FRV: Use generic show_interrupts()
[cris-mirror.git] / drivers / i2c / busses / i2c-nomadik.c
blob594ed5059c4a34d63766674fd519dfccd0c523d6
1 /*
2 * Copyright (C) 2009 ST-Ericsson SA
3 * Copyright (C) 2009 STMicroelectronics
5 * I2C master mode controller driver, used in Nomadik 8815
6 * and Ux500 platforms.
8 * Author: Srinidhi Kasagar <srinidhi.kasagar@stericsson.com>
9 * Author: Sachin Verma <sachin.verma@st.com>
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License version 2, as
13 * published by the Free Software Foundation.
15 #include <linux/init.h>
16 #include <linux/module.h>
17 #include <linux/platform_device.h>
18 #include <linux/delay.h>
19 #include <linux/slab.h>
20 #include <linux/interrupt.h>
21 #include <linux/i2c.h>
22 #include <linux/err.h>
23 #include <linux/clk.h>
24 #include <linux/io.h>
26 #include <plat/i2c.h>
28 #define DRIVER_NAME "nmk-i2c"
30 /* I2C Controller register offsets */
31 #define I2C_CR (0x000)
32 #define I2C_SCR (0x004)
33 #define I2C_HSMCR (0x008)
34 #define I2C_MCR (0x00C)
35 #define I2C_TFR (0x010)
36 #define I2C_SR (0x014)
37 #define I2C_RFR (0x018)
38 #define I2C_TFTR (0x01C)
39 #define I2C_RFTR (0x020)
40 #define I2C_DMAR (0x024)
41 #define I2C_BRCR (0x028)
42 #define I2C_IMSCR (0x02C)
43 #define I2C_RISR (0x030)
44 #define I2C_MISR (0x034)
45 #define I2C_ICR (0x038)
47 /* Control registers */
48 #define I2C_CR_PE (0x1 << 0) /* Peripheral Enable */
49 #define I2C_CR_OM (0x3 << 1) /* Operating mode */
50 #define I2C_CR_SAM (0x1 << 3) /* Slave addressing mode */
51 #define I2C_CR_SM (0x3 << 4) /* Speed mode */
52 #define I2C_CR_SGCM (0x1 << 6) /* Slave general call mode */
53 #define I2C_CR_FTX (0x1 << 7) /* Flush Transmit */
54 #define I2C_CR_FRX (0x1 << 8) /* Flush Receive */
55 #define I2C_CR_DMA_TX_EN (0x1 << 9) /* DMA Tx enable */
56 #define I2C_CR_DMA_RX_EN (0x1 << 10) /* DMA Rx Enable */
57 #define I2C_CR_DMA_SLE (0x1 << 11) /* DMA sync. logic enable */
58 #define I2C_CR_LM (0x1 << 12) /* Loopback mode */
59 #define I2C_CR_FON (0x3 << 13) /* Filtering on */
60 #define I2C_CR_FS (0x3 << 15) /* Force stop enable */
62 /* Master controller (MCR) register */
63 #define I2C_MCR_OP (0x1 << 0) /* Operation */
64 #define I2C_MCR_A7 (0x7f << 1) /* 7-bit address */
65 #define I2C_MCR_EA10 (0x7 << 8) /* 10-bit Extended address */
66 #define I2C_MCR_SB (0x1 << 11) /* Extended address */
67 #define I2C_MCR_AM (0x3 << 12) /* Address type */
68 #define I2C_MCR_STOP (0x1 << 14) /* Stop condition */
69 #define I2C_MCR_LENGTH (0x7ff << 15) /* Transaction length */
71 /* Status register (SR) */
72 #define I2C_SR_OP (0x3 << 0) /* Operation */
73 #define I2C_SR_STATUS (0x3 << 2) /* controller status */
74 #define I2C_SR_CAUSE (0x7 << 4) /* Abort cause */
75 #define I2C_SR_TYPE (0x3 << 7) /* Receive type */
76 #define I2C_SR_LENGTH (0x7ff << 9) /* Transfer length */
78 /* Interrupt mask set/clear (IMSCR) bits */
79 #define I2C_IT_TXFE (0x1 << 0)
80 #define I2C_IT_TXFNE (0x1 << 1)
81 #define I2C_IT_TXFF (0x1 << 2)
82 #define I2C_IT_TXFOVR (0x1 << 3)
83 #define I2C_IT_RXFE (0x1 << 4)
84 #define I2C_IT_RXFNF (0x1 << 5)
85 #define I2C_IT_RXFF (0x1 << 6)
86 #define I2C_IT_RFSR (0x1 << 16)
87 #define I2C_IT_RFSE (0x1 << 17)
88 #define I2C_IT_WTSR (0x1 << 18)
89 #define I2C_IT_MTD (0x1 << 19)
90 #define I2C_IT_STD (0x1 << 20)
91 #define I2C_IT_MAL (0x1 << 24)
92 #define I2C_IT_BERR (0x1 << 25)
93 #define I2C_IT_MTDWS (0x1 << 28)
95 #define GEN_MASK(val, mask, sb) (((val) << (sb)) & (mask))
97 /* some bits in ICR are reserved */
98 #define I2C_CLEAR_ALL_INTS 0x131f007f
100 /* first three msb bits are reserved */
101 #define IRQ_MASK(mask) (mask & 0x1fffffff)
103 /* maximum threshold value */
104 #define MAX_I2C_FIFO_THRESHOLD 15
106 /* per-transfer delay, required for the hardware to stabilize */
107 #define I2C_DELAY 150
109 enum i2c_status {
110 I2C_NOP,
111 I2C_ON_GOING,
112 I2C_OK,
113 I2C_ABORT
116 /* operation */
117 enum i2c_operation {
118 I2C_NO_OPERATION = 0xff,
119 I2C_WRITE = 0x00,
120 I2C_READ = 0x01
123 /* controller response timeout in ms */
124 #define I2C_TIMEOUT_MS 2000
127 * struct i2c_nmk_client - client specific data
128 * @slave_adr: 7-bit slave address
129 * @count: no. bytes to be transfered
130 * @buffer: client data buffer
131 * @xfer_bytes: bytes transfered till now
132 * @operation: current I2C operation
134 struct i2c_nmk_client {
135 unsigned short slave_adr;
136 unsigned long count;
137 unsigned char *buffer;
138 unsigned long xfer_bytes;
139 enum i2c_operation operation;
143 * struct nmk_i2c_dev - private data structure of the controller
144 * @pdev: parent platform device
145 * @adap: corresponding I2C adapter
146 * @irq: interrupt line for the controller
147 * @virtbase: virtual io memory area
148 * @clk: hardware i2c block clock
149 * @cfg: machine provided controller configuration
150 * @cli: holder of client specific data
151 * @stop: stop condition
152 * @xfer_complete: acknowledge completion for a I2C message
153 * @result: controller propogated result
155 struct nmk_i2c_dev {
156 struct platform_device *pdev;
157 struct i2c_adapter adap;
158 int irq;
159 void __iomem *virtbase;
160 struct clk *clk;
161 struct nmk_i2c_controller cfg;
162 struct i2c_nmk_client cli;
163 int stop;
164 struct completion xfer_complete;
165 int result;
168 /* controller's abort causes */
169 static const char *abort_causes[] = {
170 "no ack received after address transmission",
171 "no ack received during data phase",
172 "ack received after xmission of master code",
173 "master lost arbitration",
174 "slave restarts",
175 "slave reset",
176 "overflow, maxsize is 2047 bytes",
179 static inline void i2c_set_bit(void __iomem *reg, u32 mask)
181 writel(readl(reg) | mask, reg);
184 static inline void i2c_clr_bit(void __iomem *reg, u32 mask)
186 writel(readl(reg) & ~mask, reg);
190 * flush_i2c_fifo() - This function flushes the I2C FIFO
191 * @dev: private data of I2C Driver
193 * This function flushes the I2C Tx and Rx FIFOs. It returns
194 * 0 on successful flushing of FIFO
196 static int flush_i2c_fifo(struct nmk_i2c_dev *dev)
198 #define LOOP_ATTEMPTS 10
199 int i;
200 unsigned long timeout;
203 * flush the transmit and receive FIFO. The flushing
204 * operation takes several cycles before to be completed.
205 * On the completion, the I2C internal logic clears these
206 * bits, until then no one must access Tx, Rx FIFO and
207 * should poll on these bits waiting for the completion.
209 writel((I2C_CR_FTX | I2C_CR_FRX), dev->virtbase + I2C_CR);
211 for (i = 0; i < LOOP_ATTEMPTS; i++) {
212 timeout = jiffies + msecs_to_jiffies(I2C_TIMEOUT_MS);
214 while (!time_after(jiffies, timeout)) {
215 if ((readl(dev->virtbase + I2C_CR) &
216 (I2C_CR_FTX | I2C_CR_FRX)) == 0)
217 return 0;
221 dev_err(&dev->pdev->dev, "flushing operation timed out "
222 "giving up after %d attempts", LOOP_ATTEMPTS);
224 return -ETIMEDOUT;
228 * disable_all_interrupts() - Disable all interrupts of this I2c Bus
229 * @dev: private data of I2C Driver
231 static void disable_all_interrupts(struct nmk_i2c_dev *dev)
233 u32 mask = IRQ_MASK(0);
234 writel(mask, dev->virtbase + I2C_IMSCR);
238 * clear_all_interrupts() - Clear all interrupts of I2C Controller
239 * @dev: private data of I2C Driver
241 static void clear_all_interrupts(struct nmk_i2c_dev *dev)
243 u32 mask;
244 mask = IRQ_MASK(I2C_CLEAR_ALL_INTS);
245 writel(mask, dev->virtbase + I2C_ICR);
249 * init_hw() - initialize the I2C hardware
250 * @dev: private data of I2C Driver
252 static int init_hw(struct nmk_i2c_dev *dev)
254 int stat;
256 clk_enable(dev->clk);
258 stat = flush_i2c_fifo(dev);
259 if (stat)
260 return stat;
262 /* disable the controller */
263 i2c_clr_bit(dev->virtbase + I2C_CR , I2C_CR_PE);
265 disable_all_interrupts(dev);
267 clear_all_interrupts(dev);
269 dev->cli.operation = I2C_NO_OPERATION;
271 clk_disable(dev->clk);
273 udelay(I2C_DELAY);
274 return 0;
277 /* enable peripheral, master mode operation */
278 #define DEFAULT_I2C_REG_CR ((1 << 1) | I2C_CR_PE)
281 * load_i2c_mcr_reg() - load the MCR register
282 * @dev: private data of controller
284 static u32 load_i2c_mcr_reg(struct nmk_i2c_dev *dev)
286 u32 mcr = 0;
288 /* 7-bit address transaction */
289 mcr |= GEN_MASK(1, I2C_MCR_AM, 12);
290 mcr |= GEN_MASK(dev->cli.slave_adr, I2C_MCR_A7, 1);
292 /* start byte procedure not applied */
293 mcr |= GEN_MASK(0, I2C_MCR_SB, 11);
295 /* check the operation, master read/write? */
296 if (dev->cli.operation == I2C_WRITE)
297 mcr |= GEN_MASK(I2C_WRITE, I2C_MCR_OP, 0);
298 else
299 mcr |= GEN_MASK(I2C_READ, I2C_MCR_OP, 0);
301 /* stop or repeated start? */
302 if (dev->stop)
303 mcr |= GEN_MASK(1, I2C_MCR_STOP, 14);
304 else
305 mcr &= ~(GEN_MASK(1, I2C_MCR_STOP, 14));
307 mcr |= GEN_MASK(dev->cli.count, I2C_MCR_LENGTH, 15);
309 return mcr;
313 * setup_i2c_controller() - setup the controller
314 * @dev: private data of controller
316 static void setup_i2c_controller(struct nmk_i2c_dev *dev)
318 u32 brcr1, brcr2;
319 u32 i2c_clk, div;
321 writel(0x0, dev->virtbase + I2C_CR);
322 writel(0x0, dev->virtbase + I2C_HSMCR);
323 writel(0x0, dev->virtbase + I2C_TFTR);
324 writel(0x0, dev->virtbase + I2C_RFTR);
325 writel(0x0, dev->virtbase + I2C_DMAR);
328 * set the slsu:
330 * slsu defines the data setup time after SCL clock
331 * stretching in terms of i2c clk cycles. The
332 * needed setup time for the three modes are 250ns,
333 * 100ns, 10ns repectively thus leading to the values
334 * of 14, 6, 2 for a 48 MHz i2c clk.
336 writel(dev->cfg.slsu << 16, dev->virtbase + I2C_SCR);
338 i2c_clk = clk_get_rate(dev->clk);
340 /* fallback to std. mode if machine has not provided it */
341 if (dev->cfg.clk_freq == 0)
342 dev->cfg.clk_freq = 100000;
345 * The spec says, in case of std. mode the divider is
346 * 2 whereas it is 3 for fast and fastplus mode of
347 * operation. TODO - high speed support.
349 div = (dev->cfg.clk_freq > 100000) ? 3 : 2;
352 * generate the mask for baud rate counters. The controller
353 * has two baud rate counters. One is used for High speed
354 * operation, and the other is for std, fast mode, fast mode
355 * plus operation. Currently we do not supprt high speed mode
356 * so set brcr1 to 0.
358 brcr1 = 0 << 16;
359 brcr2 = (i2c_clk/(dev->cfg.clk_freq * div)) & 0xffff;
361 /* set the baud rate counter register */
362 writel((brcr1 | brcr2), dev->virtbase + I2C_BRCR);
365 * set the speed mode. Currently we support
366 * only standard and fast mode of operation
367 * TODO - support for fast mode plus (upto 1Mb/s)
368 * and high speed (up to 3.4 Mb/s)
370 if (dev->cfg.sm > I2C_FREQ_MODE_FAST) {
371 dev_err(&dev->pdev->dev, "do not support this mode "
372 "defaulting to std. mode\n");
373 brcr2 = i2c_clk/(100000 * 2) & 0xffff;
374 writel((brcr1 | brcr2), dev->virtbase + I2C_BRCR);
375 writel(I2C_FREQ_MODE_STANDARD << 4,
376 dev->virtbase + I2C_CR);
378 writel(dev->cfg.sm << 4, dev->virtbase + I2C_CR);
380 /* set the Tx and Rx FIFO threshold */
381 writel(dev->cfg.tft, dev->virtbase + I2C_TFTR);
382 writel(dev->cfg.rft, dev->virtbase + I2C_RFTR);
386 * read_i2c() - Read from I2C client device
387 * @dev: private data of I2C Driver
389 * This function reads from i2c client device when controller is in
390 * master mode. There is a completion timeout. If there is no transfer
391 * before timeout error is returned.
393 static int read_i2c(struct nmk_i2c_dev *dev)
395 u32 status = 0;
396 u32 mcr;
397 u32 irq_mask = 0;
398 int timeout;
400 mcr = load_i2c_mcr_reg(dev);
401 writel(mcr, dev->virtbase + I2C_MCR);
403 /* load the current CR value */
404 writel(readl(dev->virtbase + I2C_CR) | DEFAULT_I2C_REG_CR,
405 dev->virtbase + I2C_CR);
407 /* enable the controller */
408 i2c_set_bit(dev->virtbase + I2C_CR, I2C_CR_PE);
410 init_completion(&dev->xfer_complete);
412 /* enable interrupts by setting the mask */
413 irq_mask = (I2C_IT_RXFNF | I2C_IT_RXFF |
414 I2C_IT_MAL | I2C_IT_BERR);
416 if (dev->stop)
417 irq_mask |= I2C_IT_MTD;
418 else
419 irq_mask |= I2C_IT_MTDWS;
421 irq_mask = I2C_CLEAR_ALL_INTS & IRQ_MASK(irq_mask);
423 writel(readl(dev->virtbase + I2C_IMSCR) | irq_mask,
424 dev->virtbase + I2C_IMSCR);
426 timeout = wait_for_completion_interruptible_timeout(
427 &dev->xfer_complete, msecs_to_jiffies(I2C_TIMEOUT_MS));
429 if (timeout < 0) {
430 dev_err(&dev->pdev->dev,
431 "wait_for_completion_interruptible_timeout"
432 "returned %d waiting for event\n", timeout);
433 status = timeout;
436 if (timeout == 0) {
437 /* controller has timedout, re-init the h/w */
438 dev_err(&dev->pdev->dev, "controller timed out, re-init h/w\n");
439 (void) init_hw(dev);
440 status = -ETIMEDOUT;
442 return status;
446 * write_i2c() - Write data to I2C client.
447 * @dev: private data of I2C Driver
449 * This function writes data to I2C client
451 static int write_i2c(struct nmk_i2c_dev *dev)
453 u32 status = 0;
454 u32 mcr;
455 u32 irq_mask = 0;
456 int timeout;
458 mcr = load_i2c_mcr_reg(dev);
460 writel(mcr, dev->virtbase + I2C_MCR);
462 /* load the current CR value */
463 writel(readl(dev->virtbase + I2C_CR) | DEFAULT_I2C_REG_CR,
464 dev->virtbase + I2C_CR);
466 /* enable the controller */
467 i2c_set_bit(dev->virtbase + I2C_CR , I2C_CR_PE);
469 init_completion(&dev->xfer_complete);
471 /* enable interrupts by settings the masks */
472 irq_mask = (I2C_IT_TXFNE | I2C_IT_TXFOVR |
473 I2C_IT_MAL | I2C_IT_BERR);
476 * check if we want to transfer a single or multiple bytes, if so
477 * set the MTDWS bit (Master Transaction Done Without Stop)
478 * to start repeated start operation
480 if (dev->stop)
481 irq_mask |= I2C_IT_MTD;
482 else
483 irq_mask |= I2C_IT_MTDWS;
485 irq_mask = I2C_CLEAR_ALL_INTS & IRQ_MASK(irq_mask);
487 writel(readl(dev->virtbase + I2C_IMSCR) | irq_mask,
488 dev->virtbase + I2C_IMSCR);
490 timeout = wait_for_completion_interruptible_timeout(
491 &dev->xfer_complete, msecs_to_jiffies(I2C_TIMEOUT_MS));
493 if (timeout < 0) {
494 dev_err(&dev->pdev->dev,
495 "wait_for_completion_interruptible_timeout"
496 "returned %d waiting for event\n", timeout);
497 status = timeout;
500 if (timeout == 0) {
501 /* controller has timedout, re-init the h/w */
502 dev_err(&dev->pdev->dev, "controller timed out, re-init h/w\n");
503 (void) init_hw(dev);
504 status = -ETIMEDOUT;
507 return status;
511 * nmk_i2c_xfer() - I2C transfer function used by kernel framework
512 * @i2c_adap: Adapter pointer to the controller
513 * @msgs: Pointer to data to be written.
514 * @num_msgs: Number of messages to be executed
516 * This is the function called by the generic kernel i2c_transfer()
517 * or i2c_smbus...() API calls. Note that this code is protected by the
518 * semaphore set in the kernel i2c_transfer() function.
520 * NOTE:
521 * READ TRANSFER : We impose a restriction of the first message to be the
522 * index message for any read transaction.
523 * - a no index is coded as '0',
524 * - 2byte big endian index is coded as '3'
525 * !!! msg[0].buf holds the actual index.
526 * This is compatible with generic messages of smbus emulator
527 * that send a one byte index.
528 * eg. a I2C transation to read 2 bytes from index 0
529 * idx = 0;
530 * msg[0].addr = client->addr;
531 * msg[0].flags = 0x0;
532 * msg[0].len = 1;
533 * msg[0].buf = &idx;
535 * msg[1].addr = client->addr;
536 * msg[1].flags = I2C_M_RD;
537 * msg[1].len = 2;
538 * msg[1].buf = rd_buff
539 * i2c_transfer(adap, msg, 2);
541 * WRITE TRANSFER : The I2C standard interface interprets all data as payload.
542 * If you want to emulate an SMBUS write transaction put the
543 * index as first byte(or first and second) in the payload.
544 * eg. a I2C transation to write 2 bytes from index 1
545 * wr_buff[0] = 0x1;
546 * wr_buff[1] = 0x23;
547 * wr_buff[2] = 0x46;
548 * msg[0].flags = 0x0;
549 * msg[0].len = 3;
550 * msg[0].buf = wr_buff;
551 * i2c_transfer(adap, msg, 1);
553 * To read or write a block of data (multiple bytes) using SMBUS emulation
554 * please use the i2c_smbus_read_i2c_block_data()
555 * or i2c_smbus_write_i2c_block_data() API
557 static int nmk_i2c_xfer(struct i2c_adapter *i2c_adap,
558 struct i2c_msg msgs[], int num_msgs)
560 int status;
561 int i;
562 u32 cause;
563 struct nmk_i2c_dev *dev = i2c_get_adapdata(i2c_adap);
565 status = init_hw(dev);
566 if (status)
567 return status;
569 clk_enable(dev->clk);
571 /* setup the i2c controller */
572 setup_i2c_controller(dev);
574 for (i = 0; i < num_msgs; i++) {
575 if (unlikely(msgs[i].flags & I2C_M_TEN)) {
576 dev_err(&dev->pdev->dev, "10 bit addressing"
577 "not supported\n");
578 return -EINVAL;
580 dev->cli.slave_adr = msgs[i].addr;
581 dev->cli.buffer = msgs[i].buf;
582 dev->cli.count = msgs[i].len;
583 dev->stop = (i < (num_msgs - 1)) ? 0 : 1;
584 dev->result = 0;
586 if (msgs[i].flags & I2C_M_RD) {
587 /* it is a read operation */
588 dev->cli.operation = I2C_READ;
589 status = read_i2c(dev);
590 } else {
591 /* write operation */
592 dev->cli.operation = I2C_WRITE;
593 status = write_i2c(dev);
595 if (status || (dev->result)) {
596 /* get the abort cause */
597 cause = (readl(dev->virtbase + I2C_SR) >> 4) & 0x7;
598 dev_err(&dev->pdev->dev, "error during I2C"
599 "message xfer: %d\n", cause);
600 dev_err(&dev->pdev->dev, "%s\n",
601 cause >= ARRAY_SIZE(abort_causes)
602 ? "unknown reason" : abort_causes[cause]);
603 clk_disable(dev->clk);
604 return status;
606 udelay(I2C_DELAY);
608 clk_disable(dev->clk);
610 /* return the no. messages processed */
611 if (status)
612 return status;
613 else
614 return num_msgs;
618 * disable_interrupts() - disable the interrupts
619 * @dev: private data of controller
620 * @irq: interrupt number
622 static int disable_interrupts(struct nmk_i2c_dev *dev, u32 irq)
624 irq = IRQ_MASK(irq);
625 writel(readl(dev->virtbase + I2C_IMSCR) & ~(I2C_CLEAR_ALL_INTS & irq),
626 dev->virtbase + I2C_IMSCR);
627 return 0;
631 * i2c_irq_handler() - interrupt routine
632 * @irq: interrupt number
633 * @arg: data passed to the handler
635 * This is the interrupt handler for the i2c driver. Currently
636 * it handles the major interrupts like Rx & Tx FIFO management
637 * interrupts, master transaction interrupts, arbitration and
638 * bus error interrupts. The rest of the interrupts are treated as
639 * unhandled.
641 static irqreturn_t i2c_irq_handler(int irq, void *arg)
643 struct nmk_i2c_dev *dev = arg;
644 u32 tft, rft;
645 u32 count;
646 u32 misr;
647 u32 src = 0;
649 /* load Tx FIFO and Rx FIFO threshold values */
650 tft = readl(dev->virtbase + I2C_TFTR);
651 rft = readl(dev->virtbase + I2C_RFTR);
653 /* read interrupt status register */
654 misr = readl(dev->virtbase + I2C_MISR);
656 src = __ffs(misr);
657 switch ((1 << src)) {
659 /* Transmit FIFO nearly empty interrupt */
660 case I2C_IT_TXFNE:
662 if (dev->cli.operation == I2C_READ) {
664 * in read operation why do we care for writing?
665 * so disable the Transmit FIFO interrupt
667 disable_interrupts(dev, I2C_IT_TXFNE);
668 } else {
669 for (count = (MAX_I2C_FIFO_THRESHOLD - tft - 2);
670 (count > 0) &&
671 (dev->cli.count != 0);
672 count--) {
673 /* write to the Tx FIFO */
674 writeb(*dev->cli.buffer,
675 dev->virtbase + I2C_TFR);
676 dev->cli.buffer++;
677 dev->cli.count--;
678 dev->cli.xfer_bytes++;
681 * if done, close the transfer by disabling the
682 * corresponding TXFNE interrupt
684 if (dev->cli.count == 0)
685 disable_interrupts(dev, I2C_IT_TXFNE);
688 break;
691 * Rx FIFO nearly full interrupt.
692 * This is set when the numer of entries in Rx FIFO is
693 * greater or equal than the threshold value programmed
694 * in RFT
696 case I2C_IT_RXFNF:
697 for (count = rft; count > 0; count--) {
698 /* Read the Rx FIFO */
699 *dev->cli.buffer = readb(dev->virtbase + I2C_RFR);
700 dev->cli.buffer++;
702 dev->cli.count -= rft;
703 dev->cli.xfer_bytes += rft;
704 break;
706 /* Rx FIFO full */
707 case I2C_IT_RXFF:
708 for (count = MAX_I2C_FIFO_THRESHOLD; count > 0; count--) {
709 *dev->cli.buffer = readb(dev->virtbase + I2C_RFR);
710 dev->cli.buffer++;
712 dev->cli.count -= MAX_I2C_FIFO_THRESHOLD;
713 dev->cli.xfer_bytes += MAX_I2C_FIFO_THRESHOLD;
714 break;
716 /* Master Transaction Done with/without stop */
717 case I2C_IT_MTD:
718 case I2C_IT_MTDWS:
719 if (dev->cli.operation == I2C_READ) {
720 while (!(readl(dev->virtbase + I2C_RISR)
721 & I2C_IT_RXFE)) {
722 if (dev->cli.count == 0)
723 break;
724 *dev->cli.buffer =
725 readb(dev->virtbase + I2C_RFR);
726 dev->cli.buffer++;
727 dev->cli.count--;
728 dev->cli.xfer_bytes++;
732 i2c_set_bit(dev->virtbase + I2C_ICR, I2C_IT_MTD);
733 i2c_set_bit(dev->virtbase + I2C_ICR, I2C_IT_MTDWS);
735 disable_interrupts(dev,
736 (I2C_IT_TXFNE | I2C_IT_TXFE | I2C_IT_TXFF
737 | I2C_IT_TXFOVR | I2C_IT_RXFNF
738 | I2C_IT_RXFF | I2C_IT_RXFE));
740 if (dev->cli.count) {
741 dev->result = -1;
742 dev_err(&dev->pdev->dev, "%lu bytes still remain to be"
743 "xfered\n", dev->cli.count);
744 (void) init_hw(dev);
746 complete(&dev->xfer_complete);
748 break;
750 /* Master Arbitration lost interrupt */
751 case I2C_IT_MAL:
752 dev->result = -1;
753 (void) init_hw(dev);
755 i2c_set_bit(dev->virtbase + I2C_ICR, I2C_IT_MAL);
756 complete(&dev->xfer_complete);
758 break;
761 * Bus Error interrupt.
762 * This happens when an unexpected start/stop condition occurs
763 * during the transaction.
765 case I2C_IT_BERR:
766 dev->result = -1;
767 /* get the status */
768 if (((readl(dev->virtbase + I2C_SR) >> 2) & 0x3) == I2C_ABORT)
769 (void) init_hw(dev);
771 i2c_set_bit(dev->virtbase + I2C_ICR, I2C_IT_BERR);
772 complete(&dev->xfer_complete);
774 break;
777 * Tx FIFO overrun interrupt.
778 * This is set when a write operation in Tx FIFO is performed and
779 * the Tx FIFO is full.
781 case I2C_IT_TXFOVR:
782 dev->result = -1;
783 (void) init_hw(dev);
785 dev_err(&dev->pdev->dev, "Tx Fifo Over run\n");
786 complete(&dev->xfer_complete);
788 break;
790 /* unhandled interrupts by this driver - TODO*/
791 case I2C_IT_TXFE:
792 case I2C_IT_TXFF:
793 case I2C_IT_RXFE:
794 case I2C_IT_RFSR:
795 case I2C_IT_RFSE:
796 case I2C_IT_WTSR:
797 case I2C_IT_STD:
798 dev_err(&dev->pdev->dev, "unhandled Interrupt\n");
799 break;
800 default:
801 dev_err(&dev->pdev->dev, "spurious Interrupt..\n");
802 break;
805 return IRQ_HANDLED;
808 static unsigned int nmk_i2c_functionality(struct i2c_adapter *adap)
810 return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
813 static const struct i2c_algorithm nmk_i2c_algo = {
814 .master_xfer = nmk_i2c_xfer,
815 .functionality = nmk_i2c_functionality
818 static int __devinit nmk_i2c_probe(struct platform_device *pdev)
820 int ret = 0;
821 struct resource *res;
822 struct nmk_i2c_controller *pdata =
823 pdev->dev.platform_data;
824 struct nmk_i2c_dev *dev;
825 struct i2c_adapter *adap;
827 dev = kzalloc(sizeof(struct nmk_i2c_dev), GFP_KERNEL);
828 if (!dev) {
829 dev_err(&pdev->dev, "cannot allocate memory\n");
830 ret = -ENOMEM;
831 goto err_no_mem;
834 dev->pdev = pdev;
835 platform_set_drvdata(pdev, dev);
837 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
838 if (!res) {
839 ret = -ENOENT;
840 goto err_no_resource;
843 if (request_mem_region(res->start, resource_size(res),
844 DRIVER_NAME "I/O region") == NULL) {
845 ret = -EBUSY;
846 goto err_no_region;
849 dev->virtbase = ioremap(res->start, resource_size(res));
850 if (!dev->virtbase) {
851 ret = -ENOMEM;
852 goto err_no_ioremap;
855 dev->irq = platform_get_irq(pdev, 0);
856 ret = request_irq(dev->irq, i2c_irq_handler, IRQF_DISABLED,
857 DRIVER_NAME, dev);
858 if (ret) {
859 dev_err(&pdev->dev, "cannot claim the irq %d\n", dev->irq);
860 goto err_irq;
863 dev->clk = clk_get(&pdev->dev, NULL);
864 if (IS_ERR(dev->clk)) {
865 dev_err(&pdev->dev, "could not get i2c clock\n");
866 ret = PTR_ERR(dev->clk);
867 goto err_no_clk;
870 adap = &dev->adap;
871 adap->dev.parent = &pdev->dev;
872 adap->owner = THIS_MODULE;
873 adap->class = I2C_CLASS_HWMON | I2C_CLASS_SPD;
874 adap->algo = &nmk_i2c_algo;
875 snprintf(adap->name, sizeof(adap->name),
876 "Nomadik I2C%d at %lx", pdev->id, (unsigned long)res->start);
878 /* fetch the controller id */
879 adap->nr = pdev->id;
881 /* fetch the controller configuration from machine */
882 dev->cfg.clk_freq = pdata->clk_freq;
883 dev->cfg.slsu = pdata->slsu;
884 dev->cfg.tft = pdata->tft;
885 dev->cfg.rft = pdata->rft;
886 dev->cfg.sm = pdata->sm;
888 i2c_set_adapdata(adap, dev);
890 ret = init_hw(dev);
891 if (ret != 0) {
892 dev_err(&pdev->dev, "error in initializing i2c hardware\n");
893 goto err_init_hw;
896 dev_info(&pdev->dev, "initialize %s on virtual "
897 "base %p\n", adap->name, dev->virtbase);
899 ret = i2c_add_numbered_adapter(adap);
900 if (ret) {
901 dev_err(&pdev->dev, "failed to add adapter\n");
902 goto err_add_adap;
905 return 0;
907 err_init_hw:
908 err_add_adap:
909 clk_put(dev->clk);
910 err_no_clk:
911 free_irq(dev->irq, dev);
912 err_irq:
913 iounmap(dev->virtbase);
914 err_no_ioremap:
915 release_mem_region(res->start, resource_size(res));
916 err_no_region:
917 platform_set_drvdata(pdev, NULL);
918 err_no_resource:
919 kfree(dev);
920 err_no_mem:
922 return ret;
925 static int __devexit nmk_i2c_remove(struct platform_device *pdev)
927 struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
928 struct nmk_i2c_dev *dev = platform_get_drvdata(pdev);
930 i2c_del_adapter(&dev->adap);
931 flush_i2c_fifo(dev);
932 disable_all_interrupts(dev);
933 clear_all_interrupts(dev);
934 /* disable the controller */
935 i2c_clr_bit(dev->virtbase + I2C_CR, I2C_CR_PE);
936 free_irq(dev->irq, dev);
937 iounmap(dev->virtbase);
938 if (res)
939 release_mem_region(res->start, resource_size(res));
940 clk_put(dev->clk);
941 platform_set_drvdata(pdev, NULL);
942 kfree(dev);
944 return 0;
947 static struct platform_driver nmk_i2c_driver = {
948 .driver = {
949 .owner = THIS_MODULE,
950 .name = DRIVER_NAME,
952 .probe = nmk_i2c_probe,
953 .remove = __devexit_p(nmk_i2c_remove),
956 static int __init nmk_i2c_init(void)
958 return platform_driver_register(&nmk_i2c_driver);
961 static void __exit nmk_i2c_exit(void)
963 platform_driver_unregister(&nmk_i2c_driver);
966 subsys_initcall(nmk_i2c_init);
967 module_exit(nmk_i2c_exit);
969 MODULE_AUTHOR("Sachin Verma, Srinidhi KASAGAR");
970 MODULE_DESCRIPTION("Nomadik/Ux500 I2C driver");
971 MODULE_LICENSE("GPL");
972 MODULE_ALIAS("platform:" DRIVER_NAME);