FRV: Use generic show_interrupts()
[cris-mirror.git] / drivers / mtd / chips / cfi_cmdset_0001.c
blob4aaa88f8ab5f0323f015dd34c46c4d0f98703ada
1 /*
2 * Common Flash Interface support:
3 * Intel Extended Vendor Command Set (ID 0x0001)
5 * (C) 2000 Red Hat. GPL'd
8 * 10/10/2000 Nicolas Pitre <nico@fluxnic.net>
9 * - completely revamped method functions so they are aware and
10 * independent of the flash geometry (buswidth, interleave, etc.)
11 * - scalability vs code size is completely set at compile-time
12 * (see include/linux/mtd/cfi.h for selection)
13 * - optimized write buffer method
14 * 02/05/2002 Christopher Hoover <ch@hpl.hp.com>/<ch@murgatroid.com>
15 * - reworked lock/unlock/erase support for var size flash
16 * 21/03/2007 Rodolfo Giometti <giometti@linux.it>
17 * - auto unlock sectors on resume for auto locking flash on power up
20 #include <linux/module.h>
21 #include <linux/types.h>
22 #include <linux/kernel.h>
23 #include <linux/sched.h>
24 #include <linux/init.h>
25 #include <asm/io.h>
26 #include <asm/byteorder.h>
28 #include <linux/errno.h>
29 #include <linux/slab.h>
30 #include <linux/delay.h>
31 #include <linux/interrupt.h>
32 #include <linux/reboot.h>
33 #include <linux/bitmap.h>
34 #include <linux/mtd/xip.h>
35 #include <linux/mtd/map.h>
36 #include <linux/mtd/mtd.h>
37 #include <linux/mtd/cfi.h>
39 /* #define CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE */
40 /* #define CMDSET0001_DISABLE_WRITE_SUSPEND */
42 // debugging, turns off buffer write mode if set to 1
43 #define FORCE_WORD_WRITE 0
45 /* Intel chips */
46 #define I82802AB 0x00ad
47 #define I82802AC 0x00ac
48 #define PF38F4476 0x881c
49 /* STMicroelectronics chips */
50 #define M50LPW080 0x002F
51 #define M50FLW080A 0x0080
52 #define M50FLW080B 0x0081
53 /* Atmel chips */
54 #define AT49BV640D 0x02de
55 #define AT49BV640DT 0x02db
57 static int cfi_intelext_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
58 static int cfi_intelext_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
59 static int cfi_intelext_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
60 static int cfi_intelext_writev(struct mtd_info *, const struct kvec *, unsigned long, loff_t, size_t *);
61 static int cfi_intelext_erase_varsize(struct mtd_info *, struct erase_info *);
62 static void cfi_intelext_sync (struct mtd_info *);
63 static int cfi_intelext_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
64 static int cfi_intelext_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
65 static int cfi_intelext_is_locked(struct mtd_info *mtd, loff_t ofs,
66 uint64_t len);
67 #ifdef CONFIG_MTD_OTP
68 static int cfi_intelext_read_fact_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
69 static int cfi_intelext_read_user_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
70 static int cfi_intelext_write_user_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
71 static int cfi_intelext_lock_user_prot_reg (struct mtd_info *, loff_t, size_t);
72 static int cfi_intelext_get_fact_prot_info (struct mtd_info *,
73 struct otp_info *, size_t);
74 static int cfi_intelext_get_user_prot_info (struct mtd_info *,
75 struct otp_info *, size_t);
76 #endif
77 static int cfi_intelext_suspend (struct mtd_info *);
78 static void cfi_intelext_resume (struct mtd_info *);
79 static int cfi_intelext_reboot (struct notifier_block *, unsigned long, void *);
81 static void cfi_intelext_destroy(struct mtd_info *);
83 struct mtd_info *cfi_cmdset_0001(struct map_info *, int);
85 static struct mtd_info *cfi_intelext_setup (struct mtd_info *);
86 static int cfi_intelext_partition_fixup(struct mtd_info *, struct cfi_private **);
88 static int cfi_intelext_point (struct mtd_info *mtd, loff_t from, size_t len,
89 size_t *retlen, void **virt, resource_size_t *phys);
90 static void cfi_intelext_unpoint(struct mtd_info *mtd, loff_t from, size_t len);
92 static int chip_ready (struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
93 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
94 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr);
95 #include "fwh_lock.h"
100 * *********** SETUP AND PROBE BITS ***********
103 static struct mtd_chip_driver cfi_intelext_chipdrv = {
104 .probe = NULL, /* Not usable directly */
105 .destroy = cfi_intelext_destroy,
106 .name = "cfi_cmdset_0001",
107 .module = THIS_MODULE
110 /* #define DEBUG_LOCK_BITS */
111 /* #define DEBUG_CFI_FEATURES */
113 #ifdef DEBUG_CFI_FEATURES
114 static void cfi_tell_features(struct cfi_pri_intelext *extp)
116 int i;
117 printk(" Extended Query version %c.%c\n", extp->MajorVersion, extp->MinorVersion);
118 printk(" Feature/Command Support: %4.4X\n", extp->FeatureSupport);
119 printk(" - Chip Erase: %s\n", extp->FeatureSupport&1?"supported":"unsupported");
120 printk(" - Suspend Erase: %s\n", extp->FeatureSupport&2?"supported":"unsupported");
121 printk(" - Suspend Program: %s\n", extp->FeatureSupport&4?"supported":"unsupported");
122 printk(" - Legacy Lock/Unlock: %s\n", extp->FeatureSupport&8?"supported":"unsupported");
123 printk(" - Queued Erase: %s\n", extp->FeatureSupport&16?"supported":"unsupported");
124 printk(" - Instant block lock: %s\n", extp->FeatureSupport&32?"supported":"unsupported");
125 printk(" - Protection Bits: %s\n", extp->FeatureSupport&64?"supported":"unsupported");
126 printk(" - Page-mode read: %s\n", extp->FeatureSupport&128?"supported":"unsupported");
127 printk(" - Synchronous read: %s\n", extp->FeatureSupport&256?"supported":"unsupported");
128 printk(" - Simultaneous operations: %s\n", extp->FeatureSupport&512?"supported":"unsupported");
129 printk(" - Extended Flash Array: %s\n", extp->FeatureSupport&1024?"supported":"unsupported");
130 for (i=11; i<32; i++) {
131 if (extp->FeatureSupport & (1<<i))
132 printk(" - Unknown Bit %X: supported\n", i);
135 printk(" Supported functions after Suspend: %2.2X\n", extp->SuspendCmdSupport);
136 printk(" - Program after Erase Suspend: %s\n", extp->SuspendCmdSupport&1?"supported":"unsupported");
137 for (i=1; i<8; i++) {
138 if (extp->SuspendCmdSupport & (1<<i))
139 printk(" - Unknown Bit %X: supported\n", i);
142 printk(" Block Status Register Mask: %4.4X\n", extp->BlkStatusRegMask);
143 printk(" - Lock Bit Active: %s\n", extp->BlkStatusRegMask&1?"yes":"no");
144 printk(" - Lock-Down Bit Active: %s\n", extp->BlkStatusRegMask&2?"yes":"no");
145 for (i=2; i<3; i++) {
146 if (extp->BlkStatusRegMask & (1<<i))
147 printk(" - Unknown Bit %X Active: yes\n",i);
149 printk(" - EFA Lock Bit: %s\n", extp->BlkStatusRegMask&16?"yes":"no");
150 printk(" - EFA Lock-Down Bit: %s\n", extp->BlkStatusRegMask&32?"yes":"no");
151 for (i=6; i<16; i++) {
152 if (extp->BlkStatusRegMask & (1<<i))
153 printk(" - Unknown Bit %X Active: yes\n",i);
156 printk(" Vcc Logic Supply Optimum Program/Erase Voltage: %d.%d V\n",
157 extp->VccOptimal >> 4, extp->VccOptimal & 0xf);
158 if (extp->VppOptimal)
159 printk(" Vpp Programming Supply Optimum Program/Erase Voltage: %d.%d V\n",
160 extp->VppOptimal >> 4, extp->VppOptimal & 0xf);
162 #endif
164 /* Atmel chips don't use the same PRI format as Intel chips */
165 static void fixup_convert_atmel_pri(struct mtd_info *mtd)
167 struct map_info *map = mtd->priv;
168 struct cfi_private *cfi = map->fldrv_priv;
169 struct cfi_pri_intelext *extp = cfi->cmdset_priv;
170 struct cfi_pri_atmel atmel_pri;
171 uint32_t features = 0;
173 /* Reverse byteswapping */
174 extp->FeatureSupport = cpu_to_le32(extp->FeatureSupport);
175 extp->BlkStatusRegMask = cpu_to_le16(extp->BlkStatusRegMask);
176 extp->ProtRegAddr = cpu_to_le16(extp->ProtRegAddr);
178 memcpy(&atmel_pri, extp, sizeof(atmel_pri));
179 memset((char *)extp + 5, 0, sizeof(*extp) - 5);
181 printk(KERN_ERR "atmel Features: %02x\n", atmel_pri.Features);
183 if (atmel_pri.Features & 0x01) /* chip erase supported */
184 features |= (1<<0);
185 if (atmel_pri.Features & 0x02) /* erase suspend supported */
186 features |= (1<<1);
187 if (atmel_pri.Features & 0x04) /* program suspend supported */
188 features |= (1<<2);
189 if (atmel_pri.Features & 0x08) /* simultaneous operations supported */
190 features |= (1<<9);
191 if (atmel_pri.Features & 0x20) /* page mode read supported */
192 features |= (1<<7);
193 if (atmel_pri.Features & 0x40) /* queued erase supported */
194 features |= (1<<4);
195 if (atmel_pri.Features & 0x80) /* Protection bits supported */
196 features |= (1<<6);
198 extp->FeatureSupport = features;
200 /* burst write mode not supported */
201 cfi->cfiq->BufWriteTimeoutTyp = 0;
202 cfi->cfiq->BufWriteTimeoutMax = 0;
205 static void fixup_at49bv640dx_lock(struct mtd_info *mtd)
207 struct map_info *map = mtd->priv;
208 struct cfi_private *cfi = map->fldrv_priv;
209 struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
211 cfip->FeatureSupport |= (1 << 5);
212 mtd->flags |= MTD_POWERUP_LOCK;
215 #ifdef CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE
216 /* Some Intel Strata Flash prior to FPO revision C has bugs in this area */
217 static void fixup_intel_strataflash(struct mtd_info *mtd)
219 struct map_info *map = mtd->priv;
220 struct cfi_private *cfi = map->fldrv_priv;
221 struct cfi_pri_intelext *extp = cfi->cmdset_priv;
223 printk(KERN_WARNING "cfi_cmdset_0001: Suspend "
224 "erase on write disabled.\n");
225 extp->SuspendCmdSupport &= ~1;
227 #endif
229 #ifdef CMDSET0001_DISABLE_WRITE_SUSPEND
230 static void fixup_no_write_suspend(struct mtd_info *mtd)
232 struct map_info *map = mtd->priv;
233 struct cfi_private *cfi = map->fldrv_priv;
234 struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
236 if (cfip && (cfip->FeatureSupport&4)) {
237 cfip->FeatureSupport &= ~4;
238 printk(KERN_WARNING "cfi_cmdset_0001: write suspend disabled\n");
241 #endif
243 static void fixup_st_m28w320ct(struct mtd_info *mtd)
245 struct map_info *map = mtd->priv;
246 struct cfi_private *cfi = map->fldrv_priv;
248 cfi->cfiq->BufWriteTimeoutTyp = 0; /* Not supported */
249 cfi->cfiq->BufWriteTimeoutMax = 0; /* Not supported */
252 static void fixup_st_m28w320cb(struct mtd_info *mtd)
254 struct map_info *map = mtd->priv;
255 struct cfi_private *cfi = map->fldrv_priv;
257 /* Note this is done after the region info is endian swapped */
258 cfi->cfiq->EraseRegionInfo[1] =
259 (cfi->cfiq->EraseRegionInfo[1] & 0xffff0000) | 0x3e;
262 static void fixup_use_point(struct mtd_info *mtd)
264 struct map_info *map = mtd->priv;
265 if (!mtd->point && map_is_linear(map)) {
266 mtd->point = cfi_intelext_point;
267 mtd->unpoint = cfi_intelext_unpoint;
271 static void fixup_use_write_buffers(struct mtd_info *mtd)
273 struct map_info *map = mtd->priv;
274 struct cfi_private *cfi = map->fldrv_priv;
275 if (cfi->cfiq->BufWriteTimeoutTyp) {
276 printk(KERN_INFO "Using buffer write method\n" );
277 mtd->write = cfi_intelext_write_buffers;
278 mtd->writev = cfi_intelext_writev;
283 * Some chips power-up with all sectors locked by default.
285 static void fixup_unlock_powerup_lock(struct mtd_info *mtd)
287 struct map_info *map = mtd->priv;
288 struct cfi_private *cfi = map->fldrv_priv;
289 struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
291 if (cfip->FeatureSupport&32) {
292 printk(KERN_INFO "Using auto-unlock on power-up/resume\n" );
293 mtd->flags |= MTD_POWERUP_LOCK;
297 static struct cfi_fixup cfi_fixup_table[] = {
298 { CFI_MFR_ATMEL, CFI_ID_ANY, fixup_convert_atmel_pri },
299 { CFI_MFR_ATMEL, AT49BV640D, fixup_at49bv640dx_lock },
300 { CFI_MFR_ATMEL, AT49BV640DT, fixup_at49bv640dx_lock },
301 #ifdef CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE
302 { CFI_MFR_ANY, CFI_ID_ANY, fixup_intel_strataflash },
303 #endif
304 #ifdef CMDSET0001_DISABLE_WRITE_SUSPEND
305 { CFI_MFR_ANY, CFI_ID_ANY, fixup_no_write_suspend },
306 #endif
307 #if !FORCE_WORD_WRITE
308 { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers },
309 #endif
310 { CFI_MFR_ST, 0x00ba, /* M28W320CT */ fixup_st_m28w320ct },
311 { CFI_MFR_ST, 0x00bb, /* M28W320CB */ fixup_st_m28w320cb },
312 { CFI_MFR_INTEL, CFI_ID_ANY, fixup_unlock_powerup_lock },
313 { 0, 0, NULL }
316 static struct cfi_fixup jedec_fixup_table[] = {
317 { CFI_MFR_INTEL, I82802AB, fixup_use_fwh_lock },
318 { CFI_MFR_INTEL, I82802AC, fixup_use_fwh_lock },
319 { CFI_MFR_ST, M50LPW080, fixup_use_fwh_lock },
320 { CFI_MFR_ST, M50FLW080A, fixup_use_fwh_lock },
321 { CFI_MFR_ST, M50FLW080B, fixup_use_fwh_lock },
322 { 0, 0, NULL }
324 static struct cfi_fixup fixup_table[] = {
325 /* The CFI vendor ids and the JEDEC vendor IDs appear
326 * to be common. It is like the devices id's are as
327 * well. This table is to pick all cases where
328 * we know that is the case.
330 { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_point },
331 { 0, 0, NULL }
334 static void cfi_fixup_major_minor(struct cfi_private *cfi,
335 struct cfi_pri_intelext *extp)
337 if (cfi->mfr == CFI_MFR_INTEL &&
338 cfi->id == PF38F4476 && extp->MinorVersion == '3')
339 extp->MinorVersion = '1';
342 static inline struct cfi_pri_intelext *
343 read_pri_intelext(struct map_info *map, __u16 adr)
345 struct cfi_private *cfi = map->fldrv_priv;
346 struct cfi_pri_intelext *extp;
347 unsigned int extra_size = 0;
348 unsigned int extp_size = sizeof(*extp);
350 again:
351 extp = (struct cfi_pri_intelext *)cfi_read_pri(map, adr, extp_size, "Intel/Sharp");
352 if (!extp)
353 return NULL;
355 cfi_fixup_major_minor(cfi, extp);
357 if (extp->MajorVersion != '1' ||
358 (extp->MinorVersion < '0' || extp->MinorVersion > '5')) {
359 printk(KERN_ERR " Unknown Intel/Sharp Extended Query "
360 "version %c.%c.\n", extp->MajorVersion,
361 extp->MinorVersion);
362 kfree(extp);
363 return NULL;
366 /* Do some byteswapping if necessary */
367 extp->FeatureSupport = le32_to_cpu(extp->FeatureSupport);
368 extp->BlkStatusRegMask = le16_to_cpu(extp->BlkStatusRegMask);
369 extp->ProtRegAddr = le16_to_cpu(extp->ProtRegAddr);
371 if (extp->MinorVersion >= '0') {
372 extra_size = 0;
374 /* Protection Register info */
375 extra_size += (extp->NumProtectionFields - 1) *
376 sizeof(struct cfi_intelext_otpinfo);
379 if (extp->MinorVersion >= '1') {
380 /* Burst Read info */
381 extra_size += 2;
382 if (extp_size < sizeof(*extp) + extra_size)
383 goto need_more;
384 extra_size += extp->extra[extra_size - 1];
387 if (extp->MinorVersion >= '3') {
388 int nb_parts, i;
390 /* Number of hardware-partitions */
391 extra_size += 1;
392 if (extp_size < sizeof(*extp) + extra_size)
393 goto need_more;
394 nb_parts = extp->extra[extra_size - 1];
396 /* skip the sizeof(partregion) field in CFI 1.4 */
397 if (extp->MinorVersion >= '4')
398 extra_size += 2;
400 for (i = 0; i < nb_parts; i++) {
401 struct cfi_intelext_regioninfo *rinfo;
402 rinfo = (struct cfi_intelext_regioninfo *)&extp->extra[extra_size];
403 extra_size += sizeof(*rinfo);
404 if (extp_size < sizeof(*extp) + extra_size)
405 goto need_more;
406 rinfo->NumIdentPartitions=le16_to_cpu(rinfo->NumIdentPartitions);
407 extra_size += (rinfo->NumBlockTypes - 1)
408 * sizeof(struct cfi_intelext_blockinfo);
411 if (extp->MinorVersion >= '4')
412 extra_size += sizeof(struct cfi_intelext_programming_regioninfo);
414 if (extp_size < sizeof(*extp) + extra_size) {
415 need_more:
416 extp_size = sizeof(*extp) + extra_size;
417 kfree(extp);
418 if (extp_size > 4096) {
419 printk(KERN_ERR
420 "%s: cfi_pri_intelext is too fat\n",
421 __func__);
422 return NULL;
424 goto again;
428 return extp;
431 struct mtd_info *cfi_cmdset_0001(struct map_info *map, int primary)
433 struct cfi_private *cfi = map->fldrv_priv;
434 struct mtd_info *mtd;
435 int i;
437 mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
438 if (!mtd) {
439 printk(KERN_ERR "Failed to allocate memory for MTD device\n");
440 return NULL;
442 mtd->priv = map;
443 mtd->type = MTD_NORFLASH;
445 /* Fill in the default mtd operations */
446 mtd->erase = cfi_intelext_erase_varsize;
447 mtd->read = cfi_intelext_read;
448 mtd->write = cfi_intelext_write_words;
449 mtd->sync = cfi_intelext_sync;
450 mtd->lock = cfi_intelext_lock;
451 mtd->unlock = cfi_intelext_unlock;
452 mtd->is_locked = cfi_intelext_is_locked;
453 mtd->suspend = cfi_intelext_suspend;
454 mtd->resume = cfi_intelext_resume;
455 mtd->flags = MTD_CAP_NORFLASH;
456 mtd->name = map->name;
457 mtd->writesize = 1;
458 mtd->writebufsize = 1 << cfi->cfiq->MaxBufWriteSize;
460 mtd->reboot_notifier.notifier_call = cfi_intelext_reboot;
462 if (cfi->cfi_mode == CFI_MODE_CFI) {
464 * It's a real CFI chip, not one for which the probe
465 * routine faked a CFI structure. So we read the feature
466 * table from it.
468 __u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR;
469 struct cfi_pri_intelext *extp;
471 extp = read_pri_intelext(map, adr);
472 if (!extp) {
473 kfree(mtd);
474 return NULL;
477 /* Install our own private info structure */
478 cfi->cmdset_priv = extp;
480 cfi_fixup(mtd, cfi_fixup_table);
482 #ifdef DEBUG_CFI_FEATURES
483 /* Tell the user about it in lots of lovely detail */
484 cfi_tell_features(extp);
485 #endif
487 if(extp->SuspendCmdSupport & 1) {
488 printk(KERN_NOTICE "cfi_cmdset_0001: Erase suspend on write enabled\n");
491 else if (cfi->cfi_mode == CFI_MODE_JEDEC) {
492 /* Apply jedec specific fixups */
493 cfi_fixup(mtd, jedec_fixup_table);
495 /* Apply generic fixups */
496 cfi_fixup(mtd, fixup_table);
498 for (i=0; i< cfi->numchips; i++) {
499 if (cfi->cfiq->WordWriteTimeoutTyp)
500 cfi->chips[i].word_write_time =
501 1<<cfi->cfiq->WordWriteTimeoutTyp;
502 else
503 cfi->chips[i].word_write_time = 50000;
505 if (cfi->cfiq->BufWriteTimeoutTyp)
506 cfi->chips[i].buffer_write_time =
507 1<<cfi->cfiq->BufWriteTimeoutTyp;
508 /* No default; if it isn't specified, we won't use it */
510 if (cfi->cfiq->BlockEraseTimeoutTyp)
511 cfi->chips[i].erase_time =
512 1000<<cfi->cfiq->BlockEraseTimeoutTyp;
513 else
514 cfi->chips[i].erase_time = 2000000;
516 if (cfi->cfiq->WordWriteTimeoutTyp &&
517 cfi->cfiq->WordWriteTimeoutMax)
518 cfi->chips[i].word_write_time_max =
519 1<<(cfi->cfiq->WordWriteTimeoutTyp +
520 cfi->cfiq->WordWriteTimeoutMax);
521 else
522 cfi->chips[i].word_write_time_max = 50000 * 8;
524 if (cfi->cfiq->BufWriteTimeoutTyp &&
525 cfi->cfiq->BufWriteTimeoutMax)
526 cfi->chips[i].buffer_write_time_max =
527 1<<(cfi->cfiq->BufWriteTimeoutTyp +
528 cfi->cfiq->BufWriteTimeoutMax);
530 if (cfi->cfiq->BlockEraseTimeoutTyp &&
531 cfi->cfiq->BlockEraseTimeoutMax)
532 cfi->chips[i].erase_time_max =
533 1000<<(cfi->cfiq->BlockEraseTimeoutTyp +
534 cfi->cfiq->BlockEraseTimeoutMax);
535 else
536 cfi->chips[i].erase_time_max = 2000000 * 8;
538 cfi->chips[i].ref_point_counter = 0;
539 init_waitqueue_head(&(cfi->chips[i].wq));
542 map->fldrv = &cfi_intelext_chipdrv;
544 return cfi_intelext_setup(mtd);
546 struct mtd_info *cfi_cmdset_0003(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0001")));
547 struct mtd_info *cfi_cmdset_0200(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0001")));
548 EXPORT_SYMBOL_GPL(cfi_cmdset_0001);
549 EXPORT_SYMBOL_GPL(cfi_cmdset_0003);
550 EXPORT_SYMBOL_GPL(cfi_cmdset_0200);
552 static struct mtd_info *cfi_intelext_setup(struct mtd_info *mtd)
554 struct map_info *map = mtd->priv;
555 struct cfi_private *cfi = map->fldrv_priv;
556 unsigned long offset = 0;
557 int i,j;
558 unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave;
560 //printk(KERN_DEBUG "number of CFI chips: %d\n", cfi->numchips);
562 mtd->size = devsize * cfi->numchips;
564 mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips;
565 mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info)
566 * mtd->numeraseregions, GFP_KERNEL);
567 if (!mtd->eraseregions) {
568 printk(KERN_ERR "Failed to allocate memory for MTD erase region info\n");
569 goto setup_err;
572 for (i=0; i<cfi->cfiq->NumEraseRegions; i++) {
573 unsigned long ernum, ersize;
574 ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave;
575 ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1;
577 if (mtd->erasesize < ersize) {
578 mtd->erasesize = ersize;
580 for (j=0; j<cfi->numchips; j++) {
581 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset;
582 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize;
583 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum;
584 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].lockmap = kmalloc(ernum / 8 + 1, GFP_KERNEL);
586 offset += (ersize * ernum);
589 if (offset != devsize) {
590 /* Argh */
591 printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize);
592 goto setup_err;
595 for (i=0; i<mtd->numeraseregions;i++){
596 printk(KERN_DEBUG "erase region %d: offset=0x%llx,size=0x%x,blocks=%d\n",
597 i,(unsigned long long)mtd->eraseregions[i].offset,
598 mtd->eraseregions[i].erasesize,
599 mtd->eraseregions[i].numblocks);
602 #ifdef CONFIG_MTD_OTP
603 mtd->read_fact_prot_reg = cfi_intelext_read_fact_prot_reg;
604 mtd->read_user_prot_reg = cfi_intelext_read_user_prot_reg;
605 mtd->write_user_prot_reg = cfi_intelext_write_user_prot_reg;
606 mtd->lock_user_prot_reg = cfi_intelext_lock_user_prot_reg;
607 mtd->get_fact_prot_info = cfi_intelext_get_fact_prot_info;
608 mtd->get_user_prot_info = cfi_intelext_get_user_prot_info;
609 #endif
611 /* This function has the potential to distort the reality
612 a bit and therefore should be called last. */
613 if (cfi_intelext_partition_fixup(mtd, &cfi) != 0)
614 goto setup_err;
616 __module_get(THIS_MODULE);
617 register_reboot_notifier(&mtd->reboot_notifier);
618 return mtd;
620 setup_err:
621 kfree(mtd->eraseregions);
622 kfree(mtd);
623 kfree(cfi->cmdset_priv);
624 return NULL;
627 static int cfi_intelext_partition_fixup(struct mtd_info *mtd,
628 struct cfi_private **pcfi)
630 struct map_info *map = mtd->priv;
631 struct cfi_private *cfi = *pcfi;
632 struct cfi_pri_intelext *extp = cfi->cmdset_priv;
635 * Probing of multi-partition flash chips.
637 * To support multiple partitions when available, we simply arrange
638 * for each of them to have their own flchip structure even if they
639 * are on the same physical chip. This means completely recreating
640 * a new cfi_private structure right here which is a blatent code
641 * layering violation, but this is still the least intrusive
642 * arrangement at this point. This can be rearranged in the future
643 * if someone feels motivated enough. --nico
645 if (extp && extp->MajorVersion == '1' && extp->MinorVersion >= '3'
646 && extp->FeatureSupport & (1 << 9)) {
647 struct cfi_private *newcfi;
648 struct flchip *chip;
649 struct flchip_shared *shared;
650 int offs, numregions, numparts, partshift, numvirtchips, i, j;
652 /* Protection Register info */
653 offs = (extp->NumProtectionFields - 1) *
654 sizeof(struct cfi_intelext_otpinfo);
656 /* Burst Read info */
657 offs += extp->extra[offs+1]+2;
659 /* Number of partition regions */
660 numregions = extp->extra[offs];
661 offs += 1;
663 /* skip the sizeof(partregion) field in CFI 1.4 */
664 if (extp->MinorVersion >= '4')
665 offs += 2;
667 /* Number of hardware partitions */
668 numparts = 0;
669 for (i = 0; i < numregions; i++) {
670 struct cfi_intelext_regioninfo *rinfo;
671 rinfo = (struct cfi_intelext_regioninfo *)&extp->extra[offs];
672 numparts += rinfo->NumIdentPartitions;
673 offs += sizeof(*rinfo)
674 + (rinfo->NumBlockTypes - 1) *
675 sizeof(struct cfi_intelext_blockinfo);
678 if (!numparts)
679 numparts = 1;
681 /* Programming Region info */
682 if (extp->MinorVersion >= '4') {
683 struct cfi_intelext_programming_regioninfo *prinfo;
684 prinfo = (struct cfi_intelext_programming_regioninfo *)&extp->extra[offs];
685 mtd->writesize = cfi->interleave << prinfo->ProgRegShift;
686 mtd->flags &= ~MTD_BIT_WRITEABLE;
687 printk(KERN_DEBUG "%s: program region size/ctrl_valid/ctrl_inval = %d/%d/%d\n",
688 map->name, mtd->writesize,
689 cfi->interleave * prinfo->ControlValid,
690 cfi->interleave * prinfo->ControlInvalid);
694 * All functions below currently rely on all chips having
695 * the same geometry so we'll just assume that all hardware
696 * partitions are of the same size too.
698 partshift = cfi->chipshift - __ffs(numparts);
700 if ((1 << partshift) < mtd->erasesize) {
701 printk( KERN_ERR
702 "%s: bad number of hw partitions (%d)\n",
703 __func__, numparts);
704 return -EINVAL;
707 numvirtchips = cfi->numchips * numparts;
708 newcfi = kmalloc(sizeof(struct cfi_private) + numvirtchips * sizeof(struct flchip), GFP_KERNEL);
709 if (!newcfi)
710 return -ENOMEM;
711 shared = kmalloc(sizeof(struct flchip_shared) * cfi->numchips, GFP_KERNEL);
712 if (!shared) {
713 kfree(newcfi);
714 return -ENOMEM;
716 memcpy(newcfi, cfi, sizeof(struct cfi_private));
717 newcfi->numchips = numvirtchips;
718 newcfi->chipshift = partshift;
720 chip = &newcfi->chips[0];
721 for (i = 0; i < cfi->numchips; i++) {
722 shared[i].writing = shared[i].erasing = NULL;
723 mutex_init(&shared[i].lock);
724 for (j = 0; j < numparts; j++) {
725 *chip = cfi->chips[i];
726 chip->start += j << partshift;
727 chip->priv = &shared[i];
728 /* those should be reset too since
729 they create memory references. */
730 init_waitqueue_head(&chip->wq);
731 mutex_init(&chip->mutex);
732 chip++;
736 printk(KERN_DEBUG "%s: %d set(s) of %d interleaved chips "
737 "--> %d partitions of %d KiB\n",
738 map->name, cfi->numchips, cfi->interleave,
739 newcfi->numchips, 1<<(newcfi->chipshift-10));
741 map->fldrv_priv = newcfi;
742 *pcfi = newcfi;
743 kfree(cfi);
746 return 0;
750 * *********** CHIP ACCESS FUNCTIONS ***********
752 static int chip_ready (struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
754 DECLARE_WAITQUEUE(wait, current);
755 struct cfi_private *cfi = map->fldrv_priv;
756 map_word status, status_OK = CMD(0x80), status_PWS = CMD(0x01);
757 struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
758 unsigned long timeo = jiffies + HZ;
760 /* Prevent setting state FL_SYNCING for chip in suspended state. */
761 if (mode == FL_SYNCING && chip->oldstate != FL_READY)
762 goto sleep;
764 switch (chip->state) {
766 case FL_STATUS:
767 for (;;) {
768 status = map_read(map, adr);
769 if (map_word_andequal(map, status, status_OK, status_OK))
770 break;
772 /* At this point we're fine with write operations
773 in other partitions as they don't conflict. */
774 if (chip->priv && map_word_andequal(map, status, status_PWS, status_PWS))
775 break;
777 mutex_unlock(&chip->mutex);
778 cfi_udelay(1);
779 mutex_lock(&chip->mutex);
780 /* Someone else might have been playing with it. */
781 return -EAGAIN;
783 /* Fall through */
784 case FL_READY:
785 case FL_CFI_QUERY:
786 case FL_JEDEC_QUERY:
787 return 0;
789 case FL_ERASING:
790 if (!cfip ||
791 !(cfip->FeatureSupport & 2) ||
792 !(mode == FL_READY || mode == FL_POINT ||
793 (mode == FL_WRITING && (cfip->SuspendCmdSupport & 1))))
794 goto sleep;
797 /* Erase suspend */
798 map_write(map, CMD(0xB0), adr);
800 /* If the flash has finished erasing, then 'erase suspend'
801 * appears to make some (28F320) flash devices switch to
802 * 'read' mode. Make sure that we switch to 'read status'
803 * mode so we get the right data. --rmk
805 map_write(map, CMD(0x70), adr);
806 chip->oldstate = FL_ERASING;
807 chip->state = FL_ERASE_SUSPENDING;
808 chip->erase_suspended = 1;
809 for (;;) {
810 status = map_read(map, adr);
811 if (map_word_andequal(map, status, status_OK, status_OK))
812 break;
814 if (time_after(jiffies, timeo)) {
815 /* Urgh. Resume and pretend we weren't here. */
816 map_write(map, CMD(0xd0), adr);
817 /* Make sure we're in 'read status' mode if it had finished */
818 map_write(map, CMD(0x70), adr);
819 chip->state = FL_ERASING;
820 chip->oldstate = FL_READY;
821 printk(KERN_ERR "%s: Chip not ready after erase "
822 "suspended: status = 0x%lx\n", map->name, status.x[0]);
823 return -EIO;
826 mutex_unlock(&chip->mutex);
827 cfi_udelay(1);
828 mutex_lock(&chip->mutex);
829 /* Nobody will touch it while it's in state FL_ERASE_SUSPENDING.
830 So we can just loop here. */
832 chip->state = FL_STATUS;
833 return 0;
835 case FL_XIP_WHILE_ERASING:
836 if (mode != FL_READY && mode != FL_POINT &&
837 (mode != FL_WRITING || !cfip || !(cfip->SuspendCmdSupport&1)))
838 goto sleep;
839 chip->oldstate = chip->state;
840 chip->state = FL_READY;
841 return 0;
843 case FL_SHUTDOWN:
844 /* The machine is rebooting now,so no one can get chip anymore */
845 return -EIO;
846 case FL_POINT:
847 /* Only if there's no operation suspended... */
848 if (mode == FL_READY && chip->oldstate == FL_READY)
849 return 0;
850 /* Fall through */
851 default:
852 sleep:
853 set_current_state(TASK_UNINTERRUPTIBLE);
854 add_wait_queue(&chip->wq, &wait);
855 mutex_unlock(&chip->mutex);
856 schedule();
857 remove_wait_queue(&chip->wq, &wait);
858 mutex_lock(&chip->mutex);
859 return -EAGAIN;
863 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
865 int ret;
866 DECLARE_WAITQUEUE(wait, current);
868 retry:
869 if (chip->priv &&
870 (mode == FL_WRITING || mode == FL_ERASING || mode == FL_OTP_WRITE
871 || mode == FL_SHUTDOWN) && chip->state != FL_SYNCING) {
873 * OK. We have possibility for contention on the write/erase
874 * operations which are global to the real chip and not per
875 * partition. So let's fight it over in the partition which
876 * currently has authority on the operation.
878 * The rules are as follows:
880 * - any write operation must own shared->writing.
882 * - any erase operation must own _both_ shared->writing and
883 * shared->erasing.
885 * - contention arbitration is handled in the owner's context.
887 * The 'shared' struct can be read and/or written only when
888 * its lock is taken.
890 struct flchip_shared *shared = chip->priv;
891 struct flchip *contender;
892 mutex_lock(&shared->lock);
893 contender = shared->writing;
894 if (contender && contender != chip) {
896 * The engine to perform desired operation on this
897 * partition is already in use by someone else.
898 * Let's fight over it in the context of the chip
899 * currently using it. If it is possible to suspend,
900 * that other partition will do just that, otherwise
901 * it'll happily send us to sleep. In any case, when
902 * get_chip returns success we're clear to go ahead.
904 ret = mutex_trylock(&contender->mutex);
905 mutex_unlock(&shared->lock);
906 if (!ret)
907 goto retry;
908 mutex_unlock(&chip->mutex);
909 ret = chip_ready(map, contender, contender->start, mode);
910 mutex_lock(&chip->mutex);
912 if (ret == -EAGAIN) {
913 mutex_unlock(&contender->mutex);
914 goto retry;
916 if (ret) {
917 mutex_unlock(&contender->mutex);
918 return ret;
920 mutex_lock(&shared->lock);
922 /* We should not own chip if it is already
923 * in FL_SYNCING state. Put contender and retry. */
924 if (chip->state == FL_SYNCING) {
925 put_chip(map, contender, contender->start);
926 mutex_unlock(&contender->mutex);
927 goto retry;
929 mutex_unlock(&contender->mutex);
932 /* Check if we already have suspended erase
933 * on this chip. Sleep. */
934 if (mode == FL_ERASING && shared->erasing
935 && shared->erasing->oldstate == FL_ERASING) {
936 mutex_unlock(&shared->lock);
937 set_current_state(TASK_UNINTERRUPTIBLE);
938 add_wait_queue(&chip->wq, &wait);
939 mutex_unlock(&chip->mutex);
940 schedule();
941 remove_wait_queue(&chip->wq, &wait);
942 mutex_lock(&chip->mutex);
943 goto retry;
946 /* We now own it */
947 shared->writing = chip;
948 if (mode == FL_ERASING)
949 shared->erasing = chip;
950 mutex_unlock(&shared->lock);
952 ret = chip_ready(map, chip, adr, mode);
953 if (ret == -EAGAIN)
954 goto retry;
956 return ret;
959 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr)
961 struct cfi_private *cfi = map->fldrv_priv;
963 if (chip->priv) {
964 struct flchip_shared *shared = chip->priv;
965 mutex_lock(&shared->lock);
966 if (shared->writing == chip && chip->oldstate == FL_READY) {
967 /* We own the ability to write, but we're done */
968 shared->writing = shared->erasing;
969 if (shared->writing && shared->writing != chip) {
970 /* give back ownership to who we loaned it from */
971 struct flchip *loaner = shared->writing;
972 mutex_lock(&loaner->mutex);
973 mutex_unlock(&shared->lock);
974 mutex_unlock(&chip->mutex);
975 put_chip(map, loaner, loaner->start);
976 mutex_lock(&chip->mutex);
977 mutex_unlock(&loaner->mutex);
978 wake_up(&chip->wq);
979 return;
981 shared->erasing = NULL;
982 shared->writing = NULL;
983 } else if (shared->erasing == chip && shared->writing != chip) {
985 * We own the ability to erase without the ability
986 * to write, which means the erase was suspended
987 * and some other partition is currently writing.
988 * Don't let the switch below mess things up since
989 * we don't have ownership to resume anything.
991 mutex_unlock(&shared->lock);
992 wake_up(&chip->wq);
993 return;
995 mutex_unlock(&shared->lock);
998 switch(chip->oldstate) {
999 case FL_ERASING:
1000 chip->state = chip->oldstate;
1001 /* What if one interleaved chip has finished and the
1002 other hasn't? The old code would leave the finished
1003 one in READY mode. That's bad, and caused -EROFS
1004 errors to be returned from do_erase_oneblock because
1005 that's the only bit it checked for at the time.
1006 As the state machine appears to explicitly allow
1007 sending the 0x70 (Read Status) command to an erasing
1008 chip and expecting it to be ignored, that's what we
1009 do. */
1010 map_write(map, CMD(0xd0), adr);
1011 map_write(map, CMD(0x70), adr);
1012 chip->oldstate = FL_READY;
1013 chip->state = FL_ERASING;
1014 break;
1016 case FL_XIP_WHILE_ERASING:
1017 chip->state = chip->oldstate;
1018 chip->oldstate = FL_READY;
1019 break;
1021 case FL_READY:
1022 case FL_STATUS:
1023 case FL_JEDEC_QUERY:
1024 /* We should really make set_vpp() count, rather than doing this */
1025 DISABLE_VPP(map);
1026 break;
1027 default:
1028 printk(KERN_ERR "%s: put_chip() called with oldstate %d!!\n", map->name, chip->oldstate);
1030 wake_up(&chip->wq);
1033 #ifdef CONFIG_MTD_XIP
1036 * No interrupt what so ever can be serviced while the flash isn't in array
1037 * mode. This is ensured by the xip_disable() and xip_enable() functions
1038 * enclosing any code path where the flash is known not to be in array mode.
1039 * And within a XIP disabled code path, only functions marked with __xipram
1040 * may be called and nothing else (it's a good thing to inspect generated
1041 * assembly to make sure inline functions were actually inlined and that gcc
1042 * didn't emit calls to its own support functions). Also configuring MTD CFI
1043 * support to a single buswidth and a single interleave is also recommended.
1046 static void xip_disable(struct map_info *map, struct flchip *chip,
1047 unsigned long adr)
1049 /* TODO: chips with no XIP use should ignore and return */
1050 (void) map_read(map, adr); /* ensure mmu mapping is up to date */
1051 local_irq_disable();
1054 static void __xipram xip_enable(struct map_info *map, struct flchip *chip,
1055 unsigned long adr)
1057 struct cfi_private *cfi = map->fldrv_priv;
1058 if (chip->state != FL_POINT && chip->state != FL_READY) {
1059 map_write(map, CMD(0xff), adr);
1060 chip->state = FL_READY;
1062 (void) map_read(map, adr);
1063 xip_iprefetch();
1064 local_irq_enable();
1068 * When a delay is required for the flash operation to complete, the
1069 * xip_wait_for_operation() function is polling for both the given timeout
1070 * and pending (but still masked) hardware interrupts. Whenever there is an
1071 * interrupt pending then the flash erase or write operation is suspended,
1072 * array mode restored and interrupts unmasked. Task scheduling might also
1073 * happen at that point. The CPU eventually returns from the interrupt or
1074 * the call to schedule() and the suspended flash operation is resumed for
1075 * the remaining of the delay period.
1077 * Warning: this function _will_ fool interrupt latency tracing tools.
1080 static int __xipram xip_wait_for_operation(
1081 struct map_info *map, struct flchip *chip,
1082 unsigned long adr, unsigned int chip_op_time_max)
1084 struct cfi_private *cfi = map->fldrv_priv;
1085 struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
1086 map_word status, OK = CMD(0x80);
1087 unsigned long usec, suspended, start, done;
1088 flstate_t oldstate, newstate;
1090 start = xip_currtime();
1091 usec = chip_op_time_max;
1092 if (usec == 0)
1093 usec = 500000;
1094 done = 0;
1096 do {
1097 cpu_relax();
1098 if (xip_irqpending() && cfip &&
1099 ((chip->state == FL_ERASING && (cfip->FeatureSupport&2)) ||
1100 (chip->state == FL_WRITING && (cfip->FeatureSupport&4))) &&
1101 (cfi_interleave_is_1(cfi) || chip->oldstate == FL_READY)) {
1103 * Let's suspend the erase or write operation when
1104 * supported. Note that we currently don't try to
1105 * suspend interleaved chips if there is already
1106 * another operation suspended (imagine what happens
1107 * when one chip was already done with the current
1108 * operation while another chip suspended it, then
1109 * we resume the whole thing at once). Yes, it
1110 * can happen!
1112 usec -= done;
1113 map_write(map, CMD(0xb0), adr);
1114 map_write(map, CMD(0x70), adr);
1115 suspended = xip_currtime();
1116 do {
1117 if (xip_elapsed_since(suspended) > 100000) {
1119 * The chip doesn't want to suspend
1120 * after waiting for 100 msecs.
1121 * This is a critical error but there
1122 * is not much we can do here.
1124 return -EIO;
1126 status = map_read(map, adr);
1127 } while (!map_word_andequal(map, status, OK, OK));
1129 /* Suspend succeeded */
1130 oldstate = chip->state;
1131 if (oldstate == FL_ERASING) {
1132 if (!map_word_bitsset(map, status, CMD(0x40)))
1133 break;
1134 newstate = FL_XIP_WHILE_ERASING;
1135 chip->erase_suspended = 1;
1136 } else {
1137 if (!map_word_bitsset(map, status, CMD(0x04)))
1138 break;
1139 newstate = FL_XIP_WHILE_WRITING;
1140 chip->write_suspended = 1;
1142 chip->state = newstate;
1143 map_write(map, CMD(0xff), adr);
1144 (void) map_read(map, adr);
1145 xip_iprefetch();
1146 local_irq_enable();
1147 mutex_unlock(&chip->mutex);
1148 xip_iprefetch();
1149 cond_resched();
1152 * We're back. However someone else might have
1153 * decided to go write to the chip if we are in
1154 * a suspended erase state. If so let's wait
1155 * until it's done.
1157 mutex_lock(&chip->mutex);
1158 while (chip->state != newstate) {
1159 DECLARE_WAITQUEUE(wait, current);
1160 set_current_state(TASK_UNINTERRUPTIBLE);
1161 add_wait_queue(&chip->wq, &wait);
1162 mutex_unlock(&chip->mutex);
1163 schedule();
1164 remove_wait_queue(&chip->wq, &wait);
1165 mutex_lock(&chip->mutex);
1167 /* Disallow XIP again */
1168 local_irq_disable();
1170 /* Resume the write or erase operation */
1171 map_write(map, CMD(0xd0), adr);
1172 map_write(map, CMD(0x70), adr);
1173 chip->state = oldstate;
1174 start = xip_currtime();
1175 } else if (usec >= 1000000/HZ) {
1177 * Try to save on CPU power when waiting delay
1178 * is at least a system timer tick period.
1179 * No need to be extremely accurate here.
1181 xip_cpu_idle();
1183 status = map_read(map, adr);
1184 done = xip_elapsed_since(start);
1185 } while (!map_word_andequal(map, status, OK, OK)
1186 && done < usec);
1188 return (done >= usec) ? -ETIME : 0;
1192 * The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while
1193 * the flash is actively programming or erasing since we have to poll for
1194 * the operation to complete anyway. We can't do that in a generic way with
1195 * a XIP setup so do it before the actual flash operation in this case
1196 * and stub it out from INVAL_CACHE_AND_WAIT.
1198 #define XIP_INVAL_CACHED_RANGE(map, from, size) \
1199 INVALIDATE_CACHED_RANGE(map, from, size)
1201 #define INVAL_CACHE_AND_WAIT(map, chip, cmd_adr, inval_adr, inval_len, usec, usec_max) \
1202 xip_wait_for_operation(map, chip, cmd_adr, usec_max)
1204 #else
1206 #define xip_disable(map, chip, adr)
1207 #define xip_enable(map, chip, adr)
1208 #define XIP_INVAL_CACHED_RANGE(x...)
1209 #define INVAL_CACHE_AND_WAIT inval_cache_and_wait_for_operation
1211 static int inval_cache_and_wait_for_operation(
1212 struct map_info *map, struct flchip *chip,
1213 unsigned long cmd_adr, unsigned long inval_adr, int inval_len,
1214 unsigned int chip_op_time, unsigned int chip_op_time_max)
1216 struct cfi_private *cfi = map->fldrv_priv;
1217 map_word status, status_OK = CMD(0x80);
1218 int chip_state = chip->state;
1219 unsigned int timeo, sleep_time, reset_timeo;
1221 mutex_unlock(&chip->mutex);
1222 if (inval_len)
1223 INVALIDATE_CACHED_RANGE(map, inval_adr, inval_len);
1224 mutex_lock(&chip->mutex);
1226 timeo = chip_op_time_max;
1227 if (!timeo)
1228 timeo = 500000;
1229 reset_timeo = timeo;
1230 sleep_time = chip_op_time / 2;
1232 for (;;) {
1233 if (chip->state != chip_state) {
1234 /* Someone's suspended the operation: sleep */
1235 DECLARE_WAITQUEUE(wait, current);
1236 set_current_state(TASK_UNINTERRUPTIBLE);
1237 add_wait_queue(&chip->wq, &wait);
1238 mutex_unlock(&chip->mutex);
1239 schedule();
1240 remove_wait_queue(&chip->wq, &wait);
1241 mutex_lock(&chip->mutex);
1242 continue;
1245 status = map_read(map, cmd_adr);
1246 if (map_word_andequal(map, status, status_OK, status_OK))
1247 break;
1249 if (chip->erase_suspended && chip_state == FL_ERASING) {
1250 /* Erase suspend occured while sleep: reset timeout */
1251 timeo = reset_timeo;
1252 chip->erase_suspended = 0;
1254 if (chip->write_suspended && chip_state == FL_WRITING) {
1255 /* Write suspend occured while sleep: reset timeout */
1256 timeo = reset_timeo;
1257 chip->write_suspended = 0;
1259 if (!timeo) {
1260 map_write(map, CMD(0x70), cmd_adr);
1261 chip->state = FL_STATUS;
1262 return -ETIME;
1265 /* OK Still waiting. Drop the lock, wait a while and retry. */
1266 mutex_unlock(&chip->mutex);
1267 if (sleep_time >= 1000000/HZ) {
1269 * Half of the normal delay still remaining
1270 * can be performed with a sleeping delay instead
1271 * of busy waiting.
1273 msleep(sleep_time/1000);
1274 timeo -= sleep_time;
1275 sleep_time = 1000000/HZ;
1276 } else {
1277 udelay(1);
1278 cond_resched();
1279 timeo--;
1281 mutex_lock(&chip->mutex);
1284 /* Done and happy. */
1285 chip->state = FL_STATUS;
1286 return 0;
1289 #endif
1291 #define WAIT_TIMEOUT(map, chip, adr, udelay, udelay_max) \
1292 INVAL_CACHE_AND_WAIT(map, chip, adr, 0, 0, udelay, udelay_max);
1295 static int do_point_onechip (struct map_info *map, struct flchip *chip, loff_t adr, size_t len)
1297 unsigned long cmd_addr;
1298 struct cfi_private *cfi = map->fldrv_priv;
1299 int ret = 0;
1301 adr += chip->start;
1303 /* Ensure cmd read/writes are aligned. */
1304 cmd_addr = adr & ~(map_bankwidth(map)-1);
1306 mutex_lock(&chip->mutex);
1308 ret = get_chip(map, chip, cmd_addr, FL_POINT);
1310 if (!ret) {
1311 if (chip->state != FL_POINT && chip->state != FL_READY)
1312 map_write(map, CMD(0xff), cmd_addr);
1314 chip->state = FL_POINT;
1315 chip->ref_point_counter++;
1317 mutex_unlock(&chip->mutex);
1319 return ret;
1322 static int cfi_intelext_point(struct mtd_info *mtd, loff_t from, size_t len,
1323 size_t *retlen, void **virt, resource_size_t *phys)
1325 struct map_info *map = mtd->priv;
1326 struct cfi_private *cfi = map->fldrv_priv;
1327 unsigned long ofs, last_end = 0;
1328 int chipnum;
1329 int ret = 0;
1331 if (!map->virt || (from + len > mtd->size))
1332 return -EINVAL;
1334 /* Now lock the chip(s) to POINT state */
1336 /* ofs: offset within the first chip that the first read should start */
1337 chipnum = (from >> cfi->chipshift);
1338 ofs = from - (chipnum << cfi->chipshift);
1340 *virt = map->virt + cfi->chips[chipnum].start + ofs;
1341 *retlen = 0;
1342 if (phys)
1343 *phys = map->phys + cfi->chips[chipnum].start + ofs;
1345 while (len) {
1346 unsigned long thislen;
1348 if (chipnum >= cfi->numchips)
1349 break;
1351 /* We cannot point across chips that are virtually disjoint */
1352 if (!last_end)
1353 last_end = cfi->chips[chipnum].start;
1354 else if (cfi->chips[chipnum].start != last_end)
1355 break;
1357 if ((len + ofs -1) >> cfi->chipshift)
1358 thislen = (1<<cfi->chipshift) - ofs;
1359 else
1360 thislen = len;
1362 ret = do_point_onechip(map, &cfi->chips[chipnum], ofs, thislen);
1363 if (ret)
1364 break;
1366 *retlen += thislen;
1367 len -= thislen;
1369 ofs = 0;
1370 last_end += 1 << cfi->chipshift;
1371 chipnum++;
1373 return 0;
1376 static void cfi_intelext_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
1378 struct map_info *map = mtd->priv;
1379 struct cfi_private *cfi = map->fldrv_priv;
1380 unsigned long ofs;
1381 int chipnum;
1383 /* Now unlock the chip(s) POINT state */
1385 /* ofs: offset within the first chip that the first read should start */
1386 chipnum = (from >> cfi->chipshift);
1387 ofs = from - (chipnum << cfi->chipshift);
1389 while (len) {
1390 unsigned long thislen;
1391 struct flchip *chip;
1393 chip = &cfi->chips[chipnum];
1394 if (chipnum >= cfi->numchips)
1395 break;
1397 if ((len + ofs -1) >> cfi->chipshift)
1398 thislen = (1<<cfi->chipshift) - ofs;
1399 else
1400 thislen = len;
1402 mutex_lock(&chip->mutex);
1403 if (chip->state == FL_POINT) {
1404 chip->ref_point_counter--;
1405 if(chip->ref_point_counter == 0)
1406 chip->state = FL_READY;
1407 } else
1408 printk(KERN_ERR "%s: Warning: unpoint called on non pointed region\n", map->name); /* Should this give an error? */
1410 put_chip(map, chip, chip->start);
1411 mutex_unlock(&chip->mutex);
1413 len -= thislen;
1414 ofs = 0;
1415 chipnum++;
1419 static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
1421 unsigned long cmd_addr;
1422 struct cfi_private *cfi = map->fldrv_priv;
1423 int ret;
1425 adr += chip->start;
1427 /* Ensure cmd read/writes are aligned. */
1428 cmd_addr = adr & ~(map_bankwidth(map)-1);
1430 mutex_lock(&chip->mutex);
1431 ret = get_chip(map, chip, cmd_addr, FL_READY);
1432 if (ret) {
1433 mutex_unlock(&chip->mutex);
1434 return ret;
1437 if (chip->state != FL_POINT && chip->state != FL_READY) {
1438 map_write(map, CMD(0xff), cmd_addr);
1440 chip->state = FL_READY;
1443 map_copy_from(map, buf, adr, len);
1445 put_chip(map, chip, cmd_addr);
1447 mutex_unlock(&chip->mutex);
1448 return 0;
1451 static int cfi_intelext_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
1453 struct map_info *map = mtd->priv;
1454 struct cfi_private *cfi = map->fldrv_priv;
1455 unsigned long ofs;
1456 int chipnum;
1457 int ret = 0;
1459 /* ofs: offset within the first chip that the first read should start */
1460 chipnum = (from >> cfi->chipshift);
1461 ofs = from - (chipnum << cfi->chipshift);
1463 *retlen = 0;
1465 while (len) {
1466 unsigned long thislen;
1468 if (chipnum >= cfi->numchips)
1469 break;
1471 if ((len + ofs -1) >> cfi->chipshift)
1472 thislen = (1<<cfi->chipshift) - ofs;
1473 else
1474 thislen = len;
1476 ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
1477 if (ret)
1478 break;
1480 *retlen += thislen;
1481 len -= thislen;
1482 buf += thislen;
1484 ofs = 0;
1485 chipnum++;
1487 return ret;
1490 static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip,
1491 unsigned long adr, map_word datum, int mode)
1493 struct cfi_private *cfi = map->fldrv_priv;
1494 map_word status, write_cmd;
1495 int ret=0;
1497 adr += chip->start;
1499 switch (mode) {
1500 case FL_WRITING:
1501 write_cmd = (cfi->cfiq->P_ID != P_ID_INTEL_PERFORMANCE) ? CMD(0x40) : CMD(0x41);
1502 break;
1503 case FL_OTP_WRITE:
1504 write_cmd = CMD(0xc0);
1505 break;
1506 default:
1507 return -EINVAL;
1510 mutex_lock(&chip->mutex);
1511 ret = get_chip(map, chip, adr, mode);
1512 if (ret) {
1513 mutex_unlock(&chip->mutex);
1514 return ret;
1517 XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map));
1518 ENABLE_VPP(map);
1519 xip_disable(map, chip, adr);
1520 map_write(map, write_cmd, adr);
1521 map_write(map, datum, adr);
1522 chip->state = mode;
1524 ret = INVAL_CACHE_AND_WAIT(map, chip, adr,
1525 adr, map_bankwidth(map),
1526 chip->word_write_time,
1527 chip->word_write_time_max);
1528 if (ret) {
1529 xip_enable(map, chip, adr);
1530 printk(KERN_ERR "%s: word write error (status timeout)\n", map->name);
1531 goto out;
1534 /* check for errors */
1535 status = map_read(map, adr);
1536 if (map_word_bitsset(map, status, CMD(0x1a))) {
1537 unsigned long chipstatus = MERGESTATUS(status);
1539 /* reset status */
1540 map_write(map, CMD(0x50), adr);
1541 map_write(map, CMD(0x70), adr);
1542 xip_enable(map, chip, adr);
1544 if (chipstatus & 0x02) {
1545 ret = -EROFS;
1546 } else if (chipstatus & 0x08) {
1547 printk(KERN_ERR "%s: word write error (bad VPP)\n", map->name);
1548 ret = -EIO;
1549 } else {
1550 printk(KERN_ERR "%s: word write error (status 0x%lx)\n", map->name, chipstatus);
1551 ret = -EINVAL;
1554 goto out;
1557 xip_enable(map, chip, adr);
1558 out: put_chip(map, chip, adr);
1559 mutex_unlock(&chip->mutex);
1560 return ret;
1564 static int cfi_intelext_write_words (struct mtd_info *mtd, loff_t to , size_t len, size_t *retlen, const u_char *buf)
1566 struct map_info *map = mtd->priv;
1567 struct cfi_private *cfi = map->fldrv_priv;
1568 int ret = 0;
1569 int chipnum;
1570 unsigned long ofs;
1572 *retlen = 0;
1573 if (!len)
1574 return 0;
1576 chipnum = to >> cfi->chipshift;
1577 ofs = to - (chipnum << cfi->chipshift);
1579 /* If it's not bus-aligned, do the first byte write */
1580 if (ofs & (map_bankwidth(map)-1)) {
1581 unsigned long bus_ofs = ofs & ~(map_bankwidth(map)-1);
1582 int gap = ofs - bus_ofs;
1583 int n;
1584 map_word datum;
1586 n = min_t(int, len, map_bankwidth(map)-gap);
1587 datum = map_word_ff(map);
1588 datum = map_word_load_partial(map, datum, buf, gap, n);
1590 ret = do_write_oneword(map, &cfi->chips[chipnum],
1591 bus_ofs, datum, FL_WRITING);
1592 if (ret)
1593 return ret;
1595 len -= n;
1596 ofs += n;
1597 buf += n;
1598 (*retlen) += n;
1600 if (ofs >> cfi->chipshift) {
1601 chipnum ++;
1602 ofs = 0;
1603 if (chipnum == cfi->numchips)
1604 return 0;
1608 while(len >= map_bankwidth(map)) {
1609 map_word datum = map_word_load(map, buf);
1611 ret = do_write_oneword(map, &cfi->chips[chipnum],
1612 ofs, datum, FL_WRITING);
1613 if (ret)
1614 return ret;
1616 ofs += map_bankwidth(map);
1617 buf += map_bankwidth(map);
1618 (*retlen) += map_bankwidth(map);
1619 len -= map_bankwidth(map);
1621 if (ofs >> cfi->chipshift) {
1622 chipnum ++;
1623 ofs = 0;
1624 if (chipnum == cfi->numchips)
1625 return 0;
1629 if (len & (map_bankwidth(map)-1)) {
1630 map_word datum;
1632 datum = map_word_ff(map);
1633 datum = map_word_load_partial(map, datum, buf, 0, len);
1635 ret = do_write_oneword(map, &cfi->chips[chipnum],
1636 ofs, datum, FL_WRITING);
1637 if (ret)
1638 return ret;
1640 (*retlen) += len;
1643 return 0;
1647 static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip,
1648 unsigned long adr, const struct kvec **pvec,
1649 unsigned long *pvec_seek, int len)
1651 struct cfi_private *cfi = map->fldrv_priv;
1652 map_word status, write_cmd, datum;
1653 unsigned long cmd_adr;
1654 int ret, wbufsize, word_gap, words;
1655 const struct kvec *vec;
1656 unsigned long vec_seek;
1657 unsigned long initial_adr;
1658 int initial_len = len;
1660 wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
1661 adr += chip->start;
1662 initial_adr = adr;
1663 cmd_adr = adr & ~(wbufsize-1);
1665 /* Let's determine this according to the interleave only once */
1666 write_cmd = (cfi->cfiq->P_ID != P_ID_INTEL_PERFORMANCE) ? CMD(0xe8) : CMD(0xe9);
1668 mutex_lock(&chip->mutex);
1669 ret = get_chip(map, chip, cmd_adr, FL_WRITING);
1670 if (ret) {
1671 mutex_unlock(&chip->mutex);
1672 return ret;
1675 XIP_INVAL_CACHED_RANGE(map, initial_adr, initial_len);
1676 ENABLE_VPP(map);
1677 xip_disable(map, chip, cmd_adr);
1679 /* §4.8 of the 28FxxxJ3A datasheet says "Any time SR.4 and/or SR.5 is set
1680 [...], the device will not accept any more Write to Buffer commands".
1681 So we must check here and reset those bits if they're set. Otherwise
1682 we're just pissing in the wind */
1683 if (chip->state != FL_STATUS) {
1684 map_write(map, CMD(0x70), cmd_adr);
1685 chip->state = FL_STATUS;
1687 status = map_read(map, cmd_adr);
1688 if (map_word_bitsset(map, status, CMD(0x30))) {
1689 xip_enable(map, chip, cmd_adr);
1690 printk(KERN_WARNING "SR.4 or SR.5 bits set in buffer write (status %lx). Clearing.\n", status.x[0]);
1691 xip_disable(map, chip, cmd_adr);
1692 map_write(map, CMD(0x50), cmd_adr);
1693 map_write(map, CMD(0x70), cmd_adr);
1696 chip->state = FL_WRITING_TO_BUFFER;
1697 map_write(map, write_cmd, cmd_adr);
1698 ret = WAIT_TIMEOUT(map, chip, cmd_adr, 0, 0);
1699 if (ret) {
1700 /* Argh. Not ready for write to buffer */
1701 map_word Xstatus = map_read(map, cmd_adr);
1702 map_write(map, CMD(0x70), cmd_adr);
1703 chip->state = FL_STATUS;
1704 status = map_read(map, cmd_adr);
1705 map_write(map, CMD(0x50), cmd_adr);
1706 map_write(map, CMD(0x70), cmd_adr);
1707 xip_enable(map, chip, cmd_adr);
1708 printk(KERN_ERR "%s: Chip not ready for buffer write. Xstatus = %lx, status = %lx\n",
1709 map->name, Xstatus.x[0], status.x[0]);
1710 goto out;
1713 /* Figure out the number of words to write */
1714 word_gap = (-adr & (map_bankwidth(map)-1));
1715 words = DIV_ROUND_UP(len - word_gap, map_bankwidth(map));
1716 if (!word_gap) {
1717 words--;
1718 } else {
1719 word_gap = map_bankwidth(map) - word_gap;
1720 adr -= word_gap;
1721 datum = map_word_ff(map);
1724 /* Write length of data to come */
1725 map_write(map, CMD(words), cmd_adr );
1727 /* Write data */
1728 vec = *pvec;
1729 vec_seek = *pvec_seek;
1730 do {
1731 int n = map_bankwidth(map) - word_gap;
1732 if (n > vec->iov_len - vec_seek)
1733 n = vec->iov_len - vec_seek;
1734 if (n > len)
1735 n = len;
1737 if (!word_gap && len < map_bankwidth(map))
1738 datum = map_word_ff(map);
1740 datum = map_word_load_partial(map, datum,
1741 vec->iov_base + vec_seek,
1742 word_gap, n);
1744 len -= n;
1745 word_gap += n;
1746 if (!len || word_gap == map_bankwidth(map)) {
1747 map_write(map, datum, adr);
1748 adr += map_bankwidth(map);
1749 word_gap = 0;
1752 vec_seek += n;
1753 if (vec_seek == vec->iov_len) {
1754 vec++;
1755 vec_seek = 0;
1757 } while (len);
1758 *pvec = vec;
1759 *pvec_seek = vec_seek;
1761 /* GO GO GO */
1762 map_write(map, CMD(0xd0), cmd_adr);
1763 chip->state = FL_WRITING;
1765 ret = INVAL_CACHE_AND_WAIT(map, chip, cmd_adr,
1766 initial_adr, initial_len,
1767 chip->buffer_write_time,
1768 chip->buffer_write_time_max);
1769 if (ret) {
1770 map_write(map, CMD(0x70), cmd_adr);
1771 chip->state = FL_STATUS;
1772 xip_enable(map, chip, cmd_adr);
1773 printk(KERN_ERR "%s: buffer write error (status timeout)\n", map->name);
1774 goto out;
1777 /* check for errors */
1778 status = map_read(map, cmd_adr);
1779 if (map_word_bitsset(map, status, CMD(0x1a))) {
1780 unsigned long chipstatus = MERGESTATUS(status);
1782 /* reset status */
1783 map_write(map, CMD(0x50), cmd_adr);
1784 map_write(map, CMD(0x70), cmd_adr);
1785 xip_enable(map, chip, cmd_adr);
1787 if (chipstatus & 0x02) {
1788 ret = -EROFS;
1789 } else if (chipstatus & 0x08) {
1790 printk(KERN_ERR "%s: buffer write error (bad VPP)\n", map->name);
1791 ret = -EIO;
1792 } else {
1793 printk(KERN_ERR "%s: buffer write error (status 0x%lx)\n", map->name, chipstatus);
1794 ret = -EINVAL;
1797 goto out;
1800 xip_enable(map, chip, cmd_adr);
1801 out: put_chip(map, chip, cmd_adr);
1802 mutex_unlock(&chip->mutex);
1803 return ret;
1806 static int cfi_intelext_writev (struct mtd_info *mtd, const struct kvec *vecs,
1807 unsigned long count, loff_t to, size_t *retlen)
1809 struct map_info *map = mtd->priv;
1810 struct cfi_private *cfi = map->fldrv_priv;
1811 int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
1812 int ret = 0;
1813 int chipnum;
1814 unsigned long ofs, vec_seek, i;
1815 size_t len = 0;
1817 for (i = 0; i < count; i++)
1818 len += vecs[i].iov_len;
1820 *retlen = 0;
1821 if (!len)
1822 return 0;
1824 chipnum = to >> cfi->chipshift;
1825 ofs = to - (chipnum << cfi->chipshift);
1826 vec_seek = 0;
1828 do {
1829 /* We must not cross write block boundaries */
1830 int size = wbufsize - (ofs & (wbufsize-1));
1832 if (size > len)
1833 size = len;
1834 ret = do_write_buffer(map, &cfi->chips[chipnum],
1835 ofs, &vecs, &vec_seek, size);
1836 if (ret)
1837 return ret;
1839 ofs += size;
1840 (*retlen) += size;
1841 len -= size;
1843 if (ofs >> cfi->chipshift) {
1844 chipnum ++;
1845 ofs = 0;
1846 if (chipnum == cfi->numchips)
1847 return 0;
1850 /* Be nice and reschedule with the chip in a usable state for other
1851 processes. */
1852 cond_resched();
1854 } while (len);
1856 return 0;
1859 static int cfi_intelext_write_buffers (struct mtd_info *mtd, loff_t to,
1860 size_t len, size_t *retlen, const u_char *buf)
1862 struct kvec vec;
1864 vec.iov_base = (void *) buf;
1865 vec.iov_len = len;
1867 return cfi_intelext_writev(mtd, &vec, 1, to, retlen);
1870 static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip,
1871 unsigned long adr, int len, void *thunk)
1873 struct cfi_private *cfi = map->fldrv_priv;
1874 map_word status;
1875 int retries = 3;
1876 int ret;
1878 adr += chip->start;
1880 retry:
1881 mutex_lock(&chip->mutex);
1882 ret = get_chip(map, chip, adr, FL_ERASING);
1883 if (ret) {
1884 mutex_unlock(&chip->mutex);
1885 return ret;
1888 XIP_INVAL_CACHED_RANGE(map, adr, len);
1889 ENABLE_VPP(map);
1890 xip_disable(map, chip, adr);
1892 /* Clear the status register first */
1893 map_write(map, CMD(0x50), adr);
1895 /* Now erase */
1896 map_write(map, CMD(0x20), adr);
1897 map_write(map, CMD(0xD0), adr);
1898 chip->state = FL_ERASING;
1899 chip->erase_suspended = 0;
1901 ret = INVAL_CACHE_AND_WAIT(map, chip, adr,
1902 adr, len,
1903 chip->erase_time,
1904 chip->erase_time_max);
1905 if (ret) {
1906 map_write(map, CMD(0x70), adr);
1907 chip->state = FL_STATUS;
1908 xip_enable(map, chip, adr);
1909 printk(KERN_ERR "%s: block erase error: (status timeout)\n", map->name);
1910 goto out;
1913 /* We've broken this before. It doesn't hurt to be safe */
1914 map_write(map, CMD(0x70), adr);
1915 chip->state = FL_STATUS;
1916 status = map_read(map, adr);
1918 /* check for errors */
1919 if (map_word_bitsset(map, status, CMD(0x3a))) {
1920 unsigned long chipstatus = MERGESTATUS(status);
1922 /* Reset the error bits */
1923 map_write(map, CMD(0x50), adr);
1924 map_write(map, CMD(0x70), adr);
1925 xip_enable(map, chip, adr);
1927 if ((chipstatus & 0x30) == 0x30) {
1928 printk(KERN_ERR "%s: block erase error: (bad command sequence, status 0x%lx)\n", map->name, chipstatus);
1929 ret = -EINVAL;
1930 } else if (chipstatus & 0x02) {
1931 /* Protection bit set */
1932 ret = -EROFS;
1933 } else if (chipstatus & 0x8) {
1934 /* Voltage */
1935 printk(KERN_ERR "%s: block erase error: (bad VPP)\n", map->name);
1936 ret = -EIO;
1937 } else if (chipstatus & 0x20 && retries--) {
1938 printk(KERN_DEBUG "block erase failed at 0x%08lx: status 0x%lx. Retrying...\n", adr, chipstatus);
1939 put_chip(map, chip, adr);
1940 mutex_unlock(&chip->mutex);
1941 goto retry;
1942 } else {
1943 printk(KERN_ERR "%s: block erase failed at 0x%08lx (status 0x%lx)\n", map->name, adr, chipstatus);
1944 ret = -EIO;
1947 goto out;
1950 xip_enable(map, chip, adr);
1951 out: put_chip(map, chip, adr);
1952 mutex_unlock(&chip->mutex);
1953 return ret;
1956 static int cfi_intelext_erase_varsize(struct mtd_info *mtd, struct erase_info *instr)
1958 unsigned long ofs, len;
1959 int ret;
1961 ofs = instr->addr;
1962 len = instr->len;
1964 ret = cfi_varsize_frob(mtd, do_erase_oneblock, ofs, len, NULL);
1965 if (ret)
1966 return ret;
1968 instr->state = MTD_ERASE_DONE;
1969 mtd_erase_callback(instr);
1971 return 0;
1974 static void cfi_intelext_sync (struct mtd_info *mtd)
1976 struct map_info *map = mtd->priv;
1977 struct cfi_private *cfi = map->fldrv_priv;
1978 int i;
1979 struct flchip *chip;
1980 int ret = 0;
1982 for (i=0; !ret && i<cfi->numchips; i++) {
1983 chip = &cfi->chips[i];
1985 mutex_lock(&chip->mutex);
1986 ret = get_chip(map, chip, chip->start, FL_SYNCING);
1988 if (!ret) {
1989 chip->oldstate = chip->state;
1990 chip->state = FL_SYNCING;
1991 /* No need to wake_up() on this state change -
1992 * as the whole point is that nobody can do anything
1993 * with the chip now anyway.
1996 mutex_unlock(&chip->mutex);
1999 /* Unlock the chips again */
2001 for (i--; i >=0; i--) {
2002 chip = &cfi->chips[i];
2004 mutex_lock(&chip->mutex);
2006 if (chip->state == FL_SYNCING) {
2007 chip->state = chip->oldstate;
2008 chip->oldstate = FL_READY;
2009 wake_up(&chip->wq);
2011 mutex_unlock(&chip->mutex);
2015 static int __xipram do_getlockstatus_oneblock(struct map_info *map,
2016 struct flchip *chip,
2017 unsigned long adr,
2018 int len, void *thunk)
2020 struct cfi_private *cfi = map->fldrv_priv;
2021 int status, ofs_factor = cfi->interleave * cfi->device_type;
2023 adr += chip->start;
2024 xip_disable(map, chip, adr+(2*ofs_factor));
2025 map_write(map, CMD(0x90), adr+(2*ofs_factor));
2026 chip->state = FL_JEDEC_QUERY;
2027 status = cfi_read_query(map, adr+(2*ofs_factor));
2028 xip_enable(map, chip, 0);
2029 return status;
2032 #ifdef DEBUG_LOCK_BITS
2033 static int __xipram do_printlockstatus_oneblock(struct map_info *map,
2034 struct flchip *chip,
2035 unsigned long adr,
2036 int len, void *thunk)
2038 printk(KERN_DEBUG "block status register for 0x%08lx is %x\n",
2039 adr, do_getlockstatus_oneblock(map, chip, adr, len, thunk));
2040 return 0;
2042 #endif
2044 #define DO_XXLOCK_ONEBLOCK_LOCK ((void *) 1)
2045 #define DO_XXLOCK_ONEBLOCK_UNLOCK ((void *) 2)
2047 static int __xipram do_xxlock_oneblock(struct map_info *map, struct flchip *chip,
2048 unsigned long adr, int len, void *thunk)
2050 struct cfi_private *cfi = map->fldrv_priv;
2051 struct cfi_pri_intelext *extp = cfi->cmdset_priv;
2052 int udelay;
2053 int ret;
2055 adr += chip->start;
2057 mutex_lock(&chip->mutex);
2058 ret = get_chip(map, chip, adr, FL_LOCKING);
2059 if (ret) {
2060 mutex_unlock(&chip->mutex);
2061 return ret;
2064 ENABLE_VPP(map);
2065 xip_disable(map, chip, adr);
2067 map_write(map, CMD(0x60), adr);
2068 if (thunk == DO_XXLOCK_ONEBLOCK_LOCK) {
2069 map_write(map, CMD(0x01), adr);
2070 chip->state = FL_LOCKING;
2071 } else if (thunk == DO_XXLOCK_ONEBLOCK_UNLOCK) {
2072 map_write(map, CMD(0xD0), adr);
2073 chip->state = FL_UNLOCKING;
2074 } else
2075 BUG();
2078 * If Instant Individual Block Locking supported then no need
2079 * to delay.
2081 udelay = (!extp || !(extp->FeatureSupport & (1 << 5))) ? 1000000/HZ : 0;
2083 ret = WAIT_TIMEOUT(map, chip, adr, udelay, udelay * 100);
2084 if (ret) {
2085 map_write(map, CMD(0x70), adr);
2086 chip->state = FL_STATUS;
2087 xip_enable(map, chip, adr);
2088 printk(KERN_ERR "%s: block unlock error: (status timeout)\n", map->name);
2089 goto out;
2092 xip_enable(map, chip, adr);
2093 out: put_chip(map, chip, adr);
2094 mutex_unlock(&chip->mutex);
2095 return ret;
2098 static int cfi_intelext_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2100 int ret;
2102 #ifdef DEBUG_LOCK_BITS
2103 printk(KERN_DEBUG "%s: lock status before, ofs=0x%08llx, len=0x%08X\n",
2104 __func__, ofs, len);
2105 cfi_varsize_frob(mtd, do_printlockstatus_oneblock,
2106 ofs, len, NULL);
2107 #endif
2109 ret = cfi_varsize_frob(mtd, do_xxlock_oneblock,
2110 ofs, len, DO_XXLOCK_ONEBLOCK_LOCK);
2112 #ifdef DEBUG_LOCK_BITS
2113 printk(KERN_DEBUG "%s: lock status after, ret=%d\n",
2114 __func__, ret);
2115 cfi_varsize_frob(mtd, do_printlockstatus_oneblock,
2116 ofs, len, NULL);
2117 #endif
2119 return ret;
2122 static int cfi_intelext_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2124 int ret;
2126 #ifdef DEBUG_LOCK_BITS
2127 printk(KERN_DEBUG "%s: lock status before, ofs=0x%08llx, len=0x%08X\n",
2128 __func__, ofs, len);
2129 cfi_varsize_frob(mtd, do_printlockstatus_oneblock,
2130 ofs, len, NULL);
2131 #endif
2133 ret = cfi_varsize_frob(mtd, do_xxlock_oneblock,
2134 ofs, len, DO_XXLOCK_ONEBLOCK_UNLOCK);
2136 #ifdef DEBUG_LOCK_BITS
2137 printk(KERN_DEBUG "%s: lock status after, ret=%d\n",
2138 __func__, ret);
2139 cfi_varsize_frob(mtd, do_printlockstatus_oneblock,
2140 ofs, len, NULL);
2141 #endif
2143 return ret;
2146 static int cfi_intelext_is_locked(struct mtd_info *mtd, loff_t ofs,
2147 uint64_t len)
2149 return cfi_varsize_frob(mtd, do_getlockstatus_oneblock,
2150 ofs, len, NULL) ? 1 : 0;
2153 #ifdef CONFIG_MTD_OTP
2155 typedef int (*otp_op_t)(struct map_info *map, struct flchip *chip,
2156 u_long data_offset, u_char *buf, u_int size,
2157 u_long prot_offset, u_int groupno, u_int groupsize);
2159 static int __xipram
2160 do_otp_read(struct map_info *map, struct flchip *chip, u_long offset,
2161 u_char *buf, u_int size, u_long prot, u_int grpno, u_int grpsz)
2163 struct cfi_private *cfi = map->fldrv_priv;
2164 int ret;
2166 mutex_lock(&chip->mutex);
2167 ret = get_chip(map, chip, chip->start, FL_JEDEC_QUERY);
2168 if (ret) {
2169 mutex_unlock(&chip->mutex);
2170 return ret;
2173 /* let's ensure we're not reading back cached data from array mode */
2174 INVALIDATE_CACHED_RANGE(map, chip->start + offset, size);
2176 xip_disable(map, chip, chip->start);
2177 if (chip->state != FL_JEDEC_QUERY) {
2178 map_write(map, CMD(0x90), chip->start);
2179 chip->state = FL_JEDEC_QUERY;
2181 map_copy_from(map, buf, chip->start + offset, size);
2182 xip_enable(map, chip, chip->start);
2184 /* then ensure we don't keep OTP data in the cache */
2185 INVALIDATE_CACHED_RANGE(map, chip->start + offset, size);
2187 put_chip(map, chip, chip->start);
2188 mutex_unlock(&chip->mutex);
2189 return 0;
2192 static int
2193 do_otp_write(struct map_info *map, struct flchip *chip, u_long offset,
2194 u_char *buf, u_int size, u_long prot, u_int grpno, u_int grpsz)
2196 int ret;
2198 while (size) {
2199 unsigned long bus_ofs = offset & ~(map_bankwidth(map)-1);
2200 int gap = offset - bus_ofs;
2201 int n = min_t(int, size, map_bankwidth(map)-gap);
2202 map_word datum = map_word_ff(map);
2204 datum = map_word_load_partial(map, datum, buf, gap, n);
2205 ret = do_write_oneword(map, chip, bus_ofs, datum, FL_OTP_WRITE);
2206 if (ret)
2207 return ret;
2209 offset += n;
2210 buf += n;
2211 size -= n;
2214 return 0;
2217 static int
2218 do_otp_lock(struct map_info *map, struct flchip *chip, u_long offset,
2219 u_char *buf, u_int size, u_long prot, u_int grpno, u_int grpsz)
2221 struct cfi_private *cfi = map->fldrv_priv;
2222 map_word datum;
2224 /* make sure area matches group boundaries */
2225 if (size != grpsz)
2226 return -EXDEV;
2228 datum = map_word_ff(map);
2229 datum = map_word_clr(map, datum, CMD(1 << grpno));
2230 return do_write_oneword(map, chip, prot, datum, FL_OTP_WRITE);
2233 static int cfi_intelext_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
2234 size_t *retlen, u_char *buf,
2235 otp_op_t action, int user_regs)
2237 struct map_info *map = mtd->priv;
2238 struct cfi_private *cfi = map->fldrv_priv;
2239 struct cfi_pri_intelext *extp = cfi->cmdset_priv;
2240 struct flchip *chip;
2241 struct cfi_intelext_otpinfo *otp;
2242 u_long devsize, reg_prot_offset, data_offset;
2243 u_int chip_num, chip_step, field, reg_fact_size, reg_user_size;
2244 u_int groups, groupno, groupsize, reg_fact_groups, reg_user_groups;
2245 int ret;
2247 *retlen = 0;
2249 /* Check that we actually have some OTP registers */
2250 if (!extp || !(extp->FeatureSupport & 64) || !extp->NumProtectionFields)
2251 return -ENODATA;
2253 /* we need real chips here not virtual ones */
2254 devsize = (1 << cfi->cfiq->DevSize) * cfi->interleave;
2255 chip_step = devsize >> cfi->chipshift;
2256 chip_num = 0;
2258 /* Some chips have OTP located in the _top_ partition only.
2259 For example: Intel 28F256L18T (T means top-parameter device) */
2260 if (cfi->mfr == CFI_MFR_INTEL) {
2261 switch (cfi->id) {
2262 case 0x880b:
2263 case 0x880c:
2264 case 0x880d:
2265 chip_num = chip_step - 1;
2269 for ( ; chip_num < cfi->numchips; chip_num += chip_step) {
2270 chip = &cfi->chips[chip_num];
2271 otp = (struct cfi_intelext_otpinfo *)&extp->extra[0];
2273 /* first OTP region */
2274 field = 0;
2275 reg_prot_offset = extp->ProtRegAddr;
2276 reg_fact_groups = 1;
2277 reg_fact_size = 1 << extp->FactProtRegSize;
2278 reg_user_groups = 1;
2279 reg_user_size = 1 << extp->UserProtRegSize;
2281 while (len > 0) {
2282 /* flash geometry fixup */
2283 data_offset = reg_prot_offset + 1;
2284 data_offset *= cfi->interleave * cfi->device_type;
2285 reg_prot_offset *= cfi->interleave * cfi->device_type;
2286 reg_fact_size *= cfi->interleave;
2287 reg_user_size *= cfi->interleave;
2289 if (user_regs) {
2290 groups = reg_user_groups;
2291 groupsize = reg_user_size;
2292 /* skip over factory reg area */
2293 groupno = reg_fact_groups;
2294 data_offset += reg_fact_groups * reg_fact_size;
2295 } else {
2296 groups = reg_fact_groups;
2297 groupsize = reg_fact_size;
2298 groupno = 0;
2301 while (len > 0 && groups > 0) {
2302 if (!action) {
2304 * Special case: if action is NULL
2305 * we fill buf with otp_info records.
2307 struct otp_info *otpinfo;
2308 map_word lockword;
2309 len -= sizeof(struct otp_info);
2310 if (len <= 0)
2311 return -ENOSPC;
2312 ret = do_otp_read(map, chip,
2313 reg_prot_offset,
2314 (u_char *)&lockword,
2315 map_bankwidth(map),
2316 0, 0, 0);
2317 if (ret)
2318 return ret;
2319 otpinfo = (struct otp_info *)buf;
2320 otpinfo->start = from;
2321 otpinfo->length = groupsize;
2322 otpinfo->locked =
2323 !map_word_bitsset(map, lockword,
2324 CMD(1 << groupno));
2325 from += groupsize;
2326 buf += sizeof(*otpinfo);
2327 *retlen += sizeof(*otpinfo);
2328 } else if (from >= groupsize) {
2329 from -= groupsize;
2330 data_offset += groupsize;
2331 } else {
2332 int size = groupsize;
2333 data_offset += from;
2334 size -= from;
2335 from = 0;
2336 if (size > len)
2337 size = len;
2338 ret = action(map, chip, data_offset,
2339 buf, size, reg_prot_offset,
2340 groupno, groupsize);
2341 if (ret < 0)
2342 return ret;
2343 buf += size;
2344 len -= size;
2345 *retlen += size;
2346 data_offset += size;
2348 groupno++;
2349 groups--;
2352 /* next OTP region */
2353 if (++field == extp->NumProtectionFields)
2354 break;
2355 reg_prot_offset = otp->ProtRegAddr;
2356 reg_fact_groups = otp->FactGroups;
2357 reg_fact_size = 1 << otp->FactProtRegSize;
2358 reg_user_groups = otp->UserGroups;
2359 reg_user_size = 1 << otp->UserProtRegSize;
2360 otp++;
2364 return 0;
2367 static int cfi_intelext_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
2368 size_t len, size_t *retlen,
2369 u_char *buf)
2371 return cfi_intelext_otp_walk(mtd, from, len, retlen,
2372 buf, do_otp_read, 0);
2375 static int cfi_intelext_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
2376 size_t len, size_t *retlen,
2377 u_char *buf)
2379 return cfi_intelext_otp_walk(mtd, from, len, retlen,
2380 buf, do_otp_read, 1);
2383 static int cfi_intelext_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
2384 size_t len, size_t *retlen,
2385 u_char *buf)
2387 return cfi_intelext_otp_walk(mtd, from, len, retlen,
2388 buf, do_otp_write, 1);
2391 static int cfi_intelext_lock_user_prot_reg(struct mtd_info *mtd,
2392 loff_t from, size_t len)
2394 size_t retlen;
2395 return cfi_intelext_otp_walk(mtd, from, len, &retlen,
2396 NULL, do_otp_lock, 1);
2399 static int cfi_intelext_get_fact_prot_info(struct mtd_info *mtd,
2400 struct otp_info *buf, size_t len)
2402 size_t retlen;
2403 int ret;
2405 ret = cfi_intelext_otp_walk(mtd, 0, len, &retlen, (u_char *)buf, NULL, 0);
2406 return ret ? : retlen;
2409 static int cfi_intelext_get_user_prot_info(struct mtd_info *mtd,
2410 struct otp_info *buf, size_t len)
2412 size_t retlen;
2413 int ret;
2415 ret = cfi_intelext_otp_walk(mtd, 0, len, &retlen, (u_char *)buf, NULL, 1);
2416 return ret ? : retlen;
2419 #endif
2421 static void cfi_intelext_save_locks(struct mtd_info *mtd)
2423 struct mtd_erase_region_info *region;
2424 int block, status, i;
2425 unsigned long adr;
2426 size_t len;
2428 for (i = 0; i < mtd->numeraseregions; i++) {
2429 region = &mtd->eraseregions[i];
2430 if (!region->lockmap)
2431 continue;
2433 for (block = 0; block < region->numblocks; block++){
2434 len = region->erasesize;
2435 adr = region->offset + block * len;
2437 status = cfi_varsize_frob(mtd,
2438 do_getlockstatus_oneblock, adr, len, NULL);
2439 if (status)
2440 set_bit(block, region->lockmap);
2441 else
2442 clear_bit(block, region->lockmap);
2447 static int cfi_intelext_suspend(struct mtd_info *mtd)
2449 struct map_info *map = mtd->priv;
2450 struct cfi_private *cfi = map->fldrv_priv;
2451 struct cfi_pri_intelext *extp = cfi->cmdset_priv;
2452 int i;
2453 struct flchip *chip;
2454 int ret = 0;
2456 if ((mtd->flags & MTD_POWERUP_LOCK)
2457 && extp && (extp->FeatureSupport & (1 << 5)))
2458 cfi_intelext_save_locks(mtd);
2460 for (i=0; !ret && i<cfi->numchips; i++) {
2461 chip = &cfi->chips[i];
2463 mutex_lock(&chip->mutex);
2465 switch (chip->state) {
2466 case FL_READY:
2467 case FL_STATUS:
2468 case FL_CFI_QUERY:
2469 case FL_JEDEC_QUERY:
2470 if (chip->oldstate == FL_READY) {
2471 /* place the chip in a known state before suspend */
2472 map_write(map, CMD(0xFF), cfi->chips[i].start);
2473 chip->oldstate = chip->state;
2474 chip->state = FL_PM_SUSPENDED;
2475 /* No need to wake_up() on this state change -
2476 * as the whole point is that nobody can do anything
2477 * with the chip now anyway.
2479 } else {
2480 /* There seems to be an operation pending. We must wait for it. */
2481 printk(KERN_NOTICE "Flash device refused suspend due to pending operation (oldstate %d)\n", chip->oldstate);
2482 ret = -EAGAIN;
2484 break;
2485 default:
2486 /* Should we actually wait? Once upon a time these routines weren't
2487 allowed to. Or should we return -EAGAIN, because the upper layers
2488 ought to have already shut down anything which was using the device
2489 anyway? The latter for now. */
2490 printk(KERN_NOTICE "Flash device refused suspend due to active operation (state %d)\n", chip->oldstate);
2491 ret = -EAGAIN;
2492 case FL_PM_SUSPENDED:
2493 break;
2495 mutex_unlock(&chip->mutex);
2498 /* Unlock the chips again */
2500 if (ret) {
2501 for (i--; i >=0; i--) {
2502 chip = &cfi->chips[i];
2504 mutex_lock(&chip->mutex);
2506 if (chip->state == FL_PM_SUSPENDED) {
2507 /* No need to force it into a known state here,
2508 because we're returning failure, and it didn't
2509 get power cycled */
2510 chip->state = chip->oldstate;
2511 chip->oldstate = FL_READY;
2512 wake_up(&chip->wq);
2514 mutex_unlock(&chip->mutex);
2518 return ret;
2521 static void cfi_intelext_restore_locks(struct mtd_info *mtd)
2523 struct mtd_erase_region_info *region;
2524 int block, i;
2525 unsigned long adr;
2526 size_t len;
2528 for (i = 0; i < mtd->numeraseregions; i++) {
2529 region = &mtd->eraseregions[i];
2530 if (!region->lockmap)
2531 continue;
2533 for (block = 0; block < region->numblocks; block++) {
2534 len = region->erasesize;
2535 adr = region->offset + block * len;
2537 if (!test_bit(block, region->lockmap))
2538 cfi_intelext_unlock(mtd, adr, len);
2543 static void cfi_intelext_resume(struct mtd_info *mtd)
2545 struct map_info *map = mtd->priv;
2546 struct cfi_private *cfi = map->fldrv_priv;
2547 struct cfi_pri_intelext *extp = cfi->cmdset_priv;
2548 int i;
2549 struct flchip *chip;
2551 for (i=0; i<cfi->numchips; i++) {
2553 chip = &cfi->chips[i];
2555 mutex_lock(&chip->mutex);
2557 /* Go to known state. Chip may have been power cycled */
2558 if (chip->state == FL_PM_SUSPENDED) {
2559 map_write(map, CMD(0xFF), cfi->chips[i].start);
2560 chip->oldstate = chip->state = FL_READY;
2561 wake_up(&chip->wq);
2564 mutex_unlock(&chip->mutex);
2567 if ((mtd->flags & MTD_POWERUP_LOCK)
2568 && extp && (extp->FeatureSupport & (1 << 5)))
2569 cfi_intelext_restore_locks(mtd);
2572 static int cfi_intelext_reset(struct mtd_info *mtd)
2574 struct map_info *map = mtd->priv;
2575 struct cfi_private *cfi = map->fldrv_priv;
2576 int i, ret;
2578 for (i=0; i < cfi->numchips; i++) {
2579 struct flchip *chip = &cfi->chips[i];
2581 /* force the completion of any ongoing operation
2582 and switch to array mode so any bootloader in
2583 flash is accessible for soft reboot. */
2584 mutex_lock(&chip->mutex);
2585 ret = get_chip(map, chip, chip->start, FL_SHUTDOWN);
2586 if (!ret) {
2587 map_write(map, CMD(0xff), chip->start);
2588 chip->state = FL_SHUTDOWN;
2589 put_chip(map, chip, chip->start);
2591 mutex_unlock(&chip->mutex);
2594 return 0;
2597 static int cfi_intelext_reboot(struct notifier_block *nb, unsigned long val,
2598 void *v)
2600 struct mtd_info *mtd;
2602 mtd = container_of(nb, struct mtd_info, reboot_notifier);
2603 cfi_intelext_reset(mtd);
2604 return NOTIFY_DONE;
2607 static void cfi_intelext_destroy(struct mtd_info *mtd)
2609 struct map_info *map = mtd->priv;
2610 struct cfi_private *cfi = map->fldrv_priv;
2611 struct mtd_erase_region_info *region;
2612 int i;
2613 cfi_intelext_reset(mtd);
2614 unregister_reboot_notifier(&mtd->reboot_notifier);
2615 kfree(cfi->cmdset_priv);
2616 kfree(cfi->cfiq);
2617 kfree(cfi->chips[0].priv);
2618 kfree(cfi);
2619 for (i = 0; i < mtd->numeraseregions; i++) {
2620 region = &mtd->eraseregions[i];
2621 if (region->lockmap)
2622 kfree(region->lockmap);
2624 kfree(mtd->eraseregions);
2627 MODULE_LICENSE("GPL");
2628 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org> et al.");
2629 MODULE_DESCRIPTION("MTD chip driver for Intel/Sharp flash chips");
2630 MODULE_ALIAS("cfi_cmdset_0003");
2631 MODULE_ALIAS("cfi_cmdset_0200");