2 * MTD SPI driver for ST M25Pxx (and similar) serial flash chips
4 * Author: Mike Lavender, mike@steroidmicros.com
6 * Copyright (c) 2005, Intec Automation Inc.
8 * Some parts are based on lart.c by Abraham Van Der Merwe
10 * Cleaned up and generalized based on mtd_dataflash.c
12 * This code is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
18 #include <linux/init.h>
19 #include <linux/err.h>
20 #include <linux/errno.h>
21 #include <linux/module.h>
22 #include <linux/device.h>
23 #include <linux/interrupt.h>
24 #include <linux/mutex.h>
25 #include <linux/math64.h>
26 #include <linux/slab.h>
27 #include <linux/sched.h>
28 #include <linux/mod_devicetable.h>
30 #include <linux/mtd/mtd.h>
31 #include <linux/mtd/partitions.h>
33 #include <linux/spi/spi.h>
34 #include <linux/spi/flash.h>
37 #define OPCODE_WREN 0x06 /* Write enable */
38 #define OPCODE_RDSR 0x05 /* Read status register */
39 #define OPCODE_WRSR 0x01 /* Write status register 1 byte */
40 #define OPCODE_NORM_READ 0x03 /* Read data bytes (low frequency) */
41 #define OPCODE_FAST_READ 0x0b /* Read data bytes (high frequency) */
42 #define OPCODE_PP 0x02 /* Page program (up to 256 bytes) */
43 #define OPCODE_BE_4K 0x20 /* Erase 4KiB block */
44 #define OPCODE_BE_32K 0x52 /* Erase 32KiB block */
45 #define OPCODE_CHIP_ERASE 0xc7 /* Erase whole flash chip */
46 #define OPCODE_SE 0xd8 /* Sector erase (usually 64KiB) */
47 #define OPCODE_RDID 0x9f /* Read JEDEC ID */
49 /* Used for SST flashes only. */
50 #define OPCODE_BP 0x02 /* Byte program */
51 #define OPCODE_WRDI 0x04 /* Write disable */
52 #define OPCODE_AAI_WP 0xad /* Auto address increment word program */
54 /* Used for Macronix flashes only. */
55 #define OPCODE_EN4B 0xb7 /* Enter 4-byte mode */
56 #define OPCODE_EX4B 0xe9 /* Exit 4-byte mode */
58 /* Status Register bits. */
59 #define SR_WIP 1 /* Write in progress */
60 #define SR_WEL 2 /* Write enable latch */
61 /* meaning of other SR_* bits may differ between vendors */
62 #define SR_BP0 4 /* Block protect 0 */
63 #define SR_BP1 8 /* Block protect 1 */
64 #define SR_BP2 0x10 /* Block protect 2 */
65 #define SR_SRWD 0x80 /* SR write protect */
67 /* Define max times to check status register before we give up. */
68 #define MAX_READY_WAIT_JIFFIES (40 * HZ) /* M25P16 specs 40s max chip erase */
69 #define MAX_CMD_SIZE 5
71 #ifdef CONFIG_M25PXX_USE_FAST_READ
72 #define OPCODE_READ OPCODE_FAST_READ
73 #define FAST_READ_DUMMY_BYTE 1
75 #define OPCODE_READ OPCODE_NORM_READ
76 #define FAST_READ_DUMMY_BYTE 0
79 /****************************************************************************/
82 struct spi_device
*spi
;
85 unsigned partitioned
:1;
92 static inline struct m25p
*mtd_to_m25p(struct mtd_info
*mtd
)
94 return container_of(mtd
, struct m25p
, mtd
);
97 /****************************************************************************/
100 * Internal helper functions
104 * Read the status register, returning its value in the location
105 * Return the status register value.
106 * Returns negative if error occurred.
108 static int read_sr(struct m25p
*flash
)
111 u8 code
= OPCODE_RDSR
;
114 retval
= spi_write_then_read(flash
->spi
, &code
, 1, &val
, 1);
117 dev_err(&flash
->spi
->dev
, "error %d reading SR\n",
126 * Write status register 1 byte
127 * Returns negative if error occurred.
129 static int write_sr(struct m25p
*flash
, u8 val
)
131 flash
->command
[0] = OPCODE_WRSR
;
132 flash
->command
[1] = val
;
134 return spi_write(flash
->spi
, flash
->command
, 2);
138 * Set write enable latch with Write Enable command.
139 * Returns negative if error occurred.
141 static inline int write_enable(struct m25p
*flash
)
143 u8 code
= OPCODE_WREN
;
145 return spi_write_then_read(flash
->spi
, &code
, 1, NULL
, 0);
149 * Send write disble instruction to the chip.
151 static inline int write_disable(struct m25p
*flash
)
153 u8 code
= OPCODE_WRDI
;
155 return spi_write_then_read(flash
->spi
, &code
, 1, NULL
, 0);
159 * Enable/disable 4-byte addressing mode.
161 static inline int set_4byte(struct m25p
*flash
, int enable
)
163 u8 code
= enable
? OPCODE_EN4B
: OPCODE_EX4B
;
165 return spi_write_then_read(flash
->spi
, &code
, 1, NULL
, 0);
169 * Service routine to read status register until ready, or timeout occurs.
170 * Returns non-zero if error.
172 static int wait_till_ready(struct m25p
*flash
)
174 unsigned long deadline
;
177 deadline
= jiffies
+ MAX_READY_WAIT_JIFFIES
;
180 if ((sr
= read_sr(flash
)) < 0)
182 else if (!(sr
& SR_WIP
))
187 } while (!time_after_eq(jiffies
, deadline
));
193 * Erase the whole flash memory
195 * Returns 0 if successful, non-zero otherwise.
197 static int erase_chip(struct m25p
*flash
)
199 DEBUG(MTD_DEBUG_LEVEL3
, "%s: %s %lldKiB\n",
200 dev_name(&flash
->spi
->dev
), __func__
,
201 (long long)(flash
->mtd
.size
>> 10));
203 /* Wait until finished previous write command. */
204 if (wait_till_ready(flash
))
207 /* Send write enable, then erase commands. */
210 /* Set up command buffer. */
211 flash
->command
[0] = OPCODE_CHIP_ERASE
;
213 spi_write(flash
->spi
, flash
->command
, 1);
218 static void m25p_addr2cmd(struct m25p
*flash
, unsigned int addr
, u8
*cmd
)
220 /* opcode is in cmd[0] */
221 cmd
[1] = addr
>> (flash
->addr_width
* 8 - 8);
222 cmd
[2] = addr
>> (flash
->addr_width
* 8 - 16);
223 cmd
[3] = addr
>> (flash
->addr_width
* 8 - 24);
224 cmd
[4] = addr
>> (flash
->addr_width
* 8 - 32);
227 static int m25p_cmdsz(struct m25p
*flash
)
229 return 1 + flash
->addr_width
;
233 * Erase one sector of flash memory at offset ``offset'' which is any
234 * address within the sector which should be erased.
236 * Returns 0 if successful, non-zero otherwise.
238 static int erase_sector(struct m25p
*flash
, u32 offset
)
240 DEBUG(MTD_DEBUG_LEVEL3
, "%s: %s %dKiB at 0x%08x\n",
241 dev_name(&flash
->spi
->dev
), __func__
,
242 flash
->mtd
.erasesize
/ 1024, offset
);
244 /* Wait until finished previous write command. */
245 if (wait_till_ready(flash
))
248 /* Send write enable, then erase commands. */
251 /* Set up command buffer. */
252 flash
->command
[0] = flash
->erase_opcode
;
253 m25p_addr2cmd(flash
, offset
, flash
->command
);
255 spi_write(flash
->spi
, flash
->command
, m25p_cmdsz(flash
));
260 /****************************************************************************/
267 * Erase an address range on the flash chip. The address range may extend
268 * one or more erase sectors. Return an error is there is a problem erasing.
270 static int m25p80_erase(struct mtd_info
*mtd
, struct erase_info
*instr
)
272 struct m25p
*flash
= mtd_to_m25p(mtd
);
276 DEBUG(MTD_DEBUG_LEVEL2
, "%s: %s %s 0x%llx, len %lld\n",
277 dev_name(&flash
->spi
->dev
), __func__
, "at",
278 (long long)instr
->addr
, (long long)instr
->len
);
281 if (instr
->addr
+ instr
->len
> flash
->mtd
.size
)
283 div_u64_rem(instr
->len
, mtd
->erasesize
, &rem
);
290 mutex_lock(&flash
->lock
);
292 /* whole-chip erase? */
293 if (len
== flash
->mtd
.size
) {
294 if (erase_chip(flash
)) {
295 instr
->state
= MTD_ERASE_FAILED
;
296 mutex_unlock(&flash
->lock
);
300 /* REVISIT in some cases we could speed up erasing large regions
301 * by using OPCODE_SE instead of OPCODE_BE_4K. We may have set up
302 * to use "small sector erase", but that's not always optimal.
305 /* "sector"-at-a-time erase */
308 if (erase_sector(flash
, addr
)) {
309 instr
->state
= MTD_ERASE_FAILED
;
310 mutex_unlock(&flash
->lock
);
314 addr
+= mtd
->erasesize
;
315 len
-= mtd
->erasesize
;
319 mutex_unlock(&flash
->lock
);
321 instr
->state
= MTD_ERASE_DONE
;
322 mtd_erase_callback(instr
);
328 * Read an address range from the flash chip. The address range
329 * may be any size provided it is within the physical boundaries.
331 static int m25p80_read(struct mtd_info
*mtd
, loff_t from
, size_t len
,
332 size_t *retlen
, u_char
*buf
)
334 struct m25p
*flash
= mtd_to_m25p(mtd
);
335 struct spi_transfer t
[2];
336 struct spi_message m
;
338 DEBUG(MTD_DEBUG_LEVEL2
, "%s: %s %s 0x%08x, len %zd\n",
339 dev_name(&flash
->spi
->dev
), __func__
, "from",
346 if (from
+ len
> flash
->mtd
.size
)
349 spi_message_init(&m
);
350 memset(t
, 0, (sizeof t
));
353 * OPCODE_FAST_READ (if available) is faster.
354 * Should add 1 byte DUMMY_BYTE.
356 t
[0].tx_buf
= flash
->command
;
357 t
[0].len
= m25p_cmdsz(flash
) + FAST_READ_DUMMY_BYTE
;
358 spi_message_add_tail(&t
[0], &m
);
362 spi_message_add_tail(&t
[1], &m
);
364 /* Byte count starts at zero. */
367 mutex_lock(&flash
->lock
);
369 /* Wait till previous write/erase is done. */
370 if (wait_till_ready(flash
)) {
371 /* REVISIT status return?? */
372 mutex_unlock(&flash
->lock
);
376 /* FIXME switch to OPCODE_FAST_READ. It's required for higher
377 * clocks; and at this writing, every chip this driver handles
378 * supports that opcode.
381 /* Set up the write data buffer. */
382 flash
->command
[0] = OPCODE_READ
;
383 m25p_addr2cmd(flash
, from
, flash
->command
);
385 spi_sync(flash
->spi
, &m
);
387 *retlen
= m
.actual_length
- m25p_cmdsz(flash
) - FAST_READ_DUMMY_BYTE
;
389 mutex_unlock(&flash
->lock
);
395 * Write an address range to the flash chip. Data must be written in
396 * FLASH_PAGESIZE chunks. The address range may be any size provided
397 * it is within the physical boundaries.
399 static int m25p80_write(struct mtd_info
*mtd
, loff_t to
, size_t len
,
400 size_t *retlen
, const u_char
*buf
)
402 struct m25p
*flash
= mtd_to_m25p(mtd
);
403 u32 page_offset
, page_size
;
404 struct spi_transfer t
[2];
405 struct spi_message m
;
407 DEBUG(MTD_DEBUG_LEVEL2
, "%s: %s %s 0x%08x, len %zd\n",
408 dev_name(&flash
->spi
->dev
), __func__
, "to",
417 if (to
+ len
> flash
->mtd
.size
)
420 spi_message_init(&m
);
421 memset(t
, 0, (sizeof t
));
423 t
[0].tx_buf
= flash
->command
;
424 t
[0].len
= m25p_cmdsz(flash
);
425 spi_message_add_tail(&t
[0], &m
);
428 spi_message_add_tail(&t
[1], &m
);
430 mutex_lock(&flash
->lock
);
432 /* Wait until finished previous write command. */
433 if (wait_till_ready(flash
)) {
434 mutex_unlock(&flash
->lock
);
440 /* Set up the opcode in the write buffer. */
441 flash
->command
[0] = OPCODE_PP
;
442 m25p_addr2cmd(flash
, to
, flash
->command
);
444 page_offset
= to
& (flash
->page_size
- 1);
446 /* do all the bytes fit onto one page? */
447 if (page_offset
+ len
<= flash
->page_size
) {
450 spi_sync(flash
->spi
, &m
);
452 *retlen
= m
.actual_length
- m25p_cmdsz(flash
);
456 /* the size of data remaining on the first page */
457 page_size
= flash
->page_size
- page_offset
;
459 t
[1].len
= page_size
;
460 spi_sync(flash
->spi
, &m
);
462 *retlen
= m
.actual_length
- m25p_cmdsz(flash
);
464 /* write everything in flash->page_size chunks */
465 for (i
= page_size
; i
< len
; i
+= page_size
) {
467 if (page_size
> flash
->page_size
)
468 page_size
= flash
->page_size
;
470 /* write the next page to flash */
471 m25p_addr2cmd(flash
, to
+ i
, flash
->command
);
473 t
[1].tx_buf
= buf
+ i
;
474 t
[1].len
= page_size
;
476 wait_till_ready(flash
);
480 spi_sync(flash
->spi
, &m
);
482 *retlen
+= m
.actual_length
- m25p_cmdsz(flash
);
486 mutex_unlock(&flash
->lock
);
491 static int sst_write(struct mtd_info
*mtd
, loff_t to
, size_t len
,
492 size_t *retlen
, const u_char
*buf
)
494 struct m25p
*flash
= mtd_to_m25p(mtd
);
495 struct spi_transfer t
[2];
496 struct spi_message m
;
500 DEBUG(MTD_DEBUG_LEVEL2
, "%s: %s %s 0x%08x, len %zd\n",
501 dev_name(&flash
->spi
->dev
), __func__
, "to",
510 if (to
+ len
> flash
->mtd
.size
)
513 spi_message_init(&m
);
514 memset(t
, 0, (sizeof t
));
516 t
[0].tx_buf
= flash
->command
;
517 t
[0].len
= m25p_cmdsz(flash
);
518 spi_message_add_tail(&t
[0], &m
);
521 spi_message_add_tail(&t
[1], &m
);
523 mutex_lock(&flash
->lock
);
525 /* Wait until finished previous write command. */
526 ret
= wait_till_ready(flash
);
533 /* Start write from odd address. */
535 flash
->command
[0] = OPCODE_BP
;
536 m25p_addr2cmd(flash
, to
, flash
->command
);
538 /* write one byte. */
540 spi_sync(flash
->spi
, &m
);
541 ret
= wait_till_ready(flash
);
544 *retlen
+= m
.actual_length
- m25p_cmdsz(flash
);
548 flash
->command
[0] = OPCODE_AAI_WP
;
549 m25p_addr2cmd(flash
, to
, flash
->command
);
551 /* Write out most of the data here. */
552 cmd_sz
= m25p_cmdsz(flash
);
553 for (; actual
< len
- 1; actual
+= 2) {
555 /* write two bytes. */
557 t
[1].tx_buf
= buf
+ actual
;
559 spi_sync(flash
->spi
, &m
);
560 ret
= wait_till_ready(flash
);
563 *retlen
+= m
.actual_length
- cmd_sz
;
567 write_disable(flash
);
568 ret
= wait_till_ready(flash
);
572 /* Write out trailing byte if it exists. */
575 flash
->command
[0] = OPCODE_BP
;
576 m25p_addr2cmd(flash
, to
, flash
->command
);
577 t
[0].len
= m25p_cmdsz(flash
);
579 t
[1].tx_buf
= buf
+ actual
;
581 spi_sync(flash
->spi
, &m
);
582 ret
= wait_till_ready(flash
);
585 *retlen
+= m
.actual_length
- m25p_cmdsz(flash
);
586 write_disable(flash
);
590 mutex_unlock(&flash
->lock
);
594 /****************************************************************************/
597 * SPI device driver setup and teardown
601 /* JEDEC id zero means "no ID" (most older chips); otherwise it has
602 * a high byte of zero plus three data bytes: the manufacturer id,
603 * then a two byte device id.
608 /* The size listed here is what works with OPCODE_SE, which isn't
609 * necessarily called a "sector" by the vendor.
611 unsigned sector_size
;
618 #define SECT_4K 0x01 /* OPCODE_BE_4K works uniformly */
619 #define M25P_NO_ERASE 0x02 /* No erase command needed */
622 #define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags) \
623 ((kernel_ulong_t)&(struct flash_info) { \
624 .jedec_id = (_jedec_id), \
625 .ext_id = (_ext_id), \
626 .sector_size = (_sector_size), \
627 .n_sectors = (_n_sectors), \
632 #define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width) \
633 ((kernel_ulong_t)&(struct flash_info) { \
634 .sector_size = (_sector_size), \
635 .n_sectors = (_n_sectors), \
636 .page_size = (_page_size), \
637 .addr_width = (_addr_width), \
638 .flags = M25P_NO_ERASE, \
641 /* NOTE: double check command sets and memory organization when you add
642 * more flash chips. This current list focusses on newer chips, which
643 * have been converging on command sets which including JEDEC ID.
645 static const struct spi_device_id m25p_ids
[] = {
646 /* Atmel -- some are (confusingly) marketed as "DataFlash" */
647 { "at25fs010", INFO(0x1f6601, 0, 32 * 1024, 4, SECT_4K
) },
648 { "at25fs040", INFO(0x1f6604, 0, 64 * 1024, 8, SECT_4K
) },
650 { "at25df041a", INFO(0x1f4401, 0, 64 * 1024, 8, SECT_4K
) },
651 { "at25df641", INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K
) },
653 { "at26f004", INFO(0x1f0400, 0, 64 * 1024, 8, SECT_4K
) },
654 { "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K
) },
655 { "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K
) },
656 { "at26df321", INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K
) },
659 { "en25p32", INFO(0x1c2016, 0, 64 * 1024, 64, 0) },
660 { "en25p64", INFO(0x1c2017, 0, 64 * 1024, 128, 0) },
662 /* Intel/Numonyx -- xxxs33b */
663 { "160s33b", INFO(0x898911, 0, 64 * 1024, 32, 0) },
664 { "320s33b", INFO(0x898912, 0, 64 * 1024, 64, 0) },
665 { "640s33b", INFO(0x898913, 0, 64 * 1024, 128, 0) },
668 { "mx25l4005a", INFO(0xc22013, 0, 64 * 1024, 8, SECT_4K
) },
669 { "mx25l8005", INFO(0xc22014, 0, 64 * 1024, 16, 0) },
670 { "mx25l3205d", INFO(0xc22016, 0, 64 * 1024, 64, 0) },
671 { "mx25l6405d", INFO(0xc22017, 0, 64 * 1024, 128, 0) },
672 { "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) },
673 { "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) },
674 { "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512, 0) },
675 { "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) },
677 /* Spansion -- single (large) sector size only, at least
678 * for the chips listed here (without boot sectors).
680 { "s25sl004a", INFO(0x010212, 0, 64 * 1024, 8, 0) },
681 { "s25sl008a", INFO(0x010213, 0, 64 * 1024, 16, 0) },
682 { "s25sl016a", INFO(0x010214, 0, 64 * 1024, 32, 0) },
683 { "s25sl032a", INFO(0x010215, 0, 64 * 1024, 64, 0) },
684 { "s25sl032p", INFO(0x010215, 0x4d00, 64 * 1024, 64, SECT_4K
) },
685 { "s25sl064a", INFO(0x010216, 0, 64 * 1024, 128, 0) },
686 { "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024, 64, 0) },
687 { "s25sl12801", INFO(0x012018, 0x0301, 64 * 1024, 256, 0) },
688 { "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024, 64, 0) },
689 { "s25fl129p1", INFO(0x012018, 0x4d01, 64 * 1024, 256, 0) },
690 { "s25fl016k", INFO(0xef4015, 0, 64 * 1024, 32, SECT_4K
) },
691 { "s25fl064k", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K
) },
693 /* SST -- large erase sizes are "overlays", "sectors" are 4K */
694 { "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024, 8, SECT_4K
) },
695 { "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K
) },
696 { "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K
) },
697 { "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K
) },
698 { "sst25wf512", INFO(0xbf2501, 0, 64 * 1024, 1, SECT_4K
) },
699 { "sst25wf010", INFO(0xbf2502, 0, 64 * 1024, 2, SECT_4K
) },
700 { "sst25wf020", INFO(0xbf2503, 0, 64 * 1024, 4, SECT_4K
) },
701 { "sst25wf040", INFO(0xbf2504, 0, 64 * 1024, 8, SECT_4K
) },
703 /* ST Microelectronics -- newer production may have feature updates */
704 { "m25p05", INFO(0x202010, 0, 32 * 1024, 2, 0) },
705 { "m25p10", INFO(0x202011, 0, 32 * 1024, 4, 0) },
706 { "m25p20", INFO(0x202012, 0, 64 * 1024, 4, 0) },
707 { "m25p40", INFO(0x202013, 0, 64 * 1024, 8, 0) },
708 { "m25p80", INFO(0x202014, 0, 64 * 1024, 16, 0) },
709 { "m25p16", INFO(0x202015, 0, 64 * 1024, 32, 0) },
710 { "m25p32", INFO(0x202016, 0, 64 * 1024, 64, 0) },
711 { "m25p64", INFO(0x202017, 0, 64 * 1024, 128, 0) },
712 { "m25p128", INFO(0x202018, 0, 256 * 1024, 64, 0) },
714 { "m25p05-nonjedec", INFO(0, 0, 32 * 1024, 2, 0) },
715 { "m25p10-nonjedec", INFO(0, 0, 32 * 1024, 4, 0) },
716 { "m25p20-nonjedec", INFO(0, 0, 64 * 1024, 4, 0) },
717 { "m25p40-nonjedec", INFO(0, 0, 64 * 1024, 8, 0) },
718 { "m25p80-nonjedec", INFO(0, 0, 64 * 1024, 16, 0) },
719 { "m25p16-nonjedec", INFO(0, 0, 64 * 1024, 32, 0) },
720 { "m25p32-nonjedec", INFO(0, 0, 64 * 1024, 64, 0) },
721 { "m25p64-nonjedec", INFO(0, 0, 64 * 1024, 128, 0) },
722 { "m25p128-nonjedec", INFO(0, 0, 256 * 1024, 64, 0) },
724 { "m45pe10", INFO(0x204011, 0, 64 * 1024, 2, 0) },
725 { "m45pe80", INFO(0x204014, 0, 64 * 1024, 16, 0) },
726 { "m45pe16", INFO(0x204015, 0, 64 * 1024, 32, 0) },
728 { "m25pe80", INFO(0x208014, 0, 64 * 1024, 16, 0) },
729 { "m25pe16", INFO(0x208015, 0, 64 * 1024, 32, SECT_4K
) },
731 /* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
732 { "w25x10", INFO(0xef3011, 0, 64 * 1024, 2, SECT_4K
) },
733 { "w25x20", INFO(0xef3012, 0, 64 * 1024, 4, SECT_4K
) },
734 { "w25x40", INFO(0xef3013, 0, 64 * 1024, 8, SECT_4K
) },
735 { "w25x80", INFO(0xef3014, 0, 64 * 1024, 16, SECT_4K
) },
736 { "w25x16", INFO(0xef3015, 0, 64 * 1024, 32, SECT_4K
) },
737 { "w25x32", INFO(0xef3016, 0, 64 * 1024, 64, SECT_4K
) },
738 { "w25q32", INFO(0xef4016, 0, 64 * 1024, 64, SECT_4K
) },
739 { "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K
) },
740 { "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K
) },
742 /* Catalyst / On Semiconductor -- non-JEDEC */
743 { "cat25c11", CAT25_INFO( 16, 8, 16, 1) },
744 { "cat25c03", CAT25_INFO( 32, 8, 16, 2) },
745 { "cat25c09", CAT25_INFO( 128, 8, 32, 2) },
746 { "cat25c17", CAT25_INFO( 256, 8, 32, 2) },
747 { "cat25128", CAT25_INFO(2048, 8, 64, 2) },
750 MODULE_DEVICE_TABLE(spi
, m25p_ids
);
752 static const struct spi_device_id
*__devinit
jedec_probe(struct spi_device
*spi
)
755 u8 code
= OPCODE_RDID
;
759 struct flash_info
*info
;
761 /* JEDEC also defines an optional "extended device information"
762 * string for after vendor-specific data, after the three bytes
763 * we use here. Supporting some chips might require using it.
765 tmp
= spi_write_then_read(spi
, &code
, 1, id
, 5);
767 DEBUG(MTD_DEBUG_LEVEL0
, "%s: error %d reading JEDEC ID\n",
768 dev_name(&spi
->dev
), tmp
);
777 ext_jedec
= id
[3] << 8 | id
[4];
779 for (tmp
= 0; tmp
< ARRAY_SIZE(m25p_ids
) - 1; tmp
++) {
780 info
= (void *)m25p_ids
[tmp
].driver_data
;
781 if (info
->jedec_id
== jedec
) {
782 if (info
->ext_id
!= 0 && info
->ext_id
!= ext_jedec
)
784 return &m25p_ids
[tmp
];
787 dev_err(&spi
->dev
, "unrecognized JEDEC id %06x\n", jedec
);
788 return ERR_PTR(-ENODEV
);
793 * board specific setup should have ensured the SPI clock used here
794 * matches what the READ command supports, at least until this driver
795 * understands FAST_READ (for clocks over 25 MHz).
797 static int __devinit
m25p_probe(struct spi_device
*spi
)
799 const struct spi_device_id
*id
= spi_get_device_id(spi
);
800 struct flash_platform_data
*data
;
802 struct flash_info
*info
;
805 /* Platform data helps sort out which chip type we have, as
806 * well as how this board partitions it. If we don't have
807 * a chip ID, try the JEDEC id commands; they'll work for most
808 * newer chips, even if we don't recognize the particular chip.
810 data
= spi
->dev
.platform_data
;
811 if (data
&& data
->type
) {
812 const struct spi_device_id
*plat_id
;
814 for (i
= 0; i
< ARRAY_SIZE(m25p_ids
) - 1; i
++) {
815 plat_id
= &m25p_ids
[i
];
816 if (strcmp(data
->type
, plat_id
->name
))
821 if (i
< ARRAY_SIZE(m25p_ids
) - 1)
824 dev_warn(&spi
->dev
, "unrecognized id %s\n", data
->type
);
827 info
= (void *)id
->driver_data
;
829 if (info
->jedec_id
) {
830 const struct spi_device_id
*jid
;
832 jid
= jedec_probe(spi
);
835 } else if (jid
!= id
) {
837 * JEDEC knows better, so overwrite platform ID. We
838 * can't trust partitions any longer, but we'll let
839 * mtd apply them anyway, since some partitions may be
840 * marked read-only, and we don't want to lose that
841 * information, even if it's not 100% accurate.
843 dev_warn(&spi
->dev
, "found %s, expected %s\n",
844 jid
->name
, id
->name
);
846 info
= (void *)jid
->driver_data
;
850 flash
= kzalloc(sizeof *flash
, GFP_KERNEL
);
853 flash
->command
= kmalloc(MAX_CMD_SIZE
+ FAST_READ_DUMMY_BYTE
, GFP_KERNEL
);
854 if (!flash
->command
) {
860 mutex_init(&flash
->lock
);
861 dev_set_drvdata(&spi
->dev
, flash
);
864 * Atmel, SST and Intel/Numonyx serial flash tend to power
865 * up with the software protection bits set
868 if (info
->jedec_id
>> 16 == 0x1f ||
869 info
->jedec_id
>> 16 == 0x89 ||
870 info
->jedec_id
>> 16 == 0xbf) {
875 if (data
&& data
->name
)
876 flash
->mtd
.name
= data
->name
;
878 flash
->mtd
.name
= dev_name(&spi
->dev
);
880 flash
->mtd
.type
= MTD_NORFLASH
;
881 flash
->mtd
.writesize
= 1;
882 flash
->mtd
.flags
= MTD_CAP_NORFLASH
;
883 flash
->mtd
.size
= info
->sector_size
* info
->n_sectors
;
884 flash
->mtd
.erase
= m25p80_erase
;
885 flash
->mtd
.read
= m25p80_read
;
887 /* sst flash chips use AAI word program */
888 if (info
->jedec_id
>> 16 == 0xbf)
889 flash
->mtd
.write
= sst_write
;
891 flash
->mtd
.write
= m25p80_write
;
893 /* prefer "small sector" erase if possible */
894 if (info
->flags
& SECT_4K
) {
895 flash
->erase_opcode
= OPCODE_BE_4K
;
896 flash
->mtd
.erasesize
= 4096;
898 flash
->erase_opcode
= OPCODE_SE
;
899 flash
->mtd
.erasesize
= info
->sector_size
;
902 if (info
->flags
& M25P_NO_ERASE
)
903 flash
->mtd
.flags
|= MTD_NO_ERASE
;
905 flash
->mtd
.dev
.parent
= &spi
->dev
;
906 flash
->page_size
= info
->page_size
;
908 if (info
->addr_width
)
909 flash
->addr_width
= info
->addr_width
;
911 /* enable 4-byte addressing if the device exceeds 16MiB */
912 if (flash
->mtd
.size
> 0x1000000) {
913 flash
->addr_width
= 4;
916 flash
->addr_width
= 3;
919 dev_info(&spi
->dev
, "%s (%lld Kbytes)\n", id
->name
,
920 (long long)flash
->mtd
.size
>> 10);
922 DEBUG(MTD_DEBUG_LEVEL2
,
923 "mtd .name = %s, .size = 0x%llx (%lldMiB) "
924 ".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
926 (long long)flash
->mtd
.size
, (long long)(flash
->mtd
.size
>> 20),
927 flash
->mtd
.erasesize
, flash
->mtd
.erasesize
/ 1024,
928 flash
->mtd
.numeraseregions
);
930 if (flash
->mtd
.numeraseregions
)
931 for (i
= 0; i
< flash
->mtd
.numeraseregions
; i
++)
932 DEBUG(MTD_DEBUG_LEVEL2
,
933 "mtd.eraseregions[%d] = { .offset = 0x%llx, "
934 ".erasesize = 0x%.8x (%uKiB), "
935 ".numblocks = %d }\n",
936 i
, (long long)flash
->mtd
.eraseregions
[i
].offset
,
937 flash
->mtd
.eraseregions
[i
].erasesize
,
938 flash
->mtd
.eraseregions
[i
].erasesize
/ 1024,
939 flash
->mtd
.eraseregions
[i
].numblocks
);
942 /* partitions should match sector boundaries; and it may be good to
943 * use readonly partitions for writeprotected sectors (BP2..BP0).
945 if (mtd_has_partitions()) {
946 struct mtd_partition
*parts
= NULL
;
949 if (mtd_has_cmdlinepart()) {
950 static const char *part_probes
[]
951 = { "cmdlinepart", NULL
, };
953 nr_parts
= parse_mtd_partitions(&flash
->mtd
,
954 part_probes
, &parts
, 0);
957 if (nr_parts
<= 0 && data
&& data
->parts
) {
959 nr_parts
= data
->nr_parts
;
962 #ifdef CONFIG_MTD_OF_PARTS
963 if (nr_parts
<= 0 && spi
->dev
.of_node
) {
964 nr_parts
= of_mtd_parse_partitions(&spi
->dev
,
965 spi
->dev
.of_node
, &parts
);
970 for (i
= 0; i
< nr_parts
; i
++) {
971 DEBUG(MTD_DEBUG_LEVEL2
, "partitions[%d] = "
972 "{.name = %s, .offset = 0x%llx, "
973 ".size = 0x%llx (%lldKiB) }\n",
975 (long long)parts
[i
].offset
,
976 (long long)parts
[i
].size
,
977 (long long)(parts
[i
].size
>> 10));
979 flash
->partitioned
= 1;
980 return add_mtd_partitions(&flash
->mtd
, parts
, nr_parts
);
982 } else if (data
&& data
->nr_parts
)
983 dev_warn(&spi
->dev
, "ignoring %d default partitions on %s\n",
984 data
->nr_parts
, data
->name
);
986 return add_mtd_device(&flash
->mtd
) == 1 ? -ENODEV
: 0;
990 static int __devexit
m25p_remove(struct spi_device
*spi
)
992 struct m25p
*flash
= dev_get_drvdata(&spi
->dev
);
995 /* Clean up MTD stuff. */
996 if (mtd_has_partitions() && flash
->partitioned
)
997 status
= del_mtd_partitions(&flash
->mtd
);
999 status
= del_mtd_device(&flash
->mtd
);
1001 kfree(flash
->command
);
1008 static struct spi_driver m25p80_driver
= {
1011 .bus
= &spi_bus_type
,
1012 .owner
= THIS_MODULE
,
1014 .id_table
= m25p_ids
,
1015 .probe
= m25p_probe
,
1016 .remove
= __devexit_p(m25p_remove
),
1018 /* REVISIT: many of these chips have deep power-down modes, which
1019 * should clearly be entered on suspend() to minimize power use.
1020 * And also when they're otherwise idle...
1025 static int __init
m25p80_init(void)
1027 return spi_register_driver(&m25p80_driver
);
1031 static void __exit
m25p80_exit(void)
1033 spi_unregister_driver(&m25p80_driver
);
1037 module_init(m25p80_init
);
1038 module_exit(m25p80_exit
);
1040 MODULE_LICENSE("GPL");
1041 MODULE_AUTHOR("Mike Lavender");
1042 MODULE_DESCRIPTION("MTD SPI driver for ST M25Pxx flash chips");