1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2011 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
31 #include <linux/module.h>
32 #include <linux/types.h>
33 #include <linux/init.h>
34 #include <linux/pci.h>
35 #include <linux/vmalloc.h>
36 #include <linux/pagemap.h>
37 #include <linux/delay.h>
38 #include <linux/netdevice.h>
39 #include <linux/tcp.h>
40 #include <linux/ipv6.h>
41 #include <linux/slab.h>
42 #include <net/checksum.h>
43 #include <net/ip6_checksum.h>
44 #include <linux/mii.h>
45 #include <linux/ethtool.h>
46 #include <linux/if_vlan.h>
47 #include <linux/cpu.h>
48 #include <linux/smp.h>
49 #include <linux/pm_qos_params.h>
50 #include <linux/pm_runtime.h>
51 #include <linux/aer.h>
55 #define DRV_EXTRAVERSION "-k2"
57 #define DRV_VERSION "1.3.10" DRV_EXTRAVERSION
58 char e1000e_driver_name
[] = "e1000e";
59 const char e1000e_driver_version
[] = DRV_VERSION
;
61 static const struct e1000_info
*e1000_info_tbl
[] = {
62 [board_82571
] = &e1000_82571_info
,
63 [board_82572
] = &e1000_82572_info
,
64 [board_82573
] = &e1000_82573_info
,
65 [board_82574
] = &e1000_82574_info
,
66 [board_82583
] = &e1000_82583_info
,
67 [board_80003es2lan
] = &e1000_es2_info
,
68 [board_ich8lan
] = &e1000_ich8_info
,
69 [board_ich9lan
] = &e1000_ich9_info
,
70 [board_ich10lan
] = &e1000_ich10_info
,
71 [board_pchlan
] = &e1000_pch_info
,
72 [board_pch2lan
] = &e1000_pch2_info
,
75 struct e1000_reg_info
{
80 #define E1000_RDFH 0x02410 /* Rx Data FIFO Head - RW */
81 #define E1000_RDFT 0x02418 /* Rx Data FIFO Tail - RW */
82 #define E1000_RDFHS 0x02420 /* Rx Data FIFO Head Saved - RW */
83 #define E1000_RDFTS 0x02428 /* Rx Data FIFO Tail Saved - RW */
84 #define E1000_RDFPC 0x02430 /* Rx Data FIFO Packet Count - RW */
86 #define E1000_TDFH 0x03410 /* Tx Data FIFO Head - RW */
87 #define E1000_TDFT 0x03418 /* Tx Data FIFO Tail - RW */
88 #define E1000_TDFHS 0x03420 /* Tx Data FIFO Head Saved - RW */
89 #define E1000_TDFTS 0x03428 /* Tx Data FIFO Tail Saved - RW */
90 #define E1000_TDFPC 0x03430 /* Tx Data FIFO Packet Count - RW */
92 static const struct e1000_reg_info e1000_reg_info_tbl
[] = {
94 /* General Registers */
96 {E1000_STATUS
, "STATUS"},
97 {E1000_CTRL_EXT
, "CTRL_EXT"},
99 /* Interrupt Registers */
103 {E1000_RCTL
, "RCTL"},
104 {E1000_RDLEN
, "RDLEN"},
107 {E1000_RDTR
, "RDTR"},
108 {E1000_RXDCTL(0), "RXDCTL"},
110 {E1000_RDBAL
, "RDBAL"},
111 {E1000_RDBAH
, "RDBAH"},
112 {E1000_RDFH
, "RDFH"},
113 {E1000_RDFT
, "RDFT"},
114 {E1000_RDFHS
, "RDFHS"},
115 {E1000_RDFTS
, "RDFTS"},
116 {E1000_RDFPC
, "RDFPC"},
119 {E1000_TCTL
, "TCTL"},
120 {E1000_TDBAL
, "TDBAL"},
121 {E1000_TDBAH
, "TDBAH"},
122 {E1000_TDLEN
, "TDLEN"},
125 {E1000_TIDV
, "TIDV"},
126 {E1000_TXDCTL(0), "TXDCTL"},
127 {E1000_TADV
, "TADV"},
128 {E1000_TARC(0), "TARC"},
129 {E1000_TDFH
, "TDFH"},
130 {E1000_TDFT
, "TDFT"},
131 {E1000_TDFHS
, "TDFHS"},
132 {E1000_TDFTS
, "TDFTS"},
133 {E1000_TDFPC
, "TDFPC"},
135 /* List Terminator */
140 * e1000_regdump - register printout routine
142 static void e1000_regdump(struct e1000_hw
*hw
, struct e1000_reg_info
*reginfo
)
148 switch (reginfo
->ofs
) {
149 case E1000_RXDCTL(0):
150 for (n
= 0; n
< 2; n
++)
151 regs
[n
] = __er32(hw
, E1000_RXDCTL(n
));
153 case E1000_TXDCTL(0):
154 for (n
= 0; n
< 2; n
++)
155 regs
[n
] = __er32(hw
, E1000_TXDCTL(n
));
158 for (n
= 0; n
< 2; n
++)
159 regs
[n
] = __er32(hw
, E1000_TARC(n
));
162 printk(KERN_INFO
"%-15s %08x\n",
163 reginfo
->name
, __er32(hw
, reginfo
->ofs
));
167 snprintf(rname
, 16, "%s%s", reginfo
->name
, "[0-1]");
168 printk(KERN_INFO
"%-15s ", rname
);
169 for (n
= 0; n
< 2; n
++)
170 printk(KERN_CONT
"%08x ", regs
[n
]);
171 printk(KERN_CONT
"\n");
175 * e1000e_dump - Print registers, Tx-ring and Rx-ring
177 static void e1000e_dump(struct e1000_adapter
*adapter
)
179 struct net_device
*netdev
= adapter
->netdev
;
180 struct e1000_hw
*hw
= &adapter
->hw
;
181 struct e1000_reg_info
*reginfo
;
182 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
183 struct e1000_tx_desc
*tx_desc
;
188 struct e1000_buffer
*buffer_info
;
189 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
190 union e1000_rx_desc_packet_split
*rx_desc_ps
;
191 struct e1000_rx_desc
*rx_desc
;
201 if (!netif_msg_hw(adapter
))
204 /* Print netdevice Info */
206 dev_info(&adapter
->pdev
->dev
, "Net device Info\n");
207 printk(KERN_INFO
"Device Name state "
208 "trans_start last_rx\n");
209 printk(KERN_INFO
"%-15s %016lX %016lX %016lX\n",
210 netdev
->name
, netdev
->state
, netdev
->trans_start
,
214 /* Print Registers */
215 dev_info(&adapter
->pdev
->dev
, "Register Dump\n");
216 printk(KERN_INFO
" Register Name Value\n");
217 for (reginfo
= (struct e1000_reg_info
*)e1000_reg_info_tbl
;
218 reginfo
->name
; reginfo
++) {
219 e1000_regdump(hw
, reginfo
);
222 /* Print Tx Ring Summary */
223 if (!netdev
|| !netif_running(netdev
))
226 dev_info(&adapter
->pdev
->dev
, "Tx Ring Summary\n");
227 printk(KERN_INFO
"Queue [NTU] [NTC] [bi(ntc)->dma ]"
228 " leng ntw timestamp\n");
229 buffer_info
= &tx_ring
->buffer_info
[tx_ring
->next_to_clean
];
230 printk(KERN_INFO
" %5d %5X %5X %016llX %04X %3X %016llX\n",
231 0, tx_ring
->next_to_use
, tx_ring
->next_to_clean
,
232 (unsigned long long)buffer_info
->dma
,
234 buffer_info
->next_to_watch
,
235 (unsigned long long)buffer_info
->time_stamp
);
238 if (!netif_msg_tx_done(adapter
))
239 goto rx_ring_summary
;
241 dev_info(&adapter
->pdev
->dev
, "Tx Ring Dump\n");
243 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
245 * Legacy Transmit Descriptor
246 * +--------------------------------------------------------------+
247 * 0 | Buffer Address [63:0] (Reserved on Write Back) |
248 * +--------------------------------------------------------------+
249 * 8 | Special | CSS | Status | CMD | CSO | Length |
250 * +--------------------------------------------------------------+
251 * 63 48 47 36 35 32 31 24 23 16 15 0
253 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
254 * 63 48 47 40 39 32 31 16 15 8 7 0
255 * +----------------------------------------------------------------+
256 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS |
257 * +----------------------------------------------------------------+
258 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN |
259 * +----------------------------------------------------------------+
260 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
262 * Extended Data Descriptor (DTYP=0x1)
263 * +----------------------------------------------------------------+
264 * 0 | Buffer Address [63:0] |
265 * +----------------------------------------------------------------+
266 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN |
267 * +----------------------------------------------------------------+
268 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
270 printk(KERN_INFO
"Tl[desc] [address 63:0 ] [SpeCssSCmCsLen]"
271 " [bi->dma ] leng ntw timestamp bi->skb "
272 "<-- Legacy format\n");
273 printk(KERN_INFO
"Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen]"
274 " [bi->dma ] leng ntw timestamp bi->skb "
275 "<-- Ext Context format\n");
276 printk(KERN_INFO
"Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen]"
277 " [bi->dma ] leng ntw timestamp bi->skb "
278 "<-- Ext Data format\n");
279 for (i
= 0; tx_ring
->desc
&& (i
< tx_ring
->count
); i
++) {
280 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
281 buffer_info
= &tx_ring
->buffer_info
[i
];
282 u0
= (struct my_u0
*)tx_desc
;
283 printk(KERN_INFO
"T%c[0x%03X] %016llX %016llX %016llX "
284 "%04X %3X %016llX %p",
285 (!(le64_to_cpu(u0
->b
) & (1 << 29)) ? 'l' :
286 ((le64_to_cpu(u0
->b
) & (1 << 20)) ? 'd' : 'c')), i
,
287 (unsigned long long)le64_to_cpu(u0
->a
),
288 (unsigned long long)le64_to_cpu(u0
->b
),
289 (unsigned long long)buffer_info
->dma
,
290 buffer_info
->length
, buffer_info
->next_to_watch
,
291 (unsigned long long)buffer_info
->time_stamp
,
293 if (i
== tx_ring
->next_to_use
&& i
== tx_ring
->next_to_clean
)
294 printk(KERN_CONT
" NTC/U\n");
295 else if (i
== tx_ring
->next_to_use
)
296 printk(KERN_CONT
" NTU\n");
297 else if (i
== tx_ring
->next_to_clean
)
298 printk(KERN_CONT
" NTC\n");
300 printk(KERN_CONT
"\n");
302 if (netif_msg_pktdata(adapter
) && buffer_info
->dma
!= 0)
303 print_hex_dump(KERN_INFO
, "", DUMP_PREFIX_ADDRESS
,
304 16, 1, phys_to_virt(buffer_info
->dma
),
305 buffer_info
->length
, true);
308 /* Print Rx Ring Summary */
310 dev_info(&adapter
->pdev
->dev
, "Rx Ring Summary\n");
311 printk(KERN_INFO
"Queue [NTU] [NTC]\n");
312 printk(KERN_INFO
" %5d %5X %5X\n", 0,
313 rx_ring
->next_to_use
, rx_ring
->next_to_clean
);
316 if (!netif_msg_rx_status(adapter
))
319 dev_info(&adapter
->pdev
->dev
, "Rx Ring Dump\n");
320 switch (adapter
->rx_ps_pages
) {
324 /* [Extended] Packet Split Receive Descriptor Format
326 * +-----------------------------------------------------+
327 * 0 | Buffer Address 0 [63:0] |
328 * +-----------------------------------------------------+
329 * 8 | Buffer Address 1 [63:0] |
330 * +-----------------------------------------------------+
331 * 16 | Buffer Address 2 [63:0] |
332 * +-----------------------------------------------------+
333 * 24 | Buffer Address 3 [63:0] |
334 * +-----------------------------------------------------+
336 printk(KERN_INFO
"R [desc] [buffer 0 63:0 ] "
338 "[buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma ] "
339 "[bi->skb] <-- Ext Pkt Split format\n");
340 /* [Extended] Receive Descriptor (Write-Back) Format
342 * 63 48 47 32 31 13 12 8 7 4 3 0
343 * +------------------------------------------------------+
344 * 0 | Packet | IP | Rsvd | MRQ | Rsvd | MRQ RSS |
345 * | Checksum | Ident | | Queue | | Type |
346 * +------------------------------------------------------+
347 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
348 * +------------------------------------------------------+
349 * 63 48 47 32 31 20 19 0
351 printk(KERN_INFO
"RWB[desc] [ck ipid mrqhsh] "
353 "[ l3 l2 l1 hs] [reserved ] ---------------- "
354 "[bi->skb] <-- Ext Rx Write-Back format\n");
355 for (i
= 0; i
< rx_ring
->count
; i
++) {
356 buffer_info
= &rx_ring
->buffer_info
[i
];
357 rx_desc_ps
= E1000_RX_DESC_PS(*rx_ring
, i
);
358 u1
= (struct my_u1
*)rx_desc_ps
;
360 le32_to_cpu(rx_desc_ps
->wb
.middle
.status_error
);
361 if (staterr
& E1000_RXD_STAT_DD
) {
362 /* Descriptor Done */
363 printk(KERN_INFO
"RWB[0x%03X] %016llX "
364 "%016llX %016llX %016llX "
365 "---------------- %p", i
,
366 (unsigned long long)le64_to_cpu(u1
->a
),
367 (unsigned long long)le64_to_cpu(u1
->b
),
368 (unsigned long long)le64_to_cpu(u1
->c
),
369 (unsigned long long)le64_to_cpu(u1
->d
),
372 printk(KERN_INFO
"R [0x%03X] %016llX "
373 "%016llX %016llX %016llX %016llX %p", i
,
374 (unsigned long long)le64_to_cpu(u1
->a
),
375 (unsigned long long)le64_to_cpu(u1
->b
),
376 (unsigned long long)le64_to_cpu(u1
->c
),
377 (unsigned long long)le64_to_cpu(u1
->d
),
378 (unsigned long long)buffer_info
->dma
,
381 if (netif_msg_pktdata(adapter
))
382 print_hex_dump(KERN_INFO
, "",
383 DUMP_PREFIX_ADDRESS
, 16, 1,
384 phys_to_virt(buffer_info
->dma
),
385 adapter
->rx_ps_bsize0
, true);
388 if (i
== rx_ring
->next_to_use
)
389 printk(KERN_CONT
" NTU\n");
390 else if (i
== rx_ring
->next_to_clean
)
391 printk(KERN_CONT
" NTC\n");
393 printk(KERN_CONT
"\n");
398 /* Legacy Receive Descriptor Format
400 * +-----------------------------------------------------+
401 * | Buffer Address [63:0] |
402 * +-----------------------------------------------------+
403 * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
404 * +-----------------------------------------------------+
405 * 63 48 47 40 39 32 31 16 15 0
407 printk(KERN_INFO
"Rl[desc] [address 63:0 ] "
408 "[vl er S cks ln] [bi->dma ] [bi->skb] "
409 "<-- Legacy format\n");
410 for (i
= 0; rx_ring
->desc
&& (i
< rx_ring
->count
); i
++) {
411 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
412 buffer_info
= &rx_ring
->buffer_info
[i
];
413 u0
= (struct my_u0
*)rx_desc
;
414 printk(KERN_INFO
"Rl[0x%03X] %016llX %016llX "
416 (unsigned long long)le64_to_cpu(u0
->a
),
417 (unsigned long long)le64_to_cpu(u0
->b
),
418 (unsigned long long)buffer_info
->dma
,
420 if (i
== rx_ring
->next_to_use
)
421 printk(KERN_CONT
" NTU\n");
422 else if (i
== rx_ring
->next_to_clean
)
423 printk(KERN_CONT
" NTC\n");
425 printk(KERN_CONT
"\n");
427 if (netif_msg_pktdata(adapter
))
428 print_hex_dump(KERN_INFO
, "",
431 phys_to_virt(buffer_info
->dma
),
432 adapter
->rx_buffer_len
, true);
441 * e1000_desc_unused - calculate if we have unused descriptors
443 static int e1000_desc_unused(struct e1000_ring
*ring
)
445 if (ring
->next_to_clean
> ring
->next_to_use
)
446 return ring
->next_to_clean
- ring
->next_to_use
- 1;
448 return ring
->count
+ ring
->next_to_clean
- ring
->next_to_use
- 1;
452 * e1000_receive_skb - helper function to handle Rx indications
453 * @adapter: board private structure
454 * @status: descriptor status field as written by hardware
455 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
456 * @skb: pointer to sk_buff to be indicated to stack
458 static void e1000_receive_skb(struct e1000_adapter
*adapter
,
459 struct net_device
*netdev
, struct sk_buff
*skb
,
460 u8 status
, __le16 vlan
)
462 skb
->protocol
= eth_type_trans(skb
, netdev
);
464 if (adapter
->vlgrp
&& (status
& E1000_RXD_STAT_VP
))
465 vlan_gro_receive(&adapter
->napi
, adapter
->vlgrp
,
466 le16_to_cpu(vlan
), skb
);
468 napi_gro_receive(&adapter
->napi
, skb
);
472 * e1000_rx_checksum - Receive Checksum Offload
473 * @adapter: board private structure
474 * @status_err: receive descriptor status and error fields
475 * @csum: receive descriptor csum field
476 * @sk_buff: socket buffer with received data
478 static void e1000_rx_checksum(struct e1000_adapter
*adapter
, u32 status_err
,
479 u32 csum
, struct sk_buff
*skb
)
481 u16 status
= (u16
)status_err
;
482 u8 errors
= (u8
)(status_err
>> 24);
484 skb_checksum_none_assert(skb
);
486 /* Ignore Checksum bit is set */
487 if (status
& E1000_RXD_STAT_IXSM
)
489 /* TCP/UDP checksum error bit is set */
490 if (errors
& E1000_RXD_ERR_TCPE
) {
491 /* let the stack verify checksum errors */
492 adapter
->hw_csum_err
++;
496 /* TCP/UDP Checksum has not been calculated */
497 if (!(status
& (E1000_RXD_STAT_TCPCS
| E1000_RXD_STAT_UDPCS
)))
500 /* It must be a TCP or UDP packet with a valid checksum */
501 if (status
& E1000_RXD_STAT_TCPCS
) {
502 /* TCP checksum is good */
503 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
506 * IP fragment with UDP payload
507 * Hardware complements the payload checksum, so we undo it
508 * and then put the value in host order for further stack use.
510 __sum16 sum
= (__force __sum16
)htons(csum
);
511 skb
->csum
= csum_unfold(~sum
);
512 skb
->ip_summed
= CHECKSUM_COMPLETE
;
514 adapter
->hw_csum_good
++;
518 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
519 * @adapter: address of board private structure
521 static void e1000_alloc_rx_buffers(struct e1000_adapter
*adapter
,
524 struct net_device
*netdev
= adapter
->netdev
;
525 struct pci_dev
*pdev
= adapter
->pdev
;
526 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
527 struct e1000_rx_desc
*rx_desc
;
528 struct e1000_buffer
*buffer_info
;
531 unsigned int bufsz
= adapter
->rx_buffer_len
;
533 i
= rx_ring
->next_to_use
;
534 buffer_info
= &rx_ring
->buffer_info
[i
];
536 while (cleaned_count
--) {
537 skb
= buffer_info
->skb
;
543 skb
= netdev_alloc_skb_ip_align(netdev
, bufsz
);
545 /* Better luck next round */
546 adapter
->alloc_rx_buff_failed
++;
550 buffer_info
->skb
= skb
;
552 buffer_info
->dma
= dma_map_single(&pdev
->dev
, skb
->data
,
553 adapter
->rx_buffer_len
,
555 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
)) {
556 dev_err(&pdev
->dev
, "Rx DMA map failed\n");
557 adapter
->rx_dma_failed
++;
561 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
562 rx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
564 if (unlikely(!(i
& (E1000_RX_BUFFER_WRITE
- 1)))) {
566 * Force memory writes to complete before letting h/w
567 * know there are new descriptors to fetch. (Only
568 * applicable for weak-ordered memory model archs,
572 writel(i
, adapter
->hw
.hw_addr
+ rx_ring
->tail
);
575 if (i
== rx_ring
->count
)
577 buffer_info
= &rx_ring
->buffer_info
[i
];
580 rx_ring
->next_to_use
= i
;
584 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
585 * @adapter: address of board private structure
587 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter
*adapter
,
590 struct net_device
*netdev
= adapter
->netdev
;
591 struct pci_dev
*pdev
= adapter
->pdev
;
592 union e1000_rx_desc_packet_split
*rx_desc
;
593 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
594 struct e1000_buffer
*buffer_info
;
595 struct e1000_ps_page
*ps_page
;
599 i
= rx_ring
->next_to_use
;
600 buffer_info
= &rx_ring
->buffer_info
[i
];
602 while (cleaned_count
--) {
603 rx_desc
= E1000_RX_DESC_PS(*rx_ring
, i
);
605 for (j
= 0; j
< PS_PAGE_BUFFERS
; j
++) {
606 ps_page
= &buffer_info
->ps_pages
[j
];
607 if (j
>= adapter
->rx_ps_pages
) {
608 /* all unused desc entries get hw null ptr */
609 rx_desc
->read
.buffer_addr
[j
+ 1] =
613 if (!ps_page
->page
) {
614 ps_page
->page
= alloc_page(GFP_ATOMIC
);
615 if (!ps_page
->page
) {
616 adapter
->alloc_rx_buff_failed
++;
619 ps_page
->dma
= dma_map_page(&pdev
->dev
,
623 if (dma_mapping_error(&pdev
->dev
,
625 dev_err(&adapter
->pdev
->dev
,
626 "Rx DMA page map failed\n");
627 adapter
->rx_dma_failed
++;
632 * Refresh the desc even if buffer_addrs
633 * didn't change because each write-back
636 rx_desc
->read
.buffer_addr
[j
+ 1] =
637 cpu_to_le64(ps_page
->dma
);
640 skb
= netdev_alloc_skb_ip_align(netdev
,
641 adapter
->rx_ps_bsize0
);
644 adapter
->alloc_rx_buff_failed
++;
648 buffer_info
->skb
= skb
;
649 buffer_info
->dma
= dma_map_single(&pdev
->dev
, skb
->data
,
650 adapter
->rx_ps_bsize0
,
652 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
)) {
653 dev_err(&pdev
->dev
, "Rx DMA map failed\n");
654 adapter
->rx_dma_failed
++;
656 dev_kfree_skb_any(skb
);
657 buffer_info
->skb
= NULL
;
661 rx_desc
->read
.buffer_addr
[0] = cpu_to_le64(buffer_info
->dma
);
663 if (unlikely(!(i
& (E1000_RX_BUFFER_WRITE
- 1)))) {
665 * Force memory writes to complete before letting h/w
666 * know there are new descriptors to fetch. (Only
667 * applicable for weak-ordered memory model archs,
671 writel(i
<< 1, adapter
->hw
.hw_addr
+ rx_ring
->tail
);
675 if (i
== rx_ring
->count
)
677 buffer_info
= &rx_ring
->buffer_info
[i
];
681 rx_ring
->next_to_use
= i
;
685 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
686 * @adapter: address of board private structure
687 * @cleaned_count: number of buffers to allocate this pass
690 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter
*adapter
,
693 struct net_device
*netdev
= adapter
->netdev
;
694 struct pci_dev
*pdev
= adapter
->pdev
;
695 struct e1000_rx_desc
*rx_desc
;
696 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
697 struct e1000_buffer
*buffer_info
;
700 unsigned int bufsz
= 256 - 16 /* for skb_reserve */;
702 i
= rx_ring
->next_to_use
;
703 buffer_info
= &rx_ring
->buffer_info
[i
];
705 while (cleaned_count
--) {
706 skb
= buffer_info
->skb
;
712 skb
= netdev_alloc_skb_ip_align(netdev
, bufsz
);
713 if (unlikely(!skb
)) {
714 /* Better luck next round */
715 adapter
->alloc_rx_buff_failed
++;
719 buffer_info
->skb
= skb
;
721 /* allocate a new page if necessary */
722 if (!buffer_info
->page
) {
723 buffer_info
->page
= alloc_page(GFP_ATOMIC
);
724 if (unlikely(!buffer_info
->page
)) {
725 adapter
->alloc_rx_buff_failed
++;
730 if (!buffer_info
->dma
)
731 buffer_info
->dma
= dma_map_page(&pdev
->dev
,
732 buffer_info
->page
, 0,
736 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
737 rx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
739 if (unlikely(++i
== rx_ring
->count
))
741 buffer_info
= &rx_ring
->buffer_info
[i
];
744 if (likely(rx_ring
->next_to_use
!= i
)) {
745 rx_ring
->next_to_use
= i
;
746 if (unlikely(i
-- == 0))
747 i
= (rx_ring
->count
- 1);
749 /* Force memory writes to complete before letting h/w
750 * know there are new descriptors to fetch. (Only
751 * applicable for weak-ordered memory model archs,
754 writel(i
, adapter
->hw
.hw_addr
+ rx_ring
->tail
);
759 * e1000_clean_rx_irq - Send received data up the network stack; legacy
760 * @adapter: board private structure
762 * the return value indicates whether actual cleaning was done, there
763 * is no guarantee that everything was cleaned
765 static bool e1000_clean_rx_irq(struct e1000_adapter
*adapter
,
766 int *work_done
, int work_to_do
)
768 struct net_device
*netdev
= adapter
->netdev
;
769 struct pci_dev
*pdev
= adapter
->pdev
;
770 struct e1000_hw
*hw
= &adapter
->hw
;
771 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
772 struct e1000_rx_desc
*rx_desc
, *next_rxd
;
773 struct e1000_buffer
*buffer_info
, *next_buffer
;
776 int cleaned_count
= 0;
778 unsigned int total_rx_bytes
= 0, total_rx_packets
= 0;
780 i
= rx_ring
->next_to_clean
;
781 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
782 buffer_info
= &rx_ring
->buffer_info
[i
];
784 while (rx_desc
->status
& E1000_RXD_STAT_DD
) {
788 if (*work_done
>= work_to_do
)
791 rmb(); /* read descriptor and rx_buffer_info after status DD */
793 status
= rx_desc
->status
;
794 skb
= buffer_info
->skb
;
795 buffer_info
->skb
= NULL
;
797 prefetch(skb
->data
- NET_IP_ALIGN
);
800 if (i
== rx_ring
->count
)
802 next_rxd
= E1000_RX_DESC(*rx_ring
, i
);
805 next_buffer
= &rx_ring
->buffer_info
[i
];
809 dma_unmap_single(&pdev
->dev
,
811 adapter
->rx_buffer_len
,
813 buffer_info
->dma
= 0;
815 length
= le16_to_cpu(rx_desc
->length
);
818 * !EOP means multiple descriptors were used to store a single
819 * packet, if that's the case we need to toss it. In fact, we
820 * need to toss every packet with the EOP bit clear and the
821 * next frame that _does_ have the EOP bit set, as it is by
822 * definition only a frame fragment
824 if (unlikely(!(status
& E1000_RXD_STAT_EOP
)))
825 adapter
->flags2
|= FLAG2_IS_DISCARDING
;
827 if (adapter
->flags2
& FLAG2_IS_DISCARDING
) {
828 /* All receives must fit into a single buffer */
829 e_dbg("Receive packet consumed multiple buffers\n");
831 buffer_info
->skb
= skb
;
832 if (status
& E1000_RXD_STAT_EOP
)
833 adapter
->flags2
&= ~FLAG2_IS_DISCARDING
;
837 if (rx_desc
->errors
& E1000_RXD_ERR_FRAME_ERR_MASK
) {
839 buffer_info
->skb
= skb
;
843 /* adjust length to remove Ethernet CRC */
844 if (!(adapter
->flags2
& FLAG2_CRC_STRIPPING
))
847 total_rx_bytes
+= length
;
851 * code added for copybreak, this should improve
852 * performance for small packets with large amounts
853 * of reassembly being done in the stack
855 if (length
< copybreak
) {
856 struct sk_buff
*new_skb
=
857 netdev_alloc_skb_ip_align(netdev
, length
);
859 skb_copy_to_linear_data_offset(new_skb
,
865 /* save the skb in buffer_info as good */
866 buffer_info
->skb
= skb
;
869 /* else just continue with the old one */
871 /* end copybreak code */
872 skb_put(skb
, length
);
874 /* Receive Checksum Offload */
875 e1000_rx_checksum(adapter
,
877 ((u32
)(rx_desc
->errors
) << 24),
878 le16_to_cpu(rx_desc
->csum
), skb
);
880 e1000_receive_skb(adapter
, netdev
, skb
,status
,rx_desc
->special
);
885 /* return some buffers to hardware, one at a time is too slow */
886 if (cleaned_count
>= E1000_RX_BUFFER_WRITE
) {
887 adapter
->alloc_rx_buf(adapter
, cleaned_count
);
891 /* use prefetched values */
893 buffer_info
= next_buffer
;
895 rx_ring
->next_to_clean
= i
;
897 cleaned_count
= e1000_desc_unused(rx_ring
);
899 adapter
->alloc_rx_buf(adapter
, cleaned_count
);
901 adapter
->total_rx_bytes
+= total_rx_bytes
;
902 adapter
->total_rx_packets
+= total_rx_packets
;
906 static void e1000_put_txbuf(struct e1000_adapter
*adapter
,
907 struct e1000_buffer
*buffer_info
)
909 if (buffer_info
->dma
) {
910 if (buffer_info
->mapped_as_page
)
911 dma_unmap_page(&adapter
->pdev
->dev
, buffer_info
->dma
,
912 buffer_info
->length
, DMA_TO_DEVICE
);
914 dma_unmap_single(&adapter
->pdev
->dev
, buffer_info
->dma
,
915 buffer_info
->length
, DMA_TO_DEVICE
);
916 buffer_info
->dma
= 0;
918 if (buffer_info
->skb
) {
919 dev_kfree_skb_any(buffer_info
->skb
);
920 buffer_info
->skb
= NULL
;
922 buffer_info
->time_stamp
= 0;
925 static void e1000_print_hw_hang(struct work_struct
*work
)
927 struct e1000_adapter
*adapter
= container_of(work
,
928 struct e1000_adapter
,
930 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
931 unsigned int i
= tx_ring
->next_to_clean
;
932 unsigned int eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
933 struct e1000_tx_desc
*eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
934 struct e1000_hw
*hw
= &adapter
->hw
;
935 u16 phy_status
, phy_1000t_status
, phy_ext_status
;
938 if (test_bit(__E1000_DOWN
, &adapter
->state
))
941 e1e_rphy(hw
, PHY_STATUS
, &phy_status
);
942 e1e_rphy(hw
, PHY_1000T_STATUS
, &phy_1000t_status
);
943 e1e_rphy(hw
, PHY_EXT_STATUS
, &phy_ext_status
);
945 pci_read_config_word(adapter
->pdev
, PCI_STATUS
, &pci_status
);
947 /* detected Hardware unit hang */
948 e_err("Detected Hardware Unit Hang:\n"
951 " next_to_use <%x>\n"
952 " next_to_clean <%x>\n"
953 "buffer_info[next_to_clean]:\n"
954 " time_stamp <%lx>\n"
955 " next_to_watch <%x>\n"
957 " next_to_watch.status <%x>\n"
960 "PHY 1000BASE-T Status <%x>\n"
961 "PHY Extended Status <%x>\n"
963 readl(adapter
->hw
.hw_addr
+ tx_ring
->head
),
964 readl(adapter
->hw
.hw_addr
+ tx_ring
->tail
),
965 tx_ring
->next_to_use
,
966 tx_ring
->next_to_clean
,
967 tx_ring
->buffer_info
[eop
].time_stamp
,
970 eop_desc
->upper
.fields
.status
,
979 * e1000_clean_tx_irq - Reclaim resources after transmit completes
980 * @adapter: board private structure
982 * the return value indicates whether actual cleaning was done, there
983 * is no guarantee that everything was cleaned
985 static bool e1000_clean_tx_irq(struct e1000_adapter
*adapter
)
987 struct net_device
*netdev
= adapter
->netdev
;
988 struct e1000_hw
*hw
= &adapter
->hw
;
989 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
990 struct e1000_tx_desc
*tx_desc
, *eop_desc
;
991 struct e1000_buffer
*buffer_info
;
993 unsigned int count
= 0;
994 unsigned int total_tx_bytes
= 0, total_tx_packets
= 0;
996 i
= tx_ring
->next_to_clean
;
997 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
998 eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
1000 while ((eop_desc
->upper
.data
& cpu_to_le32(E1000_TXD_STAT_DD
)) &&
1001 (count
< tx_ring
->count
)) {
1002 bool cleaned
= false;
1003 rmb(); /* read buffer_info after eop_desc */
1004 for (; !cleaned
; count
++) {
1005 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
1006 buffer_info
= &tx_ring
->buffer_info
[i
];
1007 cleaned
= (i
== eop
);
1010 total_tx_packets
+= buffer_info
->segs
;
1011 total_tx_bytes
+= buffer_info
->bytecount
;
1014 e1000_put_txbuf(adapter
, buffer_info
);
1015 tx_desc
->upper
.data
= 0;
1018 if (i
== tx_ring
->count
)
1022 if (i
== tx_ring
->next_to_use
)
1024 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
1025 eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
1028 tx_ring
->next_to_clean
= i
;
1030 #define TX_WAKE_THRESHOLD 32
1031 if (count
&& netif_carrier_ok(netdev
) &&
1032 e1000_desc_unused(tx_ring
) >= TX_WAKE_THRESHOLD
) {
1033 /* Make sure that anybody stopping the queue after this
1034 * sees the new next_to_clean.
1038 if (netif_queue_stopped(netdev
) &&
1039 !(test_bit(__E1000_DOWN
, &adapter
->state
))) {
1040 netif_wake_queue(netdev
);
1041 ++adapter
->restart_queue
;
1045 if (adapter
->detect_tx_hung
) {
1047 * Detect a transmit hang in hardware, this serializes the
1048 * check with the clearing of time_stamp and movement of i
1050 adapter
->detect_tx_hung
= 0;
1051 if (tx_ring
->buffer_info
[i
].time_stamp
&&
1052 time_after(jiffies
, tx_ring
->buffer_info
[i
].time_stamp
1053 + (adapter
->tx_timeout_factor
* HZ
)) &&
1054 !(er32(STATUS
) & E1000_STATUS_TXOFF
)) {
1055 schedule_work(&adapter
->print_hang_task
);
1056 netif_stop_queue(netdev
);
1059 adapter
->total_tx_bytes
+= total_tx_bytes
;
1060 adapter
->total_tx_packets
+= total_tx_packets
;
1061 return count
< tx_ring
->count
;
1065 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1066 * @adapter: board private structure
1068 * the return value indicates whether actual cleaning was done, there
1069 * is no guarantee that everything was cleaned
1071 static bool e1000_clean_rx_irq_ps(struct e1000_adapter
*adapter
,
1072 int *work_done
, int work_to_do
)
1074 struct e1000_hw
*hw
= &adapter
->hw
;
1075 union e1000_rx_desc_packet_split
*rx_desc
, *next_rxd
;
1076 struct net_device
*netdev
= adapter
->netdev
;
1077 struct pci_dev
*pdev
= adapter
->pdev
;
1078 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
1079 struct e1000_buffer
*buffer_info
, *next_buffer
;
1080 struct e1000_ps_page
*ps_page
;
1081 struct sk_buff
*skb
;
1083 u32 length
, staterr
;
1084 int cleaned_count
= 0;
1086 unsigned int total_rx_bytes
= 0, total_rx_packets
= 0;
1088 i
= rx_ring
->next_to_clean
;
1089 rx_desc
= E1000_RX_DESC_PS(*rx_ring
, i
);
1090 staterr
= le32_to_cpu(rx_desc
->wb
.middle
.status_error
);
1091 buffer_info
= &rx_ring
->buffer_info
[i
];
1093 while (staterr
& E1000_RXD_STAT_DD
) {
1094 if (*work_done
>= work_to_do
)
1097 skb
= buffer_info
->skb
;
1098 rmb(); /* read descriptor and rx_buffer_info after status DD */
1100 /* in the packet split case this is header only */
1101 prefetch(skb
->data
- NET_IP_ALIGN
);
1104 if (i
== rx_ring
->count
)
1106 next_rxd
= E1000_RX_DESC_PS(*rx_ring
, i
);
1109 next_buffer
= &rx_ring
->buffer_info
[i
];
1113 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
1114 adapter
->rx_ps_bsize0
, DMA_FROM_DEVICE
);
1115 buffer_info
->dma
= 0;
1117 /* see !EOP comment in other Rx routine */
1118 if (!(staterr
& E1000_RXD_STAT_EOP
))
1119 adapter
->flags2
|= FLAG2_IS_DISCARDING
;
1121 if (adapter
->flags2
& FLAG2_IS_DISCARDING
) {
1122 e_dbg("Packet Split buffers didn't pick up the full "
1124 dev_kfree_skb_irq(skb
);
1125 if (staterr
& E1000_RXD_STAT_EOP
)
1126 adapter
->flags2
&= ~FLAG2_IS_DISCARDING
;
1130 if (staterr
& E1000_RXDEXT_ERR_FRAME_ERR_MASK
) {
1131 dev_kfree_skb_irq(skb
);
1135 length
= le16_to_cpu(rx_desc
->wb
.middle
.length0
);
1138 e_dbg("Last part of the packet spanning multiple "
1140 dev_kfree_skb_irq(skb
);
1145 skb_put(skb
, length
);
1149 * this looks ugly, but it seems compiler issues make it
1150 * more efficient than reusing j
1152 int l1
= le16_to_cpu(rx_desc
->wb
.upper
.length
[0]);
1155 * page alloc/put takes too long and effects small packet
1156 * throughput, so unsplit small packets and save the alloc/put
1157 * only valid in softirq (napi) context to call kmap_*
1159 if (l1
&& (l1
<= copybreak
) &&
1160 ((length
+ l1
) <= adapter
->rx_ps_bsize0
)) {
1163 ps_page
= &buffer_info
->ps_pages
[0];
1166 * there is no documentation about how to call
1167 * kmap_atomic, so we can't hold the mapping
1170 dma_sync_single_for_cpu(&pdev
->dev
, ps_page
->dma
,
1171 PAGE_SIZE
, DMA_FROM_DEVICE
);
1172 vaddr
= kmap_atomic(ps_page
->page
, KM_SKB_DATA_SOFTIRQ
);
1173 memcpy(skb_tail_pointer(skb
), vaddr
, l1
);
1174 kunmap_atomic(vaddr
, KM_SKB_DATA_SOFTIRQ
);
1175 dma_sync_single_for_device(&pdev
->dev
, ps_page
->dma
,
1176 PAGE_SIZE
, DMA_FROM_DEVICE
);
1178 /* remove the CRC */
1179 if (!(adapter
->flags2
& FLAG2_CRC_STRIPPING
))
1187 for (j
= 0; j
< PS_PAGE_BUFFERS
; j
++) {
1188 length
= le16_to_cpu(rx_desc
->wb
.upper
.length
[j
]);
1192 ps_page
= &buffer_info
->ps_pages
[j
];
1193 dma_unmap_page(&pdev
->dev
, ps_page
->dma
, PAGE_SIZE
,
1196 skb_fill_page_desc(skb
, j
, ps_page
->page
, 0, length
);
1197 ps_page
->page
= NULL
;
1199 skb
->data_len
+= length
;
1200 skb
->truesize
+= length
;
1203 /* strip the ethernet crc, problem is we're using pages now so
1204 * this whole operation can get a little cpu intensive
1206 if (!(adapter
->flags2
& FLAG2_CRC_STRIPPING
))
1207 pskb_trim(skb
, skb
->len
- 4);
1210 total_rx_bytes
+= skb
->len
;
1213 e1000_rx_checksum(adapter
, staterr
, le16_to_cpu(
1214 rx_desc
->wb
.lower
.hi_dword
.csum_ip
.csum
), skb
);
1216 if (rx_desc
->wb
.upper
.header_status
&
1217 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP
))
1218 adapter
->rx_hdr_split
++;
1220 e1000_receive_skb(adapter
, netdev
, skb
,
1221 staterr
, rx_desc
->wb
.middle
.vlan
);
1224 rx_desc
->wb
.middle
.status_error
&= cpu_to_le32(~0xFF);
1225 buffer_info
->skb
= NULL
;
1227 /* return some buffers to hardware, one at a time is too slow */
1228 if (cleaned_count
>= E1000_RX_BUFFER_WRITE
) {
1229 adapter
->alloc_rx_buf(adapter
, cleaned_count
);
1233 /* use prefetched values */
1235 buffer_info
= next_buffer
;
1237 staterr
= le32_to_cpu(rx_desc
->wb
.middle
.status_error
);
1239 rx_ring
->next_to_clean
= i
;
1241 cleaned_count
= e1000_desc_unused(rx_ring
);
1243 adapter
->alloc_rx_buf(adapter
, cleaned_count
);
1245 adapter
->total_rx_bytes
+= total_rx_bytes
;
1246 adapter
->total_rx_packets
+= total_rx_packets
;
1251 * e1000_consume_page - helper function
1253 static void e1000_consume_page(struct e1000_buffer
*bi
, struct sk_buff
*skb
,
1258 skb
->data_len
+= length
;
1259 skb
->truesize
+= length
;
1263 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1264 * @adapter: board private structure
1266 * the return value indicates whether actual cleaning was done, there
1267 * is no guarantee that everything was cleaned
1270 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter
*adapter
,
1271 int *work_done
, int work_to_do
)
1273 struct net_device
*netdev
= adapter
->netdev
;
1274 struct pci_dev
*pdev
= adapter
->pdev
;
1275 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
1276 struct e1000_rx_desc
*rx_desc
, *next_rxd
;
1277 struct e1000_buffer
*buffer_info
, *next_buffer
;
1280 int cleaned_count
= 0;
1281 bool cleaned
= false;
1282 unsigned int total_rx_bytes
=0, total_rx_packets
=0;
1284 i
= rx_ring
->next_to_clean
;
1285 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
1286 buffer_info
= &rx_ring
->buffer_info
[i
];
1288 while (rx_desc
->status
& E1000_RXD_STAT_DD
) {
1289 struct sk_buff
*skb
;
1292 if (*work_done
>= work_to_do
)
1295 rmb(); /* read descriptor and rx_buffer_info after status DD */
1297 status
= rx_desc
->status
;
1298 skb
= buffer_info
->skb
;
1299 buffer_info
->skb
= NULL
;
1302 if (i
== rx_ring
->count
)
1304 next_rxd
= E1000_RX_DESC(*rx_ring
, i
);
1307 next_buffer
= &rx_ring
->buffer_info
[i
];
1311 dma_unmap_page(&pdev
->dev
, buffer_info
->dma
, PAGE_SIZE
,
1313 buffer_info
->dma
= 0;
1315 length
= le16_to_cpu(rx_desc
->length
);
1317 /* errors is only valid for DD + EOP descriptors */
1318 if (unlikely((status
& E1000_RXD_STAT_EOP
) &&
1319 (rx_desc
->errors
& E1000_RXD_ERR_FRAME_ERR_MASK
))) {
1320 /* recycle both page and skb */
1321 buffer_info
->skb
= skb
;
1322 /* an error means any chain goes out the window
1324 if (rx_ring
->rx_skb_top
)
1325 dev_kfree_skb_irq(rx_ring
->rx_skb_top
);
1326 rx_ring
->rx_skb_top
= NULL
;
1330 #define rxtop (rx_ring->rx_skb_top)
1331 if (!(status
& E1000_RXD_STAT_EOP
)) {
1332 /* this descriptor is only the beginning (or middle) */
1334 /* this is the beginning of a chain */
1336 skb_fill_page_desc(rxtop
, 0, buffer_info
->page
,
1339 /* this is the middle of a chain */
1340 skb_fill_page_desc(rxtop
,
1341 skb_shinfo(rxtop
)->nr_frags
,
1342 buffer_info
->page
, 0, length
);
1343 /* re-use the skb, only consumed the page */
1344 buffer_info
->skb
= skb
;
1346 e1000_consume_page(buffer_info
, rxtop
, length
);
1350 /* end of the chain */
1351 skb_fill_page_desc(rxtop
,
1352 skb_shinfo(rxtop
)->nr_frags
,
1353 buffer_info
->page
, 0, length
);
1354 /* re-use the current skb, we only consumed the
1356 buffer_info
->skb
= skb
;
1359 e1000_consume_page(buffer_info
, skb
, length
);
1361 /* no chain, got EOP, this buf is the packet
1362 * copybreak to save the put_page/alloc_page */
1363 if (length
<= copybreak
&&
1364 skb_tailroom(skb
) >= length
) {
1366 vaddr
= kmap_atomic(buffer_info
->page
,
1367 KM_SKB_DATA_SOFTIRQ
);
1368 memcpy(skb_tail_pointer(skb
), vaddr
,
1370 kunmap_atomic(vaddr
,
1371 KM_SKB_DATA_SOFTIRQ
);
1372 /* re-use the page, so don't erase
1373 * buffer_info->page */
1374 skb_put(skb
, length
);
1376 skb_fill_page_desc(skb
, 0,
1377 buffer_info
->page
, 0,
1379 e1000_consume_page(buffer_info
, skb
,
1385 /* Receive Checksum Offload XXX recompute due to CRC strip? */
1386 e1000_rx_checksum(adapter
,
1388 ((u32
)(rx_desc
->errors
) << 24),
1389 le16_to_cpu(rx_desc
->csum
), skb
);
1391 /* probably a little skewed due to removing CRC */
1392 total_rx_bytes
+= skb
->len
;
1395 /* eth type trans needs skb->data to point to something */
1396 if (!pskb_may_pull(skb
, ETH_HLEN
)) {
1397 e_err("pskb_may_pull failed.\n");
1398 dev_kfree_skb_irq(skb
);
1402 e1000_receive_skb(adapter
, netdev
, skb
, status
,
1406 rx_desc
->status
= 0;
1408 /* return some buffers to hardware, one at a time is too slow */
1409 if (unlikely(cleaned_count
>= E1000_RX_BUFFER_WRITE
)) {
1410 adapter
->alloc_rx_buf(adapter
, cleaned_count
);
1414 /* use prefetched values */
1416 buffer_info
= next_buffer
;
1418 rx_ring
->next_to_clean
= i
;
1420 cleaned_count
= e1000_desc_unused(rx_ring
);
1422 adapter
->alloc_rx_buf(adapter
, cleaned_count
);
1424 adapter
->total_rx_bytes
+= total_rx_bytes
;
1425 adapter
->total_rx_packets
+= total_rx_packets
;
1430 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1431 * @adapter: board private structure
1433 static void e1000_clean_rx_ring(struct e1000_adapter
*adapter
)
1435 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
1436 struct e1000_buffer
*buffer_info
;
1437 struct e1000_ps_page
*ps_page
;
1438 struct pci_dev
*pdev
= adapter
->pdev
;
1441 /* Free all the Rx ring sk_buffs */
1442 for (i
= 0; i
< rx_ring
->count
; i
++) {
1443 buffer_info
= &rx_ring
->buffer_info
[i
];
1444 if (buffer_info
->dma
) {
1445 if (adapter
->clean_rx
== e1000_clean_rx_irq
)
1446 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
1447 adapter
->rx_buffer_len
,
1449 else if (adapter
->clean_rx
== e1000_clean_jumbo_rx_irq
)
1450 dma_unmap_page(&pdev
->dev
, buffer_info
->dma
,
1453 else if (adapter
->clean_rx
== e1000_clean_rx_irq_ps
)
1454 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
1455 adapter
->rx_ps_bsize0
,
1457 buffer_info
->dma
= 0;
1460 if (buffer_info
->page
) {
1461 put_page(buffer_info
->page
);
1462 buffer_info
->page
= NULL
;
1465 if (buffer_info
->skb
) {
1466 dev_kfree_skb(buffer_info
->skb
);
1467 buffer_info
->skb
= NULL
;
1470 for (j
= 0; j
< PS_PAGE_BUFFERS
; j
++) {
1471 ps_page
= &buffer_info
->ps_pages
[j
];
1474 dma_unmap_page(&pdev
->dev
, ps_page
->dma
, PAGE_SIZE
,
1477 put_page(ps_page
->page
);
1478 ps_page
->page
= NULL
;
1482 /* there also may be some cached data from a chained receive */
1483 if (rx_ring
->rx_skb_top
) {
1484 dev_kfree_skb(rx_ring
->rx_skb_top
);
1485 rx_ring
->rx_skb_top
= NULL
;
1488 /* Zero out the descriptor ring */
1489 memset(rx_ring
->desc
, 0, rx_ring
->size
);
1491 rx_ring
->next_to_clean
= 0;
1492 rx_ring
->next_to_use
= 0;
1493 adapter
->flags2
&= ~FLAG2_IS_DISCARDING
;
1495 writel(0, adapter
->hw
.hw_addr
+ rx_ring
->head
);
1496 writel(0, adapter
->hw
.hw_addr
+ rx_ring
->tail
);
1499 static void e1000e_downshift_workaround(struct work_struct
*work
)
1501 struct e1000_adapter
*adapter
= container_of(work
,
1502 struct e1000_adapter
, downshift_task
);
1504 if (test_bit(__E1000_DOWN
, &adapter
->state
))
1507 e1000e_gig_downshift_workaround_ich8lan(&adapter
->hw
);
1511 * e1000_intr_msi - Interrupt Handler
1512 * @irq: interrupt number
1513 * @data: pointer to a network interface device structure
1515 static irqreturn_t
e1000_intr_msi(int irq
, void *data
)
1517 struct net_device
*netdev
= data
;
1518 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1519 struct e1000_hw
*hw
= &adapter
->hw
;
1520 u32 icr
= er32(ICR
);
1523 * read ICR disables interrupts using IAM
1526 if (icr
& E1000_ICR_LSC
) {
1527 hw
->mac
.get_link_status
= 1;
1529 * ICH8 workaround-- Call gig speed drop workaround on cable
1530 * disconnect (LSC) before accessing any PHY registers
1532 if ((adapter
->flags
& FLAG_LSC_GIG_SPEED_DROP
) &&
1533 (!(er32(STATUS
) & E1000_STATUS_LU
)))
1534 schedule_work(&adapter
->downshift_task
);
1537 * 80003ES2LAN workaround-- For packet buffer work-around on
1538 * link down event; disable receives here in the ISR and reset
1539 * adapter in watchdog
1541 if (netif_carrier_ok(netdev
) &&
1542 adapter
->flags
& FLAG_RX_NEEDS_RESTART
) {
1543 /* disable receives */
1544 u32 rctl
= er32(RCTL
);
1545 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
1546 adapter
->flags
|= FLAG_RX_RESTART_NOW
;
1548 /* guard against interrupt when we're going down */
1549 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
1550 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
1553 if (napi_schedule_prep(&adapter
->napi
)) {
1554 adapter
->total_tx_bytes
= 0;
1555 adapter
->total_tx_packets
= 0;
1556 adapter
->total_rx_bytes
= 0;
1557 adapter
->total_rx_packets
= 0;
1558 __napi_schedule(&adapter
->napi
);
1565 * e1000_intr - Interrupt Handler
1566 * @irq: interrupt number
1567 * @data: pointer to a network interface device structure
1569 static irqreturn_t
e1000_intr(int irq
, void *data
)
1571 struct net_device
*netdev
= data
;
1572 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1573 struct e1000_hw
*hw
= &adapter
->hw
;
1574 u32 rctl
, icr
= er32(ICR
);
1576 if (!icr
|| test_bit(__E1000_DOWN
, &adapter
->state
))
1577 return IRQ_NONE
; /* Not our interrupt */
1580 * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1581 * not set, then the adapter didn't send an interrupt
1583 if (!(icr
& E1000_ICR_INT_ASSERTED
))
1587 * Interrupt Auto-Mask...upon reading ICR,
1588 * interrupts are masked. No need for the
1592 if (icr
& E1000_ICR_LSC
) {
1593 hw
->mac
.get_link_status
= 1;
1595 * ICH8 workaround-- Call gig speed drop workaround on cable
1596 * disconnect (LSC) before accessing any PHY registers
1598 if ((adapter
->flags
& FLAG_LSC_GIG_SPEED_DROP
) &&
1599 (!(er32(STATUS
) & E1000_STATUS_LU
)))
1600 schedule_work(&adapter
->downshift_task
);
1603 * 80003ES2LAN workaround--
1604 * For packet buffer work-around on link down event;
1605 * disable receives here in the ISR and
1606 * reset adapter in watchdog
1608 if (netif_carrier_ok(netdev
) &&
1609 (adapter
->flags
& FLAG_RX_NEEDS_RESTART
)) {
1610 /* disable receives */
1612 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
1613 adapter
->flags
|= FLAG_RX_RESTART_NOW
;
1615 /* guard against interrupt when we're going down */
1616 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
1617 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
1620 if (napi_schedule_prep(&adapter
->napi
)) {
1621 adapter
->total_tx_bytes
= 0;
1622 adapter
->total_tx_packets
= 0;
1623 adapter
->total_rx_bytes
= 0;
1624 adapter
->total_rx_packets
= 0;
1625 __napi_schedule(&adapter
->napi
);
1631 static irqreturn_t
e1000_msix_other(int irq
, void *data
)
1633 struct net_device
*netdev
= data
;
1634 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1635 struct e1000_hw
*hw
= &adapter
->hw
;
1636 u32 icr
= er32(ICR
);
1638 if (!(icr
& E1000_ICR_INT_ASSERTED
)) {
1639 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
1640 ew32(IMS
, E1000_IMS_OTHER
);
1644 if (icr
& adapter
->eiac_mask
)
1645 ew32(ICS
, (icr
& adapter
->eiac_mask
));
1647 if (icr
& E1000_ICR_OTHER
) {
1648 if (!(icr
& E1000_ICR_LSC
))
1649 goto no_link_interrupt
;
1650 hw
->mac
.get_link_status
= 1;
1651 /* guard against interrupt when we're going down */
1652 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
1653 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
1657 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
1658 ew32(IMS
, E1000_IMS_LSC
| E1000_IMS_OTHER
);
1664 static irqreturn_t
e1000_intr_msix_tx(int irq
, void *data
)
1666 struct net_device
*netdev
= data
;
1667 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1668 struct e1000_hw
*hw
= &adapter
->hw
;
1669 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
1672 adapter
->total_tx_bytes
= 0;
1673 adapter
->total_tx_packets
= 0;
1675 if (!e1000_clean_tx_irq(adapter
))
1676 /* Ring was not completely cleaned, so fire another interrupt */
1677 ew32(ICS
, tx_ring
->ims_val
);
1682 static irqreturn_t
e1000_intr_msix_rx(int irq
, void *data
)
1684 struct net_device
*netdev
= data
;
1685 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1687 /* Write the ITR value calculated at the end of the
1688 * previous interrupt.
1690 if (adapter
->rx_ring
->set_itr
) {
1691 writel(1000000000 / (adapter
->rx_ring
->itr_val
* 256),
1692 adapter
->hw
.hw_addr
+ adapter
->rx_ring
->itr_register
);
1693 adapter
->rx_ring
->set_itr
= 0;
1696 if (napi_schedule_prep(&adapter
->napi
)) {
1697 adapter
->total_rx_bytes
= 0;
1698 adapter
->total_rx_packets
= 0;
1699 __napi_schedule(&adapter
->napi
);
1705 * e1000_configure_msix - Configure MSI-X hardware
1707 * e1000_configure_msix sets up the hardware to properly
1708 * generate MSI-X interrupts.
1710 static void e1000_configure_msix(struct e1000_adapter
*adapter
)
1712 struct e1000_hw
*hw
= &adapter
->hw
;
1713 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
1714 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
1716 u32 ctrl_ext
, ivar
= 0;
1718 adapter
->eiac_mask
= 0;
1720 /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1721 if (hw
->mac
.type
== e1000_82574
) {
1722 u32 rfctl
= er32(RFCTL
);
1723 rfctl
|= E1000_RFCTL_ACK_DIS
;
1727 #define E1000_IVAR_INT_ALLOC_VALID 0x8
1728 /* Configure Rx vector */
1729 rx_ring
->ims_val
= E1000_IMS_RXQ0
;
1730 adapter
->eiac_mask
|= rx_ring
->ims_val
;
1731 if (rx_ring
->itr_val
)
1732 writel(1000000000 / (rx_ring
->itr_val
* 256),
1733 hw
->hw_addr
+ rx_ring
->itr_register
);
1735 writel(1, hw
->hw_addr
+ rx_ring
->itr_register
);
1736 ivar
= E1000_IVAR_INT_ALLOC_VALID
| vector
;
1738 /* Configure Tx vector */
1739 tx_ring
->ims_val
= E1000_IMS_TXQ0
;
1741 if (tx_ring
->itr_val
)
1742 writel(1000000000 / (tx_ring
->itr_val
* 256),
1743 hw
->hw_addr
+ tx_ring
->itr_register
);
1745 writel(1, hw
->hw_addr
+ tx_ring
->itr_register
);
1746 adapter
->eiac_mask
|= tx_ring
->ims_val
;
1747 ivar
|= ((E1000_IVAR_INT_ALLOC_VALID
| vector
) << 8);
1749 /* set vector for Other Causes, e.g. link changes */
1751 ivar
|= ((E1000_IVAR_INT_ALLOC_VALID
| vector
) << 16);
1752 if (rx_ring
->itr_val
)
1753 writel(1000000000 / (rx_ring
->itr_val
* 256),
1754 hw
->hw_addr
+ E1000_EITR_82574(vector
));
1756 writel(1, hw
->hw_addr
+ E1000_EITR_82574(vector
));
1758 /* Cause Tx interrupts on every write back */
1763 /* enable MSI-X PBA support */
1764 ctrl_ext
= er32(CTRL_EXT
);
1765 ctrl_ext
|= E1000_CTRL_EXT_PBA_CLR
;
1767 /* Auto-Mask Other interrupts upon ICR read */
1768 #define E1000_EIAC_MASK_82574 0x01F00000
1769 ew32(IAM
, ~E1000_EIAC_MASK_82574
| E1000_IMS_OTHER
);
1770 ctrl_ext
|= E1000_CTRL_EXT_EIAME
;
1771 ew32(CTRL_EXT
, ctrl_ext
);
1775 void e1000e_reset_interrupt_capability(struct e1000_adapter
*adapter
)
1777 if (adapter
->msix_entries
) {
1778 pci_disable_msix(adapter
->pdev
);
1779 kfree(adapter
->msix_entries
);
1780 adapter
->msix_entries
= NULL
;
1781 } else if (adapter
->flags
& FLAG_MSI_ENABLED
) {
1782 pci_disable_msi(adapter
->pdev
);
1783 adapter
->flags
&= ~FLAG_MSI_ENABLED
;
1788 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
1790 * Attempt to configure interrupts using the best available
1791 * capabilities of the hardware and kernel.
1793 void e1000e_set_interrupt_capability(struct e1000_adapter
*adapter
)
1798 switch (adapter
->int_mode
) {
1799 case E1000E_INT_MODE_MSIX
:
1800 if (adapter
->flags
& FLAG_HAS_MSIX
) {
1801 adapter
->num_vectors
= 3; /* RxQ0, TxQ0 and other */
1802 adapter
->msix_entries
= kcalloc(adapter
->num_vectors
,
1803 sizeof(struct msix_entry
),
1805 if (adapter
->msix_entries
) {
1806 for (i
= 0; i
< adapter
->num_vectors
; i
++)
1807 adapter
->msix_entries
[i
].entry
= i
;
1809 err
= pci_enable_msix(adapter
->pdev
,
1810 adapter
->msix_entries
,
1811 adapter
->num_vectors
);
1815 /* MSI-X failed, so fall through and try MSI */
1816 e_err("Failed to initialize MSI-X interrupts. "
1817 "Falling back to MSI interrupts.\n");
1818 e1000e_reset_interrupt_capability(adapter
);
1820 adapter
->int_mode
= E1000E_INT_MODE_MSI
;
1822 case E1000E_INT_MODE_MSI
:
1823 if (!pci_enable_msi(adapter
->pdev
)) {
1824 adapter
->flags
|= FLAG_MSI_ENABLED
;
1826 adapter
->int_mode
= E1000E_INT_MODE_LEGACY
;
1827 e_err("Failed to initialize MSI interrupts. Falling "
1828 "back to legacy interrupts.\n");
1831 case E1000E_INT_MODE_LEGACY
:
1832 /* Don't do anything; this is the system default */
1836 /* store the number of vectors being used */
1837 adapter
->num_vectors
= 1;
1841 * e1000_request_msix - Initialize MSI-X interrupts
1843 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
1846 static int e1000_request_msix(struct e1000_adapter
*adapter
)
1848 struct net_device
*netdev
= adapter
->netdev
;
1849 int err
= 0, vector
= 0;
1851 if (strlen(netdev
->name
) < (IFNAMSIZ
- 5))
1852 snprintf(adapter
->rx_ring
->name
,
1853 sizeof(adapter
->rx_ring
->name
) - 1,
1854 "%s-rx-0", netdev
->name
);
1856 memcpy(adapter
->rx_ring
->name
, netdev
->name
, IFNAMSIZ
);
1857 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
1858 e1000_intr_msix_rx
, 0, adapter
->rx_ring
->name
,
1862 adapter
->rx_ring
->itr_register
= E1000_EITR_82574(vector
);
1863 adapter
->rx_ring
->itr_val
= adapter
->itr
;
1866 if (strlen(netdev
->name
) < (IFNAMSIZ
- 5))
1867 snprintf(adapter
->tx_ring
->name
,
1868 sizeof(adapter
->tx_ring
->name
) - 1,
1869 "%s-tx-0", netdev
->name
);
1871 memcpy(adapter
->tx_ring
->name
, netdev
->name
, IFNAMSIZ
);
1872 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
1873 e1000_intr_msix_tx
, 0, adapter
->tx_ring
->name
,
1877 adapter
->tx_ring
->itr_register
= E1000_EITR_82574(vector
);
1878 adapter
->tx_ring
->itr_val
= adapter
->itr
;
1881 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
1882 e1000_msix_other
, 0, netdev
->name
, netdev
);
1886 e1000_configure_msix(adapter
);
1893 * e1000_request_irq - initialize interrupts
1895 * Attempts to configure interrupts using the best available
1896 * capabilities of the hardware and kernel.
1898 static int e1000_request_irq(struct e1000_adapter
*adapter
)
1900 struct net_device
*netdev
= adapter
->netdev
;
1903 if (adapter
->msix_entries
) {
1904 err
= e1000_request_msix(adapter
);
1907 /* fall back to MSI */
1908 e1000e_reset_interrupt_capability(adapter
);
1909 adapter
->int_mode
= E1000E_INT_MODE_MSI
;
1910 e1000e_set_interrupt_capability(adapter
);
1912 if (adapter
->flags
& FLAG_MSI_ENABLED
) {
1913 err
= request_irq(adapter
->pdev
->irq
, e1000_intr_msi
, 0,
1914 netdev
->name
, netdev
);
1918 /* fall back to legacy interrupt */
1919 e1000e_reset_interrupt_capability(adapter
);
1920 adapter
->int_mode
= E1000E_INT_MODE_LEGACY
;
1923 err
= request_irq(adapter
->pdev
->irq
, e1000_intr
, IRQF_SHARED
,
1924 netdev
->name
, netdev
);
1926 e_err("Unable to allocate interrupt, Error: %d\n", err
);
1931 static void e1000_free_irq(struct e1000_adapter
*adapter
)
1933 struct net_device
*netdev
= adapter
->netdev
;
1935 if (adapter
->msix_entries
) {
1938 free_irq(adapter
->msix_entries
[vector
].vector
, netdev
);
1941 free_irq(adapter
->msix_entries
[vector
].vector
, netdev
);
1944 /* Other Causes interrupt vector */
1945 free_irq(adapter
->msix_entries
[vector
].vector
, netdev
);
1949 free_irq(adapter
->pdev
->irq
, netdev
);
1953 * e1000_irq_disable - Mask off interrupt generation on the NIC
1955 static void e1000_irq_disable(struct e1000_adapter
*adapter
)
1957 struct e1000_hw
*hw
= &adapter
->hw
;
1960 if (adapter
->msix_entries
)
1961 ew32(EIAC_82574
, 0);
1964 if (adapter
->msix_entries
) {
1966 for (i
= 0; i
< adapter
->num_vectors
; i
++)
1967 synchronize_irq(adapter
->msix_entries
[i
].vector
);
1969 synchronize_irq(adapter
->pdev
->irq
);
1974 * e1000_irq_enable - Enable default interrupt generation settings
1976 static void e1000_irq_enable(struct e1000_adapter
*adapter
)
1978 struct e1000_hw
*hw
= &adapter
->hw
;
1980 if (adapter
->msix_entries
) {
1981 ew32(EIAC_82574
, adapter
->eiac_mask
& E1000_EIAC_MASK_82574
);
1982 ew32(IMS
, adapter
->eiac_mask
| E1000_IMS_OTHER
| E1000_IMS_LSC
);
1984 ew32(IMS
, IMS_ENABLE_MASK
);
1990 * e1000e_get_hw_control - get control of the h/w from f/w
1991 * @adapter: address of board private structure
1993 * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
1994 * For ASF and Pass Through versions of f/w this means that
1995 * the driver is loaded. For AMT version (only with 82573)
1996 * of the f/w this means that the network i/f is open.
1998 void e1000e_get_hw_control(struct e1000_adapter
*adapter
)
2000 struct e1000_hw
*hw
= &adapter
->hw
;
2004 /* Let firmware know the driver has taken over */
2005 if (adapter
->flags
& FLAG_HAS_SWSM_ON_LOAD
) {
2007 ew32(SWSM
, swsm
| E1000_SWSM_DRV_LOAD
);
2008 } else if (adapter
->flags
& FLAG_HAS_CTRLEXT_ON_LOAD
) {
2009 ctrl_ext
= er32(CTRL_EXT
);
2010 ew32(CTRL_EXT
, ctrl_ext
| E1000_CTRL_EXT_DRV_LOAD
);
2015 * e1000e_release_hw_control - release control of the h/w to f/w
2016 * @adapter: address of board private structure
2018 * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2019 * For ASF and Pass Through versions of f/w this means that the
2020 * driver is no longer loaded. For AMT version (only with 82573) i
2021 * of the f/w this means that the network i/f is closed.
2024 void e1000e_release_hw_control(struct e1000_adapter
*adapter
)
2026 struct e1000_hw
*hw
= &adapter
->hw
;
2030 /* Let firmware taken over control of h/w */
2031 if (adapter
->flags
& FLAG_HAS_SWSM_ON_LOAD
) {
2033 ew32(SWSM
, swsm
& ~E1000_SWSM_DRV_LOAD
);
2034 } else if (adapter
->flags
& FLAG_HAS_CTRLEXT_ON_LOAD
) {
2035 ctrl_ext
= er32(CTRL_EXT
);
2036 ew32(CTRL_EXT
, ctrl_ext
& ~E1000_CTRL_EXT_DRV_LOAD
);
2041 * @e1000_alloc_ring - allocate memory for a ring structure
2043 static int e1000_alloc_ring_dma(struct e1000_adapter
*adapter
,
2044 struct e1000_ring
*ring
)
2046 struct pci_dev
*pdev
= adapter
->pdev
;
2048 ring
->desc
= dma_alloc_coherent(&pdev
->dev
, ring
->size
, &ring
->dma
,
2057 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2058 * @adapter: board private structure
2060 * Return 0 on success, negative on failure
2062 int e1000e_setup_tx_resources(struct e1000_adapter
*adapter
)
2064 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
2065 int err
= -ENOMEM
, size
;
2067 size
= sizeof(struct e1000_buffer
) * tx_ring
->count
;
2068 tx_ring
->buffer_info
= vzalloc(size
);
2069 if (!tx_ring
->buffer_info
)
2072 /* round up to nearest 4K */
2073 tx_ring
->size
= tx_ring
->count
* sizeof(struct e1000_tx_desc
);
2074 tx_ring
->size
= ALIGN(tx_ring
->size
, 4096);
2076 err
= e1000_alloc_ring_dma(adapter
, tx_ring
);
2080 tx_ring
->next_to_use
= 0;
2081 tx_ring
->next_to_clean
= 0;
2085 vfree(tx_ring
->buffer_info
);
2086 e_err("Unable to allocate memory for the transmit descriptor ring\n");
2091 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2092 * @adapter: board private structure
2094 * Returns 0 on success, negative on failure
2096 int e1000e_setup_rx_resources(struct e1000_adapter
*adapter
)
2098 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
2099 struct e1000_buffer
*buffer_info
;
2100 int i
, size
, desc_len
, err
= -ENOMEM
;
2102 size
= sizeof(struct e1000_buffer
) * rx_ring
->count
;
2103 rx_ring
->buffer_info
= vzalloc(size
);
2104 if (!rx_ring
->buffer_info
)
2107 for (i
= 0; i
< rx_ring
->count
; i
++) {
2108 buffer_info
= &rx_ring
->buffer_info
[i
];
2109 buffer_info
->ps_pages
= kcalloc(PS_PAGE_BUFFERS
,
2110 sizeof(struct e1000_ps_page
),
2112 if (!buffer_info
->ps_pages
)
2116 desc_len
= sizeof(union e1000_rx_desc_packet_split
);
2118 /* Round up to nearest 4K */
2119 rx_ring
->size
= rx_ring
->count
* desc_len
;
2120 rx_ring
->size
= ALIGN(rx_ring
->size
, 4096);
2122 err
= e1000_alloc_ring_dma(adapter
, rx_ring
);
2126 rx_ring
->next_to_clean
= 0;
2127 rx_ring
->next_to_use
= 0;
2128 rx_ring
->rx_skb_top
= NULL
;
2133 for (i
= 0; i
< rx_ring
->count
; i
++) {
2134 buffer_info
= &rx_ring
->buffer_info
[i
];
2135 kfree(buffer_info
->ps_pages
);
2138 vfree(rx_ring
->buffer_info
);
2139 e_err("Unable to allocate memory for the receive descriptor ring\n");
2144 * e1000_clean_tx_ring - Free Tx Buffers
2145 * @adapter: board private structure
2147 static void e1000_clean_tx_ring(struct e1000_adapter
*adapter
)
2149 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
2150 struct e1000_buffer
*buffer_info
;
2154 for (i
= 0; i
< tx_ring
->count
; i
++) {
2155 buffer_info
= &tx_ring
->buffer_info
[i
];
2156 e1000_put_txbuf(adapter
, buffer_info
);
2159 size
= sizeof(struct e1000_buffer
) * tx_ring
->count
;
2160 memset(tx_ring
->buffer_info
, 0, size
);
2162 memset(tx_ring
->desc
, 0, tx_ring
->size
);
2164 tx_ring
->next_to_use
= 0;
2165 tx_ring
->next_to_clean
= 0;
2167 writel(0, adapter
->hw
.hw_addr
+ tx_ring
->head
);
2168 writel(0, adapter
->hw
.hw_addr
+ tx_ring
->tail
);
2172 * e1000e_free_tx_resources - Free Tx Resources per Queue
2173 * @adapter: board private structure
2175 * Free all transmit software resources
2177 void e1000e_free_tx_resources(struct e1000_adapter
*adapter
)
2179 struct pci_dev
*pdev
= adapter
->pdev
;
2180 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
2182 e1000_clean_tx_ring(adapter
);
2184 vfree(tx_ring
->buffer_info
);
2185 tx_ring
->buffer_info
= NULL
;
2187 dma_free_coherent(&pdev
->dev
, tx_ring
->size
, tx_ring
->desc
,
2189 tx_ring
->desc
= NULL
;
2193 * e1000e_free_rx_resources - Free Rx Resources
2194 * @adapter: board private structure
2196 * Free all receive software resources
2199 void e1000e_free_rx_resources(struct e1000_adapter
*adapter
)
2201 struct pci_dev
*pdev
= adapter
->pdev
;
2202 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
2205 e1000_clean_rx_ring(adapter
);
2207 for (i
= 0; i
< rx_ring
->count
; i
++)
2208 kfree(rx_ring
->buffer_info
[i
].ps_pages
);
2210 vfree(rx_ring
->buffer_info
);
2211 rx_ring
->buffer_info
= NULL
;
2213 dma_free_coherent(&pdev
->dev
, rx_ring
->size
, rx_ring
->desc
,
2215 rx_ring
->desc
= NULL
;
2219 * e1000_update_itr - update the dynamic ITR value based on statistics
2220 * @adapter: pointer to adapter
2221 * @itr_setting: current adapter->itr
2222 * @packets: the number of packets during this measurement interval
2223 * @bytes: the number of bytes during this measurement interval
2225 * Stores a new ITR value based on packets and byte
2226 * counts during the last interrupt. The advantage of per interrupt
2227 * computation is faster updates and more accurate ITR for the current
2228 * traffic pattern. Constants in this function were computed
2229 * based on theoretical maximum wire speed and thresholds were set based
2230 * on testing data as well as attempting to minimize response time
2231 * while increasing bulk throughput. This functionality is controlled
2232 * by the InterruptThrottleRate module parameter.
2234 static unsigned int e1000_update_itr(struct e1000_adapter
*adapter
,
2235 u16 itr_setting
, int packets
,
2238 unsigned int retval
= itr_setting
;
2241 goto update_itr_done
;
2243 switch (itr_setting
) {
2244 case lowest_latency
:
2245 /* handle TSO and jumbo frames */
2246 if (bytes
/packets
> 8000)
2247 retval
= bulk_latency
;
2248 else if ((packets
< 5) && (bytes
> 512))
2249 retval
= low_latency
;
2251 case low_latency
: /* 50 usec aka 20000 ints/s */
2252 if (bytes
> 10000) {
2253 /* this if handles the TSO accounting */
2254 if (bytes
/packets
> 8000)
2255 retval
= bulk_latency
;
2256 else if ((packets
< 10) || ((bytes
/packets
) > 1200))
2257 retval
= bulk_latency
;
2258 else if ((packets
> 35))
2259 retval
= lowest_latency
;
2260 } else if (bytes
/packets
> 2000) {
2261 retval
= bulk_latency
;
2262 } else if (packets
<= 2 && bytes
< 512) {
2263 retval
= lowest_latency
;
2266 case bulk_latency
: /* 250 usec aka 4000 ints/s */
2267 if (bytes
> 25000) {
2269 retval
= low_latency
;
2270 } else if (bytes
< 6000) {
2271 retval
= low_latency
;
2280 static void e1000_set_itr(struct e1000_adapter
*adapter
)
2282 struct e1000_hw
*hw
= &adapter
->hw
;
2284 u32 new_itr
= adapter
->itr
;
2286 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2287 if (adapter
->link_speed
!= SPEED_1000
) {
2293 if (adapter
->flags2
& FLAG2_DISABLE_AIM
) {
2298 adapter
->tx_itr
= e1000_update_itr(adapter
,
2300 adapter
->total_tx_packets
,
2301 adapter
->total_tx_bytes
);
2302 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2303 if (adapter
->itr_setting
== 3 && adapter
->tx_itr
== lowest_latency
)
2304 adapter
->tx_itr
= low_latency
;
2306 adapter
->rx_itr
= e1000_update_itr(adapter
,
2308 adapter
->total_rx_packets
,
2309 adapter
->total_rx_bytes
);
2310 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2311 if (adapter
->itr_setting
== 3 && adapter
->rx_itr
== lowest_latency
)
2312 adapter
->rx_itr
= low_latency
;
2314 current_itr
= max(adapter
->rx_itr
, adapter
->tx_itr
);
2316 switch (current_itr
) {
2317 /* counts and packets in update_itr are dependent on these numbers */
2318 case lowest_latency
:
2322 new_itr
= 20000; /* aka hwitr = ~200 */
2332 if (new_itr
!= adapter
->itr
) {
2334 * this attempts to bias the interrupt rate towards Bulk
2335 * by adding intermediate steps when interrupt rate is
2338 new_itr
= new_itr
> adapter
->itr
?
2339 min(adapter
->itr
+ (new_itr
>> 2), new_itr
) :
2341 adapter
->itr
= new_itr
;
2342 adapter
->rx_ring
->itr_val
= new_itr
;
2343 if (adapter
->msix_entries
)
2344 adapter
->rx_ring
->set_itr
= 1;
2347 ew32(ITR
, 1000000000 / (new_itr
* 256));
2354 * e1000_alloc_queues - Allocate memory for all rings
2355 * @adapter: board private structure to initialize
2357 static int __devinit
e1000_alloc_queues(struct e1000_adapter
*adapter
)
2359 adapter
->tx_ring
= kzalloc(sizeof(struct e1000_ring
), GFP_KERNEL
);
2360 if (!adapter
->tx_ring
)
2363 adapter
->rx_ring
= kzalloc(sizeof(struct e1000_ring
), GFP_KERNEL
);
2364 if (!adapter
->rx_ring
)
2369 e_err("Unable to allocate memory for queues\n");
2370 kfree(adapter
->rx_ring
);
2371 kfree(adapter
->tx_ring
);
2376 * e1000_clean - NAPI Rx polling callback
2377 * @napi: struct associated with this polling callback
2378 * @budget: amount of packets driver is allowed to process this poll
2380 static int e1000_clean(struct napi_struct
*napi
, int budget
)
2382 struct e1000_adapter
*adapter
= container_of(napi
, struct e1000_adapter
, napi
);
2383 struct e1000_hw
*hw
= &adapter
->hw
;
2384 struct net_device
*poll_dev
= adapter
->netdev
;
2385 int tx_cleaned
= 1, work_done
= 0;
2387 adapter
= netdev_priv(poll_dev
);
2389 if (adapter
->msix_entries
&&
2390 !(adapter
->rx_ring
->ims_val
& adapter
->tx_ring
->ims_val
))
2393 tx_cleaned
= e1000_clean_tx_irq(adapter
);
2396 adapter
->clean_rx(adapter
, &work_done
, budget
);
2401 /* If budget not fully consumed, exit the polling mode */
2402 if (work_done
< budget
) {
2403 if (adapter
->itr_setting
& 3)
2404 e1000_set_itr(adapter
);
2405 napi_complete(napi
);
2406 if (!test_bit(__E1000_DOWN
, &adapter
->state
)) {
2407 if (adapter
->msix_entries
)
2408 ew32(IMS
, adapter
->rx_ring
->ims_val
);
2410 e1000_irq_enable(adapter
);
2417 static void e1000_vlan_rx_add_vid(struct net_device
*netdev
, u16 vid
)
2419 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2420 struct e1000_hw
*hw
= &adapter
->hw
;
2423 /* don't update vlan cookie if already programmed */
2424 if ((adapter
->hw
.mng_cookie
.status
&
2425 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) &&
2426 (vid
== adapter
->mng_vlan_id
))
2429 /* add VID to filter table */
2430 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
) {
2431 index
= (vid
>> 5) & 0x7F;
2432 vfta
= E1000_READ_REG_ARRAY(hw
, E1000_VFTA
, index
);
2433 vfta
|= (1 << (vid
& 0x1F));
2434 hw
->mac
.ops
.write_vfta(hw
, index
, vfta
);
2438 static void e1000_vlan_rx_kill_vid(struct net_device
*netdev
, u16 vid
)
2440 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2441 struct e1000_hw
*hw
= &adapter
->hw
;
2444 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
2445 e1000_irq_disable(adapter
);
2446 vlan_group_set_device(adapter
->vlgrp
, vid
, NULL
);
2448 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
2449 e1000_irq_enable(adapter
);
2451 if ((adapter
->hw
.mng_cookie
.status
&
2452 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) &&
2453 (vid
== adapter
->mng_vlan_id
)) {
2454 /* release control to f/w */
2455 e1000e_release_hw_control(adapter
);
2459 /* remove VID from filter table */
2460 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
) {
2461 index
= (vid
>> 5) & 0x7F;
2462 vfta
= E1000_READ_REG_ARRAY(hw
, E1000_VFTA
, index
);
2463 vfta
&= ~(1 << (vid
& 0x1F));
2464 hw
->mac
.ops
.write_vfta(hw
, index
, vfta
);
2468 static void e1000_update_mng_vlan(struct e1000_adapter
*adapter
)
2470 struct net_device
*netdev
= adapter
->netdev
;
2471 u16 vid
= adapter
->hw
.mng_cookie
.vlan_id
;
2472 u16 old_vid
= adapter
->mng_vlan_id
;
2474 if (!adapter
->vlgrp
)
2477 if (!vlan_group_get_device(adapter
->vlgrp
, vid
)) {
2478 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
2479 if (adapter
->hw
.mng_cookie
.status
&
2480 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) {
2481 e1000_vlan_rx_add_vid(netdev
, vid
);
2482 adapter
->mng_vlan_id
= vid
;
2485 if ((old_vid
!= (u16
)E1000_MNG_VLAN_NONE
) &&
2487 !vlan_group_get_device(adapter
->vlgrp
, old_vid
))
2488 e1000_vlan_rx_kill_vid(netdev
, old_vid
);
2490 adapter
->mng_vlan_id
= vid
;
2495 static void e1000_vlan_rx_register(struct net_device
*netdev
,
2496 struct vlan_group
*grp
)
2498 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2499 struct e1000_hw
*hw
= &adapter
->hw
;
2502 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
2503 e1000_irq_disable(adapter
);
2504 adapter
->vlgrp
= grp
;
2507 /* enable VLAN tag insert/strip */
2509 ctrl
|= E1000_CTRL_VME
;
2512 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
) {
2513 /* enable VLAN receive filtering */
2515 rctl
&= ~E1000_RCTL_CFIEN
;
2517 e1000_update_mng_vlan(adapter
);
2520 /* disable VLAN tag insert/strip */
2522 ctrl
&= ~E1000_CTRL_VME
;
2525 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
) {
2526 if (adapter
->mng_vlan_id
!=
2527 (u16
)E1000_MNG_VLAN_NONE
) {
2528 e1000_vlan_rx_kill_vid(netdev
,
2529 adapter
->mng_vlan_id
);
2530 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
2535 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
2536 e1000_irq_enable(adapter
);
2539 static void e1000_restore_vlan(struct e1000_adapter
*adapter
)
2543 e1000_vlan_rx_register(adapter
->netdev
, adapter
->vlgrp
);
2545 if (!adapter
->vlgrp
)
2548 for (vid
= 0; vid
< VLAN_N_VID
; vid
++) {
2549 if (!vlan_group_get_device(adapter
->vlgrp
, vid
))
2551 e1000_vlan_rx_add_vid(adapter
->netdev
, vid
);
2555 static void e1000_init_manageability_pt(struct e1000_adapter
*adapter
)
2557 struct e1000_hw
*hw
= &adapter
->hw
;
2558 u32 manc
, manc2h
, mdef
, i
, j
;
2560 if (!(adapter
->flags
& FLAG_MNG_PT_ENABLED
))
2566 * enable receiving management packets to the host. this will probably
2567 * generate destination unreachable messages from the host OS, but
2568 * the packets will be handled on SMBUS
2570 manc
|= E1000_MANC_EN_MNG2HOST
;
2571 manc2h
= er32(MANC2H
);
2573 switch (hw
->mac
.type
) {
2575 manc2h
|= (E1000_MANC2H_PORT_623
| E1000_MANC2H_PORT_664
);
2580 * Check if IPMI pass-through decision filter already exists;
2583 for (i
= 0, j
= 0; i
< 8; i
++) {
2584 mdef
= er32(MDEF(i
));
2586 /* Ignore filters with anything other than IPMI ports */
2587 if (mdef
& ~(E1000_MDEF_PORT_623
| E1000_MDEF_PORT_664
))
2590 /* Enable this decision filter in MANC2H */
2597 if (j
== (E1000_MDEF_PORT_623
| E1000_MDEF_PORT_664
))
2600 /* Create new decision filter in an empty filter */
2601 for (i
= 0, j
= 0; i
< 8; i
++)
2602 if (er32(MDEF(i
)) == 0) {
2603 ew32(MDEF(i
), (E1000_MDEF_PORT_623
|
2604 E1000_MDEF_PORT_664
));
2611 e_warn("Unable to create IPMI pass-through filter\n");
2615 ew32(MANC2H
, manc2h
);
2620 * e1000_configure_tx - Configure Transmit Unit after Reset
2621 * @adapter: board private structure
2623 * Configure the Tx unit of the MAC after a reset.
2625 static void e1000_configure_tx(struct e1000_adapter
*adapter
)
2627 struct e1000_hw
*hw
= &adapter
->hw
;
2628 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
2630 u32 tdlen
, tctl
, tipg
, tarc
;
2633 /* Setup the HW Tx Head and Tail descriptor pointers */
2634 tdba
= tx_ring
->dma
;
2635 tdlen
= tx_ring
->count
* sizeof(struct e1000_tx_desc
);
2636 ew32(TDBAL
, (tdba
& DMA_BIT_MASK(32)));
2637 ew32(TDBAH
, (tdba
>> 32));
2641 tx_ring
->head
= E1000_TDH
;
2642 tx_ring
->tail
= E1000_TDT
;
2644 /* Set the default values for the Tx Inter Packet Gap timer */
2645 tipg
= DEFAULT_82543_TIPG_IPGT_COPPER
; /* 8 */
2646 ipgr1
= DEFAULT_82543_TIPG_IPGR1
; /* 8 */
2647 ipgr2
= DEFAULT_82543_TIPG_IPGR2
; /* 6 */
2649 if (adapter
->flags
& FLAG_TIPG_MEDIUM_FOR_80003ESLAN
)
2650 ipgr2
= DEFAULT_80003ES2LAN_TIPG_IPGR2
; /* 7 */
2652 tipg
|= ipgr1
<< E1000_TIPG_IPGR1_SHIFT
;
2653 tipg
|= ipgr2
<< E1000_TIPG_IPGR2_SHIFT
;
2656 /* Set the Tx Interrupt Delay register */
2657 ew32(TIDV
, adapter
->tx_int_delay
);
2658 /* Tx irq moderation */
2659 ew32(TADV
, adapter
->tx_abs_int_delay
);
2661 if (adapter
->flags2
& FLAG2_DMA_BURST
) {
2662 u32 txdctl
= er32(TXDCTL(0));
2663 txdctl
&= ~(E1000_TXDCTL_PTHRESH
| E1000_TXDCTL_HTHRESH
|
2664 E1000_TXDCTL_WTHRESH
);
2666 * set up some performance related parameters to encourage the
2667 * hardware to use the bus more efficiently in bursts, depends
2668 * on the tx_int_delay to be enabled,
2669 * wthresh = 5 ==> burst write a cacheline (64 bytes) at a time
2670 * hthresh = 1 ==> prefetch when one or more available
2671 * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2672 * BEWARE: this seems to work but should be considered first if
2673 * there are Tx hangs or other Tx related bugs
2675 txdctl
|= E1000_TXDCTL_DMA_BURST_ENABLE
;
2676 ew32(TXDCTL(0), txdctl
);
2677 /* erratum work around: set txdctl the same for both queues */
2678 ew32(TXDCTL(1), txdctl
);
2681 /* Program the Transmit Control Register */
2683 tctl
&= ~E1000_TCTL_CT
;
2684 tctl
|= E1000_TCTL_PSP
| E1000_TCTL_RTLC
|
2685 (E1000_COLLISION_THRESHOLD
<< E1000_CT_SHIFT
);
2687 if (adapter
->flags
& FLAG_TARC_SPEED_MODE_BIT
) {
2688 tarc
= er32(TARC(0));
2690 * set the speed mode bit, we'll clear it if we're not at
2691 * gigabit link later
2693 #define SPEED_MODE_BIT (1 << 21)
2694 tarc
|= SPEED_MODE_BIT
;
2695 ew32(TARC(0), tarc
);
2698 /* errata: program both queues to unweighted RR */
2699 if (adapter
->flags
& FLAG_TARC_SET_BIT_ZERO
) {
2700 tarc
= er32(TARC(0));
2702 ew32(TARC(0), tarc
);
2703 tarc
= er32(TARC(1));
2705 ew32(TARC(1), tarc
);
2708 /* Setup Transmit Descriptor Settings for eop descriptor */
2709 adapter
->txd_cmd
= E1000_TXD_CMD_EOP
| E1000_TXD_CMD_IFCS
;
2711 /* only set IDE if we are delaying interrupts using the timers */
2712 if (adapter
->tx_int_delay
)
2713 adapter
->txd_cmd
|= E1000_TXD_CMD_IDE
;
2715 /* enable Report Status bit */
2716 adapter
->txd_cmd
|= E1000_TXD_CMD_RS
;
2720 e1000e_config_collision_dist(hw
);
2724 * e1000_setup_rctl - configure the receive control registers
2725 * @adapter: Board private structure
2727 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
2728 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
2729 static void e1000_setup_rctl(struct e1000_adapter
*adapter
)
2731 struct e1000_hw
*hw
= &adapter
->hw
;
2735 /* Workaround Si errata on 82579 - configure jumbo frame flow */
2736 if (hw
->mac
.type
== e1000_pch2lan
) {
2739 if (adapter
->netdev
->mtu
> ETH_DATA_LEN
)
2740 ret_val
= e1000_lv_jumbo_workaround_ich8lan(hw
, true);
2742 ret_val
= e1000_lv_jumbo_workaround_ich8lan(hw
, false);
2745 e_dbg("failed to enable jumbo frame workaround mode\n");
2748 /* Program MC offset vector base */
2750 rctl
&= ~(3 << E1000_RCTL_MO_SHIFT
);
2751 rctl
|= E1000_RCTL_EN
| E1000_RCTL_BAM
|
2752 E1000_RCTL_LBM_NO
| E1000_RCTL_RDMTS_HALF
|
2753 (adapter
->hw
.mac
.mc_filter_type
<< E1000_RCTL_MO_SHIFT
);
2755 /* Do not Store bad packets */
2756 rctl
&= ~E1000_RCTL_SBP
;
2758 /* Enable Long Packet receive */
2759 if (adapter
->netdev
->mtu
<= ETH_DATA_LEN
)
2760 rctl
&= ~E1000_RCTL_LPE
;
2762 rctl
|= E1000_RCTL_LPE
;
2764 /* Some systems expect that the CRC is included in SMBUS traffic. The
2765 * hardware strips the CRC before sending to both SMBUS (BMC) and to
2766 * host memory when this is enabled
2768 if (adapter
->flags2
& FLAG2_CRC_STRIPPING
)
2769 rctl
|= E1000_RCTL_SECRC
;
2771 /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
2772 if ((hw
->phy
.type
== e1000_phy_82577
) && (rctl
& E1000_RCTL_LPE
)) {
2775 e1e_rphy(hw
, PHY_REG(770, 26), &phy_data
);
2777 phy_data
|= (1 << 2);
2778 e1e_wphy(hw
, PHY_REG(770, 26), phy_data
);
2780 e1e_rphy(hw
, 22, &phy_data
);
2782 phy_data
|= (1 << 14);
2783 e1e_wphy(hw
, 0x10, 0x2823);
2784 e1e_wphy(hw
, 0x11, 0x0003);
2785 e1e_wphy(hw
, 22, phy_data
);
2788 /* Setup buffer sizes */
2789 rctl
&= ~E1000_RCTL_SZ_4096
;
2790 rctl
|= E1000_RCTL_BSEX
;
2791 switch (adapter
->rx_buffer_len
) {
2794 rctl
|= E1000_RCTL_SZ_2048
;
2795 rctl
&= ~E1000_RCTL_BSEX
;
2798 rctl
|= E1000_RCTL_SZ_4096
;
2801 rctl
|= E1000_RCTL_SZ_8192
;
2804 rctl
|= E1000_RCTL_SZ_16384
;
2809 * 82571 and greater support packet-split where the protocol
2810 * header is placed in skb->data and the packet data is
2811 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
2812 * In the case of a non-split, skb->data is linearly filled,
2813 * followed by the page buffers. Therefore, skb->data is
2814 * sized to hold the largest protocol header.
2816 * allocations using alloc_page take too long for regular MTU
2817 * so only enable packet split for jumbo frames
2819 * Using pages when the page size is greater than 16k wastes
2820 * a lot of memory, since we allocate 3 pages at all times
2823 pages
= PAGE_USE_COUNT(adapter
->netdev
->mtu
);
2824 if (!(adapter
->flags
& FLAG_HAS_ERT
) && (pages
<= 3) &&
2825 (PAGE_SIZE
<= 16384) && (rctl
& E1000_RCTL_LPE
))
2826 adapter
->rx_ps_pages
= pages
;
2828 adapter
->rx_ps_pages
= 0;
2830 if (adapter
->rx_ps_pages
) {
2833 /* Configure extra packet-split registers */
2834 rfctl
= er32(RFCTL
);
2835 rfctl
|= E1000_RFCTL_EXTEN
;
2837 * disable packet split support for IPv6 extension headers,
2838 * because some malformed IPv6 headers can hang the Rx
2840 rfctl
|= (E1000_RFCTL_IPV6_EX_DIS
|
2841 E1000_RFCTL_NEW_IPV6_EXT_DIS
);
2845 /* Enable Packet split descriptors */
2846 rctl
|= E1000_RCTL_DTYP_PS
;
2848 psrctl
|= adapter
->rx_ps_bsize0
>>
2849 E1000_PSRCTL_BSIZE0_SHIFT
;
2851 switch (adapter
->rx_ps_pages
) {
2853 psrctl
|= PAGE_SIZE
<<
2854 E1000_PSRCTL_BSIZE3_SHIFT
;
2856 psrctl
|= PAGE_SIZE
<<
2857 E1000_PSRCTL_BSIZE2_SHIFT
;
2859 psrctl
|= PAGE_SIZE
>>
2860 E1000_PSRCTL_BSIZE1_SHIFT
;
2864 ew32(PSRCTL
, psrctl
);
2868 /* just started the receive unit, no need to restart */
2869 adapter
->flags
&= ~FLAG_RX_RESTART_NOW
;
2873 * e1000_configure_rx - Configure Receive Unit after Reset
2874 * @adapter: board private structure
2876 * Configure the Rx unit of the MAC after a reset.
2878 static void e1000_configure_rx(struct e1000_adapter
*adapter
)
2880 struct e1000_hw
*hw
= &adapter
->hw
;
2881 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
2883 u32 rdlen
, rctl
, rxcsum
, ctrl_ext
;
2885 if (adapter
->rx_ps_pages
) {
2886 /* this is a 32 byte descriptor */
2887 rdlen
= rx_ring
->count
*
2888 sizeof(union e1000_rx_desc_packet_split
);
2889 adapter
->clean_rx
= e1000_clean_rx_irq_ps
;
2890 adapter
->alloc_rx_buf
= e1000_alloc_rx_buffers_ps
;
2891 } else if (adapter
->netdev
->mtu
> ETH_FRAME_LEN
+ ETH_FCS_LEN
) {
2892 rdlen
= rx_ring
->count
* sizeof(struct e1000_rx_desc
);
2893 adapter
->clean_rx
= e1000_clean_jumbo_rx_irq
;
2894 adapter
->alloc_rx_buf
= e1000_alloc_jumbo_rx_buffers
;
2896 rdlen
= rx_ring
->count
* sizeof(struct e1000_rx_desc
);
2897 adapter
->clean_rx
= e1000_clean_rx_irq
;
2898 adapter
->alloc_rx_buf
= e1000_alloc_rx_buffers
;
2901 /* disable receives while setting up the descriptors */
2903 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
2907 if (adapter
->flags2
& FLAG2_DMA_BURST
) {
2909 * set the writeback threshold (only takes effect if the RDTR
2910 * is set). set GRAN=1 and write back up to 0x4 worth, and
2911 * enable prefetching of 0x20 Rx descriptors
2917 ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE
);
2918 ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE
);
2921 * override the delay timers for enabling bursting, only if
2922 * the value was not set by the user via module options
2924 if (adapter
->rx_int_delay
== DEFAULT_RDTR
)
2925 adapter
->rx_int_delay
= BURST_RDTR
;
2926 if (adapter
->rx_abs_int_delay
== DEFAULT_RADV
)
2927 adapter
->rx_abs_int_delay
= BURST_RADV
;
2930 /* set the Receive Delay Timer Register */
2931 ew32(RDTR
, adapter
->rx_int_delay
);
2933 /* irq moderation */
2934 ew32(RADV
, adapter
->rx_abs_int_delay
);
2935 if ((adapter
->itr_setting
!= 0) && (adapter
->itr
!= 0))
2936 ew32(ITR
, 1000000000 / (adapter
->itr
* 256));
2938 ctrl_ext
= er32(CTRL_EXT
);
2939 /* Auto-Mask interrupts upon ICR access */
2940 ctrl_ext
|= E1000_CTRL_EXT_IAME
;
2941 ew32(IAM
, 0xffffffff);
2942 ew32(CTRL_EXT
, ctrl_ext
);
2946 * Setup the HW Rx Head and Tail Descriptor Pointers and
2947 * the Base and Length of the Rx Descriptor Ring
2949 rdba
= rx_ring
->dma
;
2950 ew32(RDBAL
, (rdba
& DMA_BIT_MASK(32)));
2951 ew32(RDBAH
, (rdba
>> 32));
2955 rx_ring
->head
= E1000_RDH
;
2956 rx_ring
->tail
= E1000_RDT
;
2958 /* Enable Receive Checksum Offload for TCP and UDP */
2959 rxcsum
= er32(RXCSUM
);
2960 if (adapter
->flags
& FLAG_RX_CSUM_ENABLED
) {
2961 rxcsum
|= E1000_RXCSUM_TUOFL
;
2964 * IPv4 payload checksum for UDP fragments must be
2965 * used in conjunction with packet-split.
2967 if (adapter
->rx_ps_pages
)
2968 rxcsum
|= E1000_RXCSUM_IPPCSE
;
2970 rxcsum
&= ~E1000_RXCSUM_TUOFL
;
2971 /* no need to clear IPPCSE as it defaults to 0 */
2973 ew32(RXCSUM
, rxcsum
);
2976 * Enable early receives on supported devices, only takes effect when
2977 * packet size is equal or larger than the specified value (in 8 byte
2978 * units), e.g. using jumbo frames when setting to E1000_ERT_2048
2980 if ((adapter
->flags
& FLAG_HAS_ERT
) ||
2981 (adapter
->hw
.mac
.type
== e1000_pch2lan
)) {
2982 if (adapter
->netdev
->mtu
> ETH_DATA_LEN
) {
2983 u32 rxdctl
= er32(RXDCTL(0));
2984 ew32(RXDCTL(0), rxdctl
| 0x3);
2985 if (adapter
->flags
& FLAG_HAS_ERT
)
2986 ew32(ERT
, E1000_ERT_2048
| (1 << 13));
2988 * With jumbo frames and early-receive enabled,
2989 * excessive C-state transition latencies result in
2990 * dropped transactions.
2992 pm_qos_update_request(&adapter
->netdev
->pm_qos_req
, 55);
2994 pm_qos_update_request(&adapter
->netdev
->pm_qos_req
,
2995 PM_QOS_DEFAULT_VALUE
);
2999 /* Enable Receives */
3004 * e1000_update_mc_addr_list - Update Multicast addresses
3005 * @hw: pointer to the HW structure
3006 * @mc_addr_list: array of multicast addresses to program
3007 * @mc_addr_count: number of multicast addresses to program
3009 * Updates the Multicast Table Array.
3010 * The caller must have a packed mc_addr_list of multicast addresses.
3012 static void e1000_update_mc_addr_list(struct e1000_hw
*hw
, u8
*mc_addr_list
,
3015 hw
->mac
.ops
.update_mc_addr_list(hw
, mc_addr_list
, mc_addr_count
);
3019 * e1000_set_multi - Multicast and Promiscuous mode set
3020 * @netdev: network interface device structure
3022 * The set_multi entry point is called whenever the multicast address
3023 * list or the network interface flags are updated. This routine is
3024 * responsible for configuring the hardware for proper multicast,
3025 * promiscuous mode, and all-multi behavior.
3027 static void e1000_set_multi(struct net_device
*netdev
)
3029 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3030 struct e1000_hw
*hw
= &adapter
->hw
;
3031 struct netdev_hw_addr
*ha
;
3035 /* Check for Promiscuous and All Multicast modes */
3039 if (netdev
->flags
& IFF_PROMISC
) {
3040 rctl
|= (E1000_RCTL_UPE
| E1000_RCTL_MPE
);
3041 rctl
&= ~E1000_RCTL_VFE
;
3043 if (netdev
->flags
& IFF_ALLMULTI
) {
3044 rctl
|= E1000_RCTL_MPE
;
3045 rctl
&= ~E1000_RCTL_UPE
;
3047 rctl
&= ~(E1000_RCTL_UPE
| E1000_RCTL_MPE
);
3049 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
)
3050 rctl
|= E1000_RCTL_VFE
;
3055 if (!netdev_mc_empty(netdev
)) {
3058 mta_list
= kmalloc(netdev_mc_count(netdev
) * 6, GFP_ATOMIC
);
3062 /* prepare a packed array of only addresses. */
3063 netdev_for_each_mc_addr(ha
, netdev
)
3064 memcpy(mta_list
+ (i
++ * ETH_ALEN
), ha
->addr
, ETH_ALEN
);
3066 e1000_update_mc_addr_list(hw
, mta_list
, i
);
3070 * if we're called from probe, we might not have
3071 * anything to do here, so clear out the list
3073 e1000_update_mc_addr_list(hw
, NULL
, 0);
3078 * e1000_configure - configure the hardware for Rx and Tx
3079 * @adapter: private board structure
3081 static void e1000_configure(struct e1000_adapter
*adapter
)
3083 e1000_set_multi(adapter
->netdev
);
3085 e1000_restore_vlan(adapter
);
3086 e1000_init_manageability_pt(adapter
);
3088 e1000_configure_tx(adapter
);
3089 e1000_setup_rctl(adapter
);
3090 e1000_configure_rx(adapter
);
3091 adapter
->alloc_rx_buf(adapter
, e1000_desc_unused(adapter
->rx_ring
));
3095 * e1000e_power_up_phy - restore link in case the phy was powered down
3096 * @adapter: address of board private structure
3098 * The phy may be powered down to save power and turn off link when the
3099 * driver is unloaded and wake on lan is not enabled (among others)
3100 * *** this routine MUST be followed by a call to e1000e_reset ***
3102 void e1000e_power_up_phy(struct e1000_adapter
*adapter
)
3104 if (adapter
->hw
.phy
.ops
.power_up
)
3105 adapter
->hw
.phy
.ops
.power_up(&adapter
->hw
);
3107 adapter
->hw
.mac
.ops
.setup_link(&adapter
->hw
);
3111 * e1000_power_down_phy - Power down the PHY
3113 * Power down the PHY so no link is implied when interface is down.
3114 * The PHY cannot be powered down if management or WoL is active.
3116 static void e1000_power_down_phy(struct e1000_adapter
*adapter
)
3118 /* WoL is enabled */
3122 if (adapter
->hw
.phy
.ops
.power_down
)
3123 adapter
->hw
.phy
.ops
.power_down(&adapter
->hw
);
3127 * e1000e_reset - bring the hardware into a known good state
3129 * This function boots the hardware and enables some settings that
3130 * require a configuration cycle of the hardware - those cannot be
3131 * set/changed during runtime. After reset the device needs to be
3132 * properly configured for Rx, Tx etc.
3134 void e1000e_reset(struct e1000_adapter
*adapter
)
3136 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
3137 struct e1000_fc_info
*fc
= &adapter
->hw
.fc
;
3138 struct e1000_hw
*hw
= &adapter
->hw
;
3139 u32 tx_space
, min_tx_space
, min_rx_space
;
3140 u32 pba
= adapter
->pba
;
3143 /* reset Packet Buffer Allocation to default */
3146 if (adapter
->max_frame_size
> ETH_FRAME_LEN
+ ETH_FCS_LEN
) {
3148 * To maintain wire speed transmits, the Tx FIFO should be
3149 * large enough to accommodate two full transmit packets,
3150 * rounded up to the next 1KB and expressed in KB. Likewise,
3151 * the Rx FIFO should be large enough to accommodate at least
3152 * one full receive packet and is similarly rounded up and
3156 /* upper 16 bits has Tx packet buffer allocation size in KB */
3157 tx_space
= pba
>> 16;
3158 /* lower 16 bits has Rx packet buffer allocation size in KB */
3161 * the Tx fifo also stores 16 bytes of information about the Tx
3162 * but don't include ethernet FCS because hardware appends it
3164 min_tx_space
= (adapter
->max_frame_size
+
3165 sizeof(struct e1000_tx_desc
) -
3167 min_tx_space
= ALIGN(min_tx_space
, 1024);
3168 min_tx_space
>>= 10;
3169 /* software strips receive CRC, so leave room for it */
3170 min_rx_space
= adapter
->max_frame_size
;
3171 min_rx_space
= ALIGN(min_rx_space
, 1024);
3172 min_rx_space
>>= 10;
3175 * If current Tx allocation is less than the min Tx FIFO size,
3176 * and the min Tx FIFO size is less than the current Rx FIFO
3177 * allocation, take space away from current Rx allocation
3179 if ((tx_space
< min_tx_space
) &&
3180 ((min_tx_space
- tx_space
) < pba
)) {
3181 pba
-= min_tx_space
- tx_space
;
3184 * if short on Rx space, Rx wins and must trump Tx
3185 * adjustment or use Early Receive if available
3187 if ((pba
< min_rx_space
) &&
3188 (!(adapter
->flags
& FLAG_HAS_ERT
)))
3189 /* ERT enabled in e1000_configure_rx */
3197 * flow control settings
3199 * The high water mark must be low enough to fit one full frame
3200 * (or the size used for early receive) above it in the Rx FIFO.
3201 * Set it to the lower of:
3202 * - 90% of the Rx FIFO size, and
3203 * - the full Rx FIFO size minus the early receive size (for parts
3204 * with ERT support assuming ERT set to E1000_ERT_2048), or
3205 * - the full Rx FIFO size minus one full frame
3207 if (adapter
->flags
& FLAG_DISABLE_FC_PAUSE_TIME
)
3208 fc
->pause_time
= 0xFFFF;
3210 fc
->pause_time
= E1000_FC_PAUSE_TIME
;
3212 fc
->current_mode
= fc
->requested_mode
;
3214 switch (hw
->mac
.type
) {
3216 if ((adapter
->flags
& FLAG_HAS_ERT
) &&
3217 (adapter
->netdev
->mtu
> ETH_DATA_LEN
))
3218 hwm
= min(((pba
<< 10) * 9 / 10),
3219 ((pba
<< 10) - (E1000_ERT_2048
<< 3)));
3221 hwm
= min(((pba
<< 10) * 9 / 10),
3222 ((pba
<< 10) - adapter
->max_frame_size
));
3224 fc
->high_water
= hwm
& E1000_FCRTH_RTH
; /* 8-byte granularity */
3225 fc
->low_water
= fc
->high_water
- 8;
3229 * Workaround PCH LOM adapter hangs with certain network
3230 * loads. If hangs persist, try disabling Tx flow control.
3232 if (adapter
->netdev
->mtu
> ETH_DATA_LEN
) {
3233 fc
->high_water
= 0x3500;
3234 fc
->low_water
= 0x1500;
3236 fc
->high_water
= 0x5000;
3237 fc
->low_water
= 0x3000;
3239 fc
->refresh_time
= 0x1000;
3242 fc
->high_water
= 0x05C20;
3243 fc
->low_water
= 0x05048;
3244 fc
->pause_time
= 0x0650;
3245 fc
->refresh_time
= 0x0400;
3246 if (adapter
->netdev
->mtu
> ETH_DATA_LEN
) {
3254 * Disable Adaptive Interrupt Moderation if 2 full packets cannot
3255 * fit in receive buffer and early-receive not supported.
3257 if (adapter
->itr_setting
& 0x3) {
3258 if (((adapter
->max_frame_size
* 2) > (pba
<< 10)) &&
3259 !(adapter
->flags
& FLAG_HAS_ERT
)) {
3260 if (!(adapter
->flags2
& FLAG2_DISABLE_AIM
)) {
3261 dev_info(&adapter
->pdev
->dev
,
3262 "Interrupt Throttle Rate turned off\n");
3263 adapter
->flags2
|= FLAG2_DISABLE_AIM
;
3266 } else if (adapter
->flags2
& FLAG2_DISABLE_AIM
) {
3267 dev_info(&adapter
->pdev
->dev
,
3268 "Interrupt Throttle Rate turned on\n");
3269 adapter
->flags2
&= ~FLAG2_DISABLE_AIM
;
3270 adapter
->itr
= 20000;
3271 ew32(ITR
, 1000000000 / (adapter
->itr
* 256));
3275 /* Allow time for pending master requests to run */
3276 mac
->ops
.reset_hw(hw
);
3279 * For parts with AMT enabled, let the firmware know
3280 * that the network interface is in control
3282 if (adapter
->flags
& FLAG_HAS_AMT
)
3283 e1000e_get_hw_control(adapter
);
3287 if (mac
->ops
.init_hw(hw
))
3288 e_err("Hardware Error\n");
3290 e1000_update_mng_vlan(adapter
);
3292 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
3293 ew32(VET
, ETH_P_8021Q
);
3295 e1000e_reset_adaptive(hw
);
3297 if (!netif_running(adapter
->netdev
) &&
3298 !test_bit(__E1000_TESTING
, &adapter
->state
)) {
3299 e1000_power_down_phy(adapter
);
3303 e1000_get_phy_info(hw
);
3305 if ((adapter
->flags
& FLAG_HAS_SMART_POWER_DOWN
) &&
3306 !(adapter
->flags
& FLAG_SMART_POWER_DOWN
)) {
3309 * speed up time to link by disabling smart power down, ignore
3310 * the return value of this function because there is nothing
3311 * different we would do if it failed
3313 e1e_rphy(hw
, IGP02E1000_PHY_POWER_MGMT
, &phy_data
);
3314 phy_data
&= ~IGP02E1000_PM_SPD
;
3315 e1e_wphy(hw
, IGP02E1000_PHY_POWER_MGMT
, phy_data
);
3319 int e1000e_up(struct e1000_adapter
*adapter
)
3321 struct e1000_hw
*hw
= &adapter
->hw
;
3323 /* hardware has been reset, we need to reload some things */
3324 e1000_configure(adapter
);
3326 clear_bit(__E1000_DOWN
, &adapter
->state
);
3328 napi_enable(&adapter
->napi
);
3329 if (adapter
->msix_entries
)
3330 e1000_configure_msix(adapter
);
3331 e1000_irq_enable(adapter
);
3333 netif_wake_queue(adapter
->netdev
);
3335 /* fire a link change interrupt to start the watchdog */
3336 if (adapter
->msix_entries
)
3337 ew32(ICS
, E1000_ICS_LSC
| E1000_ICR_OTHER
);
3339 ew32(ICS
, E1000_ICS_LSC
);
3344 static void e1000e_flush_descriptors(struct e1000_adapter
*adapter
)
3346 struct e1000_hw
*hw
= &adapter
->hw
;
3348 if (!(adapter
->flags2
& FLAG2_DMA_BURST
))
3351 /* flush pending descriptor writebacks to memory */
3352 ew32(TIDV
, adapter
->tx_int_delay
| E1000_TIDV_FPD
);
3353 ew32(RDTR
, adapter
->rx_int_delay
| E1000_RDTR_FPD
);
3355 /* execute the writes immediately */
3359 static void e1000e_update_stats(struct e1000_adapter
*adapter
);
3361 void e1000e_down(struct e1000_adapter
*adapter
)
3363 struct net_device
*netdev
= adapter
->netdev
;
3364 struct e1000_hw
*hw
= &adapter
->hw
;
3368 * signal that we're down so the interrupt handler does not
3369 * reschedule our watchdog timer
3371 set_bit(__E1000_DOWN
, &adapter
->state
);
3373 /* disable receives in the hardware */
3375 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
3376 /* flush and sleep below */
3378 netif_stop_queue(netdev
);
3380 /* disable transmits in the hardware */
3382 tctl
&= ~E1000_TCTL_EN
;
3384 /* flush both disables and wait for them to finish */
3388 napi_disable(&adapter
->napi
);
3389 e1000_irq_disable(adapter
);
3391 del_timer_sync(&adapter
->watchdog_timer
);
3392 del_timer_sync(&adapter
->phy_info_timer
);
3394 netif_carrier_off(netdev
);
3396 spin_lock(&adapter
->stats64_lock
);
3397 e1000e_update_stats(adapter
);
3398 spin_unlock(&adapter
->stats64_lock
);
3400 adapter
->link_speed
= 0;
3401 adapter
->link_duplex
= 0;
3403 if (!pci_channel_offline(adapter
->pdev
))
3404 e1000e_reset(adapter
);
3406 e1000e_flush_descriptors(adapter
);
3408 e1000_clean_tx_ring(adapter
);
3409 e1000_clean_rx_ring(adapter
);
3412 * TODO: for power management, we could drop the link and
3413 * pci_disable_device here.
3417 void e1000e_reinit_locked(struct e1000_adapter
*adapter
)
3420 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->state
))
3422 e1000e_down(adapter
);
3424 clear_bit(__E1000_RESETTING
, &adapter
->state
);
3428 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
3429 * @adapter: board private structure to initialize
3431 * e1000_sw_init initializes the Adapter private data structure.
3432 * Fields are initialized based on PCI device information and
3433 * OS network device settings (MTU size).
3435 static int __devinit
e1000_sw_init(struct e1000_adapter
*adapter
)
3437 struct net_device
*netdev
= adapter
->netdev
;
3439 adapter
->rx_buffer_len
= ETH_FRAME_LEN
+ VLAN_HLEN
+ ETH_FCS_LEN
;
3440 adapter
->rx_ps_bsize0
= 128;
3441 adapter
->max_frame_size
= netdev
->mtu
+ ETH_HLEN
+ ETH_FCS_LEN
;
3442 adapter
->min_frame_size
= ETH_ZLEN
+ ETH_FCS_LEN
;
3444 spin_lock_init(&adapter
->stats64_lock
);
3446 e1000e_set_interrupt_capability(adapter
);
3448 if (e1000_alloc_queues(adapter
))
3451 /* Explicitly disable IRQ since the NIC can be in any state. */
3452 e1000_irq_disable(adapter
);
3454 set_bit(__E1000_DOWN
, &adapter
->state
);
3459 * e1000_intr_msi_test - Interrupt Handler
3460 * @irq: interrupt number
3461 * @data: pointer to a network interface device structure
3463 static irqreturn_t
e1000_intr_msi_test(int irq
, void *data
)
3465 struct net_device
*netdev
= data
;
3466 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3467 struct e1000_hw
*hw
= &adapter
->hw
;
3468 u32 icr
= er32(ICR
);
3470 e_dbg("icr is %08X\n", icr
);
3471 if (icr
& E1000_ICR_RXSEQ
) {
3472 adapter
->flags
&= ~FLAG_MSI_TEST_FAILED
;
3480 * e1000_test_msi_interrupt - Returns 0 for successful test
3481 * @adapter: board private struct
3483 * code flow taken from tg3.c
3485 static int e1000_test_msi_interrupt(struct e1000_adapter
*adapter
)
3487 struct net_device
*netdev
= adapter
->netdev
;
3488 struct e1000_hw
*hw
= &adapter
->hw
;
3491 /* poll_enable hasn't been called yet, so don't need disable */
3492 /* clear any pending events */
3495 /* free the real vector and request a test handler */
3496 e1000_free_irq(adapter
);
3497 e1000e_reset_interrupt_capability(adapter
);
3499 /* Assume that the test fails, if it succeeds then the test
3500 * MSI irq handler will unset this flag */
3501 adapter
->flags
|= FLAG_MSI_TEST_FAILED
;
3503 err
= pci_enable_msi(adapter
->pdev
);
3505 goto msi_test_failed
;
3507 err
= request_irq(adapter
->pdev
->irq
, e1000_intr_msi_test
, 0,
3508 netdev
->name
, netdev
);
3510 pci_disable_msi(adapter
->pdev
);
3511 goto msi_test_failed
;
3516 e1000_irq_enable(adapter
);
3518 /* fire an unusual interrupt on the test handler */
3519 ew32(ICS
, E1000_ICS_RXSEQ
);
3523 e1000_irq_disable(adapter
);
3527 if (adapter
->flags
& FLAG_MSI_TEST_FAILED
) {
3528 adapter
->int_mode
= E1000E_INT_MODE_LEGACY
;
3529 e_info("MSI interrupt test failed, using legacy interrupt.\n");
3531 e_dbg("MSI interrupt test succeeded!\n");
3533 free_irq(adapter
->pdev
->irq
, netdev
);
3534 pci_disable_msi(adapter
->pdev
);
3537 e1000e_set_interrupt_capability(adapter
);
3538 return e1000_request_irq(adapter
);
3542 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
3543 * @adapter: board private struct
3545 * code flow taken from tg3.c, called with e1000 interrupts disabled.
3547 static int e1000_test_msi(struct e1000_adapter
*adapter
)
3552 if (!(adapter
->flags
& FLAG_MSI_ENABLED
))
3555 /* disable SERR in case the MSI write causes a master abort */
3556 pci_read_config_word(adapter
->pdev
, PCI_COMMAND
, &pci_cmd
);
3557 if (pci_cmd
& PCI_COMMAND_SERR
)
3558 pci_write_config_word(adapter
->pdev
, PCI_COMMAND
,
3559 pci_cmd
& ~PCI_COMMAND_SERR
);
3561 err
= e1000_test_msi_interrupt(adapter
);
3563 /* re-enable SERR */
3564 if (pci_cmd
& PCI_COMMAND_SERR
) {
3565 pci_read_config_word(adapter
->pdev
, PCI_COMMAND
, &pci_cmd
);
3566 pci_cmd
|= PCI_COMMAND_SERR
;
3567 pci_write_config_word(adapter
->pdev
, PCI_COMMAND
, pci_cmd
);
3574 * e1000_open - Called when a network interface is made active
3575 * @netdev: network interface device structure
3577 * Returns 0 on success, negative value on failure
3579 * The open entry point is called when a network interface is made
3580 * active by the system (IFF_UP). At this point all resources needed
3581 * for transmit and receive operations are allocated, the interrupt
3582 * handler is registered with the OS, the watchdog timer is started,
3583 * and the stack is notified that the interface is ready.
3585 static int e1000_open(struct net_device
*netdev
)
3587 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3588 struct e1000_hw
*hw
= &adapter
->hw
;
3589 struct pci_dev
*pdev
= adapter
->pdev
;
3592 /* disallow open during test */
3593 if (test_bit(__E1000_TESTING
, &adapter
->state
))
3596 pm_runtime_get_sync(&pdev
->dev
);
3598 netif_carrier_off(netdev
);
3600 /* allocate transmit descriptors */
3601 err
= e1000e_setup_tx_resources(adapter
);
3605 /* allocate receive descriptors */
3606 err
= e1000e_setup_rx_resources(adapter
);
3611 * If AMT is enabled, let the firmware know that the network
3612 * interface is now open and reset the part to a known state.
3614 if (adapter
->flags
& FLAG_HAS_AMT
) {
3615 e1000e_get_hw_control(adapter
);
3616 e1000e_reset(adapter
);
3619 e1000e_power_up_phy(adapter
);
3621 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
3622 if ((adapter
->hw
.mng_cookie
.status
&
3623 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
))
3624 e1000_update_mng_vlan(adapter
);
3626 /* DMA latency requirement to workaround early-receive/jumbo issue */
3627 if ((adapter
->flags
& FLAG_HAS_ERT
) ||
3628 (adapter
->hw
.mac
.type
== e1000_pch2lan
))
3629 pm_qos_add_request(&adapter
->netdev
->pm_qos_req
,
3630 PM_QOS_CPU_DMA_LATENCY
,
3631 PM_QOS_DEFAULT_VALUE
);
3634 * before we allocate an interrupt, we must be ready to handle it.
3635 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3636 * as soon as we call pci_request_irq, so we have to setup our
3637 * clean_rx handler before we do so.
3639 e1000_configure(adapter
);
3641 err
= e1000_request_irq(adapter
);
3646 * Work around PCIe errata with MSI interrupts causing some chipsets to
3647 * ignore e1000e MSI messages, which means we need to test our MSI
3650 if (adapter
->int_mode
!= E1000E_INT_MODE_LEGACY
) {
3651 err
= e1000_test_msi(adapter
);
3653 e_err("Interrupt allocation failed\n");
3658 /* From here on the code is the same as e1000e_up() */
3659 clear_bit(__E1000_DOWN
, &adapter
->state
);
3661 napi_enable(&adapter
->napi
);
3663 e1000_irq_enable(adapter
);
3665 netif_start_queue(netdev
);
3667 adapter
->idle_check
= true;
3668 pm_runtime_put(&pdev
->dev
);
3670 /* fire a link status change interrupt to start the watchdog */
3671 if (adapter
->msix_entries
)
3672 ew32(ICS
, E1000_ICS_LSC
| E1000_ICR_OTHER
);
3674 ew32(ICS
, E1000_ICS_LSC
);
3679 e1000e_release_hw_control(adapter
);
3680 e1000_power_down_phy(adapter
);
3681 e1000e_free_rx_resources(adapter
);
3683 e1000e_free_tx_resources(adapter
);
3685 e1000e_reset(adapter
);
3686 pm_runtime_put_sync(&pdev
->dev
);
3692 * e1000_close - Disables a network interface
3693 * @netdev: network interface device structure
3695 * Returns 0, this is not allowed to fail
3697 * The close entry point is called when an interface is de-activated
3698 * by the OS. The hardware is still under the drivers control, but
3699 * needs to be disabled. A global MAC reset is issued to stop the
3700 * hardware, and all transmit and receive resources are freed.
3702 static int e1000_close(struct net_device
*netdev
)
3704 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3705 struct pci_dev
*pdev
= adapter
->pdev
;
3707 WARN_ON(test_bit(__E1000_RESETTING
, &adapter
->state
));
3709 pm_runtime_get_sync(&pdev
->dev
);
3711 if (!test_bit(__E1000_DOWN
, &adapter
->state
)) {
3712 e1000e_down(adapter
);
3713 e1000_free_irq(adapter
);
3715 e1000_power_down_phy(adapter
);
3717 e1000e_free_tx_resources(adapter
);
3718 e1000e_free_rx_resources(adapter
);
3721 * kill manageability vlan ID if supported, but not if a vlan with
3722 * the same ID is registered on the host OS (let 8021q kill it)
3724 if ((adapter
->hw
.mng_cookie
.status
&
3725 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) &&
3727 vlan_group_get_device(adapter
->vlgrp
, adapter
->mng_vlan_id
)))
3728 e1000_vlan_rx_kill_vid(netdev
, adapter
->mng_vlan_id
);
3731 * If AMT is enabled, let the firmware know that the network
3732 * interface is now closed
3734 if ((adapter
->flags
& FLAG_HAS_AMT
) &&
3735 !test_bit(__E1000_TESTING
, &adapter
->state
))
3736 e1000e_release_hw_control(adapter
);
3738 if ((adapter
->flags
& FLAG_HAS_ERT
) ||
3739 (adapter
->hw
.mac
.type
== e1000_pch2lan
))
3740 pm_qos_remove_request(&adapter
->netdev
->pm_qos_req
);
3742 pm_runtime_put_sync(&pdev
->dev
);
3747 * e1000_set_mac - Change the Ethernet Address of the NIC
3748 * @netdev: network interface device structure
3749 * @p: pointer to an address structure
3751 * Returns 0 on success, negative on failure
3753 static int e1000_set_mac(struct net_device
*netdev
, void *p
)
3755 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3756 struct sockaddr
*addr
= p
;
3758 if (!is_valid_ether_addr(addr
->sa_data
))
3759 return -EADDRNOTAVAIL
;
3761 memcpy(netdev
->dev_addr
, addr
->sa_data
, netdev
->addr_len
);
3762 memcpy(adapter
->hw
.mac
.addr
, addr
->sa_data
, netdev
->addr_len
);
3764 e1000e_rar_set(&adapter
->hw
, adapter
->hw
.mac
.addr
, 0);
3766 if (adapter
->flags
& FLAG_RESET_OVERWRITES_LAA
) {
3767 /* activate the work around */
3768 e1000e_set_laa_state_82571(&adapter
->hw
, 1);
3771 * Hold a copy of the LAA in RAR[14] This is done so that
3772 * between the time RAR[0] gets clobbered and the time it
3773 * gets fixed (in e1000_watchdog), the actual LAA is in one
3774 * of the RARs and no incoming packets directed to this port
3775 * are dropped. Eventually the LAA will be in RAR[0] and
3778 e1000e_rar_set(&adapter
->hw
,
3779 adapter
->hw
.mac
.addr
,
3780 adapter
->hw
.mac
.rar_entry_count
- 1);
3787 * e1000e_update_phy_task - work thread to update phy
3788 * @work: pointer to our work struct
3790 * this worker thread exists because we must acquire a
3791 * semaphore to read the phy, which we could msleep while
3792 * waiting for it, and we can't msleep in a timer.
3794 static void e1000e_update_phy_task(struct work_struct
*work
)
3796 struct e1000_adapter
*adapter
= container_of(work
,
3797 struct e1000_adapter
, update_phy_task
);
3799 if (test_bit(__E1000_DOWN
, &adapter
->state
))
3802 e1000_get_phy_info(&adapter
->hw
);
3806 * Need to wait a few seconds after link up to get diagnostic information from
3809 static void e1000_update_phy_info(unsigned long data
)
3811 struct e1000_adapter
*adapter
= (struct e1000_adapter
*) data
;
3813 if (test_bit(__E1000_DOWN
, &adapter
->state
))
3816 schedule_work(&adapter
->update_phy_task
);
3820 * e1000e_update_phy_stats - Update the PHY statistics counters
3821 * @adapter: board private structure
3823 static void e1000e_update_phy_stats(struct e1000_adapter
*adapter
)
3825 struct e1000_hw
*hw
= &adapter
->hw
;
3829 ret_val
= hw
->phy
.ops
.acquire(hw
);
3835 #define HV_PHY_STATS_PAGE 778
3837 * A page set is expensive so check if already on desired page.
3838 * If not, set to the page with the PHY status registers.
3840 ret_val
= e1000e_read_phy_reg_mdic(hw
, IGP01E1000_PHY_PAGE_SELECT
,
3844 if (phy_data
!= (HV_PHY_STATS_PAGE
<< IGP_PAGE_SHIFT
)) {
3845 ret_val
= e1000e_write_phy_reg_mdic(hw
,
3846 IGP01E1000_PHY_PAGE_SELECT
,
3847 (HV_PHY_STATS_PAGE
<<
3853 /* Read/clear the upper 16-bit registers and read/accumulate lower */
3855 /* Single Collision Count */
3856 e1000e_read_phy_reg_mdic(hw
, HV_SCC_UPPER
& MAX_PHY_REG_ADDRESS
,
3858 ret_val
= e1000e_read_phy_reg_mdic(hw
,
3859 HV_SCC_LOWER
& MAX_PHY_REG_ADDRESS
,
3862 adapter
->stats
.scc
+= phy_data
;
3864 /* Excessive Collision Count */
3865 e1000e_read_phy_reg_mdic(hw
, HV_ECOL_UPPER
& MAX_PHY_REG_ADDRESS
,
3867 ret_val
= e1000e_read_phy_reg_mdic(hw
,
3868 HV_ECOL_LOWER
& MAX_PHY_REG_ADDRESS
,
3871 adapter
->stats
.ecol
+= phy_data
;
3873 /* Multiple Collision Count */
3874 e1000e_read_phy_reg_mdic(hw
, HV_MCC_UPPER
& MAX_PHY_REG_ADDRESS
,
3876 ret_val
= e1000e_read_phy_reg_mdic(hw
,
3877 HV_MCC_LOWER
& MAX_PHY_REG_ADDRESS
,
3880 adapter
->stats
.mcc
+= phy_data
;
3882 /* Late Collision Count */
3883 e1000e_read_phy_reg_mdic(hw
, HV_LATECOL_UPPER
& MAX_PHY_REG_ADDRESS
,
3885 ret_val
= e1000e_read_phy_reg_mdic(hw
,
3887 MAX_PHY_REG_ADDRESS
,
3890 adapter
->stats
.latecol
+= phy_data
;
3892 /* Collision Count - also used for adaptive IFS */
3893 e1000e_read_phy_reg_mdic(hw
, HV_COLC_UPPER
& MAX_PHY_REG_ADDRESS
,
3895 ret_val
= e1000e_read_phy_reg_mdic(hw
,
3896 HV_COLC_LOWER
& MAX_PHY_REG_ADDRESS
,
3899 hw
->mac
.collision_delta
= phy_data
;
3902 e1000e_read_phy_reg_mdic(hw
, HV_DC_UPPER
& MAX_PHY_REG_ADDRESS
,
3904 ret_val
= e1000e_read_phy_reg_mdic(hw
,
3905 HV_DC_LOWER
& MAX_PHY_REG_ADDRESS
,
3908 adapter
->stats
.dc
+= phy_data
;
3910 /* Transmit with no CRS */
3911 e1000e_read_phy_reg_mdic(hw
, HV_TNCRS_UPPER
& MAX_PHY_REG_ADDRESS
,
3913 ret_val
= e1000e_read_phy_reg_mdic(hw
,
3914 HV_TNCRS_LOWER
& MAX_PHY_REG_ADDRESS
,
3917 adapter
->stats
.tncrs
+= phy_data
;
3920 hw
->phy
.ops
.release(hw
);
3924 * e1000e_update_stats - Update the board statistics counters
3925 * @adapter: board private structure
3927 static void e1000e_update_stats(struct e1000_adapter
*adapter
)
3929 struct net_device
*netdev
= adapter
->netdev
;
3930 struct e1000_hw
*hw
= &adapter
->hw
;
3931 struct pci_dev
*pdev
= adapter
->pdev
;
3934 * Prevent stats update while adapter is being reset, or if the pci
3935 * connection is down.
3937 if (adapter
->link_speed
== 0)
3939 if (pci_channel_offline(pdev
))
3942 adapter
->stats
.crcerrs
+= er32(CRCERRS
);
3943 adapter
->stats
.gprc
+= er32(GPRC
);
3944 adapter
->stats
.gorc
+= er32(GORCL
);
3945 er32(GORCH
); /* Clear gorc */
3946 adapter
->stats
.bprc
+= er32(BPRC
);
3947 adapter
->stats
.mprc
+= er32(MPRC
);
3948 adapter
->stats
.roc
+= er32(ROC
);
3950 adapter
->stats
.mpc
+= er32(MPC
);
3952 /* Half-duplex statistics */
3953 if (adapter
->link_duplex
== HALF_DUPLEX
) {
3954 if (adapter
->flags2
& FLAG2_HAS_PHY_STATS
) {
3955 e1000e_update_phy_stats(adapter
);
3957 adapter
->stats
.scc
+= er32(SCC
);
3958 adapter
->stats
.ecol
+= er32(ECOL
);
3959 adapter
->stats
.mcc
+= er32(MCC
);
3960 adapter
->stats
.latecol
+= er32(LATECOL
);
3961 adapter
->stats
.dc
+= er32(DC
);
3963 hw
->mac
.collision_delta
= er32(COLC
);
3965 if ((hw
->mac
.type
!= e1000_82574
) &&
3966 (hw
->mac
.type
!= e1000_82583
))
3967 adapter
->stats
.tncrs
+= er32(TNCRS
);
3969 adapter
->stats
.colc
+= hw
->mac
.collision_delta
;
3972 adapter
->stats
.xonrxc
+= er32(XONRXC
);
3973 adapter
->stats
.xontxc
+= er32(XONTXC
);
3974 adapter
->stats
.xoffrxc
+= er32(XOFFRXC
);
3975 adapter
->stats
.xofftxc
+= er32(XOFFTXC
);
3976 adapter
->stats
.gptc
+= er32(GPTC
);
3977 adapter
->stats
.gotc
+= er32(GOTCL
);
3978 er32(GOTCH
); /* Clear gotc */
3979 adapter
->stats
.rnbc
+= er32(RNBC
);
3980 adapter
->stats
.ruc
+= er32(RUC
);
3982 adapter
->stats
.mptc
+= er32(MPTC
);
3983 adapter
->stats
.bptc
+= er32(BPTC
);
3985 /* used for adaptive IFS */
3987 hw
->mac
.tx_packet_delta
= er32(TPT
);
3988 adapter
->stats
.tpt
+= hw
->mac
.tx_packet_delta
;
3990 adapter
->stats
.algnerrc
+= er32(ALGNERRC
);
3991 adapter
->stats
.rxerrc
+= er32(RXERRC
);
3992 adapter
->stats
.cexterr
+= er32(CEXTERR
);
3993 adapter
->stats
.tsctc
+= er32(TSCTC
);
3994 adapter
->stats
.tsctfc
+= er32(TSCTFC
);
3996 /* Fill out the OS statistics structure */
3997 netdev
->stats
.multicast
= adapter
->stats
.mprc
;
3998 netdev
->stats
.collisions
= adapter
->stats
.colc
;
4003 * RLEC on some newer hardware can be incorrect so build
4004 * our own version based on RUC and ROC
4006 netdev
->stats
.rx_errors
= adapter
->stats
.rxerrc
+
4007 adapter
->stats
.crcerrs
+ adapter
->stats
.algnerrc
+
4008 adapter
->stats
.ruc
+ adapter
->stats
.roc
+
4009 adapter
->stats
.cexterr
;
4010 netdev
->stats
.rx_length_errors
= adapter
->stats
.ruc
+
4012 netdev
->stats
.rx_crc_errors
= adapter
->stats
.crcerrs
;
4013 netdev
->stats
.rx_frame_errors
= adapter
->stats
.algnerrc
;
4014 netdev
->stats
.rx_missed_errors
= adapter
->stats
.mpc
;
4017 netdev
->stats
.tx_errors
= adapter
->stats
.ecol
+
4018 adapter
->stats
.latecol
;
4019 netdev
->stats
.tx_aborted_errors
= adapter
->stats
.ecol
;
4020 netdev
->stats
.tx_window_errors
= adapter
->stats
.latecol
;
4021 netdev
->stats
.tx_carrier_errors
= adapter
->stats
.tncrs
;
4023 /* Tx Dropped needs to be maintained elsewhere */
4025 /* Management Stats */
4026 adapter
->stats
.mgptc
+= er32(MGTPTC
);
4027 adapter
->stats
.mgprc
+= er32(MGTPRC
);
4028 adapter
->stats
.mgpdc
+= er32(MGTPDC
);
4032 * e1000_phy_read_status - Update the PHY register status snapshot
4033 * @adapter: board private structure
4035 static void e1000_phy_read_status(struct e1000_adapter
*adapter
)
4037 struct e1000_hw
*hw
= &adapter
->hw
;
4038 struct e1000_phy_regs
*phy
= &adapter
->phy_regs
;
4040 if ((er32(STATUS
) & E1000_STATUS_LU
) &&
4041 (adapter
->hw
.phy
.media_type
== e1000_media_type_copper
)) {
4044 ret_val
= e1e_rphy(hw
, PHY_CONTROL
, &phy
->bmcr
);
4045 ret_val
|= e1e_rphy(hw
, PHY_STATUS
, &phy
->bmsr
);
4046 ret_val
|= e1e_rphy(hw
, PHY_AUTONEG_ADV
, &phy
->advertise
);
4047 ret_val
|= e1e_rphy(hw
, PHY_LP_ABILITY
, &phy
->lpa
);
4048 ret_val
|= e1e_rphy(hw
, PHY_AUTONEG_EXP
, &phy
->expansion
);
4049 ret_val
|= e1e_rphy(hw
, PHY_1000T_CTRL
, &phy
->ctrl1000
);
4050 ret_val
|= e1e_rphy(hw
, PHY_1000T_STATUS
, &phy
->stat1000
);
4051 ret_val
|= e1e_rphy(hw
, PHY_EXT_STATUS
, &phy
->estatus
);
4053 e_warn("Error reading PHY register\n");
4056 * Do not read PHY registers if link is not up
4057 * Set values to typical power-on defaults
4059 phy
->bmcr
= (BMCR_SPEED1000
| BMCR_ANENABLE
| BMCR_FULLDPLX
);
4060 phy
->bmsr
= (BMSR_100FULL
| BMSR_100HALF
| BMSR_10FULL
|
4061 BMSR_10HALF
| BMSR_ESTATEN
| BMSR_ANEGCAPABLE
|
4063 phy
->advertise
= (ADVERTISE_PAUSE_ASYM
| ADVERTISE_PAUSE_CAP
|
4064 ADVERTISE_ALL
| ADVERTISE_CSMA
);
4066 phy
->expansion
= EXPANSION_ENABLENPAGE
;
4067 phy
->ctrl1000
= ADVERTISE_1000FULL
;
4069 phy
->estatus
= (ESTATUS_1000_TFULL
| ESTATUS_1000_THALF
);
4073 static void e1000_print_link_info(struct e1000_adapter
*adapter
)
4075 struct e1000_hw
*hw
= &adapter
->hw
;
4076 u32 ctrl
= er32(CTRL
);
4078 /* Link status message must follow this format for user tools */
4079 printk(KERN_INFO
"e1000e: %s NIC Link is Up %d Mbps %s, "
4080 "Flow Control: %s\n",
4081 adapter
->netdev
->name
,
4082 adapter
->link_speed
,
4083 (adapter
->link_duplex
== FULL_DUPLEX
) ?
4084 "Full Duplex" : "Half Duplex",
4085 ((ctrl
& E1000_CTRL_TFCE
) && (ctrl
& E1000_CTRL_RFCE
)) ?
4087 ((ctrl
& E1000_CTRL_RFCE
) ? "Rx" :
4088 ((ctrl
& E1000_CTRL_TFCE
) ? "Tx" : "None")));
4091 static bool e1000e_has_link(struct e1000_adapter
*adapter
)
4093 struct e1000_hw
*hw
= &adapter
->hw
;
4094 bool link_active
= 0;
4098 * get_link_status is set on LSC (link status) interrupt or
4099 * Rx sequence error interrupt. get_link_status will stay
4100 * false until the check_for_link establishes link
4101 * for copper adapters ONLY
4103 switch (hw
->phy
.media_type
) {
4104 case e1000_media_type_copper
:
4105 if (hw
->mac
.get_link_status
) {
4106 ret_val
= hw
->mac
.ops
.check_for_link(hw
);
4107 link_active
= !hw
->mac
.get_link_status
;
4112 case e1000_media_type_fiber
:
4113 ret_val
= hw
->mac
.ops
.check_for_link(hw
);
4114 link_active
= !!(er32(STATUS
) & E1000_STATUS_LU
);
4116 case e1000_media_type_internal_serdes
:
4117 ret_val
= hw
->mac
.ops
.check_for_link(hw
);
4118 link_active
= adapter
->hw
.mac
.serdes_has_link
;
4121 case e1000_media_type_unknown
:
4125 if ((ret_val
== E1000_ERR_PHY
) && (hw
->phy
.type
== e1000_phy_igp_3
) &&
4126 (er32(CTRL
) & E1000_PHY_CTRL_GBE_DISABLE
)) {
4127 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
4128 e_info("Gigabit has been disabled, downgrading speed\n");
4134 static void e1000e_enable_receives(struct e1000_adapter
*adapter
)
4136 /* make sure the receive unit is started */
4137 if ((adapter
->flags
& FLAG_RX_NEEDS_RESTART
) &&
4138 (adapter
->flags
& FLAG_RX_RESTART_NOW
)) {
4139 struct e1000_hw
*hw
= &adapter
->hw
;
4140 u32 rctl
= er32(RCTL
);
4141 ew32(RCTL
, rctl
| E1000_RCTL_EN
);
4142 adapter
->flags
&= ~FLAG_RX_RESTART_NOW
;
4146 static void e1000e_check_82574_phy_workaround(struct e1000_adapter
*adapter
)
4148 struct e1000_hw
*hw
= &adapter
->hw
;
4151 * With 82574 controllers, PHY needs to be checked periodically
4152 * for hung state and reset, if two calls return true
4154 if (e1000_check_phy_82574(hw
))
4155 adapter
->phy_hang_count
++;
4157 adapter
->phy_hang_count
= 0;
4159 if (adapter
->phy_hang_count
> 1) {
4160 adapter
->phy_hang_count
= 0;
4161 schedule_work(&adapter
->reset_task
);
4166 * e1000_watchdog - Timer Call-back
4167 * @data: pointer to adapter cast into an unsigned long
4169 static void e1000_watchdog(unsigned long data
)
4171 struct e1000_adapter
*adapter
= (struct e1000_adapter
*) data
;
4173 /* Do the rest outside of interrupt context */
4174 schedule_work(&adapter
->watchdog_task
);
4176 /* TODO: make this use queue_delayed_work() */
4179 static void e1000_watchdog_task(struct work_struct
*work
)
4181 struct e1000_adapter
*adapter
= container_of(work
,
4182 struct e1000_adapter
, watchdog_task
);
4183 struct net_device
*netdev
= adapter
->netdev
;
4184 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
4185 struct e1000_phy_info
*phy
= &adapter
->hw
.phy
;
4186 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
4187 struct e1000_hw
*hw
= &adapter
->hw
;
4190 if (test_bit(__E1000_DOWN
, &adapter
->state
))
4193 link
= e1000e_has_link(adapter
);
4194 if ((netif_carrier_ok(netdev
)) && link
) {
4195 /* Cancel scheduled suspend requests. */
4196 pm_runtime_resume(netdev
->dev
.parent
);
4198 e1000e_enable_receives(adapter
);
4202 if ((e1000e_enable_tx_pkt_filtering(hw
)) &&
4203 (adapter
->mng_vlan_id
!= adapter
->hw
.mng_cookie
.vlan_id
))
4204 e1000_update_mng_vlan(adapter
);
4207 if (!netif_carrier_ok(netdev
)) {
4210 /* Cancel scheduled suspend requests. */
4211 pm_runtime_resume(netdev
->dev
.parent
);
4213 /* update snapshot of PHY registers on LSC */
4214 e1000_phy_read_status(adapter
);
4215 mac
->ops
.get_link_up_info(&adapter
->hw
,
4216 &adapter
->link_speed
,
4217 &adapter
->link_duplex
);
4218 e1000_print_link_info(adapter
);
4220 * On supported PHYs, check for duplex mismatch only
4221 * if link has autonegotiated at 10/100 half
4223 if ((hw
->phy
.type
== e1000_phy_igp_3
||
4224 hw
->phy
.type
== e1000_phy_bm
) &&
4225 (hw
->mac
.autoneg
== true) &&
4226 (adapter
->link_speed
== SPEED_10
||
4227 adapter
->link_speed
== SPEED_100
) &&
4228 (adapter
->link_duplex
== HALF_DUPLEX
)) {
4231 e1e_rphy(hw
, PHY_AUTONEG_EXP
, &autoneg_exp
);
4233 if (!(autoneg_exp
& NWAY_ER_LP_NWAY_CAPS
))
4234 e_info("Autonegotiated half duplex but"
4235 " link partner cannot autoneg. "
4236 " Try forcing full duplex if "
4237 "link gets many collisions.\n");
4240 /* adjust timeout factor according to speed/duplex */
4241 adapter
->tx_timeout_factor
= 1;
4242 switch (adapter
->link_speed
) {
4245 adapter
->tx_timeout_factor
= 16;
4249 adapter
->tx_timeout_factor
= 10;
4254 * workaround: re-program speed mode bit after
4257 if ((adapter
->flags
& FLAG_TARC_SPEED_MODE_BIT
) &&
4260 tarc0
= er32(TARC(0));
4261 tarc0
&= ~SPEED_MODE_BIT
;
4262 ew32(TARC(0), tarc0
);
4266 * disable TSO for pcie and 10/100 speeds, to avoid
4267 * some hardware issues
4269 if (!(adapter
->flags
& FLAG_TSO_FORCE
)) {
4270 switch (adapter
->link_speed
) {
4273 e_info("10/100 speed: disabling TSO\n");
4274 netdev
->features
&= ~NETIF_F_TSO
;
4275 netdev
->features
&= ~NETIF_F_TSO6
;
4278 netdev
->features
|= NETIF_F_TSO
;
4279 netdev
->features
|= NETIF_F_TSO6
;
4288 * enable transmits in the hardware, need to do this
4289 * after setting TARC(0)
4292 tctl
|= E1000_TCTL_EN
;
4296 * Perform any post-link-up configuration before
4297 * reporting link up.
4299 if (phy
->ops
.cfg_on_link_up
)
4300 phy
->ops
.cfg_on_link_up(hw
);
4302 netif_carrier_on(netdev
);
4304 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
4305 mod_timer(&adapter
->phy_info_timer
,
4306 round_jiffies(jiffies
+ 2 * HZ
));
4309 if (netif_carrier_ok(netdev
)) {
4310 adapter
->link_speed
= 0;
4311 adapter
->link_duplex
= 0;
4312 /* Link status message must follow this format */
4313 printk(KERN_INFO
"e1000e: %s NIC Link is Down\n",
4314 adapter
->netdev
->name
);
4315 netif_carrier_off(netdev
);
4316 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
4317 mod_timer(&adapter
->phy_info_timer
,
4318 round_jiffies(jiffies
+ 2 * HZ
));
4320 if (adapter
->flags
& FLAG_RX_NEEDS_RESTART
)
4321 schedule_work(&adapter
->reset_task
);
4323 pm_schedule_suspend(netdev
->dev
.parent
,
4329 spin_lock(&adapter
->stats64_lock
);
4330 e1000e_update_stats(adapter
);
4331 spin_unlock(&adapter
->stats64_lock
);
4333 mac
->tx_packet_delta
= adapter
->stats
.tpt
- adapter
->tpt_old
;
4334 adapter
->tpt_old
= adapter
->stats
.tpt
;
4335 mac
->collision_delta
= adapter
->stats
.colc
- adapter
->colc_old
;
4336 adapter
->colc_old
= adapter
->stats
.colc
;
4338 adapter
->gorc
= adapter
->stats
.gorc
- adapter
->gorc_old
;
4339 adapter
->gorc_old
= adapter
->stats
.gorc
;
4340 adapter
->gotc
= adapter
->stats
.gotc
- adapter
->gotc_old
;
4341 adapter
->gotc_old
= adapter
->stats
.gotc
;
4343 e1000e_update_adaptive(&adapter
->hw
);
4345 if (!netif_carrier_ok(netdev
) &&
4346 (e1000_desc_unused(tx_ring
) + 1 < tx_ring
->count
)) {
4348 * We've lost link, so the controller stops DMA,
4349 * but we've got queued Tx work that's never going
4350 * to get done, so reset controller to flush Tx.
4351 * (Do the reset outside of interrupt context).
4353 schedule_work(&adapter
->reset_task
);
4354 /* return immediately since reset is imminent */
4358 /* Simple mode for Interrupt Throttle Rate (ITR) */
4359 if (adapter
->itr_setting
== 4) {
4361 * Symmetric Tx/Rx gets a reduced ITR=2000;
4362 * Total asymmetrical Tx or Rx gets ITR=8000;
4363 * everyone else is between 2000-8000.
4365 u32 goc
= (adapter
->gotc
+ adapter
->gorc
) / 10000;
4366 u32 dif
= (adapter
->gotc
> adapter
->gorc
?
4367 adapter
->gotc
- adapter
->gorc
:
4368 adapter
->gorc
- adapter
->gotc
) / 10000;
4369 u32 itr
= goc
> 0 ? (dif
* 6000 / goc
+ 2000) : 8000;
4371 ew32(ITR
, 1000000000 / (itr
* 256));
4374 /* Cause software interrupt to ensure Rx ring is cleaned */
4375 if (adapter
->msix_entries
)
4376 ew32(ICS
, adapter
->rx_ring
->ims_val
);
4378 ew32(ICS
, E1000_ICS_RXDMT0
);
4380 /* flush pending descriptors to memory before detecting Tx hang */
4381 e1000e_flush_descriptors(adapter
);
4383 /* Force detection of hung controller every watchdog period */
4384 adapter
->detect_tx_hung
= 1;
4387 * With 82571 controllers, LAA may be overwritten due to controller
4388 * reset from the other port. Set the appropriate LAA in RAR[0]
4390 if (e1000e_get_laa_state_82571(hw
))
4391 e1000e_rar_set(hw
, adapter
->hw
.mac
.addr
, 0);
4393 if (adapter
->flags2
& FLAG2_CHECK_PHY_HANG
)
4394 e1000e_check_82574_phy_workaround(adapter
);
4396 /* Reset the timer */
4397 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
4398 mod_timer(&adapter
->watchdog_timer
,
4399 round_jiffies(jiffies
+ 2 * HZ
));
4402 #define E1000_TX_FLAGS_CSUM 0x00000001
4403 #define E1000_TX_FLAGS_VLAN 0x00000002
4404 #define E1000_TX_FLAGS_TSO 0x00000004
4405 #define E1000_TX_FLAGS_IPV4 0x00000008
4406 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
4407 #define E1000_TX_FLAGS_VLAN_SHIFT 16
4409 static int e1000_tso(struct e1000_adapter
*adapter
,
4410 struct sk_buff
*skb
)
4412 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
4413 struct e1000_context_desc
*context_desc
;
4414 struct e1000_buffer
*buffer_info
;
4417 u16 ipcse
= 0, tucse
, mss
;
4418 u8 ipcss
, ipcso
, tucss
, tucso
, hdr_len
;
4420 if (!skb_is_gso(skb
))
4423 if (skb_header_cloned(skb
)) {
4424 int err
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
4430 hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
4431 mss
= skb_shinfo(skb
)->gso_size
;
4432 if (skb
->protocol
== htons(ETH_P_IP
)) {
4433 struct iphdr
*iph
= ip_hdr(skb
);
4436 tcp_hdr(skb
)->check
= ~csum_tcpudp_magic(iph
->saddr
, iph
->daddr
,
4438 cmd_length
= E1000_TXD_CMD_IP
;
4439 ipcse
= skb_transport_offset(skb
) - 1;
4440 } else if (skb_is_gso_v6(skb
)) {
4441 ipv6_hdr(skb
)->payload_len
= 0;
4442 tcp_hdr(skb
)->check
= ~csum_ipv6_magic(&ipv6_hdr(skb
)->saddr
,
4443 &ipv6_hdr(skb
)->daddr
,
4447 ipcss
= skb_network_offset(skb
);
4448 ipcso
= (void *)&(ip_hdr(skb
)->check
) - (void *)skb
->data
;
4449 tucss
= skb_transport_offset(skb
);
4450 tucso
= (void *)&(tcp_hdr(skb
)->check
) - (void *)skb
->data
;
4453 cmd_length
|= (E1000_TXD_CMD_DEXT
| E1000_TXD_CMD_TSE
|
4454 E1000_TXD_CMD_TCP
| (skb
->len
- (hdr_len
)));
4456 i
= tx_ring
->next_to_use
;
4457 context_desc
= E1000_CONTEXT_DESC(*tx_ring
, i
);
4458 buffer_info
= &tx_ring
->buffer_info
[i
];
4460 context_desc
->lower_setup
.ip_fields
.ipcss
= ipcss
;
4461 context_desc
->lower_setup
.ip_fields
.ipcso
= ipcso
;
4462 context_desc
->lower_setup
.ip_fields
.ipcse
= cpu_to_le16(ipcse
);
4463 context_desc
->upper_setup
.tcp_fields
.tucss
= tucss
;
4464 context_desc
->upper_setup
.tcp_fields
.tucso
= tucso
;
4465 context_desc
->upper_setup
.tcp_fields
.tucse
= cpu_to_le16(tucse
);
4466 context_desc
->tcp_seg_setup
.fields
.mss
= cpu_to_le16(mss
);
4467 context_desc
->tcp_seg_setup
.fields
.hdr_len
= hdr_len
;
4468 context_desc
->cmd_and_length
= cpu_to_le32(cmd_length
);
4470 buffer_info
->time_stamp
= jiffies
;
4471 buffer_info
->next_to_watch
= i
;
4474 if (i
== tx_ring
->count
)
4476 tx_ring
->next_to_use
= i
;
4481 static bool e1000_tx_csum(struct e1000_adapter
*adapter
, struct sk_buff
*skb
)
4483 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
4484 struct e1000_context_desc
*context_desc
;
4485 struct e1000_buffer
*buffer_info
;
4488 u32 cmd_len
= E1000_TXD_CMD_DEXT
;
4491 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
)
4494 if (skb
->protocol
== cpu_to_be16(ETH_P_8021Q
))
4495 protocol
= vlan_eth_hdr(skb
)->h_vlan_encapsulated_proto
;
4497 protocol
= skb
->protocol
;
4500 case cpu_to_be16(ETH_P_IP
):
4501 if (ip_hdr(skb
)->protocol
== IPPROTO_TCP
)
4502 cmd_len
|= E1000_TXD_CMD_TCP
;
4504 case cpu_to_be16(ETH_P_IPV6
):
4505 /* XXX not handling all IPV6 headers */
4506 if (ipv6_hdr(skb
)->nexthdr
== IPPROTO_TCP
)
4507 cmd_len
|= E1000_TXD_CMD_TCP
;
4510 if (unlikely(net_ratelimit()))
4511 e_warn("checksum_partial proto=%x!\n",
4512 be16_to_cpu(protocol
));
4516 css
= skb_checksum_start_offset(skb
);
4518 i
= tx_ring
->next_to_use
;
4519 buffer_info
= &tx_ring
->buffer_info
[i
];
4520 context_desc
= E1000_CONTEXT_DESC(*tx_ring
, i
);
4522 context_desc
->lower_setup
.ip_config
= 0;
4523 context_desc
->upper_setup
.tcp_fields
.tucss
= css
;
4524 context_desc
->upper_setup
.tcp_fields
.tucso
=
4525 css
+ skb
->csum_offset
;
4526 context_desc
->upper_setup
.tcp_fields
.tucse
= 0;
4527 context_desc
->tcp_seg_setup
.data
= 0;
4528 context_desc
->cmd_and_length
= cpu_to_le32(cmd_len
);
4530 buffer_info
->time_stamp
= jiffies
;
4531 buffer_info
->next_to_watch
= i
;
4534 if (i
== tx_ring
->count
)
4536 tx_ring
->next_to_use
= i
;
4541 #define E1000_MAX_PER_TXD 8192
4542 #define E1000_MAX_TXD_PWR 12
4544 static int e1000_tx_map(struct e1000_adapter
*adapter
,
4545 struct sk_buff
*skb
, unsigned int first
,
4546 unsigned int max_per_txd
, unsigned int nr_frags
,
4549 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
4550 struct pci_dev
*pdev
= adapter
->pdev
;
4551 struct e1000_buffer
*buffer_info
;
4552 unsigned int len
= skb_headlen(skb
);
4553 unsigned int offset
= 0, size
, count
= 0, i
;
4554 unsigned int f
, bytecount
, segs
;
4556 i
= tx_ring
->next_to_use
;
4559 buffer_info
= &tx_ring
->buffer_info
[i
];
4560 size
= min(len
, max_per_txd
);
4562 buffer_info
->length
= size
;
4563 buffer_info
->time_stamp
= jiffies
;
4564 buffer_info
->next_to_watch
= i
;
4565 buffer_info
->dma
= dma_map_single(&pdev
->dev
,
4567 size
, DMA_TO_DEVICE
);
4568 buffer_info
->mapped_as_page
= false;
4569 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
))
4578 if (i
== tx_ring
->count
)
4583 for (f
= 0; f
< nr_frags
; f
++) {
4584 struct skb_frag_struct
*frag
;
4586 frag
= &skb_shinfo(skb
)->frags
[f
];
4588 offset
= frag
->page_offset
;
4592 if (i
== tx_ring
->count
)
4595 buffer_info
= &tx_ring
->buffer_info
[i
];
4596 size
= min(len
, max_per_txd
);
4598 buffer_info
->length
= size
;
4599 buffer_info
->time_stamp
= jiffies
;
4600 buffer_info
->next_to_watch
= i
;
4601 buffer_info
->dma
= dma_map_page(&pdev
->dev
, frag
->page
,
4604 buffer_info
->mapped_as_page
= true;
4605 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
))
4614 segs
= skb_shinfo(skb
)->gso_segs
? : 1;
4615 /* multiply data chunks by size of headers */
4616 bytecount
= ((segs
- 1) * skb_headlen(skb
)) + skb
->len
;
4618 tx_ring
->buffer_info
[i
].skb
= skb
;
4619 tx_ring
->buffer_info
[i
].segs
= segs
;
4620 tx_ring
->buffer_info
[i
].bytecount
= bytecount
;
4621 tx_ring
->buffer_info
[first
].next_to_watch
= i
;
4626 dev_err(&pdev
->dev
, "Tx DMA map failed\n");
4627 buffer_info
->dma
= 0;
4633 i
+= tx_ring
->count
;
4635 buffer_info
= &tx_ring
->buffer_info
[i
];
4636 e1000_put_txbuf(adapter
, buffer_info
);
4642 static void e1000_tx_queue(struct e1000_adapter
*adapter
,
4643 int tx_flags
, int count
)
4645 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
4646 struct e1000_tx_desc
*tx_desc
= NULL
;
4647 struct e1000_buffer
*buffer_info
;
4648 u32 txd_upper
= 0, txd_lower
= E1000_TXD_CMD_IFCS
;
4651 if (tx_flags
& E1000_TX_FLAGS_TSO
) {
4652 txd_lower
|= E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
|
4654 txd_upper
|= E1000_TXD_POPTS_TXSM
<< 8;
4656 if (tx_flags
& E1000_TX_FLAGS_IPV4
)
4657 txd_upper
|= E1000_TXD_POPTS_IXSM
<< 8;
4660 if (tx_flags
& E1000_TX_FLAGS_CSUM
) {
4661 txd_lower
|= E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
;
4662 txd_upper
|= E1000_TXD_POPTS_TXSM
<< 8;
4665 if (tx_flags
& E1000_TX_FLAGS_VLAN
) {
4666 txd_lower
|= E1000_TXD_CMD_VLE
;
4667 txd_upper
|= (tx_flags
& E1000_TX_FLAGS_VLAN_MASK
);
4670 i
= tx_ring
->next_to_use
;
4673 buffer_info
= &tx_ring
->buffer_info
[i
];
4674 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
4675 tx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
4676 tx_desc
->lower
.data
=
4677 cpu_to_le32(txd_lower
| buffer_info
->length
);
4678 tx_desc
->upper
.data
= cpu_to_le32(txd_upper
);
4681 if (i
== tx_ring
->count
)
4683 } while (--count
> 0);
4685 tx_desc
->lower
.data
|= cpu_to_le32(adapter
->txd_cmd
);
4688 * Force memory writes to complete before letting h/w
4689 * know there are new descriptors to fetch. (Only
4690 * applicable for weak-ordered memory model archs,
4695 tx_ring
->next_to_use
= i
;
4696 writel(i
, adapter
->hw
.hw_addr
+ tx_ring
->tail
);
4698 * we need this if more than one processor can write to our tail
4699 * at a time, it synchronizes IO on IA64/Altix systems
4704 #define MINIMUM_DHCP_PACKET_SIZE 282
4705 static int e1000_transfer_dhcp_info(struct e1000_adapter
*adapter
,
4706 struct sk_buff
*skb
)
4708 struct e1000_hw
*hw
= &adapter
->hw
;
4711 if (vlan_tx_tag_present(skb
)) {
4712 if (!((vlan_tx_tag_get(skb
) == adapter
->hw
.mng_cookie
.vlan_id
) &&
4713 (adapter
->hw
.mng_cookie
.status
&
4714 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
)))
4718 if (skb
->len
<= MINIMUM_DHCP_PACKET_SIZE
)
4721 if (((struct ethhdr
*) skb
->data
)->h_proto
!= htons(ETH_P_IP
))
4725 const struct iphdr
*ip
= (struct iphdr
*)((u8
*)skb
->data
+14);
4728 if (ip
->protocol
!= IPPROTO_UDP
)
4731 udp
= (struct udphdr
*)((u8
*)ip
+ (ip
->ihl
<< 2));
4732 if (ntohs(udp
->dest
) != 67)
4735 offset
= (u8
*)udp
+ 8 - skb
->data
;
4736 length
= skb
->len
- offset
;
4737 return e1000e_mng_write_dhcp_info(hw
, (u8
*)udp
+ 8, length
);
4743 static int __e1000_maybe_stop_tx(struct net_device
*netdev
, int size
)
4745 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4747 netif_stop_queue(netdev
);
4749 * Herbert's original patch had:
4750 * smp_mb__after_netif_stop_queue();
4751 * but since that doesn't exist yet, just open code it.
4756 * We need to check again in a case another CPU has just
4757 * made room available.
4759 if (e1000_desc_unused(adapter
->tx_ring
) < size
)
4763 netif_start_queue(netdev
);
4764 ++adapter
->restart_queue
;
4768 static int e1000_maybe_stop_tx(struct net_device
*netdev
, int size
)
4770 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4772 if (e1000_desc_unused(adapter
->tx_ring
) >= size
)
4774 return __e1000_maybe_stop_tx(netdev
, size
);
4777 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
4778 static netdev_tx_t
e1000_xmit_frame(struct sk_buff
*skb
,
4779 struct net_device
*netdev
)
4781 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4782 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
4784 unsigned int max_per_txd
= E1000_MAX_PER_TXD
;
4785 unsigned int max_txd_pwr
= E1000_MAX_TXD_PWR
;
4786 unsigned int tx_flags
= 0;
4787 unsigned int len
= skb_headlen(skb
);
4788 unsigned int nr_frags
;
4794 if (test_bit(__E1000_DOWN
, &adapter
->state
)) {
4795 dev_kfree_skb_any(skb
);
4796 return NETDEV_TX_OK
;
4799 if (skb
->len
<= 0) {
4800 dev_kfree_skb_any(skb
);
4801 return NETDEV_TX_OK
;
4804 mss
= skb_shinfo(skb
)->gso_size
;
4806 * The controller does a simple calculation to
4807 * make sure there is enough room in the FIFO before
4808 * initiating the DMA for each buffer. The calc is:
4809 * 4 = ceil(buffer len/mss). To make sure we don't
4810 * overrun the FIFO, adjust the max buffer len if mss
4815 max_per_txd
= min(mss
<< 2, max_per_txd
);
4816 max_txd_pwr
= fls(max_per_txd
) - 1;
4819 * TSO Workaround for 82571/2/3 Controllers -- if skb->data
4820 * points to just header, pull a few bytes of payload from
4821 * frags into skb->data
4823 hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
4825 * we do this workaround for ES2LAN, but it is un-necessary,
4826 * avoiding it could save a lot of cycles
4828 if (skb
->data_len
&& (hdr_len
== len
)) {
4829 unsigned int pull_size
;
4831 pull_size
= min((unsigned int)4, skb
->data_len
);
4832 if (!__pskb_pull_tail(skb
, pull_size
)) {
4833 e_err("__pskb_pull_tail failed.\n");
4834 dev_kfree_skb_any(skb
);
4835 return NETDEV_TX_OK
;
4837 len
= skb_headlen(skb
);
4841 /* reserve a descriptor for the offload context */
4842 if ((mss
) || (skb
->ip_summed
== CHECKSUM_PARTIAL
))
4846 count
+= TXD_USE_COUNT(len
, max_txd_pwr
);
4848 nr_frags
= skb_shinfo(skb
)->nr_frags
;
4849 for (f
= 0; f
< nr_frags
; f
++)
4850 count
+= TXD_USE_COUNT(skb_shinfo(skb
)->frags
[f
].size
,
4853 if (adapter
->hw
.mac
.tx_pkt_filtering
)
4854 e1000_transfer_dhcp_info(adapter
, skb
);
4857 * need: count + 2 desc gap to keep tail from touching
4858 * head, otherwise try next time
4860 if (e1000_maybe_stop_tx(netdev
, count
+ 2))
4861 return NETDEV_TX_BUSY
;
4863 if (vlan_tx_tag_present(skb
)) {
4864 tx_flags
|= E1000_TX_FLAGS_VLAN
;
4865 tx_flags
|= (vlan_tx_tag_get(skb
) << E1000_TX_FLAGS_VLAN_SHIFT
);
4868 first
= tx_ring
->next_to_use
;
4870 tso
= e1000_tso(adapter
, skb
);
4872 dev_kfree_skb_any(skb
);
4873 return NETDEV_TX_OK
;
4877 tx_flags
|= E1000_TX_FLAGS_TSO
;
4878 else if (e1000_tx_csum(adapter
, skb
))
4879 tx_flags
|= E1000_TX_FLAGS_CSUM
;
4882 * Old method was to assume IPv4 packet by default if TSO was enabled.
4883 * 82571 hardware supports TSO capabilities for IPv6 as well...
4884 * no longer assume, we must.
4886 if (skb
->protocol
== htons(ETH_P_IP
))
4887 tx_flags
|= E1000_TX_FLAGS_IPV4
;
4889 /* if count is 0 then mapping error has occured */
4890 count
= e1000_tx_map(adapter
, skb
, first
, max_per_txd
, nr_frags
, mss
);
4892 e1000_tx_queue(adapter
, tx_flags
, count
);
4893 /* Make sure there is space in the ring for the next send. */
4894 e1000_maybe_stop_tx(netdev
, MAX_SKB_FRAGS
+ 2);
4897 dev_kfree_skb_any(skb
);
4898 tx_ring
->buffer_info
[first
].time_stamp
= 0;
4899 tx_ring
->next_to_use
= first
;
4902 return NETDEV_TX_OK
;
4906 * e1000_tx_timeout - Respond to a Tx Hang
4907 * @netdev: network interface device structure
4909 static void e1000_tx_timeout(struct net_device
*netdev
)
4911 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4913 /* Do the reset outside of interrupt context */
4914 adapter
->tx_timeout_count
++;
4915 schedule_work(&adapter
->reset_task
);
4918 static void e1000_reset_task(struct work_struct
*work
)
4920 struct e1000_adapter
*adapter
;
4921 adapter
= container_of(work
, struct e1000_adapter
, reset_task
);
4923 /* don't run the task if already down */
4924 if (test_bit(__E1000_DOWN
, &adapter
->state
))
4927 if (!((adapter
->flags
& FLAG_RX_NEEDS_RESTART
) &&
4928 (adapter
->flags
& FLAG_RX_RESTART_NOW
))) {
4929 e1000e_dump(adapter
);
4930 e_err("Reset adapter\n");
4932 e1000e_reinit_locked(adapter
);
4936 * e1000_get_stats64 - Get System Network Statistics
4937 * @netdev: network interface device structure
4938 * @stats: rtnl_link_stats64 pointer
4940 * Returns the address of the device statistics structure.
4942 struct rtnl_link_stats64
*e1000e_get_stats64(struct net_device
*netdev
,
4943 struct rtnl_link_stats64
*stats
)
4945 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4947 memset(stats
, 0, sizeof(struct rtnl_link_stats64
));
4948 spin_lock(&adapter
->stats64_lock
);
4949 e1000e_update_stats(adapter
);
4950 /* Fill out the OS statistics structure */
4951 stats
->rx_bytes
= adapter
->stats
.gorc
;
4952 stats
->rx_packets
= adapter
->stats
.gprc
;
4953 stats
->tx_bytes
= adapter
->stats
.gotc
;
4954 stats
->tx_packets
= adapter
->stats
.gptc
;
4955 stats
->multicast
= adapter
->stats
.mprc
;
4956 stats
->collisions
= adapter
->stats
.colc
;
4961 * RLEC on some newer hardware can be incorrect so build
4962 * our own version based on RUC and ROC
4964 stats
->rx_errors
= adapter
->stats
.rxerrc
+
4965 adapter
->stats
.crcerrs
+ adapter
->stats
.algnerrc
+
4966 adapter
->stats
.ruc
+ adapter
->stats
.roc
+
4967 adapter
->stats
.cexterr
;
4968 stats
->rx_length_errors
= adapter
->stats
.ruc
+
4970 stats
->rx_crc_errors
= adapter
->stats
.crcerrs
;
4971 stats
->rx_frame_errors
= adapter
->stats
.algnerrc
;
4972 stats
->rx_missed_errors
= adapter
->stats
.mpc
;
4975 stats
->tx_errors
= adapter
->stats
.ecol
+
4976 adapter
->stats
.latecol
;
4977 stats
->tx_aborted_errors
= adapter
->stats
.ecol
;
4978 stats
->tx_window_errors
= adapter
->stats
.latecol
;
4979 stats
->tx_carrier_errors
= adapter
->stats
.tncrs
;
4981 /* Tx Dropped needs to be maintained elsewhere */
4983 spin_unlock(&adapter
->stats64_lock
);
4988 * e1000_change_mtu - Change the Maximum Transfer Unit
4989 * @netdev: network interface device structure
4990 * @new_mtu: new value for maximum frame size
4992 * Returns 0 on success, negative on failure
4994 static int e1000_change_mtu(struct net_device
*netdev
, int new_mtu
)
4996 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4997 int max_frame
= new_mtu
+ ETH_HLEN
+ ETH_FCS_LEN
;
4999 /* Jumbo frame support */
5000 if ((max_frame
> ETH_FRAME_LEN
+ ETH_FCS_LEN
) &&
5001 !(adapter
->flags
& FLAG_HAS_JUMBO_FRAMES
)) {
5002 e_err("Jumbo Frames not supported.\n");
5006 /* Supported frame sizes */
5007 if ((new_mtu
< ETH_ZLEN
+ ETH_FCS_LEN
+ VLAN_HLEN
) ||
5008 (max_frame
> adapter
->max_hw_frame_size
)) {
5009 e_err("Unsupported MTU setting\n");
5013 /* Jumbo frame workaround on 82579 requires CRC be stripped */
5014 if ((adapter
->hw
.mac
.type
== e1000_pch2lan
) &&
5015 !(adapter
->flags2
& FLAG2_CRC_STRIPPING
) &&
5016 (new_mtu
> ETH_DATA_LEN
)) {
5017 e_err("Jumbo Frames not supported on 82579 when CRC "
5018 "stripping is disabled.\n");
5022 /* 82573 Errata 17 */
5023 if (((adapter
->hw
.mac
.type
== e1000_82573
) ||
5024 (adapter
->hw
.mac
.type
== e1000_82574
)) &&
5025 (max_frame
> ETH_FRAME_LEN
+ ETH_FCS_LEN
)) {
5026 adapter
->flags2
|= FLAG2_DISABLE_ASPM_L1
;
5027 e1000e_disable_aspm(adapter
->pdev
, PCIE_LINK_STATE_L1
);
5030 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->state
))
5032 /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
5033 adapter
->max_frame_size
= max_frame
;
5034 e_info("changing MTU from %d to %d\n", netdev
->mtu
, new_mtu
);
5035 netdev
->mtu
= new_mtu
;
5036 if (netif_running(netdev
))
5037 e1000e_down(adapter
);
5040 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
5041 * means we reserve 2 more, this pushes us to allocate from the next
5043 * i.e. RXBUFFER_2048 --> size-4096 slab
5044 * However with the new *_jumbo_rx* routines, jumbo receives will use
5048 if (max_frame
<= 2048)
5049 adapter
->rx_buffer_len
= 2048;
5051 adapter
->rx_buffer_len
= 4096;
5053 /* adjust allocation if LPE protects us, and we aren't using SBP */
5054 if ((max_frame
== ETH_FRAME_LEN
+ ETH_FCS_LEN
) ||
5055 (max_frame
== ETH_FRAME_LEN
+ VLAN_HLEN
+ ETH_FCS_LEN
))
5056 adapter
->rx_buffer_len
= ETH_FRAME_LEN
+ VLAN_HLEN
5059 if (netif_running(netdev
))
5062 e1000e_reset(adapter
);
5064 clear_bit(__E1000_RESETTING
, &adapter
->state
);
5069 static int e1000_mii_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
,
5072 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5073 struct mii_ioctl_data
*data
= if_mii(ifr
);
5075 if (adapter
->hw
.phy
.media_type
!= e1000_media_type_copper
)
5080 data
->phy_id
= adapter
->hw
.phy
.addr
;
5083 e1000_phy_read_status(adapter
);
5085 switch (data
->reg_num
& 0x1F) {
5087 data
->val_out
= adapter
->phy_regs
.bmcr
;
5090 data
->val_out
= adapter
->phy_regs
.bmsr
;
5093 data
->val_out
= (adapter
->hw
.phy
.id
>> 16);
5096 data
->val_out
= (adapter
->hw
.phy
.id
& 0xFFFF);
5099 data
->val_out
= adapter
->phy_regs
.advertise
;
5102 data
->val_out
= adapter
->phy_regs
.lpa
;
5105 data
->val_out
= adapter
->phy_regs
.expansion
;
5108 data
->val_out
= adapter
->phy_regs
.ctrl1000
;
5111 data
->val_out
= adapter
->phy_regs
.stat1000
;
5114 data
->val_out
= adapter
->phy_regs
.estatus
;
5127 static int e1000_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
5133 return e1000_mii_ioctl(netdev
, ifr
, cmd
);
5139 static int e1000_init_phy_wakeup(struct e1000_adapter
*adapter
, u32 wufc
)
5141 struct e1000_hw
*hw
= &adapter
->hw
;
5146 /* copy MAC RARs to PHY RARs */
5147 e1000_copy_rx_addrs_to_phy_ich8lan(hw
);
5149 /* copy MAC MTA to PHY MTA */
5150 for (i
= 0; i
< adapter
->hw
.mac
.mta_reg_count
; i
++) {
5151 mac_reg
= E1000_READ_REG_ARRAY(hw
, E1000_MTA
, i
);
5152 e1e_wphy(hw
, BM_MTA(i
), (u16
)(mac_reg
& 0xFFFF));
5153 e1e_wphy(hw
, BM_MTA(i
) + 1, (u16
)((mac_reg
>> 16) & 0xFFFF));
5156 /* configure PHY Rx Control register */
5157 e1e_rphy(&adapter
->hw
, BM_RCTL
, &phy_reg
);
5158 mac_reg
= er32(RCTL
);
5159 if (mac_reg
& E1000_RCTL_UPE
)
5160 phy_reg
|= BM_RCTL_UPE
;
5161 if (mac_reg
& E1000_RCTL_MPE
)
5162 phy_reg
|= BM_RCTL_MPE
;
5163 phy_reg
&= ~(BM_RCTL_MO_MASK
);
5164 if (mac_reg
& E1000_RCTL_MO_3
)
5165 phy_reg
|= (((mac_reg
& E1000_RCTL_MO_3
) >> E1000_RCTL_MO_SHIFT
)
5166 << BM_RCTL_MO_SHIFT
);
5167 if (mac_reg
& E1000_RCTL_BAM
)
5168 phy_reg
|= BM_RCTL_BAM
;
5169 if (mac_reg
& E1000_RCTL_PMCF
)
5170 phy_reg
|= BM_RCTL_PMCF
;
5171 mac_reg
= er32(CTRL
);
5172 if (mac_reg
& E1000_CTRL_RFCE
)
5173 phy_reg
|= BM_RCTL_RFCE
;
5174 e1e_wphy(&adapter
->hw
, BM_RCTL
, phy_reg
);
5176 /* enable PHY wakeup in MAC register */
5178 ew32(WUC
, E1000_WUC_PHY_WAKE
| E1000_WUC_PME_EN
);
5180 /* configure and enable PHY wakeup in PHY registers */
5181 e1e_wphy(&adapter
->hw
, BM_WUFC
, wufc
);
5182 e1e_wphy(&adapter
->hw
, BM_WUC
, E1000_WUC_PME_EN
);
5184 /* activate PHY wakeup */
5185 retval
= hw
->phy
.ops
.acquire(hw
);
5187 e_err("Could not acquire PHY\n");
5190 e1000e_write_phy_reg_mdic(hw
, IGP01E1000_PHY_PAGE_SELECT
,
5191 (BM_WUC_ENABLE_PAGE
<< IGP_PAGE_SHIFT
));
5192 retval
= e1000e_read_phy_reg_mdic(hw
, BM_WUC_ENABLE_REG
, &phy_reg
);
5194 e_err("Could not read PHY page 769\n");
5197 phy_reg
|= BM_WUC_ENABLE_BIT
| BM_WUC_HOST_WU_BIT
;
5198 retval
= e1000e_write_phy_reg_mdic(hw
, BM_WUC_ENABLE_REG
, phy_reg
);
5200 e_err("Could not set PHY Host Wakeup bit\n");
5202 hw
->phy
.ops
.release(hw
);
5207 static int __e1000_shutdown(struct pci_dev
*pdev
, bool *enable_wake
,
5210 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5211 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5212 struct e1000_hw
*hw
= &adapter
->hw
;
5213 u32 ctrl
, ctrl_ext
, rctl
, status
;
5214 /* Runtime suspend should only enable wakeup for link changes */
5215 u32 wufc
= runtime
? E1000_WUFC_LNKC
: adapter
->wol
;
5218 netif_device_detach(netdev
);
5220 if (netif_running(netdev
)) {
5221 WARN_ON(test_bit(__E1000_RESETTING
, &adapter
->state
));
5222 e1000e_down(adapter
);
5223 e1000_free_irq(adapter
);
5225 e1000e_reset_interrupt_capability(adapter
);
5227 retval
= pci_save_state(pdev
);
5231 status
= er32(STATUS
);
5232 if (status
& E1000_STATUS_LU
)
5233 wufc
&= ~E1000_WUFC_LNKC
;
5236 e1000_setup_rctl(adapter
);
5237 e1000_set_multi(netdev
);
5239 /* turn on all-multi mode if wake on multicast is enabled */
5240 if (wufc
& E1000_WUFC_MC
) {
5242 rctl
|= E1000_RCTL_MPE
;
5247 /* advertise wake from D3Cold */
5248 #define E1000_CTRL_ADVD3WUC 0x00100000
5249 /* phy power management enable */
5250 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5251 ctrl
|= E1000_CTRL_ADVD3WUC
;
5252 if (!(adapter
->flags2
& FLAG2_HAS_PHY_WAKEUP
))
5253 ctrl
|= E1000_CTRL_EN_PHY_PWR_MGMT
;
5256 if (adapter
->hw
.phy
.media_type
== e1000_media_type_fiber
||
5257 adapter
->hw
.phy
.media_type
==
5258 e1000_media_type_internal_serdes
) {
5259 /* keep the laser running in D3 */
5260 ctrl_ext
= er32(CTRL_EXT
);
5261 ctrl_ext
|= E1000_CTRL_EXT_SDP3_DATA
;
5262 ew32(CTRL_EXT
, ctrl_ext
);
5265 if (adapter
->flags
& FLAG_IS_ICH
)
5266 e1000e_disable_gig_wol_ich8lan(&adapter
->hw
);
5268 /* Allow time for pending master requests to run */
5269 e1000e_disable_pcie_master(&adapter
->hw
);
5271 if (adapter
->flags2
& FLAG2_HAS_PHY_WAKEUP
) {
5272 /* enable wakeup by the PHY */
5273 retval
= e1000_init_phy_wakeup(adapter
, wufc
);
5277 /* enable wakeup by the MAC */
5279 ew32(WUC
, E1000_WUC_PME_EN
);
5286 *enable_wake
= !!wufc
;
5288 /* make sure adapter isn't asleep if manageability is enabled */
5289 if ((adapter
->flags
& FLAG_MNG_PT_ENABLED
) ||
5290 (hw
->mac
.ops
.check_mng_mode(hw
)))
5291 *enable_wake
= true;
5293 if (adapter
->hw
.phy
.type
== e1000_phy_igp_3
)
5294 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter
->hw
);
5297 * Release control of h/w to f/w. If f/w is AMT enabled, this
5298 * would have already happened in close and is redundant.
5300 e1000e_release_hw_control(adapter
);
5302 pci_disable_device(pdev
);
5307 static void e1000_power_off(struct pci_dev
*pdev
, bool sleep
, bool wake
)
5309 if (sleep
&& wake
) {
5310 pci_prepare_to_sleep(pdev
);
5314 pci_wake_from_d3(pdev
, wake
);
5315 pci_set_power_state(pdev
, PCI_D3hot
);
5318 static void e1000_complete_shutdown(struct pci_dev
*pdev
, bool sleep
,
5321 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5322 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5325 * The pci-e switch on some quad port adapters will report a
5326 * correctable error when the MAC transitions from D0 to D3. To
5327 * prevent this we need to mask off the correctable errors on the
5328 * downstream port of the pci-e switch.
5330 if (adapter
->flags
& FLAG_IS_QUAD_PORT
) {
5331 struct pci_dev
*us_dev
= pdev
->bus
->self
;
5332 int pos
= pci_find_capability(us_dev
, PCI_CAP_ID_EXP
);
5335 pci_read_config_word(us_dev
, pos
+ PCI_EXP_DEVCTL
, &devctl
);
5336 pci_write_config_word(us_dev
, pos
+ PCI_EXP_DEVCTL
,
5337 (devctl
& ~PCI_EXP_DEVCTL_CERE
));
5339 e1000_power_off(pdev
, sleep
, wake
);
5341 pci_write_config_word(us_dev
, pos
+ PCI_EXP_DEVCTL
, devctl
);
5343 e1000_power_off(pdev
, sleep
, wake
);
5347 #ifdef CONFIG_PCIEASPM
5348 static void __e1000e_disable_aspm(struct pci_dev
*pdev
, u16 state
)
5350 pci_disable_link_state(pdev
, state
);
5353 static void __e1000e_disable_aspm(struct pci_dev
*pdev
, u16 state
)
5359 * Both device and parent should have the same ASPM setting.
5360 * Disable ASPM in downstream component first and then upstream.
5362 pos
= pci_pcie_cap(pdev
);
5363 pci_read_config_word(pdev
, pos
+ PCI_EXP_LNKCTL
, ®16
);
5365 pci_write_config_word(pdev
, pos
+ PCI_EXP_LNKCTL
, reg16
);
5367 if (!pdev
->bus
->self
)
5370 pos
= pci_pcie_cap(pdev
->bus
->self
);
5371 pci_read_config_word(pdev
->bus
->self
, pos
+ PCI_EXP_LNKCTL
, ®16
);
5373 pci_write_config_word(pdev
->bus
->self
, pos
+ PCI_EXP_LNKCTL
, reg16
);
5376 void e1000e_disable_aspm(struct pci_dev
*pdev
, u16 state
)
5378 dev_info(&pdev
->dev
, "Disabling ASPM %s %s\n",
5379 (state
& PCIE_LINK_STATE_L0S
) ? "L0s" : "",
5380 (state
& PCIE_LINK_STATE_L1
) ? "L1" : "");
5382 __e1000e_disable_aspm(pdev
, state
);
5386 static bool e1000e_pm_ready(struct e1000_adapter
*adapter
)
5388 return !!adapter
->tx_ring
->buffer_info
;
5391 static int __e1000_resume(struct pci_dev
*pdev
)
5393 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5394 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5395 struct e1000_hw
*hw
= &adapter
->hw
;
5398 pci_set_power_state(pdev
, PCI_D0
);
5399 pci_restore_state(pdev
);
5400 pci_save_state(pdev
);
5401 if (adapter
->flags2
& FLAG2_DISABLE_ASPM_L1
)
5402 e1000e_disable_aspm(pdev
, PCIE_LINK_STATE_L1
);
5404 e1000e_set_interrupt_capability(adapter
);
5405 if (netif_running(netdev
)) {
5406 err
= e1000_request_irq(adapter
);
5411 e1000e_power_up_phy(adapter
);
5413 /* report the system wakeup cause from S3/S4 */
5414 if (adapter
->flags2
& FLAG2_HAS_PHY_WAKEUP
) {
5417 e1e_rphy(&adapter
->hw
, BM_WUS
, &phy_data
);
5419 e_info("PHY Wakeup cause - %s\n",
5420 phy_data
& E1000_WUS_EX
? "Unicast Packet" :
5421 phy_data
& E1000_WUS_MC
? "Multicast Packet" :
5422 phy_data
& E1000_WUS_BC
? "Broadcast Packet" :
5423 phy_data
& E1000_WUS_MAG
? "Magic Packet" :
5424 phy_data
& E1000_WUS_LNKC
? "Link Status "
5425 " Change" : "other");
5427 e1e_wphy(&adapter
->hw
, BM_WUS
, ~0);
5429 u32 wus
= er32(WUS
);
5431 e_info("MAC Wakeup cause - %s\n",
5432 wus
& E1000_WUS_EX
? "Unicast Packet" :
5433 wus
& E1000_WUS_MC
? "Multicast Packet" :
5434 wus
& E1000_WUS_BC
? "Broadcast Packet" :
5435 wus
& E1000_WUS_MAG
? "Magic Packet" :
5436 wus
& E1000_WUS_LNKC
? "Link Status Change" :
5442 e1000e_reset(adapter
);
5444 e1000_init_manageability_pt(adapter
);
5446 if (netif_running(netdev
))
5449 netif_device_attach(netdev
);
5452 * If the controller has AMT, do not set DRV_LOAD until the interface
5453 * is up. For all other cases, let the f/w know that the h/w is now
5454 * under the control of the driver.
5456 if (!(adapter
->flags
& FLAG_HAS_AMT
))
5457 e1000e_get_hw_control(adapter
);
5462 #ifdef CONFIG_PM_SLEEP
5463 static int e1000_suspend(struct device
*dev
)
5465 struct pci_dev
*pdev
= to_pci_dev(dev
);
5469 retval
= __e1000_shutdown(pdev
, &wake
, false);
5471 e1000_complete_shutdown(pdev
, true, wake
);
5476 static int e1000_resume(struct device
*dev
)
5478 struct pci_dev
*pdev
= to_pci_dev(dev
);
5479 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5480 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5482 if (e1000e_pm_ready(adapter
))
5483 adapter
->idle_check
= true;
5485 return __e1000_resume(pdev
);
5487 #endif /* CONFIG_PM_SLEEP */
5489 #ifdef CONFIG_PM_RUNTIME
5490 static int e1000_runtime_suspend(struct device
*dev
)
5492 struct pci_dev
*pdev
= to_pci_dev(dev
);
5493 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5494 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5496 if (e1000e_pm_ready(adapter
)) {
5499 __e1000_shutdown(pdev
, &wake
, true);
5505 static int e1000_idle(struct device
*dev
)
5507 struct pci_dev
*pdev
= to_pci_dev(dev
);
5508 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5509 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5511 if (!e1000e_pm_ready(adapter
))
5514 if (adapter
->idle_check
) {
5515 adapter
->idle_check
= false;
5516 if (!e1000e_has_link(adapter
))
5517 pm_schedule_suspend(dev
, MSEC_PER_SEC
);
5523 static int e1000_runtime_resume(struct device
*dev
)
5525 struct pci_dev
*pdev
= to_pci_dev(dev
);
5526 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5527 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5529 if (!e1000e_pm_ready(adapter
))
5532 adapter
->idle_check
= !dev
->power
.runtime_auto
;
5533 return __e1000_resume(pdev
);
5535 #endif /* CONFIG_PM_RUNTIME */
5536 #endif /* CONFIG_PM */
5538 static void e1000_shutdown(struct pci_dev
*pdev
)
5542 __e1000_shutdown(pdev
, &wake
, false);
5544 if (system_state
== SYSTEM_POWER_OFF
)
5545 e1000_complete_shutdown(pdev
, false, wake
);
5548 #ifdef CONFIG_NET_POLL_CONTROLLER
5550 static irqreturn_t
e1000_intr_msix(int irq
, void *data
)
5552 struct net_device
*netdev
= data
;
5553 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5555 if (adapter
->msix_entries
) {
5556 int vector
, msix_irq
;
5559 msix_irq
= adapter
->msix_entries
[vector
].vector
;
5560 disable_irq(msix_irq
);
5561 e1000_intr_msix_rx(msix_irq
, netdev
);
5562 enable_irq(msix_irq
);
5565 msix_irq
= adapter
->msix_entries
[vector
].vector
;
5566 disable_irq(msix_irq
);
5567 e1000_intr_msix_tx(msix_irq
, netdev
);
5568 enable_irq(msix_irq
);
5571 msix_irq
= adapter
->msix_entries
[vector
].vector
;
5572 disable_irq(msix_irq
);
5573 e1000_msix_other(msix_irq
, netdev
);
5574 enable_irq(msix_irq
);
5581 * Polling 'interrupt' - used by things like netconsole to send skbs
5582 * without having to re-enable interrupts. It's not called while
5583 * the interrupt routine is executing.
5585 static void e1000_netpoll(struct net_device
*netdev
)
5587 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5589 switch (adapter
->int_mode
) {
5590 case E1000E_INT_MODE_MSIX
:
5591 e1000_intr_msix(adapter
->pdev
->irq
, netdev
);
5593 case E1000E_INT_MODE_MSI
:
5594 disable_irq(adapter
->pdev
->irq
);
5595 e1000_intr_msi(adapter
->pdev
->irq
, netdev
);
5596 enable_irq(adapter
->pdev
->irq
);
5598 default: /* E1000E_INT_MODE_LEGACY */
5599 disable_irq(adapter
->pdev
->irq
);
5600 e1000_intr(adapter
->pdev
->irq
, netdev
);
5601 enable_irq(adapter
->pdev
->irq
);
5608 * e1000_io_error_detected - called when PCI error is detected
5609 * @pdev: Pointer to PCI device
5610 * @state: The current pci connection state
5612 * This function is called after a PCI bus error affecting
5613 * this device has been detected.
5615 static pci_ers_result_t
e1000_io_error_detected(struct pci_dev
*pdev
,
5616 pci_channel_state_t state
)
5618 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5619 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5621 netif_device_detach(netdev
);
5623 if (state
== pci_channel_io_perm_failure
)
5624 return PCI_ERS_RESULT_DISCONNECT
;
5626 if (netif_running(netdev
))
5627 e1000e_down(adapter
);
5628 pci_disable_device(pdev
);
5630 /* Request a slot slot reset. */
5631 return PCI_ERS_RESULT_NEED_RESET
;
5635 * e1000_io_slot_reset - called after the pci bus has been reset.
5636 * @pdev: Pointer to PCI device
5638 * Restart the card from scratch, as if from a cold-boot. Implementation
5639 * resembles the first-half of the e1000_resume routine.
5641 static pci_ers_result_t
e1000_io_slot_reset(struct pci_dev
*pdev
)
5643 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5644 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5645 struct e1000_hw
*hw
= &adapter
->hw
;
5647 pci_ers_result_t result
;
5649 if (adapter
->flags2
& FLAG2_DISABLE_ASPM_L1
)
5650 e1000e_disable_aspm(pdev
, PCIE_LINK_STATE_L1
);
5651 err
= pci_enable_device_mem(pdev
);
5654 "Cannot re-enable PCI device after reset.\n");
5655 result
= PCI_ERS_RESULT_DISCONNECT
;
5657 pci_set_master(pdev
);
5658 pdev
->state_saved
= true;
5659 pci_restore_state(pdev
);
5661 pci_enable_wake(pdev
, PCI_D3hot
, 0);
5662 pci_enable_wake(pdev
, PCI_D3cold
, 0);
5664 e1000e_reset(adapter
);
5666 result
= PCI_ERS_RESULT_RECOVERED
;
5669 pci_cleanup_aer_uncorrect_error_status(pdev
);
5675 * e1000_io_resume - called when traffic can start flowing again.
5676 * @pdev: Pointer to PCI device
5678 * This callback is called when the error recovery driver tells us that
5679 * its OK to resume normal operation. Implementation resembles the
5680 * second-half of the e1000_resume routine.
5682 static void e1000_io_resume(struct pci_dev
*pdev
)
5684 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5685 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5687 e1000_init_manageability_pt(adapter
);
5689 if (netif_running(netdev
)) {
5690 if (e1000e_up(adapter
)) {
5692 "can't bring device back up after reset\n");
5697 netif_device_attach(netdev
);
5700 * If the controller has AMT, do not set DRV_LOAD until the interface
5701 * is up. For all other cases, let the f/w know that the h/w is now
5702 * under the control of the driver.
5704 if (!(adapter
->flags
& FLAG_HAS_AMT
))
5705 e1000e_get_hw_control(adapter
);
5709 static void e1000_print_device_info(struct e1000_adapter
*adapter
)
5711 struct e1000_hw
*hw
= &adapter
->hw
;
5712 struct net_device
*netdev
= adapter
->netdev
;
5714 u8 pba_str
[E1000_PBANUM_LENGTH
];
5716 /* print bus type/speed/width info */
5717 e_info("(PCI Express:2.5GB/s:%s) %pM\n",
5719 ((hw
->bus
.width
== e1000_bus_width_pcie_x4
) ? "Width x4" :
5723 e_info("Intel(R) PRO/%s Network Connection\n",
5724 (hw
->phy
.type
== e1000_phy_ife
) ? "10/100" : "1000");
5725 ret_val
= e1000_read_pba_string_generic(hw
, pba_str
,
5726 E1000_PBANUM_LENGTH
);
5728 strncpy((char *)pba_str
, "Unknown", sizeof(pba_str
) - 1);
5729 e_info("MAC: %d, PHY: %d, PBA No: %s\n",
5730 hw
->mac
.type
, hw
->phy
.type
, pba_str
);
5733 static void e1000_eeprom_checks(struct e1000_adapter
*adapter
)
5735 struct e1000_hw
*hw
= &adapter
->hw
;
5739 if (hw
->mac
.type
!= e1000_82573
)
5742 ret_val
= e1000_read_nvm(hw
, NVM_INIT_CONTROL2_REG
, 1, &buf
);
5743 if (!ret_val
&& (!(le16_to_cpu(buf
) & (1 << 0)))) {
5744 /* Deep Smart Power Down (DSPD) */
5745 dev_warn(&adapter
->pdev
->dev
,
5746 "Warning: detected DSPD enabled in EEPROM\n");
5750 static const struct net_device_ops e1000e_netdev_ops
= {
5751 .ndo_open
= e1000_open
,
5752 .ndo_stop
= e1000_close
,
5753 .ndo_start_xmit
= e1000_xmit_frame
,
5754 .ndo_get_stats64
= e1000e_get_stats64
,
5755 .ndo_set_multicast_list
= e1000_set_multi
,
5756 .ndo_set_mac_address
= e1000_set_mac
,
5757 .ndo_change_mtu
= e1000_change_mtu
,
5758 .ndo_do_ioctl
= e1000_ioctl
,
5759 .ndo_tx_timeout
= e1000_tx_timeout
,
5760 .ndo_validate_addr
= eth_validate_addr
,
5762 .ndo_vlan_rx_register
= e1000_vlan_rx_register
,
5763 .ndo_vlan_rx_add_vid
= e1000_vlan_rx_add_vid
,
5764 .ndo_vlan_rx_kill_vid
= e1000_vlan_rx_kill_vid
,
5765 #ifdef CONFIG_NET_POLL_CONTROLLER
5766 .ndo_poll_controller
= e1000_netpoll
,
5771 * e1000_probe - Device Initialization Routine
5772 * @pdev: PCI device information struct
5773 * @ent: entry in e1000_pci_tbl
5775 * Returns 0 on success, negative on failure
5777 * e1000_probe initializes an adapter identified by a pci_dev structure.
5778 * The OS initialization, configuring of the adapter private structure,
5779 * and a hardware reset occur.
5781 static int __devinit
e1000_probe(struct pci_dev
*pdev
,
5782 const struct pci_device_id
*ent
)
5784 struct net_device
*netdev
;
5785 struct e1000_adapter
*adapter
;
5786 struct e1000_hw
*hw
;
5787 const struct e1000_info
*ei
= e1000_info_tbl
[ent
->driver_data
];
5788 resource_size_t mmio_start
, mmio_len
;
5789 resource_size_t flash_start
, flash_len
;
5791 static int cards_found
;
5792 int i
, err
, pci_using_dac
;
5793 u16 eeprom_data
= 0;
5794 u16 eeprom_apme_mask
= E1000_EEPROM_APME
;
5796 if (ei
->flags2
& FLAG2_DISABLE_ASPM_L1
)
5797 e1000e_disable_aspm(pdev
, PCIE_LINK_STATE_L1
);
5799 err
= pci_enable_device_mem(pdev
);
5804 err
= dma_set_mask(&pdev
->dev
, DMA_BIT_MASK(64));
5806 err
= dma_set_coherent_mask(&pdev
->dev
, DMA_BIT_MASK(64));
5810 err
= dma_set_mask(&pdev
->dev
, DMA_BIT_MASK(32));
5812 err
= dma_set_coherent_mask(&pdev
->dev
,
5815 dev_err(&pdev
->dev
, "No usable DMA "
5816 "configuration, aborting\n");
5822 err
= pci_request_selected_regions_exclusive(pdev
,
5823 pci_select_bars(pdev
, IORESOURCE_MEM
),
5824 e1000e_driver_name
);
5828 /* AER (Advanced Error Reporting) hooks */
5829 pci_enable_pcie_error_reporting(pdev
);
5831 pci_set_master(pdev
);
5832 /* PCI config space info */
5833 err
= pci_save_state(pdev
);
5835 goto err_alloc_etherdev
;
5838 netdev
= alloc_etherdev(sizeof(struct e1000_adapter
));
5840 goto err_alloc_etherdev
;
5842 SET_NETDEV_DEV(netdev
, &pdev
->dev
);
5844 netdev
->irq
= pdev
->irq
;
5846 pci_set_drvdata(pdev
, netdev
);
5847 adapter
= netdev_priv(netdev
);
5849 adapter
->netdev
= netdev
;
5850 adapter
->pdev
= pdev
;
5852 adapter
->pba
= ei
->pba
;
5853 adapter
->flags
= ei
->flags
;
5854 adapter
->flags2
= ei
->flags2
;
5855 adapter
->hw
.adapter
= adapter
;
5856 adapter
->hw
.mac
.type
= ei
->mac
;
5857 adapter
->max_hw_frame_size
= ei
->max_hw_frame_size
;
5858 adapter
->msg_enable
= (1 << NETIF_MSG_DRV
| NETIF_MSG_PROBE
) - 1;
5860 mmio_start
= pci_resource_start(pdev
, 0);
5861 mmio_len
= pci_resource_len(pdev
, 0);
5864 adapter
->hw
.hw_addr
= ioremap(mmio_start
, mmio_len
);
5865 if (!adapter
->hw
.hw_addr
)
5868 if ((adapter
->flags
& FLAG_HAS_FLASH
) &&
5869 (pci_resource_flags(pdev
, 1) & IORESOURCE_MEM
)) {
5870 flash_start
= pci_resource_start(pdev
, 1);
5871 flash_len
= pci_resource_len(pdev
, 1);
5872 adapter
->hw
.flash_address
= ioremap(flash_start
, flash_len
);
5873 if (!adapter
->hw
.flash_address
)
5877 /* construct the net_device struct */
5878 netdev
->netdev_ops
= &e1000e_netdev_ops
;
5879 e1000e_set_ethtool_ops(netdev
);
5880 netdev
->watchdog_timeo
= 5 * HZ
;
5881 netif_napi_add(netdev
, &adapter
->napi
, e1000_clean
, 64);
5882 strncpy(netdev
->name
, pci_name(pdev
), sizeof(netdev
->name
) - 1);
5884 netdev
->mem_start
= mmio_start
;
5885 netdev
->mem_end
= mmio_start
+ mmio_len
;
5887 adapter
->bd_number
= cards_found
++;
5889 e1000e_check_options(adapter
);
5891 /* setup adapter struct */
5892 err
= e1000_sw_init(adapter
);
5896 memcpy(&hw
->mac
.ops
, ei
->mac_ops
, sizeof(hw
->mac
.ops
));
5897 memcpy(&hw
->nvm
.ops
, ei
->nvm_ops
, sizeof(hw
->nvm
.ops
));
5898 memcpy(&hw
->phy
.ops
, ei
->phy_ops
, sizeof(hw
->phy
.ops
));
5900 err
= ei
->get_variants(adapter
);
5904 if ((adapter
->flags
& FLAG_IS_ICH
) &&
5905 (adapter
->flags
& FLAG_READ_ONLY_NVM
))
5906 e1000e_write_protect_nvm_ich8lan(&adapter
->hw
);
5908 hw
->mac
.ops
.get_bus_info(&adapter
->hw
);
5910 adapter
->hw
.phy
.autoneg_wait_to_complete
= 0;
5912 /* Copper options */
5913 if (adapter
->hw
.phy
.media_type
== e1000_media_type_copper
) {
5914 adapter
->hw
.phy
.mdix
= AUTO_ALL_MODES
;
5915 adapter
->hw
.phy
.disable_polarity_correction
= 0;
5916 adapter
->hw
.phy
.ms_type
= e1000_ms_hw_default
;
5919 if (e1000_check_reset_block(&adapter
->hw
))
5920 e_info("PHY reset is blocked due to SOL/IDER session.\n");
5922 netdev
->features
= NETIF_F_SG
|
5924 NETIF_F_HW_VLAN_TX
|
5927 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
)
5928 netdev
->features
|= NETIF_F_HW_VLAN_FILTER
;
5930 netdev
->features
|= NETIF_F_TSO
;
5931 netdev
->features
|= NETIF_F_TSO6
;
5933 netdev
->vlan_features
|= NETIF_F_TSO
;
5934 netdev
->vlan_features
|= NETIF_F_TSO6
;
5935 netdev
->vlan_features
|= NETIF_F_HW_CSUM
;
5936 netdev
->vlan_features
|= NETIF_F_SG
;
5938 if (pci_using_dac
) {
5939 netdev
->features
|= NETIF_F_HIGHDMA
;
5940 netdev
->vlan_features
|= NETIF_F_HIGHDMA
;
5943 if (e1000e_enable_mng_pass_thru(&adapter
->hw
))
5944 adapter
->flags
|= FLAG_MNG_PT_ENABLED
;
5947 * before reading the NVM, reset the controller to
5948 * put the device in a known good starting state
5950 adapter
->hw
.mac
.ops
.reset_hw(&adapter
->hw
);
5953 * systems with ASPM and others may see the checksum fail on the first
5954 * attempt. Let's give it a few tries
5957 if (e1000_validate_nvm_checksum(&adapter
->hw
) >= 0)
5960 e_err("The NVM Checksum Is Not Valid\n");
5966 e1000_eeprom_checks(adapter
);
5968 /* copy the MAC address */
5969 if (e1000e_read_mac_addr(&adapter
->hw
))
5970 e_err("NVM Read Error while reading MAC address\n");
5972 memcpy(netdev
->dev_addr
, adapter
->hw
.mac
.addr
, netdev
->addr_len
);
5973 memcpy(netdev
->perm_addr
, adapter
->hw
.mac
.addr
, netdev
->addr_len
);
5975 if (!is_valid_ether_addr(netdev
->perm_addr
)) {
5976 e_err("Invalid MAC Address: %pM\n", netdev
->perm_addr
);
5981 init_timer(&adapter
->watchdog_timer
);
5982 adapter
->watchdog_timer
.function
= e1000_watchdog
;
5983 adapter
->watchdog_timer
.data
= (unsigned long) adapter
;
5985 init_timer(&adapter
->phy_info_timer
);
5986 adapter
->phy_info_timer
.function
= e1000_update_phy_info
;
5987 adapter
->phy_info_timer
.data
= (unsigned long) adapter
;
5989 INIT_WORK(&adapter
->reset_task
, e1000_reset_task
);
5990 INIT_WORK(&adapter
->watchdog_task
, e1000_watchdog_task
);
5991 INIT_WORK(&adapter
->downshift_task
, e1000e_downshift_workaround
);
5992 INIT_WORK(&adapter
->update_phy_task
, e1000e_update_phy_task
);
5993 INIT_WORK(&adapter
->print_hang_task
, e1000_print_hw_hang
);
5994 INIT_WORK(&adapter
->led_blink_task
, e1000e_led_blink_task
);
5996 /* Initialize link parameters. User can change them with ethtool */
5997 adapter
->hw
.mac
.autoneg
= 1;
5998 adapter
->fc_autoneg
= 1;
5999 adapter
->hw
.fc
.requested_mode
= e1000_fc_default
;
6000 adapter
->hw
.fc
.current_mode
= e1000_fc_default
;
6001 adapter
->hw
.phy
.autoneg_advertised
= 0x2f;
6003 /* ring size defaults */
6004 adapter
->rx_ring
->count
= 256;
6005 adapter
->tx_ring
->count
= 256;
6008 * Initial Wake on LAN setting - If APM wake is enabled in
6009 * the EEPROM, enable the ACPI Magic Packet filter
6011 if (adapter
->flags
& FLAG_APME_IN_WUC
) {
6012 /* APME bit in EEPROM is mapped to WUC.APME */
6013 eeprom_data
= er32(WUC
);
6014 eeprom_apme_mask
= E1000_WUC_APME
;
6015 if ((hw
->mac
.type
> e1000_ich10lan
) &&
6016 (eeprom_data
& E1000_WUC_PHY_WAKE
))
6017 adapter
->flags2
|= FLAG2_HAS_PHY_WAKEUP
;
6018 } else if (adapter
->flags
& FLAG_APME_IN_CTRL3
) {
6019 if (adapter
->flags
& FLAG_APME_CHECK_PORT_B
&&
6020 (adapter
->hw
.bus
.func
== 1))
6021 e1000_read_nvm(&adapter
->hw
,
6022 NVM_INIT_CONTROL3_PORT_B
, 1, &eeprom_data
);
6024 e1000_read_nvm(&adapter
->hw
,
6025 NVM_INIT_CONTROL3_PORT_A
, 1, &eeprom_data
);
6028 /* fetch WoL from EEPROM */
6029 if (eeprom_data
& eeprom_apme_mask
)
6030 adapter
->eeprom_wol
|= E1000_WUFC_MAG
;
6033 * now that we have the eeprom settings, apply the special cases
6034 * where the eeprom may be wrong or the board simply won't support
6035 * wake on lan on a particular port
6037 if (!(adapter
->flags
& FLAG_HAS_WOL
))
6038 adapter
->eeprom_wol
= 0;
6040 /* initialize the wol settings based on the eeprom settings */
6041 adapter
->wol
= adapter
->eeprom_wol
;
6042 device_set_wakeup_enable(&adapter
->pdev
->dev
, adapter
->wol
);
6044 /* save off EEPROM version number */
6045 e1000_read_nvm(&adapter
->hw
, 5, 1, &adapter
->eeprom_vers
);
6047 /* reset the hardware with the new settings */
6048 e1000e_reset(adapter
);
6051 * If the controller has AMT, do not set DRV_LOAD until the interface
6052 * is up. For all other cases, let the f/w know that the h/w is now
6053 * under the control of the driver.
6055 if (!(adapter
->flags
& FLAG_HAS_AMT
))
6056 e1000e_get_hw_control(adapter
);
6058 strncpy(netdev
->name
, "eth%d", sizeof(netdev
->name
) - 1);
6059 err
= register_netdev(netdev
);
6063 /* carrier off reporting is important to ethtool even BEFORE open */
6064 netif_carrier_off(netdev
);
6066 e1000_print_device_info(adapter
);
6068 if (pci_dev_run_wake(pdev
))
6069 pm_runtime_put_noidle(&pdev
->dev
);
6074 if (!(adapter
->flags
& FLAG_HAS_AMT
))
6075 e1000e_release_hw_control(adapter
);
6077 if (!e1000_check_reset_block(&adapter
->hw
))
6078 e1000_phy_hw_reset(&adapter
->hw
);
6080 kfree(adapter
->tx_ring
);
6081 kfree(adapter
->rx_ring
);
6083 if (adapter
->hw
.flash_address
)
6084 iounmap(adapter
->hw
.flash_address
);
6085 e1000e_reset_interrupt_capability(adapter
);
6087 iounmap(adapter
->hw
.hw_addr
);
6089 free_netdev(netdev
);
6091 pci_release_selected_regions(pdev
,
6092 pci_select_bars(pdev
, IORESOURCE_MEM
));
6095 pci_disable_device(pdev
);
6100 * e1000_remove - Device Removal Routine
6101 * @pdev: PCI device information struct
6103 * e1000_remove is called by the PCI subsystem to alert the driver
6104 * that it should release a PCI device. The could be caused by a
6105 * Hot-Plug event, or because the driver is going to be removed from
6108 static void __devexit
e1000_remove(struct pci_dev
*pdev
)
6110 struct net_device
*netdev
= pci_get_drvdata(pdev
);
6111 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6112 bool down
= test_bit(__E1000_DOWN
, &adapter
->state
);
6115 * The timers may be rescheduled, so explicitly disable them
6116 * from being rescheduled.
6119 set_bit(__E1000_DOWN
, &adapter
->state
);
6120 del_timer_sync(&adapter
->watchdog_timer
);
6121 del_timer_sync(&adapter
->phy_info_timer
);
6123 cancel_work_sync(&adapter
->reset_task
);
6124 cancel_work_sync(&adapter
->watchdog_task
);
6125 cancel_work_sync(&adapter
->downshift_task
);
6126 cancel_work_sync(&adapter
->update_phy_task
);
6127 cancel_work_sync(&adapter
->led_blink_task
);
6128 cancel_work_sync(&adapter
->print_hang_task
);
6130 if (!(netdev
->flags
& IFF_UP
))
6131 e1000_power_down_phy(adapter
);
6133 /* Don't lie to e1000_close() down the road. */
6135 clear_bit(__E1000_DOWN
, &adapter
->state
);
6136 unregister_netdev(netdev
);
6138 if (pci_dev_run_wake(pdev
))
6139 pm_runtime_get_noresume(&pdev
->dev
);
6142 * Release control of h/w to f/w. If f/w is AMT enabled, this
6143 * would have already happened in close and is redundant.
6145 e1000e_release_hw_control(adapter
);
6147 e1000e_reset_interrupt_capability(adapter
);
6148 kfree(adapter
->tx_ring
);
6149 kfree(adapter
->rx_ring
);
6151 iounmap(adapter
->hw
.hw_addr
);
6152 if (adapter
->hw
.flash_address
)
6153 iounmap(adapter
->hw
.flash_address
);
6154 pci_release_selected_regions(pdev
,
6155 pci_select_bars(pdev
, IORESOURCE_MEM
));
6157 free_netdev(netdev
);
6160 pci_disable_pcie_error_reporting(pdev
);
6162 pci_disable_device(pdev
);
6165 /* PCI Error Recovery (ERS) */
6166 static struct pci_error_handlers e1000_err_handler
= {
6167 .error_detected
= e1000_io_error_detected
,
6168 .slot_reset
= e1000_io_slot_reset
,
6169 .resume
= e1000_io_resume
,
6172 static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl
) = {
6173 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_COPPER
), board_82571
},
6174 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_FIBER
), board_82571
},
6175 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_QUAD_COPPER
), board_82571
},
6176 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_QUAD_COPPER_LP
), board_82571
},
6177 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_QUAD_FIBER
), board_82571
},
6178 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_SERDES
), board_82571
},
6179 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_SERDES_DUAL
), board_82571
},
6180 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_SERDES_QUAD
), board_82571
},
6181 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571PT_QUAD_COPPER
), board_82571
},
6183 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82572EI
), board_82572
},
6184 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82572EI_COPPER
), board_82572
},
6185 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82572EI_FIBER
), board_82572
},
6186 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82572EI_SERDES
), board_82572
},
6188 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82573E
), board_82573
},
6189 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82573E_IAMT
), board_82573
},
6190 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82573L
), board_82573
},
6192 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82574L
), board_82574
},
6193 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82574LA
), board_82574
},
6194 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82583V
), board_82583
},
6196 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_80003ES2LAN_COPPER_DPT
),
6197 board_80003es2lan
},
6198 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_80003ES2LAN_COPPER_SPT
),
6199 board_80003es2lan
},
6200 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_80003ES2LAN_SERDES_DPT
),
6201 board_80003es2lan
},
6202 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_80003ES2LAN_SERDES_SPT
),
6203 board_80003es2lan
},
6205 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IFE
), board_ich8lan
},
6206 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IFE_G
), board_ich8lan
},
6207 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IFE_GT
), board_ich8lan
},
6208 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IGP_AMT
), board_ich8lan
},
6209 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IGP_C
), board_ich8lan
},
6210 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IGP_M
), board_ich8lan
},
6211 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IGP_M_AMT
), board_ich8lan
},
6212 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_82567V_3
), board_ich8lan
},
6214 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IFE
), board_ich9lan
},
6215 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IFE_G
), board_ich9lan
},
6216 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IFE_GT
), board_ich9lan
},
6217 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_AMT
), board_ich9lan
},
6218 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_C
), board_ich9lan
},
6219 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_BM
), board_ich9lan
},
6220 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_M
), board_ich9lan
},
6221 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_M_AMT
), board_ich9lan
},
6222 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_M_V
), board_ich9lan
},
6224 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_R_BM_LM
), board_ich9lan
},
6225 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_R_BM_LF
), board_ich9lan
},
6226 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_R_BM_V
), board_ich9lan
},
6228 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_D_BM_LM
), board_ich10lan
},
6229 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_D_BM_LF
), board_ich10lan
},
6230 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_D_BM_V
), board_ich10lan
},
6232 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_M_HV_LM
), board_pchlan
},
6233 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_M_HV_LC
), board_pchlan
},
6234 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_D_HV_DM
), board_pchlan
},
6235 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_D_HV_DC
), board_pchlan
},
6237 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH2_LV_LM
), board_pch2lan
},
6238 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH2_LV_V
), board_pch2lan
},
6240 { } /* terminate list */
6242 MODULE_DEVICE_TABLE(pci
, e1000_pci_tbl
);
6245 static const struct dev_pm_ops e1000_pm_ops
= {
6246 SET_SYSTEM_SLEEP_PM_OPS(e1000_suspend
, e1000_resume
)
6247 SET_RUNTIME_PM_OPS(e1000_runtime_suspend
,
6248 e1000_runtime_resume
, e1000_idle
)
6252 /* PCI Device API Driver */
6253 static struct pci_driver e1000_driver
= {
6254 .name
= e1000e_driver_name
,
6255 .id_table
= e1000_pci_tbl
,
6256 .probe
= e1000_probe
,
6257 .remove
= __devexit_p(e1000_remove
),
6259 .driver
.pm
= &e1000_pm_ops
,
6261 .shutdown
= e1000_shutdown
,
6262 .err_handler
= &e1000_err_handler
6266 * e1000_init_module - Driver Registration Routine
6268 * e1000_init_module is the first routine called when the driver is
6269 * loaded. All it does is register with the PCI subsystem.
6271 static int __init
e1000_init_module(void)
6274 pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
6275 e1000e_driver_version
);
6276 pr_info("Copyright(c) 1999 - 2011 Intel Corporation.\n");
6277 ret
= pci_register_driver(&e1000_driver
);
6281 module_init(e1000_init_module
);
6284 * e1000_exit_module - Driver Exit Cleanup Routine
6286 * e1000_exit_module is called just before the driver is removed
6289 static void __exit
e1000_exit_module(void)
6291 pci_unregister_driver(&e1000_driver
);
6293 module_exit(e1000_exit_module
);
6296 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
6297 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
6298 MODULE_LICENSE("GPL");
6299 MODULE_VERSION(DRV_VERSION
);