2 * raid10.c : Multiple Devices driver for Linux
4 * Copyright (C) 2000-2004 Neil Brown
6 * RAID-10 support for md.
8 * Base on code in raid1.c. See raid1.c for futher copyright information.
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/seq_file.h>
31 * RAID10 provides a combination of RAID0 and RAID1 functionality.
32 * The layout of data is defined by
35 * near_copies (stored in low byte of layout)
36 * far_copies (stored in second byte of layout)
37 * far_offset (stored in bit 16 of layout )
39 * The data to be stored is divided into chunks using chunksize.
40 * Each device is divided into far_copies sections.
41 * In each section, chunks are laid out in a style similar to raid0, but
42 * near_copies copies of each chunk is stored (each on a different drive).
43 * The starting device for each section is offset near_copies from the starting
44 * device of the previous section.
45 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
47 * near_copies and far_copies must be at least one, and their product is at most
50 * If far_offset is true, then the far_copies are handled a bit differently.
51 * The copies are still in different stripes, but instead of be very far apart
52 * on disk, there are adjacent stripes.
56 * Number of guaranteed r10bios in case of extreme VM load:
58 #define NR_RAID10_BIOS 256
60 static void allow_barrier(conf_t
*conf
);
61 static void lower_barrier(conf_t
*conf
);
63 static void * r10bio_pool_alloc(gfp_t gfp_flags
, void *data
)
66 int size
= offsetof(struct r10bio_s
, devs
[conf
->copies
]);
68 /* allocate a r10bio with room for raid_disks entries in the bios array */
69 return kzalloc(size
, gfp_flags
);
72 static void r10bio_pool_free(void *r10_bio
, void *data
)
77 /* Maximum size of each resync request */
78 #define RESYNC_BLOCK_SIZE (64*1024)
79 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
80 /* amount of memory to reserve for resync requests */
81 #define RESYNC_WINDOW (1024*1024)
82 /* maximum number of concurrent requests, memory permitting */
83 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
86 * When performing a resync, we need to read and compare, so
87 * we need as many pages are there are copies.
88 * When performing a recovery, we need 2 bios, one for read,
89 * one for write (we recover only one drive per r10buf)
92 static void * r10buf_pool_alloc(gfp_t gfp_flags
, void *data
)
101 r10_bio
= r10bio_pool_alloc(gfp_flags
, conf
);
105 if (test_bit(MD_RECOVERY_SYNC
, &conf
->mddev
->recovery
))
106 nalloc
= conf
->copies
; /* resync */
108 nalloc
= 2; /* recovery */
113 for (j
= nalloc
; j
-- ; ) {
114 bio
= bio_kmalloc(gfp_flags
, RESYNC_PAGES
);
117 r10_bio
->devs
[j
].bio
= bio
;
120 * Allocate RESYNC_PAGES data pages and attach them
123 for (j
= 0 ; j
< nalloc
; j
++) {
124 bio
= r10_bio
->devs
[j
].bio
;
125 for (i
= 0; i
< RESYNC_PAGES
; i
++) {
126 page
= alloc_page(gfp_flags
);
130 bio
->bi_io_vec
[i
].bv_page
= page
;
138 safe_put_page(bio
->bi_io_vec
[i
-1].bv_page
);
140 for (i
= 0; i
< RESYNC_PAGES
; i
++)
141 safe_put_page(r10_bio
->devs
[j
].bio
->bi_io_vec
[i
].bv_page
);
144 while ( ++j
< nalloc
)
145 bio_put(r10_bio
->devs
[j
].bio
);
146 r10bio_pool_free(r10_bio
, conf
);
150 static void r10buf_pool_free(void *__r10_bio
, void *data
)
154 r10bio_t
*r10bio
= __r10_bio
;
157 for (j
=0; j
< conf
->copies
; j
++) {
158 struct bio
*bio
= r10bio
->devs
[j
].bio
;
160 for (i
= 0; i
< RESYNC_PAGES
; i
++) {
161 safe_put_page(bio
->bi_io_vec
[i
].bv_page
);
162 bio
->bi_io_vec
[i
].bv_page
= NULL
;
167 r10bio_pool_free(r10bio
, conf
);
170 static void put_all_bios(conf_t
*conf
, r10bio_t
*r10_bio
)
174 for (i
= 0; i
< conf
->copies
; i
++) {
175 struct bio
**bio
= & r10_bio
->devs
[i
].bio
;
176 if (*bio
&& *bio
!= IO_BLOCKED
)
182 static void free_r10bio(r10bio_t
*r10_bio
)
184 conf_t
*conf
= r10_bio
->mddev
->private;
187 * Wake up any possible resync thread that waits for the device
192 put_all_bios(conf
, r10_bio
);
193 mempool_free(r10_bio
, conf
->r10bio_pool
);
196 static void put_buf(r10bio_t
*r10_bio
)
198 conf_t
*conf
= r10_bio
->mddev
->private;
200 mempool_free(r10_bio
, conf
->r10buf_pool
);
205 static void reschedule_retry(r10bio_t
*r10_bio
)
208 mddev_t
*mddev
= r10_bio
->mddev
;
209 conf_t
*conf
= mddev
->private;
211 spin_lock_irqsave(&conf
->device_lock
, flags
);
212 list_add(&r10_bio
->retry_list
, &conf
->retry_list
);
214 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
216 /* wake up frozen array... */
217 wake_up(&conf
->wait_barrier
);
219 md_wakeup_thread(mddev
->thread
);
223 * raid_end_bio_io() is called when we have finished servicing a mirrored
224 * operation and are ready to return a success/failure code to the buffer
227 static void raid_end_bio_io(r10bio_t
*r10_bio
)
229 struct bio
*bio
= r10_bio
->master_bio
;
232 test_bit(R10BIO_Uptodate
, &r10_bio
->state
) ? 0 : -EIO
);
233 free_r10bio(r10_bio
);
237 * Update disk head position estimator based on IRQ completion info.
239 static inline void update_head_pos(int slot
, r10bio_t
*r10_bio
)
241 conf_t
*conf
= r10_bio
->mddev
->private;
243 conf
->mirrors
[r10_bio
->devs
[slot
].devnum
].head_position
=
244 r10_bio
->devs
[slot
].addr
+ (r10_bio
->sectors
);
247 static void raid10_end_read_request(struct bio
*bio
, int error
)
249 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
250 r10bio_t
*r10_bio
= bio
->bi_private
;
252 conf_t
*conf
= r10_bio
->mddev
->private;
255 slot
= r10_bio
->read_slot
;
256 dev
= r10_bio
->devs
[slot
].devnum
;
258 * this branch is our 'one mirror IO has finished' event handler:
260 update_head_pos(slot
, r10_bio
);
264 * Set R10BIO_Uptodate in our master bio, so that
265 * we will return a good error code to the higher
266 * levels even if IO on some other mirrored buffer fails.
268 * The 'master' represents the composite IO operation to
269 * user-side. So if something waits for IO, then it will
270 * wait for the 'master' bio.
272 set_bit(R10BIO_Uptodate
, &r10_bio
->state
);
273 raid_end_bio_io(r10_bio
);
278 char b
[BDEVNAME_SIZE
];
279 if (printk_ratelimit())
280 printk(KERN_ERR
"md/raid10:%s: %s: rescheduling sector %llu\n",
282 bdevname(conf
->mirrors
[dev
].rdev
->bdev
,b
), (unsigned long long)r10_bio
->sector
);
283 reschedule_retry(r10_bio
);
286 rdev_dec_pending(conf
->mirrors
[dev
].rdev
, conf
->mddev
);
289 static void raid10_end_write_request(struct bio
*bio
, int error
)
291 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
292 r10bio_t
*r10_bio
= bio
->bi_private
;
294 conf_t
*conf
= r10_bio
->mddev
->private;
296 for (slot
= 0; slot
< conf
->copies
; slot
++)
297 if (r10_bio
->devs
[slot
].bio
== bio
)
299 dev
= r10_bio
->devs
[slot
].devnum
;
302 * this branch is our 'one mirror IO has finished' event handler:
305 md_error(r10_bio
->mddev
, conf
->mirrors
[dev
].rdev
);
306 /* an I/O failed, we can't clear the bitmap */
307 set_bit(R10BIO_Degraded
, &r10_bio
->state
);
310 * Set R10BIO_Uptodate in our master bio, so that
311 * we will return a good error code for to the higher
312 * levels even if IO on some other mirrored buffer fails.
314 * The 'master' represents the composite IO operation to
315 * user-side. So if something waits for IO, then it will
316 * wait for the 'master' bio.
318 set_bit(R10BIO_Uptodate
, &r10_bio
->state
);
320 update_head_pos(slot
, r10_bio
);
324 * Let's see if all mirrored write operations have finished
327 if (atomic_dec_and_test(&r10_bio
->remaining
)) {
328 /* clear the bitmap if all writes complete successfully */
329 bitmap_endwrite(r10_bio
->mddev
->bitmap
, r10_bio
->sector
,
331 !test_bit(R10BIO_Degraded
, &r10_bio
->state
),
333 md_write_end(r10_bio
->mddev
);
334 raid_end_bio_io(r10_bio
);
337 rdev_dec_pending(conf
->mirrors
[dev
].rdev
, conf
->mddev
);
342 * RAID10 layout manager
343 * Aswell as the chunksize and raid_disks count, there are two
344 * parameters: near_copies and far_copies.
345 * near_copies * far_copies must be <= raid_disks.
346 * Normally one of these will be 1.
347 * If both are 1, we get raid0.
348 * If near_copies == raid_disks, we get raid1.
350 * Chunks are layed out in raid0 style with near_copies copies of the
351 * first chunk, followed by near_copies copies of the next chunk and
353 * If far_copies > 1, then after 1/far_copies of the array has been assigned
354 * as described above, we start again with a device offset of near_copies.
355 * So we effectively have another copy of the whole array further down all
356 * the drives, but with blocks on different drives.
357 * With this layout, and block is never stored twice on the one device.
359 * raid10_find_phys finds the sector offset of a given virtual sector
360 * on each device that it is on.
362 * raid10_find_virt does the reverse mapping, from a device and a
363 * sector offset to a virtual address
366 static void raid10_find_phys(conf_t
*conf
, r10bio_t
*r10bio
)
376 /* now calculate first sector/dev */
377 chunk
= r10bio
->sector
>> conf
->chunk_shift
;
378 sector
= r10bio
->sector
& conf
->chunk_mask
;
380 chunk
*= conf
->near_copies
;
382 dev
= sector_div(stripe
, conf
->raid_disks
);
383 if (conf
->far_offset
)
384 stripe
*= conf
->far_copies
;
386 sector
+= stripe
<< conf
->chunk_shift
;
388 /* and calculate all the others */
389 for (n
=0; n
< conf
->near_copies
; n
++) {
392 r10bio
->devs
[slot
].addr
= sector
;
393 r10bio
->devs
[slot
].devnum
= d
;
396 for (f
= 1; f
< conf
->far_copies
; f
++) {
397 d
+= conf
->near_copies
;
398 if (d
>= conf
->raid_disks
)
399 d
-= conf
->raid_disks
;
401 r10bio
->devs
[slot
].devnum
= d
;
402 r10bio
->devs
[slot
].addr
= s
;
406 if (dev
>= conf
->raid_disks
) {
408 sector
+= (conf
->chunk_mask
+ 1);
411 BUG_ON(slot
!= conf
->copies
);
414 static sector_t
raid10_find_virt(conf_t
*conf
, sector_t sector
, int dev
)
416 sector_t offset
, chunk
, vchunk
;
418 offset
= sector
& conf
->chunk_mask
;
419 if (conf
->far_offset
) {
421 chunk
= sector
>> conf
->chunk_shift
;
422 fc
= sector_div(chunk
, conf
->far_copies
);
423 dev
-= fc
* conf
->near_copies
;
425 dev
+= conf
->raid_disks
;
427 while (sector
>= conf
->stride
) {
428 sector
-= conf
->stride
;
429 if (dev
< conf
->near_copies
)
430 dev
+= conf
->raid_disks
- conf
->near_copies
;
432 dev
-= conf
->near_copies
;
434 chunk
= sector
>> conf
->chunk_shift
;
436 vchunk
= chunk
* conf
->raid_disks
+ dev
;
437 sector_div(vchunk
, conf
->near_copies
);
438 return (vchunk
<< conf
->chunk_shift
) + offset
;
442 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
444 * @bvm: properties of new bio
445 * @biovec: the request that could be merged to it.
447 * Return amount of bytes we can accept at this offset
448 * If near_copies == raid_disk, there are no striping issues,
449 * but in that case, the function isn't called at all.
451 static int raid10_mergeable_bvec(struct request_queue
*q
,
452 struct bvec_merge_data
*bvm
,
453 struct bio_vec
*biovec
)
455 mddev_t
*mddev
= q
->queuedata
;
456 sector_t sector
= bvm
->bi_sector
+ get_start_sect(bvm
->bi_bdev
);
458 unsigned int chunk_sectors
= mddev
->chunk_sectors
;
459 unsigned int bio_sectors
= bvm
->bi_size
>> 9;
461 max
= (chunk_sectors
- ((sector
& (chunk_sectors
- 1)) + bio_sectors
)) << 9;
462 if (max
< 0) max
= 0; /* bio_add cannot handle a negative return */
463 if (max
<= biovec
->bv_len
&& bio_sectors
== 0)
464 return biovec
->bv_len
;
470 * This routine returns the disk from which the requested read should
471 * be done. There is a per-array 'next expected sequential IO' sector
472 * number - if this matches on the next IO then we use the last disk.
473 * There is also a per-disk 'last know head position' sector that is
474 * maintained from IRQ contexts, both the normal and the resync IO
475 * completion handlers update this position correctly. If there is no
476 * perfect sequential match then we pick the disk whose head is closest.
478 * If there are 2 mirrors in the same 2 devices, performance degrades
479 * because position is mirror, not device based.
481 * The rdev for the device selected will have nr_pending incremented.
485 * FIXME: possibly should rethink readbalancing and do it differently
486 * depending on near_copies / far_copies geometry.
488 static int read_balance(conf_t
*conf
, r10bio_t
*r10_bio
)
490 const sector_t this_sector
= r10_bio
->sector
;
491 int disk
, slot
, nslot
;
492 const int sectors
= r10_bio
->sectors
;
493 sector_t new_distance
, current_distance
;
496 raid10_find_phys(conf
, r10_bio
);
499 * Check if we can balance. We can balance on the whole
500 * device if no resync is going on (recovery is ok), or below
501 * the resync window. We take the first readable disk when
502 * above the resync window.
504 if (conf
->mddev
->recovery_cp
< MaxSector
505 && (this_sector
+ sectors
>= conf
->next_resync
)) {
506 /* make sure that disk is operational */
508 disk
= r10_bio
->devs
[slot
].devnum
;
510 while ((rdev
= rcu_dereference(conf
->mirrors
[disk
].rdev
)) == NULL
||
511 r10_bio
->devs
[slot
].bio
== IO_BLOCKED
||
512 !test_bit(In_sync
, &rdev
->flags
)) {
514 if (slot
== conf
->copies
) {
519 disk
= r10_bio
->devs
[slot
].devnum
;
525 /* make sure the disk is operational */
527 disk
= r10_bio
->devs
[slot
].devnum
;
528 while ((rdev
=rcu_dereference(conf
->mirrors
[disk
].rdev
)) == NULL
||
529 r10_bio
->devs
[slot
].bio
== IO_BLOCKED
||
530 !test_bit(In_sync
, &rdev
->flags
)) {
532 if (slot
== conf
->copies
) {
536 disk
= r10_bio
->devs
[slot
].devnum
;
540 current_distance
= abs(r10_bio
->devs
[slot
].addr
-
541 conf
->mirrors
[disk
].head_position
);
543 /* Find the disk whose head is closest,
544 * or - for far > 1 - find the closest to partition beginning */
546 for (nslot
= slot
; nslot
< conf
->copies
; nslot
++) {
547 int ndisk
= r10_bio
->devs
[nslot
].devnum
;
550 if ((rdev
=rcu_dereference(conf
->mirrors
[ndisk
].rdev
)) == NULL
||
551 r10_bio
->devs
[nslot
].bio
== IO_BLOCKED
||
552 !test_bit(In_sync
, &rdev
->flags
))
555 /* This optimisation is debatable, and completely destroys
556 * sequential read speed for 'far copies' arrays. So only
557 * keep it for 'near' arrays, and review those later.
559 if (conf
->near_copies
> 1 && !atomic_read(&rdev
->nr_pending
)) {
565 /* for far > 1 always use the lowest address */
566 if (conf
->far_copies
> 1)
567 new_distance
= r10_bio
->devs
[nslot
].addr
;
569 new_distance
= abs(r10_bio
->devs
[nslot
].addr
-
570 conf
->mirrors
[ndisk
].head_position
);
571 if (new_distance
< current_distance
) {
572 current_distance
= new_distance
;
579 r10_bio
->read_slot
= slot
;
580 /* conf->next_seq_sect = this_sector + sectors;*/
582 if (disk
>= 0 && (rdev
=rcu_dereference(conf
->mirrors
[disk
].rdev
))!= NULL
)
583 atomic_inc(&conf
->mirrors
[disk
].rdev
->nr_pending
);
591 static int raid10_congested(void *data
, int bits
)
593 mddev_t
*mddev
= data
;
594 conf_t
*conf
= mddev
->private;
597 if (mddev_congested(mddev
, bits
))
600 for (i
= 0; i
< conf
->raid_disks
&& ret
== 0; i
++) {
601 mdk_rdev_t
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
602 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
)) {
603 struct request_queue
*q
= bdev_get_queue(rdev
->bdev
);
605 ret
|= bdi_congested(&q
->backing_dev_info
, bits
);
612 static void flush_pending_writes(conf_t
*conf
)
614 /* Any writes that have been queued but are awaiting
615 * bitmap updates get flushed here.
617 spin_lock_irq(&conf
->device_lock
);
619 if (conf
->pending_bio_list
.head
) {
621 bio
= bio_list_get(&conf
->pending_bio_list
);
622 spin_unlock_irq(&conf
->device_lock
);
623 /* flush any pending bitmap writes to disk
624 * before proceeding w/ I/O */
625 bitmap_unplug(conf
->mddev
->bitmap
);
627 while (bio
) { /* submit pending writes */
628 struct bio
*next
= bio
->bi_next
;
630 generic_make_request(bio
);
634 spin_unlock_irq(&conf
->device_lock
);
637 static void md_kick_device(mddev_t
*mddev
)
639 blk_flush_plug(current
);
640 md_wakeup_thread(mddev
->thread
);
644 * Sometimes we need to suspend IO while we do something else,
645 * either some resync/recovery, or reconfigure the array.
646 * To do this we raise a 'barrier'.
647 * The 'barrier' is a counter that can be raised multiple times
648 * to count how many activities are happening which preclude
650 * We can only raise the barrier if there is no pending IO.
651 * i.e. if nr_pending == 0.
652 * We choose only to raise the barrier if no-one is waiting for the
653 * barrier to go down. This means that as soon as an IO request
654 * is ready, no other operations which require a barrier will start
655 * until the IO request has had a chance.
657 * So: regular IO calls 'wait_barrier'. When that returns there
658 * is no backgroup IO happening, It must arrange to call
659 * allow_barrier when it has finished its IO.
660 * backgroup IO calls must call raise_barrier. Once that returns
661 * there is no normal IO happeing. It must arrange to call
662 * lower_barrier when the particular background IO completes.
665 static void raise_barrier(conf_t
*conf
, int force
)
667 BUG_ON(force
&& !conf
->barrier
);
668 spin_lock_irq(&conf
->resync_lock
);
670 /* Wait until no block IO is waiting (unless 'force') */
671 wait_event_lock_irq(conf
->wait_barrier
, force
|| !conf
->nr_waiting
,
672 conf
->resync_lock
, md_kick_device(conf
->mddev
));
674 /* block any new IO from starting */
677 /* No wait for all pending IO to complete */
678 wait_event_lock_irq(conf
->wait_barrier
,
679 !conf
->nr_pending
&& conf
->barrier
< RESYNC_DEPTH
,
680 conf
->resync_lock
, md_kick_device(conf
->mddev
));
682 spin_unlock_irq(&conf
->resync_lock
);
685 static void lower_barrier(conf_t
*conf
)
688 spin_lock_irqsave(&conf
->resync_lock
, flags
);
690 spin_unlock_irqrestore(&conf
->resync_lock
, flags
);
691 wake_up(&conf
->wait_barrier
);
694 static void wait_barrier(conf_t
*conf
)
696 spin_lock_irq(&conf
->resync_lock
);
699 wait_event_lock_irq(conf
->wait_barrier
, !conf
->barrier
,
701 md_kick_device(conf
->mddev
));
705 spin_unlock_irq(&conf
->resync_lock
);
708 static void allow_barrier(conf_t
*conf
)
711 spin_lock_irqsave(&conf
->resync_lock
, flags
);
713 spin_unlock_irqrestore(&conf
->resync_lock
, flags
);
714 wake_up(&conf
->wait_barrier
);
717 static void freeze_array(conf_t
*conf
)
719 /* stop syncio and normal IO and wait for everything to
721 * We increment barrier and nr_waiting, and then
722 * wait until nr_pending match nr_queued+1
723 * This is called in the context of one normal IO request
724 * that has failed. Thus any sync request that might be pending
725 * will be blocked by nr_pending, and we need to wait for
726 * pending IO requests to complete or be queued for re-try.
727 * Thus the number queued (nr_queued) plus this request (1)
728 * must match the number of pending IOs (nr_pending) before
731 spin_lock_irq(&conf
->resync_lock
);
734 wait_event_lock_irq(conf
->wait_barrier
,
735 conf
->nr_pending
== conf
->nr_queued
+1,
737 ({ flush_pending_writes(conf
);
738 md_kick_device(conf
->mddev
); }));
739 spin_unlock_irq(&conf
->resync_lock
);
742 static void unfreeze_array(conf_t
*conf
)
744 /* reverse the effect of the freeze */
745 spin_lock_irq(&conf
->resync_lock
);
748 wake_up(&conf
->wait_barrier
);
749 spin_unlock_irq(&conf
->resync_lock
);
752 static int make_request(mddev_t
*mddev
, struct bio
* bio
)
754 conf_t
*conf
= mddev
->private;
755 mirror_info_t
*mirror
;
757 struct bio
*read_bio
;
759 int chunk_sects
= conf
->chunk_mask
+ 1;
760 const int rw
= bio_data_dir(bio
);
761 const unsigned long do_sync
= (bio
->bi_rw
& REQ_SYNC
);
762 const unsigned long do_fua
= (bio
->bi_rw
& REQ_FUA
);
764 mdk_rdev_t
*blocked_rdev
;
766 if (unlikely(bio
->bi_rw
& REQ_FLUSH
)) {
767 md_flush_request(mddev
, bio
);
771 /* If this request crosses a chunk boundary, we need to
772 * split it. This will only happen for 1 PAGE (or less) requests.
774 if (unlikely( (bio
->bi_sector
& conf
->chunk_mask
) + (bio
->bi_size
>> 9)
776 conf
->near_copies
< conf
->raid_disks
)) {
778 /* Sanity check -- queue functions should prevent this happening */
779 if (bio
->bi_vcnt
!= 1 ||
782 /* This is a one page bio that upper layers
783 * refuse to split for us, so we need to split it.
786 chunk_sects
- (bio
->bi_sector
& (chunk_sects
- 1)) );
788 /* Each of these 'make_request' calls will call 'wait_barrier'.
789 * If the first succeeds but the second blocks due to the resync
790 * thread raising the barrier, we will deadlock because the
791 * IO to the underlying device will be queued in generic_make_request
792 * and will never complete, so will never reduce nr_pending.
793 * So increment nr_waiting here so no new raise_barriers will
794 * succeed, and so the second wait_barrier cannot block.
796 spin_lock_irq(&conf
->resync_lock
);
798 spin_unlock_irq(&conf
->resync_lock
);
800 if (make_request(mddev
, &bp
->bio1
))
801 generic_make_request(&bp
->bio1
);
802 if (make_request(mddev
, &bp
->bio2
))
803 generic_make_request(&bp
->bio2
);
805 spin_lock_irq(&conf
->resync_lock
);
807 wake_up(&conf
->wait_barrier
);
808 spin_unlock_irq(&conf
->resync_lock
);
810 bio_pair_release(bp
);
813 printk("md/raid10:%s: make_request bug: can't convert block across chunks"
814 " or bigger than %dk %llu %d\n", mdname(mddev
), chunk_sects
/2,
815 (unsigned long long)bio
->bi_sector
, bio
->bi_size
>> 10);
821 md_write_start(mddev
, bio
);
824 * Register the new request and wait if the reconstruction
825 * thread has put up a bar for new requests.
826 * Continue immediately if no resync is active currently.
830 r10_bio
= mempool_alloc(conf
->r10bio_pool
, GFP_NOIO
);
832 r10_bio
->master_bio
= bio
;
833 r10_bio
->sectors
= bio
->bi_size
>> 9;
835 r10_bio
->mddev
= mddev
;
836 r10_bio
->sector
= bio
->bi_sector
;
841 * read balancing logic:
843 int disk
= read_balance(conf
, r10_bio
);
844 int slot
= r10_bio
->read_slot
;
846 raid_end_bio_io(r10_bio
);
849 mirror
= conf
->mirrors
+ disk
;
851 read_bio
= bio_clone_mddev(bio
, GFP_NOIO
, mddev
);
853 r10_bio
->devs
[slot
].bio
= read_bio
;
855 read_bio
->bi_sector
= r10_bio
->devs
[slot
].addr
+
856 mirror
->rdev
->data_offset
;
857 read_bio
->bi_bdev
= mirror
->rdev
->bdev
;
858 read_bio
->bi_end_io
= raid10_end_read_request
;
859 read_bio
->bi_rw
= READ
| do_sync
;
860 read_bio
->bi_private
= r10_bio
;
862 generic_make_request(read_bio
);
869 /* first select target devices under rcu_lock and
870 * inc refcount on their rdev. Record them by setting
873 raid10_find_phys(conf
, r10_bio
);
877 for (i
= 0; i
< conf
->copies
; i
++) {
878 int d
= r10_bio
->devs
[i
].devnum
;
879 mdk_rdev_t
*rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
880 if (rdev
&& unlikely(test_bit(Blocked
, &rdev
->flags
))) {
881 atomic_inc(&rdev
->nr_pending
);
885 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
)) {
886 atomic_inc(&rdev
->nr_pending
);
887 r10_bio
->devs
[i
].bio
= bio
;
889 r10_bio
->devs
[i
].bio
= NULL
;
890 set_bit(R10BIO_Degraded
, &r10_bio
->state
);
895 if (unlikely(blocked_rdev
)) {
896 /* Have to wait for this device to get unblocked, then retry */
900 for (j
= 0; j
< i
; j
++)
901 if (r10_bio
->devs
[j
].bio
) {
902 d
= r10_bio
->devs
[j
].devnum
;
903 rdev_dec_pending(conf
->mirrors
[d
].rdev
, mddev
);
906 md_wait_for_blocked_rdev(blocked_rdev
, mddev
);
911 atomic_set(&r10_bio
->remaining
, 1);
912 bitmap_startwrite(mddev
->bitmap
, bio
->bi_sector
, r10_bio
->sectors
, 0);
914 for (i
= 0; i
< conf
->copies
; i
++) {
916 int d
= r10_bio
->devs
[i
].devnum
;
917 if (!r10_bio
->devs
[i
].bio
)
920 mbio
= bio_clone_mddev(bio
, GFP_NOIO
, mddev
);
921 r10_bio
->devs
[i
].bio
= mbio
;
923 mbio
->bi_sector
= r10_bio
->devs
[i
].addr
+
924 conf
->mirrors
[d
].rdev
->data_offset
;
925 mbio
->bi_bdev
= conf
->mirrors
[d
].rdev
->bdev
;
926 mbio
->bi_end_io
= raid10_end_write_request
;
927 mbio
->bi_rw
= WRITE
| do_sync
| do_fua
;
928 mbio
->bi_private
= r10_bio
;
930 atomic_inc(&r10_bio
->remaining
);
931 spin_lock_irqsave(&conf
->device_lock
, flags
);
932 bio_list_add(&conf
->pending_bio_list
, mbio
);
933 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
936 if (atomic_dec_and_test(&r10_bio
->remaining
)) {
937 /* This matches the end of raid10_end_write_request() */
938 bitmap_endwrite(r10_bio
->mddev
->bitmap
, r10_bio
->sector
,
940 !test_bit(R10BIO_Degraded
, &r10_bio
->state
),
943 raid_end_bio_io(r10_bio
);
946 /* In case raid10d snuck in to freeze_array */
947 wake_up(&conf
->wait_barrier
);
949 if (do_sync
|| !mddev
->bitmap
)
950 md_wakeup_thread(mddev
->thread
);
955 static void status(struct seq_file
*seq
, mddev_t
*mddev
)
957 conf_t
*conf
= mddev
->private;
960 if (conf
->near_copies
< conf
->raid_disks
)
961 seq_printf(seq
, " %dK chunks", mddev
->chunk_sectors
/ 2);
962 if (conf
->near_copies
> 1)
963 seq_printf(seq
, " %d near-copies", conf
->near_copies
);
964 if (conf
->far_copies
> 1) {
965 if (conf
->far_offset
)
966 seq_printf(seq
, " %d offset-copies", conf
->far_copies
);
968 seq_printf(seq
, " %d far-copies", conf
->far_copies
);
970 seq_printf(seq
, " [%d/%d] [", conf
->raid_disks
,
971 conf
->raid_disks
- mddev
->degraded
);
972 for (i
= 0; i
< conf
->raid_disks
; i
++)
973 seq_printf(seq
, "%s",
974 conf
->mirrors
[i
].rdev
&&
975 test_bit(In_sync
, &conf
->mirrors
[i
].rdev
->flags
) ? "U" : "_");
976 seq_printf(seq
, "]");
979 static void error(mddev_t
*mddev
, mdk_rdev_t
*rdev
)
981 char b
[BDEVNAME_SIZE
];
982 conf_t
*conf
= mddev
->private;
985 * If it is not operational, then we have already marked it as dead
986 * else if it is the last working disks, ignore the error, let the
987 * next level up know.
988 * else mark the drive as failed
990 if (test_bit(In_sync
, &rdev
->flags
)
991 && conf
->raid_disks
-mddev
->degraded
== 1)
993 * Don't fail the drive, just return an IO error.
994 * The test should really be more sophisticated than
995 * "working_disks == 1", but it isn't critical, and
996 * can wait until we do more sophisticated "is the drive
997 * really dead" tests...
1000 if (test_and_clear_bit(In_sync
, &rdev
->flags
)) {
1001 unsigned long flags
;
1002 spin_lock_irqsave(&conf
->device_lock
, flags
);
1004 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1006 * if recovery is running, make sure it aborts.
1008 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
1010 set_bit(Faulty
, &rdev
->flags
);
1011 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
1013 "md/raid10:%s: Disk failure on %s, disabling device.\n"
1014 "md/raid10:%s: Operation continuing on %d devices.\n",
1015 mdname(mddev
), bdevname(rdev
->bdev
, b
),
1016 mdname(mddev
), conf
->raid_disks
- mddev
->degraded
);
1019 static void print_conf(conf_t
*conf
)
1024 printk(KERN_DEBUG
"RAID10 conf printout:\n");
1026 printk(KERN_DEBUG
"(!conf)\n");
1029 printk(KERN_DEBUG
" --- wd:%d rd:%d\n", conf
->raid_disks
- conf
->mddev
->degraded
,
1032 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1033 char b
[BDEVNAME_SIZE
];
1034 tmp
= conf
->mirrors
+ i
;
1036 printk(KERN_DEBUG
" disk %d, wo:%d, o:%d, dev:%s\n",
1037 i
, !test_bit(In_sync
, &tmp
->rdev
->flags
),
1038 !test_bit(Faulty
, &tmp
->rdev
->flags
),
1039 bdevname(tmp
->rdev
->bdev
,b
));
1043 static void close_sync(conf_t
*conf
)
1046 allow_barrier(conf
);
1048 mempool_destroy(conf
->r10buf_pool
);
1049 conf
->r10buf_pool
= NULL
;
1052 /* check if there are enough drives for
1053 * every block to appear on atleast one
1055 static int enough(conf_t
*conf
)
1060 int n
= conf
->copies
;
1063 if (conf
->mirrors
[first
].rdev
)
1065 first
= (first
+1) % conf
->raid_disks
;
1069 } while (first
!= 0);
1073 static int raid10_spare_active(mddev_t
*mddev
)
1076 conf_t
*conf
= mddev
->private;
1079 unsigned long flags
;
1082 * Find all non-in_sync disks within the RAID10 configuration
1083 * and mark them in_sync
1085 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1086 tmp
= conf
->mirrors
+ i
;
1088 && !test_bit(Faulty
, &tmp
->rdev
->flags
)
1089 && !test_and_set_bit(In_sync
, &tmp
->rdev
->flags
)) {
1091 sysfs_notify_dirent(tmp
->rdev
->sysfs_state
);
1094 spin_lock_irqsave(&conf
->device_lock
, flags
);
1095 mddev
->degraded
-= count
;
1096 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1103 static int raid10_add_disk(mddev_t
*mddev
, mdk_rdev_t
*rdev
)
1105 conf_t
*conf
= mddev
->private;
1110 int last
= conf
->raid_disks
- 1;
1112 if (mddev
->recovery_cp
< MaxSector
)
1113 /* only hot-add to in-sync arrays, as recovery is
1114 * very different from resync
1120 if (rdev
->raid_disk
>= 0)
1121 first
= last
= rdev
->raid_disk
;
1123 if (rdev
->saved_raid_disk
>= 0 &&
1124 rdev
->saved_raid_disk
>= first
&&
1125 conf
->mirrors
[rdev
->saved_raid_disk
].rdev
== NULL
)
1126 mirror
= rdev
->saved_raid_disk
;
1129 for ( ; mirror
<= last
; mirror
++)
1130 if ( !(p
=conf
->mirrors
+mirror
)->rdev
) {
1132 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
1133 rdev
->data_offset
<< 9);
1134 /* as we don't honour merge_bvec_fn, we must
1135 * never risk violating it, so limit
1136 * ->max_segments to one lying with a single
1137 * page, as a one page request is never in
1140 if (rdev
->bdev
->bd_disk
->queue
->merge_bvec_fn
) {
1141 blk_queue_max_segments(mddev
->queue
, 1);
1142 blk_queue_segment_boundary(mddev
->queue
,
1143 PAGE_CACHE_SIZE
- 1);
1146 p
->head_position
= 0;
1147 rdev
->raid_disk
= mirror
;
1149 if (rdev
->saved_raid_disk
!= mirror
)
1151 rcu_assign_pointer(p
->rdev
, rdev
);
1155 md_integrity_add_rdev(rdev
, mddev
);
1160 static int raid10_remove_disk(mddev_t
*mddev
, int number
)
1162 conf_t
*conf
= mddev
->private;
1165 mirror_info_t
*p
= conf
->mirrors
+ number
;
1170 if (test_bit(In_sync
, &rdev
->flags
) ||
1171 atomic_read(&rdev
->nr_pending
)) {
1175 /* Only remove faulty devices in recovery
1178 if (!test_bit(Faulty
, &rdev
->flags
) &&
1185 if (atomic_read(&rdev
->nr_pending
)) {
1186 /* lost the race, try later */
1191 err
= md_integrity_register(mddev
);
1200 static void end_sync_read(struct bio
*bio
, int error
)
1202 r10bio_t
*r10_bio
= bio
->bi_private
;
1203 conf_t
*conf
= r10_bio
->mddev
->private;
1206 for (i
=0; i
<conf
->copies
; i
++)
1207 if (r10_bio
->devs
[i
].bio
== bio
)
1209 BUG_ON(i
== conf
->copies
);
1210 update_head_pos(i
, r10_bio
);
1211 d
= r10_bio
->devs
[i
].devnum
;
1213 if (test_bit(BIO_UPTODATE
, &bio
->bi_flags
))
1214 set_bit(R10BIO_Uptodate
, &r10_bio
->state
);
1216 atomic_add(r10_bio
->sectors
,
1217 &conf
->mirrors
[d
].rdev
->corrected_errors
);
1218 if (!test_bit(MD_RECOVERY_SYNC
, &conf
->mddev
->recovery
))
1219 md_error(r10_bio
->mddev
,
1220 conf
->mirrors
[d
].rdev
);
1223 /* for reconstruct, we always reschedule after a read.
1224 * for resync, only after all reads
1226 rdev_dec_pending(conf
->mirrors
[d
].rdev
, conf
->mddev
);
1227 if (test_bit(R10BIO_IsRecover
, &r10_bio
->state
) ||
1228 atomic_dec_and_test(&r10_bio
->remaining
)) {
1229 /* we have read all the blocks,
1230 * do the comparison in process context in raid10d
1232 reschedule_retry(r10_bio
);
1236 static void end_sync_write(struct bio
*bio
, int error
)
1238 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
1239 r10bio_t
*r10_bio
= bio
->bi_private
;
1240 mddev_t
*mddev
= r10_bio
->mddev
;
1241 conf_t
*conf
= mddev
->private;
1244 for (i
= 0; i
< conf
->copies
; i
++)
1245 if (r10_bio
->devs
[i
].bio
== bio
)
1247 d
= r10_bio
->devs
[i
].devnum
;
1250 md_error(mddev
, conf
->mirrors
[d
].rdev
);
1252 update_head_pos(i
, r10_bio
);
1254 rdev_dec_pending(conf
->mirrors
[d
].rdev
, mddev
);
1255 while (atomic_dec_and_test(&r10_bio
->remaining
)) {
1256 if (r10_bio
->master_bio
== NULL
) {
1257 /* the primary of several recovery bios */
1258 sector_t s
= r10_bio
->sectors
;
1260 md_done_sync(mddev
, s
, 1);
1263 r10bio_t
*r10_bio2
= (r10bio_t
*)r10_bio
->master_bio
;
1271 * Note: sync and recover and handled very differently for raid10
1272 * This code is for resync.
1273 * For resync, we read through virtual addresses and read all blocks.
1274 * If there is any error, we schedule a write. The lowest numbered
1275 * drive is authoritative.
1276 * However requests come for physical address, so we need to map.
1277 * For every physical address there are raid_disks/copies virtual addresses,
1278 * which is always are least one, but is not necessarly an integer.
1279 * This means that a physical address can span multiple chunks, so we may
1280 * have to submit multiple io requests for a single sync request.
1283 * We check if all blocks are in-sync and only write to blocks that
1286 static void sync_request_write(mddev_t
*mddev
, r10bio_t
*r10_bio
)
1288 conf_t
*conf
= mddev
->private;
1290 struct bio
*tbio
, *fbio
;
1292 atomic_set(&r10_bio
->remaining
, 1);
1294 /* find the first device with a block */
1295 for (i
=0; i
<conf
->copies
; i
++)
1296 if (test_bit(BIO_UPTODATE
, &r10_bio
->devs
[i
].bio
->bi_flags
))
1299 if (i
== conf
->copies
)
1303 fbio
= r10_bio
->devs
[i
].bio
;
1305 /* now find blocks with errors */
1306 for (i
=0 ; i
< conf
->copies
; i
++) {
1308 int vcnt
= r10_bio
->sectors
>> (PAGE_SHIFT
-9);
1310 tbio
= r10_bio
->devs
[i
].bio
;
1312 if (tbio
->bi_end_io
!= end_sync_read
)
1316 if (test_bit(BIO_UPTODATE
, &r10_bio
->devs
[i
].bio
->bi_flags
)) {
1317 /* We know that the bi_io_vec layout is the same for
1318 * both 'first' and 'i', so we just compare them.
1319 * All vec entries are PAGE_SIZE;
1321 for (j
= 0; j
< vcnt
; j
++)
1322 if (memcmp(page_address(fbio
->bi_io_vec
[j
].bv_page
),
1323 page_address(tbio
->bi_io_vec
[j
].bv_page
),
1328 mddev
->resync_mismatches
+= r10_bio
->sectors
;
1330 if (test_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
))
1331 /* Don't fix anything. */
1333 /* Ok, we need to write this bio
1334 * First we need to fixup bv_offset, bv_len and
1335 * bi_vecs, as the read request might have corrupted these
1337 tbio
->bi_vcnt
= vcnt
;
1338 tbio
->bi_size
= r10_bio
->sectors
<< 9;
1340 tbio
->bi_phys_segments
= 0;
1341 tbio
->bi_flags
&= ~(BIO_POOL_MASK
- 1);
1342 tbio
->bi_flags
|= 1 << BIO_UPTODATE
;
1343 tbio
->bi_next
= NULL
;
1344 tbio
->bi_rw
= WRITE
;
1345 tbio
->bi_private
= r10_bio
;
1346 tbio
->bi_sector
= r10_bio
->devs
[i
].addr
;
1348 for (j
=0; j
< vcnt
; j
++) {
1349 tbio
->bi_io_vec
[j
].bv_offset
= 0;
1350 tbio
->bi_io_vec
[j
].bv_len
= PAGE_SIZE
;
1352 memcpy(page_address(tbio
->bi_io_vec
[j
].bv_page
),
1353 page_address(fbio
->bi_io_vec
[j
].bv_page
),
1356 tbio
->bi_end_io
= end_sync_write
;
1358 d
= r10_bio
->devs
[i
].devnum
;
1359 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
1360 atomic_inc(&r10_bio
->remaining
);
1361 md_sync_acct(conf
->mirrors
[d
].rdev
->bdev
, tbio
->bi_size
>> 9);
1363 tbio
->bi_sector
+= conf
->mirrors
[d
].rdev
->data_offset
;
1364 tbio
->bi_bdev
= conf
->mirrors
[d
].rdev
->bdev
;
1365 generic_make_request(tbio
);
1369 if (atomic_dec_and_test(&r10_bio
->remaining
)) {
1370 md_done_sync(mddev
, r10_bio
->sectors
, 1);
1376 * Now for the recovery code.
1377 * Recovery happens across physical sectors.
1378 * We recover all non-is_sync drives by finding the virtual address of
1379 * each, and then choose a working drive that also has that virt address.
1380 * There is a separate r10_bio for each non-in_sync drive.
1381 * Only the first two slots are in use. The first for reading,
1382 * The second for writing.
1386 static void recovery_request_write(mddev_t
*mddev
, r10bio_t
*r10_bio
)
1388 conf_t
*conf
= mddev
->private;
1390 struct bio
*bio
, *wbio
;
1393 /* move the pages across to the second bio
1394 * and submit the write request
1396 bio
= r10_bio
->devs
[0].bio
;
1397 wbio
= r10_bio
->devs
[1].bio
;
1398 for (i
=0; i
< wbio
->bi_vcnt
; i
++) {
1399 struct page
*p
= bio
->bi_io_vec
[i
].bv_page
;
1400 bio
->bi_io_vec
[i
].bv_page
= wbio
->bi_io_vec
[i
].bv_page
;
1401 wbio
->bi_io_vec
[i
].bv_page
= p
;
1403 d
= r10_bio
->devs
[1].devnum
;
1405 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
1406 md_sync_acct(conf
->mirrors
[d
].rdev
->bdev
, wbio
->bi_size
>> 9);
1407 if (test_bit(R10BIO_Uptodate
, &r10_bio
->state
))
1408 generic_make_request(wbio
);
1410 bio_endio(wbio
, -EIO
);
1415 * Used by fix_read_error() to decay the per rdev read_errors.
1416 * We halve the read error count for every hour that has elapsed
1417 * since the last recorded read error.
1420 static void check_decay_read_errors(mddev_t
*mddev
, mdk_rdev_t
*rdev
)
1422 struct timespec cur_time_mon
;
1423 unsigned long hours_since_last
;
1424 unsigned int read_errors
= atomic_read(&rdev
->read_errors
);
1426 ktime_get_ts(&cur_time_mon
);
1428 if (rdev
->last_read_error
.tv_sec
== 0 &&
1429 rdev
->last_read_error
.tv_nsec
== 0) {
1430 /* first time we've seen a read error */
1431 rdev
->last_read_error
= cur_time_mon
;
1435 hours_since_last
= (cur_time_mon
.tv_sec
-
1436 rdev
->last_read_error
.tv_sec
) / 3600;
1438 rdev
->last_read_error
= cur_time_mon
;
1441 * if hours_since_last is > the number of bits in read_errors
1442 * just set read errors to 0. We do this to avoid
1443 * overflowing the shift of read_errors by hours_since_last.
1445 if (hours_since_last
>= 8 * sizeof(read_errors
))
1446 atomic_set(&rdev
->read_errors
, 0);
1448 atomic_set(&rdev
->read_errors
, read_errors
>> hours_since_last
);
1452 * This is a kernel thread which:
1454 * 1. Retries failed read operations on working mirrors.
1455 * 2. Updates the raid superblock when problems encounter.
1456 * 3. Performs writes following reads for array synchronising.
1459 static void fix_read_error(conf_t
*conf
, mddev_t
*mddev
, r10bio_t
*r10_bio
)
1461 int sect
= 0; /* Offset from r10_bio->sector */
1462 int sectors
= r10_bio
->sectors
;
1464 int max_read_errors
= atomic_read(&mddev
->max_corr_read_errors
);
1465 int d
= r10_bio
->devs
[r10_bio
->read_slot
].devnum
;
1468 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
1469 if (rdev
) { /* If rdev is not NULL */
1470 char b
[BDEVNAME_SIZE
];
1471 int cur_read_error_count
= 0;
1473 bdevname(rdev
->bdev
, b
);
1475 if (test_bit(Faulty
, &rdev
->flags
)) {
1477 /* drive has already been failed, just ignore any
1478 more fix_read_error() attempts */
1482 check_decay_read_errors(mddev
, rdev
);
1483 atomic_inc(&rdev
->read_errors
);
1484 cur_read_error_count
= atomic_read(&rdev
->read_errors
);
1485 if (cur_read_error_count
> max_read_errors
) {
1488 "md/raid10:%s: %s: Raid device exceeded "
1489 "read_error threshold "
1490 "[cur %d:max %d]\n",
1492 b
, cur_read_error_count
, max_read_errors
);
1494 "md/raid10:%s: %s: Failing raid "
1495 "device\n", mdname(mddev
), b
);
1496 md_error(mddev
, conf
->mirrors
[d
].rdev
);
1504 int sl
= r10_bio
->read_slot
;
1508 if (s
> (PAGE_SIZE
>>9))
1513 d
= r10_bio
->devs
[sl
].devnum
;
1514 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
1516 test_bit(In_sync
, &rdev
->flags
)) {
1517 atomic_inc(&rdev
->nr_pending
);
1519 success
= sync_page_io(rdev
,
1520 r10_bio
->devs
[sl
].addr
+
1523 conf
->tmppage
, READ
, false);
1524 rdev_dec_pending(rdev
, mddev
);
1530 if (sl
== conf
->copies
)
1532 } while (!success
&& sl
!= r10_bio
->read_slot
);
1536 /* Cannot read from anywhere -- bye bye array */
1537 int dn
= r10_bio
->devs
[r10_bio
->read_slot
].devnum
;
1538 md_error(mddev
, conf
->mirrors
[dn
].rdev
);
1543 /* write it back and re-read */
1545 while (sl
!= r10_bio
->read_slot
) {
1546 char b
[BDEVNAME_SIZE
];
1551 d
= r10_bio
->devs
[sl
].devnum
;
1552 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
1554 test_bit(In_sync
, &rdev
->flags
)) {
1555 atomic_inc(&rdev
->nr_pending
);
1557 atomic_add(s
, &rdev
->corrected_errors
);
1558 if (sync_page_io(rdev
,
1559 r10_bio
->devs
[sl
].addr
+
1561 s
<<9, conf
->tmppage
, WRITE
, false)
1563 /* Well, this device is dead */
1565 "md/raid10:%s: read correction "
1567 " (%d sectors at %llu on %s)\n",
1569 (unsigned long long)(sect
+
1571 bdevname(rdev
->bdev
, b
));
1572 printk(KERN_NOTICE
"md/raid10:%s: %s: failing "
1575 bdevname(rdev
->bdev
, b
));
1576 md_error(mddev
, rdev
);
1578 rdev_dec_pending(rdev
, mddev
);
1583 while (sl
!= r10_bio
->read_slot
) {
1588 d
= r10_bio
->devs
[sl
].devnum
;
1589 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
1591 test_bit(In_sync
, &rdev
->flags
)) {
1592 char b
[BDEVNAME_SIZE
];
1593 atomic_inc(&rdev
->nr_pending
);
1595 if (sync_page_io(rdev
,
1596 r10_bio
->devs
[sl
].addr
+
1598 s
<<9, conf
->tmppage
,
1599 READ
, false) == 0) {
1600 /* Well, this device is dead */
1602 "md/raid10:%s: unable to read back "
1604 " (%d sectors at %llu on %s)\n",
1606 (unsigned long long)(sect
+
1608 bdevname(rdev
->bdev
, b
));
1609 printk(KERN_NOTICE
"md/raid10:%s: %s: failing drive\n",
1611 bdevname(rdev
->bdev
, b
));
1613 md_error(mddev
, rdev
);
1616 "md/raid10:%s: read error corrected"
1617 " (%d sectors at %llu on %s)\n",
1619 (unsigned long long)(sect
+
1621 bdevname(rdev
->bdev
, b
));
1624 rdev_dec_pending(rdev
, mddev
);
1635 static void raid10d(mddev_t
*mddev
)
1639 unsigned long flags
;
1640 conf_t
*conf
= mddev
->private;
1641 struct list_head
*head
= &conf
->retry_list
;
1644 md_check_recovery(mddev
);
1647 char b
[BDEVNAME_SIZE
];
1649 flush_pending_writes(conf
);
1651 spin_lock_irqsave(&conf
->device_lock
, flags
);
1652 if (list_empty(head
)) {
1653 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1656 r10_bio
= list_entry(head
->prev
, r10bio_t
, retry_list
);
1657 list_del(head
->prev
);
1659 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1661 mddev
= r10_bio
->mddev
;
1662 conf
= mddev
->private;
1663 if (test_bit(R10BIO_IsSync
, &r10_bio
->state
))
1664 sync_request_write(mddev
, r10_bio
);
1665 else if (test_bit(R10BIO_IsRecover
, &r10_bio
->state
))
1666 recovery_request_write(mddev
, r10_bio
);
1669 /* we got a read error. Maybe the drive is bad. Maybe just
1670 * the block and we can fix it.
1671 * We freeze all other IO, and try reading the block from
1672 * other devices. When we find one, we re-write
1673 * and check it that fixes the read error.
1674 * This is all done synchronously while the array is
1677 if (mddev
->ro
== 0) {
1679 fix_read_error(conf
, mddev
, r10_bio
);
1680 unfreeze_array(conf
);
1683 bio
= r10_bio
->devs
[r10_bio
->read_slot
].bio
;
1684 r10_bio
->devs
[r10_bio
->read_slot
].bio
=
1685 mddev
->ro
? IO_BLOCKED
: NULL
;
1686 mirror
= read_balance(conf
, r10_bio
);
1688 printk(KERN_ALERT
"md/raid10:%s: %s: unrecoverable I/O"
1689 " read error for block %llu\n",
1691 bdevname(bio
->bi_bdev
,b
),
1692 (unsigned long long)r10_bio
->sector
);
1693 raid_end_bio_io(r10_bio
);
1696 const unsigned long do_sync
= (r10_bio
->master_bio
->bi_rw
& REQ_SYNC
);
1698 rdev
= conf
->mirrors
[mirror
].rdev
;
1699 if (printk_ratelimit())
1700 printk(KERN_ERR
"md/raid10:%s: %s: redirecting sector %llu to"
1701 " another mirror\n",
1703 bdevname(rdev
->bdev
,b
),
1704 (unsigned long long)r10_bio
->sector
);
1705 bio
= bio_clone_mddev(r10_bio
->master_bio
,
1707 r10_bio
->devs
[r10_bio
->read_slot
].bio
= bio
;
1708 bio
->bi_sector
= r10_bio
->devs
[r10_bio
->read_slot
].addr
1709 + rdev
->data_offset
;
1710 bio
->bi_bdev
= rdev
->bdev
;
1711 bio
->bi_rw
= READ
| do_sync
;
1712 bio
->bi_private
= r10_bio
;
1713 bio
->bi_end_io
= raid10_end_read_request
;
1714 generic_make_request(bio
);
1722 static int init_resync(conf_t
*conf
)
1726 buffs
= RESYNC_WINDOW
/ RESYNC_BLOCK_SIZE
;
1727 BUG_ON(conf
->r10buf_pool
);
1728 conf
->r10buf_pool
= mempool_create(buffs
, r10buf_pool_alloc
, r10buf_pool_free
, conf
);
1729 if (!conf
->r10buf_pool
)
1731 conf
->next_resync
= 0;
1736 * perform a "sync" on one "block"
1738 * We need to make sure that no normal I/O request - particularly write
1739 * requests - conflict with active sync requests.
1741 * This is achieved by tracking pending requests and a 'barrier' concept
1742 * that can be installed to exclude normal IO requests.
1744 * Resync and recovery are handled very differently.
1745 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
1747 * For resync, we iterate over virtual addresses, read all copies,
1748 * and update if there are differences. If only one copy is live,
1750 * For recovery, we iterate over physical addresses, read a good
1751 * value for each non-in_sync drive, and over-write.
1753 * So, for recovery we may have several outstanding complex requests for a
1754 * given address, one for each out-of-sync device. We model this by allocating
1755 * a number of r10_bio structures, one for each out-of-sync device.
1756 * As we setup these structures, we collect all bio's together into a list
1757 * which we then process collectively to add pages, and then process again
1758 * to pass to generic_make_request.
1760 * The r10_bio structures are linked using a borrowed master_bio pointer.
1761 * This link is counted in ->remaining. When the r10_bio that points to NULL
1762 * has its remaining count decremented to 0, the whole complex operation
1767 static sector_t
sync_request(mddev_t
*mddev
, sector_t sector_nr
, int *skipped
, int go_faster
)
1769 conf_t
*conf
= mddev
->private;
1771 struct bio
*biolist
= NULL
, *bio
;
1772 sector_t max_sector
, nr_sectors
;
1776 sector_t sync_blocks
;
1778 sector_t sectors_skipped
= 0;
1779 int chunks_skipped
= 0;
1781 if (!conf
->r10buf_pool
)
1782 if (init_resync(conf
))
1786 max_sector
= mddev
->dev_sectors
;
1787 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
))
1788 max_sector
= mddev
->resync_max_sectors
;
1789 if (sector_nr
>= max_sector
) {
1790 /* If we aborted, we need to abort the
1791 * sync on the 'current' bitmap chucks (there can
1792 * be several when recovering multiple devices).
1793 * as we may have started syncing it but not finished.
1794 * We can find the current address in
1795 * mddev->curr_resync, but for recovery,
1796 * we need to convert that to several
1797 * virtual addresses.
1799 if (mddev
->curr_resync
< max_sector
) { /* aborted */
1800 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
))
1801 bitmap_end_sync(mddev
->bitmap
, mddev
->curr_resync
,
1803 else for (i
=0; i
<conf
->raid_disks
; i
++) {
1805 raid10_find_virt(conf
, mddev
->curr_resync
, i
);
1806 bitmap_end_sync(mddev
->bitmap
, sect
,
1809 } else /* completed sync */
1812 bitmap_close_sync(mddev
->bitmap
);
1815 return sectors_skipped
;
1817 if (chunks_skipped
>= conf
->raid_disks
) {
1818 /* if there has been nothing to do on any drive,
1819 * then there is nothing to do at all..
1822 return (max_sector
- sector_nr
) + sectors_skipped
;
1825 if (max_sector
> mddev
->resync_max
)
1826 max_sector
= mddev
->resync_max
; /* Don't do IO beyond here */
1828 /* make sure whole request will fit in a chunk - if chunks
1831 if (conf
->near_copies
< conf
->raid_disks
&&
1832 max_sector
> (sector_nr
| conf
->chunk_mask
))
1833 max_sector
= (sector_nr
| conf
->chunk_mask
) + 1;
1835 * If there is non-resync activity waiting for us then
1836 * put in a delay to throttle resync.
1838 if (!go_faster
&& conf
->nr_waiting
)
1839 msleep_interruptible(1000);
1841 /* Again, very different code for resync and recovery.
1842 * Both must result in an r10bio with a list of bios that
1843 * have bi_end_io, bi_sector, bi_bdev set,
1844 * and bi_private set to the r10bio.
1845 * For recovery, we may actually create several r10bios
1846 * with 2 bios in each, that correspond to the bios in the main one.
1847 * In this case, the subordinate r10bios link back through a
1848 * borrowed master_bio pointer, and the counter in the master
1849 * includes a ref from each subordinate.
1851 /* First, we decide what to do and set ->bi_end_io
1852 * To end_sync_read if we want to read, and
1853 * end_sync_write if we will want to write.
1856 max_sync
= RESYNC_PAGES
<< (PAGE_SHIFT
-9);
1857 if (!test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
)) {
1858 /* recovery... the complicated one */
1862 for (i
=0 ; i
<conf
->raid_disks
; i
++)
1863 if (conf
->mirrors
[i
].rdev
&&
1864 !test_bit(In_sync
, &conf
->mirrors
[i
].rdev
->flags
)) {
1865 int still_degraded
= 0;
1866 /* want to reconstruct this device */
1867 r10bio_t
*rb2
= r10_bio
;
1868 sector_t sect
= raid10_find_virt(conf
, sector_nr
, i
);
1870 /* Unless we are doing a full sync, we only need
1871 * to recover the block if it is set in the bitmap
1873 must_sync
= bitmap_start_sync(mddev
->bitmap
, sect
,
1875 if (sync_blocks
< max_sync
)
1876 max_sync
= sync_blocks
;
1879 /* yep, skip the sync_blocks here, but don't assume
1880 * that there will never be anything to do here
1882 chunks_skipped
= -1;
1886 r10_bio
= mempool_alloc(conf
->r10buf_pool
, GFP_NOIO
);
1887 raise_barrier(conf
, rb2
!= NULL
);
1888 atomic_set(&r10_bio
->remaining
, 0);
1890 r10_bio
->master_bio
= (struct bio
*)rb2
;
1892 atomic_inc(&rb2
->remaining
);
1893 r10_bio
->mddev
= mddev
;
1894 set_bit(R10BIO_IsRecover
, &r10_bio
->state
);
1895 r10_bio
->sector
= sect
;
1897 raid10_find_phys(conf
, r10_bio
);
1899 /* Need to check if the array will still be
1902 for (j
=0; j
<conf
->raid_disks
; j
++)
1903 if (conf
->mirrors
[j
].rdev
== NULL
||
1904 test_bit(Faulty
, &conf
->mirrors
[j
].rdev
->flags
)) {
1909 must_sync
= bitmap_start_sync(mddev
->bitmap
, sect
,
1910 &sync_blocks
, still_degraded
);
1912 for (j
=0; j
<conf
->copies
;j
++) {
1913 int d
= r10_bio
->devs
[j
].devnum
;
1914 if (conf
->mirrors
[d
].rdev
&&
1915 test_bit(In_sync
, &conf
->mirrors
[d
].rdev
->flags
)) {
1916 /* This is where we read from */
1917 bio
= r10_bio
->devs
[0].bio
;
1918 bio
->bi_next
= biolist
;
1920 bio
->bi_private
= r10_bio
;
1921 bio
->bi_end_io
= end_sync_read
;
1923 bio
->bi_sector
= r10_bio
->devs
[j
].addr
+
1924 conf
->mirrors
[d
].rdev
->data_offset
;
1925 bio
->bi_bdev
= conf
->mirrors
[d
].rdev
->bdev
;
1926 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
1927 atomic_inc(&r10_bio
->remaining
);
1928 /* and we write to 'i' */
1930 for (k
=0; k
<conf
->copies
; k
++)
1931 if (r10_bio
->devs
[k
].devnum
== i
)
1933 BUG_ON(k
== conf
->copies
);
1934 bio
= r10_bio
->devs
[1].bio
;
1935 bio
->bi_next
= biolist
;
1937 bio
->bi_private
= r10_bio
;
1938 bio
->bi_end_io
= end_sync_write
;
1940 bio
->bi_sector
= r10_bio
->devs
[k
].addr
+
1941 conf
->mirrors
[i
].rdev
->data_offset
;
1942 bio
->bi_bdev
= conf
->mirrors
[i
].rdev
->bdev
;
1944 r10_bio
->devs
[0].devnum
= d
;
1945 r10_bio
->devs
[1].devnum
= i
;
1950 if (j
== conf
->copies
) {
1951 /* Cannot recover, so abort the recovery */
1954 atomic_dec(&rb2
->remaining
);
1956 if (!test_and_set_bit(MD_RECOVERY_INTR
,
1958 printk(KERN_INFO
"md/raid10:%s: insufficient "
1959 "working devices for recovery.\n",
1964 if (biolist
== NULL
) {
1966 r10bio_t
*rb2
= r10_bio
;
1967 r10_bio
= (r10bio_t
*) rb2
->master_bio
;
1968 rb2
->master_bio
= NULL
;
1974 /* resync. Schedule a read for every block at this virt offset */
1977 bitmap_cond_end_sync(mddev
->bitmap
, sector_nr
);
1979 if (!bitmap_start_sync(mddev
->bitmap
, sector_nr
,
1980 &sync_blocks
, mddev
->degraded
) &&
1981 !conf
->fullsync
&& !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
)) {
1982 /* We can skip this block */
1984 return sync_blocks
+ sectors_skipped
;
1986 if (sync_blocks
< max_sync
)
1987 max_sync
= sync_blocks
;
1988 r10_bio
= mempool_alloc(conf
->r10buf_pool
, GFP_NOIO
);
1990 r10_bio
->mddev
= mddev
;
1991 atomic_set(&r10_bio
->remaining
, 0);
1992 raise_barrier(conf
, 0);
1993 conf
->next_resync
= sector_nr
;
1995 r10_bio
->master_bio
= NULL
;
1996 r10_bio
->sector
= sector_nr
;
1997 set_bit(R10BIO_IsSync
, &r10_bio
->state
);
1998 raid10_find_phys(conf
, r10_bio
);
1999 r10_bio
->sectors
= (sector_nr
| conf
->chunk_mask
) - sector_nr
+1;
2001 for (i
=0; i
<conf
->copies
; i
++) {
2002 int d
= r10_bio
->devs
[i
].devnum
;
2003 bio
= r10_bio
->devs
[i
].bio
;
2004 bio
->bi_end_io
= NULL
;
2005 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
2006 if (conf
->mirrors
[d
].rdev
== NULL
||
2007 test_bit(Faulty
, &conf
->mirrors
[d
].rdev
->flags
))
2009 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
2010 atomic_inc(&r10_bio
->remaining
);
2011 bio
->bi_next
= biolist
;
2013 bio
->bi_private
= r10_bio
;
2014 bio
->bi_end_io
= end_sync_read
;
2016 bio
->bi_sector
= r10_bio
->devs
[i
].addr
+
2017 conf
->mirrors
[d
].rdev
->data_offset
;
2018 bio
->bi_bdev
= conf
->mirrors
[d
].rdev
->bdev
;
2023 for (i
=0; i
<conf
->copies
; i
++) {
2024 int d
= r10_bio
->devs
[i
].devnum
;
2025 if (r10_bio
->devs
[i
].bio
->bi_end_io
)
2026 rdev_dec_pending(conf
->mirrors
[d
].rdev
, mddev
);
2034 for (bio
= biolist
; bio
; bio
=bio
->bi_next
) {
2036 bio
->bi_flags
&= ~(BIO_POOL_MASK
- 1);
2038 bio
->bi_flags
|= 1 << BIO_UPTODATE
;
2041 bio
->bi_phys_segments
= 0;
2046 if (sector_nr
+ max_sync
< max_sector
)
2047 max_sector
= sector_nr
+ max_sync
;
2050 int len
= PAGE_SIZE
;
2052 if (sector_nr
+ (len
>>9) > max_sector
)
2053 len
= (max_sector
- sector_nr
) << 9;
2056 for (bio
= biolist
; bio
; bio
=bio
->bi_next
) {
2057 page
= bio
->bi_io_vec
[bio
->bi_vcnt
].bv_page
;
2058 if (bio_add_page(bio
, page
, len
, 0) == 0) {
2061 bio
->bi_io_vec
[bio
->bi_vcnt
].bv_page
= page
;
2062 for (bio2
= biolist
; bio2
&& bio2
!= bio
; bio2
= bio2
->bi_next
) {
2063 /* remove last page from this bio */
2065 bio2
->bi_size
-= len
;
2066 bio2
->bi_flags
&= ~(1<< BIO_SEG_VALID
);
2072 nr_sectors
+= len
>>9;
2073 sector_nr
+= len
>>9;
2074 } while (biolist
->bi_vcnt
< RESYNC_PAGES
);
2076 r10_bio
->sectors
= nr_sectors
;
2080 biolist
= biolist
->bi_next
;
2082 bio
->bi_next
= NULL
;
2083 r10_bio
= bio
->bi_private
;
2084 r10_bio
->sectors
= nr_sectors
;
2086 if (bio
->bi_end_io
== end_sync_read
) {
2087 md_sync_acct(bio
->bi_bdev
, nr_sectors
);
2088 generic_make_request(bio
);
2092 if (sectors_skipped
)
2093 /* pretend they weren't skipped, it makes
2094 * no important difference in this case
2096 md_done_sync(mddev
, sectors_skipped
, 1);
2098 return sectors_skipped
+ nr_sectors
;
2100 /* There is nowhere to write, so all non-sync
2101 * drives must be failed, so try the next chunk...
2103 if (sector_nr
+ max_sync
< max_sector
)
2104 max_sector
= sector_nr
+ max_sync
;
2106 sectors_skipped
+= (max_sector
- sector_nr
);
2108 sector_nr
= max_sector
;
2113 raid10_size(mddev_t
*mddev
, sector_t sectors
, int raid_disks
)
2116 conf_t
*conf
= mddev
->private;
2119 raid_disks
= conf
->raid_disks
;
2121 sectors
= conf
->dev_sectors
;
2123 size
= sectors
>> conf
->chunk_shift
;
2124 sector_div(size
, conf
->far_copies
);
2125 size
= size
* raid_disks
;
2126 sector_div(size
, conf
->near_copies
);
2128 return size
<< conf
->chunk_shift
;
2132 static conf_t
*setup_conf(mddev_t
*mddev
)
2134 conf_t
*conf
= NULL
;
2136 sector_t stride
, size
;
2139 if (mddev
->new_chunk_sectors
< (PAGE_SIZE
>> 9) ||
2140 !is_power_of_2(mddev
->new_chunk_sectors
)) {
2141 printk(KERN_ERR
"md/raid10:%s: chunk size must be "
2142 "at least PAGE_SIZE(%ld) and be a power of 2.\n",
2143 mdname(mddev
), PAGE_SIZE
);
2147 nc
= mddev
->new_layout
& 255;
2148 fc
= (mddev
->new_layout
>> 8) & 255;
2149 fo
= mddev
->new_layout
& (1<<16);
2151 if ((nc
*fc
) <2 || (nc
*fc
) > mddev
->raid_disks
||
2152 (mddev
->new_layout
>> 17)) {
2153 printk(KERN_ERR
"md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
2154 mdname(mddev
), mddev
->new_layout
);
2159 conf
= kzalloc(sizeof(conf_t
), GFP_KERNEL
);
2163 conf
->mirrors
= kzalloc(sizeof(struct mirror_info
)*mddev
->raid_disks
,
2168 conf
->tmppage
= alloc_page(GFP_KERNEL
);
2173 conf
->raid_disks
= mddev
->raid_disks
;
2174 conf
->near_copies
= nc
;
2175 conf
->far_copies
= fc
;
2176 conf
->copies
= nc
*fc
;
2177 conf
->far_offset
= fo
;
2178 conf
->chunk_mask
= mddev
->new_chunk_sectors
- 1;
2179 conf
->chunk_shift
= ffz(~mddev
->new_chunk_sectors
);
2181 conf
->r10bio_pool
= mempool_create(NR_RAID10_BIOS
, r10bio_pool_alloc
,
2182 r10bio_pool_free
, conf
);
2183 if (!conf
->r10bio_pool
)
2186 size
= mddev
->dev_sectors
>> conf
->chunk_shift
;
2187 sector_div(size
, fc
);
2188 size
= size
* conf
->raid_disks
;
2189 sector_div(size
, nc
);
2190 /* 'size' is now the number of chunks in the array */
2191 /* calculate "used chunks per device" in 'stride' */
2192 stride
= size
* conf
->copies
;
2194 /* We need to round up when dividing by raid_disks to
2195 * get the stride size.
2197 stride
+= conf
->raid_disks
- 1;
2198 sector_div(stride
, conf
->raid_disks
);
2200 conf
->dev_sectors
= stride
<< conf
->chunk_shift
;
2205 sector_div(stride
, fc
);
2206 conf
->stride
= stride
<< conf
->chunk_shift
;
2209 spin_lock_init(&conf
->device_lock
);
2210 INIT_LIST_HEAD(&conf
->retry_list
);
2212 spin_lock_init(&conf
->resync_lock
);
2213 init_waitqueue_head(&conf
->wait_barrier
);
2215 conf
->thread
= md_register_thread(raid10d
, mddev
, NULL
);
2219 conf
->mddev
= mddev
;
2223 printk(KERN_ERR
"md/raid10:%s: couldn't allocate memory.\n",
2226 if (conf
->r10bio_pool
)
2227 mempool_destroy(conf
->r10bio_pool
);
2228 kfree(conf
->mirrors
);
2229 safe_put_page(conf
->tmppage
);
2232 return ERR_PTR(err
);
2235 static int run(mddev_t
*mddev
)
2238 int i
, disk_idx
, chunk_size
;
2239 mirror_info_t
*disk
;
2244 * copy the already verified devices into our private RAID10
2245 * bookkeeping area. [whatever we allocate in run(),
2246 * should be freed in stop()]
2249 if (mddev
->private == NULL
) {
2250 conf
= setup_conf(mddev
);
2252 return PTR_ERR(conf
);
2253 mddev
->private = conf
;
2255 conf
= mddev
->private;
2259 mddev
->thread
= conf
->thread
;
2260 conf
->thread
= NULL
;
2262 chunk_size
= mddev
->chunk_sectors
<< 9;
2263 blk_queue_io_min(mddev
->queue
, chunk_size
);
2264 if (conf
->raid_disks
% conf
->near_copies
)
2265 blk_queue_io_opt(mddev
->queue
, chunk_size
* conf
->raid_disks
);
2267 blk_queue_io_opt(mddev
->queue
, chunk_size
*
2268 (conf
->raid_disks
/ conf
->near_copies
));
2270 list_for_each_entry(rdev
, &mddev
->disks
, same_set
) {
2271 disk_idx
= rdev
->raid_disk
;
2272 if (disk_idx
>= conf
->raid_disks
2275 disk
= conf
->mirrors
+ disk_idx
;
2278 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
2279 rdev
->data_offset
<< 9);
2280 /* as we don't honour merge_bvec_fn, we must never risk
2281 * violating it, so limit max_segments to 1 lying
2282 * within a single page.
2284 if (rdev
->bdev
->bd_disk
->queue
->merge_bvec_fn
) {
2285 blk_queue_max_segments(mddev
->queue
, 1);
2286 blk_queue_segment_boundary(mddev
->queue
,
2287 PAGE_CACHE_SIZE
- 1);
2290 disk
->head_position
= 0;
2292 /* need to check that every block has at least one working mirror */
2293 if (!enough(conf
)) {
2294 printk(KERN_ERR
"md/raid10:%s: not enough operational mirrors.\n",
2299 mddev
->degraded
= 0;
2300 for (i
= 0; i
< conf
->raid_disks
; i
++) {
2302 disk
= conf
->mirrors
+ i
;
2305 !test_bit(In_sync
, &disk
->rdev
->flags
)) {
2306 disk
->head_position
= 0;
2313 if (mddev
->recovery_cp
!= MaxSector
)
2314 printk(KERN_NOTICE
"md/raid10:%s: not clean"
2315 " -- starting background reconstruction\n",
2318 "md/raid10:%s: active with %d out of %d devices\n",
2319 mdname(mddev
), conf
->raid_disks
- mddev
->degraded
,
2322 * Ok, everything is just fine now
2324 mddev
->dev_sectors
= conf
->dev_sectors
;
2325 size
= raid10_size(mddev
, 0, 0);
2326 md_set_array_sectors(mddev
, size
);
2327 mddev
->resync_max_sectors
= size
;
2329 mddev
->queue
->backing_dev_info
.congested_fn
= raid10_congested
;
2330 mddev
->queue
->backing_dev_info
.congested_data
= mddev
;
2332 /* Calculate max read-ahead size.
2333 * We need to readahead at least twice a whole stripe....
2337 int stripe
= conf
->raid_disks
*
2338 ((mddev
->chunk_sectors
<< 9) / PAGE_SIZE
);
2339 stripe
/= conf
->near_copies
;
2340 if (mddev
->queue
->backing_dev_info
.ra_pages
< 2* stripe
)
2341 mddev
->queue
->backing_dev_info
.ra_pages
= 2* stripe
;
2344 if (conf
->near_copies
< conf
->raid_disks
)
2345 blk_queue_merge_bvec(mddev
->queue
, raid10_mergeable_bvec
);
2347 if (md_integrity_register(mddev
))
2353 md_unregister_thread(mddev
->thread
);
2354 if (conf
->r10bio_pool
)
2355 mempool_destroy(conf
->r10bio_pool
);
2356 safe_put_page(conf
->tmppage
);
2357 kfree(conf
->mirrors
);
2359 mddev
->private = NULL
;
2364 static int stop(mddev_t
*mddev
)
2366 conf_t
*conf
= mddev
->private;
2368 raise_barrier(conf
, 0);
2369 lower_barrier(conf
);
2371 md_unregister_thread(mddev
->thread
);
2372 mddev
->thread
= NULL
;
2373 blk_sync_queue(mddev
->queue
); /* the unplug fn references 'conf'*/
2374 if (conf
->r10bio_pool
)
2375 mempool_destroy(conf
->r10bio_pool
);
2376 kfree(conf
->mirrors
);
2378 mddev
->private = NULL
;
2382 static void raid10_quiesce(mddev_t
*mddev
, int state
)
2384 conf_t
*conf
= mddev
->private;
2388 raise_barrier(conf
, 0);
2391 lower_barrier(conf
);
2396 static void *raid10_takeover_raid0(mddev_t
*mddev
)
2401 if (mddev
->degraded
> 0) {
2402 printk(KERN_ERR
"md/raid10:%s: Error: degraded raid0!\n",
2404 return ERR_PTR(-EINVAL
);
2407 /* Set new parameters */
2408 mddev
->new_level
= 10;
2409 /* new layout: far_copies = 1, near_copies = 2 */
2410 mddev
->new_layout
= (1<<8) + 2;
2411 mddev
->new_chunk_sectors
= mddev
->chunk_sectors
;
2412 mddev
->delta_disks
= mddev
->raid_disks
;
2413 mddev
->raid_disks
*= 2;
2414 /* make sure it will be not marked as dirty */
2415 mddev
->recovery_cp
= MaxSector
;
2417 conf
= setup_conf(mddev
);
2418 if (!IS_ERR(conf
)) {
2419 list_for_each_entry(rdev
, &mddev
->disks
, same_set
)
2420 if (rdev
->raid_disk
>= 0)
2421 rdev
->new_raid_disk
= rdev
->raid_disk
* 2;
2428 static void *raid10_takeover(mddev_t
*mddev
)
2430 struct raid0_private_data
*raid0_priv
;
2432 /* raid10 can take over:
2433 * raid0 - providing it has only two drives
2435 if (mddev
->level
== 0) {
2436 /* for raid0 takeover only one zone is supported */
2437 raid0_priv
= mddev
->private;
2438 if (raid0_priv
->nr_strip_zones
> 1) {
2439 printk(KERN_ERR
"md/raid10:%s: cannot takeover raid 0"
2440 " with more than one zone.\n",
2442 return ERR_PTR(-EINVAL
);
2444 return raid10_takeover_raid0(mddev
);
2446 return ERR_PTR(-EINVAL
);
2449 static struct mdk_personality raid10_personality
=
2453 .owner
= THIS_MODULE
,
2454 .make_request
= make_request
,
2458 .error_handler
= error
,
2459 .hot_add_disk
= raid10_add_disk
,
2460 .hot_remove_disk
= raid10_remove_disk
,
2461 .spare_active
= raid10_spare_active
,
2462 .sync_request
= sync_request
,
2463 .quiesce
= raid10_quiesce
,
2464 .size
= raid10_size
,
2465 .takeover
= raid10_takeover
,
2468 static int __init
raid_init(void)
2470 return register_md_personality(&raid10_personality
);
2473 static void raid_exit(void)
2475 unregister_md_personality(&raid10_personality
);
2478 module_init(raid_init
);
2479 module_exit(raid_exit
);
2480 MODULE_LICENSE("GPL");
2481 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
2482 MODULE_ALIAS("md-personality-9"); /* RAID10 */
2483 MODULE_ALIAS("md-raid10");
2484 MODULE_ALIAS("md-level-10");