1 /*******************************************************************************
3 Intel 10 Gigabit PCI Express Linux driver
4 Copyright(c) 1999 - 2011 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
28 #include <linux/pci.h>
29 #include <linux/delay.h>
30 #include <linux/sched.h>
31 #include <linux/netdevice.h>
34 #include "ixgbe_common.h"
35 #include "ixgbe_phy.h"
37 static s32
ixgbe_acquire_eeprom(struct ixgbe_hw
*hw
);
38 static s32
ixgbe_get_eeprom_semaphore(struct ixgbe_hw
*hw
);
39 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw
*hw
);
40 static s32
ixgbe_ready_eeprom(struct ixgbe_hw
*hw
);
41 static void ixgbe_standby_eeprom(struct ixgbe_hw
*hw
);
42 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw
*hw
, u16 data
,
44 static u16
ixgbe_shift_in_eeprom_bits(struct ixgbe_hw
*hw
, u16 count
);
45 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw
*hw
, u32
*eec
);
46 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw
*hw
, u32
*eec
);
47 static void ixgbe_release_eeprom(struct ixgbe_hw
*hw
);
49 static s32
ixgbe_mta_vector(struct ixgbe_hw
*hw
, u8
*mc_addr
);
50 static s32
ixgbe_fc_autoneg_fiber(struct ixgbe_hw
*hw
);
51 static s32
ixgbe_fc_autoneg_backplane(struct ixgbe_hw
*hw
);
52 static s32
ixgbe_fc_autoneg_copper(struct ixgbe_hw
*hw
);
53 static s32
ixgbe_device_supports_autoneg_fc(struct ixgbe_hw
*hw
);
54 static s32
ixgbe_negotiate_fc(struct ixgbe_hw
*hw
, u32 adv_reg
, u32 lp_reg
,
55 u32 adv_sym
, u32 adv_asm
, u32 lp_sym
, u32 lp_asm
);
56 static s32
ixgbe_setup_fc(struct ixgbe_hw
*hw
, s32 packetbuf_num
);
59 * ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
60 * @hw: pointer to hardware structure
62 * Starts the hardware by filling the bus info structure and media type, clears
63 * all on chip counters, initializes receive address registers, multicast
64 * table, VLAN filter table, calls routine to set up link and flow control
65 * settings, and leaves transmit and receive units disabled and uninitialized
67 s32
ixgbe_start_hw_generic(struct ixgbe_hw
*hw
)
71 /* Set the media type */
72 hw
->phy
.media_type
= hw
->mac
.ops
.get_media_type(hw
);
74 /* Identify the PHY */
75 hw
->phy
.ops
.identify(hw
);
77 /* Clear the VLAN filter table */
78 hw
->mac
.ops
.clear_vfta(hw
);
80 /* Clear statistics registers */
81 hw
->mac
.ops
.clear_hw_cntrs(hw
);
83 /* Set No Snoop Disable */
84 ctrl_ext
= IXGBE_READ_REG(hw
, IXGBE_CTRL_EXT
);
85 ctrl_ext
|= IXGBE_CTRL_EXT_NS_DIS
;
86 IXGBE_WRITE_REG(hw
, IXGBE_CTRL_EXT
, ctrl_ext
);
87 IXGBE_WRITE_FLUSH(hw
);
89 /* Setup flow control */
90 ixgbe_setup_fc(hw
, 0);
92 /* Clear adapter stopped flag */
93 hw
->adapter_stopped
= false;
99 * ixgbe_init_hw_generic - Generic hardware initialization
100 * @hw: pointer to hardware structure
102 * Initialize the hardware by resetting the hardware, filling the bus info
103 * structure and media type, clears all on chip counters, initializes receive
104 * address registers, multicast table, VLAN filter table, calls routine to set
105 * up link and flow control settings, and leaves transmit and receive units
106 * disabled and uninitialized
108 s32
ixgbe_init_hw_generic(struct ixgbe_hw
*hw
)
112 /* Reset the hardware */
113 status
= hw
->mac
.ops
.reset_hw(hw
);
117 status
= hw
->mac
.ops
.start_hw(hw
);
124 * ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
125 * @hw: pointer to hardware structure
127 * Clears all hardware statistics counters by reading them from the hardware
128 * Statistics counters are clear on read.
130 s32
ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw
*hw
)
134 IXGBE_READ_REG(hw
, IXGBE_CRCERRS
);
135 IXGBE_READ_REG(hw
, IXGBE_ILLERRC
);
136 IXGBE_READ_REG(hw
, IXGBE_ERRBC
);
137 IXGBE_READ_REG(hw
, IXGBE_MSPDC
);
138 for (i
= 0; i
< 8; i
++)
139 IXGBE_READ_REG(hw
, IXGBE_MPC(i
));
141 IXGBE_READ_REG(hw
, IXGBE_MLFC
);
142 IXGBE_READ_REG(hw
, IXGBE_MRFC
);
143 IXGBE_READ_REG(hw
, IXGBE_RLEC
);
144 IXGBE_READ_REG(hw
, IXGBE_LXONTXC
);
145 IXGBE_READ_REG(hw
, IXGBE_LXOFFTXC
);
146 if (hw
->mac
.type
>= ixgbe_mac_82599EB
) {
147 IXGBE_READ_REG(hw
, IXGBE_LXONRXCNT
);
148 IXGBE_READ_REG(hw
, IXGBE_LXOFFRXCNT
);
150 IXGBE_READ_REG(hw
, IXGBE_LXONRXC
);
151 IXGBE_READ_REG(hw
, IXGBE_LXOFFRXC
);
154 for (i
= 0; i
< 8; i
++) {
155 IXGBE_READ_REG(hw
, IXGBE_PXONTXC(i
));
156 IXGBE_READ_REG(hw
, IXGBE_PXOFFTXC(i
));
157 if (hw
->mac
.type
>= ixgbe_mac_82599EB
) {
158 IXGBE_READ_REG(hw
, IXGBE_PXONRXCNT(i
));
159 IXGBE_READ_REG(hw
, IXGBE_PXOFFRXCNT(i
));
161 IXGBE_READ_REG(hw
, IXGBE_PXONRXC(i
));
162 IXGBE_READ_REG(hw
, IXGBE_PXOFFRXC(i
));
165 if (hw
->mac
.type
>= ixgbe_mac_82599EB
)
166 for (i
= 0; i
< 8; i
++)
167 IXGBE_READ_REG(hw
, IXGBE_PXON2OFFCNT(i
));
168 IXGBE_READ_REG(hw
, IXGBE_PRC64
);
169 IXGBE_READ_REG(hw
, IXGBE_PRC127
);
170 IXGBE_READ_REG(hw
, IXGBE_PRC255
);
171 IXGBE_READ_REG(hw
, IXGBE_PRC511
);
172 IXGBE_READ_REG(hw
, IXGBE_PRC1023
);
173 IXGBE_READ_REG(hw
, IXGBE_PRC1522
);
174 IXGBE_READ_REG(hw
, IXGBE_GPRC
);
175 IXGBE_READ_REG(hw
, IXGBE_BPRC
);
176 IXGBE_READ_REG(hw
, IXGBE_MPRC
);
177 IXGBE_READ_REG(hw
, IXGBE_GPTC
);
178 IXGBE_READ_REG(hw
, IXGBE_GORCL
);
179 IXGBE_READ_REG(hw
, IXGBE_GORCH
);
180 IXGBE_READ_REG(hw
, IXGBE_GOTCL
);
181 IXGBE_READ_REG(hw
, IXGBE_GOTCH
);
182 for (i
= 0; i
< 8; i
++)
183 IXGBE_READ_REG(hw
, IXGBE_RNBC(i
));
184 IXGBE_READ_REG(hw
, IXGBE_RUC
);
185 IXGBE_READ_REG(hw
, IXGBE_RFC
);
186 IXGBE_READ_REG(hw
, IXGBE_ROC
);
187 IXGBE_READ_REG(hw
, IXGBE_RJC
);
188 IXGBE_READ_REG(hw
, IXGBE_MNGPRC
);
189 IXGBE_READ_REG(hw
, IXGBE_MNGPDC
);
190 IXGBE_READ_REG(hw
, IXGBE_MNGPTC
);
191 IXGBE_READ_REG(hw
, IXGBE_TORL
);
192 IXGBE_READ_REG(hw
, IXGBE_TORH
);
193 IXGBE_READ_REG(hw
, IXGBE_TPR
);
194 IXGBE_READ_REG(hw
, IXGBE_TPT
);
195 IXGBE_READ_REG(hw
, IXGBE_PTC64
);
196 IXGBE_READ_REG(hw
, IXGBE_PTC127
);
197 IXGBE_READ_REG(hw
, IXGBE_PTC255
);
198 IXGBE_READ_REG(hw
, IXGBE_PTC511
);
199 IXGBE_READ_REG(hw
, IXGBE_PTC1023
);
200 IXGBE_READ_REG(hw
, IXGBE_PTC1522
);
201 IXGBE_READ_REG(hw
, IXGBE_MPTC
);
202 IXGBE_READ_REG(hw
, IXGBE_BPTC
);
203 for (i
= 0; i
< 16; i
++) {
204 IXGBE_READ_REG(hw
, IXGBE_QPRC(i
));
205 IXGBE_READ_REG(hw
, IXGBE_QPTC(i
));
206 if (hw
->mac
.type
>= ixgbe_mac_82599EB
) {
207 IXGBE_READ_REG(hw
, IXGBE_QBRC_L(i
));
208 IXGBE_READ_REG(hw
, IXGBE_QBRC_H(i
));
209 IXGBE_READ_REG(hw
, IXGBE_QBTC_L(i
));
210 IXGBE_READ_REG(hw
, IXGBE_QBTC_H(i
));
211 IXGBE_READ_REG(hw
, IXGBE_QPRDC(i
));
213 IXGBE_READ_REG(hw
, IXGBE_QBRC(i
));
214 IXGBE_READ_REG(hw
, IXGBE_QBTC(i
));
218 if (hw
->mac
.type
== ixgbe_mac_X540
) {
220 hw
->phy
.ops
.identify(hw
);
221 hw
->phy
.ops
.read_reg(hw
, 0x3, IXGBE_PCRC8ECL
, &i
);
222 hw
->phy
.ops
.read_reg(hw
, 0x3, IXGBE_PCRC8ECH
, &i
);
223 hw
->phy
.ops
.read_reg(hw
, 0x3, IXGBE_LDPCECL
, &i
);
224 hw
->phy
.ops
.read_reg(hw
, 0x3, IXGBE_LDPCECH
, &i
);
231 * ixgbe_read_pba_string_generic - Reads part number string from EEPROM
232 * @hw: pointer to hardware structure
233 * @pba_num: stores the part number string from the EEPROM
234 * @pba_num_size: part number string buffer length
236 * Reads the part number string from the EEPROM.
238 s32
ixgbe_read_pba_string_generic(struct ixgbe_hw
*hw
, u8
*pba_num
,
247 if (pba_num
== NULL
) {
248 hw_dbg(hw
, "PBA string buffer was null\n");
249 return IXGBE_ERR_INVALID_ARGUMENT
;
252 ret_val
= hw
->eeprom
.ops
.read(hw
, IXGBE_PBANUM0_PTR
, &data
);
254 hw_dbg(hw
, "NVM Read Error\n");
258 ret_val
= hw
->eeprom
.ops
.read(hw
, IXGBE_PBANUM1_PTR
, &pba_ptr
);
260 hw_dbg(hw
, "NVM Read Error\n");
265 * if data is not ptr guard the PBA must be in legacy format which
266 * means pba_ptr is actually our second data word for the PBA number
267 * and we can decode it into an ascii string
269 if (data
!= IXGBE_PBANUM_PTR_GUARD
) {
270 hw_dbg(hw
, "NVM PBA number is not stored as string\n");
272 /* we will need 11 characters to store the PBA */
273 if (pba_num_size
< 11) {
274 hw_dbg(hw
, "PBA string buffer too small\n");
275 return IXGBE_ERR_NO_SPACE
;
278 /* extract hex string from data and pba_ptr */
279 pba_num
[0] = (data
>> 12) & 0xF;
280 pba_num
[1] = (data
>> 8) & 0xF;
281 pba_num
[2] = (data
>> 4) & 0xF;
282 pba_num
[3] = data
& 0xF;
283 pba_num
[4] = (pba_ptr
>> 12) & 0xF;
284 pba_num
[5] = (pba_ptr
>> 8) & 0xF;
287 pba_num
[8] = (pba_ptr
>> 4) & 0xF;
288 pba_num
[9] = pba_ptr
& 0xF;
290 /* put a null character on the end of our string */
293 /* switch all the data but the '-' to hex char */
294 for (offset
= 0; offset
< 10; offset
++) {
295 if (pba_num
[offset
] < 0xA)
296 pba_num
[offset
] += '0';
297 else if (pba_num
[offset
] < 0x10)
298 pba_num
[offset
] += 'A' - 0xA;
304 ret_val
= hw
->eeprom
.ops
.read(hw
, pba_ptr
, &length
);
306 hw_dbg(hw
, "NVM Read Error\n");
310 if (length
== 0xFFFF || length
== 0) {
311 hw_dbg(hw
, "NVM PBA number section invalid length\n");
312 return IXGBE_ERR_PBA_SECTION
;
315 /* check if pba_num buffer is big enough */
316 if (pba_num_size
< (((u32
)length
* 2) - 1)) {
317 hw_dbg(hw
, "PBA string buffer too small\n");
318 return IXGBE_ERR_NO_SPACE
;
321 /* trim pba length from start of string */
325 for (offset
= 0; offset
< length
; offset
++) {
326 ret_val
= hw
->eeprom
.ops
.read(hw
, pba_ptr
+ offset
, &data
);
328 hw_dbg(hw
, "NVM Read Error\n");
331 pba_num
[offset
* 2] = (u8
)(data
>> 8);
332 pba_num
[(offset
* 2) + 1] = (u8
)(data
& 0xFF);
334 pba_num
[offset
* 2] = '\0';
340 * ixgbe_get_mac_addr_generic - Generic get MAC address
341 * @hw: pointer to hardware structure
342 * @mac_addr: Adapter MAC address
344 * Reads the adapter's MAC address from first Receive Address Register (RAR0)
345 * A reset of the adapter must be performed prior to calling this function
346 * in order for the MAC address to have been loaded from the EEPROM into RAR0
348 s32
ixgbe_get_mac_addr_generic(struct ixgbe_hw
*hw
, u8
*mac_addr
)
354 rar_high
= IXGBE_READ_REG(hw
, IXGBE_RAH(0));
355 rar_low
= IXGBE_READ_REG(hw
, IXGBE_RAL(0));
357 for (i
= 0; i
< 4; i
++)
358 mac_addr
[i
] = (u8
)(rar_low
>> (i
*8));
360 for (i
= 0; i
< 2; i
++)
361 mac_addr
[i
+4] = (u8
)(rar_high
>> (i
*8));
367 * ixgbe_get_bus_info_generic - Generic set PCI bus info
368 * @hw: pointer to hardware structure
370 * Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
372 s32
ixgbe_get_bus_info_generic(struct ixgbe_hw
*hw
)
374 struct ixgbe_adapter
*adapter
= hw
->back
;
375 struct ixgbe_mac_info
*mac
= &hw
->mac
;
378 hw
->bus
.type
= ixgbe_bus_type_pci_express
;
380 /* Get the negotiated link width and speed from PCI config space */
381 pci_read_config_word(adapter
->pdev
, IXGBE_PCI_LINK_STATUS
,
384 switch (link_status
& IXGBE_PCI_LINK_WIDTH
) {
385 case IXGBE_PCI_LINK_WIDTH_1
:
386 hw
->bus
.width
= ixgbe_bus_width_pcie_x1
;
388 case IXGBE_PCI_LINK_WIDTH_2
:
389 hw
->bus
.width
= ixgbe_bus_width_pcie_x2
;
391 case IXGBE_PCI_LINK_WIDTH_4
:
392 hw
->bus
.width
= ixgbe_bus_width_pcie_x4
;
394 case IXGBE_PCI_LINK_WIDTH_8
:
395 hw
->bus
.width
= ixgbe_bus_width_pcie_x8
;
398 hw
->bus
.width
= ixgbe_bus_width_unknown
;
402 switch (link_status
& IXGBE_PCI_LINK_SPEED
) {
403 case IXGBE_PCI_LINK_SPEED_2500
:
404 hw
->bus
.speed
= ixgbe_bus_speed_2500
;
406 case IXGBE_PCI_LINK_SPEED_5000
:
407 hw
->bus
.speed
= ixgbe_bus_speed_5000
;
410 hw
->bus
.speed
= ixgbe_bus_speed_unknown
;
414 mac
->ops
.set_lan_id(hw
);
420 * ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
421 * @hw: pointer to the HW structure
423 * Determines the LAN function id by reading memory-mapped registers
424 * and swaps the port value if requested.
426 void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw
*hw
)
428 struct ixgbe_bus_info
*bus
= &hw
->bus
;
431 reg
= IXGBE_READ_REG(hw
, IXGBE_STATUS
);
432 bus
->func
= (reg
& IXGBE_STATUS_LAN_ID
) >> IXGBE_STATUS_LAN_ID_SHIFT
;
433 bus
->lan_id
= bus
->func
;
435 /* check for a port swap */
436 reg
= IXGBE_READ_REG(hw
, IXGBE_FACTPS
);
437 if (reg
& IXGBE_FACTPS_LFS
)
442 * ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
443 * @hw: pointer to hardware structure
445 * Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
446 * disables transmit and receive units. The adapter_stopped flag is used by
447 * the shared code and drivers to determine if the adapter is in a stopped
448 * state and should not touch the hardware.
450 s32
ixgbe_stop_adapter_generic(struct ixgbe_hw
*hw
)
452 u32 number_of_queues
;
457 * Set the adapter_stopped flag so other driver functions stop touching
460 hw
->adapter_stopped
= true;
462 /* Disable the receive unit */
463 reg_val
= IXGBE_READ_REG(hw
, IXGBE_RXCTRL
);
464 reg_val
&= ~(IXGBE_RXCTRL_RXEN
);
465 IXGBE_WRITE_REG(hw
, IXGBE_RXCTRL
, reg_val
);
466 IXGBE_WRITE_FLUSH(hw
);
469 /* Clear interrupt mask to stop from interrupts being generated */
470 IXGBE_WRITE_REG(hw
, IXGBE_EIMC
, IXGBE_IRQ_CLEAR_MASK
);
472 /* Clear any pending interrupts */
473 IXGBE_READ_REG(hw
, IXGBE_EICR
);
475 /* Disable the transmit unit. Each queue must be disabled. */
476 number_of_queues
= hw
->mac
.max_tx_queues
;
477 for (i
= 0; i
< number_of_queues
; i
++) {
478 reg_val
= IXGBE_READ_REG(hw
, IXGBE_TXDCTL(i
));
479 if (reg_val
& IXGBE_TXDCTL_ENABLE
) {
480 reg_val
&= ~IXGBE_TXDCTL_ENABLE
;
481 IXGBE_WRITE_REG(hw
, IXGBE_TXDCTL(i
), reg_val
);
486 * Prevent the PCI-E bus from from hanging by disabling PCI-E master
487 * access and verify no pending requests
489 ixgbe_disable_pcie_master(hw
);
495 * ixgbe_led_on_generic - Turns on the software controllable LEDs.
496 * @hw: pointer to hardware structure
497 * @index: led number to turn on
499 s32
ixgbe_led_on_generic(struct ixgbe_hw
*hw
, u32 index
)
501 u32 led_reg
= IXGBE_READ_REG(hw
, IXGBE_LEDCTL
);
503 /* To turn on the LED, set mode to ON. */
504 led_reg
&= ~IXGBE_LED_MODE_MASK(index
);
505 led_reg
|= IXGBE_LED_ON
<< IXGBE_LED_MODE_SHIFT(index
);
506 IXGBE_WRITE_REG(hw
, IXGBE_LEDCTL
, led_reg
);
507 IXGBE_WRITE_FLUSH(hw
);
513 * ixgbe_led_off_generic - Turns off the software controllable LEDs.
514 * @hw: pointer to hardware structure
515 * @index: led number to turn off
517 s32
ixgbe_led_off_generic(struct ixgbe_hw
*hw
, u32 index
)
519 u32 led_reg
= IXGBE_READ_REG(hw
, IXGBE_LEDCTL
);
521 /* To turn off the LED, set mode to OFF. */
522 led_reg
&= ~IXGBE_LED_MODE_MASK(index
);
523 led_reg
|= IXGBE_LED_OFF
<< IXGBE_LED_MODE_SHIFT(index
);
524 IXGBE_WRITE_REG(hw
, IXGBE_LEDCTL
, led_reg
);
525 IXGBE_WRITE_FLUSH(hw
);
531 * ixgbe_init_eeprom_params_generic - Initialize EEPROM params
532 * @hw: pointer to hardware structure
534 * Initializes the EEPROM parameters ixgbe_eeprom_info within the
535 * ixgbe_hw struct in order to set up EEPROM access.
537 s32
ixgbe_init_eeprom_params_generic(struct ixgbe_hw
*hw
)
539 struct ixgbe_eeprom_info
*eeprom
= &hw
->eeprom
;
543 if (eeprom
->type
== ixgbe_eeprom_uninitialized
) {
544 eeprom
->type
= ixgbe_eeprom_none
;
545 /* Set default semaphore delay to 10ms which is a well
547 eeprom
->semaphore_delay
= 10;
550 * Check for EEPROM present first.
551 * If not present leave as none
553 eec
= IXGBE_READ_REG(hw
, IXGBE_EEC
);
554 if (eec
& IXGBE_EEC_PRES
) {
555 eeprom
->type
= ixgbe_eeprom_spi
;
558 * SPI EEPROM is assumed here. This code would need to
559 * change if a future EEPROM is not SPI.
561 eeprom_size
= (u16
)((eec
& IXGBE_EEC_SIZE
) >>
562 IXGBE_EEC_SIZE_SHIFT
);
563 eeprom
->word_size
= 1 << (eeprom_size
+
564 IXGBE_EEPROM_WORD_SIZE_SHIFT
);
567 if (eec
& IXGBE_EEC_ADDR_SIZE
)
568 eeprom
->address_bits
= 16;
570 eeprom
->address_bits
= 8;
571 hw_dbg(hw
, "Eeprom params: type = %d, size = %d, address bits: "
572 "%d\n", eeprom
->type
, eeprom
->word_size
,
573 eeprom
->address_bits
);
580 * ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
581 * @hw: pointer to hardware structure
582 * @offset: offset within the EEPROM to be written to
583 * @data: 16 bit word to be written to the EEPROM
585 * If ixgbe_eeprom_update_checksum is not called after this function, the
586 * EEPROM will most likely contain an invalid checksum.
588 s32
ixgbe_write_eeprom_generic(struct ixgbe_hw
*hw
, u16 offset
, u16 data
)
591 u8 write_opcode
= IXGBE_EEPROM_WRITE_OPCODE_SPI
;
593 hw
->eeprom
.ops
.init_params(hw
);
595 if (offset
>= hw
->eeprom
.word_size
) {
596 status
= IXGBE_ERR_EEPROM
;
600 /* Prepare the EEPROM for writing */
601 status
= ixgbe_acquire_eeprom(hw
);
604 if (ixgbe_ready_eeprom(hw
) != 0) {
605 ixgbe_release_eeprom(hw
);
606 status
= IXGBE_ERR_EEPROM
;
611 ixgbe_standby_eeprom(hw
);
613 /* Send the WRITE ENABLE command (8 bit opcode ) */
614 ixgbe_shift_out_eeprom_bits(hw
, IXGBE_EEPROM_WREN_OPCODE_SPI
,
615 IXGBE_EEPROM_OPCODE_BITS
);
617 ixgbe_standby_eeprom(hw
);
620 * Some SPI eeproms use the 8th address bit embedded in the
623 if ((hw
->eeprom
.address_bits
== 8) && (offset
>= 128))
624 write_opcode
|= IXGBE_EEPROM_A8_OPCODE_SPI
;
626 /* Send the Write command (8-bit opcode + addr) */
627 ixgbe_shift_out_eeprom_bits(hw
, write_opcode
,
628 IXGBE_EEPROM_OPCODE_BITS
);
629 ixgbe_shift_out_eeprom_bits(hw
, (u16
)(offset
*2),
630 hw
->eeprom
.address_bits
);
633 data
= (data
>> 8) | (data
<< 8);
634 ixgbe_shift_out_eeprom_bits(hw
, data
, 16);
635 ixgbe_standby_eeprom(hw
);
637 /* Done with writing - release the EEPROM */
638 ixgbe_release_eeprom(hw
);
646 * ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
647 * @hw: pointer to hardware structure
648 * @offset: offset within the EEPROM to be read
649 * @data: read 16 bit value from EEPROM
651 * Reads 16 bit value from EEPROM through bit-bang method
653 s32
ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw
*hw
, u16 offset
,
658 u8 read_opcode
= IXGBE_EEPROM_READ_OPCODE_SPI
;
660 hw
->eeprom
.ops
.init_params(hw
);
662 if (offset
>= hw
->eeprom
.word_size
) {
663 status
= IXGBE_ERR_EEPROM
;
667 /* Prepare the EEPROM for reading */
668 status
= ixgbe_acquire_eeprom(hw
);
671 if (ixgbe_ready_eeprom(hw
) != 0) {
672 ixgbe_release_eeprom(hw
);
673 status
= IXGBE_ERR_EEPROM
;
678 ixgbe_standby_eeprom(hw
);
681 * Some SPI eeproms use the 8th address bit embedded in the
684 if ((hw
->eeprom
.address_bits
== 8) && (offset
>= 128))
685 read_opcode
|= IXGBE_EEPROM_A8_OPCODE_SPI
;
687 /* Send the READ command (opcode + addr) */
688 ixgbe_shift_out_eeprom_bits(hw
, read_opcode
,
689 IXGBE_EEPROM_OPCODE_BITS
);
690 ixgbe_shift_out_eeprom_bits(hw
, (u16
)(offset
*2),
691 hw
->eeprom
.address_bits
);
694 word_in
= ixgbe_shift_in_eeprom_bits(hw
, 16);
695 *data
= (word_in
>> 8) | (word_in
<< 8);
697 /* End this read operation */
698 ixgbe_release_eeprom(hw
);
706 * ixgbe_read_eerd_generic - Read EEPROM word using EERD
707 * @hw: pointer to hardware structure
708 * @offset: offset of word in the EEPROM to read
709 * @data: word read from the EEPROM
711 * Reads a 16 bit word from the EEPROM using the EERD register.
713 s32
ixgbe_read_eerd_generic(struct ixgbe_hw
*hw
, u16 offset
, u16
*data
)
718 hw
->eeprom
.ops
.init_params(hw
);
720 if (offset
>= hw
->eeprom
.word_size
) {
721 status
= IXGBE_ERR_EEPROM
;
725 eerd
= (offset
<< IXGBE_EEPROM_RW_ADDR_SHIFT
) +
726 IXGBE_EEPROM_RW_REG_START
;
728 IXGBE_WRITE_REG(hw
, IXGBE_EERD
, eerd
);
729 status
= ixgbe_poll_eerd_eewr_done(hw
, IXGBE_NVM_POLL_READ
);
732 *data
= (IXGBE_READ_REG(hw
, IXGBE_EERD
) >>
733 IXGBE_EEPROM_RW_REG_DATA
);
735 hw_dbg(hw
, "Eeprom read timed out\n");
742 * ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
743 * @hw: pointer to hardware structure
744 * @ee_reg: EEPROM flag for polling
746 * Polls the status bit (bit 1) of the EERD or EEWR to determine when the
747 * read or write is done respectively.
749 s32
ixgbe_poll_eerd_eewr_done(struct ixgbe_hw
*hw
, u32 ee_reg
)
753 s32 status
= IXGBE_ERR_EEPROM
;
755 for (i
= 0; i
< IXGBE_EERD_EEWR_ATTEMPTS
; i
++) {
756 if (ee_reg
== IXGBE_NVM_POLL_READ
)
757 reg
= IXGBE_READ_REG(hw
, IXGBE_EERD
);
759 reg
= IXGBE_READ_REG(hw
, IXGBE_EEWR
);
761 if (reg
& IXGBE_EEPROM_RW_REG_DONE
) {
771 * ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
772 * @hw: pointer to hardware structure
774 * Prepares EEPROM for access using bit-bang method. This function should
775 * be called before issuing a command to the EEPROM.
777 static s32
ixgbe_acquire_eeprom(struct ixgbe_hw
*hw
)
783 if (hw
->mac
.ops
.acquire_swfw_sync(hw
, IXGBE_GSSR_EEP_SM
) != 0)
784 status
= IXGBE_ERR_SWFW_SYNC
;
787 eec
= IXGBE_READ_REG(hw
, IXGBE_EEC
);
789 /* Request EEPROM Access */
790 eec
|= IXGBE_EEC_REQ
;
791 IXGBE_WRITE_REG(hw
, IXGBE_EEC
, eec
);
793 for (i
= 0; i
< IXGBE_EEPROM_GRANT_ATTEMPTS
; i
++) {
794 eec
= IXGBE_READ_REG(hw
, IXGBE_EEC
);
795 if (eec
& IXGBE_EEC_GNT
)
800 /* Release if grant not acquired */
801 if (!(eec
& IXGBE_EEC_GNT
)) {
802 eec
&= ~IXGBE_EEC_REQ
;
803 IXGBE_WRITE_REG(hw
, IXGBE_EEC
, eec
);
804 hw_dbg(hw
, "Could not acquire EEPROM grant\n");
806 hw
->mac
.ops
.release_swfw_sync(hw
, IXGBE_GSSR_EEP_SM
);
807 status
= IXGBE_ERR_EEPROM
;
810 /* Setup EEPROM for Read/Write */
812 /* Clear CS and SK */
813 eec
&= ~(IXGBE_EEC_CS
| IXGBE_EEC_SK
);
814 IXGBE_WRITE_REG(hw
, IXGBE_EEC
, eec
);
815 IXGBE_WRITE_FLUSH(hw
);
823 * ixgbe_get_eeprom_semaphore - Get hardware semaphore
824 * @hw: pointer to hardware structure
826 * Sets the hardware semaphores so EEPROM access can occur for bit-bang method
828 static s32
ixgbe_get_eeprom_semaphore(struct ixgbe_hw
*hw
)
830 s32 status
= IXGBE_ERR_EEPROM
;
835 /* Get SMBI software semaphore between device drivers first */
836 for (i
= 0; i
< timeout
; i
++) {
838 * If the SMBI bit is 0 when we read it, then the bit will be
839 * set and we have the semaphore
841 swsm
= IXGBE_READ_REG(hw
, IXGBE_SWSM
);
842 if (!(swsm
& IXGBE_SWSM_SMBI
)) {
849 /* Now get the semaphore between SW/FW through the SWESMBI bit */
851 for (i
= 0; i
< timeout
; i
++) {
852 swsm
= IXGBE_READ_REG(hw
, IXGBE_SWSM
);
854 /* Set the SW EEPROM semaphore bit to request access */
855 swsm
|= IXGBE_SWSM_SWESMBI
;
856 IXGBE_WRITE_REG(hw
, IXGBE_SWSM
, swsm
);
859 * If we set the bit successfully then we got the
862 swsm
= IXGBE_READ_REG(hw
, IXGBE_SWSM
);
863 if (swsm
& IXGBE_SWSM_SWESMBI
)
870 * Release semaphores and return error if SW EEPROM semaphore
871 * was not granted because we don't have access to the EEPROM
874 hw_dbg(hw
, "SWESMBI Software EEPROM semaphore "
876 ixgbe_release_eeprom_semaphore(hw
);
877 status
= IXGBE_ERR_EEPROM
;
880 hw_dbg(hw
, "Software semaphore SMBI between device drivers "
888 * ixgbe_release_eeprom_semaphore - Release hardware semaphore
889 * @hw: pointer to hardware structure
891 * This function clears hardware semaphore bits.
893 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw
*hw
)
897 swsm
= IXGBE_READ_REG(hw
, IXGBE_SWSM
);
899 /* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
900 swsm
&= ~(IXGBE_SWSM_SWESMBI
| IXGBE_SWSM_SMBI
);
901 IXGBE_WRITE_REG(hw
, IXGBE_SWSM
, swsm
);
902 IXGBE_WRITE_FLUSH(hw
);
906 * ixgbe_ready_eeprom - Polls for EEPROM ready
907 * @hw: pointer to hardware structure
909 static s32
ixgbe_ready_eeprom(struct ixgbe_hw
*hw
)
916 * Read "Status Register" repeatedly until the LSB is cleared. The
917 * EEPROM will signal that the command has been completed by clearing
918 * bit 0 of the internal status register. If it's not cleared within
919 * 5 milliseconds, then error out.
921 for (i
= 0; i
< IXGBE_EEPROM_MAX_RETRY_SPI
; i
+= 5) {
922 ixgbe_shift_out_eeprom_bits(hw
, IXGBE_EEPROM_RDSR_OPCODE_SPI
,
923 IXGBE_EEPROM_OPCODE_BITS
);
924 spi_stat_reg
= (u8
)ixgbe_shift_in_eeprom_bits(hw
, 8);
925 if (!(spi_stat_reg
& IXGBE_EEPROM_STATUS_RDY_SPI
))
929 ixgbe_standby_eeprom(hw
);
933 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
934 * devices (and only 0-5mSec on 5V devices)
936 if (i
>= IXGBE_EEPROM_MAX_RETRY_SPI
) {
937 hw_dbg(hw
, "SPI EEPROM Status error\n");
938 status
= IXGBE_ERR_EEPROM
;
945 * ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
946 * @hw: pointer to hardware structure
948 static void ixgbe_standby_eeprom(struct ixgbe_hw
*hw
)
952 eec
= IXGBE_READ_REG(hw
, IXGBE_EEC
);
954 /* Toggle CS to flush commands */
956 IXGBE_WRITE_REG(hw
, IXGBE_EEC
, eec
);
957 IXGBE_WRITE_FLUSH(hw
);
959 eec
&= ~IXGBE_EEC_CS
;
960 IXGBE_WRITE_REG(hw
, IXGBE_EEC
, eec
);
961 IXGBE_WRITE_FLUSH(hw
);
966 * ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
967 * @hw: pointer to hardware structure
968 * @data: data to send to the EEPROM
969 * @count: number of bits to shift out
971 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw
*hw
, u16 data
,
978 eec
= IXGBE_READ_REG(hw
, IXGBE_EEC
);
981 * Mask is used to shift "count" bits of "data" out to the EEPROM
982 * one bit at a time. Determine the starting bit based on count
984 mask
= 0x01 << (count
- 1);
986 for (i
= 0; i
< count
; i
++) {
988 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
989 * "1", and then raising and then lowering the clock (the SK
990 * bit controls the clock input to the EEPROM). A "0" is
991 * shifted out to the EEPROM by setting "DI" to "0" and then
992 * raising and then lowering the clock.
997 eec
&= ~IXGBE_EEC_DI
;
999 IXGBE_WRITE_REG(hw
, IXGBE_EEC
, eec
);
1000 IXGBE_WRITE_FLUSH(hw
);
1004 ixgbe_raise_eeprom_clk(hw
, &eec
);
1005 ixgbe_lower_eeprom_clk(hw
, &eec
);
1008 * Shift mask to signify next bit of data to shift in to the
1014 /* We leave the "DI" bit set to "0" when we leave this routine. */
1015 eec
&= ~IXGBE_EEC_DI
;
1016 IXGBE_WRITE_REG(hw
, IXGBE_EEC
, eec
);
1017 IXGBE_WRITE_FLUSH(hw
);
1021 * ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
1022 * @hw: pointer to hardware structure
1024 static u16
ixgbe_shift_in_eeprom_bits(struct ixgbe_hw
*hw
, u16 count
)
1031 * In order to read a register from the EEPROM, we need to shift
1032 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
1033 * the clock input to the EEPROM (setting the SK bit), and then reading
1034 * the value of the "DO" bit. During this "shifting in" process the
1035 * "DI" bit should always be clear.
1037 eec
= IXGBE_READ_REG(hw
, IXGBE_EEC
);
1039 eec
&= ~(IXGBE_EEC_DO
| IXGBE_EEC_DI
);
1041 for (i
= 0; i
< count
; i
++) {
1043 ixgbe_raise_eeprom_clk(hw
, &eec
);
1045 eec
= IXGBE_READ_REG(hw
, IXGBE_EEC
);
1047 eec
&= ~(IXGBE_EEC_DI
);
1048 if (eec
& IXGBE_EEC_DO
)
1051 ixgbe_lower_eeprom_clk(hw
, &eec
);
1058 * ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
1059 * @hw: pointer to hardware structure
1060 * @eec: EEC register's current value
1062 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw
*hw
, u32
*eec
)
1065 * Raise the clock input to the EEPROM
1066 * (setting the SK bit), then delay
1068 *eec
= *eec
| IXGBE_EEC_SK
;
1069 IXGBE_WRITE_REG(hw
, IXGBE_EEC
, *eec
);
1070 IXGBE_WRITE_FLUSH(hw
);
1075 * ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
1076 * @hw: pointer to hardware structure
1077 * @eecd: EECD's current value
1079 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw
*hw
, u32
*eec
)
1082 * Lower the clock input to the EEPROM (clearing the SK bit), then
1085 *eec
= *eec
& ~IXGBE_EEC_SK
;
1086 IXGBE_WRITE_REG(hw
, IXGBE_EEC
, *eec
);
1087 IXGBE_WRITE_FLUSH(hw
);
1092 * ixgbe_release_eeprom - Release EEPROM, release semaphores
1093 * @hw: pointer to hardware structure
1095 static void ixgbe_release_eeprom(struct ixgbe_hw
*hw
)
1099 eec
= IXGBE_READ_REG(hw
, IXGBE_EEC
);
1101 eec
|= IXGBE_EEC_CS
; /* Pull CS high */
1102 eec
&= ~IXGBE_EEC_SK
; /* Lower SCK */
1104 IXGBE_WRITE_REG(hw
, IXGBE_EEC
, eec
);
1105 IXGBE_WRITE_FLUSH(hw
);
1109 /* Stop requesting EEPROM access */
1110 eec
&= ~IXGBE_EEC_REQ
;
1111 IXGBE_WRITE_REG(hw
, IXGBE_EEC
, eec
);
1113 hw
->mac
.ops
.release_swfw_sync(hw
, IXGBE_GSSR_EEP_SM
);
1115 /* Delay before attempt to obtain semaphore again to allow FW access */
1116 msleep(hw
->eeprom
.semaphore_delay
);
1120 * ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
1121 * @hw: pointer to hardware structure
1123 u16
ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw
*hw
)
1132 /* Include 0x0-0x3F in the checksum */
1133 for (i
= 0; i
< IXGBE_EEPROM_CHECKSUM
; i
++) {
1134 if (hw
->eeprom
.ops
.read(hw
, i
, &word
) != 0) {
1135 hw_dbg(hw
, "EEPROM read failed\n");
1141 /* Include all data from pointers except for the fw pointer */
1142 for (i
= IXGBE_PCIE_ANALOG_PTR
; i
< IXGBE_FW_PTR
; i
++) {
1143 hw
->eeprom
.ops
.read(hw
, i
, &pointer
);
1145 /* Make sure the pointer seems valid */
1146 if (pointer
!= 0xFFFF && pointer
!= 0) {
1147 hw
->eeprom
.ops
.read(hw
, pointer
, &length
);
1149 if (length
!= 0xFFFF && length
!= 0) {
1150 for (j
= pointer
+1; j
<= pointer
+length
; j
++) {
1151 hw
->eeprom
.ops
.read(hw
, j
, &word
);
1158 checksum
= (u16
)IXGBE_EEPROM_SUM
- checksum
;
1164 * ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
1165 * @hw: pointer to hardware structure
1166 * @checksum_val: calculated checksum
1168 * Performs checksum calculation and validates the EEPROM checksum. If the
1169 * caller does not need checksum_val, the value can be NULL.
1171 s32
ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw
*hw
,
1176 u16 read_checksum
= 0;
1179 * Read the first word from the EEPROM. If this times out or fails, do
1180 * not continue or we could be in for a very long wait while every
1183 status
= hw
->eeprom
.ops
.read(hw
, 0, &checksum
);
1186 checksum
= hw
->eeprom
.ops
.calc_checksum(hw
);
1188 hw
->eeprom
.ops
.read(hw
, IXGBE_EEPROM_CHECKSUM
, &read_checksum
);
1191 * Verify read checksum from EEPROM is the same as
1192 * calculated checksum
1194 if (read_checksum
!= checksum
)
1195 status
= IXGBE_ERR_EEPROM_CHECKSUM
;
1197 /* If the user cares, return the calculated checksum */
1199 *checksum_val
= checksum
;
1201 hw_dbg(hw
, "EEPROM read failed\n");
1208 * ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
1209 * @hw: pointer to hardware structure
1211 s32
ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw
*hw
)
1217 * Read the first word from the EEPROM. If this times out or fails, do
1218 * not continue or we could be in for a very long wait while every
1221 status
= hw
->eeprom
.ops
.read(hw
, 0, &checksum
);
1224 checksum
= hw
->eeprom
.ops
.calc_checksum(hw
);
1225 status
= hw
->eeprom
.ops
.write(hw
, IXGBE_EEPROM_CHECKSUM
,
1228 hw_dbg(hw
, "EEPROM read failed\n");
1235 * ixgbe_validate_mac_addr - Validate MAC address
1236 * @mac_addr: pointer to MAC address.
1238 * Tests a MAC address to ensure it is a valid Individual Address
1240 s32
ixgbe_validate_mac_addr(u8
*mac_addr
)
1244 /* Make sure it is not a multicast address */
1245 if (IXGBE_IS_MULTICAST(mac_addr
))
1246 status
= IXGBE_ERR_INVALID_MAC_ADDR
;
1247 /* Not a broadcast address */
1248 else if (IXGBE_IS_BROADCAST(mac_addr
))
1249 status
= IXGBE_ERR_INVALID_MAC_ADDR
;
1250 /* Reject the zero address */
1251 else if (mac_addr
[0] == 0 && mac_addr
[1] == 0 && mac_addr
[2] == 0 &&
1252 mac_addr
[3] == 0 && mac_addr
[4] == 0 && mac_addr
[5] == 0)
1253 status
= IXGBE_ERR_INVALID_MAC_ADDR
;
1259 * ixgbe_set_rar_generic - Set Rx address register
1260 * @hw: pointer to hardware structure
1261 * @index: Receive address register to write
1262 * @addr: Address to put into receive address register
1263 * @vmdq: VMDq "set" or "pool" index
1264 * @enable_addr: set flag that address is active
1266 * Puts an ethernet address into a receive address register.
1268 s32
ixgbe_set_rar_generic(struct ixgbe_hw
*hw
, u32 index
, u8
*addr
, u32 vmdq
,
1271 u32 rar_low
, rar_high
;
1272 u32 rar_entries
= hw
->mac
.num_rar_entries
;
1274 /* Make sure we are using a valid rar index range */
1275 if (index
>= rar_entries
) {
1276 hw_dbg(hw
, "RAR index %d is out of range.\n", index
);
1277 return IXGBE_ERR_INVALID_ARGUMENT
;
1280 /* setup VMDq pool selection before this RAR gets enabled */
1281 hw
->mac
.ops
.set_vmdq(hw
, index
, vmdq
);
1284 * HW expects these in little endian so we reverse the byte
1285 * order from network order (big endian) to little endian
1287 rar_low
= ((u32
)addr
[0] |
1288 ((u32
)addr
[1] << 8) |
1289 ((u32
)addr
[2] << 16) |
1290 ((u32
)addr
[3] << 24));
1292 * Some parts put the VMDq setting in the extra RAH bits,
1293 * so save everything except the lower 16 bits that hold part
1294 * of the address and the address valid bit.
1296 rar_high
= IXGBE_READ_REG(hw
, IXGBE_RAH(index
));
1297 rar_high
&= ~(0x0000FFFF | IXGBE_RAH_AV
);
1298 rar_high
|= ((u32
)addr
[4] | ((u32
)addr
[5] << 8));
1300 if (enable_addr
!= 0)
1301 rar_high
|= IXGBE_RAH_AV
;
1303 IXGBE_WRITE_REG(hw
, IXGBE_RAL(index
), rar_low
);
1304 IXGBE_WRITE_REG(hw
, IXGBE_RAH(index
), rar_high
);
1310 * ixgbe_clear_rar_generic - Remove Rx address register
1311 * @hw: pointer to hardware structure
1312 * @index: Receive address register to write
1314 * Clears an ethernet address from a receive address register.
1316 s32
ixgbe_clear_rar_generic(struct ixgbe_hw
*hw
, u32 index
)
1319 u32 rar_entries
= hw
->mac
.num_rar_entries
;
1321 /* Make sure we are using a valid rar index range */
1322 if (index
>= rar_entries
) {
1323 hw_dbg(hw
, "RAR index %d is out of range.\n", index
);
1324 return IXGBE_ERR_INVALID_ARGUMENT
;
1328 * Some parts put the VMDq setting in the extra RAH bits,
1329 * so save everything except the lower 16 bits that hold part
1330 * of the address and the address valid bit.
1332 rar_high
= IXGBE_READ_REG(hw
, IXGBE_RAH(index
));
1333 rar_high
&= ~(0x0000FFFF | IXGBE_RAH_AV
);
1335 IXGBE_WRITE_REG(hw
, IXGBE_RAL(index
), 0);
1336 IXGBE_WRITE_REG(hw
, IXGBE_RAH(index
), rar_high
);
1338 /* clear VMDq pool/queue selection for this RAR */
1339 hw
->mac
.ops
.clear_vmdq(hw
, index
, IXGBE_CLEAR_VMDQ_ALL
);
1345 * ixgbe_init_rx_addrs_generic - Initializes receive address filters.
1346 * @hw: pointer to hardware structure
1348 * Places the MAC address in receive address register 0 and clears the rest
1349 * of the receive address registers. Clears the multicast table. Assumes
1350 * the receiver is in reset when the routine is called.
1352 s32
ixgbe_init_rx_addrs_generic(struct ixgbe_hw
*hw
)
1355 u32 rar_entries
= hw
->mac
.num_rar_entries
;
1358 * If the current mac address is valid, assume it is a software override
1359 * to the permanent address.
1360 * Otherwise, use the permanent address from the eeprom.
1362 if (ixgbe_validate_mac_addr(hw
->mac
.addr
) ==
1363 IXGBE_ERR_INVALID_MAC_ADDR
) {
1364 /* Get the MAC address from the RAR0 for later reference */
1365 hw
->mac
.ops
.get_mac_addr(hw
, hw
->mac
.addr
);
1367 hw_dbg(hw
, " Keeping Current RAR0 Addr =%pM\n", hw
->mac
.addr
);
1369 /* Setup the receive address. */
1370 hw_dbg(hw
, "Overriding MAC Address in RAR[0]\n");
1371 hw_dbg(hw
, " New MAC Addr =%pM\n", hw
->mac
.addr
);
1373 hw
->mac
.ops
.set_rar(hw
, 0, hw
->mac
.addr
, 0, IXGBE_RAH_AV
);
1375 /* clear VMDq pool/queue selection for RAR 0 */
1376 hw
->mac
.ops
.clear_vmdq(hw
, 0, IXGBE_CLEAR_VMDQ_ALL
);
1378 hw
->addr_ctrl
.overflow_promisc
= 0;
1380 hw
->addr_ctrl
.rar_used_count
= 1;
1382 /* Zero out the other receive addresses. */
1383 hw_dbg(hw
, "Clearing RAR[1-%d]\n", rar_entries
- 1);
1384 for (i
= 1; i
< rar_entries
; i
++) {
1385 IXGBE_WRITE_REG(hw
, IXGBE_RAL(i
), 0);
1386 IXGBE_WRITE_REG(hw
, IXGBE_RAH(i
), 0);
1390 hw
->addr_ctrl
.mta_in_use
= 0;
1391 IXGBE_WRITE_REG(hw
, IXGBE_MCSTCTRL
, hw
->mac
.mc_filter_type
);
1393 hw_dbg(hw
, " Clearing MTA\n");
1394 for (i
= 0; i
< hw
->mac
.mcft_size
; i
++)
1395 IXGBE_WRITE_REG(hw
, IXGBE_MTA(i
), 0);
1397 if (hw
->mac
.ops
.init_uta_tables
)
1398 hw
->mac
.ops
.init_uta_tables(hw
);
1404 * ixgbe_mta_vector - Determines bit-vector in multicast table to set
1405 * @hw: pointer to hardware structure
1406 * @mc_addr: the multicast address
1408 * Extracts the 12 bits, from a multicast address, to determine which
1409 * bit-vector to set in the multicast table. The hardware uses 12 bits, from
1410 * incoming rx multicast addresses, to determine the bit-vector to check in
1411 * the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
1412 * by the MO field of the MCSTCTRL. The MO field is set during initialization
1413 * to mc_filter_type.
1415 static s32
ixgbe_mta_vector(struct ixgbe_hw
*hw
, u8
*mc_addr
)
1419 switch (hw
->mac
.mc_filter_type
) {
1420 case 0: /* use bits [47:36] of the address */
1421 vector
= ((mc_addr
[4] >> 4) | (((u16
)mc_addr
[5]) << 4));
1423 case 1: /* use bits [46:35] of the address */
1424 vector
= ((mc_addr
[4] >> 3) | (((u16
)mc_addr
[5]) << 5));
1426 case 2: /* use bits [45:34] of the address */
1427 vector
= ((mc_addr
[4] >> 2) | (((u16
)mc_addr
[5]) << 6));
1429 case 3: /* use bits [43:32] of the address */
1430 vector
= ((mc_addr
[4]) | (((u16
)mc_addr
[5]) << 8));
1432 default: /* Invalid mc_filter_type */
1433 hw_dbg(hw
, "MC filter type param set incorrectly\n");
1437 /* vector can only be 12-bits or boundary will be exceeded */
1443 * ixgbe_set_mta - Set bit-vector in multicast table
1444 * @hw: pointer to hardware structure
1445 * @hash_value: Multicast address hash value
1447 * Sets the bit-vector in the multicast table.
1449 static void ixgbe_set_mta(struct ixgbe_hw
*hw
, u8
*mc_addr
)
1455 hw
->addr_ctrl
.mta_in_use
++;
1457 vector
= ixgbe_mta_vector(hw
, mc_addr
);
1458 hw_dbg(hw
, " bit-vector = 0x%03X\n", vector
);
1461 * The MTA is a register array of 128 32-bit registers. It is treated
1462 * like an array of 4096 bits. We want to set bit
1463 * BitArray[vector_value]. So we figure out what register the bit is
1464 * in, read it, OR in the new bit, then write back the new value. The
1465 * register is determined by the upper 7 bits of the vector value and
1466 * the bit within that register are determined by the lower 5 bits of
1469 vector_reg
= (vector
>> 5) & 0x7F;
1470 vector_bit
= vector
& 0x1F;
1471 hw
->mac
.mta_shadow
[vector_reg
] |= (1 << vector_bit
);
1475 * ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
1476 * @hw: pointer to hardware structure
1477 * @netdev: pointer to net device structure
1479 * The given list replaces any existing list. Clears the MC addrs from receive
1480 * address registers and the multicast table. Uses unused receive address
1481 * registers for the first multicast addresses, and hashes the rest into the
1484 s32
ixgbe_update_mc_addr_list_generic(struct ixgbe_hw
*hw
,
1485 struct net_device
*netdev
)
1487 struct netdev_hw_addr
*ha
;
1491 * Set the new number of MC addresses that we are being requested to
1494 hw
->addr_ctrl
.num_mc_addrs
= netdev_mc_count(netdev
);
1495 hw
->addr_ctrl
.mta_in_use
= 0;
1497 /* Clear mta_shadow */
1498 hw_dbg(hw
, " Clearing MTA\n");
1499 memset(&hw
->mac
.mta_shadow
, 0, sizeof(hw
->mac
.mta_shadow
));
1501 /* Update mta shadow */
1502 netdev_for_each_mc_addr(ha
, netdev
) {
1503 hw_dbg(hw
, " Adding the multicast addresses:\n");
1504 ixgbe_set_mta(hw
, ha
->addr
);
1508 for (i
= 0; i
< hw
->mac
.mcft_size
; i
++)
1509 IXGBE_WRITE_REG_ARRAY(hw
, IXGBE_MTA(0), i
,
1510 hw
->mac
.mta_shadow
[i
]);
1512 if (hw
->addr_ctrl
.mta_in_use
> 0)
1513 IXGBE_WRITE_REG(hw
, IXGBE_MCSTCTRL
,
1514 IXGBE_MCSTCTRL_MFE
| hw
->mac
.mc_filter_type
);
1516 hw_dbg(hw
, "ixgbe_update_mc_addr_list_generic Complete\n");
1521 * ixgbe_enable_mc_generic - Enable multicast address in RAR
1522 * @hw: pointer to hardware structure
1524 * Enables multicast address in RAR and the use of the multicast hash table.
1526 s32
ixgbe_enable_mc_generic(struct ixgbe_hw
*hw
)
1528 struct ixgbe_addr_filter_info
*a
= &hw
->addr_ctrl
;
1530 if (a
->mta_in_use
> 0)
1531 IXGBE_WRITE_REG(hw
, IXGBE_MCSTCTRL
, IXGBE_MCSTCTRL_MFE
|
1532 hw
->mac
.mc_filter_type
);
1538 * ixgbe_disable_mc_generic - Disable multicast address in RAR
1539 * @hw: pointer to hardware structure
1541 * Disables multicast address in RAR and the use of the multicast hash table.
1543 s32
ixgbe_disable_mc_generic(struct ixgbe_hw
*hw
)
1545 struct ixgbe_addr_filter_info
*a
= &hw
->addr_ctrl
;
1547 if (a
->mta_in_use
> 0)
1548 IXGBE_WRITE_REG(hw
, IXGBE_MCSTCTRL
, hw
->mac
.mc_filter_type
);
1554 * ixgbe_fc_enable_generic - Enable flow control
1555 * @hw: pointer to hardware structure
1556 * @packetbuf_num: packet buffer number (0-7)
1558 * Enable flow control according to the current settings.
1560 s32
ixgbe_fc_enable_generic(struct ixgbe_hw
*hw
, s32 packetbuf_num
)
1563 u32 mflcn_reg
, fccfg_reg
;
1569 if (hw
->fc
.requested_mode
== ixgbe_fc_pfc
)
1572 #endif /* CONFIG_DCB */
1573 /* Negotiate the fc mode to use */
1574 ret_val
= ixgbe_fc_autoneg(hw
);
1575 if (ret_val
== IXGBE_ERR_FLOW_CONTROL
)
1578 /* Disable any previous flow control settings */
1579 mflcn_reg
= IXGBE_READ_REG(hw
, IXGBE_MFLCN
);
1580 mflcn_reg
&= ~(IXGBE_MFLCN_RFCE
| IXGBE_MFLCN_RPFCE
);
1582 fccfg_reg
= IXGBE_READ_REG(hw
, IXGBE_FCCFG
);
1583 fccfg_reg
&= ~(IXGBE_FCCFG_TFCE_802_3X
| IXGBE_FCCFG_TFCE_PRIORITY
);
1586 * The possible values of fc.current_mode are:
1587 * 0: Flow control is completely disabled
1588 * 1: Rx flow control is enabled (we can receive pause frames,
1589 * but not send pause frames).
1590 * 2: Tx flow control is enabled (we can send pause frames but
1591 * we do not support receiving pause frames).
1592 * 3: Both Rx and Tx flow control (symmetric) are enabled.
1594 * 4: Priority Flow Control is enabled.
1598 switch (hw
->fc
.current_mode
) {
1601 * Flow control is disabled by software override or autoneg.
1602 * The code below will actually disable it in the HW.
1605 case ixgbe_fc_rx_pause
:
1607 * Rx Flow control is enabled and Tx Flow control is
1608 * disabled by software override. Since there really
1609 * isn't a way to advertise that we are capable of RX
1610 * Pause ONLY, we will advertise that we support both
1611 * symmetric and asymmetric Rx PAUSE. Later, we will
1612 * disable the adapter's ability to send PAUSE frames.
1614 mflcn_reg
|= IXGBE_MFLCN_RFCE
;
1616 case ixgbe_fc_tx_pause
:
1618 * Tx Flow control is enabled, and Rx Flow control is
1619 * disabled by software override.
1621 fccfg_reg
|= IXGBE_FCCFG_TFCE_802_3X
;
1624 /* Flow control (both Rx and Tx) is enabled by SW override. */
1625 mflcn_reg
|= IXGBE_MFLCN_RFCE
;
1626 fccfg_reg
|= IXGBE_FCCFG_TFCE_802_3X
;
1632 #endif /* CONFIG_DCB */
1634 hw_dbg(hw
, "Flow control param set incorrectly\n");
1635 ret_val
= IXGBE_ERR_CONFIG
;
1640 /* Set 802.3x based flow control settings. */
1641 mflcn_reg
|= IXGBE_MFLCN_DPF
;
1642 IXGBE_WRITE_REG(hw
, IXGBE_MFLCN
, mflcn_reg
);
1643 IXGBE_WRITE_REG(hw
, IXGBE_FCCFG
, fccfg_reg
);
1645 rx_pba_size
= IXGBE_READ_REG(hw
, IXGBE_RXPBSIZE(packetbuf_num
));
1646 rx_pba_size
>>= IXGBE_RXPBSIZE_SHIFT
;
1648 fcrth
= (rx_pba_size
- hw
->fc
.high_water
) << 10;
1649 fcrtl
= (rx_pba_size
- hw
->fc
.low_water
) << 10;
1651 if (hw
->fc
.current_mode
& ixgbe_fc_tx_pause
) {
1652 fcrth
|= IXGBE_FCRTH_FCEN
;
1653 if (hw
->fc
.send_xon
)
1654 fcrtl
|= IXGBE_FCRTL_XONE
;
1657 IXGBE_WRITE_REG(hw
, IXGBE_FCRTH_82599(packetbuf_num
), fcrth
);
1658 IXGBE_WRITE_REG(hw
, IXGBE_FCRTL_82599(packetbuf_num
), fcrtl
);
1660 /* Configure pause time (2 TCs per register) */
1661 reg
= IXGBE_READ_REG(hw
, IXGBE_FCTTV(packetbuf_num
/ 2));
1662 if ((packetbuf_num
& 1) == 0)
1663 reg
= (reg
& 0xFFFF0000) | hw
->fc
.pause_time
;
1665 reg
= (reg
& 0x0000FFFF) | (hw
->fc
.pause_time
<< 16);
1666 IXGBE_WRITE_REG(hw
, IXGBE_FCTTV(packetbuf_num
/ 2), reg
);
1668 IXGBE_WRITE_REG(hw
, IXGBE_FCRTV
, (hw
->fc
.pause_time
>> 1));
1675 * ixgbe_fc_autoneg - Configure flow control
1676 * @hw: pointer to hardware structure
1678 * Compares our advertised flow control capabilities to those advertised by
1679 * our link partner, and determines the proper flow control mode to use.
1681 s32
ixgbe_fc_autoneg(struct ixgbe_hw
*hw
)
1683 s32 ret_val
= IXGBE_ERR_FC_NOT_NEGOTIATED
;
1684 ixgbe_link_speed speed
;
1687 if (hw
->fc
.disable_fc_autoneg
)
1691 * AN should have completed when the cable was plugged in.
1692 * Look for reasons to bail out. Bail out if:
1693 * - FC autoneg is disabled, or if
1696 * Since we're being called from an LSC, link is already known to be up.
1697 * So use link_up_wait_to_complete=false.
1699 hw
->mac
.ops
.check_link(hw
, &speed
, &link_up
, false);
1701 ret_val
= IXGBE_ERR_FLOW_CONTROL
;
1705 switch (hw
->phy
.media_type
) {
1706 /* Autoneg flow control on fiber adapters */
1707 case ixgbe_media_type_fiber
:
1708 if (speed
== IXGBE_LINK_SPEED_1GB_FULL
)
1709 ret_val
= ixgbe_fc_autoneg_fiber(hw
);
1712 /* Autoneg flow control on backplane adapters */
1713 case ixgbe_media_type_backplane
:
1714 ret_val
= ixgbe_fc_autoneg_backplane(hw
);
1717 /* Autoneg flow control on copper adapters */
1718 case ixgbe_media_type_copper
:
1719 if (ixgbe_device_supports_autoneg_fc(hw
) == 0)
1720 ret_val
= ixgbe_fc_autoneg_copper(hw
);
1729 hw
->fc
.fc_was_autonegged
= true;
1731 hw
->fc
.fc_was_autonegged
= false;
1732 hw
->fc
.current_mode
= hw
->fc
.requested_mode
;
1738 * ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
1739 * @hw: pointer to hardware structure
1741 * Enable flow control according on 1 gig fiber.
1743 static s32
ixgbe_fc_autoneg_fiber(struct ixgbe_hw
*hw
)
1745 u32 pcs_anadv_reg
, pcs_lpab_reg
, linkstat
;
1749 * On multispeed fiber at 1g, bail out if
1750 * - link is up but AN did not complete, or if
1751 * - link is up and AN completed but timed out
1754 linkstat
= IXGBE_READ_REG(hw
, IXGBE_PCS1GLSTA
);
1755 if (((linkstat
& IXGBE_PCS1GLSTA_AN_COMPLETE
) == 0) ||
1756 ((linkstat
& IXGBE_PCS1GLSTA_AN_TIMED_OUT
) == 1)) {
1757 ret_val
= IXGBE_ERR_FC_NOT_NEGOTIATED
;
1761 pcs_anadv_reg
= IXGBE_READ_REG(hw
, IXGBE_PCS1GANA
);
1762 pcs_lpab_reg
= IXGBE_READ_REG(hw
, IXGBE_PCS1GANLP
);
1764 ret_val
= ixgbe_negotiate_fc(hw
, pcs_anadv_reg
,
1765 pcs_lpab_reg
, IXGBE_PCS1GANA_SYM_PAUSE
,
1766 IXGBE_PCS1GANA_ASM_PAUSE
,
1767 IXGBE_PCS1GANA_SYM_PAUSE
,
1768 IXGBE_PCS1GANA_ASM_PAUSE
);
1775 * ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
1776 * @hw: pointer to hardware structure
1778 * Enable flow control according to IEEE clause 37.
1780 static s32
ixgbe_fc_autoneg_backplane(struct ixgbe_hw
*hw
)
1782 u32 links2
, anlp1_reg
, autoc_reg
, links
;
1786 * On backplane, bail out if
1787 * - backplane autoneg was not completed, or if
1788 * - we are 82599 and link partner is not AN enabled
1790 links
= IXGBE_READ_REG(hw
, IXGBE_LINKS
);
1791 if ((links
& IXGBE_LINKS_KX_AN_COMP
) == 0) {
1792 hw
->fc
.fc_was_autonegged
= false;
1793 hw
->fc
.current_mode
= hw
->fc
.requested_mode
;
1794 ret_val
= IXGBE_ERR_FC_NOT_NEGOTIATED
;
1798 if (hw
->mac
.type
== ixgbe_mac_82599EB
) {
1799 links2
= IXGBE_READ_REG(hw
, IXGBE_LINKS2
);
1800 if ((links2
& IXGBE_LINKS2_AN_SUPPORTED
) == 0) {
1801 hw
->fc
.fc_was_autonegged
= false;
1802 hw
->fc
.current_mode
= hw
->fc
.requested_mode
;
1803 ret_val
= IXGBE_ERR_FC_NOT_NEGOTIATED
;
1808 * Read the 10g AN autoc and LP ability registers and resolve
1809 * local flow control settings accordingly
1811 autoc_reg
= IXGBE_READ_REG(hw
, IXGBE_AUTOC
);
1812 anlp1_reg
= IXGBE_READ_REG(hw
, IXGBE_ANLP1
);
1814 ret_val
= ixgbe_negotiate_fc(hw
, autoc_reg
,
1815 anlp1_reg
, IXGBE_AUTOC_SYM_PAUSE
, IXGBE_AUTOC_ASM_PAUSE
,
1816 IXGBE_ANLP1_SYM_PAUSE
, IXGBE_ANLP1_ASM_PAUSE
);
1823 * ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
1824 * @hw: pointer to hardware structure
1826 * Enable flow control according to IEEE clause 37.
1828 static s32
ixgbe_fc_autoneg_copper(struct ixgbe_hw
*hw
)
1830 u16 technology_ability_reg
= 0;
1831 u16 lp_technology_ability_reg
= 0;
1833 hw
->phy
.ops
.read_reg(hw
, MDIO_AN_ADVERTISE
,
1835 &technology_ability_reg
);
1836 hw
->phy
.ops
.read_reg(hw
, MDIO_AN_LPA
,
1838 &lp_technology_ability_reg
);
1840 return ixgbe_negotiate_fc(hw
, (u32
)technology_ability_reg
,
1841 (u32
)lp_technology_ability_reg
,
1842 IXGBE_TAF_SYM_PAUSE
, IXGBE_TAF_ASM_PAUSE
,
1843 IXGBE_TAF_SYM_PAUSE
, IXGBE_TAF_ASM_PAUSE
);
1847 * ixgbe_negotiate_fc - Negotiate flow control
1848 * @hw: pointer to hardware structure
1849 * @adv_reg: flow control advertised settings
1850 * @lp_reg: link partner's flow control settings
1851 * @adv_sym: symmetric pause bit in advertisement
1852 * @adv_asm: asymmetric pause bit in advertisement
1853 * @lp_sym: symmetric pause bit in link partner advertisement
1854 * @lp_asm: asymmetric pause bit in link partner advertisement
1856 * Find the intersection between advertised settings and link partner's
1857 * advertised settings
1859 static s32
ixgbe_negotiate_fc(struct ixgbe_hw
*hw
, u32 adv_reg
, u32 lp_reg
,
1860 u32 adv_sym
, u32 adv_asm
, u32 lp_sym
, u32 lp_asm
)
1862 if ((!(adv_reg
)) || (!(lp_reg
)))
1863 return IXGBE_ERR_FC_NOT_NEGOTIATED
;
1865 if ((adv_reg
& adv_sym
) && (lp_reg
& lp_sym
)) {
1867 * Now we need to check if the user selected Rx ONLY
1868 * of pause frames. In this case, we had to advertise
1869 * FULL flow control because we could not advertise RX
1870 * ONLY. Hence, we must now check to see if we need to
1871 * turn OFF the TRANSMISSION of PAUSE frames.
1873 if (hw
->fc
.requested_mode
== ixgbe_fc_full
) {
1874 hw
->fc
.current_mode
= ixgbe_fc_full
;
1875 hw_dbg(hw
, "Flow Control = FULL.\n");
1877 hw
->fc
.current_mode
= ixgbe_fc_rx_pause
;
1878 hw_dbg(hw
, "Flow Control=RX PAUSE frames only\n");
1880 } else if (!(adv_reg
& adv_sym
) && (adv_reg
& adv_asm
) &&
1881 (lp_reg
& lp_sym
) && (lp_reg
& lp_asm
)) {
1882 hw
->fc
.current_mode
= ixgbe_fc_tx_pause
;
1883 hw_dbg(hw
, "Flow Control = TX PAUSE frames only.\n");
1884 } else if ((adv_reg
& adv_sym
) && (adv_reg
& adv_asm
) &&
1885 !(lp_reg
& lp_sym
) && (lp_reg
& lp_asm
)) {
1886 hw
->fc
.current_mode
= ixgbe_fc_rx_pause
;
1887 hw_dbg(hw
, "Flow Control = RX PAUSE frames only.\n");
1889 hw
->fc
.current_mode
= ixgbe_fc_none
;
1890 hw_dbg(hw
, "Flow Control = NONE.\n");
1896 * ixgbe_setup_fc - Set up flow control
1897 * @hw: pointer to hardware structure
1899 * Called at init time to set up flow control.
1901 static s32
ixgbe_setup_fc(struct ixgbe_hw
*hw
, s32 packetbuf_num
)
1904 u32 reg
= 0, reg_bp
= 0;
1908 if (hw
->fc
.requested_mode
== ixgbe_fc_pfc
) {
1909 hw
->fc
.current_mode
= hw
->fc
.requested_mode
;
1913 #endif /* CONFIG_DCB */
1914 /* Validate the packetbuf configuration */
1915 if (packetbuf_num
< 0 || packetbuf_num
> 7) {
1916 hw_dbg(hw
, "Invalid packet buffer number [%d], expected range "
1917 "is 0-7\n", packetbuf_num
);
1918 ret_val
= IXGBE_ERR_INVALID_LINK_SETTINGS
;
1923 * Validate the water mark configuration. Zero water marks are invalid
1924 * because it causes the controller to just blast out fc packets.
1926 if (!hw
->fc
.low_water
|| !hw
->fc
.high_water
|| !hw
->fc
.pause_time
) {
1927 hw_dbg(hw
, "Invalid water mark configuration\n");
1928 ret_val
= IXGBE_ERR_INVALID_LINK_SETTINGS
;
1933 * Validate the requested mode. Strict IEEE mode does not allow
1934 * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
1936 if (hw
->fc
.strict_ieee
&& hw
->fc
.requested_mode
== ixgbe_fc_rx_pause
) {
1937 hw_dbg(hw
, "ixgbe_fc_rx_pause not valid in strict "
1939 ret_val
= IXGBE_ERR_INVALID_LINK_SETTINGS
;
1944 * 10gig parts do not have a word in the EEPROM to determine the
1945 * default flow control setting, so we explicitly set it to full.
1947 if (hw
->fc
.requested_mode
== ixgbe_fc_default
)
1948 hw
->fc
.requested_mode
= ixgbe_fc_full
;
1951 * Set up the 1G and 10G flow control advertisement registers so the
1952 * HW will be able to do fc autoneg once the cable is plugged in. If
1953 * we link at 10G, the 1G advertisement is harmless and vice versa.
1956 switch (hw
->phy
.media_type
) {
1957 case ixgbe_media_type_fiber
:
1958 case ixgbe_media_type_backplane
:
1959 reg
= IXGBE_READ_REG(hw
, IXGBE_PCS1GANA
);
1960 reg_bp
= IXGBE_READ_REG(hw
, IXGBE_AUTOC
);
1963 case ixgbe_media_type_copper
:
1964 hw
->phy
.ops
.read_reg(hw
, MDIO_AN_ADVERTISE
,
1965 MDIO_MMD_AN
, ®_cu
);
1973 * The possible values of fc.requested_mode are:
1974 * 0: Flow control is completely disabled
1975 * 1: Rx flow control is enabled (we can receive pause frames,
1976 * but not send pause frames).
1977 * 2: Tx flow control is enabled (we can send pause frames but
1978 * we do not support receiving pause frames).
1979 * 3: Both Rx and Tx flow control (symmetric) are enabled.
1981 * 4: Priority Flow Control is enabled.
1985 switch (hw
->fc
.requested_mode
) {
1987 /* Flow control completely disabled by software override. */
1988 reg
&= ~(IXGBE_PCS1GANA_SYM_PAUSE
| IXGBE_PCS1GANA_ASM_PAUSE
);
1989 if (hw
->phy
.media_type
== ixgbe_media_type_backplane
)
1990 reg_bp
&= ~(IXGBE_AUTOC_SYM_PAUSE
|
1991 IXGBE_AUTOC_ASM_PAUSE
);
1992 else if (hw
->phy
.media_type
== ixgbe_media_type_copper
)
1993 reg_cu
&= ~(IXGBE_TAF_SYM_PAUSE
| IXGBE_TAF_ASM_PAUSE
);
1995 case ixgbe_fc_rx_pause
:
1997 * Rx Flow control is enabled and Tx Flow control is
1998 * disabled by software override. Since there really
1999 * isn't a way to advertise that we are capable of RX
2000 * Pause ONLY, we will advertise that we support both
2001 * symmetric and asymmetric Rx PAUSE. Later, we will
2002 * disable the adapter's ability to send PAUSE frames.
2004 reg
|= (IXGBE_PCS1GANA_SYM_PAUSE
| IXGBE_PCS1GANA_ASM_PAUSE
);
2005 if (hw
->phy
.media_type
== ixgbe_media_type_backplane
)
2006 reg_bp
|= (IXGBE_AUTOC_SYM_PAUSE
|
2007 IXGBE_AUTOC_ASM_PAUSE
);
2008 else if (hw
->phy
.media_type
== ixgbe_media_type_copper
)
2009 reg_cu
|= (IXGBE_TAF_SYM_PAUSE
| IXGBE_TAF_ASM_PAUSE
);
2011 case ixgbe_fc_tx_pause
:
2013 * Tx Flow control is enabled, and Rx Flow control is
2014 * disabled by software override.
2016 reg
|= (IXGBE_PCS1GANA_ASM_PAUSE
);
2017 reg
&= ~(IXGBE_PCS1GANA_SYM_PAUSE
);
2018 if (hw
->phy
.media_type
== ixgbe_media_type_backplane
) {
2019 reg_bp
|= (IXGBE_AUTOC_ASM_PAUSE
);
2020 reg_bp
&= ~(IXGBE_AUTOC_SYM_PAUSE
);
2021 } else if (hw
->phy
.media_type
== ixgbe_media_type_copper
) {
2022 reg_cu
|= (IXGBE_TAF_ASM_PAUSE
);
2023 reg_cu
&= ~(IXGBE_TAF_SYM_PAUSE
);
2027 /* Flow control (both Rx and Tx) is enabled by SW override. */
2028 reg
|= (IXGBE_PCS1GANA_SYM_PAUSE
| IXGBE_PCS1GANA_ASM_PAUSE
);
2029 if (hw
->phy
.media_type
== ixgbe_media_type_backplane
)
2030 reg_bp
|= (IXGBE_AUTOC_SYM_PAUSE
|
2031 IXGBE_AUTOC_ASM_PAUSE
);
2032 else if (hw
->phy
.media_type
== ixgbe_media_type_copper
)
2033 reg_cu
|= (IXGBE_TAF_SYM_PAUSE
| IXGBE_TAF_ASM_PAUSE
);
2039 #endif /* CONFIG_DCB */
2041 hw_dbg(hw
, "Flow control param set incorrectly\n");
2042 ret_val
= IXGBE_ERR_CONFIG
;
2047 if (hw
->mac
.type
!= ixgbe_mac_X540
) {
2049 * Enable auto-negotiation between the MAC & PHY;
2050 * the MAC will advertise clause 37 flow control.
2052 IXGBE_WRITE_REG(hw
, IXGBE_PCS1GANA
, reg
);
2053 reg
= IXGBE_READ_REG(hw
, IXGBE_PCS1GLCTL
);
2055 /* Disable AN timeout */
2056 if (hw
->fc
.strict_ieee
)
2057 reg
&= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN
;
2059 IXGBE_WRITE_REG(hw
, IXGBE_PCS1GLCTL
, reg
);
2060 hw_dbg(hw
, "Set up FC; PCS1GLCTL = 0x%08X\n", reg
);
2064 * AUTOC restart handles negotiation of 1G and 10G on backplane
2065 * and copper. There is no need to set the PCS1GCTL register.
2068 if (hw
->phy
.media_type
== ixgbe_media_type_backplane
) {
2069 reg_bp
|= IXGBE_AUTOC_AN_RESTART
;
2070 IXGBE_WRITE_REG(hw
, IXGBE_AUTOC
, reg_bp
);
2071 } else if ((hw
->phy
.media_type
== ixgbe_media_type_copper
) &&
2072 (ixgbe_device_supports_autoneg_fc(hw
) == 0)) {
2073 hw
->phy
.ops
.write_reg(hw
, MDIO_AN_ADVERTISE
,
2074 MDIO_MMD_AN
, reg_cu
);
2077 hw_dbg(hw
, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg
);
2083 * ixgbe_disable_pcie_master - Disable PCI-express master access
2084 * @hw: pointer to hardware structure
2086 * Disables PCI-Express master access and verifies there are no pending
2087 * requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
2088 * bit hasn't caused the master requests to be disabled, else 0
2089 * is returned signifying master requests disabled.
2091 s32
ixgbe_disable_pcie_master(struct ixgbe_hw
*hw
)
2093 struct ixgbe_adapter
*adapter
= hw
->back
;
2096 u32 number_of_queues
;
2100 /* Just jump out if bus mastering is already disabled */
2101 if (!(IXGBE_READ_REG(hw
, IXGBE_STATUS
) & IXGBE_STATUS_GIO
))
2104 /* Disable the receive unit by stopping each queue */
2105 number_of_queues
= hw
->mac
.max_rx_queues
;
2106 for (i
= 0; i
< number_of_queues
; i
++) {
2107 reg_val
= IXGBE_READ_REG(hw
, IXGBE_RXDCTL(i
));
2108 if (reg_val
& IXGBE_RXDCTL_ENABLE
) {
2109 reg_val
&= ~IXGBE_RXDCTL_ENABLE
;
2110 IXGBE_WRITE_REG(hw
, IXGBE_RXDCTL(i
), reg_val
);
2114 reg_val
= IXGBE_READ_REG(hw
, IXGBE_CTRL
);
2115 reg_val
|= IXGBE_CTRL_GIO_DIS
;
2116 IXGBE_WRITE_REG(hw
, IXGBE_CTRL
, reg_val
);
2118 for (i
= 0; i
< IXGBE_PCI_MASTER_DISABLE_TIMEOUT
; i
++) {
2119 if (!(IXGBE_READ_REG(hw
, IXGBE_STATUS
) & IXGBE_STATUS_GIO
))
2120 goto check_device_status
;
2124 hw_dbg(hw
, "GIO Master Disable bit didn't clear - requesting resets\n");
2125 status
= IXGBE_ERR_MASTER_REQUESTS_PENDING
;
2128 * Before proceeding, make sure that the PCIe block does not have
2129 * transactions pending.
2131 check_device_status
:
2132 for (i
= 0; i
< IXGBE_PCI_MASTER_DISABLE_TIMEOUT
; i
++) {
2133 pci_read_config_word(adapter
->pdev
, IXGBE_PCI_DEVICE_STATUS
,
2135 if (!(dev_status
& IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING
))
2140 if (i
== IXGBE_PCI_MASTER_DISABLE_TIMEOUT
)
2141 hw_dbg(hw
, "PCIe transaction pending bit also did not clear.\n");
2146 * Two consecutive resets are required via CTRL.RST per datasheet
2147 * 5.2.5.3.2 Master Disable. We set a flag to inform the reset routine
2148 * of this need. The first reset prevents new master requests from
2149 * being issued by our device. We then must wait 1usec for any
2150 * remaining completions from the PCIe bus to trickle in, and then reset
2151 * again to clear out any effects they may have had on our device.
2153 hw
->mac
.flags
|= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED
;
2161 * ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
2162 * @hw: pointer to hardware structure
2163 * @mask: Mask to specify which semaphore to acquire
2165 * Acquires the SWFW semaphore through the GSSR register for the specified
2166 * function (CSR, PHY0, PHY1, EEPROM, Flash)
2168 s32
ixgbe_acquire_swfw_sync(struct ixgbe_hw
*hw
, u16 mask
)
2172 u32 fwmask
= mask
<< 5;
2177 * SW EEPROM semaphore bit is used for access to all
2178 * SW_FW_SYNC/GSSR bits (not just EEPROM)
2180 if (ixgbe_get_eeprom_semaphore(hw
))
2181 return IXGBE_ERR_SWFW_SYNC
;
2183 gssr
= IXGBE_READ_REG(hw
, IXGBE_GSSR
);
2184 if (!(gssr
& (fwmask
| swmask
)))
2188 * Firmware currently using resource (fwmask) or other software
2189 * thread currently using resource (swmask)
2191 ixgbe_release_eeprom_semaphore(hw
);
2197 hw_dbg(hw
, "Driver can't access resource, SW_FW_SYNC timeout.\n");
2198 return IXGBE_ERR_SWFW_SYNC
;
2202 IXGBE_WRITE_REG(hw
, IXGBE_GSSR
, gssr
);
2204 ixgbe_release_eeprom_semaphore(hw
);
2209 * ixgbe_release_swfw_sync - Release SWFW semaphore
2210 * @hw: pointer to hardware structure
2211 * @mask: Mask to specify which semaphore to release
2213 * Releases the SWFW semaphore through the GSSR register for the specified
2214 * function (CSR, PHY0, PHY1, EEPROM, Flash)
2216 void ixgbe_release_swfw_sync(struct ixgbe_hw
*hw
, u16 mask
)
2221 ixgbe_get_eeprom_semaphore(hw
);
2223 gssr
= IXGBE_READ_REG(hw
, IXGBE_GSSR
);
2225 IXGBE_WRITE_REG(hw
, IXGBE_GSSR
, gssr
);
2227 ixgbe_release_eeprom_semaphore(hw
);
2231 * ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
2232 * @hw: pointer to hardware structure
2233 * @regval: register value to write to RXCTRL
2235 * Enables the Rx DMA unit
2237 s32
ixgbe_enable_rx_dma_generic(struct ixgbe_hw
*hw
, u32 regval
)
2239 IXGBE_WRITE_REG(hw
, IXGBE_RXCTRL
, regval
);
2245 * ixgbe_blink_led_start_generic - Blink LED based on index.
2246 * @hw: pointer to hardware structure
2247 * @index: led number to blink
2249 s32
ixgbe_blink_led_start_generic(struct ixgbe_hw
*hw
, u32 index
)
2251 ixgbe_link_speed speed
= 0;
2253 u32 autoc_reg
= IXGBE_READ_REG(hw
, IXGBE_AUTOC
);
2254 u32 led_reg
= IXGBE_READ_REG(hw
, IXGBE_LEDCTL
);
2257 * Link must be up to auto-blink the LEDs;
2258 * Force it if link is down.
2260 hw
->mac
.ops
.check_link(hw
, &speed
, &link_up
, false);
2263 autoc_reg
|= IXGBE_AUTOC_AN_RESTART
;
2264 autoc_reg
|= IXGBE_AUTOC_FLU
;
2265 IXGBE_WRITE_REG(hw
, IXGBE_AUTOC
, autoc_reg
);
2269 led_reg
&= ~IXGBE_LED_MODE_MASK(index
);
2270 led_reg
|= IXGBE_LED_BLINK(index
);
2271 IXGBE_WRITE_REG(hw
, IXGBE_LEDCTL
, led_reg
);
2272 IXGBE_WRITE_FLUSH(hw
);
2278 * ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
2279 * @hw: pointer to hardware structure
2280 * @index: led number to stop blinking
2282 s32
ixgbe_blink_led_stop_generic(struct ixgbe_hw
*hw
, u32 index
)
2284 u32 autoc_reg
= IXGBE_READ_REG(hw
, IXGBE_AUTOC
);
2285 u32 led_reg
= IXGBE_READ_REG(hw
, IXGBE_LEDCTL
);
2287 autoc_reg
&= ~IXGBE_AUTOC_FLU
;
2288 autoc_reg
|= IXGBE_AUTOC_AN_RESTART
;
2289 IXGBE_WRITE_REG(hw
, IXGBE_AUTOC
, autoc_reg
);
2291 led_reg
&= ~IXGBE_LED_MODE_MASK(index
);
2292 led_reg
&= ~IXGBE_LED_BLINK(index
);
2293 led_reg
|= IXGBE_LED_LINK_ACTIVE
<< IXGBE_LED_MODE_SHIFT(index
);
2294 IXGBE_WRITE_REG(hw
, IXGBE_LEDCTL
, led_reg
);
2295 IXGBE_WRITE_FLUSH(hw
);
2301 * ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
2302 * @hw: pointer to hardware structure
2303 * @san_mac_offset: SAN MAC address offset
2305 * This function will read the EEPROM location for the SAN MAC address
2306 * pointer, and returns the value at that location. This is used in both
2307 * get and set mac_addr routines.
2309 static s32
ixgbe_get_san_mac_addr_offset(struct ixgbe_hw
*hw
,
2310 u16
*san_mac_offset
)
2313 * First read the EEPROM pointer to see if the MAC addresses are
2316 hw
->eeprom
.ops
.read(hw
, IXGBE_SAN_MAC_ADDR_PTR
, san_mac_offset
);
2322 * ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
2323 * @hw: pointer to hardware structure
2324 * @san_mac_addr: SAN MAC address
2326 * Reads the SAN MAC address from the EEPROM, if it's available. This is
2327 * per-port, so set_lan_id() must be called before reading the addresses.
2328 * set_lan_id() is called by identify_sfp(), but this cannot be relied
2329 * upon for non-SFP connections, so we must call it here.
2331 s32
ixgbe_get_san_mac_addr_generic(struct ixgbe_hw
*hw
, u8
*san_mac_addr
)
2333 u16 san_mac_data
, san_mac_offset
;
2337 * First read the EEPROM pointer to see if the MAC addresses are
2338 * available. If they're not, no point in calling set_lan_id() here.
2340 ixgbe_get_san_mac_addr_offset(hw
, &san_mac_offset
);
2342 if ((san_mac_offset
== 0) || (san_mac_offset
== 0xFFFF)) {
2344 * No addresses available in this EEPROM. It's not an
2345 * error though, so just wipe the local address and return.
2347 for (i
= 0; i
< 6; i
++)
2348 san_mac_addr
[i
] = 0xFF;
2350 goto san_mac_addr_out
;
2353 /* make sure we know which port we need to program */
2354 hw
->mac
.ops
.set_lan_id(hw
);
2355 /* apply the port offset to the address offset */
2356 (hw
->bus
.func
) ? (san_mac_offset
+= IXGBE_SAN_MAC_ADDR_PORT1_OFFSET
) :
2357 (san_mac_offset
+= IXGBE_SAN_MAC_ADDR_PORT0_OFFSET
);
2358 for (i
= 0; i
< 3; i
++) {
2359 hw
->eeprom
.ops
.read(hw
, san_mac_offset
, &san_mac_data
);
2360 san_mac_addr
[i
* 2] = (u8
)(san_mac_data
);
2361 san_mac_addr
[i
* 2 + 1] = (u8
)(san_mac_data
>> 8);
2370 * ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
2371 * @hw: pointer to hardware structure
2373 * Read PCIe configuration space, and get the MSI-X vector count from
2374 * the capabilities table.
2376 u32
ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw
*hw
)
2378 struct ixgbe_adapter
*adapter
= hw
->back
;
2380 pci_read_config_word(adapter
->pdev
, IXGBE_PCIE_MSIX_82599_CAPS
,
2382 msix_count
&= IXGBE_PCIE_MSIX_TBL_SZ_MASK
;
2384 /* MSI-X count is zero-based in HW, so increment to give proper value */
2391 * ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
2392 * @hw: pointer to hardware struct
2393 * @rar: receive address register index to disassociate
2394 * @vmdq: VMDq pool index to remove from the rar
2396 s32
ixgbe_clear_vmdq_generic(struct ixgbe_hw
*hw
, u32 rar
, u32 vmdq
)
2398 u32 mpsar_lo
, mpsar_hi
;
2399 u32 rar_entries
= hw
->mac
.num_rar_entries
;
2401 /* Make sure we are using a valid rar index range */
2402 if (rar
>= rar_entries
) {
2403 hw_dbg(hw
, "RAR index %d is out of range.\n", rar
);
2404 return IXGBE_ERR_INVALID_ARGUMENT
;
2407 mpsar_lo
= IXGBE_READ_REG(hw
, IXGBE_MPSAR_LO(rar
));
2408 mpsar_hi
= IXGBE_READ_REG(hw
, IXGBE_MPSAR_HI(rar
));
2410 if (!mpsar_lo
&& !mpsar_hi
)
2413 if (vmdq
== IXGBE_CLEAR_VMDQ_ALL
) {
2415 IXGBE_WRITE_REG(hw
, IXGBE_MPSAR_LO(rar
), 0);
2419 IXGBE_WRITE_REG(hw
, IXGBE_MPSAR_HI(rar
), 0);
2422 } else if (vmdq
< 32) {
2423 mpsar_lo
&= ~(1 << vmdq
);
2424 IXGBE_WRITE_REG(hw
, IXGBE_MPSAR_LO(rar
), mpsar_lo
);
2426 mpsar_hi
&= ~(1 << (vmdq
- 32));
2427 IXGBE_WRITE_REG(hw
, IXGBE_MPSAR_HI(rar
), mpsar_hi
);
2430 /* was that the last pool using this rar? */
2431 if (mpsar_lo
== 0 && mpsar_hi
== 0 && rar
!= 0)
2432 hw
->mac
.ops
.clear_rar(hw
, rar
);
2438 * ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
2439 * @hw: pointer to hardware struct
2440 * @rar: receive address register index to associate with a VMDq index
2441 * @vmdq: VMDq pool index
2443 s32
ixgbe_set_vmdq_generic(struct ixgbe_hw
*hw
, u32 rar
, u32 vmdq
)
2446 u32 rar_entries
= hw
->mac
.num_rar_entries
;
2448 /* Make sure we are using a valid rar index range */
2449 if (rar
>= rar_entries
) {
2450 hw_dbg(hw
, "RAR index %d is out of range.\n", rar
);
2451 return IXGBE_ERR_INVALID_ARGUMENT
;
2455 mpsar
= IXGBE_READ_REG(hw
, IXGBE_MPSAR_LO(rar
));
2457 IXGBE_WRITE_REG(hw
, IXGBE_MPSAR_LO(rar
), mpsar
);
2459 mpsar
= IXGBE_READ_REG(hw
, IXGBE_MPSAR_HI(rar
));
2460 mpsar
|= 1 << (vmdq
- 32);
2461 IXGBE_WRITE_REG(hw
, IXGBE_MPSAR_HI(rar
), mpsar
);
2467 * ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
2468 * @hw: pointer to hardware structure
2470 s32
ixgbe_init_uta_tables_generic(struct ixgbe_hw
*hw
)
2474 for (i
= 0; i
< 128; i
++)
2475 IXGBE_WRITE_REG(hw
, IXGBE_UTA(i
), 0);
2481 * ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
2482 * @hw: pointer to hardware structure
2483 * @vlan: VLAN id to write to VLAN filter
2485 * return the VLVF index where this VLAN id should be placed
2488 static s32
ixgbe_find_vlvf_slot(struct ixgbe_hw
*hw
, u32 vlan
)
2491 u32 first_empty_slot
= 0;
2494 /* short cut the special case */
2499 * Search for the vlan id in the VLVF entries. Save off the first empty
2500 * slot found along the way
2502 for (regindex
= 1; regindex
< IXGBE_VLVF_ENTRIES
; regindex
++) {
2503 bits
= IXGBE_READ_REG(hw
, IXGBE_VLVF(regindex
));
2504 if (!bits
&& !(first_empty_slot
))
2505 first_empty_slot
= regindex
;
2506 else if ((bits
& 0x0FFF) == vlan
)
2511 * If regindex is less than IXGBE_VLVF_ENTRIES, then we found the vlan
2512 * in the VLVF. Else use the first empty VLVF register for this
2515 if (regindex
>= IXGBE_VLVF_ENTRIES
) {
2516 if (first_empty_slot
)
2517 regindex
= first_empty_slot
;
2519 hw_dbg(hw
, "No space in VLVF.\n");
2520 regindex
= IXGBE_ERR_NO_SPACE
;
2528 * ixgbe_set_vfta_generic - Set VLAN filter table
2529 * @hw: pointer to hardware structure
2530 * @vlan: VLAN id to write to VLAN filter
2531 * @vind: VMDq output index that maps queue to VLAN id in VFVFB
2532 * @vlan_on: boolean flag to turn on/off VLAN in VFVF
2534 * Turn on/off specified VLAN in the VLAN filter table.
2536 s32
ixgbe_set_vfta_generic(struct ixgbe_hw
*hw
, u32 vlan
, u32 vind
,
2545 bool vfta_changed
= false;
2548 return IXGBE_ERR_PARAM
;
2551 * this is a 2 part operation - first the VFTA, then the
2552 * VLVF and VLVFB if VT Mode is set
2553 * We don't write the VFTA until we know the VLVF part succeeded.
2557 * The VFTA is a bitstring made up of 128 32-bit registers
2558 * that enable the particular VLAN id, much like the MTA:
2559 * bits[11-5]: which register
2560 * bits[4-0]: which bit in the register
2562 regindex
= (vlan
>> 5) & 0x7F;
2563 bitindex
= vlan
& 0x1F;
2564 targetbit
= (1 << bitindex
);
2565 vfta
= IXGBE_READ_REG(hw
, IXGBE_VFTA(regindex
));
2568 if (!(vfta
& targetbit
)) {
2570 vfta_changed
= true;
2573 if ((vfta
& targetbit
)) {
2575 vfta_changed
= true;
2582 * make sure the vlan is in VLVF
2583 * set the vind bit in the matching VLVFB
2585 * clear the pool bit and possibly the vind
2587 vt
= IXGBE_READ_REG(hw
, IXGBE_VT_CTL
);
2588 if (vt
& IXGBE_VT_CTL_VT_ENABLE
) {
2591 vlvf_index
= ixgbe_find_vlvf_slot(hw
, vlan
);
2596 /* set the pool bit */
2598 bits
= IXGBE_READ_REG(hw
,
2599 IXGBE_VLVFB(vlvf_index
*2));
2600 bits
|= (1 << vind
);
2602 IXGBE_VLVFB(vlvf_index
*2),
2605 bits
= IXGBE_READ_REG(hw
,
2606 IXGBE_VLVFB((vlvf_index
*2)+1));
2607 bits
|= (1 << (vind
-32));
2609 IXGBE_VLVFB((vlvf_index
*2)+1),
2613 /* clear the pool bit */
2615 bits
= IXGBE_READ_REG(hw
,
2616 IXGBE_VLVFB(vlvf_index
*2));
2617 bits
&= ~(1 << vind
);
2619 IXGBE_VLVFB(vlvf_index
*2),
2621 bits
|= IXGBE_READ_REG(hw
,
2622 IXGBE_VLVFB((vlvf_index
*2)+1));
2624 bits
= IXGBE_READ_REG(hw
,
2625 IXGBE_VLVFB((vlvf_index
*2)+1));
2626 bits
&= ~(1 << (vind
-32));
2628 IXGBE_VLVFB((vlvf_index
*2)+1),
2630 bits
|= IXGBE_READ_REG(hw
,
2631 IXGBE_VLVFB(vlvf_index
*2));
2636 * If there are still bits set in the VLVFB registers
2637 * for the VLAN ID indicated we need to see if the
2638 * caller is requesting that we clear the VFTA entry bit.
2639 * If the caller has requested that we clear the VFTA
2640 * entry bit but there are still pools/VFs using this VLAN
2641 * ID entry then ignore the request. We're not worried
2642 * about the case where we're turning the VFTA VLAN ID
2643 * entry bit on, only when requested to turn it off as
2644 * there may be multiple pools and/or VFs using the
2645 * VLAN ID entry. In that case we cannot clear the
2646 * VFTA bit until all pools/VFs using that VLAN ID have also
2647 * been cleared. This will be indicated by "bits" being
2651 IXGBE_WRITE_REG(hw
, IXGBE_VLVF(vlvf_index
),
2652 (IXGBE_VLVF_VIEN
| vlan
));
2654 /* someone wants to clear the vfta entry
2655 * but some pools/VFs are still using it.
2657 vfta_changed
= false;
2661 IXGBE_WRITE_REG(hw
, IXGBE_VLVF(vlvf_index
), 0);
2665 IXGBE_WRITE_REG(hw
, IXGBE_VFTA(regindex
), vfta
);
2671 * ixgbe_clear_vfta_generic - Clear VLAN filter table
2672 * @hw: pointer to hardware structure
2674 * Clears the VLAN filer table, and the VMDq index associated with the filter
2676 s32
ixgbe_clear_vfta_generic(struct ixgbe_hw
*hw
)
2680 for (offset
= 0; offset
< hw
->mac
.vft_size
; offset
++)
2681 IXGBE_WRITE_REG(hw
, IXGBE_VFTA(offset
), 0);
2683 for (offset
= 0; offset
< IXGBE_VLVF_ENTRIES
; offset
++) {
2684 IXGBE_WRITE_REG(hw
, IXGBE_VLVF(offset
), 0);
2685 IXGBE_WRITE_REG(hw
, IXGBE_VLVFB(offset
*2), 0);
2686 IXGBE_WRITE_REG(hw
, IXGBE_VLVFB((offset
*2)+1), 0);
2693 * ixgbe_check_mac_link_generic - Determine link and speed status
2694 * @hw: pointer to hardware structure
2695 * @speed: pointer to link speed
2696 * @link_up: true when link is up
2697 * @link_up_wait_to_complete: bool used to wait for link up or not
2699 * Reads the links register to determine if link is up and the current speed
2701 s32
ixgbe_check_mac_link_generic(struct ixgbe_hw
*hw
, ixgbe_link_speed
*speed
,
2702 bool *link_up
, bool link_up_wait_to_complete
)
2704 u32 links_reg
, links_orig
;
2707 /* clear the old state */
2708 links_orig
= IXGBE_READ_REG(hw
, IXGBE_LINKS
);
2710 links_reg
= IXGBE_READ_REG(hw
, IXGBE_LINKS
);
2712 if (links_orig
!= links_reg
) {
2713 hw_dbg(hw
, "LINKS changed from %08X to %08X\n",
2714 links_orig
, links_reg
);
2717 if (link_up_wait_to_complete
) {
2718 for (i
= 0; i
< IXGBE_LINK_UP_TIME
; i
++) {
2719 if (links_reg
& IXGBE_LINKS_UP
) {
2726 links_reg
= IXGBE_READ_REG(hw
, IXGBE_LINKS
);
2729 if (links_reg
& IXGBE_LINKS_UP
)
2735 if ((links_reg
& IXGBE_LINKS_SPEED_82599
) ==
2736 IXGBE_LINKS_SPEED_10G_82599
)
2737 *speed
= IXGBE_LINK_SPEED_10GB_FULL
;
2738 else if ((links_reg
& IXGBE_LINKS_SPEED_82599
) ==
2739 IXGBE_LINKS_SPEED_1G_82599
)
2740 *speed
= IXGBE_LINK_SPEED_1GB_FULL
;
2741 else if ((links_reg
& IXGBE_LINKS_SPEED_82599
) ==
2742 IXGBE_LINKS_SPEED_100_82599
)
2743 *speed
= IXGBE_LINK_SPEED_100_FULL
;
2745 *speed
= IXGBE_LINK_SPEED_UNKNOWN
;
2747 /* if link is down, zero out the current_mode */
2748 if (*link_up
== false) {
2749 hw
->fc
.current_mode
= ixgbe_fc_none
;
2750 hw
->fc
.fc_was_autonegged
= false;
2757 * ixgbe_get_wwn_prefix_generic Get alternative WWNN/WWPN prefix from
2759 * @hw: pointer to hardware structure
2760 * @wwnn_prefix: the alternative WWNN prefix
2761 * @wwpn_prefix: the alternative WWPN prefix
2763 * This function will read the EEPROM from the alternative SAN MAC address
2764 * block to check the support for the alternative WWNN/WWPN prefix support.
2766 s32
ixgbe_get_wwn_prefix_generic(struct ixgbe_hw
*hw
, u16
*wwnn_prefix
,
2770 u16 alt_san_mac_blk_offset
;
2772 /* clear output first */
2773 *wwnn_prefix
= 0xFFFF;
2774 *wwpn_prefix
= 0xFFFF;
2776 /* check if alternative SAN MAC is supported */
2777 hw
->eeprom
.ops
.read(hw
, IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR
,
2778 &alt_san_mac_blk_offset
);
2780 if ((alt_san_mac_blk_offset
== 0) ||
2781 (alt_san_mac_blk_offset
== 0xFFFF))
2782 goto wwn_prefix_out
;
2784 /* check capability in alternative san mac address block */
2785 offset
= alt_san_mac_blk_offset
+ IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET
;
2786 hw
->eeprom
.ops
.read(hw
, offset
, &caps
);
2787 if (!(caps
& IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN
))
2788 goto wwn_prefix_out
;
2790 /* get the corresponding prefix for WWNN/WWPN */
2791 offset
= alt_san_mac_blk_offset
+ IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET
;
2792 hw
->eeprom
.ops
.read(hw
, offset
, wwnn_prefix
);
2794 offset
= alt_san_mac_blk_offset
+ IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET
;
2795 hw
->eeprom
.ops
.read(hw
, offset
, wwpn_prefix
);
2802 * ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
2804 * @hw: pointer to hardware structure
2806 * There are several phys that do not support autoneg flow control. This
2807 * function check the device id to see if the associated phy supports
2808 * autoneg flow control.
2810 static s32
ixgbe_device_supports_autoneg_fc(struct ixgbe_hw
*hw
)
2813 switch (hw
->device_id
) {
2814 case IXGBE_DEV_ID_X540T
:
2816 case IXGBE_DEV_ID_82599_T3_LOM
:
2819 return IXGBE_ERR_FC_NOT_SUPPORTED
;
2824 * ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
2825 * @hw: pointer to hardware structure
2826 * @enable: enable or disable switch for anti-spoofing
2827 * @pf: Physical Function pool - do not enable anti-spoofing for the PF
2830 void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw
*hw
, bool enable
, int pf
)
2833 int pf_target_reg
= pf
>> 3;
2834 int pf_target_shift
= pf
% 8;
2837 if (hw
->mac
.type
== ixgbe_mac_82598EB
)
2841 pfvfspoof
= IXGBE_SPOOF_MACAS_MASK
;
2844 * PFVFSPOOF register array is size 8 with 8 bits assigned to
2845 * MAC anti-spoof enables in each register array element.
2847 for (j
= 0; j
< IXGBE_PFVFSPOOF_REG_COUNT
; j
++)
2848 IXGBE_WRITE_REG(hw
, IXGBE_PFVFSPOOF(j
), pfvfspoof
);
2850 /* If not enabling anti-spoofing then done */
2855 * The PF should be allowed to spoof so that it can support
2856 * emulation mode NICs. Reset the bit assigned to the PF
2858 pfvfspoof
= IXGBE_READ_REG(hw
, IXGBE_PFVFSPOOF(pf_target_reg
));
2859 pfvfspoof
^= (1 << pf_target_shift
);
2860 IXGBE_WRITE_REG(hw
, IXGBE_PFVFSPOOF(pf_target_reg
), pfvfspoof
);
2864 * ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
2865 * @hw: pointer to hardware structure
2866 * @enable: enable or disable switch for VLAN anti-spoofing
2867 * @pf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
2870 void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw
*hw
, bool enable
, int vf
)
2872 int vf_target_reg
= vf
>> 3;
2873 int vf_target_shift
= vf
% 8 + IXGBE_SPOOF_VLANAS_SHIFT
;
2876 if (hw
->mac
.type
== ixgbe_mac_82598EB
)
2879 pfvfspoof
= IXGBE_READ_REG(hw
, IXGBE_PFVFSPOOF(vf_target_reg
));
2881 pfvfspoof
|= (1 << vf_target_shift
);
2883 pfvfspoof
&= ~(1 << vf_target_shift
);
2884 IXGBE_WRITE_REG(hw
, IXGBE_PFVFSPOOF(vf_target_reg
), pfvfspoof
);