FRV: Use generic show_interrupts()
[cris-mirror.git] / drivers / mtd / devices / m25p80.c
blobe4eba6cc1b2e7c98ba8fac09db7b9569012d34b0
1 /*
2 * MTD SPI driver for ST M25Pxx (and similar) serial flash chips
4 * Author: Mike Lavender, mike@steroidmicros.com
6 * Copyright (c) 2005, Intec Automation Inc.
8 * Some parts are based on lart.c by Abraham Van Der Merwe
10 * Cleaned up and generalized based on mtd_dataflash.c
12 * This code is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
18 #include <linux/init.h>
19 #include <linux/err.h>
20 #include <linux/errno.h>
21 #include <linux/module.h>
22 #include <linux/device.h>
23 #include <linux/interrupt.h>
24 #include <linux/mutex.h>
25 #include <linux/math64.h>
26 #include <linux/slab.h>
27 #include <linux/sched.h>
28 #include <linux/mod_devicetable.h>
30 #include <linux/mtd/mtd.h>
31 #include <linux/mtd/partitions.h>
33 #include <linux/spi/spi.h>
34 #include <linux/spi/flash.h>
36 /* Flash opcodes. */
37 #define OPCODE_WREN 0x06 /* Write enable */
38 #define OPCODE_RDSR 0x05 /* Read status register */
39 #define OPCODE_WRSR 0x01 /* Write status register 1 byte */
40 #define OPCODE_NORM_READ 0x03 /* Read data bytes (low frequency) */
41 #define OPCODE_FAST_READ 0x0b /* Read data bytes (high frequency) */
42 #define OPCODE_PP 0x02 /* Page program (up to 256 bytes) */
43 #define OPCODE_BE_4K 0x20 /* Erase 4KiB block */
44 #define OPCODE_BE_32K 0x52 /* Erase 32KiB block */
45 #define OPCODE_CHIP_ERASE 0xc7 /* Erase whole flash chip */
46 #define OPCODE_SE 0xd8 /* Sector erase (usually 64KiB) */
47 #define OPCODE_RDID 0x9f /* Read JEDEC ID */
49 /* Used for SST flashes only. */
50 #define OPCODE_BP 0x02 /* Byte program */
51 #define OPCODE_WRDI 0x04 /* Write disable */
52 #define OPCODE_AAI_WP 0xad /* Auto address increment word program */
54 /* Used for Macronix flashes only. */
55 #define OPCODE_EN4B 0xb7 /* Enter 4-byte mode */
56 #define OPCODE_EX4B 0xe9 /* Exit 4-byte mode */
58 /* Status Register bits. */
59 #define SR_WIP 1 /* Write in progress */
60 #define SR_WEL 2 /* Write enable latch */
61 /* meaning of other SR_* bits may differ between vendors */
62 #define SR_BP0 4 /* Block protect 0 */
63 #define SR_BP1 8 /* Block protect 1 */
64 #define SR_BP2 0x10 /* Block protect 2 */
65 #define SR_SRWD 0x80 /* SR write protect */
67 /* Define max times to check status register before we give up. */
68 #define MAX_READY_WAIT_JIFFIES (40 * HZ) /* M25P16 specs 40s max chip erase */
69 #define MAX_CMD_SIZE 5
71 #ifdef CONFIG_M25PXX_USE_FAST_READ
72 #define OPCODE_READ OPCODE_FAST_READ
73 #define FAST_READ_DUMMY_BYTE 1
74 #else
75 #define OPCODE_READ OPCODE_NORM_READ
76 #define FAST_READ_DUMMY_BYTE 0
77 #endif
79 /****************************************************************************/
81 struct m25p {
82 struct spi_device *spi;
83 struct mutex lock;
84 struct mtd_info mtd;
85 unsigned partitioned:1;
86 u16 page_size;
87 u16 addr_width;
88 u8 erase_opcode;
89 u8 *command;
92 static inline struct m25p *mtd_to_m25p(struct mtd_info *mtd)
94 return container_of(mtd, struct m25p, mtd);
97 /****************************************************************************/
100 * Internal helper functions
104 * Read the status register, returning its value in the location
105 * Return the status register value.
106 * Returns negative if error occurred.
108 static int read_sr(struct m25p *flash)
110 ssize_t retval;
111 u8 code = OPCODE_RDSR;
112 u8 val;
114 retval = spi_write_then_read(flash->spi, &code, 1, &val, 1);
116 if (retval < 0) {
117 dev_err(&flash->spi->dev, "error %d reading SR\n",
118 (int) retval);
119 return retval;
122 return val;
126 * Write status register 1 byte
127 * Returns negative if error occurred.
129 static int write_sr(struct m25p *flash, u8 val)
131 flash->command[0] = OPCODE_WRSR;
132 flash->command[1] = val;
134 return spi_write(flash->spi, flash->command, 2);
138 * Set write enable latch with Write Enable command.
139 * Returns negative if error occurred.
141 static inline int write_enable(struct m25p *flash)
143 u8 code = OPCODE_WREN;
145 return spi_write_then_read(flash->spi, &code, 1, NULL, 0);
149 * Send write disble instruction to the chip.
151 static inline int write_disable(struct m25p *flash)
153 u8 code = OPCODE_WRDI;
155 return spi_write_then_read(flash->spi, &code, 1, NULL, 0);
159 * Enable/disable 4-byte addressing mode.
161 static inline int set_4byte(struct m25p *flash, int enable)
163 u8 code = enable ? OPCODE_EN4B : OPCODE_EX4B;
165 return spi_write_then_read(flash->spi, &code, 1, NULL, 0);
169 * Service routine to read status register until ready, or timeout occurs.
170 * Returns non-zero if error.
172 static int wait_till_ready(struct m25p *flash)
174 unsigned long deadline;
175 int sr;
177 deadline = jiffies + MAX_READY_WAIT_JIFFIES;
179 do {
180 if ((sr = read_sr(flash)) < 0)
181 break;
182 else if (!(sr & SR_WIP))
183 return 0;
185 cond_resched();
187 } while (!time_after_eq(jiffies, deadline));
189 return 1;
193 * Erase the whole flash memory
195 * Returns 0 if successful, non-zero otherwise.
197 static int erase_chip(struct m25p *flash)
199 DEBUG(MTD_DEBUG_LEVEL3, "%s: %s %lldKiB\n",
200 dev_name(&flash->spi->dev), __func__,
201 (long long)(flash->mtd.size >> 10));
203 /* Wait until finished previous write command. */
204 if (wait_till_ready(flash))
205 return 1;
207 /* Send write enable, then erase commands. */
208 write_enable(flash);
210 /* Set up command buffer. */
211 flash->command[0] = OPCODE_CHIP_ERASE;
213 spi_write(flash->spi, flash->command, 1);
215 return 0;
218 static void m25p_addr2cmd(struct m25p *flash, unsigned int addr, u8 *cmd)
220 /* opcode is in cmd[0] */
221 cmd[1] = addr >> (flash->addr_width * 8 - 8);
222 cmd[2] = addr >> (flash->addr_width * 8 - 16);
223 cmd[3] = addr >> (flash->addr_width * 8 - 24);
224 cmd[4] = addr >> (flash->addr_width * 8 - 32);
227 static int m25p_cmdsz(struct m25p *flash)
229 return 1 + flash->addr_width;
233 * Erase one sector of flash memory at offset ``offset'' which is any
234 * address within the sector which should be erased.
236 * Returns 0 if successful, non-zero otherwise.
238 static int erase_sector(struct m25p *flash, u32 offset)
240 DEBUG(MTD_DEBUG_LEVEL3, "%s: %s %dKiB at 0x%08x\n",
241 dev_name(&flash->spi->dev), __func__,
242 flash->mtd.erasesize / 1024, offset);
244 /* Wait until finished previous write command. */
245 if (wait_till_ready(flash))
246 return 1;
248 /* Send write enable, then erase commands. */
249 write_enable(flash);
251 /* Set up command buffer. */
252 flash->command[0] = flash->erase_opcode;
253 m25p_addr2cmd(flash, offset, flash->command);
255 spi_write(flash->spi, flash->command, m25p_cmdsz(flash));
257 return 0;
260 /****************************************************************************/
263 * MTD implementation
267 * Erase an address range on the flash chip. The address range may extend
268 * one or more erase sectors. Return an error is there is a problem erasing.
270 static int m25p80_erase(struct mtd_info *mtd, struct erase_info *instr)
272 struct m25p *flash = mtd_to_m25p(mtd);
273 u32 addr,len;
274 uint32_t rem;
276 DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%llx, len %lld\n",
277 dev_name(&flash->spi->dev), __func__, "at",
278 (long long)instr->addr, (long long)instr->len);
280 /* sanity checks */
281 if (instr->addr + instr->len > flash->mtd.size)
282 return -EINVAL;
283 div_u64_rem(instr->len, mtd->erasesize, &rem);
284 if (rem)
285 return -EINVAL;
287 addr = instr->addr;
288 len = instr->len;
290 mutex_lock(&flash->lock);
292 /* whole-chip erase? */
293 if (len == flash->mtd.size) {
294 if (erase_chip(flash)) {
295 instr->state = MTD_ERASE_FAILED;
296 mutex_unlock(&flash->lock);
297 return -EIO;
300 /* REVISIT in some cases we could speed up erasing large regions
301 * by using OPCODE_SE instead of OPCODE_BE_4K. We may have set up
302 * to use "small sector erase", but that's not always optimal.
305 /* "sector"-at-a-time erase */
306 } else {
307 while (len) {
308 if (erase_sector(flash, addr)) {
309 instr->state = MTD_ERASE_FAILED;
310 mutex_unlock(&flash->lock);
311 return -EIO;
314 addr += mtd->erasesize;
315 len -= mtd->erasesize;
319 mutex_unlock(&flash->lock);
321 instr->state = MTD_ERASE_DONE;
322 mtd_erase_callback(instr);
324 return 0;
328 * Read an address range from the flash chip. The address range
329 * may be any size provided it is within the physical boundaries.
331 static int m25p80_read(struct mtd_info *mtd, loff_t from, size_t len,
332 size_t *retlen, u_char *buf)
334 struct m25p *flash = mtd_to_m25p(mtd);
335 struct spi_transfer t[2];
336 struct spi_message m;
338 DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%08x, len %zd\n",
339 dev_name(&flash->spi->dev), __func__, "from",
340 (u32)from, len);
342 /* sanity checks */
343 if (!len)
344 return 0;
346 if (from + len > flash->mtd.size)
347 return -EINVAL;
349 spi_message_init(&m);
350 memset(t, 0, (sizeof t));
352 /* NOTE:
353 * OPCODE_FAST_READ (if available) is faster.
354 * Should add 1 byte DUMMY_BYTE.
356 t[0].tx_buf = flash->command;
357 t[0].len = m25p_cmdsz(flash) + FAST_READ_DUMMY_BYTE;
358 spi_message_add_tail(&t[0], &m);
360 t[1].rx_buf = buf;
361 t[1].len = len;
362 spi_message_add_tail(&t[1], &m);
364 /* Byte count starts at zero. */
365 *retlen = 0;
367 mutex_lock(&flash->lock);
369 /* Wait till previous write/erase is done. */
370 if (wait_till_ready(flash)) {
371 /* REVISIT status return?? */
372 mutex_unlock(&flash->lock);
373 return 1;
376 /* FIXME switch to OPCODE_FAST_READ. It's required for higher
377 * clocks; and at this writing, every chip this driver handles
378 * supports that opcode.
381 /* Set up the write data buffer. */
382 flash->command[0] = OPCODE_READ;
383 m25p_addr2cmd(flash, from, flash->command);
385 spi_sync(flash->spi, &m);
387 *retlen = m.actual_length - m25p_cmdsz(flash) - FAST_READ_DUMMY_BYTE;
389 mutex_unlock(&flash->lock);
391 return 0;
395 * Write an address range to the flash chip. Data must be written in
396 * FLASH_PAGESIZE chunks. The address range may be any size provided
397 * it is within the physical boundaries.
399 static int m25p80_write(struct mtd_info *mtd, loff_t to, size_t len,
400 size_t *retlen, const u_char *buf)
402 struct m25p *flash = mtd_to_m25p(mtd);
403 u32 page_offset, page_size;
404 struct spi_transfer t[2];
405 struct spi_message m;
407 DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%08x, len %zd\n",
408 dev_name(&flash->spi->dev), __func__, "to",
409 (u32)to, len);
411 *retlen = 0;
413 /* sanity checks */
414 if (!len)
415 return(0);
417 if (to + len > flash->mtd.size)
418 return -EINVAL;
420 spi_message_init(&m);
421 memset(t, 0, (sizeof t));
423 t[0].tx_buf = flash->command;
424 t[0].len = m25p_cmdsz(flash);
425 spi_message_add_tail(&t[0], &m);
427 t[1].tx_buf = buf;
428 spi_message_add_tail(&t[1], &m);
430 mutex_lock(&flash->lock);
432 /* Wait until finished previous write command. */
433 if (wait_till_ready(flash)) {
434 mutex_unlock(&flash->lock);
435 return 1;
438 write_enable(flash);
440 /* Set up the opcode in the write buffer. */
441 flash->command[0] = OPCODE_PP;
442 m25p_addr2cmd(flash, to, flash->command);
444 page_offset = to & (flash->page_size - 1);
446 /* do all the bytes fit onto one page? */
447 if (page_offset + len <= flash->page_size) {
448 t[1].len = len;
450 spi_sync(flash->spi, &m);
452 *retlen = m.actual_length - m25p_cmdsz(flash);
453 } else {
454 u32 i;
456 /* the size of data remaining on the first page */
457 page_size = flash->page_size - page_offset;
459 t[1].len = page_size;
460 spi_sync(flash->spi, &m);
462 *retlen = m.actual_length - m25p_cmdsz(flash);
464 /* write everything in flash->page_size chunks */
465 for (i = page_size; i < len; i += page_size) {
466 page_size = len - i;
467 if (page_size > flash->page_size)
468 page_size = flash->page_size;
470 /* write the next page to flash */
471 m25p_addr2cmd(flash, to + i, flash->command);
473 t[1].tx_buf = buf + i;
474 t[1].len = page_size;
476 wait_till_ready(flash);
478 write_enable(flash);
480 spi_sync(flash->spi, &m);
482 *retlen += m.actual_length - m25p_cmdsz(flash);
486 mutex_unlock(&flash->lock);
488 return 0;
491 static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
492 size_t *retlen, const u_char *buf)
494 struct m25p *flash = mtd_to_m25p(mtd);
495 struct spi_transfer t[2];
496 struct spi_message m;
497 size_t actual;
498 int cmd_sz, ret;
500 DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%08x, len %zd\n",
501 dev_name(&flash->spi->dev), __func__, "to",
502 (u32)to, len);
504 *retlen = 0;
506 /* sanity checks */
507 if (!len)
508 return 0;
510 if (to + len > flash->mtd.size)
511 return -EINVAL;
513 spi_message_init(&m);
514 memset(t, 0, (sizeof t));
516 t[0].tx_buf = flash->command;
517 t[0].len = m25p_cmdsz(flash);
518 spi_message_add_tail(&t[0], &m);
520 t[1].tx_buf = buf;
521 spi_message_add_tail(&t[1], &m);
523 mutex_lock(&flash->lock);
525 /* Wait until finished previous write command. */
526 ret = wait_till_ready(flash);
527 if (ret)
528 goto time_out;
530 write_enable(flash);
532 actual = to % 2;
533 /* Start write from odd address. */
534 if (actual) {
535 flash->command[0] = OPCODE_BP;
536 m25p_addr2cmd(flash, to, flash->command);
538 /* write one byte. */
539 t[1].len = 1;
540 spi_sync(flash->spi, &m);
541 ret = wait_till_ready(flash);
542 if (ret)
543 goto time_out;
544 *retlen += m.actual_length - m25p_cmdsz(flash);
546 to += actual;
548 flash->command[0] = OPCODE_AAI_WP;
549 m25p_addr2cmd(flash, to, flash->command);
551 /* Write out most of the data here. */
552 cmd_sz = m25p_cmdsz(flash);
553 for (; actual < len - 1; actual += 2) {
554 t[0].len = cmd_sz;
555 /* write two bytes. */
556 t[1].len = 2;
557 t[1].tx_buf = buf + actual;
559 spi_sync(flash->spi, &m);
560 ret = wait_till_ready(flash);
561 if (ret)
562 goto time_out;
563 *retlen += m.actual_length - cmd_sz;
564 cmd_sz = 1;
565 to += 2;
567 write_disable(flash);
568 ret = wait_till_ready(flash);
569 if (ret)
570 goto time_out;
572 /* Write out trailing byte if it exists. */
573 if (actual != len) {
574 write_enable(flash);
575 flash->command[0] = OPCODE_BP;
576 m25p_addr2cmd(flash, to, flash->command);
577 t[0].len = m25p_cmdsz(flash);
578 t[1].len = 1;
579 t[1].tx_buf = buf + actual;
581 spi_sync(flash->spi, &m);
582 ret = wait_till_ready(flash);
583 if (ret)
584 goto time_out;
585 *retlen += m.actual_length - m25p_cmdsz(flash);
586 write_disable(flash);
589 time_out:
590 mutex_unlock(&flash->lock);
591 return ret;
594 /****************************************************************************/
597 * SPI device driver setup and teardown
600 struct flash_info {
601 /* JEDEC id zero means "no ID" (most older chips); otherwise it has
602 * a high byte of zero plus three data bytes: the manufacturer id,
603 * then a two byte device id.
605 u32 jedec_id;
606 u16 ext_id;
608 /* The size listed here is what works with OPCODE_SE, which isn't
609 * necessarily called a "sector" by the vendor.
611 unsigned sector_size;
612 u16 n_sectors;
614 u16 page_size;
615 u16 addr_width;
617 u16 flags;
618 #define SECT_4K 0x01 /* OPCODE_BE_4K works uniformly */
619 #define M25P_NO_ERASE 0x02 /* No erase command needed */
622 #define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags) \
623 ((kernel_ulong_t)&(struct flash_info) { \
624 .jedec_id = (_jedec_id), \
625 .ext_id = (_ext_id), \
626 .sector_size = (_sector_size), \
627 .n_sectors = (_n_sectors), \
628 .page_size = 256, \
629 .flags = (_flags), \
632 #define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width) \
633 ((kernel_ulong_t)&(struct flash_info) { \
634 .sector_size = (_sector_size), \
635 .n_sectors = (_n_sectors), \
636 .page_size = (_page_size), \
637 .addr_width = (_addr_width), \
638 .flags = M25P_NO_ERASE, \
641 /* NOTE: double check command sets and memory organization when you add
642 * more flash chips. This current list focusses on newer chips, which
643 * have been converging on command sets which including JEDEC ID.
645 static const struct spi_device_id m25p_ids[] = {
646 /* Atmel -- some are (confusingly) marketed as "DataFlash" */
647 { "at25fs010", INFO(0x1f6601, 0, 32 * 1024, 4, SECT_4K) },
648 { "at25fs040", INFO(0x1f6604, 0, 64 * 1024, 8, SECT_4K) },
650 { "at25df041a", INFO(0x1f4401, 0, 64 * 1024, 8, SECT_4K) },
651 { "at25df641", INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K) },
653 { "at26f004", INFO(0x1f0400, 0, 64 * 1024, 8, SECT_4K) },
654 { "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K) },
655 { "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K) },
656 { "at26df321", INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) },
658 /* EON -- en25pxx */
659 { "en25p32", INFO(0x1c2016, 0, 64 * 1024, 64, 0) },
660 { "en25p64", INFO(0x1c2017, 0, 64 * 1024, 128, 0) },
662 /* Intel/Numonyx -- xxxs33b */
663 { "160s33b", INFO(0x898911, 0, 64 * 1024, 32, 0) },
664 { "320s33b", INFO(0x898912, 0, 64 * 1024, 64, 0) },
665 { "640s33b", INFO(0x898913, 0, 64 * 1024, 128, 0) },
667 /* Macronix */
668 { "mx25l4005a", INFO(0xc22013, 0, 64 * 1024, 8, SECT_4K) },
669 { "mx25l8005", INFO(0xc22014, 0, 64 * 1024, 16, 0) },
670 { "mx25l3205d", INFO(0xc22016, 0, 64 * 1024, 64, 0) },
671 { "mx25l6405d", INFO(0xc22017, 0, 64 * 1024, 128, 0) },
672 { "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) },
673 { "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) },
674 { "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512, 0) },
675 { "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) },
677 /* Spansion -- single (large) sector size only, at least
678 * for the chips listed here (without boot sectors).
680 { "s25sl004a", INFO(0x010212, 0, 64 * 1024, 8, 0) },
681 { "s25sl008a", INFO(0x010213, 0, 64 * 1024, 16, 0) },
682 { "s25sl016a", INFO(0x010214, 0, 64 * 1024, 32, 0) },
683 { "s25sl032a", INFO(0x010215, 0, 64 * 1024, 64, 0) },
684 { "s25sl032p", INFO(0x010215, 0x4d00, 64 * 1024, 64, SECT_4K) },
685 { "s25sl064a", INFO(0x010216, 0, 64 * 1024, 128, 0) },
686 { "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024, 64, 0) },
687 { "s25sl12801", INFO(0x012018, 0x0301, 64 * 1024, 256, 0) },
688 { "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024, 64, 0) },
689 { "s25fl129p1", INFO(0x012018, 0x4d01, 64 * 1024, 256, 0) },
690 { "s25fl016k", INFO(0xef4015, 0, 64 * 1024, 32, SECT_4K) },
691 { "s25fl064k", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
693 /* SST -- large erase sizes are "overlays", "sectors" are 4K */
694 { "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024, 8, SECT_4K) },
695 { "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K) },
696 { "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K) },
697 { "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K) },
698 { "sst25wf512", INFO(0xbf2501, 0, 64 * 1024, 1, SECT_4K) },
699 { "sst25wf010", INFO(0xbf2502, 0, 64 * 1024, 2, SECT_4K) },
700 { "sst25wf020", INFO(0xbf2503, 0, 64 * 1024, 4, SECT_4K) },
701 { "sst25wf040", INFO(0xbf2504, 0, 64 * 1024, 8, SECT_4K) },
703 /* ST Microelectronics -- newer production may have feature updates */
704 { "m25p05", INFO(0x202010, 0, 32 * 1024, 2, 0) },
705 { "m25p10", INFO(0x202011, 0, 32 * 1024, 4, 0) },
706 { "m25p20", INFO(0x202012, 0, 64 * 1024, 4, 0) },
707 { "m25p40", INFO(0x202013, 0, 64 * 1024, 8, 0) },
708 { "m25p80", INFO(0x202014, 0, 64 * 1024, 16, 0) },
709 { "m25p16", INFO(0x202015, 0, 64 * 1024, 32, 0) },
710 { "m25p32", INFO(0x202016, 0, 64 * 1024, 64, 0) },
711 { "m25p64", INFO(0x202017, 0, 64 * 1024, 128, 0) },
712 { "m25p128", INFO(0x202018, 0, 256 * 1024, 64, 0) },
714 { "m25p05-nonjedec", INFO(0, 0, 32 * 1024, 2, 0) },
715 { "m25p10-nonjedec", INFO(0, 0, 32 * 1024, 4, 0) },
716 { "m25p20-nonjedec", INFO(0, 0, 64 * 1024, 4, 0) },
717 { "m25p40-nonjedec", INFO(0, 0, 64 * 1024, 8, 0) },
718 { "m25p80-nonjedec", INFO(0, 0, 64 * 1024, 16, 0) },
719 { "m25p16-nonjedec", INFO(0, 0, 64 * 1024, 32, 0) },
720 { "m25p32-nonjedec", INFO(0, 0, 64 * 1024, 64, 0) },
721 { "m25p64-nonjedec", INFO(0, 0, 64 * 1024, 128, 0) },
722 { "m25p128-nonjedec", INFO(0, 0, 256 * 1024, 64, 0) },
724 { "m45pe10", INFO(0x204011, 0, 64 * 1024, 2, 0) },
725 { "m45pe80", INFO(0x204014, 0, 64 * 1024, 16, 0) },
726 { "m45pe16", INFO(0x204015, 0, 64 * 1024, 32, 0) },
728 { "m25pe80", INFO(0x208014, 0, 64 * 1024, 16, 0) },
729 { "m25pe16", INFO(0x208015, 0, 64 * 1024, 32, SECT_4K) },
731 /* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
732 { "w25x10", INFO(0xef3011, 0, 64 * 1024, 2, SECT_4K) },
733 { "w25x20", INFO(0xef3012, 0, 64 * 1024, 4, SECT_4K) },
734 { "w25x40", INFO(0xef3013, 0, 64 * 1024, 8, SECT_4K) },
735 { "w25x80", INFO(0xef3014, 0, 64 * 1024, 16, SECT_4K) },
736 { "w25x16", INFO(0xef3015, 0, 64 * 1024, 32, SECT_4K) },
737 { "w25x32", INFO(0xef3016, 0, 64 * 1024, 64, SECT_4K) },
738 { "w25q32", INFO(0xef4016, 0, 64 * 1024, 64, SECT_4K) },
739 { "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) },
740 { "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
742 /* Catalyst / On Semiconductor -- non-JEDEC */
743 { "cat25c11", CAT25_INFO( 16, 8, 16, 1) },
744 { "cat25c03", CAT25_INFO( 32, 8, 16, 2) },
745 { "cat25c09", CAT25_INFO( 128, 8, 32, 2) },
746 { "cat25c17", CAT25_INFO( 256, 8, 32, 2) },
747 { "cat25128", CAT25_INFO(2048, 8, 64, 2) },
748 { },
750 MODULE_DEVICE_TABLE(spi, m25p_ids);
752 static const struct spi_device_id *__devinit jedec_probe(struct spi_device *spi)
754 int tmp;
755 u8 code = OPCODE_RDID;
756 u8 id[5];
757 u32 jedec;
758 u16 ext_jedec;
759 struct flash_info *info;
761 /* JEDEC also defines an optional "extended device information"
762 * string for after vendor-specific data, after the three bytes
763 * we use here. Supporting some chips might require using it.
765 tmp = spi_write_then_read(spi, &code, 1, id, 5);
766 if (tmp < 0) {
767 DEBUG(MTD_DEBUG_LEVEL0, "%s: error %d reading JEDEC ID\n",
768 dev_name(&spi->dev), tmp);
769 return ERR_PTR(tmp);
771 jedec = id[0];
772 jedec = jedec << 8;
773 jedec |= id[1];
774 jedec = jedec << 8;
775 jedec |= id[2];
777 ext_jedec = id[3] << 8 | id[4];
779 for (tmp = 0; tmp < ARRAY_SIZE(m25p_ids) - 1; tmp++) {
780 info = (void *)m25p_ids[tmp].driver_data;
781 if (info->jedec_id == jedec) {
782 if (info->ext_id != 0 && info->ext_id != ext_jedec)
783 continue;
784 return &m25p_ids[tmp];
787 dev_err(&spi->dev, "unrecognized JEDEC id %06x\n", jedec);
788 return ERR_PTR(-ENODEV);
793 * board specific setup should have ensured the SPI clock used here
794 * matches what the READ command supports, at least until this driver
795 * understands FAST_READ (for clocks over 25 MHz).
797 static int __devinit m25p_probe(struct spi_device *spi)
799 const struct spi_device_id *id = spi_get_device_id(spi);
800 struct flash_platform_data *data;
801 struct m25p *flash;
802 struct flash_info *info;
803 unsigned i;
805 /* Platform data helps sort out which chip type we have, as
806 * well as how this board partitions it. If we don't have
807 * a chip ID, try the JEDEC id commands; they'll work for most
808 * newer chips, even if we don't recognize the particular chip.
810 data = spi->dev.platform_data;
811 if (data && data->type) {
812 const struct spi_device_id *plat_id;
814 for (i = 0; i < ARRAY_SIZE(m25p_ids) - 1; i++) {
815 plat_id = &m25p_ids[i];
816 if (strcmp(data->type, plat_id->name))
817 continue;
818 break;
821 if (i < ARRAY_SIZE(m25p_ids) - 1)
822 id = plat_id;
823 else
824 dev_warn(&spi->dev, "unrecognized id %s\n", data->type);
827 info = (void *)id->driver_data;
829 if (info->jedec_id) {
830 const struct spi_device_id *jid;
832 jid = jedec_probe(spi);
833 if (IS_ERR(jid)) {
834 return PTR_ERR(jid);
835 } else if (jid != id) {
837 * JEDEC knows better, so overwrite platform ID. We
838 * can't trust partitions any longer, but we'll let
839 * mtd apply them anyway, since some partitions may be
840 * marked read-only, and we don't want to lose that
841 * information, even if it's not 100% accurate.
843 dev_warn(&spi->dev, "found %s, expected %s\n",
844 jid->name, id->name);
845 id = jid;
846 info = (void *)jid->driver_data;
850 flash = kzalloc(sizeof *flash, GFP_KERNEL);
851 if (!flash)
852 return -ENOMEM;
853 flash->command = kmalloc(MAX_CMD_SIZE + FAST_READ_DUMMY_BYTE, GFP_KERNEL);
854 if (!flash->command) {
855 kfree(flash);
856 return -ENOMEM;
859 flash->spi = spi;
860 mutex_init(&flash->lock);
861 dev_set_drvdata(&spi->dev, flash);
864 * Atmel, SST and Intel/Numonyx serial flash tend to power
865 * up with the software protection bits set
868 if (info->jedec_id >> 16 == 0x1f ||
869 info->jedec_id >> 16 == 0x89 ||
870 info->jedec_id >> 16 == 0xbf) {
871 write_enable(flash);
872 write_sr(flash, 0);
875 if (data && data->name)
876 flash->mtd.name = data->name;
877 else
878 flash->mtd.name = dev_name(&spi->dev);
880 flash->mtd.type = MTD_NORFLASH;
881 flash->mtd.writesize = 1;
882 flash->mtd.flags = MTD_CAP_NORFLASH;
883 flash->mtd.size = info->sector_size * info->n_sectors;
884 flash->mtd.erase = m25p80_erase;
885 flash->mtd.read = m25p80_read;
887 /* sst flash chips use AAI word program */
888 if (info->jedec_id >> 16 == 0xbf)
889 flash->mtd.write = sst_write;
890 else
891 flash->mtd.write = m25p80_write;
893 /* prefer "small sector" erase if possible */
894 if (info->flags & SECT_4K) {
895 flash->erase_opcode = OPCODE_BE_4K;
896 flash->mtd.erasesize = 4096;
897 } else {
898 flash->erase_opcode = OPCODE_SE;
899 flash->mtd.erasesize = info->sector_size;
902 if (info->flags & M25P_NO_ERASE)
903 flash->mtd.flags |= MTD_NO_ERASE;
905 flash->mtd.dev.parent = &spi->dev;
906 flash->page_size = info->page_size;
908 if (info->addr_width)
909 flash->addr_width = info->addr_width;
910 else {
911 /* enable 4-byte addressing if the device exceeds 16MiB */
912 if (flash->mtd.size > 0x1000000) {
913 flash->addr_width = 4;
914 set_4byte(flash, 1);
915 } else
916 flash->addr_width = 3;
919 dev_info(&spi->dev, "%s (%lld Kbytes)\n", id->name,
920 (long long)flash->mtd.size >> 10);
922 DEBUG(MTD_DEBUG_LEVEL2,
923 "mtd .name = %s, .size = 0x%llx (%lldMiB) "
924 ".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
925 flash->mtd.name,
926 (long long)flash->mtd.size, (long long)(flash->mtd.size >> 20),
927 flash->mtd.erasesize, flash->mtd.erasesize / 1024,
928 flash->mtd.numeraseregions);
930 if (flash->mtd.numeraseregions)
931 for (i = 0; i < flash->mtd.numeraseregions; i++)
932 DEBUG(MTD_DEBUG_LEVEL2,
933 "mtd.eraseregions[%d] = { .offset = 0x%llx, "
934 ".erasesize = 0x%.8x (%uKiB), "
935 ".numblocks = %d }\n",
936 i, (long long)flash->mtd.eraseregions[i].offset,
937 flash->mtd.eraseregions[i].erasesize,
938 flash->mtd.eraseregions[i].erasesize / 1024,
939 flash->mtd.eraseregions[i].numblocks);
942 /* partitions should match sector boundaries; and it may be good to
943 * use readonly partitions for writeprotected sectors (BP2..BP0).
945 if (mtd_has_partitions()) {
946 struct mtd_partition *parts = NULL;
947 int nr_parts = 0;
949 if (mtd_has_cmdlinepart()) {
950 static const char *part_probes[]
951 = { "cmdlinepart", NULL, };
953 nr_parts = parse_mtd_partitions(&flash->mtd,
954 part_probes, &parts, 0);
957 if (nr_parts <= 0 && data && data->parts) {
958 parts = data->parts;
959 nr_parts = data->nr_parts;
962 #ifdef CONFIG_MTD_OF_PARTS
963 if (nr_parts <= 0 && spi->dev.of_node) {
964 nr_parts = of_mtd_parse_partitions(&spi->dev,
965 spi->dev.of_node, &parts);
967 #endif
969 if (nr_parts > 0) {
970 for (i = 0; i < nr_parts; i++) {
971 DEBUG(MTD_DEBUG_LEVEL2, "partitions[%d] = "
972 "{.name = %s, .offset = 0x%llx, "
973 ".size = 0x%llx (%lldKiB) }\n",
974 i, parts[i].name,
975 (long long)parts[i].offset,
976 (long long)parts[i].size,
977 (long long)(parts[i].size >> 10));
979 flash->partitioned = 1;
980 return add_mtd_partitions(&flash->mtd, parts, nr_parts);
982 } else if (data && data->nr_parts)
983 dev_warn(&spi->dev, "ignoring %d default partitions on %s\n",
984 data->nr_parts, data->name);
986 return add_mtd_device(&flash->mtd) == 1 ? -ENODEV : 0;
990 static int __devexit m25p_remove(struct spi_device *spi)
992 struct m25p *flash = dev_get_drvdata(&spi->dev);
993 int status;
995 /* Clean up MTD stuff. */
996 if (mtd_has_partitions() && flash->partitioned)
997 status = del_mtd_partitions(&flash->mtd);
998 else
999 status = del_mtd_device(&flash->mtd);
1000 if (status == 0) {
1001 kfree(flash->command);
1002 kfree(flash);
1004 return 0;
1008 static struct spi_driver m25p80_driver = {
1009 .driver = {
1010 .name = "m25p80",
1011 .bus = &spi_bus_type,
1012 .owner = THIS_MODULE,
1014 .id_table = m25p_ids,
1015 .probe = m25p_probe,
1016 .remove = __devexit_p(m25p_remove),
1018 /* REVISIT: many of these chips have deep power-down modes, which
1019 * should clearly be entered on suspend() to minimize power use.
1020 * And also when they're otherwise idle...
1025 static int __init m25p80_init(void)
1027 return spi_register_driver(&m25p80_driver);
1031 static void __exit m25p80_exit(void)
1033 spi_unregister_driver(&m25p80_driver);
1037 module_init(m25p80_init);
1038 module_exit(m25p80_exit);
1040 MODULE_LICENSE("GPL");
1041 MODULE_AUTHOR("Mike Lavender");
1042 MODULE_DESCRIPTION("MTD SPI driver for ST M25Pxx flash chips");