1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 #include <net/ip6_checksum.h>
33 /* Intel Media SOC GbE MDIO physical base address */
34 static unsigned long ce4100_gbe_mdio_base_phy
;
35 /* Intel Media SOC GbE MDIO virtual base address */
36 void __iomem
*ce4100_gbe_mdio_base_virt
;
38 char e1000_driver_name
[] = "e1000";
39 static char e1000_driver_string
[] = "Intel(R) PRO/1000 Network Driver";
40 #define DRV_VERSION "7.3.21-k8-NAPI"
41 const char e1000_driver_version
[] = DRV_VERSION
;
42 static const char e1000_copyright
[] = "Copyright (c) 1999-2006 Intel Corporation.";
44 /* e1000_pci_tbl - PCI Device ID Table
46 * Last entry must be all 0s
49 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
51 static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl
) = {
52 INTEL_E1000_ETHERNET_DEVICE(0x1000),
53 INTEL_E1000_ETHERNET_DEVICE(0x1001),
54 INTEL_E1000_ETHERNET_DEVICE(0x1004),
55 INTEL_E1000_ETHERNET_DEVICE(0x1008),
56 INTEL_E1000_ETHERNET_DEVICE(0x1009),
57 INTEL_E1000_ETHERNET_DEVICE(0x100C),
58 INTEL_E1000_ETHERNET_DEVICE(0x100D),
59 INTEL_E1000_ETHERNET_DEVICE(0x100E),
60 INTEL_E1000_ETHERNET_DEVICE(0x100F),
61 INTEL_E1000_ETHERNET_DEVICE(0x1010),
62 INTEL_E1000_ETHERNET_DEVICE(0x1011),
63 INTEL_E1000_ETHERNET_DEVICE(0x1012),
64 INTEL_E1000_ETHERNET_DEVICE(0x1013),
65 INTEL_E1000_ETHERNET_DEVICE(0x1014),
66 INTEL_E1000_ETHERNET_DEVICE(0x1015),
67 INTEL_E1000_ETHERNET_DEVICE(0x1016),
68 INTEL_E1000_ETHERNET_DEVICE(0x1017),
69 INTEL_E1000_ETHERNET_DEVICE(0x1018),
70 INTEL_E1000_ETHERNET_DEVICE(0x1019),
71 INTEL_E1000_ETHERNET_DEVICE(0x101A),
72 INTEL_E1000_ETHERNET_DEVICE(0x101D),
73 INTEL_E1000_ETHERNET_DEVICE(0x101E),
74 INTEL_E1000_ETHERNET_DEVICE(0x1026),
75 INTEL_E1000_ETHERNET_DEVICE(0x1027),
76 INTEL_E1000_ETHERNET_DEVICE(0x1028),
77 INTEL_E1000_ETHERNET_DEVICE(0x1075),
78 INTEL_E1000_ETHERNET_DEVICE(0x1076),
79 INTEL_E1000_ETHERNET_DEVICE(0x1077),
80 INTEL_E1000_ETHERNET_DEVICE(0x1078),
81 INTEL_E1000_ETHERNET_DEVICE(0x1079),
82 INTEL_E1000_ETHERNET_DEVICE(0x107A),
83 INTEL_E1000_ETHERNET_DEVICE(0x107B),
84 INTEL_E1000_ETHERNET_DEVICE(0x107C),
85 INTEL_E1000_ETHERNET_DEVICE(0x108A),
86 INTEL_E1000_ETHERNET_DEVICE(0x1099),
87 INTEL_E1000_ETHERNET_DEVICE(0x10B5),
88 INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
89 /* required last entry */
93 MODULE_DEVICE_TABLE(pci
, e1000_pci_tbl
);
95 int e1000_up(struct e1000_adapter
*adapter
);
96 void e1000_down(struct e1000_adapter
*adapter
);
97 void e1000_reinit_locked(struct e1000_adapter
*adapter
);
98 void e1000_reset(struct e1000_adapter
*adapter
);
99 int e1000_set_spd_dplx(struct e1000_adapter
*adapter
, u16 spddplx
);
100 int e1000_setup_all_tx_resources(struct e1000_adapter
*adapter
);
101 int e1000_setup_all_rx_resources(struct e1000_adapter
*adapter
);
102 void e1000_free_all_tx_resources(struct e1000_adapter
*adapter
);
103 void e1000_free_all_rx_resources(struct e1000_adapter
*adapter
);
104 static int e1000_setup_tx_resources(struct e1000_adapter
*adapter
,
105 struct e1000_tx_ring
*txdr
);
106 static int e1000_setup_rx_resources(struct e1000_adapter
*adapter
,
107 struct e1000_rx_ring
*rxdr
);
108 static void e1000_free_tx_resources(struct e1000_adapter
*adapter
,
109 struct e1000_tx_ring
*tx_ring
);
110 static void e1000_free_rx_resources(struct e1000_adapter
*adapter
,
111 struct e1000_rx_ring
*rx_ring
);
112 void e1000_update_stats(struct e1000_adapter
*adapter
);
114 static int e1000_init_module(void);
115 static void e1000_exit_module(void);
116 static int e1000_probe(struct pci_dev
*pdev
, const struct pci_device_id
*ent
);
117 static void __devexit
e1000_remove(struct pci_dev
*pdev
);
118 static int e1000_alloc_queues(struct e1000_adapter
*adapter
);
119 static int e1000_sw_init(struct e1000_adapter
*adapter
);
120 static int e1000_open(struct net_device
*netdev
);
121 static int e1000_close(struct net_device
*netdev
);
122 static void e1000_configure_tx(struct e1000_adapter
*adapter
);
123 static void e1000_configure_rx(struct e1000_adapter
*adapter
);
124 static void e1000_setup_rctl(struct e1000_adapter
*adapter
);
125 static void e1000_clean_all_tx_rings(struct e1000_adapter
*adapter
);
126 static void e1000_clean_all_rx_rings(struct e1000_adapter
*adapter
);
127 static void e1000_clean_tx_ring(struct e1000_adapter
*adapter
,
128 struct e1000_tx_ring
*tx_ring
);
129 static void e1000_clean_rx_ring(struct e1000_adapter
*adapter
,
130 struct e1000_rx_ring
*rx_ring
);
131 static void e1000_set_rx_mode(struct net_device
*netdev
);
132 static void e1000_update_phy_info(unsigned long data
);
133 static void e1000_update_phy_info_task(struct work_struct
*work
);
134 static void e1000_watchdog(unsigned long data
);
135 static void e1000_82547_tx_fifo_stall(unsigned long data
);
136 static void e1000_82547_tx_fifo_stall_task(struct work_struct
*work
);
137 static netdev_tx_t
e1000_xmit_frame(struct sk_buff
*skb
,
138 struct net_device
*netdev
);
139 static struct net_device_stats
* e1000_get_stats(struct net_device
*netdev
);
140 static int e1000_change_mtu(struct net_device
*netdev
, int new_mtu
);
141 static int e1000_set_mac(struct net_device
*netdev
, void *p
);
142 static irqreturn_t
e1000_intr(int irq
, void *data
);
143 static bool e1000_clean_tx_irq(struct e1000_adapter
*adapter
,
144 struct e1000_tx_ring
*tx_ring
);
145 static int e1000_clean(struct napi_struct
*napi
, int budget
);
146 static bool e1000_clean_rx_irq(struct e1000_adapter
*adapter
,
147 struct e1000_rx_ring
*rx_ring
,
148 int *work_done
, int work_to_do
);
149 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter
*adapter
,
150 struct e1000_rx_ring
*rx_ring
,
151 int *work_done
, int work_to_do
);
152 static void e1000_alloc_rx_buffers(struct e1000_adapter
*adapter
,
153 struct e1000_rx_ring
*rx_ring
,
155 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter
*adapter
,
156 struct e1000_rx_ring
*rx_ring
,
158 static int e1000_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
);
159 static int e1000_mii_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
,
161 static void e1000_enter_82542_rst(struct e1000_adapter
*adapter
);
162 static void e1000_leave_82542_rst(struct e1000_adapter
*adapter
);
163 static void e1000_tx_timeout(struct net_device
*dev
);
164 static void e1000_reset_task(struct work_struct
*work
);
165 static void e1000_smartspeed(struct e1000_adapter
*adapter
);
166 static int e1000_82547_fifo_workaround(struct e1000_adapter
*adapter
,
167 struct sk_buff
*skb
);
169 static void e1000_vlan_rx_register(struct net_device
*netdev
, struct vlan_group
*grp
);
170 static void e1000_vlan_rx_add_vid(struct net_device
*netdev
, u16 vid
);
171 static void e1000_vlan_rx_kill_vid(struct net_device
*netdev
, u16 vid
);
172 static void e1000_restore_vlan(struct e1000_adapter
*adapter
);
175 static int e1000_suspend(struct pci_dev
*pdev
, pm_message_t state
);
176 static int e1000_resume(struct pci_dev
*pdev
);
178 static void e1000_shutdown(struct pci_dev
*pdev
);
180 #ifdef CONFIG_NET_POLL_CONTROLLER
181 /* for netdump / net console */
182 static void e1000_netpoll (struct net_device
*netdev
);
185 #define COPYBREAK_DEFAULT 256
186 static unsigned int copybreak __read_mostly
= COPYBREAK_DEFAULT
;
187 module_param(copybreak
, uint
, 0644);
188 MODULE_PARM_DESC(copybreak
,
189 "Maximum size of packet that is copied to a new buffer on receive");
191 static pci_ers_result_t
e1000_io_error_detected(struct pci_dev
*pdev
,
192 pci_channel_state_t state
);
193 static pci_ers_result_t
e1000_io_slot_reset(struct pci_dev
*pdev
);
194 static void e1000_io_resume(struct pci_dev
*pdev
);
196 static struct pci_error_handlers e1000_err_handler
= {
197 .error_detected
= e1000_io_error_detected
,
198 .slot_reset
= e1000_io_slot_reset
,
199 .resume
= e1000_io_resume
,
202 static struct pci_driver e1000_driver
= {
203 .name
= e1000_driver_name
,
204 .id_table
= e1000_pci_tbl
,
205 .probe
= e1000_probe
,
206 .remove
= __devexit_p(e1000_remove
),
208 /* Power Managment Hooks */
209 .suspend
= e1000_suspend
,
210 .resume
= e1000_resume
,
212 .shutdown
= e1000_shutdown
,
213 .err_handler
= &e1000_err_handler
216 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
217 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
218 MODULE_LICENSE("GPL");
219 MODULE_VERSION(DRV_VERSION
);
221 static int debug
= NETIF_MSG_DRV
| NETIF_MSG_PROBE
;
222 module_param(debug
, int, 0);
223 MODULE_PARM_DESC(debug
, "Debug level (0=none,...,16=all)");
226 * e1000_get_hw_dev - return device
227 * used by hardware layer to print debugging information
230 struct net_device
*e1000_get_hw_dev(struct e1000_hw
*hw
)
232 struct e1000_adapter
*adapter
= hw
->back
;
233 return adapter
->netdev
;
237 * e1000_init_module - Driver Registration Routine
239 * e1000_init_module is the first routine called when the driver is
240 * loaded. All it does is register with the PCI subsystem.
243 static int __init
e1000_init_module(void)
246 pr_info("%s - version %s\n", e1000_driver_string
, e1000_driver_version
);
248 pr_info("%s\n", e1000_copyright
);
250 ret
= pci_register_driver(&e1000_driver
);
251 if (copybreak
!= COPYBREAK_DEFAULT
) {
253 pr_info("copybreak disabled\n");
255 pr_info("copybreak enabled for "
256 "packets <= %u bytes\n", copybreak
);
261 module_init(e1000_init_module
);
264 * e1000_exit_module - Driver Exit Cleanup Routine
266 * e1000_exit_module is called just before the driver is removed
270 static void __exit
e1000_exit_module(void)
272 pci_unregister_driver(&e1000_driver
);
275 module_exit(e1000_exit_module
);
277 static int e1000_request_irq(struct e1000_adapter
*adapter
)
279 struct net_device
*netdev
= adapter
->netdev
;
280 irq_handler_t handler
= e1000_intr
;
281 int irq_flags
= IRQF_SHARED
;
284 err
= request_irq(adapter
->pdev
->irq
, handler
, irq_flags
, netdev
->name
,
287 e_err(probe
, "Unable to allocate interrupt Error: %d\n", err
);
293 static void e1000_free_irq(struct e1000_adapter
*adapter
)
295 struct net_device
*netdev
= adapter
->netdev
;
297 free_irq(adapter
->pdev
->irq
, netdev
);
301 * e1000_irq_disable - Mask off interrupt generation on the NIC
302 * @adapter: board private structure
305 static void e1000_irq_disable(struct e1000_adapter
*adapter
)
307 struct e1000_hw
*hw
= &adapter
->hw
;
311 synchronize_irq(adapter
->pdev
->irq
);
315 * e1000_irq_enable - Enable default interrupt generation settings
316 * @adapter: board private structure
319 static void e1000_irq_enable(struct e1000_adapter
*adapter
)
321 struct e1000_hw
*hw
= &adapter
->hw
;
323 ew32(IMS
, IMS_ENABLE_MASK
);
327 static void e1000_update_mng_vlan(struct e1000_adapter
*adapter
)
329 struct e1000_hw
*hw
= &adapter
->hw
;
330 struct net_device
*netdev
= adapter
->netdev
;
331 u16 vid
= hw
->mng_cookie
.vlan_id
;
332 u16 old_vid
= adapter
->mng_vlan_id
;
333 if (adapter
->vlgrp
) {
334 if (!vlan_group_get_device(adapter
->vlgrp
, vid
)) {
335 if (hw
->mng_cookie
.status
&
336 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
) {
337 e1000_vlan_rx_add_vid(netdev
, vid
);
338 adapter
->mng_vlan_id
= vid
;
340 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
342 if ((old_vid
!= (u16
)E1000_MNG_VLAN_NONE
) &&
344 !vlan_group_get_device(adapter
->vlgrp
, old_vid
))
345 e1000_vlan_rx_kill_vid(netdev
, old_vid
);
347 adapter
->mng_vlan_id
= vid
;
351 static void e1000_init_manageability(struct e1000_adapter
*adapter
)
353 struct e1000_hw
*hw
= &adapter
->hw
;
355 if (adapter
->en_mng_pt
) {
356 u32 manc
= er32(MANC
);
358 /* disable hardware interception of ARP */
359 manc
&= ~(E1000_MANC_ARP_EN
);
365 static void e1000_release_manageability(struct e1000_adapter
*adapter
)
367 struct e1000_hw
*hw
= &adapter
->hw
;
369 if (adapter
->en_mng_pt
) {
370 u32 manc
= er32(MANC
);
372 /* re-enable hardware interception of ARP */
373 manc
|= E1000_MANC_ARP_EN
;
380 * e1000_configure - configure the hardware for RX and TX
381 * @adapter = private board structure
383 static void e1000_configure(struct e1000_adapter
*adapter
)
385 struct net_device
*netdev
= adapter
->netdev
;
388 e1000_set_rx_mode(netdev
);
390 e1000_restore_vlan(adapter
);
391 e1000_init_manageability(adapter
);
393 e1000_configure_tx(adapter
);
394 e1000_setup_rctl(adapter
);
395 e1000_configure_rx(adapter
);
396 /* call E1000_DESC_UNUSED which always leaves
397 * at least 1 descriptor unused to make sure
398 * next_to_use != next_to_clean */
399 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
400 struct e1000_rx_ring
*ring
= &adapter
->rx_ring
[i
];
401 adapter
->alloc_rx_buf(adapter
, ring
,
402 E1000_DESC_UNUSED(ring
));
406 int e1000_up(struct e1000_adapter
*adapter
)
408 struct e1000_hw
*hw
= &adapter
->hw
;
410 /* hardware has been reset, we need to reload some things */
411 e1000_configure(adapter
);
413 clear_bit(__E1000_DOWN
, &adapter
->flags
);
415 napi_enable(&adapter
->napi
);
417 e1000_irq_enable(adapter
);
419 netif_wake_queue(adapter
->netdev
);
421 /* fire a link change interrupt to start the watchdog */
422 ew32(ICS
, E1000_ICS_LSC
);
427 * e1000_power_up_phy - restore link in case the phy was powered down
428 * @adapter: address of board private structure
430 * The phy may be powered down to save power and turn off link when the
431 * driver is unloaded and wake on lan is not enabled (among others)
432 * *** this routine MUST be followed by a call to e1000_reset ***
436 void e1000_power_up_phy(struct e1000_adapter
*adapter
)
438 struct e1000_hw
*hw
= &adapter
->hw
;
441 /* Just clear the power down bit to wake the phy back up */
442 if (hw
->media_type
== e1000_media_type_copper
) {
443 /* according to the manual, the phy will retain its
444 * settings across a power-down/up cycle */
445 e1000_read_phy_reg(hw
, PHY_CTRL
, &mii_reg
);
446 mii_reg
&= ~MII_CR_POWER_DOWN
;
447 e1000_write_phy_reg(hw
, PHY_CTRL
, mii_reg
);
451 static void e1000_power_down_phy(struct e1000_adapter
*adapter
)
453 struct e1000_hw
*hw
= &adapter
->hw
;
455 /* Power down the PHY so no link is implied when interface is down *
456 * The PHY cannot be powered down if any of the following is true *
459 * (c) SoL/IDER session is active */
460 if (!adapter
->wol
&& hw
->mac_type
>= e1000_82540
&&
461 hw
->media_type
== e1000_media_type_copper
) {
464 switch (hw
->mac_type
) {
467 case e1000_82545_rev_3
:
470 case e1000_82546_rev_3
:
472 case e1000_82541_rev_2
:
474 case e1000_82547_rev_2
:
475 if (er32(MANC
) & E1000_MANC_SMBUS_EN
)
481 e1000_read_phy_reg(hw
, PHY_CTRL
, &mii_reg
);
482 mii_reg
|= MII_CR_POWER_DOWN
;
483 e1000_write_phy_reg(hw
, PHY_CTRL
, mii_reg
);
490 void e1000_down(struct e1000_adapter
*adapter
)
492 struct e1000_hw
*hw
= &adapter
->hw
;
493 struct net_device
*netdev
= adapter
->netdev
;
497 /* disable receives in the hardware */
499 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
500 /* flush and sleep below */
502 netif_tx_disable(netdev
);
504 /* disable transmits in the hardware */
506 tctl
&= ~E1000_TCTL_EN
;
508 /* flush both disables and wait for them to finish */
512 napi_disable(&adapter
->napi
);
514 e1000_irq_disable(adapter
);
517 * Setting DOWN must be after irq_disable to prevent
518 * a screaming interrupt. Setting DOWN also prevents
519 * timers and tasks from rescheduling.
521 set_bit(__E1000_DOWN
, &adapter
->flags
);
523 del_timer_sync(&adapter
->tx_fifo_stall_timer
);
524 del_timer_sync(&adapter
->watchdog_timer
);
525 del_timer_sync(&adapter
->phy_info_timer
);
527 adapter
->link_speed
= 0;
528 adapter
->link_duplex
= 0;
529 netif_carrier_off(netdev
);
531 e1000_reset(adapter
);
532 e1000_clean_all_tx_rings(adapter
);
533 e1000_clean_all_rx_rings(adapter
);
536 static void e1000_reinit_safe(struct e1000_adapter
*adapter
)
538 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->flags
))
544 clear_bit(__E1000_RESETTING
, &adapter
->flags
);
547 void e1000_reinit_locked(struct e1000_adapter
*adapter
)
549 /* if rtnl_lock is not held the call path is bogus */
551 WARN_ON(in_interrupt());
552 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->flags
))
556 clear_bit(__E1000_RESETTING
, &adapter
->flags
);
559 void e1000_reset(struct e1000_adapter
*adapter
)
561 struct e1000_hw
*hw
= &adapter
->hw
;
562 u32 pba
= 0, tx_space
, min_tx_space
, min_rx_space
;
563 bool legacy_pba_adjust
= false;
566 /* Repartition Pba for greater than 9k mtu
567 * To take effect CTRL.RST is required.
570 switch (hw
->mac_type
) {
571 case e1000_82542_rev2_0
:
572 case e1000_82542_rev2_1
:
577 case e1000_82541_rev_2
:
578 legacy_pba_adjust
= true;
582 case e1000_82545_rev_3
:
585 case e1000_82546_rev_3
:
589 case e1000_82547_rev_2
:
590 legacy_pba_adjust
= true;
593 case e1000_undefined
:
598 if (legacy_pba_adjust
) {
599 if (hw
->max_frame_size
> E1000_RXBUFFER_8192
)
600 pba
-= 8; /* allocate more FIFO for Tx */
602 if (hw
->mac_type
== e1000_82547
) {
603 adapter
->tx_fifo_head
= 0;
604 adapter
->tx_head_addr
= pba
<< E1000_TX_HEAD_ADDR_SHIFT
;
605 adapter
->tx_fifo_size
=
606 (E1000_PBA_40K
- pba
) << E1000_PBA_BYTES_SHIFT
;
607 atomic_set(&adapter
->tx_fifo_stall
, 0);
609 } else if (hw
->max_frame_size
> ETH_FRAME_LEN
+ ETH_FCS_LEN
) {
610 /* adjust PBA for jumbo frames */
613 /* To maintain wire speed transmits, the Tx FIFO should be
614 * large enough to accommodate two full transmit packets,
615 * rounded up to the next 1KB and expressed in KB. Likewise,
616 * the Rx FIFO should be large enough to accommodate at least
617 * one full receive packet and is similarly rounded up and
618 * expressed in KB. */
620 /* upper 16 bits has Tx packet buffer allocation size in KB */
621 tx_space
= pba
>> 16;
622 /* lower 16 bits has Rx packet buffer allocation size in KB */
625 * the tx fifo also stores 16 bytes of information about the tx
626 * but don't include ethernet FCS because hardware appends it
628 min_tx_space
= (hw
->max_frame_size
+
629 sizeof(struct e1000_tx_desc
) -
631 min_tx_space
= ALIGN(min_tx_space
, 1024);
633 /* software strips receive CRC, so leave room for it */
634 min_rx_space
= hw
->max_frame_size
;
635 min_rx_space
= ALIGN(min_rx_space
, 1024);
638 /* If current Tx allocation is less than the min Tx FIFO size,
639 * and the min Tx FIFO size is less than the current Rx FIFO
640 * allocation, take space away from current Rx allocation */
641 if (tx_space
< min_tx_space
&&
642 ((min_tx_space
- tx_space
) < pba
)) {
643 pba
= pba
- (min_tx_space
- tx_space
);
645 /* PCI/PCIx hardware has PBA alignment constraints */
646 switch (hw
->mac_type
) {
647 case e1000_82545
... e1000_82546_rev_3
:
648 pba
&= ~(E1000_PBA_8K
- 1);
654 /* if short on rx space, rx wins and must trump tx
655 * adjustment or use Early Receive if available */
656 if (pba
< min_rx_space
)
664 * flow control settings:
665 * The high water mark must be low enough to fit one full frame
666 * (or the size used for early receive) above it in the Rx FIFO.
667 * Set it to the lower of:
668 * - 90% of the Rx FIFO size, and
669 * - the full Rx FIFO size minus the early receive size (for parts
670 * with ERT support assuming ERT set to E1000_ERT_2048), or
671 * - the full Rx FIFO size minus one full frame
673 hwm
= min(((pba
<< 10) * 9 / 10),
674 ((pba
<< 10) - hw
->max_frame_size
));
676 hw
->fc_high_water
= hwm
& 0xFFF8; /* 8-byte granularity */
677 hw
->fc_low_water
= hw
->fc_high_water
- 8;
678 hw
->fc_pause_time
= E1000_FC_PAUSE_TIME
;
680 hw
->fc
= hw
->original_fc
;
682 /* Allow time for pending master requests to run */
684 if (hw
->mac_type
>= e1000_82544
)
687 if (e1000_init_hw(hw
))
688 e_dev_err("Hardware Error\n");
689 e1000_update_mng_vlan(adapter
);
691 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
692 if (hw
->mac_type
>= e1000_82544
&&
694 hw
->autoneg_advertised
== ADVERTISE_1000_FULL
) {
695 u32 ctrl
= er32(CTRL
);
696 /* clear phy power management bit if we are in gig only mode,
697 * which if enabled will attempt negotiation to 100Mb, which
698 * can cause a loss of link at power off or driver unload */
699 ctrl
&= ~E1000_CTRL_SWDPIN3
;
703 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
704 ew32(VET
, ETHERNET_IEEE_VLAN_TYPE
);
706 e1000_reset_adaptive(hw
);
707 e1000_phy_get_info(hw
, &adapter
->phy_info
);
709 e1000_release_manageability(adapter
);
713 * Dump the eeprom for users having checksum issues
715 static void e1000_dump_eeprom(struct e1000_adapter
*adapter
)
717 struct net_device
*netdev
= adapter
->netdev
;
718 struct ethtool_eeprom eeprom
;
719 const struct ethtool_ops
*ops
= netdev
->ethtool_ops
;
722 u16 csum_old
, csum_new
= 0;
724 eeprom
.len
= ops
->get_eeprom_len(netdev
);
727 data
= kmalloc(eeprom
.len
, GFP_KERNEL
);
729 pr_err("Unable to allocate memory to dump EEPROM data\n");
733 ops
->get_eeprom(netdev
, &eeprom
, data
);
735 csum_old
= (data
[EEPROM_CHECKSUM_REG
* 2]) +
736 (data
[EEPROM_CHECKSUM_REG
* 2 + 1] << 8);
737 for (i
= 0; i
< EEPROM_CHECKSUM_REG
* 2; i
+= 2)
738 csum_new
+= data
[i
] + (data
[i
+ 1] << 8);
739 csum_new
= EEPROM_SUM
- csum_new
;
741 pr_err("/*********************/\n");
742 pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old
);
743 pr_err("Calculated : 0x%04x\n", csum_new
);
745 pr_err("Offset Values\n");
746 pr_err("======== ======\n");
747 print_hex_dump(KERN_ERR
, "", DUMP_PREFIX_OFFSET
, 16, 1, data
, 128, 0);
749 pr_err("Include this output when contacting your support provider.\n");
750 pr_err("This is not a software error! Something bad happened to\n");
751 pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
752 pr_err("result in further problems, possibly loss of data,\n");
753 pr_err("corruption or system hangs!\n");
754 pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
755 pr_err("which is invalid and requires you to set the proper MAC\n");
756 pr_err("address manually before continuing to enable this network\n");
757 pr_err("device. Please inspect the EEPROM dump and report the\n");
758 pr_err("issue to your hardware vendor or Intel Customer Support.\n");
759 pr_err("/*********************/\n");
765 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
766 * @pdev: PCI device information struct
768 * Return true if an adapter needs ioport resources
770 static int e1000_is_need_ioport(struct pci_dev
*pdev
)
772 switch (pdev
->device
) {
773 case E1000_DEV_ID_82540EM
:
774 case E1000_DEV_ID_82540EM_LOM
:
775 case E1000_DEV_ID_82540EP
:
776 case E1000_DEV_ID_82540EP_LOM
:
777 case E1000_DEV_ID_82540EP_LP
:
778 case E1000_DEV_ID_82541EI
:
779 case E1000_DEV_ID_82541EI_MOBILE
:
780 case E1000_DEV_ID_82541ER
:
781 case E1000_DEV_ID_82541ER_LOM
:
782 case E1000_DEV_ID_82541GI
:
783 case E1000_DEV_ID_82541GI_LF
:
784 case E1000_DEV_ID_82541GI_MOBILE
:
785 case E1000_DEV_ID_82544EI_COPPER
:
786 case E1000_DEV_ID_82544EI_FIBER
:
787 case E1000_DEV_ID_82544GC_COPPER
:
788 case E1000_DEV_ID_82544GC_LOM
:
789 case E1000_DEV_ID_82545EM_COPPER
:
790 case E1000_DEV_ID_82545EM_FIBER
:
791 case E1000_DEV_ID_82546EB_COPPER
:
792 case E1000_DEV_ID_82546EB_FIBER
:
793 case E1000_DEV_ID_82546EB_QUAD_COPPER
:
800 static const struct net_device_ops e1000_netdev_ops
= {
801 .ndo_open
= e1000_open
,
802 .ndo_stop
= e1000_close
,
803 .ndo_start_xmit
= e1000_xmit_frame
,
804 .ndo_get_stats
= e1000_get_stats
,
805 .ndo_set_rx_mode
= e1000_set_rx_mode
,
806 .ndo_set_mac_address
= e1000_set_mac
,
807 .ndo_tx_timeout
= e1000_tx_timeout
,
808 .ndo_change_mtu
= e1000_change_mtu
,
809 .ndo_do_ioctl
= e1000_ioctl
,
810 .ndo_validate_addr
= eth_validate_addr
,
812 .ndo_vlan_rx_register
= e1000_vlan_rx_register
,
813 .ndo_vlan_rx_add_vid
= e1000_vlan_rx_add_vid
,
814 .ndo_vlan_rx_kill_vid
= e1000_vlan_rx_kill_vid
,
815 #ifdef CONFIG_NET_POLL_CONTROLLER
816 .ndo_poll_controller
= e1000_netpoll
,
821 * e1000_init_hw_struct - initialize members of hw struct
822 * @adapter: board private struct
823 * @hw: structure used by e1000_hw.c
825 * Factors out initialization of the e1000_hw struct to its own function
826 * that can be called very early at init (just after struct allocation).
827 * Fields are initialized based on PCI device information and
828 * OS network device settings (MTU size).
829 * Returns negative error codes if MAC type setup fails.
831 static int e1000_init_hw_struct(struct e1000_adapter
*adapter
,
834 struct pci_dev
*pdev
= adapter
->pdev
;
836 /* PCI config space info */
837 hw
->vendor_id
= pdev
->vendor
;
838 hw
->device_id
= pdev
->device
;
839 hw
->subsystem_vendor_id
= pdev
->subsystem_vendor
;
840 hw
->subsystem_id
= pdev
->subsystem_device
;
841 hw
->revision_id
= pdev
->revision
;
843 pci_read_config_word(pdev
, PCI_COMMAND
, &hw
->pci_cmd_word
);
845 hw
->max_frame_size
= adapter
->netdev
->mtu
+
846 ENET_HEADER_SIZE
+ ETHERNET_FCS_SIZE
;
847 hw
->min_frame_size
= MINIMUM_ETHERNET_FRAME_SIZE
;
849 /* identify the MAC */
850 if (e1000_set_mac_type(hw
)) {
851 e_err(probe
, "Unknown MAC Type\n");
855 switch (hw
->mac_type
) {
860 case e1000_82541_rev_2
:
861 case e1000_82547_rev_2
:
862 hw
->phy_init_script
= 1;
866 e1000_set_media_type(hw
);
867 e1000_get_bus_info(hw
);
869 hw
->wait_autoneg_complete
= false;
870 hw
->tbi_compatibility_en
= true;
871 hw
->adaptive_ifs
= true;
875 if (hw
->media_type
== e1000_media_type_copper
) {
876 hw
->mdix
= AUTO_ALL_MODES
;
877 hw
->disable_polarity_correction
= false;
878 hw
->master_slave
= E1000_MASTER_SLAVE
;
885 * e1000_probe - Device Initialization Routine
886 * @pdev: PCI device information struct
887 * @ent: entry in e1000_pci_tbl
889 * Returns 0 on success, negative on failure
891 * e1000_probe initializes an adapter identified by a pci_dev structure.
892 * The OS initialization, configuring of the adapter private structure,
893 * and a hardware reset occur.
895 static int __devinit
e1000_probe(struct pci_dev
*pdev
,
896 const struct pci_device_id
*ent
)
898 struct net_device
*netdev
;
899 struct e1000_adapter
*adapter
;
902 static int cards_found
= 0;
903 static int global_quad_port_a
= 0; /* global ksp3 port a indication */
904 int i
, err
, pci_using_dac
;
907 u16 eeprom_apme_mask
= E1000_EEPROM_APME
;
908 int bars
, need_ioport
;
910 /* do not allocate ioport bars when not needed */
911 need_ioport
= e1000_is_need_ioport(pdev
);
913 bars
= pci_select_bars(pdev
, IORESOURCE_MEM
| IORESOURCE_IO
);
914 err
= pci_enable_device(pdev
);
916 bars
= pci_select_bars(pdev
, IORESOURCE_MEM
);
917 err
= pci_enable_device_mem(pdev
);
922 err
= pci_request_selected_regions(pdev
, bars
, e1000_driver_name
);
926 pci_set_master(pdev
);
927 err
= pci_save_state(pdev
);
929 goto err_alloc_etherdev
;
932 netdev
= alloc_etherdev(sizeof(struct e1000_adapter
));
934 goto err_alloc_etherdev
;
936 SET_NETDEV_DEV(netdev
, &pdev
->dev
);
938 pci_set_drvdata(pdev
, netdev
);
939 adapter
= netdev_priv(netdev
);
940 adapter
->netdev
= netdev
;
941 adapter
->pdev
= pdev
;
942 adapter
->msg_enable
= (1 << debug
) - 1;
943 adapter
->bars
= bars
;
944 adapter
->need_ioport
= need_ioport
;
950 hw
->hw_addr
= pci_ioremap_bar(pdev
, BAR_0
);
954 if (adapter
->need_ioport
) {
955 for (i
= BAR_1
; i
<= BAR_5
; i
++) {
956 if (pci_resource_len(pdev
, i
) == 0)
958 if (pci_resource_flags(pdev
, i
) & IORESOURCE_IO
) {
959 hw
->io_base
= pci_resource_start(pdev
, i
);
965 /* make ready for any if (hw->...) below */
966 err
= e1000_init_hw_struct(adapter
, hw
);
971 * there is a workaround being applied below that limits
972 * 64-bit DMA addresses to 64-bit hardware. There are some
973 * 32-bit adapters that Tx hang when given 64-bit DMA addresses
976 if ((hw
->bus_type
== e1000_bus_type_pcix
) &&
977 !dma_set_mask(&pdev
->dev
, DMA_BIT_MASK(64))) {
979 * according to DMA-API-HOWTO, coherent calls will always
980 * succeed if the set call did
982 dma_set_coherent_mask(&pdev
->dev
, DMA_BIT_MASK(64));
985 err
= dma_set_mask(&pdev
->dev
, DMA_BIT_MASK(32));
987 pr_err("No usable DMA config, aborting\n");
990 dma_set_coherent_mask(&pdev
->dev
, DMA_BIT_MASK(32));
993 netdev
->netdev_ops
= &e1000_netdev_ops
;
994 e1000_set_ethtool_ops(netdev
);
995 netdev
->watchdog_timeo
= 5 * HZ
;
996 netif_napi_add(netdev
, &adapter
->napi
, e1000_clean
, 64);
998 strncpy(netdev
->name
, pci_name(pdev
), sizeof(netdev
->name
) - 1);
1000 adapter
->bd_number
= cards_found
;
1002 /* setup the private structure */
1004 err
= e1000_sw_init(adapter
);
1009 if (hw
->mac_type
== e1000_ce4100
) {
1010 ce4100_gbe_mdio_base_phy
= pci_resource_start(pdev
, BAR_1
);
1011 ce4100_gbe_mdio_base_virt
= ioremap(ce4100_gbe_mdio_base_phy
,
1012 pci_resource_len(pdev
, BAR_1
));
1014 if (!ce4100_gbe_mdio_base_virt
)
1015 goto err_mdio_ioremap
;
1018 if (hw
->mac_type
>= e1000_82543
) {
1019 netdev
->features
= NETIF_F_SG
|
1021 NETIF_F_HW_VLAN_TX
|
1022 NETIF_F_HW_VLAN_RX
|
1023 NETIF_F_HW_VLAN_FILTER
;
1026 if ((hw
->mac_type
>= e1000_82544
) &&
1027 (hw
->mac_type
!= e1000_82547
))
1028 netdev
->features
|= NETIF_F_TSO
;
1030 if (pci_using_dac
) {
1031 netdev
->features
|= NETIF_F_HIGHDMA
;
1032 netdev
->vlan_features
|= NETIF_F_HIGHDMA
;
1035 netdev
->vlan_features
|= NETIF_F_TSO
;
1036 netdev
->vlan_features
|= NETIF_F_HW_CSUM
;
1037 netdev
->vlan_features
|= NETIF_F_SG
;
1039 adapter
->en_mng_pt
= e1000_enable_mng_pass_thru(hw
);
1041 /* initialize eeprom parameters */
1042 if (e1000_init_eeprom_params(hw
)) {
1043 e_err(probe
, "EEPROM initialization failed\n");
1047 /* before reading the EEPROM, reset the controller to
1048 * put the device in a known good starting state */
1052 /* make sure the EEPROM is good */
1053 if (e1000_validate_eeprom_checksum(hw
) < 0) {
1054 e_err(probe
, "The EEPROM Checksum Is Not Valid\n");
1055 e1000_dump_eeprom(adapter
);
1057 * set MAC address to all zeroes to invalidate and temporary
1058 * disable this device for the user. This blocks regular
1059 * traffic while still permitting ethtool ioctls from reaching
1060 * the hardware as well as allowing the user to run the
1061 * interface after manually setting a hw addr using
1064 memset(hw
->mac_addr
, 0, netdev
->addr_len
);
1066 /* copy the MAC address out of the EEPROM */
1067 if (e1000_read_mac_addr(hw
))
1068 e_err(probe
, "EEPROM Read Error\n");
1070 /* don't block initalization here due to bad MAC address */
1071 memcpy(netdev
->dev_addr
, hw
->mac_addr
, netdev
->addr_len
);
1072 memcpy(netdev
->perm_addr
, hw
->mac_addr
, netdev
->addr_len
);
1074 if (!is_valid_ether_addr(netdev
->perm_addr
))
1075 e_err(probe
, "Invalid MAC Address\n");
1077 init_timer(&adapter
->tx_fifo_stall_timer
);
1078 adapter
->tx_fifo_stall_timer
.function
= e1000_82547_tx_fifo_stall
;
1079 adapter
->tx_fifo_stall_timer
.data
= (unsigned long)adapter
;
1081 init_timer(&adapter
->watchdog_timer
);
1082 adapter
->watchdog_timer
.function
= e1000_watchdog
;
1083 adapter
->watchdog_timer
.data
= (unsigned long) adapter
;
1085 init_timer(&adapter
->phy_info_timer
);
1086 adapter
->phy_info_timer
.function
= e1000_update_phy_info
;
1087 adapter
->phy_info_timer
.data
= (unsigned long)adapter
;
1089 INIT_WORK(&adapter
->fifo_stall_task
, e1000_82547_tx_fifo_stall_task
);
1090 INIT_WORK(&adapter
->reset_task
, e1000_reset_task
);
1091 INIT_WORK(&adapter
->phy_info_task
, e1000_update_phy_info_task
);
1093 e1000_check_options(adapter
);
1095 /* Initial Wake on LAN setting
1096 * If APM wake is enabled in the EEPROM,
1097 * enable the ACPI Magic Packet filter
1100 switch (hw
->mac_type
) {
1101 case e1000_82542_rev2_0
:
1102 case e1000_82542_rev2_1
:
1106 e1000_read_eeprom(hw
,
1107 EEPROM_INIT_CONTROL2_REG
, 1, &eeprom_data
);
1108 eeprom_apme_mask
= E1000_EEPROM_82544_APM
;
1111 case e1000_82546_rev_3
:
1112 if (er32(STATUS
) & E1000_STATUS_FUNC_1
){
1113 e1000_read_eeprom(hw
,
1114 EEPROM_INIT_CONTROL3_PORT_B
, 1, &eeprom_data
);
1119 e1000_read_eeprom(hw
,
1120 EEPROM_INIT_CONTROL3_PORT_A
, 1, &eeprom_data
);
1123 if (eeprom_data
& eeprom_apme_mask
)
1124 adapter
->eeprom_wol
|= E1000_WUFC_MAG
;
1126 /* now that we have the eeprom settings, apply the special cases
1127 * where the eeprom may be wrong or the board simply won't support
1128 * wake on lan on a particular port */
1129 switch (pdev
->device
) {
1130 case E1000_DEV_ID_82546GB_PCIE
:
1131 adapter
->eeprom_wol
= 0;
1133 case E1000_DEV_ID_82546EB_FIBER
:
1134 case E1000_DEV_ID_82546GB_FIBER
:
1135 /* Wake events only supported on port A for dual fiber
1136 * regardless of eeprom setting */
1137 if (er32(STATUS
) & E1000_STATUS_FUNC_1
)
1138 adapter
->eeprom_wol
= 0;
1140 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3
:
1141 /* if quad port adapter, disable WoL on all but port A */
1142 if (global_quad_port_a
!= 0)
1143 adapter
->eeprom_wol
= 0;
1145 adapter
->quad_port_a
= 1;
1146 /* Reset for multiple quad port adapters */
1147 if (++global_quad_port_a
== 4)
1148 global_quad_port_a
= 0;
1152 /* initialize the wol settings based on the eeprom settings */
1153 adapter
->wol
= adapter
->eeprom_wol
;
1154 device_set_wakeup_enable(&adapter
->pdev
->dev
, adapter
->wol
);
1156 /* Auto detect PHY address */
1157 if (hw
->mac_type
== e1000_ce4100
) {
1158 for (i
= 0; i
< 32; i
++) {
1160 e1000_read_phy_reg(hw
, PHY_ID2
, &tmp
);
1161 if (tmp
== 0 || tmp
== 0xFF) {
1170 /* reset the hardware with the new settings */
1171 e1000_reset(adapter
);
1173 strcpy(netdev
->name
, "eth%d");
1174 err
= register_netdev(netdev
);
1178 /* print bus type/speed/width info */
1179 e_info(probe
, "(PCI%s:%dMHz:%d-bit) %pM\n",
1180 ((hw
->bus_type
== e1000_bus_type_pcix
) ? "-X" : ""),
1181 ((hw
->bus_speed
== e1000_bus_speed_133
) ? 133 :
1182 (hw
->bus_speed
== e1000_bus_speed_120
) ? 120 :
1183 (hw
->bus_speed
== e1000_bus_speed_100
) ? 100 :
1184 (hw
->bus_speed
== e1000_bus_speed_66
) ? 66 : 33),
1185 ((hw
->bus_width
== e1000_bus_width_64
) ? 64 : 32),
1188 /* carrier off reporting is important to ethtool even BEFORE open */
1189 netif_carrier_off(netdev
);
1191 e_info(probe
, "Intel(R) PRO/1000 Network Connection\n");
1198 e1000_phy_hw_reset(hw
);
1200 if (hw
->flash_address
)
1201 iounmap(hw
->flash_address
);
1202 kfree(adapter
->tx_ring
);
1203 kfree(adapter
->rx_ring
);
1207 iounmap(ce4100_gbe_mdio_base_virt
);
1208 iounmap(hw
->hw_addr
);
1210 free_netdev(netdev
);
1212 pci_release_selected_regions(pdev
, bars
);
1214 pci_disable_device(pdev
);
1219 * e1000_remove - Device Removal Routine
1220 * @pdev: PCI device information struct
1222 * e1000_remove is called by the PCI subsystem to alert the driver
1223 * that it should release a PCI device. The could be caused by a
1224 * Hot-Plug event, or because the driver is going to be removed from
1228 static void __devexit
e1000_remove(struct pci_dev
*pdev
)
1230 struct net_device
*netdev
= pci_get_drvdata(pdev
);
1231 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1232 struct e1000_hw
*hw
= &adapter
->hw
;
1234 set_bit(__E1000_DOWN
, &adapter
->flags
);
1235 del_timer_sync(&adapter
->tx_fifo_stall_timer
);
1236 del_timer_sync(&adapter
->watchdog_timer
);
1237 del_timer_sync(&adapter
->phy_info_timer
);
1239 cancel_work_sync(&adapter
->reset_task
);
1241 e1000_release_manageability(adapter
);
1243 unregister_netdev(netdev
);
1245 e1000_phy_hw_reset(hw
);
1247 kfree(adapter
->tx_ring
);
1248 kfree(adapter
->rx_ring
);
1250 iounmap(hw
->hw_addr
);
1251 if (hw
->flash_address
)
1252 iounmap(hw
->flash_address
);
1253 pci_release_selected_regions(pdev
, adapter
->bars
);
1255 free_netdev(netdev
);
1257 pci_disable_device(pdev
);
1261 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1262 * @adapter: board private structure to initialize
1264 * e1000_sw_init initializes the Adapter private data structure.
1265 * e1000_init_hw_struct MUST be called before this function
1268 static int __devinit
e1000_sw_init(struct e1000_adapter
*adapter
)
1270 adapter
->rx_buffer_len
= MAXIMUM_ETHERNET_VLAN_SIZE
;
1272 adapter
->num_tx_queues
= 1;
1273 adapter
->num_rx_queues
= 1;
1275 if (e1000_alloc_queues(adapter
)) {
1276 e_err(probe
, "Unable to allocate memory for queues\n");
1280 /* Explicitly disable IRQ since the NIC can be in any state. */
1281 e1000_irq_disable(adapter
);
1283 spin_lock_init(&adapter
->stats_lock
);
1285 set_bit(__E1000_DOWN
, &adapter
->flags
);
1291 * e1000_alloc_queues - Allocate memory for all rings
1292 * @adapter: board private structure to initialize
1294 * We allocate one ring per queue at run-time since we don't know the
1295 * number of queues at compile-time.
1298 static int __devinit
e1000_alloc_queues(struct e1000_adapter
*adapter
)
1300 adapter
->tx_ring
= kcalloc(adapter
->num_tx_queues
,
1301 sizeof(struct e1000_tx_ring
), GFP_KERNEL
);
1302 if (!adapter
->tx_ring
)
1305 adapter
->rx_ring
= kcalloc(adapter
->num_rx_queues
,
1306 sizeof(struct e1000_rx_ring
), GFP_KERNEL
);
1307 if (!adapter
->rx_ring
) {
1308 kfree(adapter
->tx_ring
);
1312 return E1000_SUCCESS
;
1316 * e1000_open - Called when a network interface is made active
1317 * @netdev: network interface device structure
1319 * Returns 0 on success, negative value on failure
1321 * The open entry point is called when a network interface is made
1322 * active by the system (IFF_UP). At this point all resources needed
1323 * for transmit and receive operations are allocated, the interrupt
1324 * handler is registered with the OS, the watchdog timer is started,
1325 * and the stack is notified that the interface is ready.
1328 static int e1000_open(struct net_device
*netdev
)
1330 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1331 struct e1000_hw
*hw
= &adapter
->hw
;
1334 /* disallow open during test */
1335 if (test_bit(__E1000_TESTING
, &adapter
->flags
))
1338 netif_carrier_off(netdev
);
1340 /* allocate transmit descriptors */
1341 err
= e1000_setup_all_tx_resources(adapter
);
1345 /* allocate receive descriptors */
1346 err
= e1000_setup_all_rx_resources(adapter
);
1350 e1000_power_up_phy(adapter
);
1352 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
1353 if ((hw
->mng_cookie
.status
&
1354 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
)) {
1355 e1000_update_mng_vlan(adapter
);
1358 /* before we allocate an interrupt, we must be ready to handle it.
1359 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1360 * as soon as we call pci_request_irq, so we have to setup our
1361 * clean_rx handler before we do so. */
1362 e1000_configure(adapter
);
1364 err
= e1000_request_irq(adapter
);
1368 /* From here on the code is the same as e1000_up() */
1369 clear_bit(__E1000_DOWN
, &adapter
->flags
);
1371 napi_enable(&adapter
->napi
);
1373 e1000_irq_enable(adapter
);
1375 netif_start_queue(netdev
);
1377 /* fire a link status change interrupt to start the watchdog */
1378 ew32(ICS
, E1000_ICS_LSC
);
1380 return E1000_SUCCESS
;
1383 e1000_power_down_phy(adapter
);
1384 e1000_free_all_rx_resources(adapter
);
1386 e1000_free_all_tx_resources(adapter
);
1388 e1000_reset(adapter
);
1394 * e1000_close - Disables a network interface
1395 * @netdev: network interface device structure
1397 * Returns 0, this is not allowed to fail
1399 * The close entry point is called when an interface is de-activated
1400 * by the OS. The hardware is still under the drivers control, but
1401 * needs to be disabled. A global MAC reset is issued to stop the
1402 * hardware, and all transmit and receive resources are freed.
1405 static int e1000_close(struct net_device
*netdev
)
1407 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1408 struct e1000_hw
*hw
= &adapter
->hw
;
1410 WARN_ON(test_bit(__E1000_RESETTING
, &adapter
->flags
));
1411 e1000_down(adapter
);
1412 e1000_power_down_phy(adapter
);
1413 e1000_free_irq(adapter
);
1415 e1000_free_all_tx_resources(adapter
);
1416 e1000_free_all_rx_resources(adapter
);
1418 /* kill manageability vlan ID if supported, but not if a vlan with
1419 * the same ID is registered on the host OS (let 8021q kill it) */
1420 if ((hw
->mng_cookie
.status
&
1421 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
) &&
1423 vlan_group_get_device(adapter
->vlgrp
, adapter
->mng_vlan_id
))) {
1424 e1000_vlan_rx_kill_vid(netdev
, adapter
->mng_vlan_id
);
1431 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1432 * @adapter: address of board private structure
1433 * @start: address of beginning of memory
1434 * @len: length of memory
1436 static bool e1000_check_64k_bound(struct e1000_adapter
*adapter
, void *start
,
1439 struct e1000_hw
*hw
= &adapter
->hw
;
1440 unsigned long begin
= (unsigned long)start
;
1441 unsigned long end
= begin
+ len
;
1443 /* First rev 82545 and 82546 need to not allow any memory
1444 * write location to cross 64k boundary due to errata 23 */
1445 if (hw
->mac_type
== e1000_82545
||
1446 hw
->mac_type
== e1000_ce4100
||
1447 hw
->mac_type
== e1000_82546
) {
1448 return ((begin
^ (end
- 1)) >> 16) != 0 ? false : true;
1455 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1456 * @adapter: board private structure
1457 * @txdr: tx descriptor ring (for a specific queue) to setup
1459 * Return 0 on success, negative on failure
1462 static int e1000_setup_tx_resources(struct e1000_adapter
*adapter
,
1463 struct e1000_tx_ring
*txdr
)
1465 struct pci_dev
*pdev
= adapter
->pdev
;
1468 size
= sizeof(struct e1000_buffer
) * txdr
->count
;
1469 txdr
->buffer_info
= vzalloc(size
);
1470 if (!txdr
->buffer_info
) {
1471 e_err(probe
, "Unable to allocate memory for the Tx descriptor "
1476 /* round up to nearest 4K */
1478 txdr
->size
= txdr
->count
* sizeof(struct e1000_tx_desc
);
1479 txdr
->size
= ALIGN(txdr
->size
, 4096);
1481 txdr
->desc
= dma_alloc_coherent(&pdev
->dev
, txdr
->size
, &txdr
->dma
,
1485 vfree(txdr
->buffer_info
);
1486 e_err(probe
, "Unable to allocate memory for the Tx descriptor "
1491 /* Fix for errata 23, can't cross 64kB boundary */
1492 if (!e1000_check_64k_bound(adapter
, txdr
->desc
, txdr
->size
)) {
1493 void *olddesc
= txdr
->desc
;
1494 dma_addr_t olddma
= txdr
->dma
;
1495 e_err(tx_err
, "txdr align check failed: %u bytes at %p\n",
1496 txdr
->size
, txdr
->desc
);
1497 /* Try again, without freeing the previous */
1498 txdr
->desc
= dma_alloc_coherent(&pdev
->dev
, txdr
->size
,
1499 &txdr
->dma
, GFP_KERNEL
);
1500 /* Failed allocation, critical failure */
1502 dma_free_coherent(&pdev
->dev
, txdr
->size
, olddesc
,
1504 goto setup_tx_desc_die
;
1507 if (!e1000_check_64k_bound(adapter
, txdr
->desc
, txdr
->size
)) {
1509 dma_free_coherent(&pdev
->dev
, txdr
->size
, txdr
->desc
,
1511 dma_free_coherent(&pdev
->dev
, txdr
->size
, olddesc
,
1513 e_err(probe
, "Unable to allocate aligned memory "
1514 "for the transmit descriptor ring\n");
1515 vfree(txdr
->buffer_info
);
1518 /* Free old allocation, new allocation was successful */
1519 dma_free_coherent(&pdev
->dev
, txdr
->size
, olddesc
,
1523 memset(txdr
->desc
, 0, txdr
->size
);
1525 txdr
->next_to_use
= 0;
1526 txdr
->next_to_clean
= 0;
1532 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1533 * (Descriptors) for all queues
1534 * @adapter: board private structure
1536 * Return 0 on success, negative on failure
1539 int e1000_setup_all_tx_resources(struct e1000_adapter
*adapter
)
1543 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
1544 err
= e1000_setup_tx_resources(adapter
, &adapter
->tx_ring
[i
]);
1546 e_err(probe
, "Allocation for Tx Queue %u failed\n", i
);
1547 for (i
-- ; i
>= 0; i
--)
1548 e1000_free_tx_resources(adapter
,
1549 &adapter
->tx_ring
[i
]);
1558 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1559 * @adapter: board private structure
1561 * Configure the Tx unit of the MAC after a reset.
1564 static void e1000_configure_tx(struct e1000_adapter
*adapter
)
1567 struct e1000_hw
*hw
= &adapter
->hw
;
1568 u32 tdlen
, tctl
, tipg
;
1571 /* Setup the HW Tx Head and Tail descriptor pointers */
1573 switch (adapter
->num_tx_queues
) {
1576 tdba
= adapter
->tx_ring
[0].dma
;
1577 tdlen
= adapter
->tx_ring
[0].count
*
1578 sizeof(struct e1000_tx_desc
);
1580 ew32(TDBAH
, (tdba
>> 32));
1581 ew32(TDBAL
, (tdba
& 0x00000000ffffffffULL
));
1584 adapter
->tx_ring
[0].tdh
= ((hw
->mac_type
>= e1000_82543
) ? E1000_TDH
: E1000_82542_TDH
);
1585 adapter
->tx_ring
[0].tdt
= ((hw
->mac_type
>= e1000_82543
) ? E1000_TDT
: E1000_82542_TDT
);
1589 /* Set the default values for the Tx Inter Packet Gap timer */
1590 if ((hw
->media_type
== e1000_media_type_fiber
||
1591 hw
->media_type
== e1000_media_type_internal_serdes
))
1592 tipg
= DEFAULT_82543_TIPG_IPGT_FIBER
;
1594 tipg
= DEFAULT_82543_TIPG_IPGT_COPPER
;
1596 switch (hw
->mac_type
) {
1597 case e1000_82542_rev2_0
:
1598 case e1000_82542_rev2_1
:
1599 tipg
= DEFAULT_82542_TIPG_IPGT
;
1600 ipgr1
= DEFAULT_82542_TIPG_IPGR1
;
1601 ipgr2
= DEFAULT_82542_TIPG_IPGR2
;
1604 ipgr1
= DEFAULT_82543_TIPG_IPGR1
;
1605 ipgr2
= DEFAULT_82543_TIPG_IPGR2
;
1608 tipg
|= ipgr1
<< E1000_TIPG_IPGR1_SHIFT
;
1609 tipg
|= ipgr2
<< E1000_TIPG_IPGR2_SHIFT
;
1612 /* Set the Tx Interrupt Delay register */
1614 ew32(TIDV
, adapter
->tx_int_delay
);
1615 if (hw
->mac_type
>= e1000_82540
)
1616 ew32(TADV
, adapter
->tx_abs_int_delay
);
1618 /* Program the Transmit Control Register */
1621 tctl
&= ~E1000_TCTL_CT
;
1622 tctl
|= E1000_TCTL_PSP
| E1000_TCTL_RTLC
|
1623 (E1000_COLLISION_THRESHOLD
<< E1000_CT_SHIFT
);
1625 e1000_config_collision_dist(hw
);
1627 /* Setup Transmit Descriptor Settings for eop descriptor */
1628 adapter
->txd_cmd
= E1000_TXD_CMD_EOP
| E1000_TXD_CMD_IFCS
;
1630 /* only set IDE if we are delaying interrupts using the timers */
1631 if (adapter
->tx_int_delay
)
1632 adapter
->txd_cmd
|= E1000_TXD_CMD_IDE
;
1634 if (hw
->mac_type
< e1000_82543
)
1635 adapter
->txd_cmd
|= E1000_TXD_CMD_RPS
;
1637 adapter
->txd_cmd
|= E1000_TXD_CMD_RS
;
1639 /* Cache if we're 82544 running in PCI-X because we'll
1640 * need this to apply a workaround later in the send path. */
1641 if (hw
->mac_type
== e1000_82544
&&
1642 hw
->bus_type
== e1000_bus_type_pcix
)
1643 adapter
->pcix_82544
= 1;
1650 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1651 * @adapter: board private structure
1652 * @rxdr: rx descriptor ring (for a specific queue) to setup
1654 * Returns 0 on success, negative on failure
1657 static int e1000_setup_rx_resources(struct e1000_adapter
*adapter
,
1658 struct e1000_rx_ring
*rxdr
)
1660 struct pci_dev
*pdev
= adapter
->pdev
;
1663 size
= sizeof(struct e1000_buffer
) * rxdr
->count
;
1664 rxdr
->buffer_info
= vzalloc(size
);
1665 if (!rxdr
->buffer_info
) {
1666 e_err(probe
, "Unable to allocate memory for the Rx descriptor "
1671 desc_len
= sizeof(struct e1000_rx_desc
);
1673 /* Round up to nearest 4K */
1675 rxdr
->size
= rxdr
->count
* desc_len
;
1676 rxdr
->size
= ALIGN(rxdr
->size
, 4096);
1678 rxdr
->desc
= dma_alloc_coherent(&pdev
->dev
, rxdr
->size
, &rxdr
->dma
,
1682 e_err(probe
, "Unable to allocate memory for the Rx descriptor "
1685 vfree(rxdr
->buffer_info
);
1689 /* Fix for errata 23, can't cross 64kB boundary */
1690 if (!e1000_check_64k_bound(adapter
, rxdr
->desc
, rxdr
->size
)) {
1691 void *olddesc
= rxdr
->desc
;
1692 dma_addr_t olddma
= rxdr
->dma
;
1693 e_err(rx_err
, "rxdr align check failed: %u bytes at %p\n",
1694 rxdr
->size
, rxdr
->desc
);
1695 /* Try again, without freeing the previous */
1696 rxdr
->desc
= dma_alloc_coherent(&pdev
->dev
, rxdr
->size
,
1697 &rxdr
->dma
, GFP_KERNEL
);
1698 /* Failed allocation, critical failure */
1700 dma_free_coherent(&pdev
->dev
, rxdr
->size
, olddesc
,
1702 e_err(probe
, "Unable to allocate memory for the Rx "
1703 "descriptor ring\n");
1704 goto setup_rx_desc_die
;
1707 if (!e1000_check_64k_bound(adapter
, rxdr
->desc
, rxdr
->size
)) {
1709 dma_free_coherent(&pdev
->dev
, rxdr
->size
, rxdr
->desc
,
1711 dma_free_coherent(&pdev
->dev
, rxdr
->size
, olddesc
,
1713 e_err(probe
, "Unable to allocate aligned memory for "
1714 "the Rx descriptor ring\n");
1715 goto setup_rx_desc_die
;
1717 /* Free old allocation, new allocation was successful */
1718 dma_free_coherent(&pdev
->dev
, rxdr
->size
, olddesc
,
1722 memset(rxdr
->desc
, 0, rxdr
->size
);
1724 rxdr
->next_to_clean
= 0;
1725 rxdr
->next_to_use
= 0;
1726 rxdr
->rx_skb_top
= NULL
;
1732 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1733 * (Descriptors) for all queues
1734 * @adapter: board private structure
1736 * Return 0 on success, negative on failure
1739 int e1000_setup_all_rx_resources(struct e1000_adapter
*adapter
)
1743 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
1744 err
= e1000_setup_rx_resources(adapter
, &adapter
->rx_ring
[i
]);
1746 e_err(probe
, "Allocation for Rx Queue %u failed\n", i
);
1747 for (i
-- ; i
>= 0; i
--)
1748 e1000_free_rx_resources(adapter
,
1749 &adapter
->rx_ring
[i
]);
1758 * e1000_setup_rctl - configure the receive control registers
1759 * @adapter: Board private structure
1761 static void e1000_setup_rctl(struct e1000_adapter
*adapter
)
1763 struct e1000_hw
*hw
= &adapter
->hw
;
1768 rctl
&= ~(3 << E1000_RCTL_MO_SHIFT
);
1770 rctl
|= E1000_RCTL_EN
| E1000_RCTL_BAM
|
1771 E1000_RCTL_LBM_NO
| E1000_RCTL_RDMTS_HALF
|
1772 (hw
->mc_filter_type
<< E1000_RCTL_MO_SHIFT
);
1774 if (hw
->tbi_compatibility_on
== 1)
1775 rctl
|= E1000_RCTL_SBP
;
1777 rctl
&= ~E1000_RCTL_SBP
;
1779 if (adapter
->netdev
->mtu
<= ETH_DATA_LEN
)
1780 rctl
&= ~E1000_RCTL_LPE
;
1782 rctl
|= E1000_RCTL_LPE
;
1784 /* Setup buffer sizes */
1785 rctl
&= ~E1000_RCTL_SZ_4096
;
1786 rctl
|= E1000_RCTL_BSEX
;
1787 switch (adapter
->rx_buffer_len
) {
1788 case E1000_RXBUFFER_2048
:
1790 rctl
|= E1000_RCTL_SZ_2048
;
1791 rctl
&= ~E1000_RCTL_BSEX
;
1793 case E1000_RXBUFFER_4096
:
1794 rctl
|= E1000_RCTL_SZ_4096
;
1796 case E1000_RXBUFFER_8192
:
1797 rctl
|= E1000_RCTL_SZ_8192
;
1799 case E1000_RXBUFFER_16384
:
1800 rctl
|= E1000_RCTL_SZ_16384
;
1808 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1809 * @adapter: board private structure
1811 * Configure the Rx unit of the MAC after a reset.
1814 static void e1000_configure_rx(struct e1000_adapter
*adapter
)
1817 struct e1000_hw
*hw
= &adapter
->hw
;
1818 u32 rdlen
, rctl
, rxcsum
;
1820 if (adapter
->netdev
->mtu
> ETH_DATA_LEN
) {
1821 rdlen
= adapter
->rx_ring
[0].count
*
1822 sizeof(struct e1000_rx_desc
);
1823 adapter
->clean_rx
= e1000_clean_jumbo_rx_irq
;
1824 adapter
->alloc_rx_buf
= e1000_alloc_jumbo_rx_buffers
;
1826 rdlen
= adapter
->rx_ring
[0].count
*
1827 sizeof(struct e1000_rx_desc
);
1828 adapter
->clean_rx
= e1000_clean_rx_irq
;
1829 adapter
->alloc_rx_buf
= e1000_alloc_rx_buffers
;
1832 /* disable receives while setting up the descriptors */
1834 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
1836 /* set the Receive Delay Timer Register */
1837 ew32(RDTR
, adapter
->rx_int_delay
);
1839 if (hw
->mac_type
>= e1000_82540
) {
1840 ew32(RADV
, adapter
->rx_abs_int_delay
);
1841 if (adapter
->itr_setting
!= 0)
1842 ew32(ITR
, 1000000000 / (adapter
->itr
* 256));
1845 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1846 * the Base and Length of the Rx Descriptor Ring */
1847 switch (adapter
->num_rx_queues
) {
1850 rdba
= adapter
->rx_ring
[0].dma
;
1852 ew32(RDBAH
, (rdba
>> 32));
1853 ew32(RDBAL
, (rdba
& 0x00000000ffffffffULL
));
1856 adapter
->rx_ring
[0].rdh
= ((hw
->mac_type
>= e1000_82543
) ? E1000_RDH
: E1000_82542_RDH
);
1857 adapter
->rx_ring
[0].rdt
= ((hw
->mac_type
>= e1000_82543
) ? E1000_RDT
: E1000_82542_RDT
);
1861 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1862 if (hw
->mac_type
>= e1000_82543
) {
1863 rxcsum
= er32(RXCSUM
);
1864 if (adapter
->rx_csum
)
1865 rxcsum
|= E1000_RXCSUM_TUOFL
;
1867 /* don't need to clear IPPCSE as it defaults to 0 */
1868 rxcsum
&= ~E1000_RXCSUM_TUOFL
;
1869 ew32(RXCSUM
, rxcsum
);
1872 /* Enable Receives */
1877 * e1000_free_tx_resources - Free Tx Resources per Queue
1878 * @adapter: board private structure
1879 * @tx_ring: Tx descriptor ring for a specific queue
1881 * Free all transmit software resources
1884 static void e1000_free_tx_resources(struct e1000_adapter
*adapter
,
1885 struct e1000_tx_ring
*tx_ring
)
1887 struct pci_dev
*pdev
= adapter
->pdev
;
1889 e1000_clean_tx_ring(adapter
, tx_ring
);
1891 vfree(tx_ring
->buffer_info
);
1892 tx_ring
->buffer_info
= NULL
;
1894 dma_free_coherent(&pdev
->dev
, tx_ring
->size
, tx_ring
->desc
,
1897 tx_ring
->desc
= NULL
;
1901 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1902 * @adapter: board private structure
1904 * Free all transmit software resources
1907 void e1000_free_all_tx_resources(struct e1000_adapter
*adapter
)
1911 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
1912 e1000_free_tx_resources(adapter
, &adapter
->tx_ring
[i
]);
1915 static void e1000_unmap_and_free_tx_resource(struct e1000_adapter
*adapter
,
1916 struct e1000_buffer
*buffer_info
)
1918 if (buffer_info
->dma
) {
1919 if (buffer_info
->mapped_as_page
)
1920 dma_unmap_page(&adapter
->pdev
->dev
, buffer_info
->dma
,
1921 buffer_info
->length
, DMA_TO_DEVICE
);
1923 dma_unmap_single(&adapter
->pdev
->dev
, buffer_info
->dma
,
1924 buffer_info
->length
,
1926 buffer_info
->dma
= 0;
1928 if (buffer_info
->skb
) {
1929 dev_kfree_skb_any(buffer_info
->skb
);
1930 buffer_info
->skb
= NULL
;
1932 buffer_info
->time_stamp
= 0;
1933 /* buffer_info must be completely set up in the transmit path */
1937 * e1000_clean_tx_ring - Free Tx Buffers
1938 * @adapter: board private structure
1939 * @tx_ring: ring to be cleaned
1942 static void e1000_clean_tx_ring(struct e1000_adapter
*adapter
,
1943 struct e1000_tx_ring
*tx_ring
)
1945 struct e1000_hw
*hw
= &adapter
->hw
;
1946 struct e1000_buffer
*buffer_info
;
1950 /* Free all the Tx ring sk_buffs */
1952 for (i
= 0; i
< tx_ring
->count
; i
++) {
1953 buffer_info
= &tx_ring
->buffer_info
[i
];
1954 e1000_unmap_and_free_tx_resource(adapter
, buffer_info
);
1957 size
= sizeof(struct e1000_buffer
) * tx_ring
->count
;
1958 memset(tx_ring
->buffer_info
, 0, size
);
1960 /* Zero out the descriptor ring */
1962 memset(tx_ring
->desc
, 0, tx_ring
->size
);
1964 tx_ring
->next_to_use
= 0;
1965 tx_ring
->next_to_clean
= 0;
1966 tx_ring
->last_tx_tso
= 0;
1968 writel(0, hw
->hw_addr
+ tx_ring
->tdh
);
1969 writel(0, hw
->hw_addr
+ tx_ring
->tdt
);
1973 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
1974 * @adapter: board private structure
1977 static void e1000_clean_all_tx_rings(struct e1000_adapter
*adapter
)
1981 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
1982 e1000_clean_tx_ring(adapter
, &adapter
->tx_ring
[i
]);
1986 * e1000_free_rx_resources - Free Rx Resources
1987 * @adapter: board private structure
1988 * @rx_ring: ring to clean the resources from
1990 * Free all receive software resources
1993 static void e1000_free_rx_resources(struct e1000_adapter
*adapter
,
1994 struct e1000_rx_ring
*rx_ring
)
1996 struct pci_dev
*pdev
= adapter
->pdev
;
1998 e1000_clean_rx_ring(adapter
, rx_ring
);
2000 vfree(rx_ring
->buffer_info
);
2001 rx_ring
->buffer_info
= NULL
;
2003 dma_free_coherent(&pdev
->dev
, rx_ring
->size
, rx_ring
->desc
,
2006 rx_ring
->desc
= NULL
;
2010 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2011 * @adapter: board private structure
2013 * Free all receive software resources
2016 void e1000_free_all_rx_resources(struct e1000_adapter
*adapter
)
2020 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
2021 e1000_free_rx_resources(adapter
, &adapter
->rx_ring
[i
]);
2025 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2026 * @adapter: board private structure
2027 * @rx_ring: ring to free buffers from
2030 static void e1000_clean_rx_ring(struct e1000_adapter
*adapter
,
2031 struct e1000_rx_ring
*rx_ring
)
2033 struct e1000_hw
*hw
= &adapter
->hw
;
2034 struct e1000_buffer
*buffer_info
;
2035 struct pci_dev
*pdev
= adapter
->pdev
;
2039 /* Free all the Rx ring sk_buffs */
2040 for (i
= 0; i
< rx_ring
->count
; i
++) {
2041 buffer_info
= &rx_ring
->buffer_info
[i
];
2042 if (buffer_info
->dma
&&
2043 adapter
->clean_rx
== e1000_clean_rx_irq
) {
2044 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
2045 buffer_info
->length
,
2047 } else if (buffer_info
->dma
&&
2048 adapter
->clean_rx
== e1000_clean_jumbo_rx_irq
) {
2049 dma_unmap_page(&pdev
->dev
, buffer_info
->dma
,
2050 buffer_info
->length
,
2054 buffer_info
->dma
= 0;
2055 if (buffer_info
->page
) {
2056 put_page(buffer_info
->page
);
2057 buffer_info
->page
= NULL
;
2059 if (buffer_info
->skb
) {
2060 dev_kfree_skb(buffer_info
->skb
);
2061 buffer_info
->skb
= NULL
;
2065 /* there also may be some cached data from a chained receive */
2066 if (rx_ring
->rx_skb_top
) {
2067 dev_kfree_skb(rx_ring
->rx_skb_top
);
2068 rx_ring
->rx_skb_top
= NULL
;
2071 size
= sizeof(struct e1000_buffer
) * rx_ring
->count
;
2072 memset(rx_ring
->buffer_info
, 0, size
);
2074 /* Zero out the descriptor ring */
2075 memset(rx_ring
->desc
, 0, rx_ring
->size
);
2077 rx_ring
->next_to_clean
= 0;
2078 rx_ring
->next_to_use
= 0;
2080 writel(0, hw
->hw_addr
+ rx_ring
->rdh
);
2081 writel(0, hw
->hw_addr
+ rx_ring
->rdt
);
2085 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2086 * @adapter: board private structure
2089 static void e1000_clean_all_rx_rings(struct e1000_adapter
*adapter
)
2093 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
2094 e1000_clean_rx_ring(adapter
, &adapter
->rx_ring
[i
]);
2097 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2098 * and memory write and invalidate disabled for certain operations
2100 static void e1000_enter_82542_rst(struct e1000_adapter
*adapter
)
2102 struct e1000_hw
*hw
= &adapter
->hw
;
2103 struct net_device
*netdev
= adapter
->netdev
;
2106 e1000_pci_clear_mwi(hw
);
2109 rctl
|= E1000_RCTL_RST
;
2111 E1000_WRITE_FLUSH();
2114 if (netif_running(netdev
))
2115 e1000_clean_all_rx_rings(adapter
);
2118 static void e1000_leave_82542_rst(struct e1000_adapter
*adapter
)
2120 struct e1000_hw
*hw
= &adapter
->hw
;
2121 struct net_device
*netdev
= adapter
->netdev
;
2125 rctl
&= ~E1000_RCTL_RST
;
2127 E1000_WRITE_FLUSH();
2130 if (hw
->pci_cmd_word
& PCI_COMMAND_INVALIDATE
)
2131 e1000_pci_set_mwi(hw
);
2133 if (netif_running(netdev
)) {
2134 /* No need to loop, because 82542 supports only 1 queue */
2135 struct e1000_rx_ring
*ring
= &adapter
->rx_ring
[0];
2136 e1000_configure_rx(adapter
);
2137 adapter
->alloc_rx_buf(adapter
, ring
, E1000_DESC_UNUSED(ring
));
2142 * e1000_set_mac - Change the Ethernet Address of the NIC
2143 * @netdev: network interface device structure
2144 * @p: pointer to an address structure
2146 * Returns 0 on success, negative on failure
2149 static int e1000_set_mac(struct net_device
*netdev
, void *p
)
2151 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2152 struct e1000_hw
*hw
= &adapter
->hw
;
2153 struct sockaddr
*addr
= p
;
2155 if (!is_valid_ether_addr(addr
->sa_data
))
2156 return -EADDRNOTAVAIL
;
2158 /* 82542 2.0 needs to be in reset to write receive address registers */
2160 if (hw
->mac_type
== e1000_82542_rev2_0
)
2161 e1000_enter_82542_rst(adapter
);
2163 memcpy(netdev
->dev_addr
, addr
->sa_data
, netdev
->addr_len
);
2164 memcpy(hw
->mac_addr
, addr
->sa_data
, netdev
->addr_len
);
2166 e1000_rar_set(hw
, hw
->mac_addr
, 0);
2168 if (hw
->mac_type
== e1000_82542_rev2_0
)
2169 e1000_leave_82542_rst(adapter
);
2175 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2176 * @netdev: network interface device structure
2178 * The set_rx_mode entry point is called whenever the unicast or multicast
2179 * address lists or the network interface flags are updated. This routine is
2180 * responsible for configuring the hardware for proper unicast, multicast,
2181 * promiscuous mode, and all-multi behavior.
2184 static void e1000_set_rx_mode(struct net_device
*netdev
)
2186 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2187 struct e1000_hw
*hw
= &adapter
->hw
;
2188 struct netdev_hw_addr
*ha
;
2189 bool use_uc
= false;
2192 int i
, rar_entries
= E1000_RAR_ENTRIES
;
2193 int mta_reg_count
= E1000_NUM_MTA_REGISTERS
;
2194 u32
*mcarray
= kcalloc(mta_reg_count
, sizeof(u32
), GFP_ATOMIC
);
2197 e_err(probe
, "memory allocation failed\n");
2201 /* Check for Promiscuous and All Multicast modes */
2205 if (netdev
->flags
& IFF_PROMISC
) {
2206 rctl
|= (E1000_RCTL_UPE
| E1000_RCTL_MPE
);
2207 rctl
&= ~E1000_RCTL_VFE
;
2209 if (netdev
->flags
& IFF_ALLMULTI
)
2210 rctl
|= E1000_RCTL_MPE
;
2212 rctl
&= ~E1000_RCTL_MPE
;
2213 /* Enable VLAN filter if there is a VLAN */
2215 rctl
|= E1000_RCTL_VFE
;
2218 if (netdev_uc_count(netdev
) > rar_entries
- 1) {
2219 rctl
|= E1000_RCTL_UPE
;
2220 } else if (!(netdev
->flags
& IFF_PROMISC
)) {
2221 rctl
&= ~E1000_RCTL_UPE
;
2227 /* 82542 2.0 needs to be in reset to write receive address registers */
2229 if (hw
->mac_type
== e1000_82542_rev2_0
)
2230 e1000_enter_82542_rst(adapter
);
2232 /* load the first 14 addresses into the exact filters 1-14. Unicast
2233 * addresses take precedence to avoid disabling unicast filtering
2236 * RAR 0 is used for the station MAC address
2237 * if there are not 14 addresses, go ahead and clear the filters
2241 netdev_for_each_uc_addr(ha
, netdev
) {
2242 if (i
== rar_entries
)
2244 e1000_rar_set(hw
, ha
->addr
, i
++);
2247 netdev_for_each_mc_addr(ha
, netdev
) {
2248 if (i
== rar_entries
) {
2249 /* load any remaining addresses into the hash table */
2250 u32 hash_reg
, hash_bit
, mta
;
2251 hash_value
= e1000_hash_mc_addr(hw
, ha
->addr
);
2252 hash_reg
= (hash_value
>> 5) & 0x7F;
2253 hash_bit
= hash_value
& 0x1F;
2254 mta
= (1 << hash_bit
);
2255 mcarray
[hash_reg
] |= mta
;
2257 e1000_rar_set(hw
, ha
->addr
, i
++);
2261 for (; i
< rar_entries
; i
++) {
2262 E1000_WRITE_REG_ARRAY(hw
, RA
, i
<< 1, 0);
2263 E1000_WRITE_FLUSH();
2264 E1000_WRITE_REG_ARRAY(hw
, RA
, (i
<< 1) + 1, 0);
2265 E1000_WRITE_FLUSH();
2268 /* write the hash table completely, write from bottom to avoid
2269 * both stupid write combining chipsets, and flushing each write */
2270 for (i
= mta_reg_count
- 1; i
>= 0 ; i
--) {
2272 * If we are on an 82544 has an errata where writing odd
2273 * offsets overwrites the previous even offset, but writing
2274 * backwards over the range solves the issue by always
2275 * writing the odd offset first
2277 E1000_WRITE_REG_ARRAY(hw
, MTA
, i
, mcarray
[i
]);
2279 E1000_WRITE_FLUSH();
2281 if (hw
->mac_type
== e1000_82542_rev2_0
)
2282 e1000_leave_82542_rst(adapter
);
2287 /* Need to wait a few seconds after link up to get diagnostic information from
2290 static void e1000_update_phy_info(unsigned long data
)
2292 struct e1000_adapter
*adapter
= (struct e1000_adapter
*)data
;
2293 schedule_work(&adapter
->phy_info_task
);
2296 static void e1000_update_phy_info_task(struct work_struct
*work
)
2298 struct e1000_adapter
*adapter
= container_of(work
,
2299 struct e1000_adapter
,
2301 struct e1000_hw
*hw
= &adapter
->hw
;
2304 e1000_phy_get_info(hw
, &adapter
->phy_info
);
2309 * e1000_82547_tx_fifo_stall - Timer Call-back
2310 * @data: pointer to adapter cast into an unsigned long
2312 static void e1000_82547_tx_fifo_stall(unsigned long data
)
2314 struct e1000_adapter
*adapter
= (struct e1000_adapter
*)data
;
2315 schedule_work(&adapter
->fifo_stall_task
);
2319 * e1000_82547_tx_fifo_stall_task - task to complete work
2320 * @work: work struct contained inside adapter struct
2322 static void e1000_82547_tx_fifo_stall_task(struct work_struct
*work
)
2324 struct e1000_adapter
*adapter
= container_of(work
,
2325 struct e1000_adapter
,
2327 struct e1000_hw
*hw
= &adapter
->hw
;
2328 struct net_device
*netdev
= adapter
->netdev
;
2332 if (atomic_read(&adapter
->tx_fifo_stall
)) {
2333 if ((er32(TDT
) == er32(TDH
)) &&
2334 (er32(TDFT
) == er32(TDFH
)) &&
2335 (er32(TDFTS
) == er32(TDFHS
))) {
2337 ew32(TCTL
, tctl
& ~E1000_TCTL_EN
);
2338 ew32(TDFT
, adapter
->tx_head_addr
);
2339 ew32(TDFH
, adapter
->tx_head_addr
);
2340 ew32(TDFTS
, adapter
->tx_head_addr
);
2341 ew32(TDFHS
, adapter
->tx_head_addr
);
2343 E1000_WRITE_FLUSH();
2345 adapter
->tx_fifo_head
= 0;
2346 atomic_set(&adapter
->tx_fifo_stall
, 0);
2347 netif_wake_queue(netdev
);
2348 } else if (!test_bit(__E1000_DOWN
, &adapter
->flags
)) {
2349 mod_timer(&adapter
->tx_fifo_stall_timer
, jiffies
+ 1);
2355 bool e1000_has_link(struct e1000_adapter
*adapter
)
2357 struct e1000_hw
*hw
= &adapter
->hw
;
2358 bool link_active
= false;
2360 /* get_link_status is set on LSC (link status) interrupt or
2361 * rx sequence error interrupt. get_link_status will stay
2362 * false until the e1000_check_for_link establishes link
2363 * for copper adapters ONLY
2365 switch (hw
->media_type
) {
2366 case e1000_media_type_copper
:
2367 if (hw
->get_link_status
) {
2368 e1000_check_for_link(hw
);
2369 link_active
= !hw
->get_link_status
;
2374 case e1000_media_type_fiber
:
2375 e1000_check_for_link(hw
);
2376 link_active
= !!(er32(STATUS
) & E1000_STATUS_LU
);
2378 case e1000_media_type_internal_serdes
:
2379 e1000_check_for_link(hw
);
2380 link_active
= hw
->serdes_has_link
;
2390 * e1000_watchdog - Timer Call-back
2391 * @data: pointer to adapter cast into an unsigned long
2393 static void e1000_watchdog(unsigned long data
)
2395 struct e1000_adapter
*adapter
= (struct e1000_adapter
*)data
;
2396 struct e1000_hw
*hw
= &adapter
->hw
;
2397 struct net_device
*netdev
= adapter
->netdev
;
2398 struct e1000_tx_ring
*txdr
= adapter
->tx_ring
;
2401 link
= e1000_has_link(adapter
);
2402 if ((netif_carrier_ok(netdev
)) && link
)
2406 if (!netif_carrier_ok(netdev
)) {
2409 /* update snapshot of PHY registers on LSC */
2410 e1000_get_speed_and_duplex(hw
,
2411 &adapter
->link_speed
,
2412 &adapter
->link_duplex
);
2415 pr_info("%s NIC Link is Up %d Mbps %s, "
2416 "Flow Control: %s\n",
2418 adapter
->link_speed
,
2419 adapter
->link_duplex
== FULL_DUPLEX
?
2420 "Full Duplex" : "Half Duplex",
2421 ((ctrl
& E1000_CTRL_TFCE
) && (ctrl
&
2422 E1000_CTRL_RFCE
)) ? "RX/TX" : ((ctrl
&
2423 E1000_CTRL_RFCE
) ? "RX" : ((ctrl
&
2424 E1000_CTRL_TFCE
) ? "TX" : "None")));
2426 /* adjust timeout factor according to speed/duplex */
2427 adapter
->tx_timeout_factor
= 1;
2428 switch (adapter
->link_speed
) {
2431 adapter
->tx_timeout_factor
= 16;
2435 /* maybe add some timeout factor ? */
2439 /* enable transmits in the hardware */
2441 tctl
|= E1000_TCTL_EN
;
2444 netif_carrier_on(netdev
);
2445 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
2446 mod_timer(&adapter
->phy_info_timer
,
2447 round_jiffies(jiffies
+ 2 * HZ
));
2448 adapter
->smartspeed
= 0;
2451 if (netif_carrier_ok(netdev
)) {
2452 adapter
->link_speed
= 0;
2453 adapter
->link_duplex
= 0;
2454 pr_info("%s NIC Link is Down\n",
2456 netif_carrier_off(netdev
);
2458 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
2459 mod_timer(&adapter
->phy_info_timer
,
2460 round_jiffies(jiffies
+ 2 * HZ
));
2463 e1000_smartspeed(adapter
);
2467 e1000_update_stats(adapter
);
2469 hw
->tx_packet_delta
= adapter
->stats
.tpt
- adapter
->tpt_old
;
2470 adapter
->tpt_old
= adapter
->stats
.tpt
;
2471 hw
->collision_delta
= adapter
->stats
.colc
- adapter
->colc_old
;
2472 adapter
->colc_old
= adapter
->stats
.colc
;
2474 adapter
->gorcl
= adapter
->stats
.gorcl
- adapter
->gorcl_old
;
2475 adapter
->gorcl_old
= adapter
->stats
.gorcl
;
2476 adapter
->gotcl
= adapter
->stats
.gotcl
- adapter
->gotcl_old
;
2477 adapter
->gotcl_old
= adapter
->stats
.gotcl
;
2479 e1000_update_adaptive(hw
);
2481 if (!netif_carrier_ok(netdev
)) {
2482 if (E1000_DESC_UNUSED(txdr
) + 1 < txdr
->count
) {
2483 /* We've lost link, so the controller stops DMA,
2484 * but we've got queued Tx work that's never going
2485 * to get done, so reset controller to flush Tx.
2486 * (Do the reset outside of interrupt context). */
2487 adapter
->tx_timeout_count
++;
2488 schedule_work(&adapter
->reset_task
);
2489 /* return immediately since reset is imminent */
2494 /* Simple mode for Interrupt Throttle Rate (ITR) */
2495 if (hw
->mac_type
>= e1000_82540
&& adapter
->itr_setting
== 4) {
2497 * Symmetric Tx/Rx gets a reduced ITR=2000;
2498 * Total asymmetrical Tx or Rx gets ITR=8000;
2499 * everyone else is between 2000-8000.
2501 u32 goc
= (adapter
->gotcl
+ adapter
->gorcl
) / 10000;
2502 u32 dif
= (adapter
->gotcl
> adapter
->gorcl
?
2503 adapter
->gotcl
- adapter
->gorcl
:
2504 adapter
->gorcl
- adapter
->gotcl
) / 10000;
2505 u32 itr
= goc
> 0 ? (dif
* 6000 / goc
+ 2000) : 8000;
2507 ew32(ITR
, 1000000000 / (itr
* 256));
2510 /* Cause software interrupt to ensure rx ring is cleaned */
2511 ew32(ICS
, E1000_ICS_RXDMT0
);
2513 /* Force detection of hung controller every watchdog period */
2514 adapter
->detect_tx_hung
= true;
2516 /* Reset the timer */
2517 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
2518 mod_timer(&adapter
->watchdog_timer
,
2519 round_jiffies(jiffies
+ 2 * HZ
));
2522 enum latency_range
{
2526 latency_invalid
= 255
2530 * e1000_update_itr - update the dynamic ITR value based on statistics
2531 * @adapter: pointer to adapter
2532 * @itr_setting: current adapter->itr
2533 * @packets: the number of packets during this measurement interval
2534 * @bytes: the number of bytes during this measurement interval
2536 * Stores a new ITR value based on packets and byte
2537 * counts during the last interrupt. The advantage of per interrupt
2538 * computation is faster updates and more accurate ITR for the current
2539 * traffic pattern. Constants in this function were computed
2540 * based on theoretical maximum wire speed and thresholds were set based
2541 * on testing data as well as attempting to minimize response time
2542 * while increasing bulk throughput.
2543 * this functionality is controlled by the InterruptThrottleRate module
2544 * parameter (see e1000_param.c)
2546 static unsigned int e1000_update_itr(struct e1000_adapter
*adapter
,
2547 u16 itr_setting
, int packets
, int bytes
)
2549 unsigned int retval
= itr_setting
;
2550 struct e1000_hw
*hw
= &adapter
->hw
;
2552 if (unlikely(hw
->mac_type
< e1000_82540
))
2553 goto update_itr_done
;
2556 goto update_itr_done
;
2558 switch (itr_setting
) {
2559 case lowest_latency
:
2560 /* jumbo frames get bulk treatment*/
2561 if (bytes
/packets
> 8000)
2562 retval
= bulk_latency
;
2563 else if ((packets
< 5) && (bytes
> 512))
2564 retval
= low_latency
;
2566 case low_latency
: /* 50 usec aka 20000 ints/s */
2567 if (bytes
> 10000) {
2568 /* jumbo frames need bulk latency setting */
2569 if (bytes
/packets
> 8000)
2570 retval
= bulk_latency
;
2571 else if ((packets
< 10) || ((bytes
/packets
) > 1200))
2572 retval
= bulk_latency
;
2573 else if ((packets
> 35))
2574 retval
= lowest_latency
;
2575 } else if (bytes
/packets
> 2000)
2576 retval
= bulk_latency
;
2577 else if (packets
<= 2 && bytes
< 512)
2578 retval
= lowest_latency
;
2580 case bulk_latency
: /* 250 usec aka 4000 ints/s */
2581 if (bytes
> 25000) {
2583 retval
= low_latency
;
2584 } else if (bytes
< 6000) {
2585 retval
= low_latency
;
2594 static void e1000_set_itr(struct e1000_adapter
*adapter
)
2596 struct e1000_hw
*hw
= &adapter
->hw
;
2598 u32 new_itr
= adapter
->itr
;
2600 if (unlikely(hw
->mac_type
< e1000_82540
))
2603 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2604 if (unlikely(adapter
->link_speed
!= SPEED_1000
)) {
2610 adapter
->tx_itr
= e1000_update_itr(adapter
,
2612 adapter
->total_tx_packets
,
2613 adapter
->total_tx_bytes
);
2614 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2615 if (adapter
->itr_setting
== 3 && adapter
->tx_itr
== lowest_latency
)
2616 adapter
->tx_itr
= low_latency
;
2618 adapter
->rx_itr
= e1000_update_itr(adapter
,
2620 adapter
->total_rx_packets
,
2621 adapter
->total_rx_bytes
);
2622 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2623 if (adapter
->itr_setting
== 3 && adapter
->rx_itr
== lowest_latency
)
2624 adapter
->rx_itr
= low_latency
;
2626 current_itr
= max(adapter
->rx_itr
, adapter
->tx_itr
);
2628 switch (current_itr
) {
2629 /* counts and packets in update_itr are dependent on these numbers */
2630 case lowest_latency
:
2634 new_itr
= 20000; /* aka hwitr = ~200 */
2644 if (new_itr
!= adapter
->itr
) {
2645 /* this attempts to bias the interrupt rate towards Bulk
2646 * by adding intermediate steps when interrupt rate is
2648 new_itr
= new_itr
> adapter
->itr
?
2649 min(adapter
->itr
+ (new_itr
>> 2), new_itr
) :
2651 adapter
->itr
= new_itr
;
2652 ew32(ITR
, 1000000000 / (new_itr
* 256));
2656 #define E1000_TX_FLAGS_CSUM 0x00000001
2657 #define E1000_TX_FLAGS_VLAN 0x00000002
2658 #define E1000_TX_FLAGS_TSO 0x00000004
2659 #define E1000_TX_FLAGS_IPV4 0x00000008
2660 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2661 #define E1000_TX_FLAGS_VLAN_SHIFT 16
2663 static int e1000_tso(struct e1000_adapter
*adapter
,
2664 struct e1000_tx_ring
*tx_ring
, struct sk_buff
*skb
)
2666 struct e1000_context_desc
*context_desc
;
2667 struct e1000_buffer
*buffer_info
;
2670 u16 ipcse
= 0, tucse
, mss
;
2671 u8 ipcss
, ipcso
, tucss
, tucso
, hdr_len
;
2674 if (skb_is_gso(skb
)) {
2675 if (skb_header_cloned(skb
)) {
2676 err
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
2681 hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
2682 mss
= skb_shinfo(skb
)->gso_size
;
2683 if (skb
->protocol
== htons(ETH_P_IP
)) {
2684 struct iphdr
*iph
= ip_hdr(skb
);
2687 tcp_hdr(skb
)->check
= ~csum_tcpudp_magic(iph
->saddr
,
2691 cmd_length
= E1000_TXD_CMD_IP
;
2692 ipcse
= skb_transport_offset(skb
) - 1;
2693 } else if (skb
->protocol
== htons(ETH_P_IPV6
)) {
2694 ipv6_hdr(skb
)->payload_len
= 0;
2695 tcp_hdr(skb
)->check
=
2696 ~csum_ipv6_magic(&ipv6_hdr(skb
)->saddr
,
2697 &ipv6_hdr(skb
)->daddr
,
2701 ipcss
= skb_network_offset(skb
);
2702 ipcso
= (void *)&(ip_hdr(skb
)->check
) - (void *)skb
->data
;
2703 tucss
= skb_transport_offset(skb
);
2704 tucso
= (void *)&(tcp_hdr(skb
)->check
) - (void *)skb
->data
;
2707 cmd_length
|= (E1000_TXD_CMD_DEXT
| E1000_TXD_CMD_TSE
|
2708 E1000_TXD_CMD_TCP
| (skb
->len
- (hdr_len
)));
2710 i
= tx_ring
->next_to_use
;
2711 context_desc
= E1000_CONTEXT_DESC(*tx_ring
, i
);
2712 buffer_info
= &tx_ring
->buffer_info
[i
];
2714 context_desc
->lower_setup
.ip_fields
.ipcss
= ipcss
;
2715 context_desc
->lower_setup
.ip_fields
.ipcso
= ipcso
;
2716 context_desc
->lower_setup
.ip_fields
.ipcse
= cpu_to_le16(ipcse
);
2717 context_desc
->upper_setup
.tcp_fields
.tucss
= tucss
;
2718 context_desc
->upper_setup
.tcp_fields
.tucso
= tucso
;
2719 context_desc
->upper_setup
.tcp_fields
.tucse
= cpu_to_le16(tucse
);
2720 context_desc
->tcp_seg_setup
.fields
.mss
= cpu_to_le16(mss
);
2721 context_desc
->tcp_seg_setup
.fields
.hdr_len
= hdr_len
;
2722 context_desc
->cmd_and_length
= cpu_to_le32(cmd_length
);
2724 buffer_info
->time_stamp
= jiffies
;
2725 buffer_info
->next_to_watch
= i
;
2727 if (++i
== tx_ring
->count
) i
= 0;
2728 tx_ring
->next_to_use
= i
;
2735 static bool e1000_tx_csum(struct e1000_adapter
*adapter
,
2736 struct e1000_tx_ring
*tx_ring
, struct sk_buff
*skb
)
2738 struct e1000_context_desc
*context_desc
;
2739 struct e1000_buffer
*buffer_info
;
2742 u32 cmd_len
= E1000_TXD_CMD_DEXT
;
2744 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
)
2747 switch (skb
->protocol
) {
2748 case cpu_to_be16(ETH_P_IP
):
2749 if (ip_hdr(skb
)->protocol
== IPPROTO_TCP
)
2750 cmd_len
|= E1000_TXD_CMD_TCP
;
2752 case cpu_to_be16(ETH_P_IPV6
):
2753 /* XXX not handling all IPV6 headers */
2754 if (ipv6_hdr(skb
)->nexthdr
== IPPROTO_TCP
)
2755 cmd_len
|= E1000_TXD_CMD_TCP
;
2758 if (unlikely(net_ratelimit()))
2759 e_warn(drv
, "checksum_partial proto=%x!\n",
2764 css
= skb_checksum_start_offset(skb
);
2766 i
= tx_ring
->next_to_use
;
2767 buffer_info
= &tx_ring
->buffer_info
[i
];
2768 context_desc
= E1000_CONTEXT_DESC(*tx_ring
, i
);
2770 context_desc
->lower_setup
.ip_config
= 0;
2771 context_desc
->upper_setup
.tcp_fields
.tucss
= css
;
2772 context_desc
->upper_setup
.tcp_fields
.tucso
=
2773 css
+ skb
->csum_offset
;
2774 context_desc
->upper_setup
.tcp_fields
.tucse
= 0;
2775 context_desc
->tcp_seg_setup
.data
= 0;
2776 context_desc
->cmd_and_length
= cpu_to_le32(cmd_len
);
2778 buffer_info
->time_stamp
= jiffies
;
2779 buffer_info
->next_to_watch
= i
;
2781 if (unlikely(++i
== tx_ring
->count
)) i
= 0;
2782 tx_ring
->next_to_use
= i
;
2787 #define E1000_MAX_TXD_PWR 12
2788 #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2790 static int e1000_tx_map(struct e1000_adapter
*adapter
,
2791 struct e1000_tx_ring
*tx_ring
,
2792 struct sk_buff
*skb
, unsigned int first
,
2793 unsigned int max_per_txd
, unsigned int nr_frags
,
2796 struct e1000_hw
*hw
= &adapter
->hw
;
2797 struct pci_dev
*pdev
= adapter
->pdev
;
2798 struct e1000_buffer
*buffer_info
;
2799 unsigned int len
= skb_headlen(skb
);
2800 unsigned int offset
= 0, size
, count
= 0, i
;
2803 i
= tx_ring
->next_to_use
;
2806 buffer_info
= &tx_ring
->buffer_info
[i
];
2807 size
= min(len
, max_per_txd
);
2808 /* Workaround for Controller erratum --
2809 * descriptor for non-tso packet in a linear SKB that follows a
2810 * tso gets written back prematurely before the data is fully
2811 * DMA'd to the controller */
2812 if (!skb
->data_len
&& tx_ring
->last_tx_tso
&&
2814 tx_ring
->last_tx_tso
= 0;
2818 /* Workaround for premature desc write-backs
2819 * in TSO mode. Append 4-byte sentinel desc */
2820 if (unlikely(mss
&& !nr_frags
&& size
== len
&& size
> 8))
2822 /* work-around for errata 10 and it applies
2823 * to all controllers in PCI-X mode
2824 * The fix is to make sure that the first descriptor of a
2825 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2827 if (unlikely((hw
->bus_type
== e1000_bus_type_pcix
) &&
2828 (size
> 2015) && count
== 0))
2831 /* Workaround for potential 82544 hang in PCI-X. Avoid
2832 * terminating buffers within evenly-aligned dwords. */
2833 if (unlikely(adapter
->pcix_82544
&&
2834 !((unsigned long)(skb
->data
+ offset
+ size
- 1) & 4) &&
2838 buffer_info
->length
= size
;
2839 /* set time_stamp *before* dma to help avoid a possible race */
2840 buffer_info
->time_stamp
= jiffies
;
2841 buffer_info
->mapped_as_page
= false;
2842 buffer_info
->dma
= dma_map_single(&pdev
->dev
,
2844 size
, DMA_TO_DEVICE
);
2845 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
))
2847 buffer_info
->next_to_watch
= i
;
2854 if (unlikely(i
== tx_ring
->count
))
2859 for (f
= 0; f
< nr_frags
; f
++) {
2860 struct skb_frag_struct
*frag
;
2862 frag
= &skb_shinfo(skb
)->frags
[f
];
2864 offset
= frag
->page_offset
;
2868 if (unlikely(i
== tx_ring
->count
))
2871 buffer_info
= &tx_ring
->buffer_info
[i
];
2872 size
= min(len
, max_per_txd
);
2873 /* Workaround for premature desc write-backs
2874 * in TSO mode. Append 4-byte sentinel desc */
2875 if (unlikely(mss
&& f
== (nr_frags
-1) && size
== len
&& size
> 8))
2877 /* Workaround for potential 82544 hang in PCI-X.
2878 * Avoid terminating buffers within evenly-aligned
2880 if (unlikely(adapter
->pcix_82544
&&
2881 !((unsigned long)(page_to_phys(frag
->page
) + offset
2886 buffer_info
->length
= size
;
2887 buffer_info
->time_stamp
= jiffies
;
2888 buffer_info
->mapped_as_page
= true;
2889 buffer_info
->dma
= dma_map_page(&pdev
->dev
, frag
->page
,
2892 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
))
2894 buffer_info
->next_to_watch
= i
;
2902 tx_ring
->buffer_info
[i
].skb
= skb
;
2903 tx_ring
->buffer_info
[first
].next_to_watch
= i
;
2908 dev_err(&pdev
->dev
, "TX DMA map failed\n");
2909 buffer_info
->dma
= 0;
2915 i
+= tx_ring
->count
;
2917 buffer_info
= &tx_ring
->buffer_info
[i
];
2918 e1000_unmap_and_free_tx_resource(adapter
, buffer_info
);
2924 static void e1000_tx_queue(struct e1000_adapter
*adapter
,
2925 struct e1000_tx_ring
*tx_ring
, int tx_flags
,
2928 struct e1000_hw
*hw
= &adapter
->hw
;
2929 struct e1000_tx_desc
*tx_desc
= NULL
;
2930 struct e1000_buffer
*buffer_info
;
2931 u32 txd_upper
= 0, txd_lower
= E1000_TXD_CMD_IFCS
;
2934 if (likely(tx_flags
& E1000_TX_FLAGS_TSO
)) {
2935 txd_lower
|= E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
|
2937 txd_upper
|= E1000_TXD_POPTS_TXSM
<< 8;
2939 if (likely(tx_flags
& E1000_TX_FLAGS_IPV4
))
2940 txd_upper
|= E1000_TXD_POPTS_IXSM
<< 8;
2943 if (likely(tx_flags
& E1000_TX_FLAGS_CSUM
)) {
2944 txd_lower
|= E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
;
2945 txd_upper
|= E1000_TXD_POPTS_TXSM
<< 8;
2948 if (unlikely(tx_flags
& E1000_TX_FLAGS_VLAN
)) {
2949 txd_lower
|= E1000_TXD_CMD_VLE
;
2950 txd_upper
|= (tx_flags
& E1000_TX_FLAGS_VLAN_MASK
);
2953 i
= tx_ring
->next_to_use
;
2956 buffer_info
= &tx_ring
->buffer_info
[i
];
2957 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
2958 tx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
2959 tx_desc
->lower
.data
=
2960 cpu_to_le32(txd_lower
| buffer_info
->length
);
2961 tx_desc
->upper
.data
= cpu_to_le32(txd_upper
);
2962 if (unlikely(++i
== tx_ring
->count
)) i
= 0;
2965 tx_desc
->lower
.data
|= cpu_to_le32(adapter
->txd_cmd
);
2967 /* Force memory writes to complete before letting h/w
2968 * know there are new descriptors to fetch. (Only
2969 * applicable for weak-ordered memory model archs,
2970 * such as IA-64). */
2973 tx_ring
->next_to_use
= i
;
2974 writel(i
, hw
->hw_addr
+ tx_ring
->tdt
);
2975 /* we need this if more than one processor can write to our tail
2976 * at a time, it syncronizes IO on IA64/Altix systems */
2981 * 82547 workaround to avoid controller hang in half-duplex environment.
2982 * The workaround is to avoid queuing a large packet that would span
2983 * the internal Tx FIFO ring boundary by notifying the stack to resend
2984 * the packet at a later time. This gives the Tx FIFO an opportunity to
2985 * flush all packets. When that occurs, we reset the Tx FIFO pointers
2986 * to the beginning of the Tx FIFO.
2989 #define E1000_FIFO_HDR 0x10
2990 #define E1000_82547_PAD_LEN 0x3E0
2992 static int e1000_82547_fifo_workaround(struct e1000_adapter
*adapter
,
2993 struct sk_buff
*skb
)
2995 u32 fifo_space
= adapter
->tx_fifo_size
- adapter
->tx_fifo_head
;
2996 u32 skb_fifo_len
= skb
->len
+ E1000_FIFO_HDR
;
2998 skb_fifo_len
= ALIGN(skb_fifo_len
, E1000_FIFO_HDR
);
3000 if (adapter
->link_duplex
!= HALF_DUPLEX
)
3001 goto no_fifo_stall_required
;
3003 if (atomic_read(&adapter
->tx_fifo_stall
))
3006 if (skb_fifo_len
>= (E1000_82547_PAD_LEN
+ fifo_space
)) {
3007 atomic_set(&adapter
->tx_fifo_stall
, 1);
3011 no_fifo_stall_required
:
3012 adapter
->tx_fifo_head
+= skb_fifo_len
;
3013 if (adapter
->tx_fifo_head
>= adapter
->tx_fifo_size
)
3014 adapter
->tx_fifo_head
-= adapter
->tx_fifo_size
;
3018 static int __e1000_maybe_stop_tx(struct net_device
*netdev
, int size
)
3020 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3021 struct e1000_tx_ring
*tx_ring
= adapter
->tx_ring
;
3023 netif_stop_queue(netdev
);
3024 /* Herbert's original patch had:
3025 * smp_mb__after_netif_stop_queue();
3026 * but since that doesn't exist yet, just open code it. */
3029 /* We need to check again in a case another CPU has just
3030 * made room available. */
3031 if (likely(E1000_DESC_UNUSED(tx_ring
) < size
))
3035 netif_start_queue(netdev
);
3036 ++adapter
->restart_queue
;
3040 static int e1000_maybe_stop_tx(struct net_device
*netdev
,
3041 struct e1000_tx_ring
*tx_ring
, int size
)
3043 if (likely(E1000_DESC_UNUSED(tx_ring
) >= size
))
3045 return __e1000_maybe_stop_tx(netdev
, size
);
3048 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3049 static netdev_tx_t
e1000_xmit_frame(struct sk_buff
*skb
,
3050 struct net_device
*netdev
)
3052 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3053 struct e1000_hw
*hw
= &adapter
->hw
;
3054 struct e1000_tx_ring
*tx_ring
;
3055 unsigned int first
, max_per_txd
= E1000_MAX_DATA_PER_TXD
;
3056 unsigned int max_txd_pwr
= E1000_MAX_TXD_PWR
;
3057 unsigned int tx_flags
= 0;
3058 unsigned int len
= skb_headlen(skb
);
3059 unsigned int nr_frags
;
3065 /* This goes back to the question of how to logically map a tx queue
3066 * to a flow. Right now, performance is impacted slightly negatively
3067 * if using multiple tx queues. If the stack breaks away from a
3068 * single qdisc implementation, we can look at this again. */
3069 tx_ring
= adapter
->tx_ring
;
3071 if (unlikely(skb
->len
<= 0)) {
3072 dev_kfree_skb_any(skb
);
3073 return NETDEV_TX_OK
;
3076 mss
= skb_shinfo(skb
)->gso_size
;
3077 /* The controller does a simple calculation to
3078 * make sure there is enough room in the FIFO before
3079 * initiating the DMA for each buffer. The calc is:
3080 * 4 = ceil(buffer len/mss). To make sure we don't
3081 * overrun the FIFO, adjust the max buffer len if mss
3085 max_per_txd
= min(mss
<< 2, max_per_txd
);
3086 max_txd_pwr
= fls(max_per_txd
) - 1;
3088 hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
3089 if (skb
->data_len
&& hdr_len
== len
) {
3090 switch (hw
->mac_type
) {
3091 unsigned int pull_size
;
3093 /* Make sure we have room to chop off 4 bytes,
3094 * and that the end alignment will work out to
3095 * this hardware's requirements
3096 * NOTE: this is a TSO only workaround
3097 * if end byte alignment not correct move us
3098 * into the next dword */
3099 if ((unsigned long)(skb_tail_pointer(skb
) - 1) & 4)
3102 pull_size
= min((unsigned int)4, skb
->data_len
);
3103 if (!__pskb_pull_tail(skb
, pull_size
)) {
3104 e_err(drv
, "__pskb_pull_tail "
3106 dev_kfree_skb_any(skb
);
3107 return NETDEV_TX_OK
;
3109 len
= skb_headlen(skb
);
3118 /* reserve a descriptor for the offload context */
3119 if ((mss
) || (skb
->ip_summed
== CHECKSUM_PARTIAL
))
3123 /* Controller Erratum workaround */
3124 if (!skb
->data_len
&& tx_ring
->last_tx_tso
&& !skb_is_gso(skb
))
3127 count
+= TXD_USE_COUNT(len
, max_txd_pwr
);
3129 if (adapter
->pcix_82544
)
3132 /* work-around for errata 10 and it applies to all controllers
3133 * in PCI-X mode, so add one more descriptor to the count
3135 if (unlikely((hw
->bus_type
== e1000_bus_type_pcix
) &&
3139 nr_frags
= skb_shinfo(skb
)->nr_frags
;
3140 for (f
= 0; f
< nr_frags
; f
++)
3141 count
+= TXD_USE_COUNT(skb_shinfo(skb
)->frags
[f
].size
,
3143 if (adapter
->pcix_82544
)
3146 /* need: count + 2 desc gap to keep tail from touching
3147 * head, otherwise try next time */
3148 if (unlikely(e1000_maybe_stop_tx(netdev
, tx_ring
, count
+ 2)))
3149 return NETDEV_TX_BUSY
;
3151 if (unlikely(hw
->mac_type
== e1000_82547
)) {
3152 if (unlikely(e1000_82547_fifo_workaround(adapter
, skb
))) {
3153 netif_stop_queue(netdev
);
3154 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
3155 mod_timer(&adapter
->tx_fifo_stall_timer
,
3157 return NETDEV_TX_BUSY
;
3161 if (unlikely(vlan_tx_tag_present(skb
))) {
3162 tx_flags
|= E1000_TX_FLAGS_VLAN
;
3163 tx_flags
|= (vlan_tx_tag_get(skb
) << E1000_TX_FLAGS_VLAN_SHIFT
);
3166 first
= tx_ring
->next_to_use
;
3168 tso
= e1000_tso(adapter
, tx_ring
, skb
);
3170 dev_kfree_skb_any(skb
);
3171 return NETDEV_TX_OK
;
3175 if (likely(hw
->mac_type
!= e1000_82544
))
3176 tx_ring
->last_tx_tso
= 1;
3177 tx_flags
|= E1000_TX_FLAGS_TSO
;
3178 } else if (likely(e1000_tx_csum(adapter
, tx_ring
, skb
)))
3179 tx_flags
|= E1000_TX_FLAGS_CSUM
;
3181 if (likely(skb
->protocol
== htons(ETH_P_IP
)))
3182 tx_flags
|= E1000_TX_FLAGS_IPV4
;
3184 count
= e1000_tx_map(adapter
, tx_ring
, skb
, first
, max_per_txd
,
3188 e1000_tx_queue(adapter
, tx_ring
, tx_flags
, count
);
3189 /* Make sure there is space in the ring for the next send. */
3190 e1000_maybe_stop_tx(netdev
, tx_ring
, MAX_SKB_FRAGS
+ 2);
3193 dev_kfree_skb_any(skb
);
3194 tx_ring
->buffer_info
[first
].time_stamp
= 0;
3195 tx_ring
->next_to_use
= first
;
3198 return NETDEV_TX_OK
;
3202 * e1000_tx_timeout - Respond to a Tx Hang
3203 * @netdev: network interface device structure
3206 static void e1000_tx_timeout(struct net_device
*netdev
)
3208 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3210 /* Do the reset outside of interrupt context */
3211 adapter
->tx_timeout_count
++;
3212 schedule_work(&adapter
->reset_task
);
3215 static void e1000_reset_task(struct work_struct
*work
)
3217 struct e1000_adapter
*adapter
=
3218 container_of(work
, struct e1000_adapter
, reset_task
);
3220 e1000_reinit_safe(adapter
);
3224 * e1000_get_stats - Get System Network Statistics
3225 * @netdev: network interface device structure
3227 * Returns the address of the device statistics structure.
3228 * The statistics are actually updated from the timer callback.
3231 static struct net_device_stats
*e1000_get_stats(struct net_device
*netdev
)
3233 /* only return the current stats */
3234 return &netdev
->stats
;
3238 * e1000_change_mtu - Change the Maximum Transfer Unit
3239 * @netdev: network interface device structure
3240 * @new_mtu: new value for maximum frame size
3242 * Returns 0 on success, negative on failure
3245 static int e1000_change_mtu(struct net_device
*netdev
, int new_mtu
)
3247 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3248 struct e1000_hw
*hw
= &adapter
->hw
;
3249 int max_frame
= new_mtu
+ ENET_HEADER_SIZE
+ ETHERNET_FCS_SIZE
;
3251 if ((max_frame
< MINIMUM_ETHERNET_FRAME_SIZE
) ||
3252 (max_frame
> MAX_JUMBO_FRAME_SIZE
)) {
3253 e_err(probe
, "Invalid MTU setting\n");
3257 /* Adapter-specific max frame size limits. */
3258 switch (hw
->mac_type
) {
3259 case e1000_undefined
... e1000_82542_rev2_1
:
3260 if (max_frame
> (ETH_FRAME_LEN
+ ETH_FCS_LEN
)) {
3261 e_err(probe
, "Jumbo Frames not supported.\n");
3266 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3270 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->flags
))
3272 /* e1000_down has a dependency on max_frame_size */
3273 hw
->max_frame_size
= max_frame
;
3274 if (netif_running(netdev
))
3275 e1000_down(adapter
);
3277 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3278 * means we reserve 2 more, this pushes us to allocate from the next
3280 * i.e. RXBUFFER_2048 --> size-4096 slab
3281 * however with the new *_jumbo_rx* routines, jumbo receives will use
3282 * fragmented skbs */
3284 if (max_frame
<= E1000_RXBUFFER_2048
)
3285 adapter
->rx_buffer_len
= E1000_RXBUFFER_2048
;
3287 #if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3288 adapter
->rx_buffer_len
= E1000_RXBUFFER_16384
;
3289 #elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3290 adapter
->rx_buffer_len
= PAGE_SIZE
;
3293 /* adjust allocation if LPE protects us, and we aren't using SBP */
3294 if (!hw
->tbi_compatibility_on
&&
3295 ((max_frame
== (ETH_FRAME_LEN
+ ETH_FCS_LEN
)) ||
3296 (max_frame
== MAXIMUM_ETHERNET_VLAN_SIZE
)))
3297 adapter
->rx_buffer_len
= MAXIMUM_ETHERNET_VLAN_SIZE
;
3299 pr_info("%s changing MTU from %d to %d\n",
3300 netdev
->name
, netdev
->mtu
, new_mtu
);
3301 netdev
->mtu
= new_mtu
;
3303 if (netif_running(netdev
))
3306 e1000_reset(adapter
);
3308 clear_bit(__E1000_RESETTING
, &adapter
->flags
);
3314 * e1000_update_stats - Update the board statistics counters
3315 * @adapter: board private structure
3318 void e1000_update_stats(struct e1000_adapter
*adapter
)
3320 struct net_device
*netdev
= adapter
->netdev
;
3321 struct e1000_hw
*hw
= &adapter
->hw
;
3322 struct pci_dev
*pdev
= adapter
->pdev
;
3323 unsigned long flags
;
3326 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3329 * Prevent stats update while adapter is being reset, or if the pci
3330 * connection is down.
3332 if (adapter
->link_speed
== 0)
3334 if (pci_channel_offline(pdev
))
3337 spin_lock_irqsave(&adapter
->stats_lock
, flags
);
3339 /* these counters are modified from e1000_tbi_adjust_stats,
3340 * called from the interrupt context, so they must only
3341 * be written while holding adapter->stats_lock
3344 adapter
->stats
.crcerrs
+= er32(CRCERRS
);
3345 adapter
->stats
.gprc
+= er32(GPRC
);
3346 adapter
->stats
.gorcl
+= er32(GORCL
);
3347 adapter
->stats
.gorch
+= er32(GORCH
);
3348 adapter
->stats
.bprc
+= er32(BPRC
);
3349 adapter
->stats
.mprc
+= er32(MPRC
);
3350 adapter
->stats
.roc
+= er32(ROC
);
3352 adapter
->stats
.prc64
+= er32(PRC64
);
3353 adapter
->stats
.prc127
+= er32(PRC127
);
3354 adapter
->stats
.prc255
+= er32(PRC255
);
3355 adapter
->stats
.prc511
+= er32(PRC511
);
3356 adapter
->stats
.prc1023
+= er32(PRC1023
);
3357 adapter
->stats
.prc1522
+= er32(PRC1522
);
3359 adapter
->stats
.symerrs
+= er32(SYMERRS
);
3360 adapter
->stats
.mpc
+= er32(MPC
);
3361 adapter
->stats
.scc
+= er32(SCC
);
3362 adapter
->stats
.ecol
+= er32(ECOL
);
3363 adapter
->stats
.mcc
+= er32(MCC
);
3364 adapter
->stats
.latecol
+= er32(LATECOL
);
3365 adapter
->stats
.dc
+= er32(DC
);
3366 adapter
->stats
.sec
+= er32(SEC
);
3367 adapter
->stats
.rlec
+= er32(RLEC
);
3368 adapter
->stats
.xonrxc
+= er32(XONRXC
);
3369 adapter
->stats
.xontxc
+= er32(XONTXC
);
3370 adapter
->stats
.xoffrxc
+= er32(XOFFRXC
);
3371 adapter
->stats
.xofftxc
+= er32(XOFFTXC
);
3372 adapter
->stats
.fcruc
+= er32(FCRUC
);
3373 adapter
->stats
.gptc
+= er32(GPTC
);
3374 adapter
->stats
.gotcl
+= er32(GOTCL
);
3375 adapter
->stats
.gotch
+= er32(GOTCH
);
3376 adapter
->stats
.rnbc
+= er32(RNBC
);
3377 adapter
->stats
.ruc
+= er32(RUC
);
3378 adapter
->stats
.rfc
+= er32(RFC
);
3379 adapter
->stats
.rjc
+= er32(RJC
);
3380 adapter
->stats
.torl
+= er32(TORL
);
3381 adapter
->stats
.torh
+= er32(TORH
);
3382 adapter
->stats
.totl
+= er32(TOTL
);
3383 adapter
->stats
.toth
+= er32(TOTH
);
3384 adapter
->stats
.tpr
+= er32(TPR
);
3386 adapter
->stats
.ptc64
+= er32(PTC64
);
3387 adapter
->stats
.ptc127
+= er32(PTC127
);
3388 adapter
->stats
.ptc255
+= er32(PTC255
);
3389 adapter
->stats
.ptc511
+= er32(PTC511
);
3390 adapter
->stats
.ptc1023
+= er32(PTC1023
);
3391 adapter
->stats
.ptc1522
+= er32(PTC1522
);
3393 adapter
->stats
.mptc
+= er32(MPTC
);
3394 adapter
->stats
.bptc
+= er32(BPTC
);
3396 /* used for adaptive IFS */
3398 hw
->tx_packet_delta
= er32(TPT
);
3399 adapter
->stats
.tpt
+= hw
->tx_packet_delta
;
3400 hw
->collision_delta
= er32(COLC
);
3401 adapter
->stats
.colc
+= hw
->collision_delta
;
3403 if (hw
->mac_type
>= e1000_82543
) {
3404 adapter
->stats
.algnerrc
+= er32(ALGNERRC
);
3405 adapter
->stats
.rxerrc
+= er32(RXERRC
);
3406 adapter
->stats
.tncrs
+= er32(TNCRS
);
3407 adapter
->stats
.cexterr
+= er32(CEXTERR
);
3408 adapter
->stats
.tsctc
+= er32(TSCTC
);
3409 adapter
->stats
.tsctfc
+= er32(TSCTFC
);
3412 /* Fill out the OS statistics structure */
3413 netdev
->stats
.multicast
= adapter
->stats
.mprc
;
3414 netdev
->stats
.collisions
= adapter
->stats
.colc
;
3418 /* RLEC on some newer hardware can be incorrect so build
3419 * our own version based on RUC and ROC */
3420 netdev
->stats
.rx_errors
= adapter
->stats
.rxerrc
+
3421 adapter
->stats
.crcerrs
+ adapter
->stats
.algnerrc
+
3422 adapter
->stats
.ruc
+ adapter
->stats
.roc
+
3423 adapter
->stats
.cexterr
;
3424 adapter
->stats
.rlerrc
= adapter
->stats
.ruc
+ adapter
->stats
.roc
;
3425 netdev
->stats
.rx_length_errors
= adapter
->stats
.rlerrc
;
3426 netdev
->stats
.rx_crc_errors
= adapter
->stats
.crcerrs
;
3427 netdev
->stats
.rx_frame_errors
= adapter
->stats
.algnerrc
;
3428 netdev
->stats
.rx_missed_errors
= adapter
->stats
.mpc
;
3431 adapter
->stats
.txerrc
= adapter
->stats
.ecol
+ adapter
->stats
.latecol
;
3432 netdev
->stats
.tx_errors
= adapter
->stats
.txerrc
;
3433 netdev
->stats
.tx_aborted_errors
= adapter
->stats
.ecol
;
3434 netdev
->stats
.tx_window_errors
= adapter
->stats
.latecol
;
3435 netdev
->stats
.tx_carrier_errors
= adapter
->stats
.tncrs
;
3436 if (hw
->bad_tx_carr_stats_fd
&&
3437 adapter
->link_duplex
== FULL_DUPLEX
) {
3438 netdev
->stats
.tx_carrier_errors
= 0;
3439 adapter
->stats
.tncrs
= 0;
3442 /* Tx Dropped needs to be maintained elsewhere */
3445 if (hw
->media_type
== e1000_media_type_copper
) {
3446 if ((adapter
->link_speed
== SPEED_1000
) &&
3447 (!e1000_read_phy_reg(hw
, PHY_1000T_STATUS
, &phy_tmp
))) {
3448 phy_tmp
&= PHY_IDLE_ERROR_COUNT_MASK
;
3449 adapter
->phy_stats
.idle_errors
+= phy_tmp
;
3452 if ((hw
->mac_type
<= e1000_82546
) &&
3453 (hw
->phy_type
== e1000_phy_m88
) &&
3454 !e1000_read_phy_reg(hw
, M88E1000_RX_ERR_CNTR
, &phy_tmp
))
3455 adapter
->phy_stats
.receive_errors
+= phy_tmp
;
3458 /* Management Stats */
3459 if (hw
->has_smbus
) {
3460 adapter
->stats
.mgptc
+= er32(MGTPTC
);
3461 adapter
->stats
.mgprc
+= er32(MGTPRC
);
3462 adapter
->stats
.mgpdc
+= er32(MGTPDC
);
3465 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
3469 * e1000_intr - Interrupt Handler
3470 * @irq: interrupt number
3471 * @data: pointer to a network interface device structure
3474 static irqreturn_t
e1000_intr(int irq
, void *data
)
3476 struct net_device
*netdev
= data
;
3477 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3478 struct e1000_hw
*hw
= &adapter
->hw
;
3479 u32 icr
= er32(ICR
);
3481 if (unlikely((!icr
)))
3482 return IRQ_NONE
; /* Not our interrupt */
3485 * we might have caused the interrupt, but the above
3486 * read cleared it, and just in case the driver is
3487 * down there is nothing to do so return handled
3489 if (unlikely(test_bit(__E1000_DOWN
, &adapter
->flags
)))
3492 if (unlikely(icr
& (E1000_ICR_RXSEQ
| E1000_ICR_LSC
))) {
3493 hw
->get_link_status
= 1;
3494 /* guard against interrupt when we're going down */
3495 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
3496 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
3499 /* disable interrupts, without the synchronize_irq bit */
3501 E1000_WRITE_FLUSH();
3503 if (likely(napi_schedule_prep(&adapter
->napi
))) {
3504 adapter
->total_tx_bytes
= 0;
3505 adapter
->total_tx_packets
= 0;
3506 adapter
->total_rx_bytes
= 0;
3507 adapter
->total_rx_packets
= 0;
3508 __napi_schedule(&adapter
->napi
);
3510 /* this really should not happen! if it does it is basically a
3511 * bug, but not a hard error, so enable ints and continue */
3512 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
3513 e1000_irq_enable(adapter
);
3520 * e1000_clean - NAPI Rx polling callback
3521 * @adapter: board private structure
3523 static int e1000_clean(struct napi_struct
*napi
, int budget
)
3525 struct e1000_adapter
*adapter
= container_of(napi
, struct e1000_adapter
, napi
);
3526 int tx_clean_complete
= 0, work_done
= 0;
3528 tx_clean_complete
= e1000_clean_tx_irq(adapter
, &adapter
->tx_ring
[0]);
3530 adapter
->clean_rx(adapter
, &adapter
->rx_ring
[0], &work_done
, budget
);
3532 if (!tx_clean_complete
)
3535 /* If budget not fully consumed, exit the polling mode */
3536 if (work_done
< budget
) {
3537 if (likely(adapter
->itr_setting
& 3))
3538 e1000_set_itr(adapter
);
3539 napi_complete(napi
);
3540 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
3541 e1000_irq_enable(adapter
);
3548 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3549 * @adapter: board private structure
3551 static bool e1000_clean_tx_irq(struct e1000_adapter
*adapter
,
3552 struct e1000_tx_ring
*tx_ring
)
3554 struct e1000_hw
*hw
= &adapter
->hw
;
3555 struct net_device
*netdev
= adapter
->netdev
;
3556 struct e1000_tx_desc
*tx_desc
, *eop_desc
;
3557 struct e1000_buffer
*buffer_info
;
3558 unsigned int i
, eop
;
3559 unsigned int count
= 0;
3560 unsigned int total_tx_bytes
=0, total_tx_packets
=0;
3562 i
= tx_ring
->next_to_clean
;
3563 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
3564 eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
3566 while ((eop_desc
->upper
.data
& cpu_to_le32(E1000_TXD_STAT_DD
)) &&
3567 (count
< tx_ring
->count
)) {
3568 bool cleaned
= false;
3569 rmb(); /* read buffer_info after eop_desc */
3570 for ( ; !cleaned
; count
++) {
3571 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
3572 buffer_info
= &tx_ring
->buffer_info
[i
];
3573 cleaned
= (i
== eop
);
3576 struct sk_buff
*skb
= buffer_info
->skb
;
3577 unsigned int segs
, bytecount
;
3578 segs
= skb_shinfo(skb
)->gso_segs
?: 1;
3579 /* multiply data chunks by size of headers */
3580 bytecount
= ((segs
- 1) * skb_headlen(skb
)) +
3582 total_tx_packets
+= segs
;
3583 total_tx_bytes
+= bytecount
;
3585 e1000_unmap_and_free_tx_resource(adapter
, buffer_info
);
3586 tx_desc
->upper
.data
= 0;
3588 if (unlikely(++i
== tx_ring
->count
)) i
= 0;
3591 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
3592 eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
3595 tx_ring
->next_to_clean
= i
;
3597 #define TX_WAKE_THRESHOLD 32
3598 if (unlikely(count
&& netif_carrier_ok(netdev
) &&
3599 E1000_DESC_UNUSED(tx_ring
) >= TX_WAKE_THRESHOLD
)) {
3600 /* Make sure that anybody stopping the queue after this
3601 * sees the new next_to_clean.
3605 if (netif_queue_stopped(netdev
) &&
3606 !(test_bit(__E1000_DOWN
, &adapter
->flags
))) {
3607 netif_wake_queue(netdev
);
3608 ++adapter
->restart_queue
;
3612 if (adapter
->detect_tx_hung
) {
3613 /* Detect a transmit hang in hardware, this serializes the
3614 * check with the clearing of time_stamp and movement of i */
3615 adapter
->detect_tx_hung
= false;
3616 if (tx_ring
->buffer_info
[eop
].time_stamp
&&
3617 time_after(jiffies
, tx_ring
->buffer_info
[eop
].time_stamp
+
3618 (adapter
->tx_timeout_factor
* HZ
)) &&
3619 !(er32(STATUS
) & E1000_STATUS_TXOFF
)) {
3621 /* detected Tx unit hang */
3622 e_err(drv
, "Detected Tx Unit Hang\n"
3626 " next_to_use <%x>\n"
3627 " next_to_clean <%x>\n"
3628 "buffer_info[next_to_clean]\n"
3629 " time_stamp <%lx>\n"
3630 " next_to_watch <%x>\n"
3632 " next_to_watch.status <%x>\n",
3633 (unsigned long)((tx_ring
- adapter
->tx_ring
) /
3634 sizeof(struct e1000_tx_ring
)),
3635 readl(hw
->hw_addr
+ tx_ring
->tdh
),
3636 readl(hw
->hw_addr
+ tx_ring
->tdt
),
3637 tx_ring
->next_to_use
,
3638 tx_ring
->next_to_clean
,
3639 tx_ring
->buffer_info
[eop
].time_stamp
,
3642 eop_desc
->upper
.fields
.status
);
3643 netif_stop_queue(netdev
);
3646 adapter
->total_tx_bytes
+= total_tx_bytes
;
3647 adapter
->total_tx_packets
+= total_tx_packets
;
3648 netdev
->stats
.tx_bytes
+= total_tx_bytes
;
3649 netdev
->stats
.tx_packets
+= total_tx_packets
;
3650 return count
< tx_ring
->count
;
3654 * e1000_rx_checksum - Receive Checksum Offload for 82543
3655 * @adapter: board private structure
3656 * @status_err: receive descriptor status and error fields
3657 * @csum: receive descriptor csum field
3658 * @sk_buff: socket buffer with received data
3661 static void e1000_rx_checksum(struct e1000_adapter
*adapter
, u32 status_err
,
3662 u32 csum
, struct sk_buff
*skb
)
3664 struct e1000_hw
*hw
= &adapter
->hw
;
3665 u16 status
= (u16
)status_err
;
3666 u8 errors
= (u8
)(status_err
>> 24);
3668 skb_checksum_none_assert(skb
);
3670 /* 82543 or newer only */
3671 if (unlikely(hw
->mac_type
< e1000_82543
)) return;
3672 /* Ignore Checksum bit is set */
3673 if (unlikely(status
& E1000_RXD_STAT_IXSM
)) return;
3674 /* TCP/UDP checksum error bit is set */
3675 if (unlikely(errors
& E1000_RXD_ERR_TCPE
)) {
3676 /* let the stack verify checksum errors */
3677 adapter
->hw_csum_err
++;
3680 /* TCP/UDP Checksum has not been calculated */
3681 if (!(status
& E1000_RXD_STAT_TCPCS
))
3684 /* It must be a TCP or UDP packet with a valid checksum */
3685 if (likely(status
& E1000_RXD_STAT_TCPCS
)) {
3686 /* TCP checksum is good */
3687 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
3689 adapter
->hw_csum_good
++;
3693 * e1000_consume_page - helper function
3695 static void e1000_consume_page(struct e1000_buffer
*bi
, struct sk_buff
*skb
,
3700 skb
->data_len
+= length
;
3701 skb
->truesize
+= length
;
3705 * e1000_receive_skb - helper function to handle rx indications
3706 * @adapter: board private structure
3707 * @status: descriptor status field as written by hardware
3708 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3709 * @skb: pointer to sk_buff to be indicated to stack
3711 static void e1000_receive_skb(struct e1000_adapter
*adapter
, u8 status
,
3712 __le16 vlan
, struct sk_buff
*skb
)
3714 skb
->protocol
= eth_type_trans(skb
, adapter
->netdev
);
3716 if ((unlikely(adapter
->vlgrp
&& (status
& E1000_RXD_STAT_VP
))))
3717 vlan_gro_receive(&adapter
->napi
, adapter
->vlgrp
,
3718 le16_to_cpu(vlan
) & E1000_RXD_SPC_VLAN_MASK
,
3721 napi_gro_receive(&adapter
->napi
, skb
);
3725 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
3726 * @adapter: board private structure
3727 * @rx_ring: ring to clean
3728 * @work_done: amount of napi work completed this call
3729 * @work_to_do: max amount of work allowed for this call to do
3731 * the return value indicates whether actual cleaning was done, there
3732 * is no guarantee that everything was cleaned
3734 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter
*adapter
,
3735 struct e1000_rx_ring
*rx_ring
,
3736 int *work_done
, int work_to_do
)
3738 struct e1000_hw
*hw
= &adapter
->hw
;
3739 struct net_device
*netdev
= adapter
->netdev
;
3740 struct pci_dev
*pdev
= adapter
->pdev
;
3741 struct e1000_rx_desc
*rx_desc
, *next_rxd
;
3742 struct e1000_buffer
*buffer_info
, *next_buffer
;
3743 unsigned long irq_flags
;
3746 int cleaned_count
= 0;
3747 bool cleaned
= false;
3748 unsigned int total_rx_bytes
=0, total_rx_packets
=0;
3750 i
= rx_ring
->next_to_clean
;
3751 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
3752 buffer_info
= &rx_ring
->buffer_info
[i
];
3754 while (rx_desc
->status
& E1000_RXD_STAT_DD
) {
3755 struct sk_buff
*skb
;
3758 if (*work_done
>= work_to_do
)
3761 rmb(); /* read descriptor and rx_buffer_info after status DD */
3763 status
= rx_desc
->status
;
3764 skb
= buffer_info
->skb
;
3765 buffer_info
->skb
= NULL
;
3767 if (++i
== rx_ring
->count
) i
= 0;
3768 next_rxd
= E1000_RX_DESC(*rx_ring
, i
);
3771 next_buffer
= &rx_ring
->buffer_info
[i
];
3775 dma_unmap_page(&pdev
->dev
, buffer_info
->dma
,
3776 buffer_info
->length
, DMA_FROM_DEVICE
);
3777 buffer_info
->dma
= 0;
3779 length
= le16_to_cpu(rx_desc
->length
);
3781 /* errors is only valid for DD + EOP descriptors */
3782 if (unlikely((status
& E1000_RXD_STAT_EOP
) &&
3783 (rx_desc
->errors
& E1000_RXD_ERR_FRAME_ERR_MASK
))) {
3784 u8 last_byte
= *(skb
->data
+ length
- 1);
3785 if (TBI_ACCEPT(hw
, status
, rx_desc
->errors
, length
,
3787 spin_lock_irqsave(&adapter
->stats_lock
,
3789 e1000_tbi_adjust_stats(hw
, &adapter
->stats
,
3791 spin_unlock_irqrestore(&adapter
->stats_lock
,
3795 /* recycle both page and skb */
3796 buffer_info
->skb
= skb
;
3797 /* an error means any chain goes out the window
3799 if (rx_ring
->rx_skb_top
)
3800 dev_kfree_skb(rx_ring
->rx_skb_top
);
3801 rx_ring
->rx_skb_top
= NULL
;
3806 #define rxtop rx_ring->rx_skb_top
3807 if (!(status
& E1000_RXD_STAT_EOP
)) {
3808 /* this descriptor is only the beginning (or middle) */
3810 /* this is the beginning of a chain */
3812 skb_fill_page_desc(rxtop
, 0, buffer_info
->page
,
3815 /* this is the middle of a chain */
3816 skb_fill_page_desc(rxtop
,
3817 skb_shinfo(rxtop
)->nr_frags
,
3818 buffer_info
->page
, 0, length
);
3819 /* re-use the skb, only consumed the page */
3820 buffer_info
->skb
= skb
;
3822 e1000_consume_page(buffer_info
, rxtop
, length
);
3826 /* end of the chain */
3827 skb_fill_page_desc(rxtop
,
3828 skb_shinfo(rxtop
)->nr_frags
,
3829 buffer_info
->page
, 0, length
);
3830 /* re-use the current skb, we only consumed the
3832 buffer_info
->skb
= skb
;
3835 e1000_consume_page(buffer_info
, skb
, length
);
3837 /* no chain, got EOP, this buf is the packet
3838 * copybreak to save the put_page/alloc_page */
3839 if (length
<= copybreak
&&
3840 skb_tailroom(skb
) >= length
) {
3842 vaddr
= kmap_atomic(buffer_info
->page
,
3843 KM_SKB_DATA_SOFTIRQ
);
3844 memcpy(skb_tail_pointer(skb
), vaddr
, length
);
3845 kunmap_atomic(vaddr
,
3846 KM_SKB_DATA_SOFTIRQ
);
3847 /* re-use the page, so don't erase
3848 * buffer_info->page */
3849 skb_put(skb
, length
);
3851 skb_fill_page_desc(skb
, 0,
3852 buffer_info
->page
, 0,
3854 e1000_consume_page(buffer_info
, skb
,
3860 /* Receive Checksum Offload XXX recompute due to CRC strip? */
3861 e1000_rx_checksum(adapter
,
3863 ((u32
)(rx_desc
->errors
) << 24),
3864 le16_to_cpu(rx_desc
->csum
), skb
);
3866 pskb_trim(skb
, skb
->len
- 4);
3868 /* probably a little skewed due to removing CRC */
3869 total_rx_bytes
+= skb
->len
;
3872 /* eth type trans needs skb->data to point to something */
3873 if (!pskb_may_pull(skb
, ETH_HLEN
)) {
3874 e_err(drv
, "pskb_may_pull failed.\n");
3879 e1000_receive_skb(adapter
, status
, rx_desc
->special
, skb
);
3882 rx_desc
->status
= 0;
3884 /* return some buffers to hardware, one at a time is too slow */
3885 if (unlikely(cleaned_count
>= E1000_RX_BUFFER_WRITE
)) {
3886 adapter
->alloc_rx_buf(adapter
, rx_ring
, cleaned_count
);
3890 /* use prefetched values */
3892 buffer_info
= next_buffer
;
3894 rx_ring
->next_to_clean
= i
;
3896 cleaned_count
= E1000_DESC_UNUSED(rx_ring
);
3898 adapter
->alloc_rx_buf(adapter
, rx_ring
, cleaned_count
);
3900 adapter
->total_rx_packets
+= total_rx_packets
;
3901 adapter
->total_rx_bytes
+= total_rx_bytes
;
3902 netdev
->stats
.rx_bytes
+= total_rx_bytes
;
3903 netdev
->stats
.rx_packets
+= total_rx_packets
;
3908 * this should improve performance for small packets with large amounts
3909 * of reassembly being done in the stack
3911 static void e1000_check_copybreak(struct net_device
*netdev
,
3912 struct e1000_buffer
*buffer_info
,
3913 u32 length
, struct sk_buff
**skb
)
3915 struct sk_buff
*new_skb
;
3917 if (length
> copybreak
)
3920 new_skb
= netdev_alloc_skb_ip_align(netdev
, length
);
3924 skb_copy_to_linear_data_offset(new_skb
, -NET_IP_ALIGN
,
3925 (*skb
)->data
- NET_IP_ALIGN
,
3926 length
+ NET_IP_ALIGN
);
3927 /* save the skb in buffer_info as good */
3928 buffer_info
->skb
= *skb
;
3933 * e1000_clean_rx_irq - Send received data up the network stack; legacy
3934 * @adapter: board private structure
3935 * @rx_ring: ring to clean
3936 * @work_done: amount of napi work completed this call
3937 * @work_to_do: max amount of work allowed for this call to do
3939 static bool e1000_clean_rx_irq(struct e1000_adapter
*adapter
,
3940 struct e1000_rx_ring
*rx_ring
,
3941 int *work_done
, int work_to_do
)
3943 struct e1000_hw
*hw
= &adapter
->hw
;
3944 struct net_device
*netdev
= adapter
->netdev
;
3945 struct pci_dev
*pdev
= adapter
->pdev
;
3946 struct e1000_rx_desc
*rx_desc
, *next_rxd
;
3947 struct e1000_buffer
*buffer_info
, *next_buffer
;
3948 unsigned long flags
;
3951 int cleaned_count
= 0;
3952 bool cleaned
= false;
3953 unsigned int total_rx_bytes
=0, total_rx_packets
=0;
3955 i
= rx_ring
->next_to_clean
;
3956 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
3957 buffer_info
= &rx_ring
->buffer_info
[i
];
3959 while (rx_desc
->status
& E1000_RXD_STAT_DD
) {
3960 struct sk_buff
*skb
;
3963 if (*work_done
>= work_to_do
)
3966 rmb(); /* read descriptor and rx_buffer_info after status DD */
3968 status
= rx_desc
->status
;
3969 skb
= buffer_info
->skb
;
3970 buffer_info
->skb
= NULL
;
3972 prefetch(skb
->data
- NET_IP_ALIGN
);
3974 if (++i
== rx_ring
->count
) i
= 0;
3975 next_rxd
= E1000_RX_DESC(*rx_ring
, i
);
3978 next_buffer
= &rx_ring
->buffer_info
[i
];
3982 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
3983 buffer_info
->length
, DMA_FROM_DEVICE
);
3984 buffer_info
->dma
= 0;
3986 length
= le16_to_cpu(rx_desc
->length
);
3987 /* !EOP means multiple descriptors were used to store a single
3988 * packet, if thats the case we need to toss it. In fact, we
3989 * to toss every packet with the EOP bit clear and the next
3990 * frame that _does_ have the EOP bit set, as it is by
3991 * definition only a frame fragment
3993 if (unlikely(!(status
& E1000_RXD_STAT_EOP
)))
3994 adapter
->discarding
= true;
3996 if (adapter
->discarding
) {
3997 /* All receives must fit into a single buffer */
3998 e_dbg("Receive packet consumed multiple buffers\n");
4000 buffer_info
->skb
= skb
;
4001 if (status
& E1000_RXD_STAT_EOP
)
4002 adapter
->discarding
= false;
4006 if (unlikely(rx_desc
->errors
& E1000_RXD_ERR_FRAME_ERR_MASK
)) {
4007 u8 last_byte
= *(skb
->data
+ length
- 1);
4008 if (TBI_ACCEPT(hw
, status
, rx_desc
->errors
, length
,
4010 spin_lock_irqsave(&adapter
->stats_lock
, flags
);
4011 e1000_tbi_adjust_stats(hw
, &adapter
->stats
,
4013 spin_unlock_irqrestore(&adapter
->stats_lock
,
4018 buffer_info
->skb
= skb
;
4023 /* adjust length to remove Ethernet CRC, this must be
4024 * done after the TBI_ACCEPT workaround above */
4027 /* probably a little skewed due to removing CRC */
4028 total_rx_bytes
+= length
;
4031 e1000_check_copybreak(netdev
, buffer_info
, length
, &skb
);
4033 skb_put(skb
, length
);
4035 /* Receive Checksum Offload */
4036 e1000_rx_checksum(adapter
,
4038 ((u32
)(rx_desc
->errors
) << 24),
4039 le16_to_cpu(rx_desc
->csum
), skb
);
4041 e1000_receive_skb(adapter
, status
, rx_desc
->special
, skb
);
4044 rx_desc
->status
= 0;
4046 /* return some buffers to hardware, one at a time is too slow */
4047 if (unlikely(cleaned_count
>= E1000_RX_BUFFER_WRITE
)) {
4048 adapter
->alloc_rx_buf(adapter
, rx_ring
, cleaned_count
);
4052 /* use prefetched values */
4054 buffer_info
= next_buffer
;
4056 rx_ring
->next_to_clean
= i
;
4058 cleaned_count
= E1000_DESC_UNUSED(rx_ring
);
4060 adapter
->alloc_rx_buf(adapter
, rx_ring
, cleaned_count
);
4062 adapter
->total_rx_packets
+= total_rx_packets
;
4063 adapter
->total_rx_bytes
+= total_rx_bytes
;
4064 netdev
->stats
.rx_bytes
+= total_rx_bytes
;
4065 netdev
->stats
.rx_packets
+= total_rx_packets
;
4070 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4071 * @adapter: address of board private structure
4072 * @rx_ring: pointer to receive ring structure
4073 * @cleaned_count: number of buffers to allocate this pass
4077 e1000_alloc_jumbo_rx_buffers(struct e1000_adapter
*adapter
,
4078 struct e1000_rx_ring
*rx_ring
, int cleaned_count
)
4080 struct net_device
*netdev
= adapter
->netdev
;
4081 struct pci_dev
*pdev
= adapter
->pdev
;
4082 struct e1000_rx_desc
*rx_desc
;
4083 struct e1000_buffer
*buffer_info
;
4084 struct sk_buff
*skb
;
4086 unsigned int bufsz
= 256 - 16 /*for skb_reserve */ ;
4088 i
= rx_ring
->next_to_use
;
4089 buffer_info
= &rx_ring
->buffer_info
[i
];
4091 while (cleaned_count
--) {
4092 skb
= buffer_info
->skb
;
4098 skb
= netdev_alloc_skb_ip_align(netdev
, bufsz
);
4099 if (unlikely(!skb
)) {
4100 /* Better luck next round */
4101 adapter
->alloc_rx_buff_failed
++;
4105 /* Fix for errata 23, can't cross 64kB boundary */
4106 if (!e1000_check_64k_bound(adapter
, skb
->data
, bufsz
)) {
4107 struct sk_buff
*oldskb
= skb
;
4108 e_err(rx_err
, "skb align check failed: %u bytes at "
4109 "%p\n", bufsz
, skb
->data
);
4110 /* Try again, without freeing the previous */
4111 skb
= netdev_alloc_skb_ip_align(netdev
, bufsz
);
4112 /* Failed allocation, critical failure */
4114 dev_kfree_skb(oldskb
);
4115 adapter
->alloc_rx_buff_failed
++;
4119 if (!e1000_check_64k_bound(adapter
, skb
->data
, bufsz
)) {
4122 dev_kfree_skb(oldskb
);
4123 break; /* while (cleaned_count--) */
4126 /* Use new allocation */
4127 dev_kfree_skb(oldskb
);
4129 buffer_info
->skb
= skb
;
4130 buffer_info
->length
= adapter
->rx_buffer_len
;
4132 /* allocate a new page if necessary */
4133 if (!buffer_info
->page
) {
4134 buffer_info
->page
= alloc_page(GFP_ATOMIC
);
4135 if (unlikely(!buffer_info
->page
)) {
4136 adapter
->alloc_rx_buff_failed
++;
4141 if (!buffer_info
->dma
) {
4142 buffer_info
->dma
= dma_map_page(&pdev
->dev
,
4143 buffer_info
->page
, 0,
4144 buffer_info
->length
,
4146 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
)) {
4147 put_page(buffer_info
->page
);
4149 buffer_info
->page
= NULL
;
4150 buffer_info
->skb
= NULL
;
4151 buffer_info
->dma
= 0;
4152 adapter
->alloc_rx_buff_failed
++;
4153 break; /* while !buffer_info->skb */
4157 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
4158 rx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
4160 if (unlikely(++i
== rx_ring
->count
))
4162 buffer_info
= &rx_ring
->buffer_info
[i
];
4165 if (likely(rx_ring
->next_to_use
!= i
)) {
4166 rx_ring
->next_to_use
= i
;
4167 if (unlikely(i
-- == 0))
4168 i
= (rx_ring
->count
- 1);
4170 /* Force memory writes to complete before letting h/w
4171 * know there are new descriptors to fetch. (Only
4172 * applicable for weak-ordered memory model archs,
4173 * such as IA-64). */
4175 writel(i
, adapter
->hw
.hw_addr
+ rx_ring
->rdt
);
4180 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4181 * @adapter: address of board private structure
4184 static void e1000_alloc_rx_buffers(struct e1000_adapter
*adapter
,
4185 struct e1000_rx_ring
*rx_ring
,
4188 struct e1000_hw
*hw
= &adapter
->hw
;
4189 struct net_device
*netdev
= adapter
->netdev
;
4190 struct pci_dev
*pdev
= adapter
->pdev
;
4191 struct e1000_rx_desc
*rx_desc
;
4192 struct e1000_buffer
*buffer_info
;
4193 struct sk_buff
*skb
;
4195 unsigned int bufsz
= adapter
->rx_buffer_len
;
4197 i
= rx_ring
->next_to_use
;
4198 buffer_info
= &rx_ring
->buffer_info
[i
];
4200 while (cleaned_count
--) {
4201 skb
= buffer_info
->skb
;
4207 skb
= netdev_alloc_skb_ip_align(netdev
, bufsz
);
4208 if (unlikely(!skb
)) {
4209 /* Better luck next round */
4210 adapter
->alloc_rx_buff_failed
++;
4214 /* Fix for errata 23, can't cross 64kB boundary */
4215 if (!e1000_check_64k_bound(adapter
, skb
->data
, bufsz
)) {
4216 struct sk_buff
*oldskb
= skb
;
4217 e_err(rx_err
, "skb align check failed: %u bytes at "
4218 "%p\n", bufsz
, skb
->data
);
4219 /* Try again, without freeing the previous */
4220 skb
= netdev_alloc_skb_ip_align(netdev
, bufsz
);
4221 /* Failed allocation, critical failure */
4223 dev_kfree_skb(oldskb
);
4224 adapter
->alloc_rx_buff_failed
++;
4228 if (!e1000_check_64k_bound(adapter
, skb
->data
, bufsz
)) {
4231 dev_kfree_skb(oldskb
);
4232 adapter
->alloc_rx_buff_failed
++;
4233 break; /* while !buffer_info->skb */
4236 /* Use new allocation */
4237 dev_kfree_skb(oldskb
);
4239 buffer_info
->skb
= skb
;
4240 buffer_info
->length
= adapter
->rx_buffer_len
;
4242 buffer_info
->dma
= dma_map_single(&pdev
->dev
,
4244 buffer_info
->length
,
4246 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
)) {
4248 buffer_info
->skb
= NULL
;
4249 buffer_info
->dma
= 0;
4250 adapter
->alloc_rx_buff_failed
++;
4251 break; /* while !buffer_info->skb */
4255 * XXX if it was allocated cleanly it will never map to a
4259 /* Fix for errata 23, can't cross 64kB boundary */
4260 if (!e1000_check_64k_bound(adapter
,
4261 (void *)(unsigned long)buffer_info
->dma
,
4262 adapter
->rx_buffer_len
)) {
4263 e_err(rx_err
, "dma align check failed: %u bytes at "
4264 "%p\n", adapter
->rx_buffer_len
,
4265 (void *)(unsigned long)buffer_info
->dma
);
4267 buffer_info
->skb
= NULL
;
4269 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
4270 adapter
->rx_buffer_len
,
4272 buffer_info
->dma
= 0;
4274 adapter
->alloc_rx_buff_failed
++;
4275 break; /* while !buffer_info->skb */
4277 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
4278 rx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
4280 if (unlikely(++i
== rx_ring
->count
))
4282 buffer_info
= &rx_ring
->buffer_info
[i
];
4285 if (likely(rx_ring
->next_to_use
!= i
)) {
4286 rx_ring
->next_to_use
= i
;
4287 if (unlikely(i
-- == 0))
4288 i
= (rx_ring
->count
- 1);
4290 /* Force memory writes to complete before letting h/w
4291 * know there are new descriptors to fetch. (Only
4292 * applicable for weak-ordered memory model archs,
4293 * such as IA-64). */
4295 writel(i
, hw
->hw_addr
+ rx_ring
->rdt
);
4300 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4304 static void e1000_smartspeed(struct e1000_adapter
*adapter
)
4306 struct e1000_hw
*hw
= &adapter
->hw
;
4310 if ((hw
->phy_type
!= e1000_phy_igp
) || !hw
->autoneg
||
4311 !(hw
->autoneg_advertised
& ADVERTISE_1000_FULL
))
4314 if (adapter
->smartspeed
== 0) {
4315 /* If Master/Slave config fault is asserted twice,
4316 * we assume back-to-back */
4317 e1000_read_phy_reg(hw
, PHY_1000T_STATUS
, &phy_status
);
4318 if (!(phy_status
& SR_1000T_MS_CONFIG_FAULT
)) return;
4319 e1000_read_phy_reg(hw
, PHY_1000T_STATUS
, &phy_status
);
4320 if (!(phy_status
& SR_1000T_MS_CONFIG_FAULT
)) return;
4321 e1000_read_phy_reg(hw
, PHY_1000T_CTRL
, &phy_ctrl
);
4322 if (phy_ctrl
& CR_1000T_MS_ENABLE
) {
4323 phy_ctrl
&= ~CR_1000T_MS_ENABLE
;
4324 e1000_write_phy_reg(hw
, PHY_1000T_CTRL
,
4326 adapter
->smartspeed
++;
4327 if (!e1000_phy_setup_autoneg(hw
) &&
4328 !e1000_read_phy_reg(hw
, PHY_CTRL
,
4330 phy_ctrl
|= (MII_CR_AUTO_NEG_EN
|
4331 MII_CR_RESTART_AUTO_NEG
);
4332 e1000_write_phy_reg(hw
, PHY_CTRL
,
4337 } else if (adapter
->smartspeed
== E1000_SMARTSPEED_DOWNSHIFT
) {
4338 /* If still no link, perhaps using 2/3 pair cable */
4339 e1000_read_phy_reg(hw
, PHY_1000T_CTRL
, &phy_ctrl
);
4340 phy_ctrl
|= CR_1000T_MS_ENABLE
;
4341 e1000_write_phy_reg(hw
, PHY_1000T_CTRL
, phy_ctrl
);
4342 if (!e1000_phy_setup_autoneg(hw
) &&
4343 !e1000_read_phy_reg(hw
, PHY_CTRL
, &phy_ctrl
)) {
4344 phy_ctrl
|= (MII_CR_AUTO_NEG_EN
|
4345 MII_CR_RESTART_AUTO_NEG
);
4346 e1000_write_phy_reg(hw
, PHY_CTRL
, phy_ctrl
);
4349 /* Restart process after E1000_SMARTSPEED_MAX iterations */
4350 if (adapter
->smartspeed
++ == E1000_SMARTSPEED_MAX
)
4351 adapter
->smartspeed
= 0;
4361 static int e1000_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
4367 return e1000_mii_ioctl(netdev
, ifr
, cmd
);
4380 static int e1000_mii_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
,
4383 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4384 struct e1000_hw
*hw
= &adapter
->hw
;
4385 struct mii_ioctl_data
*data
= if_mii(ifr
);
4389 unsigned long flags
;
4391 if (hw
->media_type
!= e1000_media_type_copper
)
4396 data
->phy_id
= hw
->phy_addr
;
4399 spin_lock_irqsave(&adapter
->stats_lock
, flags
);
4400 if (e1000_read_phy_reg(hw
, data
->reg_num
& 0x1F,
4402 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
4405 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
4408 if (data
->reg_num
& ~(0x1F))
4410 mii_reg
= data
->val_in
;
4411 spin_lock_irqsave(&adapter
->stats_lock
, flags
);
4412 if (e1000_write_phy_reg(hw
, data
->reg_num
,
4414 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
4417 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
4418 if (hw
->media_type
== e1000_media_type_copper
) {
4419 switch (data
->reg_num
) {
4421 if (mii_reg
& MII_CR_POWER_DOWN
)
4423 if (mii_reg
& MII_CR_AUTO_NEG_EN
) {
4425 hw
->autoneg_advertised
= 0x2F;
4428 spddplx
= SPEED_1000
;
4429 else if (mii_reg
& 0x2000)
4430 spddplx
= SPEED_100
;
4433 spddplx
+= (mii_reg
& 0x100)
4436 retval
= e1000_set_spd_dplx(adapter
,
4441 if (netif_running(adapter
->netdev
))
4442 e1000_reinit_locked(adapter
);
4444 e1000_reset(adapter
);
4446 case M88E1000_PHY_SPEC_CTRL
:
4447 case M88E1000_EXT_PHY_SPEC_CTRL
:
4448 if (e1000_phy_reset(hw
))
4453 switch (data
->reg_num
) {
4455 if (mii_reg
& MII_CR_POWER_DOWN
)
4457 if (netif_running(adapter
->netdev
))
4458 e1000_reinit_locked(adapter
);
4460 e1000_reset(adapter
);
4468 return E1000_SUCCESS
;
4471 void e1000_pci_set_mwi(struct e1000_hw
*hw
)
4473 struct e1000_adapter
*adapter
= hw
->back
;
4474 int ret_val
= pci_set_mwi(adapter
->pdev
);
4477 e_err(probe
, "Error in setting MWI\n");
4480 void e1000_pci_clear_mwi(struct e1000_hw
*hw
)
4482 struct e1000_adapter
*adapter
= hw
->back
;
4484 pci_clear_mwi(adapter
->pdev
);
4487 int e1000_pcix_get_mmrbc(struct e1000_hw
*hw
)
4489 struct e1000_adapter
*adapter
= hw
->back
;
4490 return pcix_get_mmrbc(adapter
->pdev
);
4493 void e1000_pcix_set_mmrbc(struct e1000_hw
*hw
, int mmrbc
)
4495 struct e1000_adapter
*adapter
= hw
->back
;
4496 pcix_set_mmrbc(adapter
->pdev
, mmrbc
);
4499 void e1000_io_write(struct e1000_hw
*hw
, unsigned long port
, u32 value
)
4504 static void e1000_vlan_rx_register(struct net_device
*netdev
,
4505 struct vlan_group
*grp
)
4507 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4508 struct e1000_hw
*hw
= &adapter
->hw
;
4511 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
4512 e1000_irq_disable(adapter
);
4513 adapter
->vlgrp
= grp
;
4516 /* enable VLAN tag insert/strip */
4518 ctrl
|= E1000_CTRL_VME
;
4521 /* enable VLAN receive filtering */
4523 rctl
&= ~E1000_RCTL_CFIEN
;
4524 if (!(netdev
->flags
& IFF_PROMISC
))
4525 rctl
|= E1000_RCTL_VFE
;
4527 e1000_update_mng_vlan(adapter
);
4529 /* disable VLAN tag insert/strip */
4531 ctrl
&= ~E1000_CTRL_VME
;
4534 /* disable VLAN receive filtering */
4536 rctl
&= ~E1000_RCTL_VFE
;
4539 if (adapter
->mng_vlan_id
!= (u16
)E1000_MNG_VLAN_NONE
) {
4540 e1000_vlan_rx_kill_vid(netdev
, adapter
->mng_vlan_id
);
4541 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
4545 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
4546 e1000_irq_enable(adapter
);
4549 static void e1000_vlan_rx_add_vid(struct net_device
*netdev
, u16 vid
)
4551 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4552 struct e1000_hw
*hw
= &adapter
->hw
;
4555 if ((hw
->mng_cookie
.status
&
4556 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
) &&
4557 (vid
== adapter
->mng_vlan_id
))
4559 /* add VID to filter table */
4560 index
= (vid
>> 5) & 0x7F;
4561 vfta
= E1000_READ_REG_ARRAY(hw
, VFTA
, index
);
4562 vfta
|= (1 << (vid
& 0x1F));
4563 e1000_write_vfta(hw
, index
, vfta
);
4566 static void e1000_vlan_rx_kill_vid(struct net_device
*netdev
, u16 vid
)
4568 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4569 struct e1000_hw
*hw
= &adapter
->hw
;
4572 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
4573 e1000_irq_disable(adapter
);
4574 vlan_group_set_device(adapter
->vlgrp
, vid
, NULL
);
4575 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
4576 e1000_irq_enable(adapter
);
4578 /* remove VID from filter table */
4579 index
= (vid
>> 5) & 0x7F;
4580 vfta
= E1000_READ_REG_ARRAY(hw
, VFTA
, index
);
4581 vfta
&= ~(1 << (vid
& 0x1F));
4582 e1000_write_vfta(hw
, index
, vfta
);
4585 static void e1000_restore_vlan(struct e1000_adapter
*adapter
)
4587 e1000_vlan_rx_register(adapter
->netdev
, adapter
->vlgrp
);
4589 if (adapter
->vlgrp
) {
4591 for (vid
= 0; vid
< VLAN_N_VID
; vid
++) {
4592 if (!vlan_group_get_device(adapter
->vlgrp
, vid
))
4594 e1000_vlan_rx_add_vid(adapter
->netdev
, vid
);
4599 int e1000_set_spd_dplx(struct e1000_adapter
*adapter
, u16 spddplx
)
4601 struct e1000_hw
*hw
= &adapter
->hw
;
4605 /* Fiber NICs only allow 1000 gbps Full duplex */
4606 if ((hw
->media_type
== e1000_media_type_fiber
) &&
4607 spddplx
!= (SPEED_1000
+ DUPLEX_FULL
)) {
4608 e_err(probe
, "Unsupported Speed/Duplex configuration\n");
4613 case SPEED_10
+ DUPLEX_HALF
:
4614 hw
->forced_speed_duplex
= e1000_10_half
;
4616 case SPEED_10
+ DUPLEX_FULL
:
4617 hw
->forced_speed_duplex
= e1000_10_full
;
4619 case SPEED_100
+ DUPLEX_HALF
:
4620 hw
->forced_speed_duplex
= e1000_100_half
;
4622 case SPEED_100
+ DUPLEX_FULL
:
4623 hw
->forced_speed_duplex
= e1000_100_full
;
4625 case SPEED_1000
+ DUPLEX_FULL
:
4627 hw
->autoneg_advertised
= ADVERTISE_1000_FULL
;
4629 case SPEED_1000
+ DUPLEX_HALF
: /* not supported */
4631 e_err(probe
, "Unsupported Speed/Duplex configuration\n");
4637 static int __e1000_shutdown(struct pci_dev
*pdev
, bool *enable_wake
)
4639 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4640 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4641 struct e1000_hw
*hw
= &adapter
->hw
;
4642 u32 ctrl
, ctrl_ext
, rctl
, status
;
4643 u32 wufc
= adapter
->wol
;
4648 netif_device_detach(netdev
);
4650 if (netif_running(netdev
)) {
4651 WARN_ON(test_bit(__E1000_RESETTING
, &adapter
->flags
));
4652 e1000_down(adapter
);
4656 retval
= pci_save_state(pdev
);
4661 status
= er32(STATUS
);
4662 if (status
& E1000_STATUS_LU
)
4663 wufc
&= ~E1000_WUFC_LNKC
;
4666 e1000_setup_rctl(adapter
);
4667 e1000_set_rx_mode(netdev
);
4669 /* turn on all-multi mode if wake on multicast is enabled */
4670 if (wufc
& E1000_WUFC_MC
) {
4672 rctl
|= E1000_RCTL_MPE
;
4676 if (hw
->mac_type
>= e1000_82540
) {
4678 /* advertise wake from D3Cold */
4679 #define E1000_CTRL_ADVD3WUC 0x00100000
4680 /* phy power management enable */
4681 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4682 ctrl
|= E1000_CTRL_ADVD3WUC
|
4683 E1000_CTRL_EN_PHY_PWR_MGMT
;
4687 if (hw
->media_type
== e1000_media_type_fiber
||
4688 hw
->media_type
== e1000_media_type_internal_serdes
) {
4689 /* keep the laser running in D3 */
4690 ctrl_ext
= er32(CTRL_EXT
);
4691 ctrl_ext
|= E1000_CTRL_EXT_SDP7_DATA
;
4692 ew32(CTRL_EXT
, ctrl_ext
);
4695 ew32(WUC
, E1000_WUC_PME_EN
);
4702 e1000_release_manageability(adapter
);
4704 *enable_wake
= !!wufc
;
4706 /* make sure adapter isn't asleep if manageability is enabled */
4707 if (adapter
->en_mng_pt
)
4708 *enable_wake
= true;
4710 if (netif_running(netdev
))
4711 e1000_free_irq(adapter
);
4713 pci_disable_device(pdev
);
4719 static int e1000_suspend(struct pci_dev
*pdev
, pm_message_t state
)
4724 retval
= __e1000_shutdown(pdev
, &wake
);
4729 pci_prepare_to_sleep(pdev
);
4731 pci_wake_from_d3(pdev
, false);
4732 pci_set_power_state(pdev
, PCI_D3hot
);
4738 static int e1000_resume(struct pci_dev
*pdev
)
4740 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4741 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4742 struct e1000_hw
*hw
= &adapter
->hw
;
4745 pci_set_power_state(pdev
, PCI_D0
);
4746 pci_restore_state(pdev
);
4747 pci_save_state(pdev
);
4749 if (adapter
->need_ioport
)
4750 err
= pci_enable_device(pdev
);
4752 err
= pci_enable_device_mem(pdev
);
4754 pr_err("Cannot enable PCI device from suspend\n");
4757 pci_set_master(pdev
);
4759 pci_enable_wake(pdev
, PCI_D3hot
, 0);
4760 pci_enable_wake(pdev
, PCI_D3cold
, 0);
4762 if (netif_running(netdev
)) {
4763 err
= e1000_request_irq(adapter
);
4768 e1000_power_up_phy(adapter
);
4769 e1000_reset(adapter
);
4772 e1000_init_manageability(adapter
);
4774 if (netif_running(netdev
))
4777 netif_device_attach(netdev
);
4783 static void e1000_shutdown(struct pci_dev
*pdev
)
4787 __e1000_shutdown(pdev
, &wake
);
4789 if (system_state
== SYSTEM_POWER_OFF
) {
4790 pci_wake_from_d3(pdev
, wake
);
4791 pci_set_power_state(pdev
, PCI_D3hot
);
4795 #ifdef CONFIG_NET_POLL_CONTROLLER
4797 * Polling 'interrupt' - used by things like netconsole to send skbs
4798 * without having to re-enable interrupts. It's not called while
4799 * the interrupt routine is executing.
4801 static void e1000_netpoll(struct net_device
*netdev
)
4803 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4805 disable_irq(adapter
->pdev
->irq
);
4806 e1000_intr(adapter
->pdev
->irq
, netdev
);
4807 enable_irq(adapter
->pdev
->irq
);
4812 * e1000_io_error_detected - called when PCI error is detected
4813 * @pdev: Pointer to PCI device
4814 * @state: The current pci connection state
4816 * This function is called after a PCI bus error affecting
4817 * this device has been detected.
4819 static pci_ers_result_t
e1000_io_error_detected(struct pci_dev
*pdev
,
4820 pci_channel_state_t state
)
4822 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4823 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4825 netif_device_detach(netdev
);
4827 if (state
== pci_channel_io_perm_failure
)
4828 return PCI_ERS_RESULT_DISCONNECT
;
4830 if (netif_running(netdev
))
4831 e1000_down(adapter
);
4832 pci_disable_device(pdev
);
4834 /* Request a slot slot reset. */
4835 return PCI_ERS_RESULT_NEED_RESET
;
4839 * e1000_io_slot_reset - called after the pci bus has been reset.
4840 * @pdev: Pointer to PCI device
4842 * Restart the card from scratch, as if from a cold-boot. Implementation
4843 * resembles the first-half of the e1000_resume routine.
4845 static pci_ers_result_t
e1000_io_slot_reset(struct pci_dev
*pdev
)
4847 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4848 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4849 struct e1000_hw
*hw
= &adapter
->hw
;
4852 if (adapter
->need_ioport
)
4853 err
= pci_enable_device(pdev
);
4855 err
= pci_enable_device_mem(pdev
);
4857 pr_err("Cannot re-enable PCI device after reset.\n");
4858 return PCI_ERS_RESULT_DISCONNECT
;
4860 pci_set_master(pdev
);
4862 pci_enable_wake(pdev
, PCI_D3hot
, 0);
4863 pci_enable_wake(pdev
, PCI_D3cold
, 0);
4865 e1000_reset(adapter
);
4868 return PCI_ERS_RESULT_RECOVERED
;
4872 * e1000_io_resume - called when traffic can start flowing again.
4873 * @pdev: Pointer to PCI device
4875 * This callback is called when the error recovery driver tells us that
4876 * its OK to resume normal operation. Implementation resembles the
4877 * second-half of the e1000_resume routine.
4879 static void e1000_io_resume(struct pci_dev
*pdev
)
4881 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4882 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4884 e1000_init_manageability(adapter
);
4886 if (netif_running(netdev
)) {
4887 if (e1000_up(adapter
)) {
4888 pr_info("can't bring device back up after reset\n");
4893 netif_device_attach(netdev
);