FRV: Use generic show_interrupts()
[cris-mirror.git] / drivers / net / e1000 / e1000_ethtool.c
blobf4d0922ec65b8ee6d7541b2ceee8e46cd85bb715
1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 /* ethtool support for e1000 */
31 #include "e1000.h"
32 #include <asm/uaccess.h>
34 enum {NETDEV_STATS, E1000_STATS};
36 struct e1000_stats {
37 char stat_string[ETH_GSTRING_LEN];
38 int type;
39 int sizeof_stat;
40 int stat_offset;
43 #define E1000_STAT(m) E1000_STATS, \
44 sizeof(((struct e1000_adapter *)0)->m), \
45 offsetof(struct e1000_adapter, m)
46 #define E1000_NETDEV_STAT(m) NETDEV_STATS, \
47 sizeof(((struct net_device *)0)->m), \
48 offsetof(struct net_device, m)
50 static const struct e1000_stats e1000_gstrings_stats[] = {
51 { "rx_packets", E1000_STAT(stats.gprc) },
52 { "tx_packets", E1000_STAT(stats.gptc) },
53 { "rx_bytes", E1000_STAT(stats.gorcl) },
54 { "tx_bytes", E1000_STAT(stats.gotcl) },
55 { "rx_broadcast", E1000_STAT(stats.bprc) },
56 { "tx_broadcast", E1000_STAT(stats.bptc) },
57 { "rx_multicast", E1000_STAT(stats.mprc) },
58 { "tx_multicast", E1000_STAT(stats.mptc) },
59 { "rx_errors", E1000_STAT(stats.rxerrc) },
60 { "tx_errors", E1000_STAT(stats.txerrc) },
61 { "tx_dropped", E1000_NETDEV_STAT(stats.tx_dropped) },
62 { "multicast", E1000_STAT(stats.mprc) },
63 { "collisions", E1000_STAT(stats.colc) },
64 { "rx_length_errors", E1000_STAT(stats.rlerrc) },
65 { "rx_over_errors", E1000_NETDEV_STAT(stats.rx_over_errors) },
66 { "rx_crc_errors", E1000_STAT(stats.crcerrs) },
67 { "rx_frame_errors", E1000_NETDEV_STAT(stats.rx_frame_errors) },
68 { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
69 { "rx_missed_errors", E1000_STAT(stats.mpc) },
70 { "tx_aborted_errors", E1000_STAT(stats.ecol) },
71 { "tx_carrier_errors", E1000_STAT(stats.tncrs) },
72 { "tx_fifo_errors", E1000_NETDEV_STAT(stats.tx_fifo_errors) },
73 { "tx_heartbeat_errors", E1000_NETDEV_STAT(stats.tx_heartbeat_errors) },
74 { "tx_window_errors", E1000_STAT(stats.latecol) },
75 { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
76 { "tx_deferred_ok", E1000_STAT(stats.dc) },
77 { "tx_single_coll_ok", E1000_STAT(stats.scc) },
78 { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
79 { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
80 { "tx_restart_queue", E1000_STAT(restart_queue) },
81 { "rx_long_length_errors", E1000_STAT(stats.roc) },
82 { "rx_short_length_errors", E1000_STAT(stats.ruc) },
83 { "rx_align_errors", E1000_STAT(stats.algnerrc) },
84 { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
85 { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
86 { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
87 { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
88 { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
89 { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
90 { "rx_long_byte_count", E1000_STAT(stats.gorcl) },
91 { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
92 { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
93 { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
94 { "tx_smbus", E1000_STAT(stats.mgptc) },
95 { "rx_smbus", E1000_STAT(stats.mgprc) },
96 { "dropped_smbus", E1000_STAT(stats.mgpdc) },
99 #define E1000_QUEUE_STATS_LEN 0
100 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
101 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
102 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
103 "Register test (offline)", "Eeprom test (offline)",
104 "Interrupt test (offline)", "Loopback test (offline)",
105 "Link test (on/offline)"
107 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
109 static int e1000_get_settings(struct net_device *netdev,
110 struct ethtool_cmd *ecmd)
112 struct e1000_adapter *adapter = netdev_priv(netdev);
113 struct e1000_hw *hw = &adapter->hw;
115 if (hw->media_type == e1000_media_type_copper) {
117 ecmd->supported = (SUPPORTED_10baseT_Half |
118 SUPPORTED_10baseT_Full |
119 SUPPORTED_100baseT_Half |
120 SUPPORTED_100baseT_Full |
121 SUPPORTED_1000baseT_Full|
122 SUPPORTED_Autoneg |
123 SUPPORTED_TP);
124 ecmd->advertising = ADVERTISED_TP;
126 if (hw->autoneg == 1) {
127 ecmd->advertising |= ADVERTISED_Autoneg;
128 /* the e1000 autoneg seems to match ethtool nicely */
129 ecmd->advertising |= hw->autoneg_advertised;
132 ecmd->port = PORT_TP;
133 ecmd->phy_address = hw->phy_addr;
135 if (hw->mac_type == e1000_82543)
136 ecmd->transceiver = XCVR_EXTERNAL;
137 else
138 ecmd->transceiver = XCVR_INTERNAL;
140 } else {
141 ecmd->supported = (SUPPORTED_1000baseT_Full |
142 SUPPORTED_FIBRE |
143 SUPPORTED_Autoneg);
145 ecmd->advertising = (ADVERTISED_1000baseT_Full |
146 ADVERTISED_FIBRE |
147 ADVERTISED_Autoneg);
149 ecmd->port = PORT_FIBRE;
151 if (hw->mac_type >= e1000_82545)
152 ecmd->transceiver = XCVR_INTERNAL;
153 else
154 ecmd->transceiver = XCVR_EXTERNAL;
157 if (er32(STATUS) & E1000_STATUS_LU) {
159 e1000_get_speed_and_duplex(hw, &adapter->link_speed,
160 &adapter->link_duplex);
161 ecmd->speed = adapter->link_speed;
163 /* unfortunatly FULL_DUPLEX != DUPLEX_FULL
164 * and HALF_DUPLEX != DUPLEX_HALF */
166 if (adapter->link_duplex == FULL_DUPLEX)
167 ecmd->duplex = DUPLEX_FULL;
168 else
169 ecmd->duplex = DUPLEX_HALF;
170 } else {
171 ecmd->speed = -1;
172 ecmd->duplex = -1;
175 ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
176 hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
177 return 0;
180 static int e1000_set_settings(struct net_device *netdev,
181 struct ethtool_cmd *ecmd)
183 struct e1000_adapter *adapter = netdev_priv(netdev);
184 struct e1000_hw *hw = &adapter->hw;
186 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
187 msleep(1);
189 if (ecmd->autoneg == AUTONEG_ENABLE) {
190 hw->autoneg = 1;
191 if (hw->media_type == e1000_media_type_fiber)
192 hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
193 ADVERTISED_FIBRE |
194 ADVERTISED_Autoneg;
195 else
196 hw->autoneg_advertised = ecmd->advertising |
197 ADVERTISED_TP |
198 ADVERTISED_Autoneg;
199 ecmd->advertising = hw->autoneg_advertised;
200 } else
201 if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
202 clear_bit(__E1000_RESETTING, &adapter->flags);
203 return -EINVAL;
206 /* reset the link */
208 if (netif_running(adapter->netdev)) {
209 e1000_down(adapter);
210 e1000_up(adapter);
211 } else
212 e1000_reset(adapter);
214 clear_bit(__E1000_RESETTING, &adapter->flags);
215 return 0;
218 static u32 e1000_get_link(struct net_device *netdev)
220 struct e1000_adapter *adapter = netdev_priv(netdev);
223 * If the link is not reported up to netdev, interrupts are disabled,
224 * and so the physical link state may have changed since we last
225 * looked. Set get_link_status to make sure that the true link
226 * state is interrogated, rather than pulling a cached and possibly
227 * stale link state from the driver.
229 if (!netif_carrier_ok(netdev))
230 adapter->hw.get_link_status = 1;
232 return e1000_has_link(adapter);
235 static void e1000_get_pauseparam(struct net_device *netdev,
236 struct ethtool_pauseparam *pause)
238 struct e1000_adapter *adapter = netdev_priv(netdev);
239 struct e1000_hw *hw = &adapter->hw;
241 pause->autoneg =
242 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
244 if (hw->fc == E1000_FC_RX_PAUSE)
245 pause->rx_pause = 1;
246 else if (hw->fc == E1000_FC_TX_PAUSE)
247 pause->tx_pause = 1;
248 else if (hw->fc == E1000_FC_FULL) {
249 pause->rx_pause = 1;
250 pause->tx_pause = 1;
254 static int e1000_set_pauseparam(struct net_device *netdev,
255 struct ethtool_pauseparam *pause)
257 struct e1000_adapter *adapter = netdev_priv(netdev);
258 struct e1000_hw *hw = &adapter->hw;
259 int retval = 0;
261 adapter->fc_autoneg = pause->autoneg;
263 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
264 msleep(1);
266 if (pause->rx_pause && pause->tx_pause)
267 hw->fc = E1000_FC_FULL;
268 else if (pause->rx_pause && !pause->tx_pause)
269 hw->fc = E1000_FC_RX_PAUSE;
270 else if (!pause->rx_pause && pause->tx_pause)
271 hw->fc = E1000_FC_TX_PAUSE;
272 else if (!pause->rx_pause && !pause->tx_pause)
273 hw->fc = E1000_FC_NONE;
275 hw->original_fc = hw->fc;
277 if (adapter->fc_autoneg == AUTONEG_ENABLE) {
278 if (netif_running(adapter->netdev)) {
279 e1000_down(adapter);
280 e1000_up(adapter);
281 } else
282 e1000_reset(adapter);
283 } else
284 retval = ((hw->media_type == e1000_media_type_fiber) ?
285 e1000_setup_link(hw) : e1000_force_mac_fc(hw));
287 clear_bit(__E1000_RESETTING, &adapter->flags);
288 return retval;
291 static u32 e1000_get_rx_csum(struct net_device *netdev)
293 struct e1000_adapter *adapter = netdev_priv(netdev);
294 return adapter->rx_csum;
297 static int e1000_set_rx_csum(struct net_device *netdev, u32 data)
299 struct e1000_adapter *adapter = netdev_priv(netdev);
300 adapter->rx_csum = data;
302 if (netif_running(netdev))
303 e1000_reinit_locked(adapter);
304 else
305 e1000_reset(adapter);
306 return 0;
309 static u32 e1000_get_tx_csum(struct net_device *netdev)
311 return (netdev->features & NETIF_F_HW_CSUM) != 0;
314 static int e1000_set_tx_csum(struct net_device *netdev, u32 data)
316 struct e1000_adapter *adapter = netdev_priv(netdev);
317 struct e1000_hw *hw = &adapter->hw;
319 if (hw->mac_type < e1000_82543) {
320 if (!data)
321 return -EINVAL;
322 return 0;
325 if (data)
326 netdev->features |= NETIF_F_HW_CSUM;
327 else
328 netdev->features &= ~NETIF_F_HW_CSUM;
330 return 0;
333 static int e1000_set_tso(struct net_device *netdev, u32 data)
335 struct e1000_adapter *adapter = netdev_priv(netdev);
336 struct e1000_hw *hw = &adapter->hw;
338 if ((hw->mac_type < e1000_82544) ||
339 (hw->mac_type == e1000_82547))
340 return data ? -EINVAL : 0;
342 if (data)
343 netdev->features |= NETIF_F_TSO;
344 else
345 netdev->features &= ~NETIF_F_TSO;
347 netdev->features &= ~NETIF_F_TSO6;
349 e_info(probe, "TSO is %s\n", data ? "Enabled" : "Disabled");
350 adapter->tso_force = true;
351 return 0;
354 static u32 e1000_get_msglevel(struct net_device *netdev)
356 struct e1000_adapter *adapter = netdev_priv(netdev);
357 return adapter->msg_enable;
360 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
362 struct e1000_adapter *adapter = netdev_priv(netdev);
363 adapter->msg_enable = data;
366 static int e1000_get_regs_len(struct net_device *netdev)
368 #define E1000_REGS_LEN 32
369 return E1000_REGS_LEN * sizeof(u32);
372 static void e1000_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
373 void *p)
375 struct e1000_adapter *adapter = netdev_priv(netdev);
376 struct e1000_hw *hw = &adapter->hw;
377 u32 *regs_buff = p;
378 u16 phy_data;
380 memset(p, 0, E1000_REGS_LEN * sizeof(u32));
382 regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
384 regs_buff[0] = er32(CTRL);
385 regs_buff[1] = er32(STATUS);
387 regs_buff[2] = er32(RCTL);
388 regs_buff[3] = er32(RDLEN);
389 regs_buff[4] = er32(RDH);
390 regs_buff[5] = er32(RDT);
391 regs_buff[6] = er32(RDTR);
393 regs_buff[7] = er32(TCTL);
394 regs_buff[8] = er32(TDLEN);
395 regs_buff[9] = er32(TDH);
396 regs_buff[10] = er32(TDT);
397 regs_buff[11] = er32(TIDV);
399 regs_buff[12] = hw->phy_type; /* PHY type (IGP=1, M88=0) */
400 if (hw->phy_type == e1000_phy_igp) {
401 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
402 IGP01E1000_PHY_AGC_A);
403 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
404 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
405 regs_buff[13] = (u32)phy_data; /* cable length */
406 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
407 IGP01E1000_PHY_AGC_B);
408 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
409 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
410 regs_buff[14] = (u32)phy_data; /* cable length */
411 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
412 IGP01E1000_PHY_AGC_C);
413 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
414 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
415 regs_buff[15] = (u32)phy_data; /* cable length */
416 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
417 IGP01E1000_PHY_AGC_D);
418 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
419 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
420 regs_buff[16] = (u32)phy_data; /* cable length */
421 regs_buff[17] = 0; /* extended 10bt distance (not needed) */
422 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
423 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
424 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
425 regs_buff[18] = (u32)phy_data; /* cable polarity */
426 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
427 IGP01E1000_PHY_PCS_INIT_REG);
428 e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
429 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
430 regs_buff[19] = (u32)phy_data; /* cable polarity */
431 regs_buff[20] = 0; /* polarity correction enabled (always) */
432 regs_buff[22] = 0; /* phy receive errors (unavailable) */
433 regs_buff[23] = regs_buff[18]; /* mdix mode */
434 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
435 } else {
436 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
437 regs_buff[13] = (u32)phy_data; /* cable length */
438 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
439 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
440 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
441 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
442 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
443 regs_buff[18] = regs_buff[13]; /* cable polarity */
444 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
445 regs_buff[20] = regs_buff[17]; /* polarity correction */
446 /* phy receive errors */
447 regs_buff[22] = adapter->phy_stats.receive_errors;
448 regs_buff[23] = regs_buff[13]; /* mdix mode */
450 regs_buff[21] = adapter->phy_stats.idle_errors; /* phy idle errors */
451 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
452 regs_buff[24] = (u32)phy_data; /* phy local receiver status */
453 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */
454 if (hw->mac_type >= e1000_82540 &&
455 hw->media_type == e1000_media_type_copper) {
456 regs_buff[26] = er32(MANC);
460 static int e1000_get_eeprom_len(struct net_device *netdev)
462 struct e1000_adapter *adapter = netdev_priv(netdev);
463 struct e1000_hw *hw = &adapter->hw;
465 return hw->eeprom.word_size * 2;
468 static int e1000_get_eeprom(struct net_device *netdev,
469 struct ethtool_eeprom *eeprom, u8 *bytes)
471 struct e1000_adapter *adapter = netdev_priv(netdev);
472 struct e1000_hw *hw = &adapter->hw;
473 u16 *eeprom_buff;
474 int first_word, last_word;
475 int ret_val = 0;
476 u16 i;
478 if (eeprom->len == 0)
479 return -EINVAL;
481 eeprom->magic = hw->vendor_id | (hw->device_id << 16);
483 first_word = eeprom->offset >> 1;
484 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
486 eeprom_buff = kmalloc(sizeof(u16) *
487 (last_word - first_word + 1), GFP_KERNEL);
488 if (!eeprom_buff)
489 return -ENOMEM;
491 if (hw->eeprom.type == e1000_eeprom_spi)
492 ret_val = e1000_read_eeprom(hw, first_word,
493 last_word - first_word + 1,
494 eeprom_buff);
495 else {
496 for (i = 0; i < last_word - first_word + 1; i++) {
497 ret_val = e1000_read_eeprom(hw, first_word + i, 1,
498 &eeprom_buff[i]);
499 if (ret_val)
500 break;
504 /* Device's eeprom is always little-endian, word addressable */
505 for (i = 0; i < last_word - first_word + 1; i++)
506 le16_to_cpus(&eeprom_buff[i]);
508 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
509 eeprom->len);
510 kfree(eeprom_buff);
512 return ret_val;
515 static int e1000_set_eeprom(struct net_device *netdev,
516 struct ethtool_eeprom *eeprom, u8 *bytes)
518 struct e1000_adapter *adapter = netdev_priv(netdev);
519 struct e1000_hw *hw = &adapter->hw;
520 u16 *eeprom_buff;
521 void *ptr;
522 int max_len, first_word, last_word, ret_val = 0;
523 u16 i;
525 if (eeprom->len == 0)
526 return -EOPNOTSUPP;
528 if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
529 return -EFAULT;
531 max_len = hw->eeprom.word_size * 2;
533 first_word = eeprom->offset >> 1;
534 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
535 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
536 if (!eeprom_buff)
537 return -ENOMEM;
539 ptr = (void *)eeprom_buff;
541 if (eeprom->offset & 1) {
542 /* need read/modify/write of first changed EEPROM word */
543 /* only the second byte of the word is being modified */
544 ret_val = e1000_read_eeprom(hw, first_word, 1,
545 &eeprom_buff[0]);
546 ptr++;
548 if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
549 /* need read/modify/write of last changed EEPROM word */
550 /* only the first byte of the word is being modified */
551 ret_val = e1000_read_eeprom(hw, last_word, 1,
552 &eeprom_buff[last_word - first_word]);
555 /* Device's eeprom is always little-endian, word addressable */
556 for (i = 0; i < last_word - first_word + 1; i++)
557 le16_to_cpus(&eeprom_buff[i]);
559 memcpy(ptr, bytes, eeprom->len);
561 for (i = 0; i < last_word - first_word + 1; i++)
562 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
564 ret_val = e1000_write_eeprom(hw, first_word,
565 last_word - first_word + 1, eeprom_buff);
567 /* Update the checksum over the first part of the EEPROM if needed */
568 if ((ret_val == 0) && (first_word <= EEPROM_CHECKSUM_REG))
569 e1000_update_eeprom_checksum(hw);
571 kfree(eeprom_buff);
572 return ret_val;
575 static void e1000_get_drvinfo(struct net_device *netdev,
576 struct ethtool_drvinfo *drvinfo)
578 struct e1000_adapter *adapter = netdev_priv(netdev);
579 char firmware_version[32];
581 strncpy(drvinfo->driver, e1000_driver_name, 32);
582 strncpy(drvinfo->version, e1000_driver_version, 32);
584 sprintf(firmware_version, "N/A");
585 strncpy(drvinfo->fw_version, firmware_version, 32);
586 strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
587 drvinfo->regdump_len = e1000_get_regs_len(netdev);
588 drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
591 static void e1000_get_ringparam(struct net_device *netdev,
592 struct ethtool_ringparam *ring)
594 struct e1000_adapter *adapter = netdev_priv(netdev);
595 struct e1000_hw *hw = &adapter->hw;
596 e1000_mac_type mac_type = hw->mac_type;
597 struct e1000_tx_ring *txdr = adapter->tx_ring;
598 struct e1000_rx_ring *rxdr = adapter->rx_ring;
600 ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
601 E1000_MAX_82544_RXD;
602 ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
603 E1000_MAX_82544_TXD;
604 ring->rx_mini_max_pending = 0;
605 ring->rx_jumbo_max_pending = 0;
606 ring->rx_pending = rxdr->count;
607 ring->tx_pending = txdr->count;
608 ring->rx_mini_pending = 0;
609 ring->rx_jumbo_pending = 0;
612 static int e1000_set_ringparam(struct net_device *netdev,
613 struct ethtool_ringparam *ring)
615 struct e1000_adapter *adapter = netdev_priv(netdev);
616 struct e1000_hw *hw = &adapter->hw;
617 e1000_mac_type mac_type = hw->mac_type;
618 struct e1000_tx_ring *txdr, *tx_old;
619 struct e1000_rx_ring *rxdr, *rx_old;
620 int i, err;
622 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
623 return -EINVAL;
625 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
626 msleep(1);
628 if (netif_running(adapter->netdev))
629 e1000_down(adapter);
631 tx_old = adapter->tx_ring;
632 rx_old = adapter->rx_ring;
634 err = -ENOMEM;
635 txdr = kcalloc(adapter->num_tx_queues, sizeof(struct e1000_tx_ring), GFP_KERNEL);
636 if (!txdr)
637 goto err_alloc_tx;
639 rxdr = kcalloc(adapter->num_rx_queues, sizeof(struct e1000_rx_ring), GFP_KERNEL);
640 if (!rxdr)
641 goto err_alloc_rx;
643 adapter->tx_ring = txdr;
644 adapter->rx_ring = rxdr;
646 rxdr->count = max(ring->rx_pending,(u32)E1000_MIN_RXD);
647 rxdr->count = min(rxdr->count,(u32)(mac_type < e1000_82544 ?
648 E1000_MAX_RXD : E1000_MAX_82544_RXD));
649 rxdr->count = ALIGN(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
651 txdr->count = max(ring->tx_pending,(u32)E1000_MIN_TXD);
652 txdr->count = min(txdr->count,(u32)(mac_type < e1000_82544 ?
653 E1000_MAX_TXD : E1000_MAX_82544_TXD));
654 txdr->count = ALIGN(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
656 for (i = 0; i < adapter->num_tx_queues; i++)
657 txdr[i].count = txdr->count;
658 for (i = 0; i < adapter->num_rx_queues; i++)
659 rxdr[i].count = rxdr->count;
661 if (netif_running(adapter->netdev)) {
662 /* Try to get new resources before deleting old */
663 err = e1000_setup_all_rx_resources(adapter);
664 if (err)
665 goto err_setup_rx;
666 err = e1000_setup_all_tx_resources(adapter);
667 if (err)
668 goto err_setup_tx;
670 /* save the new, restore the old in order to free it,
671 * then restore the new back again */
673 adapter->rx_ring = rx_old;
674 adapter->tx_ring = tx_old;
675 e1000_free_all_rx_resources(adapter);
676 e1000_free_all_tx_resources(adapter);
677 kfree(tx_old);
678 kfree(rx_old);
679 adapter->rx_ring = rxdr;
680 adapter->tx_ring = txdr;
681 err = e1000_up(adapter);
682 if (err)
683 goto err_setup;
686 clear_bit(__E1000_RESETTING, &adapter->flags);
687 return 0;
688 err_setup_tx:
689 e1000_free_all_rx_resources(adapter);
690 err_setup_rx:
691 adapter->rx_ring = rx_old;
692 adapter->tx_ring = tx_old;
693 kfree(rxdr);
694 err_alloc_rx:
695 kfree(txdr);
696 err_alloc_tx:
697 e1000_up(adapter);
698 err_setup:
699 clear_bit(__E1000_RESETTING, &adapter->flags);
700 return err;
703 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, int reg,
704 u32 mask, u32 write)
706 struct e1000_hw *hw = &adapter->hw;
707 static const u32 test[] =
708 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
709 u8 __iomem *address = hw->hw_addr + reg;
710 u32 read;
711 int i;
713 for (i = 0; i < ARRAY_SIZE(test); i++) {
714 writel(write & test[i], address);
715 read = readl(address);
716 if (read != (write & test[i] & mask)) {
717 e_err(drv, "pattern test reg %04X failed: "
718 "got 0x%08X expected 0x%08X\n",
719 reg, read, (write & test[i] & mask));
720 *data = reg;
721 return true;
724 return false;
727 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, int reg,
728 u32 mask, u32 write)
730 struct e1000_hw *hw = &adapter->hw;
731 u8 __iomem *address = hw->hw_addr + reg;
732 u32 read;
734 writel(write & mask, address);
735 read = readl(address);
736 if ((read & mask) != (write & mask)) {
737 e_err(drv, "set/check reg %04X test failed: "
738 "got 0x%08X expected 0x%08X\n",
739 reg, (read & mask), (write & mask));
740 *data = reg;
741 return true;
743 return false;
746 #define REG_PATTERN_TEST(reg, mask, write) \
747 do { \
748 if (reg_pattern_test(adapter, data, \
749 (hw->mac_type >= e1000_82543) \
750 ? E1000_##reg : E1000_82542_##reg, \
751 mask, write)) \
752 return 1; \
753 } while (0)
755 #define REG_SET_AND_CHECK(reg, mask, write) \
756 do { \
757 if (reg_set_and_check(adapter, data, \
758 (hw->mac_type >= e1000_82543) \
759 ? E1000_##reg : E1000_82542_##reg, \
760 mask, write)) \
761 return 1; \
762 } while (0)
764 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
766 u32 value, before, after;
767 u32 i, toggle;
768 struct e1000_hw *hw = &adapter->hw;
770 /* The status register is Read Only, so a write should fail.
771 * Some bits that get toggled are ignored.
774 /* there are several bits on newer hardware that are r/w */
775 toggle = 0xFFFFF833;
777 before = er32(STATUS);
778 value = (er32(STATUS) & toggle);
779 ew32(STATUS, toggle);
780 after = er32(STATUS) & toggle;
781 if (value != after) {
782 e_err(drv, "failed STATUS register test got: "
783 "0x%08X expected: 0x%08X\n", after, value);
784 *data = 1;
785 return 1;
787 /* restore previous status */
788 ew32(STATUS, before);
790 REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
791 REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
792 REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
793 REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
795 REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
796 REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
797 REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
798 REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
799 REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
800 REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
801 REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
802 REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
803 REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
804 REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
806 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
808 before = 0x06DFB3FE;
809 REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB);
810 REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
812 if (hw->mac_type >= e1000_82543) {
814 REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF);
815 REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
816 REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
817 REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
818 REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
819 value = E1000_RAR_ENTRIES;
820 for (i = 0; i < value; i++) {
821 REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF,
822 0xFFFFFFFF);
825 } else {
827 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
828 REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
829 REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
830 REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
834 value = E1000_MC_TBL_SIZE;
835 for (i = 0; i < value; i++)
836 REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
838 *data = 0;
839 return 0;
842 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
844 struct e1000_hw *hw = &adapter->hw;
845 u16 temp;
846 u16 checksum = 0;
847 u16 i;
849 *data = 0;
850 /* Read and add up the contents of the EEPROM */
851 for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
852 if ((e1000_read_eeprom(hw, i, 1, &temp)) < 0) {
853 *data = 1;
854 break;
856 checksum += temp;
859 /* If Checksum is not Correct return error else test passed */
860 if ((checksum != (u16)EEPROM_SUM) && !(*data))
861 *data = 2;
863 return *data;
866 static irqreturn_t e1000_test_intr(int irq, void *data)
868 struct net_device *netdev = (struct net_device *)data;
869 struct e1000_adapter *adapter = netdev_priv(netdev);
870 struct e1000_hw *hw = &adapter->hw;
872 adapter->test_icr |= er32(ICR);
874 return IRQ_HANDLED;
877 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
879 struct net_device *netdev = adapter->netdev;
880 u32 mask, i = 0;
881 bool shared_int = true;
882 u32 irq = adapter->pdev->irq;
883 struct e1000_hw *hw = &adapter->hw;
885 *data = 0;
887 /* NOTE: we don't test MSI interrupts here, yet */
888 /* Hook up test interrupt handler just for this test */
889 if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
890 netdev))
891 shared_int = false;
892 else if (request_irq(irq, e1000_test_intr, IRQF_SHARED,
893 netdev->name, netdev)) {
894 *data = 1;
895 return -1;
897 e_info(hw, "testing %s interrupt\n", (shared_int ?
898 "shared" : "unshared"));
900 /* Disable all the interrupts */
901 ew32(IMC, 0xFFFFFFFF);
902 msleep(10);
904 /* Test each interrupt */
905 for (; i < 10; i++) {
907 /* Interrupt to test */
908 mask = 1 << i;
910 if (!shared_int) {
911 /* Disable the interrupt to be reported in
912 * the cause register and then force the same
913 * interrupt and see if one gets posted. If
914 * an interrupt was posted to the bus, the
915 * test failed.
917 adapter->test_icr = 0;
918 ew32(IMC, mask);
919 ew32(ICS, mask);
920 msleep(10);
922 if (adapter->test_icr & mask) {
923 *data = 3;
924 break;
928 /* Enable the interrupt to be reported in
929 * the cause register and then force the same
930 * interrupt and see if one gets posted. If
931 * an interrupt was not posted to the bus, the
932 * test failed.
934 adapter->test_icr = 0;
935 ew32(IMS, mask);
936 ew32(ICS, mask);
937 msleep(10);
939 if (!(adapter->test_icr & mask)) {
940 *data = 4;
941 break;
944 if (!shared_int) {
945 /* Disable the other interrupts to be reported in
946 * the cause register and then force the other
947 * interrupts and see if any get posted. If
948 * an interrupt was posted to the bus, the
949 * test failed.
951 adapter->test_icr = 0;
952 ew32(IMC, ~mask & 0x00007FFF);
953 ew32(ICS, ~mask & 0x00007FFF);
954 msleep(10);
956 if (adapter->test_icr) {
957 *data = 5;
958 break;
963 /* Disable all the interrupts */
964 ew32(IMC, 0xFFFFFFFF);
965 msleep(10);
967 /* Unhook test interrupt handler */
968 free_irq(irq, netdev);
970 return *data;
973 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
975 struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
976 struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
977 struct pci_dev *pdev = adapter->pdev;
978 int i;
980 if (txdr->desc && txdr->buffer_info) {
981 for (i = 0; i < txdr->count; i++) {
982 if (txdr->buffer_info[i].dma)
983 dma_unmap_single(&pdev->dev,
984 txdr->buffer_info[i].dma,
985 txdr->buffer_info[i].length,
986 DMA_TO_DEVICE);
987 if (txdr->buffer_info[i].skb)
988 dev_kfree_skb(txdr->buffer_info[i].skb);
992 if (rxdr->desc && rxdr->buffer_info) {
993 for (i = 0; i < rxdr->count; i++) {
994 if (rxdr->buffer_info[i].dma)
995 dma_unmap_single(&pdev->dev,
996 rxdr->buffer_info[i].dma,
997 rxdr->buffer_info[i].length,
998 DMA_FROM_DEVICE);
999 if (rxdr->buffer_info[i].skb)
1000 dev_kfree_skb(rxdr->buffer_info[i].skb);
1004 if (txdr->desc) {
1005 dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1006 txdr->dma);
1007 txdr->desc = NULL;
1009 if (rxdr->desc) {
1010 dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1011 rxdr->dma);
1012 rxdr->desc = NULL;
1015 kfree(txdr->buffer_info);
1016 txdr->buffer_info = NULL;
1017 kfree(rxdr->buffer_info);
1018 rxdr->buffer_info = NULL;
1021 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1023 struct e1000_hw *hw = &adapter->hw;
1024 struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1025 struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1026 struct pci_dev *pdev = adapter->pdev;
1027 u32 rctl;
1028 int i, ret_val;
1030 /* Setup Tx descriptor ring and Tx buffers */
1032 if (!txdr->count)
1033 txdr->count = E1000_DEFAULT_TXD;
1035 txdr->buffer_info = kcalloc(txdr->count, sizeof(struct e1000_buffer),
1036 GFP_KERNEL);
1037 if (!txdr->buffer_info) {
1038 ret_val = 1;
1039 goto err_nomem;
1042 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1043 txdr->size = ALIGN(txdr->size, 4096);
1044 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1045 GFP_KERNEL);
1046 if (!txdr->desc) {
1047 ret_val = 2;
1048 goto err_nomem;
1050 memset(txdr->desc, 0, txdr->size);
1051 txdr->next_to_use = txdr->next_to_clean = 0;
1053 ew32(TDBAL, ((u64)txdr->dma & 0x00000000FFFFFFFF));
1054 ew32(TDBAH, ((u64)txdr->dma >> 32));
1055 ew32(TDLEN, txdr->count * sizeof(struct e1000_tx_desc));
1056 ew32(TDH, 0);
1057 ew32(TDT, 0);
1058 ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN |
1059 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1060 E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1062 for (i = 0; i < txdr->count; i++) {
1063 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
1064 struct sk_buff *skb;
1065 unsigned int size = 1024;
1067 skb = alloc_skb(size, GFP_KERNEL);
1068 if (!skb) {
1069 ret_val = 3;
1070 goto err_nomem;
1072 skb_put(skb, size);
1073 txdr->buffer_info[i].skb = skb;
1074 txdr->buffer_info[i].length = skb->len;
1075 txdr->buffer_info[i].dma =
1076 dma_map_single(&pdev->dev, skb->data, skb->len,
1077 DMA_TO_DEVICE);
1078 tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
1079 tx_desc->lower.data = cpu_to_le32(skb->len);
1080 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1081 E1000_TXD_CMD_IFCS |
1082 E1000_TXD_CMD_RPS);
1083 tx_desc->upper.data = 0;
1086 /* Setup Rx descriptor ring and Rx buffers */
1088 if (!rxdr->count)
1089 rxdr->count = E1000_DEFAULT_RXD;
1091 rxdr->buffer_info = kcalloc(rxdr->count, sizeof(struct e1000_buffer),
1092 GFP_KERNEL);
1093 if (!rxdr->buffer_info) {
1094 ret_val = 4;
1095 goto err_nomem;
1098 rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
1099 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1100 GFP_KERNEL);
1101 if (!rxdr->desc) {
1102 ret_val = 5;
1103 goto err_nomem;
1105 memset(rxdr->desc, 0, rxdr->size);
1106 rxdr->next_to_use = rxdr->next_to_clean = 0;
1108 rctl = er32(RCTL);
1109 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1110 ew32(RDBAL, ((u64)rxdr->dma & 0xFFFFFFFF));
1111 ew32(RDBAH, ((u64)rxdr->dma >> 32));
1112 ew32(RDLEN, rxdr->size);
1113 ew32(RDH, 0);
1114 ew32(RDT, 0);
1115 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1116 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1117 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1118 ew32(RCTL, rctl);
1120 for (i = 0; i < rxdr->count; i++) {
1121 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
1122 struct sk_buff *skb;
1124 skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN, GFP_KERNEL);
1125 if (!skb) {
1126 ret_val = 6;
1127 goto err_nomem;
1129 skb_reserve(skb, NET_IP_ALIGN);
1130 rxdr->buffer_info[i].skb = skb;
1131 rxdr->buffer_info[i].length = E1000_RXBUFFER_2048;
1132 rxdr->buffer_info[i].dma =
1133 dma_map_single(&pdev->dev, skb->data,
1134 E1000_RXBUFFER_2048, DMA_FROM_DEVICE);
1135 rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
1136 memset(skb->data, 0x00, skb->len);
1139 return 0;
1141 err_nomem:
1142 e1000_free_desc_rings(adapter);
1143 return ret_val;
1146 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1148 struct e1000_hw *hw = &adapter->hw;
1150 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1151 e1000_write_phy_reg(hw, 29, 0x001F);
1152 e1000_write_phy_reg(hw, 30, 0x8FFC);
1153 e1000_write_phy_reg(hw, 29, 0x001A);
1154 e1000_write_phy_reg(hw, 30, 0x8FF0);
1157 static void e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
1159 struct e1000_hw *hw = &adapter->hw;
1160 u16 phy_reg;
1162 /* Because we reset the PHY above, we need to re-force TX_CLK in the
1163 * Extended PHY Specific Control Register to 25MHz clock. This
1164 * value defaults back to a 2.5MHz clock when the PHY is reset.
1166 e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1167 phy_reg |= M88E1000_EPSCR_TX_CLK_25;
1168 e1000_write_phy_reg(hw,
1169 M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
1171 /* In addition, because of the s/w reset above, we need to enable
1172 * CRS on TX. This must be set for both full and half duplex
1173 * operation.
1175 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1176 phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1177 e1000_write_phy_reg(hw,
1178 M88E1000_PHY_SPEC_CTRL, phy_reg);
1181 static int e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
1183 struct e1000_hw *hw = &adapter->hw;
1184 u32 ctrl_reg;
1185 u16 phy_reg;
1187 /* Setup the Device Control Register for PHY loopback test. */
1189 ctrl_reg = er32(CTRL);
1190 ctrl_reg |= (E1000_CTRL_ILOS | /* Invert Loss-Of-Signal */
1191 E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1192 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1193 E1000_CTRL_SPD_1000 | /* Force Speed to 1000 */
1194 E1000_CTRL_FD); /* Force Duplex to FULL */
1196 ew32(CTRL, ctrl_reg);
1198 /* Read the PHY Specific Control Register (0x10) */
1199 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1201 /* Clear Auto-Crossover bits in PHY Specific Control Register
1202 * (bits 6:5).
1204 phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
1205 e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1207 /* Perform software reset on the PHY */
1208 e1000_phy_reset(hw);
1210 /* Have to setup TX_CLK and TX_CRS after software reset */
1211 e1000_phy_reset_clk_and_crs(adapter);
1213 e1000_write_phy_reg(hw, PHY_CTRL, 0x8100);
1215 /* Wait for reset to complete. */
1216 udelay(500);
1218 /* Have to setup TX_CLK and TX_CRS after software reset */
1219 e1000_phy_reset_clk_and_crs(adapter);
1221 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1222 e1000_phy_disable_receiver(adapter);
1224 /* Set the loopback bit in the PHY control register. */
1225 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1226 phy_reg |= MII_CR_LOOPBACK;
1227 e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1229 /* Setup TX_CLK and TX_CRS one more time. */
1230 e1000_phy_reset_clk_and_crs(adapter);
1232 /* Check Phy Configuration */
1233 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1234 if (phy_reg != 0x4100)
1235 return 9;
1237 e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1238 if (phy_reg != 0x0070)
1239 return 10;
1241 e1000_read_phy_reg(hw, 29, &phy_reg);
1242 if (phy_reg != 0x001A)
1243 return 11;
1245 return 0;
1248 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1250 struct e1000_hw *hw = &adapter->hw;
1251 u32 ctrl_reg = 0;
1252 u32 stat_reg = 0;
1254 hw->autoneg = false;
1256 if (hw->phy_type == e1000_phy_m88) {
1257 /* Auto-MDI/MDIX Off */
1258 e1000_write_phy_reg(hw,
1259 M88E1000_PHY_SPEC_CTRL, 0x0808);
1260 /* reset to update Auto-MDI/MDIX */
1261 e1000_write_phy_reg(hw, PHY_CTRL, 0x9140);
1262 /* autoneg off */
1263 e1000_write_phy_reg(hw, PHY_CTRL, 0x8140);
1266 ctrl_reg = er32(CTRL);
1268 /* force 1000, set loopback */
1269 e1000_write_phy_reg(hw, PHY_CTRL, 0x4140);
1271 /* Now set up the MAC to the same speed/duplex as the PHY. */
1272 ctrl_reg = er32(CTRL);
1273 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1274 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1275 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1276 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1277 E1000_CTRL_FD); /* Force Duplex to FULL */
1279 if (hw->media_type == e1000_media_type_copper &&
1280 hw->phy_type == e1000_phy_m88)
1281 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1282 else {
1283 /* Set the ILOS bit on the fiber Nic is half
1284 * duplex link is detected. */
1285 stat_reg = er32(STATUS);
1286 if ((stat_reg & E1000_STATUS_FD) == 0)
1287 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1290 ew32(CTRL, ctrl_reg);
1292 /* Disable the receiver on the PHY so when a cable is plugged in, the
1293 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1295 if (hw->phy_type == e1000_phy_m88)
1296 e1000_phy_disable_receiver(adapter);
1298 udelay(500);
1300 return 0;
1303 static int e1000_set_phy_loopback(struct e1000_adapter *adapter)
1305 struct e1000_hw *hw = &adapter->hw;
1306 u16 phy_reg = 0;
1307 u16 count = 0;
1309 switch (hw->mac_type) {
1310 case e1000_82543:
1311 if (hw->media_type == e1000_media_type_copper) {
1312 /* Attempt to setup Loopback mode on Non-integrated PHY.
1313 * Some PHY registers get corrupted at random, so
1314 * attempt this 10 times.
1316 while (e1000_nonintegrated_phy_loopback(adapter) &&
1317 count++ < 10);
1318 if (count < 11)
1319 return 0;
1321 break;
1323 case e1000_82544:
1324 case e1000_82540:
1325 case e1000_82545:
1326 case e1000_82545_rev_3:
1327 case e1000_82546:
1328 case e1000_82546_rev_3:
1329 case e1000_82541:
1330 case e1000_82541_rev_2:
1331 case e1000_82547:
1332 case e1000_82547_rev_2:
1333 return e1000_integrated_phy_loopback(adapter);
1334 break;
1335 default:
1336 /* Default PHY loopback work is to read the MII
1337 * control register and assert bit 14 (loopback mode).
1339 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1340 phy_reg |= MII_CR_LOOPBACK;
1341 e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1342 return 0;
1343 break;
1346 return 8;
1349 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1351 struct e1000_hw *hw = &adapter->hw;
1352 u32 rctl;
1354 if (hw->media_type == e1000_media_type_fiber ||
1355 hw->media_type == e1000_media_type_internal_serdes) {
1356 switch (hw->mac_type) {
1357 case e1000_82545:
1358 case e1000_82546:
1359 case e1000_82545_rev_3:
1360 case e1000_82546_rev_3:
1361 return e1000_set_phy_loopback(adapter);
1362 break;
1363 default:
1364 rctl = er32(RCTL);
1365 rctl |= E1000_RCTL_LBM_TCVR;
1366 ew32(RCTL, rctl);
1367 return 0;
1369 } else if (hw->media_type == e1000_media_type_copper)
1370 return e1000_set_phy_loopback(adapter);
1372 return 7;
1375 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1377 struct e1000_hw *hw = &adapter->hw;
1378 u32 rctl;
1379 u16 phy_reg;
1381 rctl = er32(RCTL);
1382 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1383 ew32(RCTL, rctl);
1385 switch (hw->mac_type) {
1386 case e1000_82545:
1387 case e1000_82546:
1388 case e1000_82545_rev_3:
1389 case e1000_82546_rev_3:
1390 default:
1391 hw->autoneg = true;
1392 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1393 if (phy_reg & MII_CR_LOOPBACK) {
1394 phy_reg &= ~MII_CR_LOOPBACK;
1395 e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1396 e1000_phy_reset(hw);
1398 break;
1402 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1403 unsigned int frame_size)
1405 memset(skb->data, 0xFF, frame_size);
1406 frame_size &= ~1;
1407 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1408 memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1409 memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1412 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1413 unsigned int frame_size)
1415 frame_size &= ~1;
1416 if (*(skb->data + 3) == 0xFF) {
1417 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1418 (*(skb->data + frame_size / 2 + 12) == 0xAF)) {
1419 return 0;
1422 return 13;
1425 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1427 struct e1000_hw *hw = &adapter->hw;
1428 struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1429 struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1430 struct pci_dev *pdev = adapter->pdev;
1431 int i, j, k, l, lc, good_cnt, ret_val=0;
1432 unsigned long time;
1434 ew32(RDT, rxdr->count - 1);
1436 /* Calculate the loop count based on the largest descriptor ring
1437 * The idea is to wrap the largest ring a number of times using 64
1438 * send/receive pairs during each loop
1441 if (rxdr->count <= txdr->count)
1442 lc = ((txdr->count / 64) * 2) + 1;
1443 else
1444 lc = ((rxdr->count / 64) * 2) + 1;
1446 k = l = 0;
1447 for (j = 0; j <= lc; j++) { /* loop count loop */
1448 for (i = 0; i < 64; i++) { /* send the packets */
1449 e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
1450 1024);
1451 dma_sync_single_for_device(&pdev->dev,
1452 txdr->buffer_info[k].dma,
1453 txdr->buffer_info[k].length,
1454 DMA_TO_DEVICE);
1455 if (unlikely(++k == txdr->count)) k = 0;
1457 ew32(TDT, k);
1458 msleep(200);
1459 time = jiffies; /* set the start time for the receive */
1460 good_cnt = 0;
1461 do { /* receive the sent packets */
1462 dma_sync_single_for_cpu(&pdev->dev,
1463 rxdr->buffer_info[l].dma,
1464 rxdr->buffer_info[l].length,
1465 DMA_FROM_DEVICE);
1467 ret_val = e1000_check_lbtest_frame(
1468 rxdr->buffer_info[l].skb,
1469 1024);
1470 if (!ret_val)
1471 good_cnt++;
1472 if (unlikely(++l == rxdr->count)) l = 0;
1473 /* time + 20 msecs (200 msecs on 2.4) is more than
1474 * enough time to complete the receives, if it's
1475 * exceeded, break and error off
1477 } while (good_cnt < 64 && jiffies < (time + 20));
1478 if (good_cnt != 64) {
1479 ret_val = 13; /* ret_val is the same as mis-compare */
1480 break;
1482 if (jiffies >= (time + 2)) {
1483 ret_val = 14; /* error code for time out error */
1484 break;
1486 } /* end loop count loop */
1487 return ret_val;
1490 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1492 *data = e1000_setup_desc_rings(adapter);
1493 if (*data)
1494 goto out;
1495 *data = e1000_setup_loopback_test(adapter);
1496 if (*data)
1497 goto err_loopback;
1498 *data = e1000_run_loopback_test(adapter);
1499 e1000_loopback_cleanup(adapter);
1501 err_loopback:
1502 e1000_free_desc_rings(adapter);
1503 out:
1504 return *data;
1507 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1509 struct e1000_hw *hw = &adapter->hw;
1510 *data = 0;
1511 if (hw->media_type == e1000_media_type_internal_serdes) {
1512 int i = 0;
1513 hw->serdes_has_link = false;
1515 /* On some blade server designs, link establishment
1516 * could take as long as 2-3 minutes */
1517 do {
1518 e1000_check_for_link(hw);
1519 if (hw->serdes_has_link)
1520 return *data;
1521 msleep(20);
1522 } while (i++ < 3750);
1524 *data = 1;
1525 } else {
1526 e1000_check_for_link(hw);
1527 if (hw->autoneg) /* if auto_neg is set wait for it */
1528 msleep(4000);
1530 if (!(er32(STATUS) & E1000_STATUS_LU)) {
1531 *data = 1;
1534 return *data;
1537 static int e1000_get_sset_count(struct net_device *netdev, int sset)
1539 switch (sset) {
1540 case ETH_SS_TEST:
1541 return E1000_TEST_LEN;
1542 case ETH_SS_STATS:
1543 return E1000_STATS_LEN;
1544 default:
1545 return -EOPNOTSUPP;
1549 static void e1000_diag_test(struct net_device *netdev,
1550 struct ethtool_test *eth_test, u64 *data)
1552 struct e1000_adapter *adapter = netdev_priv(netdev);
1553 struct e1000_hw *hw = &adapter->hw;
1554 bool if_running = netif_running(netdev);
1556 set_bit(__E1000_TESTING, &adapter->flags);
1557 if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1558 /* Offline tests */
1560 /* save speed, duplex, autoneg settings */
1561 u16 autoneg_advertised = hw->autoneg_advertised;
1562 u8 forced_speed_duplex = hw->forced_speed_duplex;
1563 u8 autoneg = hw->autoneg;
1565 e_info(hw, "offline testing starting\n");
1567 /* Link test performed before hardware reset so autoneg doesn't
1568 * interfere with test result */
1569 if (e1000_link_test(adapter, &data[4]))
1570 eth_test->flags |= ETH_TEST_FL_FAILED;
1572 if (if_running)
1573 /* indicate we're in test mode */
1574 dev_close(netdev);
1575 else
1576 e1000_reset(adapter);
1578 if (e1000_reg_test(adapter, &data[0]))
1579 eth_test->flags |= ETH_TEST_FL_FAILED;
1581 e1000_reset(adapter);
1582 if (e1000_eeprom_test(adapter, &data[1]))
1583 eth_test->flags |= ETH_TEST_FL_FAILED;
1585 e1000_reset(adapter);
1586 if (e1000_intr_test(adapter, &data[2]))
1587 eth_test->flags |= ETH_TEST_FL_FAILED;
1589 e1000_reset(adapter);
1590 /* make sure the phy is powered up */
1591 e1000_power_up_phy(adapter);
1592 if (e1000_loopback_test(adapter, &data[3]))
1593 eth_test->flags |= ETH_TEST_FL_FAILED;
1595 /* restore speed, duplex, autoneg settings */
1596 hw->autoneg_advertised = autoneg_advertised;
1597 hw->forced_speed_duplex = forced_speed_duplex;
1598 hw->autoneg = autoneg;
1600 e1000_reset(adapter);
1601 clear_bit(__E1000_TESTING, &adapter->flags);
1602 if (if_running)
1603 dev_open(netdev);
1604 } else {
1605 e_info(hw, "online testing starting\n");
1606 /* Online tests */
1607 if (e1000_link_test(adapter, &data[4]))
1608 eth_test->flags |= ETH_TEST_FL_FAILED;
1610 /* Online tests aren't run; pass by default */
1611 data[0] = 0;
1612 data[1] = 0;
1613 data[2] = 0;
1614 data[3] = 0;
1616 clear_bit(__E1000_TESTING, &adapter->flags);
1618 msleep_interruptible(4 * 1000);
1621 static int e1000_wol_exclusion(struct e1000_adapter *adapter,
1622 struct ethtool_wolinfo *wol)
1624 struct e1000_hw *hw = &adapter->hw;
1625 int retval = 1; /* fail by default */
1627 switch (hw->device_id) {
1628 case E1000_DEV_ID_82542:
1629 case E1000_DEV_ID_82543GC_FIBER:
1630 case E1000_DEV_ID_82543GC_COPPER:
1631 case E1000_DEV_ID_82544EI_FIBER:
1632 case E1000_DEV_ID_82546EB_QUAD_COPPER:
1633 case E1000_DEV_ID_82545EM_FIBER:
1634 case E1000_DEV_ID_82545EM_COPPER:
1635 case E1000_DEV_ID_82546GB_QUAD_COPPER:
1636 case E1000_DEV_ID_82546GB_PCIE:
1637 /* these don't support WoL at all */
1638 wol->supported = 0;
1639 break;
1640 case E1000_DEV_ID_82546EB_FIBER:
1641 case E1000_DEV_ID_82546GB_FIBER:
1642 /* Wake events not supported on port B */
1643 if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1644 wol->supported = 0;
1645 break;
1647 /* return success for non excluded adapter ports */
1648 retval = 0;
1649 break;
1650 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1651 /* quad port adapters only support WoL on port A */
1652 if (!adapter->quad_port_a) {
1653 wol->supported = 0;
1654 break;
1656 /* return success for non excluded adapter ports */
1657 retval = 0;
1658 break;
1659 default:
1660 /* dual port cards only support WoL on port A from now on
1661 * unless it was enabled in the eeprom for port B
1662 * so exclude FUNC_1 ports from having WoL enabled */
1663 if (er32(STATUS) & E1000_STATUS_FUNC_1 &&
1664 !adapter->eeprom_wol) {
1665 wol->supported = 0;
1666 break;
1669 retval = 0;
1672 return retval;
1675 static void e1000_get_wol(struct net_device *netdev,
1676 struct ethtool_wolinfo *wol)
1678 struct e1000_adapter *adapter = netdev_priv(netdev);
1679 struct e1000_hw *hw = &adapter->hw;
1681 wol->supported = WAKE_UCAST | WAKE_MCAST |
1682 WAKE_BCAST | WAKE_MAGIC;
1683 wol->wolopts = 0;
1685 /* this function will set ->supported = 0 and return 1 if wol is not
1686 * supported by this hardware */
1687 if (e1000_wol_exclusion(adapter, wol) ||
1688 !device_can_wakeup(&adapter->pdev->dev))
1689 return;
1691 /* apply any specific unsupported masks here */
1692 switch (hw->device_id) {
1693 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1694 /* KSP3 does not suppport UCAST wake-ups */
1695 wol->supported &= ~WAKE_UCAST;
1697 if (adapter->wol & E1000_WUFC_EX)
1698 e_err(drv, "Interface does not support directed "
1699 "(unicast) frame wake-up packets\n");
1700 break;
1701 default:
1702 break;
1705 if (adapter->wol & E1000_WUFC_EX)
1706 wol->wolopts |= WAKE_UCAST;
1707 if (adapter->wol & E1000_WUFC_MC)
1708 wol->wolopts |= WAKE_MCAST;
1709 if (adapter->wol & E1000_WUFC_BC)
1710 wol->wolopts |= WAKE_BCAST;
1711 if (adapter->wol & E1000_WUFC_MAG)
1712 wol->wolopts |= WAKE_MAGIC;
1715 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1717 struct e1000_adapter *adapter = netdev_priv(netdev);
1718 struct e1000_hw *hw = &adapter->hw;
1720 if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1721 return -EOPNOTSUPP;
1723 if (e1000_wol_exclusion(adapter, wol) ||
1724 !device_can_wakeup(&adapter->pdev->dev))
1725 return wol->wolopts ? -EOPNOTSUPP : 0;
1727 switch (hw->device_id) {
1728 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1729 if (wol->wolopts & WAKE_UCAST) {
1730 e_err(drv, "Interface does not support directed "
1731 "(unicast) frame wake-up packets\n");
1732 return -EOPNOTSUPP;
1734 break;
1735 default:
1736 break;
1739 /* these settings will always override what we currently have */
1740 adapter->wol = 0;
1742 if (wol->wolopts & WAKE_UCAST)
1743 adapter->wol |= E1000_WUFC_EX;
1744 if (wol->wolopts & WAKE_MCAST)
1745 adapter->wol |= E1000_WUFC_MC;
1746 if (wol->wolopts & WAKE_BCAST)
1747 adapter->wol |= E1000_WUFC_BC;
1748 if (wol->wolopts & WAKE_MAGIC)
1749 adapter->wol |= E1000_WUFC_MAG;
1751 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1753 return 0;
1756 /* toggle LED 4 times per second = 2 "blinks" per second */
1757 #define E1000_ID_INTERVAL (HZ/4)
1759 /* bit defines for adapter->led_status */
1760 #define E1000_LED_ON 0
1762 static void e1000_led_blink_callback(unsigned long data)
1764 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1765 struct e1000_hw *hw = &adapter->hw;
1767 if (test_and_change_bit(E1000_LED_ON, &adapter->led_status))
1768 e1000_led_off(hw);
1769 else
1770 e1000_led_on(hw);
1772 mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
1775 static int e1000_phys_id(struct net_device *netdev, u32 data)
1777 struct e1000_adapter *adapter = netdev_priv(netdev);
1778 struct e1000_hw *hw = &adapter->hw;
1780 if (!data)
1781 data = INT_MAX;
1783 if (!adapter->blink_timer.function) {
1784 init_timer(&adapter->blink_timer);
1785 adapter->blink_timer.function = e1000_led_blink_callback;
1786 adapter->blink_timer.data = (unsigned long)adapter;
1788 e1000_setup_led(hw);
1789 mod_timer(&adapter->blink_timer, jiffies);
1790 msleep_interruptible(data * 1000);
1791 del_timer_sync(&adapter->blink_timer);
1793 e1000_led_off(hw);
1794 clear_bit(E1000_LED_ON, &adapter->led_status);
1795 e1000_cleanup_led(hw);
1797 return 0;
1800 static int e1000_get_coalesce(struct net_device *netdev,
1801 struct ethtool_coalesce *ec)
1803 struct e1000_adapter *adapter = netdev_priv(netdev);
1805 if (adapter->hw.mac_type < e1000_82545)
1806 return -EOPNOTSUPP;
1808 if (adapter->itr_setting <= 4)
1809 ec->rx_coalesce_usecs = adapter->itr_setting;
1810 else
1811 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1813 return 0;
1816 static int e1000_set_coalesce(struct net_device *netdev,
1817 struct ethtool_coalesce *ec)
1819 struct e1000_adapter *adapter = netdev_priv(netdev);
1820 struct e1000_hw *hw = &adapter->hw;
1822 if (hw->mac_type < e1000_82545)
1823 return -EOPNOTSUPP;
1825 if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1826 ((ec->rx_coalesce_usecs > 4) &&
1827 (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1828 (ec->rx_coalesce_usecs == 2))
1829 return -EINVAL;
1831 if (ec->rx_coalesce_usecs == 4) {
1832 adapter->itr = adapter->itr_setting = 4;
1833 } else if (ec->rx_coalesce_usecs <= 3) {
1834 adapter->itr = 20000;
1835 adapter->itr_setting = ec->rx_coalesce_usecs;
1836 } else {
1837 adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1838 adapter->itr_setting = adapter->itr & ~3;
1841 if (adapter->itr_setting != 0)
1842 ew32(ITR, 1000000000 / (adapter->itr * 256));
1843 else
1844 ew32(ITR, 0);
1846 return 0;
1849 static int e1000_nway_reset(struct net_device *netdev)
1851 struct e1000_adapter *adapter = netdev_priv(netdev);
1852 if (netif_running(netdev))
1853 e1000_reinit_locked(adapter);
1854 return 0;
1857 static void e1000_get_ethtool_stats(struct net_device *netdev,
1858 struct ethtool_stats *stats, u64 *data)
1860 struct e1000_adapter *adapter = netdev_priv(netdev);
1861 int i;
1862 char *p = NULL;
1864 e1000_update_stats(adapter);
1865 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1866 switch (e1000_gstrings_stats[i].type) {
1867 case NETDEV_STATS:
1868 p = (char *) netdev +
1869 e1000_gstrings_stats[i].stat_offset;
1870 break;
1871 case E1000_STATS:
1872 p = (char *) adapter +
1873 e1000_gstrings_stats[i].stat_offset;
1874 break;
1877 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1878 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1880 /* BUG_ON(i != E1000_STATS_LEN); */
1883 static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1884 u8 *data)
1886 u8 *p = data;
1887 int i;
1889 switch (stringset) {
1890 case ETH_SS_TEST:
1891 memcpy(data, *e1000_gstrings_test,
1892 sizeof(e1000_gstrings_test));
1893 break;
1894 case ETH_SS_STATS:
1895 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1896 memcpy(p, e1000_gstrings_stats[i].stat_string,
1897 ETH_GSTRING_LEN);
1898 p += ETH_GSTRING_LEN;
1900 /* BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
1901 break;
1905 static const struct ethtool_ops e1000_ethtool_ops = {
1906 .get_settings = e1000_get_settings,
1907 .set_settings = e1000_set_settings,
1908 .get_drvinfo = e1000_get_drvinfo,
1909 .get_regs_len = e1000_get_regs_len,
1910 .get_regs = e1000_get_regs,
1911 .get_wol = e1000_get_wol,
1912 .set_wol = e1000_set_wol,
1913 .get_msglevel = e1000_get_msglevel,
1914 .set_msglevel = e1000_set_msglevel,
1915 .nway_reset = e1000_nway_reset,
1916 .get_link = e1000_get_link,
1917 .get_eeprom_len = e1000_get_eeprom_len,
1918 .get_eeprom = e1000_get_eeprom,
1919 .set_eeprom = e1000_set_eeprom,
1920 .get_ringparam = e1000_get_ringparam,
1921 .set_ringparam = e1000_set_ringparam,
1922 .get_pauseparam = e1000_get_pauseparam,
1923 .set_pauseparam = e1000_set_pauseparam,
1924 .get_rx_csum = e1000_get_rx_csum,
1925 .set_rx_csum = e1000_set_rx_csum,
1926 .get_tx_csum = e1000_get_tx_csum,
1927 .set_tx_csum = e1000_set_tx_csum,
1928 .set_sg = ethtool_op_set_sg,
1929 .set_tso = e1000_set_tso,
1930 .self_test = e1000_diag_test,
1931 .get_strings = e1000_get_strings,
1932 .phys_id = e1000_phys_id,
1933 .get_ethtool_stats = e1000_get_ethtool_stats,
1934 .get_sset_count = e1000_get_sset_count,
1935 .get_coalesce = e1000_get_coalesce,
1936 .set_coalesce = e1000_set_coalesce,
1939 void e1000_set_ethtool_ops(struct net_device *netdev)
1941 SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);