FRV: Use generic show_interrupts()
[cris-mirror.git] / drivers / media / video / uvc / uvc_queue.c
blobf14581bd707f0155248f788382fe6452cad7198c
1 /*
2 * uvc_queue.c -- USB Video Class driver - Buffers management
4 * Copyright (C) 2005-2010
5 * Laurent Pinchart (laurent.pinchart@ideasonboard.com)
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
14 #include <linux/kernel.h>
15 #include <linux/mm.h>
16 #include <linux/list.h>
17 #include <linux/module.h>
18 #include <linux/usb.h>
19 #include <linux/videodev2.h>
20 #include <linux/vmalloc.h>
21 #include <linux/wait.h>
22 #include <asm/atomic.h>
24 #include "uvcvideo.h"
26 /* ------------------------------------------------------------------------
27 * Video buffers queue management.
29 * Video queues is initialized by uvc_queue_init(). The function performs
30 * basic initialization of the uvc_video_queue struct and never fails.
32 * Video buffer allocation and freeing are performed by uvc_alloc_buffers and
33 * uvc_free_buffers respectively. The former acquires the video queue lock,
34 * while the later must be called with the lock held (so that allocation can
35 * free previously allocated buffers). Trying to free buffers that are mapped
36 * to user space will return -EBUSY.
38 * Video buffers are managed using two queues. However, unlike most USB video
39 * drivers that use an in queue and an out queue, we use a main queue to hold
40 * all queued buffers (both 'empty' and 'done' buffers), and an irq queue to
41 * hold empty buffers. This design (copied from video-buf) minimizes locking
42 * in interrupt, as only one queue is shared between interrupt and user
43 * contexts.
45 * Use cases
46 * ---------
48 * Unless stated otherwise, all operations that modify the irq buffers queue
49 * are protected by the irq spinlock.
51 * 1. The user queues the buffers, starts streaming and dequeues a buffer.
53 * The buffers are added to the main and irq queues. Both operations are
54 * protected by the queue lock, and the later is protected by the irq
55 * spinlock as well.
57 * The completion handler fetches a buffer from the irq queue and fills it
58 * with video data. If no buffer is available (irq queue empty), the handler
59 * returns immediately.
61 * When the buffer is full, the completion handler removes it from the irq
62 * queue, marks it as done (UVC_BUF_STATE_DONE) and wakes its wait queue.
63 * At that point, any process waiting on the buffer will be woken up. If a
64 * process tries to dequeue a buffer after it has been marked done, the
65 * dequeing will succeed immediately.
67 * 2. Buffers are queued, user is waiting on a buffer and the device gets
68 * disconnected.
70 * When the device is disconnected, the kernel calls the completion handler
71 * with an appropriate status code. The handler marks all buffers in the
72 * irq queue as being erroneous (UVC_BUF_STATE_ERROR) and wakes them up so
73 * that any process waiting on a buffer gets woken up.
75 * Waking up up the first buffer on the irq list is not enough, as the
76 * process waiting on the buffer might restart the dequeue operation
77 * immediately.
81 void uvc_queue_init(struct uvc_video_queue *queue, enum v4l2_buf_type type,
82 int drop_corrupted)
84 mutex_init(&queue->mutex);
85 spin_lock_init(&queue->irqlock);
86 INIT_LIST_HEAD(&queue->mainqueue);
87 INIT_LIST_HEAD(&queue->irqqueue);
88 queue->flags = drop_corrupted ? UVC_QUEUE_DROP_CORRUPTED : 0;
89 queue->type = type;
93 * Free the video buffers.
95 * This function must be called with the queue lock held.
97 static int __uvc_free_buffers(struct uvc_video_queue *queue)
99 unsigned int i;
101 for (i = 0; i < queue->count; ++i) {
102 if (queue->buffer[i].vma_use_count != 0)
103 return -EBUSY;
106 if (queue->count) {
107 vfree(queue->mem);
108 queue->count = 0;
111 return 0;
114 int uvc_free_buffers(struct uvc_video_queue *queue)
116 int ret;
118 mutex_lock(&queue->mutex);
119 ret = __uvc_free_buffers(queue);
120 mutex_unlock(&queue->mutex);
122 return ret;
126 * Allocate the video buffers.
128 * Pages are reserved to make sure they will not be swapped, as they will be
129 * filled in the URB completion handler.
131 * Buffers will be individually mapped, so they must all be page aligned.
133 int uvc_alloc_buffers(struct uvc_video_queue *queue, unsigned int nbuffers,
134 unsigned int buflength)
136 unsigned int bufsize = PAGE_ALIGN(buflength);
137 unsigned int i;
138 void *mem = NULL;
139 int ret;
141 if (nbuffers > UVC_MAX_VIDEO_BUFFERS)
142 nbuffers = UVC_MAX_VIDEO_BUFFERS;
144 mutex_lock(&queue->mutex);
146 if ((ret = __uvc_free_buffers(queue)) < 0)
147 goto done;
149 /* Bail out if no buffers should be allocated. */
150 if (nbuffers == 0)
151 goto done;
153 /* Decrement the number of buffers until allocation succeeds. */
154 for (; nbuffers > 0; --nbuffers) {
155 mem = vmalloc_32(nbuffers * bufsize);
156 if (mem != NULL)
157 break;
160 if (mem == NULL) {
161 ret = -ENOMEM;
162 goto done;
165 for (i = 0; i < nbuffers; ++i) {
166 memset(&queue->buffer[i], 0, sizeof queue->buffer[i]);
167 queue->buffer[i].buf.index = i;
168 queue->buffer[i].buf.m.offset = i * bufsize;
169 queue->buffer[i].buf.length = buflength;
170 queue->buffer[i].buf.type = queue->type;
171 queue->buffer[i].buf.field = V4L2_FIELD_NONE;
172 queue->buffer[i].buf.memory = V4L2_MEMORY_MMAP;
173 queue->buffer[i].buf.flags = 0;
174 init_waitqueue_head(&queue->buffer[i].wait);
177 queue->mem = mem;
178 queue->count = nbuffers;
179 queue->buf_size = bufsize;
180 ret = nbuffers;
182 done:
183 mutex_unlock(&queue->mutex);
184 return ret;
188 * Check if buffers have been allocated.
190 int uvc_queue_allocated(struct uvc_video_queue *queue)
192 int allocated;
194 mutex_lock(&queue->mutex);
195 allocated = queue->count != 0;
196 mutex_unlock(&queue->mutex);
198 return allocated;
201 static void __uvc_query_buffer(struct uvc_buffer *buf,
202 struct v4l2_buffer *v4l2_buf)
204 memcpy(v4l2_buf, &buf->buf, sizeof *v4l2_buf);
206 if (buf->vma_use_count)
207 v4l2_buf->flags |= V4L2_BUF_FLAG_MAPPED;
209 switch (buf->state) {
210 case UVC_BUF_STATE_ERROR:
211 case UVC_BUF_STATE_DONE:
212 v4l2_buf->flags |= V4L2_BUF_FLAG_DONE;
213 break;
214 case UVC_BUF_STATE_QUEUED:
215 case UVC_BUF_STATE_ACTIVE:
216 case UVC_BUF_STATE_READY:
217 v4l2_buf->flags |= V4L2_BUF_FLAG_QUEUED;
218 break;
219 case UVC_BUF_STATE_IDLE:
220 default:
221 break;
225 int uvc_query_buffer(struct uvc_video_queue *queue,
226 struct v4l2_buffer *v4l2_buf)
228 int ret = 0;
230 mutex_lock(&queue->mutex);
231 if (v4l2_buf->index >= queue->count) {
232 ret = -EINVAL;
233 goto done;
236 __uvc_query_buffer(&queue->buffer[v4l2_buf->index], v4l2_buf);
238 done:
239 mutex_unlock(&queue->mutex);
240 return ret;
244 * Queue a video buffer. Attempting to queue a buffer that has already been
245 * queued will return -EINVAL.
247 int uvc_queue_buffer(struct uvc_video_queue *queue,
248 struct v4l2_buffer *v4l2_buf)
250 struct uvc_buffer *buf;
251 unsigned long flags;
252 int ret = 0;
254 uvc_trace(UVC_TRACE_CAPTURE, "Queuing buffer %u.\n", v4l2_buf->index);
256 if (v4l2_buf->type != queue->type ||
257 v4l2_buf->memory != V4L2_MEMORY_MMAP) {
258 uvc_trace(UVC_TRACE_CAPTURE, "[E] Invalid buffer type (%u) "
259 "and/or memory (%u).\n", v4l2_buf->type,
260 v4l2_buf->memory);
261 return -EINVAL;
264 mutex_lock(&queue->mutex);
265 if (v4l2_buf->index >= queue->count) {
266 uvc_trace(UVC_TRACE_CAPTURE, "[E] Out of range index.\n");
267 ret = -EINVAL;
268 goto done;
271 buf = &queue->buffer[v4l2_buf->index];
272 if (buf->state != UVC_BUF_STATE_IDLE) {
273 uvc_trace(UVC_TRACE_CAPTURE, "[E] Invalid buffer state "
274 "(%u).\n", buf->state);
275 ret = -EINVAL;
276 goto done;
279 if (v4l2_buf->type == V4L2_BUF_TYPE_VIDEO_OUTPUT &&
280 v4l2_buf->bytesused > buf->buf.length) {
281 uvc_trace(UVC_TRACE_CAPTURE, "[E] Bytes used out of bounds.\n");
282 ret = -EINVAL;
283 goto done;
286 spin_lock_irqsave(&queue->irqlock, flags);
287 if (queue->flags & UVC_QUEUE_DISCONNECTED) {
288 spin_unlock_irqrestore(&queue->irqlock, flags);
289 ret = -ENODEV;
290 goto done;
292 buf->state = UVC_BUF_STATE_QUEUED;
293 if (v4l2_buf->type == V4L2_BUF_TYPE_VIDEO_CAPTURE)
294 buf->buf.bytesused = 0;
295 else
296 buf->buf.bytesused = v4l2_buf->bytesused;
298 list_add_tail(&buf->stream, &queue->mainqueue);
299 list_add_tail(&buf->queue, &queue->irqqueue);
300 spin_unlock_irqrestore(&queue->irqlock, flags);
302 done:
303 mutex_unlock(&queue->mutex);
304 return ret;
307 static int uvc_queue_waiton(struct uvc_buffer *buf, int nonblocking)
309 if (nonblocking) {
310 return (buf->state != UVC_BUF_STATE_QUEUED &&
311 buf->state != UVC_BUF_STATE_ACTIVE &&
312 buf->state != UVC_BUF_STATE_READY)
313 ? 0 : -EAGAIN;
316 return wait_event_interruptible(buf->wait,
317 buf->state != UVC_BUF_STATE_QUEUED &&
318 buf->state != UVC_BUF_STATE_ACTIVE &&
319 buf->state != UVC_BUF_STATE_READY);
323 * Dequeue a video buffer. If nonblocking is false, block until a buffer is
324 * available.
326 int uvc_dequeue_buffer(struct uvc_video_queue *queue,
327 struct v4l2_buffer *v4l2_buf, int nonblocking)
329 struct uvc_buffer *buf;
330 int ret = 0;
332 if (v4l2_buf->type != queue->type ||
333 v4l2_buf->memory != V4L2_MEMORY_MMAP) {
334 uvc_trace(UVC_TRACE_CAPTURE, "[E] Invalid buffer type (%u) "
335 "and/or memory (%u).\n", v4l2_buf->type,
336 v4l2_buf->memory);
337 return -EINVAL;
340 mutex_lock(&queue->mutex);
341 if (list_empty(&queue->mainqueue)) {
342 uvc_trace(UVC_TRACE_CAPTURE, "[E] Empty buffer queue.\n");
343 ret = -EINVAL;
344 goto done;
347 buf = list_first_entry(&queue->mainqueue, struct uvc_buffer, stream);
348 if ((ret = uvc_queue_waiton(buf, nonblocking)) < 0)
349 goto done;
351 uvc_trace(UVC_TRACE_CAPTURE, "Dequeuing buffer %u (%u, %u bytes).\n",
352 buf->buf.index, buf->state, buf->buf.bytesused);
354 switch (buf->state) {
355 case UVC_BUF_STATE_ERROR:
356 uvc_trace(UVC_TRACE_CAPTURE, "[W] Corrupted data "
357 "(transmission error).\n");
358 ret = -EIO;
359 case UVC_BUF_STATE_DONE:
360 buf->state = UVC_BUF_STATE_IDLE;
361 break;
363 case UVC_BUF_STATE_IDLE:
364 case UVC_BUF_STATE_QUEUED:
365 case UVC_BUF_STATE_ACTIVE:
366 case UVC_BUF_STATE_READY:
367 default:
368 uvc_trace(UVC_TRACE_CAPTURE, "[E] Invalid buffer state %u "
369 "(driver bug?).\n", buf->state);
370 ret = -EINVAL;
371 goto done;
374 list_del(&buf->stream);
375 __uvc_query_buffer(buf, v4l2_buf);
377 done:
378 mutex_unlock(&queue->mutex);
379 return ret;
383 * VMA operations.
385 static void uvc_vm_open(struct vm_area_struct *vma)
387 struct uvc_buffer *buffer = vma->vm_private_data;
388 buffer->vma_use_count++;
391 static void uvc_vm_close(struct vm_area_struct *vma)
393 struct uvc_buffer *buffer = vma->vm_private_data;
394 buffer->vma_use_count--;
397 static const struct vm_operations_struct uvc_vm_ops = {
398 .open = uvc_vm_open,
399 .close = uvc_vm_close,
403 * Memory-map a video buffer.
405 * This function implements video buffers memory mapping and is intended to be
406 * used by the device mmap handler.
408 int uvc_queue_mmap(struct uvc_video_queue *queue, struct vm_area_struct *vma)
410 struct uvc_buffer *uninitialized_var(buffer);
411 struct page *page;
412 unsigned long addr, start, size;
413 unsigned int i;
414 int ret = 0;
416 start = vma->vm_start;
417 size = vma->vm_end - vma->vm_start;
419 mutex_lock(&queue->mutex);
421 for (i = 0; i < queue->count; ++i) {
422 buffer = &queue->buffer[i];
423 if ((buffer->buf.m.offset >> PAGE_SHIFT) == vma->vm_pgoff)
424 break;
427 if (i == queue->count || size != queue->buf_size) {
428 ret = -EINVAL;
429 goto done;
433 * VM_IO marks the area as being an mmaped region for I/O to a
434 * device. It also prevents the region from being core dumped.
436 vma->vm_flags |= VM_IO;
438 addr = (unsigned long)queue->mem + buffer->buf.m.offset;
439 while (size > 0) {
440 page = vmalloc_to_page((void *)addr);
441 if ((ret = vm_insert_page(vma, start, page)) < 0)
442 goto done;
444 start += PAGE_SIZE;
445 addr += PAGE_SIZE;
446 size -= PAGE_SIZE;
449 vma->vm_ops = &uvc_vm_ops;
450 vma->vm_private_data = buffer;
451 uvc_vm_open(vma);
453 done:
454 mutex_unlock(&queue->mutex);
455 return ret;
459 * Poll the video queue.
461 * This function implements video queue polling and is intended to be used by
462 * the device poll handler.
464 unsigned int uvc_queue_poll(struct uvc_video_queue *queue, struct file *file,
465 poll_table *wait)
467 struct uvc_buffer *buf;
468 unsigned int mask = 0;
470 mutex_lock(&queue->mutex);
471 if (list_empty(&queue->mainqueue)) {
472 mask |= POLLERR;
473 goto done;
475 buf = list_first_entry(&queue->mainqueue, struct uvc_buffer, stream);
477 poll_wait(file, &buf->wait, wait);
478 if (buf->state == UVC_BUF_STATE_DONE ||
479 buf->state == UVC_BUF_STATE_ERROR) {
480 if (queue->type == V4L2_BUF_TYPE_VIDEO_CAPTURE)
481 mask |= POLLIN | POLLRDNORM;
482 else
483 mask |= POLLOUT | POLLWRNORM;
486 done:
487 mutex_unlock(&queue->mutex);
488 return mask;
492 * Enable or disable the video buffers queue.
494 * The queue must be enabled before starting video acquisition and must be
495 * disabled after stopping it. This ensures that the video buffers queue
496 * state can be properly initialized before buffers are accessed from the
497 * interrupt handler.
499 * Enabling the video queue returns -EBUSY if the queue is already enabled.
501 * Disabling the video queue cancels the queue and removes all buffers from
502 * the main queue.
504 * This function can't be called from interrupt context. Use
505 * uvc_queue_cancel() instead.
507 int uvc_queue_enable(struct uvc_video_queue *queue, int enable)
509 unsigned int i;
510 int ret = 0;
512 mutex_lock(&queue->mutex);
513 if (enable) {
514 if (uvc_queue_streaming(queue)) {
515 ret = -EBUSY;
516 goto done;
518 queue->flags |= UVC_QUEUE_STREAMING;
519 queue->buf_used = 0;
520 } else {
521 uvc_queue_cancel(queue, 0);
522 INIT_LIST_HEAD(&queue->mainqueue);
524 for (i = 0; i < queue->count; ++i) {
525 queue->buffer[i].error = 0;
526 queue->buffer[i].state = UVC_BUF_STATE_IDLE;
529 queue->flags &= ~UVC_QUEUE_STREAMING;
532 done:
533 mutex_unlock(&queue->mutex);
534 return ret;
538 * Cancel the video buffers queue.
540 * Cancelling the queue marks all buffers on the irq queue as erroneous,
541 * wakes them up and removes them from the queue.
543 * If the disconnect parameter is set, further calls to uvc_queue_buffer will
544 * fail with -ENODEV.
546 * This function acquires the irq spinlock and can be called from interrupt
547 * context.
549 void uvc_queue_cancel(struct uvc_video_queue *queue, int disconnect)
551 struct uvc_buffer *buf;
552 unsigned long flags;
554 spin_lock_irqsave(&queue->irqlock, flags);
555 while (!list_empty(&queue->irqqueue)) {
556 buf = list_first_entry(&queue->irqqueue, struct uvc_buffer,
557 queue);
558 list_del(&buf->queue);
559 buf->state = UVC_BUF_STATE_ERROR;
560 wake_up(&buf->wait);
562 /* This must be protected by the irqlock spinlock to avoid race
563 * conditions between uvc_queue_buffer and the disconnection event that
564 * could result in an interruptible wait in uvc_dequeue_buffer. Do not
565 * blindly replace this logic by checking for the UVC_DEV_DISCONNECTED
566 * state outside the queue code.
568 if (disconnect)
569 queue->flags |= UVC_QUEUE_DISCONNECTED;
570 spin_unlock_irqrestore(&queue->irqlock, flags);
573 struct uvc_buffer *uvc_queue_next_buffer(struct uvc_video_queue *queue,
574 struct uvc_buffer *buf)
576 struct uvc_buffer *nextbuf;
577 unsigned long flags;
579 if ((queue->flags & UVC_QUEUE_DROP_CORRUPTED) && buf->error) {
580 buf->error = 0;
581 buf->state = UVC_BUF_STATE_QUEUED;
582 buf->buf.bytesused = 0;
583 return buf;
586 spin_lock_irqsave(&queue->irqlock, flags);
587 list_del(&buf->queue);
588 buf->error = 0;
589 buf->state = UVC_BUF_STATE_DONE;
590 if (!list_empty(&queue->irqqueue))
591 nextbuf = list_first_entry(&queue->irqqueue, struct uvc_buffer,
592 queue);
593 else
594 nextbuf = NULL;
595 spin_unlock_irqrestore(&queue->irqlock, flags);
597 wake_up(&buf->wait);
598 return nextbuf;