self_id_cpu
[i
+ 1]) {
1745 fw_notify("inconsistent self IDs\n");
1748 ohci
->self_id_buffer
[j
] =
1749 cond_le32_to_cpu(ohci
->self_id_cpu
[i
]);
1754 * Check the consistency of the self IDs we just read. The
1755 * problem we face is that a new bus reset can start while we
1756 * read out the self IDs from the DMA buffer. If this happens,
1757 * the DMA buffer will be overwritten with new self IDs and we
1758 * will read out inconsistent data. The OHCI specification
1759 * (section 11.2) recommends a technique similar to
1760 * linux/seqlock.h, where we remember the generation of the
1761 * self IDs in the buffer before reading them out and compare
1762 * it to the current generation after reading them out. If
1763 * the two generations match we know we have a consistent set
1767 new_generation
= (reg_read(ohci
, OHCI1394_SelfIDCount
) >> 16) & 0xff;
1768 if (new_generation
!= generation
) {
1769 fw_notify("recursive bus reset detected, "
1770 "discarding self ids\n");
1774 /* FIXME: Document how the locking works. */
1775 spin_lock_irqsave(&ohci
->lock
, flags
);
1777 ohci
->generation
= -1; /* prevent AT packet queueing */
1778 context_stop(&ohci
->at_request_ctx
);
1779 context_stop(&ohci
->at_response_ctx
);
1781 spin_unlock_irqrestore(&ohci
->lock
, flags
);
1784 * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
1785 * packets in the AT queues and software needs to drain them.
1786 * Some OHCI 1.1 controllers (JMicron) apparently require this too.
1788 at_context_flush(&ohci
->at_request_ctx
);
1789 at_context_flush(&ohci
->at_response_ctx
);
1791 spin_lock_irqsave(&ohci
->lock
, flags
);
1793 ohci
->generation
= generation
;
1794 reg_write(ohci
, OHCI1394_IntEventClear
, OHCI1394_busReset
);
1796 if (ohci
->quirks
& QUIRK_RESET_PACKET
)
1797 ohci
->request_generation
= generation
;
1800 * This next bit is unrelated to the AT context stuff but we
1801 * have to do it under the spinlock also. If a new config rom
1802 * was set up before this reset, the old one is now no longer
1803 * in use and we can free it. Update the config rom pointers
1804 * to point to the current config rom and clear the
1805 * next_config_rom pointer so a new update can take place.
1808 if (ohci
->next_config_rom
!= NULL
) {
1809 if (ohci
->next_config_rom
!= ohci
->config_rom
) {
1810 free_rom
= ohci
->config_rom
;
1811 free_rom_bus
= ohci
->config_rom_bus
;
1813 ohci
->config_rom
= ohci
->next_config_rom
;
1814 ohci
->config_rom_bus
= ohci
->next_config_rom_bus
;
1815 ohci
->next_config_rom
= NULL
;
1818 * Restore config_rom image and manually update
1819 * config_rom registers. Writing the header quadlet
1820 * will indicate that the config rom is ready, so we
1823 reg_write(ohci
, OHCI1394_BusOptions
,
1824 be32_to_cpu(ohci
->config_rom
[2]));
1825 ohci
->config_rom
[0] = ohci
->next_header
;
1826 reg_write(ohci
, OHCI1394_ConfigROMhdr
,
1827 be32_to_cpu(ohci
->next_header
));
1830 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1831 reg_write(ohci
, OHCI1394_PhyReqFilterHiSet
, ~0);
1832 reg_write(ohci
, OHCI1394_PhyReqFilterLoSet
, ~0);
1835 spin_unlock_irqrestore(&ohci
->lock
, flags
);
1838 dma_free_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
1839 free_rom
, free_rom_bus
);
1841 log_selfids(ohci
->node_id
, generation
,
1842 self_id_count
, ohci
->self_id_buffer
);
1844 fw_core_handle_bus_reset(&ohci
->card
, ohci
->node_id
, generation
,
1845 self_id_count
, ohci
->self_id_buffer
,
1846 ohci
->csr_state_setclear_abdicate
);
1847 ohci
->csr_state_setclear_abdicate
= false;
1850 static irqreturn_t
irq_handler(int irq
, void *data
)
1852 struct fw_ohci
*ohci
= data
;
1853 u32 event
, iso_event
;
1856 event
= reg_read(ohci
, OHCI1394_IntEventClear
);
1858 if (!event
|| !~event
)
1862 * busReset and postedWriteErr must not be cleared yet
1863 * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
1865 reg_write(ohci
, OHCI1394_IntEventClear
,
1866 event
& ~(OHCI1394_busReset
| OHCI1394_postedWriteErr
));
1869 if (event
& OHCI1394_selfIDComplete
)
1870 tasklet_schedule(&ohci
->bus_reset_tasklet
);
1872 if (event
& OHCI1394_RQPkt
)
1873 tasklet_schedule(&ohci
->ar_request_ctx
.tasklet
);
1875 if (event
& OHCI1394_RSPkt
)
1876 tasklet_schedule(&ohci
->ar_response_ctx
.tasklet
);
1878 if (event
& OHCI1394_reqTxComplete
)
1879 tasklet_schedule(&ohci
->at_request_ctx
.tasklet
);
1881 if (event
& OHCI1394_respTxComplete
)
1882 tasklet_schedule(&ohci
->at_response_ctx
.tasklet
);
1884 if (event
& OHCI1394_isochRx
) {
1885 iso_event
= reg_read(ohci
, OHCI1394_IsoRecvIntEventClear
);
1886 reg_write(ohci
, OHCI1394_IsoRecvIntEventClear
, iso_event
);
1889 i
= ffs(iso_event
) - 1;
1891 &ohci
->ir_context_list
[i
].context
.tasklet
);
1892 iso_event
&= ~(1 << i
);
1896 if (event
& OHCI1394_isochTx
) {
1897 iso_event
= reg_read(ohci
, OHCI1394_IsoXmitIntEventClear
);
1898 reg_write(ohci
, OHCI1394_IsoXmitIntEventClear
, iso_event
);
1901 i
= ffs(iso_event
) - 1;
1903 &ohci
->it_context_list
[i
].context
.tasklet
);
1904 iso_event
&= ~(1 << i
);
1908 if (unlikely(event
& OHCI1394_regAccessFail
))
1909 fw_error("Register access failure - "
1910 "please notify linux1394-devel@lists.sf.net\n");
1912 if (unlikely(event
& OHCI1394_postedWriteErr
)) {
1913 reg_read(ohci
, OHCI1394_PostedWriteAddressHi
);
1914 reg_read(ohci
, OHCI1394_PostedWriteAddressLo
);
1915 reg_write(ohci
, OHCI1394_IntEventClear
,
1916 OHCI1394_postedWriteErr
);
1917 fw_error("PCI posted write error\n");
1920 if (unlikely(event
& OHCI1394_cycleTooLong
)) {
1921 if (printk_ratelimit())
1922 fw_notify("isochronous cycle too long\n");
1923 reg_write(ohci
, OHCI1394_LinkControlSet
,
1924 OHCI1394_LinkControl_cycleMaster
);
1927 if (unlikely(event
& OHCI1394_cycleInconsistent
)) {
1929 * We need to clear this event bit in order to make
1930 * cycleMatch isochronous I/O work. In theory we should
1931 * stop active cycleMatch iso contexts now and restart
1932 * them at least two cycles later. (FIXME?)
1934 if (printk_ratelimit())
1935 fw_notify("isochronous cycle inconsistent\n");
1938 if (unlikely(event
& OHCI1394_unrecoverableError
))
1939 handle_dead_contexts(ohci
);
1941 if (event
& OHCI1394_cycle64Seconds
) {
1942 spin_lock(&ohci
->lock
);
1943 update_bus_time(ohci
);
1944 spin_unlock(&ohci
->lock
);
1951 static int software_reset(struct fw_ohci
*ohci
)
1955 reg_write(ohci
, OHCI1394_HCControlSet
, OHCI1394_HCControl_softReset
);
1957 for (i
= 0; i
< OHCI_LOOP_COUNT
; i
++) {
1958 if ((reg_read(ohci
, OHCI1394_HCControlSet
) &
1959 OHCI1394_HCControl_softReset
) == 0)
1967 static void copy_config_rom(__be32
*dest
, const __be32
*src
, size_t length
)
1969 size_t size
= length
* 4;
1971 memcpy(dest
, src
, size
);
1972 if (size
< CONFIG_ROM_SIZE
)
1973 memset(&dest
[length
], 0, CONFIG_ROM_SIZE
- size
);
1976 static int configure_1394a_enhancements(struct fw_ohci
*ohci
)
1979 int ret
, clear
, set
, offset
;
1981 /* Check if the driver should configure link and PHY. */
1982 if (!(reg_read(ohci
, OHCI1394_HCControlSet
) &
1983 OHCI1394_HCControl_programPhyEnable
))
1986 /* Paranoia: check whether the PHY supports 1394a, too. */
1987 enable_1394a
= false;
1988 ret
= read_phy_reg(ohci
, 2);
1991 if ((ret
& PHY_EXTENDED_REGISTERS
) == PHY_EXTENDED_REGISTERS
) {
1992 ret
= read_paged_phy_reg(ohci
, 1, 8);
1996 enable_1394a
= true;
1999 if (ohci
->quirks
& QUIRK_NO_1394A
)
2000 enable_1394a
= false;
2002 /* Configure PHY and link consistently. */
2005 set
= PHY_ENABLE_ACCEL
| PHY_ENABLE_MULTI
;
2007 clear
= PHY_ENABLE_ACCEL
| PHY_ENABLE_MULTI
;
2010 ret
= update_phy_reg(ohci
, 5, clear
, set
);
2015 offset
= OHCI1394_HCControlSet
;
2017 offset
= OHCI1394_HCControlClear
;
2018 reg_write(ohci
, offset
, OHCI1394_HCControl_aPhyEnhanceEnable
);
2020 /* Clean up: configuration has been taken care of. */
2021 reg_write(ohci
, OHCI1394_HCControlClear
,
2022 OHCI1394_HCControl_programPhyEnable
);
2027 static int ohci_enable(struct fw_card
*card
,
2028 const __be32
*config_rom
, size_t length
)
2030 struct fw_ohci
*ohci
= fw_ohci(card
);
2031 struct pci_dev
*dev
= to_pci_dev(card
->device
);
2032 u32 lps
, seconds
, version
, irqs
;
2035 if (software_reset(ohci
)) {
2036 fw_error("Failed to reset ohci card.\n");
2041 * Now enable LPS, which we need in order to start accessing
2042 * most of the registers. In fact, on some cards (ALI M5251),
2043 * accessing registers in the SClk domain without LPS enabled
2044 * will lock up the machine. Wait 50msec to make sure we have
2045 * full link enabled. However, with some cards (well, at least
2046 * a JMicron PCIe card), we have to try again sometimes.
2048 reg_write(ohci
, OHCI1394_HCControlSet
,
2049 OHCI1394_HCControl_LPS
|
2050 OHCI1394_HCControl_postedWriteEnable
);
2053 for (lps
= 0, i
= 0; !lps
&& i
< 3; i
++) {
2055 lps
= reg_read(ohci
, OHCI1394_HCControlSet
) &
2056 OHCI1394_HCControl_LPS
;
2060 fw_error("Failed to set Link Power Status\n");
2064 reg_write(ohci
, OHCI1394_HCControlClear
,
2065 OHCI1394_HCControl_noByteSwapData
);
2067 reg_write(ohci
, OHCI1394_SelfIDBuffer
, ohci
->self_id_bus
);
2068 reg_write(ohci
, OHCI1394_LinkControlSet
,
2069 OHCI1394_LinkControl_rcvSelfID
|
2070 OHCI1394_LinkControl_rcvPhyPkt
|
2071 OHCI1394_LinkControl_cycleTimerEnable
|
2072 OHCI1394_LinkControl_cycleMaster
);
2074 reg_write(ohci
, OHCI1394_ATRetries
,
2075 OHCI1394_MAX_AT_REQ_RETRIES
|
2076 (OHCI1394_MAX_AT_RESP_RETRIES
<< 4) |
2077 (OHCI1394_MAX_PHYS_RESP_RETRIES
<< 8) |
2080 seconds
= lower_32_bits(get_seconds());
2081 reg_write(ohci
, OHCI1394_IsochronousCycleTimer
, seconds
<< 25);
2082 ohci
->bus_time
= seconds
& ~0x3f;
2084 version
= reg_read(ohci
, OHCI1394_Version
) & 0x00ff00ff;
2085 if (version
>= OHCI_VERSION_1_1
) {
2086 reg_write(ohci
, OHCI1394_InitialChannelsAvailableHi
,
2088 card
->broadcast_channel_auto_allocated
= true;
2091 /* Get implemented bits of the priority arbitration request counter. */
2092 reg_write(ohci
, OHCI1394_FairnessControl
, 0x3f);
2093 ohci
->pri_req_max
= reg_read(ohci
, OHCI1394_FairnessControl
) & 0x3f;
2094 reg_write(ohci
, OHCI1394_FairnessControl
, 0);
2095 card
->priority_budget_implemented
= ohci
->pri_req_max
!= 0;
2097 ar_context_run(&ohci
->ar_request_ctx
);
2098 ar_context_run(&ohci
->ar_response_ctx
);
2100 reg_write(ohci
, OHCI1394_PhyUpperBound
, 0x00010000);
2101 reg_write(ohci
, OHCI1394_IntEventClear
, ~0);
2102 reg_write(ohci
, OHCI1394_IntMaskClear
, ~0);
2104 ret
= configure_1394a_enhancements(ohci
);
2108 /* Activate link_on bit and contender bit in our self ID packets.*/
2109 ret
= ohci_update_phy_reg(card
, 4, 0, PHY_LINK_ACTIVE
| PHY_CONTENDER
);
2114 * When the link is not yet enabled, the atomic config rom
2115 * update mechanism described below in ohci_set_config_rom()
2116 * is not active. We have to update ConfigRomHeader and
2117 * BusOptions manually, and the write to ConfigROMmap takes
2118 * effect immediately. We tie this to the enabling of the
2119 * link, so we have a valid config rom before enabling - the
2120 * OHCI requires that ConfigROMhdr and BusOptions have valid
2121 * values before enabling.
2123 * However, when the ConfigROMmap is written, some controllers
2124 * always read back quadlets 0 and 2 from the config rom to
2125 * the ConfigRomHeader and BusOptions registers on bus reset.
2126 * They shouldn't do that in this initial case where the link
2127 * isn't enabled. This means we have to use the same
2128 * workaround here, setting the bus header to 0 and then write
2129 * the right values in the bus reset tasklet.
2133 ohci
->next_config_rom
=
2134 dma_alloc_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
2135 &ohci
->next_config_rom_bus
,
2137 if (ohci
->next_config_rom
== NULL
)
2140 copy_config_rom(ohci
->next_config_rom
, config_rom
, length
);
2143 * In the suspend case, config_rom is NULL, which
2144 * means that we just reuse the old config rom.
2146 ohci
->next_config_rom
= ohci
->config_rom
;
2147 ohci
->next_config_rom_bus
= ohci
->config_rom_bus
;
2150 ohci
->next_header
= ohci
->next_config_rom
[0];
2151 ohci
->next_config_rom
[0] = 0;
2152 reg_write(ohci
, OHCI1394_ConfigROMhdr
, 0);
2153 reg_write(ohci
, OHCI1394_BusOptions
,
2154 be32_to_cpu(ohci
->next_config_rom
[2]));
2155 reg_write(ohci
, OHCI1394_ConfigROMmap
, ohci
->next_config_rom_bus
);
2157 reg_write(ohci
, OHCI1394_AsReqFilterHiSet
, 0x80000000);
2159 if (!(ohci
->quirks
& QUIRK_NO_MSI
))
2160 pci_enable_msi(dev
);
2161 if (request_irq(dev
->irq
, irq_handler
,
2162 pci_dev_msi_enabled(dev
) ? 0 : IRQF_SHARED
,
2163 ohci_driver_name
, ohci
)) {
2164 fw_error("Failed to allocate interrupt %d.\n", dev
->irq
);
2165 pci_disable_msi(dev
);
2166 dma_free_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
2167 ohci
->config_rom
, ohci
->config_rom_bus
);
2171 irqs
= OHCI1394_reqTxComplete
| OHCI1394_respTxComplete
|
2172 OHCI1394_RQPkt
| OHCI1394_RSPkt
|
2173 OHCI1394_isochTx
| OHCI1394_isochRx
|
2174 OHCI1394_postedWriteErr
|
2175 OHCI1394_selfIDComplete
|
2176 OHCI1394_regAccessFail
|
2177 OHCI1394_cycle64Seconds
|
2178 OHCI1394_cycleInconsistent
|
2179 OHCI1394_unrecoverableError
|
2180 OHCI1394_cycleTooLong
|
2181 OHCI1394_masterIntEnable
;
2182 if (param_debug
& OHCI_PARAM_DEBUG_BUSRESETS
)
2183 irqs
|= OHCI1394_busReset
;
2184 reg_write(ohci
, OHCI1394_IntMaskSet
, irqs
);
2186 reg_write(ohci
, OHCI1394_HCControlSet
,
2187 OHCI1394_HCControl_linkEnable
|
2188 OHCI1394_HCControl_BIBimageValid
);
2191 /* We are ready to go, reset bus to finish initialization. */
2192 fw_schedule_bus_reset(&ohci
->card
, false, true);
2197 static int ohci_set_config_rom(struct fw_card
*card
,
2198 const __be32
*config_rom
, size_t length
)
2200 struct fw_ohci
*ohci
;
2201 unsigned long flags
;
2203 __be32
*next_config_rom
;
2204 dma_addr_t
uninitialized_var(next_config_rom_bus
);
2206 ohci
= fw_ohci(card
);
2209 * When the OHCI controller is enabled, the config rom update
2210 * mechanism is a bit tricky, but easy enough to use. See
2211 * section 5.5.6 in the OHCI specification.
2213 * The OHCI controller caches the new config rom address in a
2214 * shadow register (ConfigROMmapNext) and needs a bus reset
2215 * for the changes to take place. When the bus reset is
2216 * detected, the controller loads the new values for the
2217 * ConfigRomHeader and BusOptions registers from the specified
2218 * config rom and loads ConfigROMmap from the ConfigROMmapNext
2219 * shadow register. All automatically and atomically.
2221 * Now, there's a twist to this story. The automatic load of
2222 * ConfigRomHeader and BusOptions doesn't honor the
2223 * noByteSwapData bit, so with a be32 config rom, the
2224 * controller will load be32 values in to these registers
2225 * during the atomic update, even on litte endian
2226 * architectures. The workaround we use is to put a 0 in the
2227 * header quadlet; 0 is endian agnostic and means that the
2228 * config rom isn't ready yet. In the bus reset tasklet we
2229 * then set up the real values for the two registers.
2231 * We use ohci->lock to avoid racing with the code that sets
2232 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
2236 dma_alloc_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
2237 &next_config_rom_bus
, GFP_KERNEL
);
2238 if (next_config_rom
== NULL
)
2241 spin_lock_irqsave(&ohci
->lock
, flags
);
2243 if (ohci
->next_config_rom
== NULL
) {
2244 ohci
->next_config_rom
= next_config_rom
;
2245 ohci
->next_config_rom_bus
= next_config_rom_bus
;
2247 copy_config_rom(ohci
->next_config_rom
, config_rom
, length
);
2249 ohci
->next_header
= config_rom
[0];
2250 ohci
->next_config_rom
[0] = 0;
2252 reg_write(ohci
, OHCI1394_ConfigROMmap
,
2253 ohci
->next_config_rom_bus
);
2257 spin_unlock_irqrestore(&ohci
->lock
, flags
);
2260 * Now initiate a bus reset to have the changes take
2261 * effect. We clean up the old config rom memory and DMA
2262 * mappings in the bus reset tasklet, since the OHCI
2263 * controller could need to access it before the bus reset
2267 fw_schedule_bus_reset(&ohci
->card
, true, true);
2269 dma_free_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
2270 next_config_rom
, next_config_rom_bus
);
2275 static void ohci_send_request(struct fw_card
*card
, struct fw_packet
*packet
)
2277 struct fw_ohci
*ohci
= fw_ohci(card
);
2279 at_context_transmit(&ohci
->at_request_ctx
, packet
);
2282 static void ohci_send_response(struct fw_card
*card
, struct fw_packet
*packet
)
2284 struct fw_ohci
*ohci
= fw_ohci(card
);
2286 at_context_transmit(&ohci
->at_response_ctx
, packet
);
2289 static int ohci_cancel_packet(struct fw_card
*card
, struct fw_packet
*packet
)
2291 struct fw_ohci
*ohci
= fw_ohci(card
);
2292 struct context
*ctx
= &ohci
->at_request_ctx
;
2293 struct driver_data
*driver_data
= packet
->driver_data
;
2296 tasklet_disable(&ctx
->tasklet
);
2298 if (packet
->ack
!= 0)
2301 if (packet
->payload_mapped
)
2302 dma_unmap_single(ohci
->card
.device
, packet
->payload_bus
,
2303 packet
->payload_length
, DMA_TO_DEVICE
);
2305 log_ar_at_event('T', packet
->speed
, packet
->header
, 0x20);
2306 driver_data
->packet
= NULL
;
2307 packet
->ack
= RCODE_CANCELLED
;
2308 packet
->callback(packet
, &ohci
->card
, packet
->ack
);
2311 tasklet_enable(&ctx
->tasklet
);
2316 static int ohci_enable_phys_dma(struct fw_card
*card
,
2317 int node_id
, int generation
)
2319 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
2322 struct fw_ohci
*ohci
= fw_ohci(card
);
2323 unsigned long flags
;
2327 * FIXME: Make sure this bitmask is cleared when we clear the busReset
2328 * interrupt bit. Clear physReqResourceAllBuses on bus reset.
2331 spin_lock_irqsave(&ohci
->lock
, flags
);
2333 if (ohci
->generation
!= generation
) {
2339 * Note, if the node ID contains a non-local bus ID, physical DMA is
2340 * enabled for _all_ nodes on remote buses.
2343 n
= (node_id
& 0xffc0) == LOCAL_BUS
? node_id
& 0x3f : 63;
2345 reg_write(ohci
, OHCI1394_PhyReqFilterLoSet
, 1 << n
);
2347 reg_write(ohci
, OHCI1394_PhyReqFilterHiSet
, 1 << (n
- 32));
2351 spin_unlock_irqrestore(&ohci
->lock
, flags
);
2354 #endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
2357 static u32
ohci_read_csr(struct fw_card
*card
, int csr_offset
)
2359 struct fw_ohci
*ohci
= fw_ohci(card
);
2360 unsigned long flags
;
2363 switch (csr_offset
) {
2364 case CSR_STATE_CLEAR
:
2366 if (ohci
->is_root
&&
2367 (reg_read(ohci
, OHCI1394_LinkControlSet
) &
2368 OHCI1394_LinkControl_cycleMaster
))
2369 value
= CSR_STATE_BIT_CMSTR
;
2372 if (ohci
->csr_state_setclear_abdicate
)
2373 value
|= CSR_STATE_BIT_ABDICATE
;
2378 return reg_read(ohci
, OHCI1394_NodeID
) << 16;
2380 case CSR_CYCLE_TIME
:
2381 return get_cycle_time(ohci
);
2385 * We might be called just after the cycle timer has wrapped
2386 * around but just before the cycle64Seconds handler, so we
2387 * better check here, too, if the bus time needs to be updated.
2389 spin_lock_irqsave(&ohci
->lock
, flags
);
2390 value
= update_bus_time(ohci
);
2391 spin_unlock_irqrestore(&ohci
->lock
, flags
);
2394 case CSR_BUSY_TIMEOUT
:
2395 value
= reg_read(ohci
, OHCI1394_ATRetries
);
2396 return (value
>> 4) & 0x0ffff00f;
2398 case CSR_PRIORITY_BUDGET
:
2399 return (reg_read(ohci
, OHCI1394_FairnessControl
) & 0x3f) |
2400 (ohci
->pri_req_max
<< 8);
2408 static void ohci_write_csr(struct fw_card
*card
, int csr_offset
, u32 value
)
2410 struct fw_ohci
*ohci
= fw_ohci(card
);
2411 unsigned long flags
;
2413 switch (csr_offset
) {
2414 case CSR_STATE_CLEAR
:
2415 if ((value
& CSR_STATE_BIT_CMSTR
) && ohci
->is_root
) {
2416 reg_write(ohci
, OHCI1394_LinkControlClear
,
2417 OHCI1394_LinkControl_cycleMaster
);
2420 if (value
& CSR_STATE_BIT_ABDICATE
)
2421 ohci
->csr_state_setclear_abdicate
= false;
2425 if ((value
& CSR_STATE_BIT_CMSTR
) && ohci
->is_root
) {
2426 reg_write(ohci
, OHCI1394_LinkControlSet
,
2427 OHCI1394_LinkControl_cycleMaster
);
2430 if (value
& CSR_STATE_BIT_ABDICATE
)
2431 ohci
->csr_state_setclear_abdicate
= true;
2435 reg_write(ohci
, OHCI1394_NodeID
, value
>> 16);
2439 case CSR_CYCLE_TIME
:
2440 reg_write(ohci
, OHCI1394_IsochronousCycleTimer
, value
);
2441 reg_write(ohci
, OHCI1394_IntEventSet
,
2442 OHCI1394_cycleInconsistent
);
2447 spin_lock_irqsave(&ohci
->lock
, flags
);
2448 ohci
->bus_time
= (ohci
->bus_time
& 0x7f) | (value
& ~0x7f);
2449 spin_unlock_irqrestore(&ohci
->lock
, flags
);
2452 case CSR_BUSY_TIMEOUT
:
2453 value
= (value
& 0xf) | ((value
& 0xf) << 4) |
2454 ((value
& 0xf) << 8) | ((value
& 0x0ffff000) << 4);
2455 reg_write(ohci
, OHCI1394_ATRetries
, value
);
2459 case CSR_PRIORITY_BUDGET
:
2460 reg_write(ohci
, OHCI1394_FairnessControl
, value
& 0x3f);
2470 static void copy_iso_headers(struct iso_context
*ctx
, void *p
)
2472 int i
= ctx
->header_length
;
2474 if (i
+ ctx
->base
.header_size
> PAGE_SIZE
)
2478 * The iso header is byteswapped to little endian by
2479 * the controller, but the remaining header quadlets
2480 * are big endian. We want to present all the headers
2481 * as big endian, so we have to swap the first quadlet.
2483 if (ctx
->base
.header_size
> 0)
2484 *(u32
*) (ctx
->header
+ i
) = __swab32(*(u32
*) (p
+ 4));
2485 if (ctx
->base
.header_size
> 4)
2486 *(u32
*) (ctx
->header
+ i
+ 4) = __swab32(*(u32
*) p
);
2487 if (ctx
->base
.header_size
> 8)
2488 memcpy(ctx
->header
+ i
+ 8, p
+ 8, ctx
->base
.header_size
- 8);
2489 ctx
->header_length
+= ctx
->base
.header_size
;
2492 static int handle_ir_packet_per_buffer(struct context
*context
,
2493 struct descriptor
*d
,
2494 struct descriptor
*last
)
2496 struct iso_context
*ctx
=
2497 container_of(context
, struct iso_context
, context
);
2498 struct descriptor
*pd
;
2502 for (pd
= d
; pd
<= last
; pd
++)
2503 if (pd
->transfer_status
)
2506 /* Descriptor(s) not done yet, stop iteration */
2510 copy_iso_headers(ctx
, p
);
2512 if (le16_to_cpu(last
->control
) & DESCRIPTOR_IRQ_ALWAYS
) {
2513 ir_header
= (__le32
*) p
;
2514 ctx
->base
.callback
.sc(&ctx
->base
,
2515 le32_to_cpu(ir_header
[0]) & 0xffff,
2516 ctx
->header_length
, ctx
->header
,
2517 ctx
->base
.callback_data
);
2518 ctx
->header_length
= 0;
2524 /* d == last because each descriptor block is only a single descriptor. */
2525 static int handle_ir_buffer_fill(struct context
*context
,
2526 struct descriptor
*d
,
2527 struct descriptor
*last
)
2529 struct iso_context
*ctx
=
2530 container_of(context
, struct iso_context
, context
);
2532 if (!last
->transfer_status
)
2533 /* Descriptor(s) not done yet, stop iteration */
2536 if (le16_to_cpu(last
->control
) & DESCRIPTOR_IRQ_ALWAYS
)
2537 ctx
->base
.callback
.mc(&ctx
->base
,
2538 le32_to_cpu(last
->data_address
) +
2539 le16_to_cpu(last
->req_count
) -
2540 le16_to_cpu(last
->res_count
),
2541 ctx
->base
.callback_data
);
2546 static int handle_it_packet(struct context
*context
,
2547 struct descriptor
*d
,
2548 struct descriptor
*last
)
2550 struct iso_context
*ctx
=
2551 container_of(context
, struct iso_context
, context
);
2553 struct descriptor
*pd
;
2555 for (pd
= d
; pd
<= last
; pd
++)
2556 if (pd
->transfer_status
)
2559 /* Descriptor(s) not done yet, stop iteration */
2562 i
= ctx
->header_length
;
2563 if (i
+ 4 < PAGE_SIZE
) {
2564 /* Present this value as big-endian to match the receive code */
2565 *(__be32
*)(ctx
->header
+ i
) = cpu_to_be32(
2566 ((u32
)le16_to_cpu(pd
->transfer_status
) << 16) |
2567 le16_to_cpu(pd
->res_count
));
2568 ctx
->header_length
+= 4;
2570 if (le16_to_cpu(last
->control
) & DESCRIPTOR_IRQ_ALWAYS
) {
2571 ctx
->base
.callback
.sc(&ctx
->base
, le16_to_cpu(last
->res_count
),
2572 ctx
->header_length
, ctx
->header
,
2573 ctx
->base
.callback_data
);
2574 ctx
->header_length
= 0;
2579 static void set_multichannel_mask(struct fw_ohci
*ohci
, u64 channels
)
2581 u32 hi
= channels
>> 32, lo
= channels
;
2583 reg_write(ohci
, OHCI1394_IRMultiChanMaskHiClear
, ~hi
);
2584 reg_write(ohci
, OHCI1394_IRMultiChanMaskLoClear
, ~lo
);
2585 reg_write(ohci
, OHCI1394_IRMultiChanMaskHiSet
, hi
);
2586 reg_write(ohci
, OHCI1394_IRMultiChanMaskLoSet
, lo
);
2588 ohci
->mc_channels
= channels
;
2591 static struct fw_iso_context
*ohci_allocate_iso_context(struct fw_card
*card
,
2592 int type
, int channel
, size_t header_size
)
2594 struct fw_ohci
*ohci
= fw_ohci(card
);
2595 struct iso_context
*uninitialized_var(ctx
);
2596 descriptor_callback_t
uninitialized_var(callback
);
2597 u64
*uninitialized_var(channels
);
2598 u32
*uninitialized_var(mask
), uninitialized_var(regs
);
2599 unsigned long flags
;
2600 int index
, ret
= -EBUSY
;
2602 spin_lock_irqsave(&ohci
->lock
, flags
);
2605 case FW_ISO_CONTEXT_TRANSMIT
:
2606 mask
= &ohci
->it_context_mask
;
2607 callback
= handle_it_packet
;
2608 index
= ffs(*mask
) - 1;
2610 *mask
&= ~(1 << index
);
2611 regs
= OHCI1394_IsoXmitContextBase(index
);
2612 ctx
= &ohci
->it_context_list
[index
];
2616 case FW_ISO_CONTEXT_RECEIVE
:
2617 channels
= &ohci
->ir_context_channels
;
2618 mask
= &ohci
->ir_context_mask
;
2619 callback
= handle_ir_packet_per_buffer
;
2620 index
= *channels
& 1ULL << channel
? ffs(*mask
) - 1 : -1;
2622 *channels
&= ~(1ULL << channel
);
2623 *mask
&= ~(1 << index
);
2624 regs
= OHCI1394_IsoRcvContextBase(index
);
2625 ctx
= &ohci
->ir_context_list
[index
];
2629 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
:
2630 mask
= &ohci
->ir_context_mask
;
2631 callback
= handle_ir_buffer_fill
;
2632 index
= !ohci
->mc_allocated
? ffs(*mask
) - 1 : -1;
2634 ohci
->mc_allocated
= true;
2635 *mask
&= ~(1 << index
);
2636 regs
= OHCI1394_IsoRcvContextBase(index
);
2637 ctx
= &ohci
->ir_context_list
[index
];
2646 spin_unlock_irqrestore(&ohci
->lock
, flags
);
2649 return ERR_PTR(ret
);
2651 memset(ctx
, 0, sizeof(*ctx
));
2652 ctx
->header_length
= 0;
2653 ctx
->header
= (void *) __get_free_page(GFP_KERNEL
);
2654 if (ctx
->header
== NULL
) {
2658 ret
= context_init(&ctx
->context
, ohci
, regs
, callback
);
2660 goto out_with_header
;
2662 if (type
== FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
)
2663 set_multichannel_mask(ohci
, 0);
2668 free_page((unsigned long)ctx
->header
);
2670 spin_lock_irqsave(&ohci
->lock
, flags
);
2673 case FW_ISO_CONTEXT_RECEIVE
:
2674 *channels
|= 1ULL << channel
;
2677 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
:
2678 ohci
->mc_allocated
= false;
2681 *mask
|= 1 << index
;
2683 spin_unlock_irqrestore(&ohci
->lock
, flags
);
2685 return ERR_PTR(ret
);
2688 static int ohci_start_iso(struct fw_iso_context
*base
,
2689 s32 cycle
, u32 sync
, u32 tags
)
2691 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
2692 struct fw_ohci
*ohci
= ctx
->context
.ohci
;
2693 u32 control
= IR_CONTEXT_ISOCH_HEADER
, match
;
2696 /* the controller cannot start without any queued packets */
2697 if (ctx
->context
.last
->branch_address
== 0)
2700 switch (ctx
->base
.type
) {
2701 case FW_ISO_CONTEXT_TRANSMIT
:
2702 index
= ctx
- ohci
->it_context_list
;
2705 match
= IT_CONTEXT_CYCLE_MATCH_ENABLE
|
2706 (cycle
& 0x7fff) << 16;
2708 reg_write(ohci
, OHCI1394_IsoXmitIntEventClear
, 1 << index
);
2709 reg_write(ohci
, OHCI1394_IsoXmitIntMaskSet
, 1 << index
);
2710 context_run(&ctx
->context
, match
);
2713 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
:
2714 control
|= IR_CONTEXT_BUFFER_FILL
|IR_CONTEXT_MULTI_CHANNEL_MODE
;
2716 case FW_ISO_CONTEXT_RECEIVE
:
2717 index
= ctx
- ohci
->ir_context_list
;
2718 match
= (tags
<< 28) | (sync
<< 8) | ctx
->base
.channel
;
2720 match
|= (cycle
& 0x07fff) << 12;
2721 control
|= IR_CONTEXT_CYCLE_MATCH_ENABLE
;
2724 reg_write(ohci
, OHCI1394_IsoRecvIntEventClear
, 1 << index
);
2725 reg_write(ohci
, OHCI1394_IsoRecvIntMaskSet
, 1 << index
);
2726 reg_write(ohci
, CONTEXT_MATCH(ctx
->context
.regs
), match
);
2727 context_run(&ctx
->context
, control
);
2738 static int ohci_stop_iso(struct fw_iso_context
*base
)
2740 struct fw_ohci
*ohci
= fw_ohci(base
->card
);
2741 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
2744 switch (ctx
->base
.type
) {
2745 case FW_ISO_CONTEXT_TRANSMIT
:
2746 index
= ctx
- ohci
->it_context_list
;
2747 reg_write(ohci
, OHCI1394_IsoXmitIntMaskClear
, 1 << index
);
2750 case FW_ISO_CONTEXT_RECEIVE
:
2751 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
:
2752 index
= ctx
- ohci
->ir_context_list
;
2753 reg_write(ohci
, OHCI1394_IsoRecvIntMaskClear
, 1 << index
);
2757 context_stop(&ctx
->context
);
2758 tasklet_kill(&ctx
->context
.tasklet
);
2763 static void ohci_free_iso_context(struct fw_iso_context
*base
)
2765 struct fw_ohci
*ohci
= fw_ohci(base
->card
);
2766 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
2767 unsigned long flags
;
2770 ohci_stop_iso(base
);
2771 context_release(&ctx
->context
);
2772 free_page((unsigned long)ctx
->header
);
2774 spin_lock_irqsave(&ohci
->lock
, flags
);
2776 switch (base
->type
) {
2777 case FW_ISO_CONTEXT_TRANSMIT
:
2778 index
= ctx
- ohci
->it_context_list
;
2779 ohci
->it_context_mask
|= 1 << index
;
2782 case FW_ISO_CONTEXT_RECEIVE
:
2783 index
= ctx
- ohci
->ir_context_list
;
2784 ohci
->ir_context_mask
|= 1 << index
;
2785 ohci
->ir_context_channels
|= 1ULL << base
->channel
;
2788 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
:
2789 index
= ctx
- ohci
->ir_context_list
;
2790 ohci
->ir_context_mask
|= 1 << index
;
2791 ohci
->ir_context_channels
|= ohci
->mc_channels
;
2792 ohci
->mc_channels
= 0;
2793 ohci
->mc_allocated
= false;
2797 spin_unlock_irqrestore(&ohci
->lock
, flags
);
2800 static int ohci_set_iso_channels(struct fw_iso_context
*base
, u64
*channels
)
2802 struct fw_ohci
*ohci
= fw_ohci(base
->card
);
2803 unsigned long flags
;
2806 switch (base
->type
) {
2807 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
:
2809 spin_lock_irqsave(&ohci
->lock
, flags
);
2811 /* Don't allow multichannel to grab other contexts' channels. */
2812 if (~ohci
->ir_context_channels
& ~ohci
->mc_channels
& *channels
) {
2813 *channels
= ohci
->ir_context_channels
;
2816 set_multichannel_mask(ohci
, *channels
);
2820 spin_unlock_irqrestore(&ohci
->lock
, flags
);
2831 static void ohci_resume_iso_dma(struct fw_ohci
*ohci
)
2834 struct iso_context
*ctx
;
2836 for (i
= 0 ; i
< ohci
->n_ir
; i
++) {
2837 ctx
= &ohci
->ir_context_list
[i
];
2838 if (ctx
->context
.running
)
2839 ohci_start_iso(&ctx
->base
, 0, ctx
->sync
, ctx
->tags
);
2842 for (i
= 0 ; i
< ohci
->n_it
; i
++) {
2843 ctx
= &ohci
->it_context_list
[i
];
2844 if (ctx
->context
.running
)
2845 ohci_start_iso(&ctx
->base
, 0, ctx
->sync
, ctx
->tags
);
2850 static int queue_iso_transmit(struct iso_context
*ctx
,
2851 struct fw_iso_packet
*packet
,
2852 struct fw_iso_buffer
*buffer
,
2853 unsigned long payload
)
2855 struct descriptor
*d
, *last
, *pd
;
2856 struct fw_iso_packet
*p
;
2858 dma_addr_t d_bus
, page_bus
;
2859 u32 z
, header_z
, payload_z
, irq
;
2860 u32 payload_index
, payload_end_index
, next_page_index
;
2861 int page
, end_page
, i
, length
, offset
;
2864 payload_index
= payload
;
2870 if (p
->header_length
> 0)
2873 /* Determine the first page the payload isn't contained in. */
2874 end_page
= PAGE_ALIGN(payload_index
+ p
->payload_length
) >> PAGE_SHIFT
;
2875 if (p
->payload_length
> 0)
2876 payload_z
= end_page
- (payload_index
>> PAGE_SHIFT
);
2882 /* Get header size in number of descriptors. */
2883 header_z
= DIV_ROUND_UP(p
->header_length
, sizeof(*d
));
2885 d
= context_get_descriptors(&ctx
->context
, z
+ header_z
, &d_bus
);
2890 d
[0].control
= cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE
);
2891 d
[0].req_count
= cpu_to_le16(8);
2893 * Link the skip address to this descriptor itself. This causes
2894 * a context to skip a cycle whenever lost cycles or FIFO
2895 * overruns occur, without dropping the data. The application
2896 * should then decide whether this is an error condition or not.
2897 * FIXME: Make the context's cycle-lost behaviour configurable?
2899 d
[0].branch_address
= cpu_to_le32(d_bus
| z
);
2901 header
= (__le32
*) &d
[1];
2902 header
[0] = cpu_to_le32(IT_HEADER_SY(p
->sy
) |
2903 IT_HEADER_TAG(p
->tag
) |
2904 IT_HEADER_TCODE(TCODE_STREAM_DATA
) |
2905 IT_HEADER_CHANNEL(ctx
->base
.channel
) |
2906 IT_HEADER_SPEED(ctx
->base
.speed
));
2908 cpu_to_le32(IT_HEADER_DATA_LENGTH(p
->header_length
+
2909 p
->payload_length
));
2912 if (p
->header_length
> 0) {
2913 d
[2].req_count
= cpu_to_le16(p
->header_length
);
2914 d
[2].data_address
= cpu_to_le32(d_bus
+ z
* sizeof(*d
));
2915 memcpy(&d
[z
], p
->header
, p
->header_length
);
2918 pd
= d
+ z
- payload_z
;
2919 payload_end_index
= payload_index
+ p
->payload_length
;
2920 for (i
= 0; i
< payload_z
; i
++) {
2921 page
= payload_index
>> PAGE_SHIFT
;
2922 offset
= payload_index
& ~PAGE_MASK
;
2923 next_page_index
= (page
+ 1) << PAGE_SHIFT
;
2925 min(next_page_index
, payload_end_index
) - payload_index
;
2926 pd
[i
].req_count
= cpu_to_le16(length
);
2928 page_bus
= page_private(buffer
->pages
[page
]);
2929 pd
[i
].data_address
= cpu_to_le32(page_bus
+ offset
);
2931 payload_index
+= length
;
2935 irq
= DESCRIPTOR_IRQ_ALWAYS
;
2937 irq
= DESCRIPTOR_NO_IRQ
;
2939 last
= z
== 2 ? d
: d
+ z
- 1;
2940 last
->control
|= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST
|
2942 DESCRIPTOR_BRANCH_ALWAYS
|
2945 context_append(&ctx
->context
, d
, z
, header_z
);
2950 static int queue_iso_packet_per_buffer(struct iso_context
*ctx
,
2951 struct fw_iso_packet
*packet
,
2952 struct fw_iso_buffer
*buffer
,
2953 unsigned long payload
)
2955 struct descriptor
*d
, *pd
;
2956 dma_addr_t d_bus
, page_bus
;
2957 u32 z
, header_z
, rest
;
2959 int page
, offset
, packet_count
, header_size
, payload_per_buffer
;
2962 * The OHCI controller puts the isochronous header and trailer in the
2963 * buffer, so we need at least 8 bytes.
2965 packet_count
= packet
->header_length
/ ctx
->base
.header_size
;
2966 header_size
= max(ctx
->base
.header_size
, (size_t)8);
2968 /* Get header size in number of descriptors. */
2969 header_z
= DIV_ROUND_UP(header_size
, sizeof(*d
));
2970 page
= payload
>> PAGE_SHIFT
;
2971 offset
= payload
& ~PAGE_MASK
;
2972 payload_per_buffer
= packet
->payload_length
/ packet_count
;
2974 for (i
= 0; i
< packet_count
; i
++) {
2975 /* d points to the header descriptor */
2976 z
= DIV_ROUND_UP(payload_per_buffer
+ offset
, PAGE_SIZE
) + 1;
2977 d
= context_get_descriptors(&ctx
->context
,
2978 z
+ header_z
, &d_bus
);
2982 d
->control
= cpu_to_le16(DESCRIPTOR_STATUS
|
2983 DESCRIPTOR_INPUT_MORE
);
2984 if (packet
->skip
&& i
== 0)
2985 d
->control
|= cpu_to_le16(DESCRIPTOR_WAIT
);
2986 d
->req_count
= cpu_to_le16(header_size
);
2987 d
->res_count
= d
->req_count
;
2988 d
->transfer_status
= 0;
2989 d
->data_address
= cpu_to_le32(d_bus
+ (z
* sizeof(*d
)));
2991 rest
= payload_per_buffer
;
2993 for (j
= 1; j
< z
; j
++) {
2995 pd
->control
= cpu_to_le16(DESCRIPTOR_STATUS
|
2996 DESCRIPTOR_INPUT_MORE
);
2998 if (offset
+ rest
< PAGE_SIZE
)
3001 length
= PAGE_SIZE
- offset
;
3002 pd
->req_count
= cpu_to_le16(length
);
3003 pd
->res_count
= pd
->req_count
;
3004 pd
->transfer_status
= 0;
3006 page_bus
= page_private(buffer
->pages
[page
]);
3007 pd
->data_address
= cpu_to_le32(page_bus
+ offset
);
3009 offset
= (offset
+ length
) & ~PAGE_MASK
;
3014 pd
->control
= cpu_to_le16(DESCRIPTOR_STATUS
|
3015 DESCRIPTOR_INPUT_LAST
|
3016 DESCRIPTOR_BRANCH_ALWAYS
);
3017 if (packet
->interrupt
&& i
== packet_count
- 1)
3018 pd
->control
|= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS
);
3020 context_append(&ctx
->context
, d
, z
, header_z
);
3026 static int queue_iso_buffer_fill(struct iso_context
*ctx
,
3027 struct fw_iso_packet
*packet
,
3028 struct fw_iso_buffer
*buffer
,
3029 unsigned long payload
)
3031 struct descriptor
*d
;
3032 dma_addr_t d_bus
, page_bus
;
3033 int page
, offset
, rest
, z
, i
, length
;
3035 page
= payload
>> PAGE_SHIFT
;
3036 offset
= payload
& ~PAGE_MASK
;
3037 rest
= packet
->payload_length
;
3039 /* We need one descriptor for each page in the buffer. */
3040 z
= DIV_ROUND_UP(offset
+ rest
, PAGE_SIZE
);
3042 if (WARN_ON(offset
& 3 || rest
& 3 || page
+ z
> buffer
->page_count
))
3045 for (i
= 0; i
< z
; i
++) {
3046 d
= context_get_descriptors(&ctx
->context
, 1, &d_bus
);
3050 d
->control
= cpu_to_le16(DESCRIPTOR_INPUT_MORE
|
3051 DESCRIPTOR_BRANCH_ALWAYS
);
3052 if (packet
->skip
&& i
== 0)
3053 d
->control
|= cpu_to_le16(DESCRIPTOR_WAIT
);
3054 if (packet
->interrupt
&& i
== z
- 1)
3055 d
->control
|= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS
);
3057 if (offset
+ rest
< PAGE_SIZE
)
3060 length
= PAGE_SIZE
- offset
;
3061 d
->req_count
= cpu_to_le16(length
);
3062 d
->res_count
= d
->req_count
;
3063 d
->transfer_status
= 0;
3065 page_bus
= page_private(buffer
->pages
[page
]);
3066 d
->data_address
= cpu_to_le32(page_bus
+ offset
);
3072 context_append(&ctx
->context
, d
, 1, 0);
3078 static int ohci_queue_iso(struct fw_iso_context
*base
,
3079 struct fw_iso_packet
*packet
,
3080 struct fw_iso_buffer
*buffer
,
3081 unsigned long payload
)
3083 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
3084 unsigned long flags
;
3087 spin_lock_irqsave(&ctx
->context
.ohci
->lock
, flags
);
3088 switch (base
->type
) {
3089 case FW_ISO_CONTEXT_TRANSMIT
:
3090 ret
= queue_iso_transmit(ctx
, packet
, buffer
, payload
);
3092 case FW_ISO_CONTEXT_RECEIVE
:
3093 ret
= queue_iso_packet_per_buffer(ctx
, packet
, buffer
, payload
);
3095 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
:
3096 ret
= queue_iso_buffer_fill(ctx
, packet
, buffer
, payload
);
3099 spin_unlock_irqrestore(&ctx
->context
.ohci
->lock
, flags
);
3104 static const struct fw_card_driver ohci_driver
= {
3105 .enable
= ohci_enable
,
3106 .read_phy_reg
= ohci_read_phy_reg
,
3107 .update_phy_reg
= ohci_update_phy_reg
,
3108 .set_config_rom
= ohci_set_config_rom
,
3109 .send_request
= ohci_send_request
,
3110 .send_response
= ohci_send_response
,
3111 .cancel_packet
= ohci_cancel_packet
,
3112 .enable_phys_dma
= ohci_enable_phys_dma
,
3113 .read_csr
= ohci_read_csr
,
3114 .write_csr
= ohci_write_csr
,
3116 .allocate_iso_context
= ohci_allocate_iso_context
,
3117 .free_iso_context
= ohci_free_iso_context
,
3118 .set_iso_channels
= ohci_set_iso_channels
,
3119 .queue_iso
= ohci_queue_iso
,
3120 .start_iso
= ohci_start_iso
,
3121 .stop_iso
= ohci_stop_iso
,
3124 #ifdef CONFIG_PPC_PMAC
3125 static void pmac_ohci_on(struct pci_dev
*dev
)
3127 if (machine_is(powermac
)) {
3128 struct device_node
*ofn
= pci_device_to_OF_node(dev
);
3131 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER
, ofn
, 0, 1);
3132 pmac_call_feature(PMAC_FTR_1394_ENABLE
, ofn
, 0, 1);
3137 static void pmac_ohci_off(struct pci_dev
*dev
)
3139 if (machine_is(powermac
)) {
3140 struct device_node
*ofn
= pci_device_to_OF_node(dev
);
3143 pmac_call_feature(PMAC_FTR_1394_ENABLE
, ofn
, 0, 0);
3144 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER
, ofn
, 0, 0);
3149 static inline void pmac_ohci_on(struct pci_dev
*dev
) {}
3150 static inline void pmac_ohci_off(struct pci_dev
*dev
) {}
3151 #endif /* CONFIG_PPC_PMAC */
3153 static int __devinit
pci_probe(struct pci_dev
*dev
,
3154 const struct pci_device_id
*ent
)
3156 struct fw_ohci
*ohci
;
3157 u32 bus_options
, max_receive
, link_speed
, version
;
3162 ohci
= kzalloc(sizeof(*ohci
), GFP_KERNEL
);
3168 fw_card_initialize(&ohci
->card
, &ohci_driver
, &dev
->dev
);
3172 err
= pci_enable_device(dev
);
3174 fw_error("Failed to enable OHCI hardware\n");
3178 pci_set_master(dev
);
3179 pci_write_config_dword(dev
, OHCI1394_PCI_HCI_Control
, 0);
3180 pci_set_drvdata(dev
, ohci
);
3182 spin_lock_init(&ohci
->lock
);
3183 mutex_init(&ohci
->phy_reg_mutex
);
3185 tasklet_init(&ohci
->bus_reset_tasklet
,
3186 bus_reset_tasklet
, (unsigned long)ohci
);
3188 err
= pci_request_region(dev
, 0, ohci_driver_name
);
3190 fw_error("MMIO resource unavailable\n");
3194 ohci
->registers
= pci_iomap(dev
, 0, OHCI1394_REGISTER_SIZE
);
3195 if (ohci
->registers
== NULL
) {
3196 fw_error("Failed to remap registers\n");
3201 for (i
= 0; i
< ARRAY_SIZE(ohci_quirks
); i
++)
3202 if ((ohci_quirks
[i
].vendor
== dev
->vendor
) &&
3203 (ohci_quirks
[i
].device
== (unsigned short)PCI_ANY_ID
||
3204 ohci_quirks
[i
].device
== dev
->device
) &&
3205 (ohci_quirks
[i
].revision
== (unsigned short)PCI_ANY_ID
||
3206 ohci_quirks
[i
].revision
>= dev
->revision
)) {
3207 ohci
->quirks
= ohci_quirks
[i
].flags
;
3211 ohci
->quirks
= param_quirks
;
3214 * Because dma_alloc_coherent() allocates at least one page,
3215 * we save space by using a common buffer for the AR request/
3216 * response descriptors and the self IDs buffer.
3218 BUILD_BUG_ON(AR_BUFFERS
* sizeof(struct descriptor
) > PAGE_SIZE
/4);
3219 BUILD_BUG_ON(SELF_ID_BUF_SIZE
> PAGE_SIZE
/2);
3220 ohci
->misc_buffer
= dma_alloc_coherent(ohci
->card
.device
,
3222 &ohci
->misc_buffer_bus
,
3224 if (!ohci
->misc_buffer
) {
3229 err
= ar_context_init(&ohci
->ar_request_ctx
, ohci
, 0,
3230 OHCI1394_AsReqRcvContextControlSet
);
3234 err
= ar_context_init(&ohci
->ar_response_ctx
, ohci
, PAGE_SIZE
/4,
3235 OHCI1394_AsRspRcvContextControlSet
);
3237 goto fail_arreq_ctx
;
3239 err
= context_init(&ohci
->at_request_ctx
, ohci
,
3240 OHCI1394_AsReqTrContextControlSet
, handle_at_packet
);
3242 goto fail_arrsp_ctx
;
3244 err
= context_init(&ohci
->at_response_ctx
, ohci
,
3245 OHCI1394_AsRspTrContextControlSet
, handle_at_packet
);
3247 goto fail_atreq_ctx
;
3249 reg_write(ohci
, OHCI1394_IsoRecvIntMaskSet
, ~0);
3250 ohci
->ir_context_channels
= ~0ULL;
3251 ohci
->ir_context_support
= reg_read(ohci
, OHCI1394_IsoRecvIntMaskSet
);
3252 reg_write(ohci
, OHCI1394_IsoRecvIntMaskClear
, ~0);
3253 ohci
->ir_context_mask
= ohci
->ir_context_support
;
3254 ohci
->n_ir
= hweight32(ohci
->ir_context_mask
);
3255 size
= sizeof(struct iso_context
) * ohci
->n_ir
;
3256 ohci
->ir_context_list
= kzalloc(size
, GFP_KERNEL
);
3258 reg_write(ohci
, OHCI1394_IsoXmitIntMaskSet
, ~0);
3259 ohci
->it_context_support
= reg_read(ohci
, OHCI1394_IsoXmitIntMaskSet
);
3260 reg_write(ohci
, OHCI1394_IsoXmitIntMaskClear
, ~0);
3261 ohci
->it_context_mask
= ohci
->it_context_support
;
3262 ohci
->n_it
= hweight32(ohci
->it_context_mask
);
3263 size
= sizeof(struct iso_context
) * ohci
->n_it
;
3264 ohci
->it_context_list
= kzalloc(size
, GFP_KERNEL
);
3266 if (ohci
->it_context_list
== NULL
|| ohci
->ir_context_list
== NULL
) {
3271 ohci
->self_id_cpu
= ohci
->misc_buffer
+ PAGE_SIZE
/2;
3272 ohci
->self_id_bus
= ohci
->misc_buffer_bus
+ PAGE_SIZE
/2;
3274 bus_options
= reg_read(ohci
, OHCI1394_BusOptions
);
3275 max_receive
= (bus_options
>> 12) & 0xf;
3276 link_speed
= bus_options
& 0x7;
3277 guid
= ((u64
) reg_read(ohci
, OHCI1394_GUIDHi
) << 32) |
3278 reg_read(ohci
, OHCI1394_GUIDLo
);
3280 err
= fw_card_add(&ohci
->card
, max_receive
, link_speed
, guid
);
3284 version
= reg_read(ohci
, OHCI1394_Version
) & 0x00ff00ff;
3285 fw_notify("Added fw-ohci device %s, OHCI v%x.%x, "
3286 "%d IR + %d IT contexts, quirks 0x%x\n",
3287 dev_name(&dev
->dev
), version
>> 16, version
& 0xff,
3288 ohci
->n_ir
, ohci
->n_it
, ohci
->quirks
);
3293 kfree(ohci
->ir_context_list
);
3294 kfree(ohci
->it_context_list
);
3295 context_release(&ohci
->at_response_ctx
);
3297 context_release(&ohci
->at_request_ctx
);
3299 ar_context_release(&ohci
->ar_response_ctx
);
3301 ar_context_release(&ohci
->ar_request_ctx
);
3303 dma_free_coherent(ohci
->card
.device
, PAGE_SIZE
,
3304 ohci
->misc_buffer
, ohci
->misc_buffer_bus
);
3306 pci_iounmap(dev
, ohci
->registers
);
3308 pci_release_region(dev
, 0);
3310 pci_disable_device(dev
);
3316 fw_error("Out of memory\n");
3321 static void pci_remove(struct pci_dev
*dev
)
3323 struct fw_ohci
*ohci
;
3325 ohci
= pci_get_drvdata(dev
);
3326 reg_write(ohci
, OHCI1394_IntMaskClear
, ~0);
3328 fw_core_remove_card(&ohci
->card
);
3331 * FIXME: Fail all pending packets here, now that the upper
3332 * layers can't queue any more.
3335 software_reset(ohci
);
3336 free_irq(dev
->irq
, ohci
);
3338 if (ohci
->next_config_rom
&& ohci
->next_config_rom
!= ohci
->config_rom
)
3339 dma_free_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
3340 ohci
->next_config_rom
, ohci
->next_config_rom_bus
);
3341 if (ohci
->config_rom
)
3342 dma_free_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
3343 ohci
->config_rom
, ohci
->config_rom_bus
);
3344 ar_context_release(&ohci
->ar_request_ctx
);
3345 ar_context_release(&ohci
->ar_response_ctx
);
3346 dma_free_coherent(ohci
->card
.device
, PAGE_SIZE
,
3347 ohci
->misc_buffer
, ohci
->misc_buffer_bus
);
3348 context_release(&ohci
->at_request_ctx
);
3349 context_release(&ohci
->at_response_ctx
);
3350 kfree(ohci
->it_context_list
);
3351 kfree(ohci
->ir_context_list
);
3352 pci_disable_msi(dev
);
3353 pci_iounmap(dev
, ohci
->registers
);
3354 pci_release_region(dev
, 0);
3355 pci_disable_device(dev
);
3359 fw_notify("Removed fw-ohci device.\n");
3363 static int pci_suspend(struct pci_dev
*dev
, pm_message_t state
)
3365 struct fw_ohci
*ohci
= pci_get_drvdata(dev
);
3368 software_reset(ohci
);
3369 free_irq(dev
->irq
, ohci
);
3370 pci_disable_msi(dev
);
3371 err
= pci_save_state(dev
);
3373 fw_error("pci_save_state failed\n");
3376 err
= pci_set_power_state(dev
, pci_choose_state(dev
, state
));
3378 fw_error("pci_set_power_state failed with %d\n", err
);
3384 static int pci_resume(struct pci_dev
*dev
)
3386 struct fw_ohci
*ohci
= pci_get_drvdata(dev
);
3390 pci_set_power_state(dev
, PCI_D0
);
3391 pci_restore_state(dev
);
3392 err
= pci_enable_device(dev
);
3394 fw_error("pci_enable_device failed\n");
3398 /* Some systems don't setup GUID register on resume from ram */
3399 if (!reg_read(ohci
, OHCI1394_GUIDLo
) &&
3400 !reg_read(ohci
, OHCI1394_GUIDHi
)) {
3401 reg_write(ohci
, OHCI1394_GUIDLo
, (u32
)ohci
->card
.guid
);
3402 reg_write(ohci
, OHCI1394_GUIDHi
, (u32
)(ohci
->card
.guid
>> 32));
3405 err
= ohci_enable(&ohci
->card
, NULL
, 0);
3409 ohci_resume_iso_dma(ohci
);
3415 static const struct pci_device_id pci_table
[] = {
3416 { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI
, ~0) },
3420 MODULE_DEVICE_TABLE(pci
, pci_table
);
3422 static struct pci_driver fw_ohci_pci_driver
= {
3423 .name
= ohci_driver_name
,
3424 .id_table
= pci_table
,
3426 .remove
= pci_remove
,
3428 .resume
= pci_resume
,
3429 .suspend
= pci_suspend
,
3433 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
3434 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
3435 MODULE_LICENSE("GPL");
3437 /* Provide a module alias so root-on-sbp2 initrds don't break. */
3438 #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
3439 MODULE_ALIAS("ohci1394");
3442 static int __init
fw_ohci_init(void)
3444 return pci_register_driver(&fw_ohci_pci_driver
);
3447 static void __exit
fw_ohci_cleanup(void)
3449 pci_unregister_driver(&fw_ohci_pci_driver
);
3452 module_init(fw_ohci_init
);
3453 module_exit(fw_ohci_cleanup
);