2 * Common Flash Interface support:
3 * AMD & Fujitsu Standard Vendor Command Set (ID 0x0002)
5 * Copyright (C) 2000 Crossnet Co. <info@crossnet.co.jp>
6 * Copyright (C) 2004 Arcom Control Systems Ltd <linux@arcom.com>
7 * Copyright (C) 2005 MontaVista Software Inc. <source@mvista.com>
9 * 2_by_8 routines added by Simon Munton
11 * 4_by_16 work by Carolyn J. Smith
13 * XIP support hooks by Vitaly Wool (based on code for Intel flash
16 * 25/09/2008 Christopher Moore: TopBottom fixup for many Macronix with CFI V1.0
18 * Occasionally maintained by Thayne Harbaugh tharbaugh at lnxi dot com
23 #include <linux/module.h>
24 #include <linux/types.h>
25 #include <linux/kernel.h>
26 #include <linux/sched.h>
27 #include <linux/init.h>
29 #include <asm/byteorder.h>
31 #include <linux/errno.h>
32 #include <linux/slab.h>
33 #include <linux/delay.h>
34 #include <linux/interrupt.h>
35 #include <linux/reboot.h>
36 #include <linux/mtd/map.h>
37 #include <linux/mtd/mtd.h>
38 #include <linux/mtd/cfi.h>
39 #include <linux/mtd/xip.h>
41 #define AMD_BOOTLOC_BUG
42 #define FORCE_WORD_WRITE 0
44 #define MAX_WORD_RETRIES 3
46 #define SST49LF004B 0x0060
47 #define SST49LF040B 0x0050
48 #define SST49LF008A 0x005a
49 #define AT49BV6416 0x00d6
51 static int cfi_amdstd_read (struct mtd_info
*, loff_t
, size_t, size_t *, u_char
*);
52 static int cfi_amdstd_write_words(struct mtd_info
*, loff_t
, size_t, size_t *, const u_char
*);
53 static int cfi_amdstd_write_buffers(struct mtd_info
*, loff_t
, size_t, size_t *, const u_char
*);
54 static int cfi_amdstd_erase_chip(struct mtd_info
*, struct erase_info
*);
55 static int cfi_amdstd_erase_varsize(struct mtd_info
*, struct erase_info
*);
56 static void cfi_amdstd_sync (struct mtd_info
*);
57 static int cfi_amdstd_suspend (struct mtd_info
*);
58 static void cfi_amdstd_resume (struct mtd_info
*);
59 static int cfi_amdstd_reboot(struct notifier_block
*, unsigned long, void *);
60 static int cfi_amdstd_secsi_read (struct mtd_info
*, loff_t
, size_t, size_t *, u_char
*);
62 static void cfi_amdstd_destroy(struct mtd_info
*);
64 struct mtd_info
*cfi_cmdset_0002(struct map_info
*, int);
65 static struct mtd_info
*cfi_amdstd_setup (struct mtd_info
*);
67 static int get_chip(struct map_info
*map
, struct flchip
*chip
, unsigned long adr
, int mode
);
68 static void put_chip(struct map_info
*map
, struct flchip
*chip
, unsigned long adr
);
71 static int cfi_atmel_lock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
);
72 static int cfi_atmel_unlock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
);
74 static struct mtd_chip_driver cfi_amdstd_chipdrv
= {
75 .probe
= NULL
, /* Not usable directly */
76 .destroy
= cfi_amdstd_destroy
,
77 .name
= "cfi_cmdset_0002",
82 /* #define DEBUG_CFI_FEATURES */
85 #ifdef DEBUG_CFI_FEATURES
86 static void cfi_tell_features(struct cfi_pri_amdstd
*extp
)
88 const char* erase_suspend
[3] = {
89 "Not supported", "Read only", "Read/write"
91 const char* top_bottom
[6] = {
92 "No WP", "8x8KiB sectors at top & bottom, no WP",
93 "Bottom boot", "Top boot",
94 "Uniform, Bottom WP", "Uniform, Top WP"
97 printk(" Silicon revision: %d\n", extp
->SiliconRevision
>> 1);
98 printk(" Address sensitive unlock: %s\n",
99 (extp
->SiliconRevision
& 1) ? "Not required" : "Required");
101 if (extp
->EraseSuspend
< ARRAY_SIZE(erase_suspend
))
102 printk(" Erase Suspend: %s\n", erase_suspend
[extp
->EraseSuspend
]);
104 printk(" Erase Suspend: Unknown value %d\n", extp
->EraseSuspend
);
106 if (extp
->BlkProt
== 0)
107 printk(" Block protection: Not supported\n");
109 printk(" Block protection: %d sectors per group\n", extp
->BlkProt
);
112 printk(" Temporary block unprotect: %s\n",
113 extp
->TmpBlkUnprotect
? "Supported" : "Not supported");
114 printk(" Block protect/unprotect scheme: %d\n", extp
->BlkProtUnprot
);
115 printk(" Number of simultaneous operations: %d\n", extp
->SimultaneousOps
);
116 printk(" Burst mode: %s\n",
117 extp
->BurstMode
? "Supported" : "Not supported");
118 if (extp
->PageMode
== 0)
119 printk(" Page mode: Not supported\n");
121 printk(" Page mode: %d word page\n", extp
->PageMode
<< 2);
123 printk(" Vpp Supply Minimum Program/Erase Voltage: %d.%d V\n",
124 extp
->VppMin
>> 4, extp
->VppMin
& 0xf);
125 printk(" Vpp Supply Maximum Program/Erase Voltage: %d.%d V\n",
126 extp
->VppMax
>> 4, extp
->VppMax
& 0xf);
128 if (extp
->TopBottom
< ARRAY_SIZE(top_bottom
))
129 printk(" Top/Bottom Boot Block: %s\n", top_bottom
[extp
->TopBottom
]);
131 printk(" Top/Bottom Boot Block: Unknown value %d\n", extp
->TopBottom
);
135 #ifdef AMD_BOOTLOC_BUG
136 /* Wheee. Bring me the head of someone at AMD. */
137 static void fixup_amd_bootblock(struct mtd_info
*mtd
)
139 struct map_info
*map
= mtd
->priv
;
140 struct cfi_private
*cfi
= map
->fldrv_priv
;
141 struct cfi_pri_amdstd
*extp
= cfi
->cmdset_priv
;
142 __u8 major
= extp
->MajorVersion
;
143 __u8 minor
= extp
->MinorVersion
;
145 if (((major
<< 8) | minor
) < 0x3131) {
146 /* CFI version 1.0 => don't trust bootloc */
148 DEBUG(MTD_DEBUG_LEVEL1
,
149 "%s: JEDEC Vendor ID is 0x%02X Device ID is 0x%02X\n",
150 map
->name
, cfi
->mfr
, cfi
->id
);
152 /* AFAICS all 29LV400 with a bottom boot block have a device ID
153 * of 0x22BA in 16-bit mode and 0xBA in 8-bit mode.
154 * These were badly detected as they have the 0x80 bit set
155 * so treat them as a special case.
157 if (((cfi
->id
== 0xBA) || (cfi
->id
== 0x22BA)) &&
159 /* Macronix added CFI to their 2nd generation
160 * MX29LV400C B/T but AFAICS no other 29LV400 (AMD,
161 * Fujitsu, Spansion, EON, ESI and older Macronix)
164 * Therefore also check the manufacturer.
165 * This reduces the risk of false detection due to
166 * the 8-bit device ID.
168 (cfi
->mfr
== CFI_MFR_MACRONIX
)) {
169 DEBUG(MTD_DEBUG_LEVEL1
,
170 "%s: Macronix MX29LV400C with bottom boot block"
171 " detected\n", map
->name
);
172 extp
->TopBottom
= 2; /* bottom boot */
174 if (cfi
->id
& 0x80) {
175 printk(KERN_WARNING
"%s: JEDEC Device ID is 0x%02X. Assuming broken CFI table.\n", map
->name
, cfi
->id
);
176 extp
->TopBottom
= 3; /* top boot */
178 extp
->TopBottom
= 2; /* bottom boot */
181 DEBUG(MTD_DEBUG_LEVEL1
,
182 "%s: AMD CFI PRI V%c.%c has no boot block field;"
183 " deduced %s from Device ID\n", map
->name
, major
, minor
,
184 extp
->TopBottom
== 2 ? "bottom" : "top");
189 static void fixup_use_write_buffers(struct mtd_info
*mtd
)
191 struct map_info
*map
= mtd
->priv
;
192 struct cfi_private
*cfi
= map
->fldrv_priv
;
193 if (cfi
->cfiq
->BufWriteTimeoutTyp
) {
194 DEBUG(MTD_DEBUG_LEVEL1
, "Using buffer write method\n" );
195 mtd
->write
= cfi_amdstd_write_buffers
;
199 /* Atmel chips don't use the same PRI format as AMD chips */
200 static void fixup_convert_atmel_pri(struct mtd_info
*mtd
)
202 struct map_info
*map
= mtd
->priv
;
203 struct cfi_private
*cfi
= map
->fldrv_priv
;
204 struct cfi_pri_amdstd
*extp
= cfi
->cmdset_priv
;
205 struct cfi_pri_atmel atmel_pri
;
207 memcpy(&atmel_pri
, extp
, sizeof(atmel_pri
));
208 memset((char *)extp
+ 5, 0, sizeof(*extp
) - 5);
210 if (atmel_pri
.Features
& 0x02)
211 extp
->EraseSuspend
= 2;
213 /* Some chips got it backwards... */
214 if (cfi
->id
== AT49BV6416
) {
215 if (atmel_pri
.BottomBoot
)
220 if (atmel_pri
.BottomBoot
)
226 /* burst write mode not supported */
227 cfi
->cfiq
->BufWriteTimeoutTyp
= 0;
228 cfi
->cfiq
->BufWriteTimeoutMax
= 0;
231 static void fixup_use_secsi(struct mtd_info
*mtd
)
233 /* Setup for chips with a secsi area */
234 mtd
->read_user_prot_reg
= cfi_amdstd_secsi_read
;
235 mtd
->read_fact_prot_reg
= cfi_amdstd_secsi_read
;
238 static void fixup_use_erase_chip(struct mtd_info
*mtd
)
240 struct map_info
*map
= mtd
->priv
;
241 struct cfi_private
*cfi
= map
->fldrv_priv
;
242 if ((cfi
->cfiq
->NumEraseRegions
== 1) &&
243 ((cfi
->cfiq
->EraseRegionInfo
[0] & 0xffff) == 0)) {
244 mtd
->erase
= cfi_amdstd_erase_chip
;
250 * Some Atmel chips (e.g. the AT49BV6416) power-up with all sectors
253 static void fixup_use_atmel_lock(struct mtd_info
*mtd
)
255 mtd
->lock
= cfi_atmel_lock
;
256 mtd
->unlock
= cfi_atmel_unlock
;
257 mtd
->flags
|= MTD_POWERUP_LOCK
;
260 static void fixup_old_sst_eraseregion(struct mtd_info
*mtd
)
262 struct map_info
*map
= mtd
->priv
;
263 struct cfi_private
*cfi
= map
->fldrv_priv
;
266 * These flashes report two seperate eraseblock regions based on the
267 * sector_erase-size and block_erase-size, although they both operate on the
268 * same memory. This is not allowed according to CFI, so we just pick the
271 cfi
->cfiq
->NumEraseRegions
= 1;
274 static void fixup_sst39vf(struct mtd_info
*mtd
)
276 struct map_info
*map
= mtd
->priv
;
277 struct cfi_private
*cfi
= map
->fldrv_priv
;
279 fixup_old_sst_eraseregion(mtd
);
281 cfi
->addr_unlock1
= 0x5555;
282 cfi
->addr_unlock2
= 0x2AAA;
285 static void fixup_sst39vf_rev_b(struct mtd_info
*mtd
)
287 struct map_info
*map
= mtd
->priv
;
288 struct cfi_private
*cfi
= map
->fldrv_priv
;
290 fixup_old_sst_eraseregion(mtd
);
292 cfi
->addr_unlock1
= 0x555;
293 cfi
->addr_unlock2
= 0x2AA;
295 cfi
->sector_erase_cmd
= CMD(0x50);
298 static void fixup_sst38vf640x_sectorsize(struct mtd_info
*mtd
)
300 struct map_info
*map
= mtd
->priv
;
301 struct cfi_private
*cfi
= map
->fldrv_priv
;
303 fixup_sst39vf_rev_b(mtd
);
306 * CFI reports 1024 sectors (0x03ff+1) of 64KBytes (0x0100*256) where
307 * it should report a size of 8KBytes (0x0020*256).
309 cfi
->cfiq
->EraseRegionInfo
[0] = 0x002003ff;
310 pr_warning("%s: Bad 38VF640x CFI data; adjusting sector size from 64 to 8KiB\n", mtd
->name
);
313 static void fixup_s29gl064n_sectors(struct mtd_info
*mtd
)
315 struct map_info
*map
= mtd
->priv
;
316 struct cfi_private
*cfi
= map
->fldrv_priv
;
318 if ((cfi
->cfiq
->EraseRegionInfo
[0] & 0xffff) == 0x003f) {
319 cfi
->cfiq
->EraseRegionInfo
[0] |= 0x0040;
320 pr_warning("%s: Bad S29GL064N CFI data, adjust from 64 to 128 sectors\n", mtd
->name
);
324 static void fixup_s29gl032n_sectors(struct mtd_info
*mtd
)
326 struct map_info
*map
= mtd
->priv
;
327 struct cfi_private
*cfi
= map
->fldrv_priv
;
329 if ((cfi
->cfiq
->EraseRegionInfo
[1] & 0xffff) == 0x007e) {
330 cfi
->cfiq
->EraseRegionInfo
[1] &= ~0x0040;
331 pr_warning("%s: Bad S29GL032N CFI data, adjust from 127 to 63 sectors\n", mtd
->name
);
335 /* Used to fix CFI-Tables of chips without Extended Query Tables */
336 static struct cfi_fixup cfi_nopri_fixup_table
[] = {
337 { CFI_MFR_SST
, 0x234a, fixup_sst39vf
}, /* SST39VF1602 */
338 { CFI_MFR_SST
, 0x234b, fixup_sst39vf
}, /* SST39VF1601 */
339 { CFI_MFR_SST
, 0x235a, fixup_sst39vf
}, /* SST39VF3202 */
340 { CFI_MFR_SST
, 0x235b, fixup_sst39vf
}, /* SST39VF3201 */
341 { CFI_MFR_SST
, 0x235c, fixup_sst39vf_rev_b
}, /* SST39VF3202B */
342 { CFI_MFR_SST
, 0x235d, fixup_sst39vf_rev_b
}, /* SST39VF3201B */
343 { CFI_MFR_SST
, 0x236c, fixup_sst39vf_rev_b
}, /* SST39VF6402B */
344 { CFI_MFR_SST
, 0x236d, fixup_sst39vf_rev_b
}, /* SST39VF6401B */
348 static struct cfi_fixup cfi_fixup_table
[] = {
349 { CFI_MFR_ATMEL
, CFI_ID_ANY
, fixup_convert_atmel_pri
},
350 #ifdef AMD_BOOTLOC_BUG
351 { CFI_MFR_AMD
, CFI_ID_ANY
, fixup_amd_bootblock
},
352 { CFI_MFR_MACRONIX
, CFI_ID_ANY
, fixup_amd_bootblock
},
354 { CFI_MFR_AMD
, 0x0050, fixup_use_secsi
},
355 { CFI_MFR_AMD
, 0x0053, fixup_use_secsi
},
356 { CFI_MFR_AMD
, 0x0055, fixup_use_secsi
},
357 { CFI_MFR_AMD
, 0x0056, fixup_use_secsi
},
358 { CFI_MFR_AMD
, 0x005C, fixup_use_secsi
},
359 { CFI_MFR_AMD
, 0x005F, fixup_use_secsi
},
360 { CFI_MFR_AMD
, 0x0c01, fixup_s29gl064n_sectors
},
361 { CFI_MFR_AMD
, 0x1301, fixup_s29gl064n_sectors
},
362 { CFI_MFR_AMD
, 0x1a00, fixup_s29gl032n_sectors
},
363 { CFI_MFR_AMD
, 0x1a01, fixup_s29gl032n_sectors
},
364 { CFI_MFR_SST
, 0x536a, fixup_sst38vf640x_sectorsize
}, /* SST38VF6402 */
365 { CFI_MFR_SST
, 0x536b, fixup_sst38vf640x_sectorsize
}, /* SST38VF6401 */
366 { CFI_MFR_SST
, 0x536c, fixup_sst38vf640x_sectorsize
}, /* SST38VF6404 */
367 { CFI_MFR_SST
, 0x536d, fixup_sst38vf640x_sectorsize
}, /* SST38VF6403 */
368 #if !FORCE_WORD_WRITE
369 { CFI_MFR_ANY
, CFI_ID_ANY
, fixup_use_write_buffers
},
373 static struct cfi_fixup jedec_fixup_table
[] = {
374 { CFI_MFR_SST
, SST49LF004B
, fixup_use_fwh_lock
},
375 { CFI_MFR_SST
, SST49LF040B
, fixup_use_fwh_lock
},
376 { CFI_MFR_SST
, SST49LF008A
, fixup_use_fwh_lock
},
380 static struct cfi_fixup fixup_table
[] = {
381 /* The CFI vendor ids and the JEDEC vendor IDs appear
382 * to be common. It is like the devices id's are as
383 * well. This table is to pick all cases where
384 * we know that is the case.
386 { CFI_MFR_ANY
, CFI_ID_ANY
, fixup_use_erase_chip
},
387 { CFI_MFR_ATMEL
, AT49BV6416
, fixup_use_atmel_lock
},
392 static void cfi_fixup_major_minor(struct cfi_private
*cfi
,
393 struct cfi_pri_amdstd
*extp
)
395 if (cfi
->mfr
== CFI_MFR_SAMSUNG
) {
396 if ((extp
->MajorVersion
== '0' && extp
->MinorVersion
== '0') ||
397 (extp
->MajorVersion
== '3' && extp
->MinorVersion
== '3')) {
399 * Samsung K8P2815UQB and K8D6x16UxM chips
400 * report major=0 / minor=0.
401 * K8D3x16UxC chips report major=3 / minor=3.
403 printk(KERN_NOTICE
" Fixing Samsung's Amd/Fujitsu"
404 " Extended Query version to 1.%c\n",
406 extp
->MajorVersion
= '1';
411 * SST 38VF640x chips report major=0xFF / minor=0xFF.
413 if (cfi
->mfr
== CFI_MFR_SST
&& (cfi
->id
>> 4) == 0x0536) {
414 extp
->MajorVersion
= '1';
415 extp
->MinorVersion
= '0';
419 struct mtd_info
*cfi_cmdset_0002(struct map_info
*map
, int primary
)
421 struct cfi_private
*cfi
= map
->fldrv_priv
;
422 struct mtd_info
*mtd
;
425 mtd
= kzalloc(sizeof(*mtd
), GFP_KERNEL
);
427 printk(KERN_WARNING
"Failed to allocate memory for MTD device\n");
431 mtd
->type
= MTD_NORFLASH
;
433 /* Fill in the default mtd operations */
434 mtd
->erase
= cfi_amdstd_erase_varsize
;
435 mtd
->write
= cfi_amdstd_write_words
;
436 mtd
->read
= cfi_amdstd_read
;
437 mtd
->sync
= cfi_amdstd_sync
;
438 mtd
->suspend
= cfi_amdstd_suspend
;
439 mtd
->resume
= cfi_amdstd_resume
;
440 mtd
->flags
= MTD_CAP_NORFLASH
;
441 mtd
->name
= map
->name
;
443 mtd
->writebufsize
= 1 << cfi
->cfiq
->MaxBufWriteSize
;
445 DEBUG(MTD_DEBUG_LEVEL3
, "MTD %s(): write buffer size %d\n",
446 __func__
, mtd
->writebufsize
);
448 mtd
->reboot_notifier
.notifier_call
= cfi_amdstd_reboot
;
450 if (cfi
->cfi_mode
==CFI_MODE_CFI
){
451 unsigned char bootloc
;
452 __u16 adr
= primary
?cfi
->cfiq
->P_ADR
:cfi
->cfiq
->A_ADR
;
453 struct cfi_pri_amdstd
*extp
;
455 extp
= (struct cfi_pri_amdstd
*)cfi_read_pri(map
, adr
, sizeof(*extp
), "Amd/Fujitsu");
458 * It's a real CFI chip, not one for which the probe
459 * routine faked a CFI structure.
461 cfi_fixup_major_minor(cfi
, extp
);
464 * Valid primary extension versions are: 1.0, 1.1, 1.2, 1.3, 1.4
465 * see: http://cs.ozerki.net/zap/pub/axim-x5/docs/cfi_r20.pdf, page 19
466 * http://www.spansion.com/Support/AppNotes/cfi_100_20011201.pdf
467 * http://www.spansion.com/Support/Datasheets/s29ws-p_00_a12_e.pdf
469 if (extp
->MajorVersion
!= '1' ||
470 (extp
->MajorVersion
== '1' && (extp
->MinorVersion
< '0' || extp
->MinorVersion
> '4'))) {
471 printk(KERN_ERR
" Unknown Amd/Fujitsu Extended Query "
472 "version %c.%c (%#02x/%#02x).\n",
473 extp
->MajorVersion
, extp
->MinorVersion
,
474 extp
->MajorVersion
, extp
->MinorVersion
);
480 printk(KERN_INFO
" Amd/Fujitsu Extended Query version %c.%c.\n",
481 extp
->MajorVersion
, extp
->MinorVersion
);
483 /* Install our own private info structure */
484 cfi
->cmdset_priv
= extp
;
486 /* Apply cfi device specific fixups */
487 cfi_fixup(mtd
, cfi_fixup_table
);
489 #ifdef DEBUG_CFI_FEATURES
490 /* Tell the user about it in lots of lovely detail */
491 cfi_tell_features(extp
);
494 bootloc
= extp
->TopBottom
;
495 if ((bootloc
< 2) || (bootloc
> 5)) {
496 printk(KERN_WARNING
"%s: CFI contains unrecognised boot "
497 "bank location (%d). Assuming bottom.\n",
502 if (bootloc
== 3 && cfi
->cfiq
->NumEraseRegions
> 1) {
503 printk(KERN_WARNING
"%s: Swapping erase regions for top-boot CFI table.\n", map
->name
);
505 for (i
=0; i
<cfi
->cfiq
->NumEraseRegions
/ 2; i
++) {
506 int j
= (cfi
->cfiq
->NumEraseRegions
-1)-i
;
509 swap
= cfi
->cfiq
->EraseRegionInfo
[i
];
510 cfi
->cfiq
->EraseRegionInfo
[i
] = cfi
->cfiq
->EraseRegionInfo
[j
];
511 cfi
->cfiq
->EraseRegionInfo
[j
] = swap
;
514 /* Set the default CFI lock/unlock addresses */
515 cfi
->addr_unlock1
= 0x555;
516 cfi
->addr_unlock2
= 0x2aa;
518 cfi_fixup(mtd
, cfi_nopri_fixup_table
);
520 if (!cfi
->addr_unlock1
|| !cfi
->addr_unlock2
) {
526 else if (cfi
->cfi_mode
== CFI_MODE_JEDEC
) {
527 /* Apply jedec specific fixups */
528 cfi_fixup(mtd
, jedec_fixup_table
);
530 /* Apply generic fixups */
531 cfi_fixup(mtd
, fixup_table
);
533 for (i
=0; i
< cfi
->numchips
; i
++) {
534 cfi
->chips
[i
].word_write_time
= 1<<cfi
->cfiq
->WordWriteTimeoutTyp
;
535 cfi
->chips
[i
].buffer_write_time
= 1<<cfi
->cfiq
->BufWriteTimeoutTyp
;
536 cfi
->chips
[i
].erase_time
= 1<<cfi
->cfiq
->BlockEraseTimeoutTyp
;
537 cfi
->chips
[i
].ref_point_counter
= 0;
538 init_waitqueue_head(&(cfi
->chips
[i
].wq
));
541 map
->fldrv
= &cfi_amdstd_chipdrv
;
543 return cfi_amdstd_setup(mtd
);
545 struct mtd_info
*cfi_cmdset_0006(struct map_info
*map
, int primary
) __attribute__((alias("cfi_cmdset_0002")));
546 struct mtd_info
*cfi_cmdset_0701(struct map_info
*map
, int primary
) __attribute__((alias("cfi_cmdset_0002")));
547 EXPORT_SYMBOL_GPL(cfi_cmdset_0002
);
548 EXPORT_SYMBOL_GPL(cfi_cmdset_0006
);
549 EXPORT_SYMBOL_GPL(cfi_cmdset_0701
);
551 static struct mtd_info
*cfi_amdstd_setup(struct mtd_info
*mtd
)
553 struct map_info
*map
= mtd
->priv
;
554 struct cfi_private
*cfi
= map
->fldrv_priv
;
555 unsigned long devsize
= (1<<cfi
->cfiq
->DevSize
) * cfi
->interleave
;
556 unsigned long offset
= 0;
559 printk(KERN_NOTICE
"number of %s chips: %d\n",
560 (cfi
->cfi_mode
== CFI_MODE_CFI
)?"CFI":"JEDEC",cfi
->numchips
);
561 /* Select the correct geometry setup */
562 mtd
->size
= devsize
* cfi
->numchips
;
564 mtd
->numeraseregions
= cfi
->cfiq
->NumEraseRegions
* cfi
->numchips
;
565 mtd
->eraseregions
= kmalloc(sizeof(struct mtd_erase_region_info
)
566 * mtd
->numeraseregions
, GFP_KERNEL
);
567 if (!mtd
->eraseregions
) {
568 printk(KERN_WARNING
"Failed to allocate memory for MTD erase region info\n");
572 for (i
=0; i
<cfi
->cfiq
->NumEraseRegions
; i
++) {
573 unsigned long ernum
, ersize
;
574 ersize
= ((cfi
->cfiq
->EraseRegionInfo
[i
] >> 8) & ~0xff) * cfi
->interleave
;
575 ernum
= (cfi
->cfiq
->EraseRegionInfo
[i
] & 0xffff) + 1;
577 if (mtd
->erasesize
< ersize
) {
578 mtd
->erasesize
= ersize
;
580 for (j
=0; j
<cfi
->numchips
; j
++) {
581 mtd
->eraseregions
[(j
*cfi
->cfiq
->NumEraseRegions
)+i
].offset
= (j
*devsize
)+offset
;
582 mtd
->eraseregions
[(j
*cfi
->cfiq
->NumEraseRegions
)+i
].erasesize
= ersize
;
583 mtd
->eraseregions
[(j
*cfi
->cfiq
->NumEraseRegions
)+i
].numblocks
= ernum
;
585 offset
+= (ersize
* ernum
);
587 if (offset
!= devsize
) {
589 printk(KERN_WARNING
"Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset
, devsize
);
593 __module_get(THIS_MODULE
);
594 register_reboot_notifier(&mtd
->reboot_notifier
);
598 kfree(mtd
->eraseregions
);
600 kfree(cfi
->cmdset_priv
);
606 * Return true if the chip is ready.
608 * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
609 * non-suspended sector) and is indicated by no toggle bits toggling.
611 * Note that anything more complicated than checking if no bits are toggling
612 * (including checking DQ5 for an error status) is tricky to get working
613 * correctly and is therefore not done (particulary with interleaved chips
614 * as each chip must be checked independantly of the others).
616 static int __xipram
chip_ready(struct map_info
*map
, unsigned long addr
)
620 d
= map_read(map
, addr
);
621 t
= map_read(map
, addr
);
623 return map_word_equal(map
, d
, t
);
627 * Return true if the chip is ready and has the correct value.
629 * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
630 * non-suspended sector) and it is indicated by no bits toggling.
632 * Error are indicated by toggling bits or bits held with the wrong value,
633 * or with bits toggling.
635 * Note that anything more complicated than checking if no bits are toggling
636 * (including checking DQ5 for an error status) is tricky to get working
637 * correctly and is therefore not done (particulary with interleaved chips
638 * as each chip must be checked independantly of the others).
641 static int __xipram
chip_good(struct map_info
*map
, unsigned long addr
, map_word expected
)
645 oldd
= map_read(map
, addr
);
646 curd
= map_read(map
, addr
);
648 return map_word_equal(map
, oldd
, curd
) &&
649 map_word_equal(map
, curd
, expected
);
652 static int get_chip(struct map_info
*map
, struct flchip
*chip
, unsigned long adr
, int mode
)
654 DECLARE_WAITQUEUE(wait
, current
);
655 struct cfi_private
*cfi
= map
->fldrv_priv
;
657 struct cfi_pri_amdstd
*cfip
= (struct cfi_pri_amdstd
*)cfi
->cmdset_priv
;
660 timeo
= jiffies
+ HZ
;
662 switch (chip
->state
) {
666 if (chip_ready(map
, adr
))
669 if (time_after(jiffies
, timeo
)) {
670 printk(KERN_ERR
"Waiting for chip to be ready timed out.\n");
673 mutex_unlock(&chip
->mutex
);
675 mutex_lock(&chip
->mutex
);
676 /* Someone else might have been playing with it. */
686 if (!cfip
|| !(cfip
->EraseSuspend
& (0x1|0x2)) ||
687 !(mode
== FL_READY
|| mode
== FL_POINT
||
688 (mode
== FL_WRITING
&& (cfip
->EraseSuspend
& 0x2))))
691 /* We could check to see if we're trying to access the sector
692 * that is currently being erased. However, no user will try
693 * anything like that so we just wait for the timeout. */
696 /* It's harmless to issue the Erase-Suspend and Erase-Resume
697 * commands when the erase algorithm isn't in progress. */
698 map_write(map
, CMD(0xB0), chip
->in_progress_block_addr
);
699 chip
->oldstate
= FL_ERASING
;
700 chip
->state
= FL_ERASE_SUSPENDING
;
701 chip
->erase_suspended
= 1;
703 if (chip_ready(map
, adr
))
706 if (time_after(jiffies
, timeo
)) {
707 /* Should have suspended the erase by now.
708 * Send an Erase-Resume command as either
709 * there was an error (so leave the erase
710 * routine to recover from it) or we trying to
711 * use the erase-in-progress sector. */
712 map_write(map
, cfi
->sector_erase_cmd
, chip
->in_progress_block_addr
);
713 chip
->state
= FL_ERASING
;
714 chip
->oldstate
= FL_READY
;
715 printk(KERN_ERR
"MTD %s(): chip not ready after erase suspend\n", __func__
);
719 mutex_unlock(&chip
->mutex
);
721 mutex_lock(&chip
->mutex
);
722 /* Nobody will touch it while it's in state FL_ERASE_SUSPENDING.
723 So we can just loop here. */
725 chip
->state
= FL_READY
;
728 case FL_XIP_WHILE_ERASING
:
729 if (mode
!= FL_READY
&& mode
!= FL_POINT
&&
730 (!cfip
|| !(cfip
->EraseSuspend
&2)))
732 chip
->oldstate
= chip
->state
;
733 chip
->state
= FL_READY
;
737 /* The machine is rebooting */
741 /* Only if there's no operation suspended... */
742 if (mode
== FL_READY
&& chip
->oldstate
== FL_READY
)
747 set_current_state(TASK_UNINTERRUPTIBLE
);
748 add_wait_queue(&chip
->wq
, &wait
);
749 mutex_unlock(&chip
->mutex
);
751 remove_wait_queue(&chip
->wq
, &wait
);
752 mutex_lock(&chip
->mutex
);
758 static void put_chip(struct map_info
*map
, struct flchip
*chip
, unsigned long adr
)
760 struct cfi_private
*cfi
= map
->fldrv_priv
;
762 switch(chip
->oldstate
) {
764 chip
->state
= chip
->oldstate
;
765 map_write(map
, cfi
->sector_erase_cmd
, chip
->in_progress_block_addr
);
766 chip
->oldstate
= FL_READY
;
767 chip
->state
= FL_ERASING
;
770 case FL_XIP_WHILE_ERASING
:
771 chip
->state
= chip
->oldstate
;
772 chip
->oldstate
= FL_READY
;
777 /* We should really make set_vpp() count, rather than doing this */
781 printk(KERN_ERR
"MTD: put_chip() called with oldstate %d!!\n", chip
->oldstate
);
786 #ifdef CONFIG_MTD_XIP
789 * No interrupt what so ever can be serviced while the flash isn't in array
790 * mode. This is ensured by the xip_disable() and xip_enable() functions
791 * enclosing any code path where the flash is known not to be in array mode.
792 * And within a XIP disabled code path, only functions marked with __xipram
793 * may be called and nothing else (it's a good thing to inspect generated
794 * assembly to make sure inline functions were actually inlined and that gcc
795 * didn't emit calls to its own support functions). Also configuring MTD CFI
796 * support to a single buswidth and a single interleave is also recommended.
799 static void xip_disable(struct map_info
*map
, struct flchip
*chip
,
802 /* TODO: chips with no XIP use should ignore and return */
803 (void) map_read(map
, adr
); /* ensure mmu mapping is up to date */
807 static void __xipram
xip_enable(struct map_info
*map
, struct flchip
*chip
,
810 struct cfi_private
*cfi
= map
->fldrv_priv
;
812 if (chip
->state
!= FL_POINT
&& chip
->state
!= FL_READY
) {
813 map_write(map
, CMD(0xf0), adr
);
814 chip
->state
= FL_READY
;
816 (void) map_read(map
, adr
);
822 * When a delay is required for the flash operation to complete, the
823 * xip_udelay() function is polling for both the given timeout and pending
824 * (but still masked) hardware interrupts. Whenever there is an interrupt
825 * pending then the flash erase operation is suspended, array mode restored
826 * and interrupts unmasked. Task scheduling might also happen at that
827 * point. The CPU eventually returns from the interrupt or the call to
828 * schedule() and the suspended flash operation is resumed for the remaining
829 * of the delay period.
831 * Warning: this function _will_ fool interrupt latency tracing tools.
834 static void __xipram
xip_udelay(struct map_info
*map
, struct flchip
*chip
,
835 unsigned long adr
, int usec
)
837 struct cfi_private
*cfi
= map
->fldrv_priv
;
838 struct cfi_pri_amdstd
*extp
= cfi
->cmdset_priv
;
839 map_word status
, OK
= CMD(0x80);
840 unsigned long suspended
, start
= xip_currtime();
845 if (xip_irqpending() && extp
&&
846 ((chip
->state
== FL_ERASING
&& (extp
->EraseSuspend
& 2))) &&
847 (cfi_interleave_is_1(cfi
) || chip
->oldstate
== FL_READY
)) {
849 * Let's suspend the erase operation when supported.
850 * Note that we currently don't try to suspend
851 * interleaved chips if there is already another
852 * operation suspended (imagine what happens
853 * when one chip was already done with the current
854 * operation while another chip suspended it, then
855 * we resume the whole thing at once). Yes, it
858 map_write(map
, CMD(0xb0), adr
);
859 usec
-= xip_elapsed_since(start
);
860 suspended
= xip_currtime();
862 if (xip_elapsed_since(suspended
) > 100000) {
864 * The chip doesn't want to suspend
865 * after waiting for 100 msecs.
866 * This is a critical error but there
867 * is not much we can do here.
871 status
= map_read(map
, adr
);
872 } while (!map_word_andequal(map
, status
, OK
, OK
));
874 /* Suspend succeeded */
875 oldstate
= chip
->state
;
876 if (!map_word_bitsset(map
, status
, CMD(0x40)))
878 chip
->state
= FL_XIP_WHILE_ERASING
;
879 chip
->erase_suspended
= 1;
880 map_write(map
, CMD(0xf0), adr
);
881 (void) map_read(map
, adr
);
884 mutex_unlock(&chip
->mutex
);
889 * We're back. However someone else might have
890 * decided to go write to the chip if we are in
891 * a suspended erase state. If so let's wait
894 mutex_lock(&chip
->mutex
);
895 while (chip
->state
!= FL_XIP_WHILE_ERASING
) {
896 DECLARE_WAITQUEUE(wait
, current
);
897 set_current_state(TASK_UNINTERRUPTIBLE
);
898 add_wait_queue(&chip
->wq
, &wait
);
899 mutex_unlock(&chip
->mutex
);
901 remove_wait_queue(&chip
->wq
, &wait
);
902 mutex_lock(&chip
->mutex
);
904 /* Disallow XIP again */
907 /* Resume the write or erase operation */
908 map_write(map
, cfi
->sector_erase_cmd
, adr
);
909 chip
->state
= oldstate
;
910 start
= xip_currtime();
911 } else if (usec
>= 1000000/HZ
) {
913 * Try to save on CPU power when waiting delay
914 * is at least a system timer tick period.
915 * No need to be extremely accurate here.
919 status
= map_read(map
, adr
);
920 } while (!map_word_andequal(map
, status
, OK
, OK
)
921 && xip_elapsed_since(start
) < usec
);
924 #define UDELAY(map, chip, adr, usec) xip_udelay(map, chip, adr, usec)
927 * The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while
928 * the flash is actively programming or erasing since we have to poll for
929 * the operation to complete anyway. We can't do that in a generic way with
930 * a XIP setup so do it before the actual flash operation in this case
931 * and stub it out from INVALIDATE_CACHE_UDELAY.
933 #define XIP_INVAL_CACHED_RANGE(map, from, size) \
934 INVALIDATE_CACHED_RANGE(map, from, size)
936 #define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec) \
937 UDELAY(map, chip, adr, usec)
942 * Activating this XIP support changes the way the code works a bit. For
943 * example the code to suspend the current process when concurrent access
944 * happens is never executed because xip_udelay() will always return with the
945 * same chip state as it was entered with. This is why there is no care for
946 * the presence of add_wait_queue() or schedule() calls from within a couple
947 * xip_disable()'d areas of code, like in do_erase_oneblock for example.
948 * The queueing and scheduling are always happening within xip_udelay().
950 * Similarly, get_chip() and put_chip() just happen to always be executed
951 * with chip->state set to FL_READY (or FL_XIP_WHILE_*) where flash state
952 * is in array mode, therefore never executing many cases therein and not
953 * causing any problem with XIP.
958 #define xip_disable(map, chip, adr)
959 #define xip_enable(map, chip, adr)
960 #define XIP_INVAL_CACHED_RANGE(x...)
962 #define UDELAY(map, chip, adr, usec) \
964 mutex_unlock(&chip->mutex); \
966 mutex_lock(&chip->mutex); \
969 #define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec) \
971 mutex_unlock(&chip->mutex); \
972 INVALIDATE_CACHED_RANGE(map, adr, len); \
974 mutex_lock(&chip->mutex); \
979 static inline int do_read_onechip(struct map_info
*map
, struct flchip
*chip
, loff_t adr
, size_t len
, u_char
*buf
)
981 unsigned long cmd_addr
;
982 struct cfi_private
*cfi
= map
->fldrv_priv
;
987 /* Ensure cmd read/writes are aligned. */
988 cmd_addr
= adr
& ~(map_bankwidth(map
)-1);
990 mutex_lock(&chip
->mutex
);
991 ret
= get_chip(map
, chip
, cmd_addr
, FL_READY
);
993 mutex_unlock(&chip
->mutex
);
997 if (chip
->state
!= FL_POINT
&& chip
->state
!= FL_READY
) {
998 map_write(map
, CMD(0xf0), cmd_addr
);
999 chip
->state
= FL_READY
;
1002 map_copy_from(map
, buf
, adr
, len
);
1004 put_chip(map
, chip
, cmd_addr
);
1006 mutex_unlock(&chip
->mutex
);
1011 static int cfi_amdstd_read (struct mtd_info
*mtd
, loff_t from
, size_t len
, size_t *retlen
, u_char
*buf
)
1013 struct map_info
*map
= mtd
->priv
;
1014 struct cfi_private
*cfi
= map
->fldrv_priv
;
1019 /* ofs: offset within the first chip that the first read should start */
1021 chipnum
= (from
>> cfi
->chipshift
);
1022 ofs
= from
- (chipnum
<< cfi
->chipshift
);
1028 unsigned long thislen
;
1030 if (chipnum
>= cfi
->numchips
)
1033 if ((len
+ ofs
-1) >> cfi
->chipshift
)
1034 thislen
= (1<<cfi
->chipshift
) - ofs
;
1038 ret
= do_read_onechip(map
, &cfi
->chips
[chipnum
], ofs
, thislen
, buf
);
1053 static inline int do_read_secsi_onechip(struct map_info
*map
, struct flchip
*chip
, loff_t adr
, size_t len
, u_char
*buf
)
1055 DECLARE_WAITQUEUE(wait
, current
);
1056 unsigned long timeo
= jiffies
+ HZ
;
1057 struct cfi_private
*cfi
= map
->fldrv_priv
;
1060 mutex_lock(&chip
->mutex
);
1062 if (chip
->state
!= FL_READY
){
1063 set_current_state(TASK_UNINTERRUPTIBLE
);
1064 add_wait_queue(&chip
->wq
, &wait
);
1066 mutex_unlock(&chip
->mutex
);
1069 remove_wait_queue(&chip
->wq
, &wait
);
1070 timeo
= jiffies
+ HZ
;
1077 chip
->state
= FL_READY
;
1079 cfi_send_gen_cmd(0xAA, cfi
->addr_unlock1
, chip
->start
, map
, cfi
, cfi
->device_type
, NULL
);
1080 cfi_send_gen_cmd(0x55, cfi
->addr_unlock2
, chip
->start
, map
, cfi
, cfi
->device_type
, NULL
);
1081 cfi_send_gen_cmd(0x88, cfi
->addr_unlock1
, chip
->start
, map
, cfi
, cfi
->device_type
, NULL
);
1083 map_copy_from(map
, buf
, adr
, len
);
1085 cfi_send_gen_cmd(0xAA, cfi
->addr_unlock1
, chip
->start
, map
, cfi
, cfi
->device_type
, NULL
);
1086 cfi_send_gen_cmd(0x55, cfi
->addr_unlock2
, chip
->start
, map
, cfi
, cfi
->device_type
, NULL
);
1087 cfi_send_gen_cmd(0x90, cfi
->addr_unlock1
, chip
->start
, map
, cfi
, cfi
->device_type
, NULL
);
1088 cfi_send_gen_cmd(0x00, cfi
->addr_unlock1
, chip
->start
, map
, cfi
, cfi
->device_type
, NULL
);
1091 mutex_unlock(&chip
->mutex
);
1096 static int cfi_amdstd_secsi_read (struct mtd_info
*mtd
, loff_t from
, size_t len
, size_t *retlen
, u_char
*buf
)
1098 struct map_info
*map
= mtd
->priv
;
1099 struct cfi_private
*cfi
= map
->fldrv_priv
;
1105 /* ofs: offset within the first chip that the first read should start */
1107 /* 8 secsi bytes per chip */
1115 unsigned long thislen
;
1117 if (chipnum
>= cfi
->numchips
)
1120 if ((len
+ ofs
-1) >> 3)
1121 thislen
= (1<<3) - ofs
;
1125 ret
= do_read_secsi_onechip(map
, &cfi
->chips
[chipnum
], ofs
, thislen
, buf
);
1140 static int __xipram
do_write_oneword(struct map_info
*map
, struct flchip
*chip
, unsigned long adr
, map_word datum
)
1142 struct cfi_private
*cfi
= map
->fldrv_priv
;
1143 unsigned long timeo
= jiffies
+ HZ
;
1145 * We use a 1ms + 1 jiffies generic timeout for writes (most devices
1146 * have a max write time of a few hundreds usec). However, we should
1147 * use the maximum timeout value given by the chip at probe time
1148 * instead. Unfortunately, struct flchip does have a field for
1149 * maximum timeout, only for typical which can be far too short
1150 * depending of the conditions. The ' + 1' is to avoid having a
1151 * timeout of 0 jiffies if HZ is smaller than 1000.
1153 unsigned long uWriteTimeout
= ( HZ
/ 1000 ) + 1;
1160 mutex_lock(&chip
->mutex
);
1161 ret
= get_chip(map
, chip
, adr
, FL_WRITING
);
1163 mutex_unlock(&chip
->mutex
);
1167 DEBUG( MTD_DEBUG_LEVEL3
, "MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
1168 __func__
, adr
, datum
.x
[0] );
1171 * Check for a NOP for the case when the datum to write is already
1172 * present - it saves time and works around buggy chips that corrupt
1173 * data at other locations when 0xff is written to a location that
1174 * already contains 0xff.
1176 oldd
= map_read(map
, adr
);
1177 if (map_word_equal(map
, oldd
, datum
)) {
1178 DEBUG( MTD_DEBUG_LEVEL3
, "MTD %s(): NOP\n",
1183 XIP_INVAL_CACHED_RANGE(map
, adr
, map_bankwidth(map
));
1185 xip_disable(map
, chip
, adr
);
1187 cfi_send_gen_cmd(0xAA, cfi
->addr_unlock1
, chip
->start
, map
, cfi
, cfi
->device_type
, NULL
);
1188 cfi_send_gen_cmd(0x55, cfi
->addr_unlock2
, chip
->start
, map
, cfi
, cfi
->device_type
, NULL
);
1189 cfi_send_gen_cmd(0xA0, cfi
->addr_unlock1
, chip
->start
, map
, cfi
, cfi
->device_type
, NULL
);
1190 map_write(map
, datum
, adr
);
1191 chip
->state
= FL_WRITING
;
1193 INVALIDATE_CACHE_UDELAY(map
, chip
,
1194 adr
, map_bankwidth(map
),
1195 chip
->word_write_time
);
1197 /* See comment above for timeout value. */
1198 timeo
= jiffies
+ uWriteTimeout
;
1200 if (chip
->state
!= FL_WRITING
) {
1201 /* Someone's suspended the write. Sleep */
1202 DECLARE_WAITQUEUE(wait
, current
);
1204 set_current_state(TASK_UNINTERRUPTIBLE
);
1205 add_wait_queue(&chip
->wq
, &wait
);
1206 mutex_unlock(&chip
->mutex
);
1208 remove_wait_queue(&chip
->wq
, &wait
);
1209 timeo
= jiffies
+ (HZ
/ 2); /* FIXME */
1210 mutex_lock(&chip
->mutex
);
1214 if (time_after(jiffies
, timeo
) && !chip_ready(map
, adr
)){
1215 xip_enable(map
, chip
, adr
);
1216 printk(KERN_WARNING
"MTD %s(): software timeout\n", __func__
);
1217 xip_disable(map
, chip
, adr
);
1221 if (chip_ready(map
, adr
))
1224 /* Latency issues. Drop the lock, wait a while and retry */
1225 UDELAY(map
, chip
, adr
, 1);
1227 /* Did we succeed? */
1228 if (!chip_good(map
, adr
, datum
)) {
1229 /* reset on all failures. */
1230 map_write( map
, CMD(0xF0), chip
->start
);
1231 /* FIXME - should have reset delay before continuing */
1233 if (++retry_cnt
<= MAX_WORD_RETRIES
)
1238 xip_enable(map
, chip
, adr
);
1240 chip
->state
= FL_READY
;
1241 put_chip(map
, chip
, adr
);
1242 mutex_unlock(&chip
->mutex
);
1248 static int cfi_amdstd_write_words(struct mtd_info
*mtd
, loff_t to
, size_t len
,
1249 size_t *retlen
, const u_char
*buf
)
1251 struct map_info
*map
= mtd
->priv
;
1252 struct cfi_private
*cfi
= map
->fldrv_priv
;
1255 unsigned long ofs
, chipstart
;
1256 DECLARE_WAITQUEUE(wait
, current
);
1262 chipnum
= to
>> cfi
->chipshift
;
1263 ofs
= to
- (chipnum
<< cfi
->chipshift
);
1264 chipstart
= cfi
->chips
[chipnum
].start
;
1266 /* If it's not bus-aligned, do the first byte write */
1267 if (ofs
& (map_bankwidth(map
)-1)) {
1268 unsigned long bus_ofs
= ofs
& ~(map_bankwidth(map
)-1);
1269 int i
= ofs
- bus_ofs
;
1274 mutex_lock(&cfi
->chips
[chipnum
].mutex
);
1276 if (cfi
->chips
[chipnum
].state
!= FL_READY
) {
1277 set_current_state(TASK_UNINTERRUPTIBLE
);
1278 add_wait_queue(&cfi
->chips
[chipnum
].wq
, &wait
);
1280 mutex_unlock(&cfi
->chips
[chipnum
].mutex
);
1283 remove_wait_queue(&cfi
->chips
[chipnum
].wq
, &wait
);
1287 /* Load 'tmp_buf' with old contents of flash */
1288 tmp_buf
= map_read(map
, bus_ofs
+chipstart
);
1290 mutex_unlock(&cfi
->chips
[chipnum
].mutex
);
1292 /* Number of bytes to copy from buffer */
1293 n
= min_t(int, len
, map_bankwidth(map
)-i
);
1295 tmp_buf
= map_word_load_partial(map
, tmp_buf
, buf
, i
, n
);
1297 ret
= do_write_oneword(map
, &cfi
->chips
[chipnum
],
1307 if (ofs
>> cfi
->chipshift
) {
1310 if (chipnum
== cfi
->numchips
)
1315 /* We are now aligned, write as much as possible */
1316 while(len
>= map_bankwidth(map
)) {
1319 datum
= map_word_load(map
, buf
);
1321 ret
= do_write_oneword(map
, &cfi
->chips
[chipnum
],
1326 ofs
+= map_bankwidth(map
);
1327 buf
+= map_bankwidth(map
);
1328 (*retlen
) += map_bankwidth(map
);
1329 len
-= map_bankwidth(map
);
1331 if (ofs
>> cfi
->chipshift
) {
1334 if (chipnum
== cfi
->numchips
)
1336 chipstart
= cfi
->chips
[chipnum
].start
;
1340 /* Write the trailing bytes if any */
1341 if (len
& (map_bankwidth(map
)-1)) {
1345 mutex_lock(&cfi
->chips
[chipnum
].mutex
);
1347 if (cfi
->chips
[chipnum
].state
!= FL_READY
) {
1348 set_current_state(TASK_UNINTERRUPTIBLE
);
1349 add_wait_queue(&cfi
->chips
[chipnum
].wq
, &wait
);
1351 mutex_unlock(&cfi
->chips
[chipnum
].mutex
);
1354 remove_wait_queue(&cfi
->chips
[chipnum
].wq
, &wait
);
1358 tmp_buf
= map_read(map
, ofs
+ chipstart
);
1360 mutex_unlock(&cfi
->chips
[chipnum
].mutex
);
1362 tmp_buf
= map_word_load_partial(map
, tmp_buf
, buf
, 0, len
);
1364 ret
= do_write_oneword(map
, &cfi
->chips
[chipnum
],
1377 * FIXME: interleaved mode not tested, and probably not supported!
1379 static int __xipram
do_write_buffer(struct map_info
*map
, struct flchip
*chip
,
1380 unsigned long adr
, const u_char
*buf
,
1383 struct cfi_private
*cfi
= map
->fldrv_priv
;
1384 unsigned long timeo
= jiffies
+ HZ
;
1385 /* see comments in do_write_oneword() regarding uWriteTimeo. */
1386 unsigned long uWriteTimeout
= ( HZ
/ 1000 ) + 1;
1388 unsigned long cmd_adr
;
1395 mutex_lock(&chip
->mutex
);
1396 ret
= get_chip(map
, chip
, adr
, FL_WRITING
);
1398 mutex_unlock(&chip
->mutex
);
1402 datum
= map_word_load(map
, buf
);
1404 DEBUG( MTD_DEBUG_LEVEL3
, "MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
1405 __func__
, adr
, datum
.x
[0] );
1407 XIP_INVAL_CACHED_RANGE(map
, adr
, len
);
1409 xip_disable(map
, chip
, cmd_adr
);
1411 cfi_send_gen_cmd(0xAA, cfi
->addr_unlock1
, chip
->start
, map
, cfi
, cfi
->device_type
, NULL
);
1412 cfi_send_gen_cmd(0x55, cfi
->addr_unlock2
, chip
->start
, map
, cfi
, cfi
->device_type
, NULL
);
1414 /* Write Buffer Load */
1415 map_write(map
, CMD(0x25), cmd_adr
);
1417 chip
->state
= FL_WRITING_TO_BUFFER
;
1419 /* Write length of data to come */
1420 words
= len
/ map_bankwidth(map
);
1421 map_write(map
, CMD(words
- 1), cmd_adr
);
1424 while(z
< words
* map_bankwidth(map
)) {
1425 datum
= map_word_load(map
, buf
);
1426 map_write(map
, datum
, adr
+ z
);
1428 z
+= map_bankwidth(map
);
1429 buf
+= map_bankwidth(map
);
1431 z
-= map_bankwidth(map
);
1435 /* Write Buffer Program Confirm: GO GO GO */
1436 map_write(map
, CMD(0x29), cmd_adr
);
1437 chip
->state
= FL_WRITING
;
1439 INVALIDATE_CACHE_UDELAY(map
, chip
,
1440 adr
, map_bankwidth(map
),
1441 chip
->word_write_time
);
1443 timeo
= jiffies
+ uWriteTimeout
;
1446 if (chip
->state
!= FL_WRITING
) {
1447 /* Someone's suspended the write. Sleep */
1448 DECLARE_WAITQUEUE(wait
, current
);
1450 set_current_state(TASK_UNINTERRUPTIBLE
);
1451 add_wait_queue(&chip
->wq
, &wait
);
1452 mutex_unlock(&chip
->mutex
);
1454 remove_wait_queue(&chip
->wq
, &wait
);
1455 timeo
= jiffies
+ (HZ
/ 2); /* FIXME */
1456 mutex_lock(&chip
->mutex
);
1460 if (time_after(jiffies
, timeo
) && !chip_ready(map
, adr
))
1463 if (chip_ready(map
, adr
)) {
1464 xip_enable(map
, chip
, adr
);
1468 /* Latency issues. Drop the lock, wait a while and retry */
1469 UDELAY(map
, chip
, adr
, 1);
1472 /* reset on all failures. */
1473 map_write( map
, CMD(0xF0), chip
->start
);
1474 xip_enable(map
, chip
, adr
);
1475 /* FIXME - should have reset delay before continuing */
1477 printk(KERN_WARNING
"MTD %s(): software timeout\n",
1482 chip
->state
= FL_READY
;
1483 put_chip(map
, chip
, adr
);
1484 mutex_unlock(&chip
->mutex
);
1490 static int cfi_amdstd_write_buffers(struct mtd_info
*mtd
, loff_t to
, size_t len
,
1491 size_t *retlen
, const u_char
*buf
)
1493 struct map_info
*map
= mtd
->priv
;
1494 struct cfi_private
*cfi
= map
->fldrv_priv
;
1495 int wbufsize
= cfi_interleave(cfi
) << cfi
->cfiq
->MaxBufWriteSize
;
1504 chipnum
= to
>> cfi
->chipshift
;
1505 ofs
= to
- (chipnum
<< cfi
->chipshift
);
1507 /* If it's not bus-aligned, do the first word write */
1508 if (ofs
& (map_bankwidth(map
)-1)) {
1509 size_t local_len
= (-ofs
)&(map_bankwidth(map
)-1);
1510 if (local_len
> len
)
1512 ret
= cfi_amdstd_write_words(mtd
, ofs
+ (chipnum
<<cfi
->chipshift
),
1513 local_len
, retlen
, buf
);
1520 if (ofs
>> cfi
->chipshift
) {
1523 if (chipnum
== cfi
->numchips
)
1528 /* Write buffer is worth it only if more than one word to write... */
1529 while (len
>= map_bankwidth(map
) * 2) {
1530 /* We must not cross write block boundaries */
1531 int size
= wbufsize
- (ofs
& (wbufsize
-1));
1535 if (size
% map_bankwidth(map
))
1536 size
-= size
% map_bankwidth(map
);
1538 ret
= do_write_buffer(map
, &cfi
->chips
[chipnum
],
1548 if (ofs
>> cfi
->chipshift
) {
1551 if (chipnum
== cfi
->numchips
)
1557 size_t retlen_dregs
= 0;
1559 ret
= cfi_amdstd_write_words(mtd
, ofs
+ (chipnum
<<cfi
->chipshift
),
1560 len
, &retlen_dregs
, buf
);
1562 *retlen
+= retlen_dregs
;
1571 * Handle devices with one erase region, that only implement
1572 * the chip erase command.
1574 static int __xipram
do_erase_chip(struct map_info
*map
, struct flchip
*chip
)
1576 struct cfi_private
*cfi
= map
->fldrv_priv
;
1577 unsigned long timeo
= jiffies
+ HZ
;
1578 unsigned long int adr
;
1579 DECLARE_WAITQUEUE(wait
, current
);
1582 adr
= cfi
->addr_unlock1
;
1584 mutex_lock(&chip
->mutex
);
1585 ret
= get_chip(map
, chip
, adr
, FL_WRITING
);
1587 mutex_unlock(&chip
->mutex
);
1591 DEBUG( MTD_DEBUG_LEVEL3
, "MTD %s(): ERASE 0x%.8lx\n",
1592 __func__
, chip
->start
);
1594 XIP_INVAL_CACHED_RANGE(map
, adr
, map
->size
);
1596 xip_disable(map
, chip
, adr
);
1598 cfi_send_gen_cmd(0xAA, cfi
->addr_unlock1
, chip
->start
, map
, cfi
, cfi
->device_type
, NULL
);
1599 cfi_send_gen_cmd(0x55, cfi
->addr_unlock2
, chip
->start
, map
, cfi
, cfi
->device_type
, NULL
);
1600 cfi_send_gen_cmd(0x80, cfi
->addr_unlock1
, chip
->start
, map
, cfi
, cfi
->device_type
, NULL
);
1601 cfi_send_gen_cmd(0xAA, cfi
->addr_unlock1
, chip
->start
, map
, cfi
, cfi
->device_type
, NULL
);
1602 cfi_send_gen_cmd(0x55, cfi
->addr_unlock2
, chip
->start
, map
, cfi
, cfi
->device_type
, NULL
);
1603 cfi_send_gen_cmd(0x10, cfi
->addr_unlock1
, chip
->start
, map
, cfi
, cfi
->device_type
, NULL
);
1605 chip
->state
= FL_ERASING
;
1606 chip
->erase_suspended
= 0;
1607 chip
->in_progress_block_addr
= adr
;
1609 INVALIDATE_CACHE_UDELAY(map
, chip
,
1611 chip
->erase_time
*500);
1613 timeo
= jiffies
+ (HZ
*20);
1616 if (chip
->state
!= FL_ERASING
) {
1617 /* Someone's suspended the erase. Sleep */
1618 set_current_state(TASK_UNINTERRUPTIBLE
);
1619 add_wait_queue(&chip
->wq
, &wait
);
1620 mutex_unlock(&chip
->mutex
);
1622 remove_wait_queue(&chip
->wq
, &wait
);
1623 mutex_lock(&chip
->mutex
);
1626 if (chip
->erase_suspended
) {
1627 /* This erase was suspended and resumed.
1628 Adjust the timeout */
1629 timeo
= jiffies
+ (HZ
*20); /* FIXME */
1630 chip
->erase_suspended
= 0;
1633 if (chip_ready(map
, adr
))
1636 if (time_after(jiffies
, timeo
)) {
1637 printk(KERN_WARNING
"MTD %s(): software timeout\n",
1642 /* Latency issues. Drop the lock, wait a while and retry */
1643 UDELAY(map
, chip
, adr
, 1000000/HZ
);
1645 /* Did we succeed? */
1646 if (!chip_good(map
, adr
, map_word_ff(map
))) {
1647 /* reset on all failures. */
1648 map_write( map
, CMD(0xF0), chip
->start
);
1649 /* FIXME - should have reset delay before continuing */
1654 chip
->state
= FL_READY
;
1655 xip_enable(map
, chip
, adr
);
1656 put_chip(map
, chip
, adr
);
1657 mutex_unlock(&chip
->mutex
);
1663 static int __xipram
do_erase_oneblock(struct map_info
*map
, struct flchip
*chip
, unsigned long adr
, int len
, void *thunk
)
1665 struct cfi_private
*cfi
= map
->fldrv_priv
;
1666 unsigned long timeo
= jiffies
+ HZ
;
1667 DECLARE_WAITQUEUE(wait
, current
);
1672 mutex_lock(&chip
->mutex
);
1673 ret
= get_chip(map
, chip
, adr
, FL_ERASING
);
1675 mutex_unlock(&chip
->mutex
);
1679 DEBUG( MTD_DEBUG_LEVEL3
, "MTD %s(): ERASE 0x%.8lx\n",
1682 XIP_INVAL_CACHED_RANGE(map
, adr
, len
);
1684 xip_disable(map
, chip
, adr
);
1686 cfi_send_gen_cmd(0xAA, cfi
->addr_unlock1
, chip
->start
, map
, cfi
, cfi
->device_type
, NULL
);
1687 cfi_send_gen_cmd(0x55, cfi
->addr_unlock2
, chip
->start
, map
, cfi
, cfi
->device_type
, NULL
);
1688 cfi_send_gen_cmd(0x80, cfi
->addr_unlock1
, chip
->start
, map
, cfi
, cfi
->device_type
, NULL
);
1689 cfi_send_gen_cmd(0xAA, cfi
->addr_unlock1
, chip
->start
, map
, cfi
, cfi
->device_type
, NULL
);
1690 cfi_send_gen_cmd(0x55, cfi
->addr_unlock2
, chip
->start
, map
, cfi
, cfi
->device_type
, NULL
);
1691 map_write(map
, cfi
->sector_erase_cmd
, adr
);
1693 chip
->state
= FL_ERASING
;
1694 chip
->erase_suspended
= 0;
1695 chip
->in_progress_block_addr
= adr
;
1697 INVALIDATE_CACHE_UDELAY(map
, chip
,
1699 chip
->erase_time
*500);
1701 timeo
= jiffies
+ (HZ
*20);
1704 if (chip
->state
!= FL_ERASING
) {
1705 /* Someone's suspended the erase. Sleep */
1706 set_current_state(TASK_UNINTERRUPTIBLE
);
1707 add_wait_queue(&chip
->wq
, &wait
);
1708 mutex_unlock(&chip
->mutex
);
1710 remove_wait_queue(&chip
->wq
, &wait
);
1711 mutex_lock(&chip
->mutex
);
1714 if (chip
->erase_suspended
) {
1715 /* This erase was suspended and resumed.
1716 Adjust the timeout */
1717 timeo
= jiffies
+ (HZ
*20); /* FIXME */
1718 chip
->erase_suspended
= 0;
1721 if (chip_ready(map
, adr
)) {
1722 xip_enable(map
, chip
, adr
);
1726 if (time_after(jiffies
, timeo
)) {
1727 xip_enable(map
, chip
, adr
);
1728 printk(KERN_WARNING
"MTD %s(): software timeout\n",
1733 /* Latency issues. Drop the lock, wait a while and retry */
1734 UDELAY(map
, chip
, adr
, 1000000/HZ
);
1736 /* Did we succeed? */
1737 if (!chip_good(map
, adr
, map_word_ff(map
))) {
1738 /* reset on all failures. */
1739 map_write( map
, CMD(0xF0), chip
->start
);
1740 /* FIXME - should have reset delay before continuing */
1745 chip
->state
= FL_READY
;
1746 put_chip(map
, chip
, adr
);
1747 mutex_unlock(&chip
->mutex
);
1752 static int cfi_amdstd_erase_varsize(struct mtd_info
*mtd
, struct erase_info
*instr
)
1754 unsigned long ofs
, len
;
1760 ret
= cfi_varsize_frob(mtd
, do_erase_oneblock
, ofs
, len
, NULL
);
1764 instr
->state
= MTD_ERASE_DONE
;
1765 mtd_erase_callback(instr
);
1771 static int cfi_amdstd_erase_chip(struct mtd_info
*mtd
, struct erase_info
*instr
)
1773 struct map_info
*map
= mtd
->priv
;
1774 struct cfi_private
*cfi
= map
->fldrv_priv
;
1777 if (instr
->addr
!= 0)
1780 if (instr
->len
!= mtd
->size
)
1783 ret
= do_erase_chip(map
, &cfi
->chips
[0]);
1787 instr
->state
= MTD_ERASE_DONE
;
1788 mtd_erase_callback(instr
);
1793 static int do_atmel_lock(struct map_info
*map
, struct flchip
*chip
,
1794 unsigned long adr
, int len
, void *thunk
)
1796 struct cfi_private
*cfi
= map
->fldrv_priv
;
1799 mutex_lock(&chip
->mutex
);
1800 ret
= get_chip(map
, chip
, adr
+ chip
->start
, FL_LOCKING
);
1803 chip
->state
= FL_LOCKING
;
1805 DEBUG(MTD_DEBUG_LEVEL3
, "MTD %s(): LOCK 0x%08lx len %d\n",
1806 __func__
, adr
, len
);
1808 cfi_send_gen_cmd(0xAA, cfi
->addr_unlock1
, chip
->start
, map
, cfi
,
1809 cfi
->device_type
, NULL
);
1810 cfi_send_gen_cmd(0x55, cfi
->addr_unlock2
, chip
->start
, map
, cfi
,
1811 cfi
->device_type
, NULL
);
1812 cfi_send_gen_cmd(0x80, cfi
->addr_unlock1
, chip
->start
, map
, cfi
,
1813 cfi
->device_type
, NULL
);
1814 cfi_send_gen_cmd(0xAA, cfi
->addr_unlock1
, chip
->start
, map
, cfi
,
1815 cfi
->device_type
, NULL
);
1816 cfi_send_gen_cmd(0x55, cfi
->addr_unlock2
, chip
->start
, map
, cfi
,
1817 cfi
->device_type
, NULL
);
1818 map_write(map
, CMD(0x40), chip
->start
+ adr
);
1820 chip
->state
= FL_READY
;
1821 put_chip(map
, chip
, adr
+ chip
->start
);
1825 mutex_unlock(&chip
->mutex
);
1829 static int do_atmel_unlock(struct map_info
*map
, struct flchip
*chip
,
1830 unsigned long adr
, int len
, void *thunk
)
1832 struct cfi_private
*cfi
= map
->fldrv_priv
;
1835 mutex_lock(&chip
->mutex
);
1836 ret
= get_chip(map
, chip
, adr
+ chip
->start
, FL_UNLOCKING
);
1839 chip
->state
= FL_UNLOCKING
;
1841 DEBUG(MTD_DEBUG_LEVEL3
, "MTD %s(): LOCK 0x%08lx len %d\n",
1842 __func__
, adr
, len
);
1844 cfi_send_gen_cmd(0xAA, cfi
->addr_unlock1
, chip
->start
, map
, cfi
,
1845 cfi
->device_type
, NULL
);
1846 map_write(map
, CMD(0x70), adr
);
1848 chip
->state
= FL_READY
;
1849 put_chip(map
, chip
, adr
+ chip
->start
);
1853 mutex_unlock(&chip
->mutex
);
1857 static int cfi_atmel_lock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
)
1859 return cfi_varsize_frob(mtd
, do_atmel_lock
, ofs
, len
, NULL
);
1862 static int cfi_atmel_unlock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
)
1864 return cfi_varsize_frob(mtd
, do_atmel_unlock
, ofs
, len
, NULL
);
1868 static void cfi_amdstd_sync (struct mtd_info
*mtd
)
1870 struct map_info
*map
= mtd
->priv
;
1871 struct cfi_private
*cfi
= map
->fldrv_priv
;
1873 struct flchip
*chip
;
1875 DECLARE_WAITQUEUE(wait
, current
);
1877 for (i
=0; !ret
&& i
<cfi
->numchips
; i
++) {
1878 chip
= &cfi
->chips
[i
];
1881 mutex_lock(&chip
->mutex
);
1883 switch(chip
->state
) {
1887 case FL_JEDEC_QUERY
:
1888 chip
->oldstate
= chip
->state
;
1889 chip
->state
= FL_SYNCING
;
1890 /* No need to wake_up() on this state change -
1891 * as the whole point is that nobody can do anything
1892 * with the chip now anyway.
1895 mutex_unlock(&chip
->mutex
);
1899 /* Not an idle state */
1900 set_current_state(TASK_UNINTERRUPTIBLE
);
1901 add_wait_queue(&chip
->wq
, &wait
);
1903 mutex_unlock(&chip
->mutex
);
1907 remove_wait_queue(&chip
->wq
, &wait
);
1913 /* Unlock the chips again */
1915 for (i
--; i
>=0; i
--) {
1916 chip
= &cfi
->chips
[i
];
1918 mutex_lock(&chip
->mutex
);
1920 if (chip
->state
== FL_SYNCING
) {
1921 chip
->state
= chip
->oldstate
;
1924 mutex_unlock(&chip
->mutex
);
1929 static int cfi_amdstd_suspend(struct mtd_info
*mtd
)
1931 struct map_info
*map
= mtd
->priv
;
1932 struct cfi_private
*cfi
= map
->fldrv_priv
;
1934 struct flchip
*chip
;
1937 for (i
=0; !ret
&& i
<cfi
->numchips
; i
++) {
1938 chip
= &cfi
->chips
[i
];
1940 mutex_lock(&chip
->mutex
);
1942 switch(chip
->state
) {
1946 case FL_JEDEC_QUERY
:
1947 chip
->oldstate
= chip
->state
;
1948 chip
->state
= FL_PM_SUSPENDED
;
1949 /* No need to wake_up() on this state change -
1950 * as the whole point is that nobody can do anything
1951 * with the chip now anyway.
1953 case FL_PM_SUSPENDED
:
1960 mutex_unlock(&chip
->mutex
);
1963 /* Unlock the chips again */
1966 for (i
--; i
>=0; i
--) {
1967 chip
= &cfi
->chips
[i
];
1969 mutex_lock(&chip
->mutex
);
1971 if (chip
->state
== FL_PM_SUSPENDED
) {
1972 chip
->state
= chip
->oldstate
;
1975 mutex_unlock(&chip
->mutex
);
1983 static void cfi_amdstd_resume(struct mtd_info
*mtd
)
1985 struct map_info
*map
= mtd
->priv
;
1986 struct cfi_private
*cfi
= map
->fldrv_priv
;
1988 struct flchip
*chip
;
1990 for (i
=0; i
<cfi
->numchips
; i
++) {
1992 chip
= &cfi
->chips
[i
];
1994 mutex_lock(&chip
->mutex
);
1996 if (chip
->state
== FL_PM_SUSPENDED
) {
1997 chip
->state
= FL_READY
;
1998 map_write(map
, CMD(0xF0), chip
->start
);
2002 printk(KERN_ERR
"Argh. Chip not in PM_SUSPENDED state upon resume()\n");
2004 mutex_unlock(&chip
->mutex
);
2010 * Ensure that the flash device is put back into read array mode before
2011 * unloading the driver or rebooting. On some systems, rebooting while
2012 * the flash is in query/program/erase mode will prevent the CPU from
2013 * fetching the bootloader code, requiring a hard reset or power cycle.
2015 static int cfi_amdstd_reset(struct mtd_info
*mtd
)
2017 struct map_info
*map
= mtd
->priv
;
2018 struct cfi_private
*cfi
= map
->fldrv_priv
;
2020 struct flchip
*chip
;
2022 for (i
= 0; i
< cfi
->numchips
; i
++) {
2024 chip
= &cfi
->chips
[i
];
2026 mutex_lock(&chip
->mutex
);
2028 ret
= get_chip(map
, chip
, chip
->start
, FL_SHUTDOWN
);
2030 map_write(map
, CMD(0xF0), chip
->start
);
2031 chip
->state
= FL_SHUTDOWN
;
2032 put_chip(map
, chip
, chip
->start
);
2035 mutex_unlock(&chip
->mutex
);
2042 static int cfi_amdstd_reboot(struct notifier_block
*nb
, unsigned long val
,
2045 struct mtd_info
*mtd
;
2047 mtd
= container_of(nb
, struct mtd_info
, reboot_notifier
);
2048 cfi_amdstd_reset(mtd
);
2053 static void cfi_amdstd_destroy(struct mtd_info
*mtd
)
2055 struct map_info
*map
= mtd
->priv
;
2056 struct cfi_private
*cfi
= map
->fldrv_priv
;
2058 cfi_amdstd_reset(mtd
);
2059 unregister_reboot_notifier(&mtd
->reboot_notifier
);
2060 kfree(cfi
->cmdset_priv
);
2063 kfree(mtd
->eraseregions
);
2066 MODULE_LICENSE("GPL");
2067 MODULE_AUTHOR("Crossnet Co. <info@crossnet.co.jp> et al.");
2068 MODULE_DESCRIPTION("MTD chip driver for AMD/Fujitsu flash chips");
2069 MODULE_ALIAS("cfi_cmdset_0006");
2070 MODULE_ALIAS("cfi_cmdset_0701");