1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2010 Solarflare Communications Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
11 #include <linux/pci.h>
12 #include <linux/tcp.h>
15 #include <linux/ipv6.h>
16 #include <linux/slab.h>
18 #include <linux/if_ether.h>
19 #include <linux/highmem.h>
20 #include "net_driver.h"
23 #include "workarounds.h"
26 * TX descriptor ring full threshold
28 * The tx_queue descriptor ring fill-level must fall below this value
29 * before we restart the netif queue
31 #define EFX_TXQ_THRESHOLD(_efx) ((_efx)->txq_entries / 2u)
33 static void efx_dequeue_buffer(struct efx_tx_queue
*tx_queue
,
34 struct efx_tx_buffer
*buffer
)
36 if (buffer
->unmap_len
) {
37 struct pci_dev
*pci_dev
= tx_queue
->efx
->pci_dev
;
38 dma_addr_t unmap_addr
= (buffer
->dma_addr
+ buffer
->len
-
40 if (buffer
->unmap_single
)
41 pci_unmap_single(pci_dev
, unmap_addr
, buffer
->unmap_len
,
44 pci_unmap_page(pci_dev
, unmap_addr
, buffer
->unmap_len
,
46 buffer
->unmap_len
= 0;
47 buffer
->unmap_single
= false;
51 dev_kfree_skb_any((struct sk_buff
*) buffer
->skb
);
53 netif_vdbg(tx_queue
->efx
, tx_done
, tx_queue
->efx
->net_dev
,
54 "TX queue %d transmission id %x complete\n",
55 tx_queue
->queue
, tx_queue
->read_count
);
60 * struct efx_tso_header - a DMA mapped buffer for packet headers
61 * @next: Linked list of free ones.
62 * The list is protected by the TX queue lock.
63 * @dma_unmap_len: Length to unmap for an oversize buffer, or 0.
64 * @dma_addr: The DMA address of the header below.
66 * This controls the memory used for a TSO header. Use TSOH_DATA()
67 * to find the packet header data. Use TSOH_SIZE() to calculate the
68 * total size required for a given packet header length. TSO headers
69 * in the free list are exactly %TSOH_STD_SIZE bytes in size.
71 struct efx_tso_header
{
73 struct efx_tso_header
*next
;
79 static int efx_enqueue_skb_tso(struct efx_tx_queue
*tx_queue
,
81 static void efx_fini_tso(struct efx_tx_queue
*tx_queue
);
82 static void efx_tsoh_heap_free(struct efx_tx_queue
*tx_queue
,
83 struct efx_tso_header
*tsoh
);
85 static void efx_tsoh_free(struct efx_tx_queue
*tx_queue
,
86 struct efx_tx_buffer
*buffer
)
89 if (likely(!buffer
->tsoh
->unmap_len
)) {
90 buffer
->tsoh
->next
= tx_queue
->tso_headers_free
;
91 tx_queue
->tso_headers_free
= buffer
->tsoh
;
93 efx_tsoh_heap_free(tx_queue
, buffer
->tsoh
);
100 static inline unsigned
101 efx_max_tx_len(struct efx_nic
*efx
, dma_addr_t dma_addr
)
103 /* Depending on the NIC revision, we can use descriptor
104 * lengths up to 8K or 8K-1. However, since PCI Express
105 * devices must split read requests at 4K boundaries, there is
106 * little benefit from using descriptors that cross those
107 * boundaries and we keep things simple by not doing so.
109 unsigned len
= (~dma_addr
& 0xfff) + 1;
111 /* Work around hardware bug for unaligned buffers. */
112 if (EFX_WORKAROUND_5391(efx
) && (dma_addr
& 0xf))
113 len
= min_t(unsigned, len
, 512 - (dma_addr
& 0xf));
119 * Add a socket buffer to a TX queue
121 * This maps all fragments of a socket buffer for DMA and adds them to
122 * the TX queue. The queue's insert pointer will be incremented by
123 * the number of fragments in the socket buffer.
125 * If any DMA mapping fails, any mapped fragments will be unmapped,
126 * the queue's insert pointer will be restored to its original value.
128 * This function is split out from efx_hard_start_xmit to allow the
129 * loopback test to direct packets via specific TX queues.
131 * Returns NETDEV_TX_OK or NETDEV_TX_BUSY
132 * You must hold netif_tx_lock() to call this function.
134 netdev_tx_t
efx_enqueue_skb(struct efx_tx_queue
*tx_queue
, struct sk_buff
*skb
)
136 struct efx_nic
*efx
= tx_queue
->efx
;
137 struct pci_dev
*pci_dev
= efx
->pci_dev
;
138 struct efx_tx_buffer
*buffer
;
139 skb_frag_t
*fragment
;
142 unsigned int len
, unmap_len
= 0, fill_level
, insert_ptr
;
143 dma_addr_t dma_addr
, unmap_addr
= 0;
144 unsigned int dma_len
;
147 netdev_tx_t rc
= NETDEV_TX_OK
;
149 EFX_BUG_ON_PARANOID(tx_queue
->write_count
!= tx_queue
->insert_count
);
151 if (skb_shinfo(skb
)->gso_size
)
152 return efx_enqueue_skb_tso(tx_queue
, skb
);
154 /* Get size of the initial fragment */
155 len
= skb_headlen(skb
);
157 /* Pad if necessary */
158 if (EFX_WORKAROUND_15592(efx
) && skb
->len
<= 32) {
159 EFX_BUG_ON_PARANOID(skb
->data_len
);
161 if (skb_pad(skb
, len
- skb
->len
))
165 fill_level
= tx_queue
->insert_count
- tx_queue
->old_read_count
;
166 q_space
= efx
->txq_entries
- 1 - fill_level
;
168 /* Map for DMA. Use pci_map_single rather than pci_map_page
169 * since this is more efficient on machines with sparse
173 dma_addr
= pci_map_single(pci_dev
, skb
->data
, len
, PCI_DMA_TODEVICE
);
175 /* Process all fragments */
177 if (unlikely(pci_dma_mapping_error(pci_dev
, dma_addr
)))
180 /* Store fields for marking in the per-fragment final
183 unmap_addr
= dma_addr
;
185 /* Add to TX queue, splitting across DMA boundaries */
187 if (unlikely(q_space
-- <= 0)) {
188 /* It might be that completions have
189 * happened since the xmit path last
190 * checked. Update the xmit path's
191 * copy of read_count.
193 netif_tx_stop_queue(tx_queue
->core_txq
);
194 /* This memory barrier protects the
195 * change of queue state from the access
198 tx_queue
->old_read_count
=
199 ACCESS_ONCE(tx_queue
->read_count
);
200 fill_level
= (tx_queue
->insert_count
201 - tx_queue
->old_read_count
);
202 q_space
= efx
->txq_entries
- 1 - fill_level
;
203 if (unlikely(q_space
-- <= 0)) {
208 netif_tx_start_queue(tx_queue
->core_txq
);
211 insert_ptr
= tx_queue
->insert_count
& tx_queue
->ptr_mask
;
212 buffer
= &tx_queue
->buffer
[insert_ptr
];
213 efx_tsoh_free(tx_queue
, buffer
);
214 EFX_BUG_ON_PARANOID(buffer
->tsoh
);
215 EFX_BUG_ON_PARANOID(buffer
->skb
);
216 EFX_BUG_ON_PARANOID(buffer
->len
);
217 EFX_BUG_ON_PARANOID(!buffer
->continuation
);
218 EFX_BUG_ON_PARANOID(buffer
->unmap_len
);
220 dma_len
= efx_max_tx_len(efx
, dma_addr
);
221 if (likely(dma_len
>= len
))
224 /* Fill out per descriptor fields */
225 buffer
->len
= dma_len
;
226 buffer
->dma_addr
= dma_addr
;
229 ++tx_queue
->insert_count
;
232 /* Transfer ownership of the unmapping to the final buffer */
233 buffer
->unmap_single
= unmap_single
;
234 buffer
->unmap_len
= unmap_len
;
237 /* Get address and size of next fragment */
238 if (i
>= skb_shinfo(skb
)->nr_frags
)
240 fragment
= &skb_shinfo(skb
)->frags
[i
];
241 len
= fragment
->size
;
242 page
= fragment
->page
;
243 page_offset
= fragment
->page_offset
;
246 unmap_single
= false;
247 dma_addr
= pci_map_page(pci_dev
, page
, page_offset
, len
,
251 /* Transfer ownership of the skb to the final buffer */
253 buffer
->continuation
= false;
255 /* Pass off to hardware */
256 efx_nic_push_buffers(tx_queue
);
261 netif_err(efx
, tx_err
, efx
->net_dev
,
262 " TX queue %d could not map skb with %d bytes %d "
263 "fragments for DMA\n", tx_queue
->queue
, skb
->len
,
264 skb_shinfo(skb
)->nr_frags
+ 1);
266 /* Mark the packet as transmitted, and free the SKB ourselves */
267 dev_kfree_skb_any(skb
);
270 /* Work backwards until we hit the original insert pointer value */
271 while (tx_queue
->insert_count
!= tx_queue
->write_count
) {
272 --tx_queue
->insert_count
;
273 insert_ptr
= tx_queue
->insert_count
& tx_queue
->ptr_mask
;
274 buffer
= &tx_queue
->buffer
[insert_ptr
];
275 efx_dequeue_buffer(tx_queue
, buffer
);
279 /* Free the fragment we were mid-way through pushing */
282 pci_unmap_single(pci_dev
, unmap_addr
, unmap_len
,
285 pci_unmap_page(pci_dev
, unmap_addr
, unmap_len
,
292 /* Remove packets from the TX queue
294 * This removes packets from the TX queue, up to and including the
297 static void efx_dequeue_buffers(struct efx_tx_queue
*tx_queue
,
300 struct efx_nic
*efx
= tx_queue
->efx
;
301 unsigned int stop_index
, read_ptr
;
303 stop_index
= (index
+ 1) & tx_queue
->ptr_mask
;
304 read_ptr
= tx_queue
->read_count
& tx_queue
->ptr_mask
;
306 while (read_ptr
!= stop_index
) {
307 struct efx_tx_buffer
*buffer
= &tx_queue
->buffer
[read_ptr
];
308 if (unlikely(buffer
->len
== 0)) {
309 netif_err(efx
, tx_err
, efx
->net_dev
,
310 "TX queue %d spurious TX completion id %x\n",
311 tx_queue
->queue
, read_ptr
);
312 efx_schedule_reset(efx
, RESET_TYPE_TX_SKIP
);
316 efx_dequeue_buffer(tx_queue
, buffer
);
317 buffer
->continuation
= true;
320 ++tx_queue
->read_count
;
321 read_ptr
= tx_queue
->read_count
& tx_queue
->ptr_mask
;
325 /* Initiate a packet transmission. We use one channel per CPU
326 * (sharing when we have more CPUs than channels). On Falcon, the TX
327 * completion events will be directed back to the CPU that transmitted
328 * the packet, which should be cache-efficient.
330 * Context: non-blocking.
331 * Note that returning anything other than NETDEV_TX_OK will cause the
332 * OS to free the skb.
334 netdev_tx_t
efx_hard_start_xmit(struct sk_buff
*skb
,
335 struct net_device
*net_dev
)
337 struct efx_nic
*efx
= netdev_priv(net_dev
);
338 struct efx_tx_queue
*tx_queue
;
339 unsigned index
, type
;
341 if (unlikely(efx
->port_inhibited
))
342 return NETDEV_TX_BUSY
;
344 index
= skb_get_queue_mapping(skb
);
345 type
= skb
->ip_summed
== CHECKSUM_PARTIAL
? EFX_TXQ_TYPE_OFFLOAD
: 0;
346 if (index
>= efx
->n_tx_channels
) {
347 index
-= efx
->n_tx_channels
;
348 type
|= EFX_TXQ_TYPE_HIGHPRI
;
350 tx_queue
= efx_get_tx_queue(efx
, index
, type
);
352 return efx_enqueue_skb(tx_queue
, skb
);
355 void efx_init_tx_queue_core_txq(struct efx_tx_queue
*tx_queue
)
357 struct efx_nic
*efx
= tx_queue
->efx
;
359 /* Must be inverse of queue lookup in efx_hard_start_xmit() */
361 netdev_get_tx_queue(efx
->net_dev
,
362 tx_queue
->queue
/ EFX_TXQ_TYPES
+
363 ((tx_queue
->queue
& EFX_TXQ_TYPE_HIGHPRI
) ?
364 efx
->n_tx_channels
: 0));
367 int efx_setup_tc(struct net_device
*net_dev
, u8 num_tc
)
369 struct efx_nic
*efx
= netdev_priv(net_dev
);
370 struct efx_channel
*channel
;
371 struct efx_tx_queue
*tx_queue
;
375 if (efx_nic_rev(efx
) < EFX_REV_FALCON_B0
|| num_tc
> EFX_MAX_TX_TC
)
378 if (num_tc
== net_dev
->num_tc
)
381 for (tc
= 0; tc
< num_tc
; tc
++) {
382 net_dev
->tc_to_txq
[tc
].offset
= tc
* efx
->n_tx_channels
;
383 net_dev
->tc_to_txq
[tc
].count
= efx
->n_tx_channels
;
386 if (num_tc
> net_dev
->num_tc
) {
387 /* Initialise high-priority queues as necessary */
388 efx_for_each_channel(channel
, efx
) {
389 efx_for_each_possible_channel_tx_queue(tx_queue
,
391 if (!(tx_queue
->queue
& EFX_TXQ_TYPE_HIGHPRI
))
393 if (!tx_queue
->buffer
) {
394 rc
= efx_probe_tx_queue(tx_queue
);
398 if (!tx_queue
->initialised
)
399 efx_init_tx_queue(tx_queue
);
400 efx_init_tx_queue_core_txq(tx_queue
);
404 /* Reduce number of classes before number of queues */
405 net_dev
->num_tc
= num_tc
;
408 rc
= netif_set_real_num_tx_queues(net_dev
,
409 max_t(int, num_tc
, 1) *
414 /* Do not destroy high-priority queues when they become
415 * unused. We would have to flush them first, and it is
416 * fairly difficult to flush a subset of TX queues. Leave
417 * it to efx_fini_channels().
420 net_dev
->num_tc
= num_tc
;
424 void efx_xmit_done(struct efx_tx_queue
*tx_queue
, unsigned int index
)
427 struct efx_nic
*efx
= tx_queue
->efx
;
429 EFX_BUG_ON_PARANOID(index
> tx_queue
->ptr_mask
);
431 efx_dequeue_buffers(tx_queue
, index
);
433 /* See if we need to restart the netif queue. This barrier
434 * separates the update of read_count from the test of the
437 if (unlikely(netif_tx_queue_stopped(tx_queue
->core_txq
)) &&
438 likely(efx
->port_enabled
)) {
439 fill_level
= tx_queue
->insert_count
- tx_queue
->read_count
;
440 if (fill_level
< EFX_TXQ_THRESHOLD(efx
)) {
441 EFX_BUG_ON_PARANOID(!efx_dev_registered(efx
));
442 netif_tx_wake_queue(tx_queue
->core_txq
);
446 /* Check whether the hardware queue is now empty */
447 if ((int)(tx_queue
->read_count
- tx_queue
->old_write_count
) >= 0) {
448 tx_queue
->old_write_count
= ACCESS_ONCE(tx_queue
->write_count
);
449 if (tx_queue
->read_count
== tx_queue
->old_write_count
) {
451 tx_queue
->empty_read_count
=
452 tx_queue
->read_count
| EFX_EMPTY_COUNT_VALID
;
457 int efx_probe_tx_queue(struct efx_tx_queue
*tx_queue
)
459 struct efx_nic
*efx
= tx_queue
->efx
;
460 unsigned int entries
;
463 /* Create the smallest power-of-two aligned ring */
464 entries
= max(roundup_pow_of_two(efx
->txq_entries
), EFX_MIN_DMAQ_SIZE
);
465 EFX_BUG_ON_PARANOID(entries
> EFX_MAX_DMAQ_SIZE
);
466 tx_queue
->ptr_mask
= entries
- 1;
468 netif_dbg(efx
, probe
, efx
->net_dev
,
469 "creating TX queue %d size %#x mask %#x\n",
470 tx_queue
->queue
, efx
->txq_entries
, tx_queue
->ptr_mask
);
472 /* Allocate software ring */
473 tx_queue
->buffer
= kzalloc(entries
* sizeof(*tx_queue
->buffer
),
475 if (!tx_queue
->buffer
)
477 for (i
= 0; i
<= tx_queue
->ptr_mask
; ++i
)
478 tx_queue
->buffer
[i
].continuation
= true;
480 /* Allocate hardware ring */
481 rc
= efx_nic_probe_tx(tx_queue
);
488 kfree(tx_queue
->buffer
);
489 tx_queue
->buffer
= NULL
;
493 void efx_init_tx_queue(struct efx_tx_queue
*tx_queue
)
495 netif_dbg(tx_queue
->efx
, drv
, tx_queue
->efx
->net_dev
,
496 "initialising TX queue %d\n", tx_queue
->queue
);
498 tx_queue
->insert_count
= 0;
499 tx_queue
->write_count
= 0;
500 tx_queue
->old_write_count
= 0;
501 tx_queue
->read_count
= 0;
502 tx_queue
->old_read_count
= 0;
503 tx_queue
->empty_read_count
= 0 | EFX_EMPTY_COUNT_VALID
;
505 /* Set up TX descriptor ring */
506 efx_nic_init_tx(tx_queue
);
508 tx_queue
->initialised
= true;
511 void efx_release_tx_buffers(struct efx_tx_queue
*tx_queue
)
513 struct efx_tx_buffer
*buffer
;
515 if (!tx_queue
->buffer
)
518 /* Free any buffers left in the ring */
519 while (tx_queue
->read_count
!= tx_queue
->write_count
) {
520 buffer
= &tx_queue
->buffer
[tx_queue
->read_count
& tx_queue
->ptr_mask
];
521 efx_dequeue_buffer(tx_queue
, buffer
);
522 buffer
->continuation
= true;
525 ++tx_queue
->read_count
;
529 void efx_fini_tx_queue(struct efx_tx_queue
*tx_queue
)
531 if (!tx_queue
->initialised
)
534 netif_dbg(tx_queue
->efx
, drv
, tx_queue
->efx
->net_dev
,
535 "shutting down TX queue %d\n", tx_queue
->queue
);
537 tx_queue
->initialised
= false;
539 /* Flush TX queue, remove descriptor ring */
540 efx_nic_fini_tx(tx_queue
);
542 efx_release_tx_buffers(tx_queue
);
544 /* Free up TSO header cache */
545 efx_fini_tso(tx_queue
);
548 void efx_remove_tx_queue(struct efx_tx_queue
*tx_queue
)
550 if (!tx_queue
->buffer
)
553 netif_dbg(tx_queue
->efx
, drv
, tx_queue
->efx
->net_dev
,
554 "destroying TX queue %d\n", tx_queue
->queue
);
555 efx_nic_remove_tx(tx_queue
);
557 kfree(tx_queue
->buffer
);
558 tx_queue
->buffer
= NULL
;
562 /* Efx TCP segmentation acceleration.
564 * Why? Because by doing it here in the driver we can go significantly
565 * faster than the GSO.
567 * Requires TX checksum offload support.
570 /* Number of bytes inserted at the start of a TSO header buffer,
571 * similar to NET_IP_ALIGN.
573 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
574 #define TSOH_OFFSET 0
576 #define TSOH_OFFSET NET_IP_ALIGN
579 #define TSOH_BUFFER(tsoh) ((u8 *)(tsoh + 1) + TSOH_OFFSET)
581 /* Total size of struct efx_tso_header, buffer and padding */
582 #define TSOH_SIZE(hdr_len) \
583 (sizeof(struct efx_tso_header) + TSOH_OFFSET + hdr_len)
585 /* Size of blocks on free list. Larger blocks must be allocated from
588 #define TSOH_STD_SIZE 128
590 #define PTR_DIFF(p1, p2) ((u8 *)(p1) - (u8 *)(p2))
591 #define ETH_HDR_LEN(skb) (skb_network_header(skb) - (skb)->data)
592 #define SKB_TCP_OFF(skb) PTR_DIFF(tcp_hdr(skb), (skb)->data)
593 #define SKB_IPV4_OFF(skb) PTR_DIFF(ip_hdr(skb), (skb)->data)
594 #define SKB_IPV6_OFF(skb) PTR_DIFF(ipv6_hdr(skb), (skb)->data)
597 * struct tso_state - TSO state for an SKB
598 * @out_len: Remaining length in current segment
599 * @seqnum: Current sequence number
600 * @ipv4_id: Current IPv4 ID, host endian
601 * @packet_space: Remaining space in current packet
602 * @dma_addr: DMA address of current position
603 * @in_len: Remaining length in current SKB fragment
604 * @unmap_len: Length of SKB fragment
605 * @unmap_addr: DMA address of SKB fragment
606 * @unmap_single: DMA single vs page mapping flag
607 * @protocol: Network protocol (after any VLAN header)
608 * @header_len: Number of bytes of header
609 * @full_packet_size: Number of bytes to put in each outgoing segment
611 * The state used during segmentation. It is put into this data structure
612 * just to make it easy to pass into inline functions.
615 /* Output position */
619 unsigned packet_space
;
625 dma_addr_t unmap_addr
;
630 int full_packet_size
;
635 * Verify that our various assumptions about sk_buffs and the conditions
636 * under which TSO will be attempted hold true. Return the protocol number.
638 static __be16
efx_tso_check_protocol(struct sk_buff
*skb
)
640 __be16 protocol
= skb
->protocol
;
642 EFX_BUG_ON_PARANOID(((struct ethhdr
*)skb
->data
)->h_proto
!=
644 if (protocol
== htons(ETH_P_8021Q
)) {
645 /* Find the encapsulated protocol; reset network header
646 * and transport header based on that. */
647 struct vlan_ethhdr
*veh
= (struct vlan_ethhdr
*)skb
->data
;
648 protocol
= veh
->h_vlan_encapsulated_proto
;
649 skb_set_network_header(skb
, sizeof(*veh
));
650 if (protocol
== htons(ETH_P_IP
))
651 skb_set_transport_header(skb
, sizeof(*veh
) +
652 4 * ip_hdr(skb
)->ihl
);
653 else if (protocol
== htons(ETH_P_IPV6
))
654 skb_set_transport_header(skb
, sizeof(*veh
) +
655 sizeof(struct ipv6hdr
));
658 if (protocol
== htons(ETH_P_IP
)) {
659 EFX_BUG_ON_PARANOID(ip_hdr(skb
)->protocol
!= IPPROTO_TCP
);
661 EFX_BUG_ON_PARANOID(protocol
!= htons(ETH_P_IPV6
));
662 EFX_BUG_ON_PARANOID(ipv6_hdr(skb
)->nexthdr
!= NEXTHDR_TCP
);
664 EFX_BUG_ON_PARANOID((PTR_DIFF(tcp_hdr(skb
), skb
->data
)
665 + (tcp_hdr(skb
)->doff
<< 2u)) >
673 * Allocate a page worth of efx_tso_header structures, and string them
674 * into the tx_queue->tso_headers_free linked list. Return 0 or -ENOMEM.
676 static int efx_tsoh_block_alloc(struct efx_tx_queue
*tx_queue
)
679 struct pci_dev
*pci_dev
= tx_queue
->efx
->pci_dev
;
680 struct efx_tso_header
*tsoh
;
684 base_kva
= pci_alloc_consistent(pci_dev
, PAGE_SIZE
, &dma_addr
);
685 if (base_kva
== NULL
) {
686 netif_err(tx_queue
->efx
, tx_err
, tx_queue
->efx
->net_dev
,
687 "Unable to allocate page for TSO headers\n");
691 /* pci_alloc_consistent() allocates pages. */
692 EFX_BUG_ON_PARANOID(dma_addr
& (PAGE_SIZE
- 1u));
694 for (kva
= base_kva
; kva
< base_kva
+ PAGE_SIZE
; kva
+= TSOH_STD_SIZE
) {
695 tsoh
= (struct efx_tso_header
*)kva
;
696 tsoh
->dma_addr
= dma_addr
+ (TSOH_BUFFER(tsoh
) - base_kva
);
697 tsoh
->next
= tx_queue
->tso_headers_free
;
698 tx_queue
->tso_headers_free
= tsoh
;
705 /* Free up a TSO header, and all others in the same page. */
706 static void efx_tsoh_block_free(struct efx_tx_queue
*tx_queue
,
707 struct efx_tso_header
*tsoh
,
708 struct pci_dev
*pci_dev
)
710 struct efx_tso_header
**p
;
711 unsigned long base_kva
;
714 base_kva
= (unsigned long)tsoh
& PAGE_MASK
;
715 base_dma
= tsoh
->dma_addr
& PAGE_MASK
;
717 p
= &tx_queue
->tso_headers_free
;
719 if (((unsigned long)*p
& PAGE_MASK
) == base_kva
)
725 pci_free_consistent(pci_dev
, PAGE_SIZE
, (void *)base_kva
, base_dma
);
728 static struct efx_tso_header
*
729 efx_tsoh_heap_alloc(struct efx_tx_queue
*tx_queue
, size_t header_len
)
731 struct efx_tso_header
*tsoh
;
733 tsoh
= kmalloc(TSOH_SIZE(header_len
), GFP_ATOMIC
| GFP_DMA
);
737 tsoh
->dma_addr
= pci_map_single(tx_queue
->efx
->pci_dev
,
738 TSOH_BUFFER(tsoh
), header_len
,
740 if (unlikely(pci_dma_mapping_error(tx_queue
->efx
->pci_dev
,
746 tsoh
->unmap_len
= header_len
;
751 efx_tsoh_heap_free(struct efx_tx_queue
*tx_queue
, struct efx_tso_header
*tsoh
)
753 pci_unmap_single(tx_queue
->efx
->pci_dev
,
754 tsoh
->dma_addr
, tsoh
->unmap_len
,
760 * efx_tx_queue_insert - push descriptors onto the TX queue
761 * @tx_queue: Efx TX queue
762 * @dma_addr: DMA address of fragment
763 * @len: Length of fragment
764 * @final_buffer: The final buffer inserted into the queue
766 * Push descriptors onto the TX queue. Return 0 on success or 1 if
769 static int efx_tx_queue_insert(struct efx_tx_queue
*tx_queue
,
770 dma_addr_t dma_addr
, unsigned len
,
771 struct efx_tx_buffer
**final_buffer
)
773 struct efx_tx_buffer
*buffer
;
774 struct efx_nic
*efx
= tx_queue
->efx
;
775 unsigned dma_len
, fill_level
, insert_ptr
;
778 EFX_BUG_ON_PARANOID(len
<= 0);
780 fill_level
= tx_queue
->insert_count
- tx_queue
->old_read_count
;
781 /* -1 as there is no way to represent all descriptors used */
782 q_space
= efx
->txq_entries
- 1 - fill_level
;
785 if (unlikely(q_space
-- <= 0)) {
786 /* It might be that completions have happened
787 * since the xmit path last checked. Update
788 * the xmit path's copy of read_count.
790 netif_tx_stop_queue(tx_queue
->core_txq
);
791 /* This memory barrier protects the change of
792 * queue state from the access of read_count. */
794 tx_queue
->old_read_count
=
795 ACCESS_ONCE(tx_queue
->read_count
);
796 fill_level
= (tx_queue
->insert_count
797 - tx_queue
->old_read_count
);
798 q_space
= efx
->txq_entries
- 1 - fill_level
;
799 if (unlikely(q_space
-- <= 0)) {
800 *final_buffer
= NULL
;
804 netif_tx_start_queue(tx_queue
->core_txq
);
807 insert_ptr
= tx_queue
->insert_count
& tx_queue
->ptr_mask
;
808 buffer
= &tx_queue
->buffer
[insert_ptr
];
809 ++tx_queue
->insert_count
;
811 EFX_BUG_ON_PARANOID(tx_queue
->insert_count
-
812 tx_queue
->read_count
>=
815 efx_tsoh_free(tx_queue
, buffer
);
816 EFX_BUG_ON_PARANOID(buffer
->len
);
817 EFX_BUG_ON_PARANOID(buffer
->unmap_len
);
818 EFX_BUG_ON_PARANOID(buffer
->skb
);
819 EFX_BUG_ON_PARANOID(!buffer
->continuation
);
820 EFX_BUG_ON_PARANOID(buffer
->tsoh
);
822 buffer
->dma_addr
= dma_addr
;
824 dma_len
= efx_max_tx_len(efx
, dma_addr
);
826 /* If there is enough space to send then do so */
830 buffer
->len
= dma_len
; /* Don't set the other members */
835 EFX_BUG_ON_PARANOID(!len
);
837 *final_buffer
= buffer
;
843 * Put a TSO header into the TX queue.
845 * This is special-cased because we know that it is small enough to fit in
846 * a single fragment, and we know it doesn't cross a page boundary. It
847 * also allows us to not worry about end-of-packet etc.
849 static void efx_tso_put_header(struct efx_tx_queue
*tx_queue
,
850 struct efx_tso_header
*tsoh
, unsigned len
)
852 struct efx_tx_buffer
*buffer
;
854 buffer
= &tx_queue
->buffer
[tx_queue
->insert_count
& tx_queue
->ptr_mask
];
855 efx_tsoh_free(tx_queue
, buffer
);
856 EFX_BUG_ON_PARANOID(buffer
->len
);
857 EFX_BUG_ON_PARANOID(buffer
->unmap_len
);
858 EFX_BUG_ON_PARANOID(buffer
->skb
);
859 EFX_BUG_ON_PARANOID(!buffer
->continuation
);
860 EFX_BUG_ON_PARANOID(buffer
->tsoh
);
862 buffer
->dma_addr
= tsoh
->dma_addr
;
865 ++tx_queue
->insert_count
;
869 /* Remove descriptors put into a tx_queue. */
870 static void efx_enqueue_unwind(struct efx_tx_queue
*tx_queue
)
872 struct efx_tx_buffer
*buffer
;
873 dma_addr_t unmap_addr
;
875 /* Work backwards until we hit the original insert pointer value */
876 while (tx_queue
->insert_count
!= tx_queue
->write_count
) {
877 --tx_queue
->insert_count
;
878 buffer
= &tx_queue
->buffer
[tx_queue
->insert_count
&
880 efx_tsoh_free(tx_queue
, buffer
);
881 EFX_BUG_ON_PARANOID(buffer
->skb
);
882 if (buffer
->unmap_len
) {
883 unmap_addr
= (buffer
->dma_addr
+ buffer
->len
-
885 if (buffer
->unmap_single
)
886 pci_unmap_single(tx_queue
->efx
->pci_dev
,
887 unmap_addr
, buffer
->unmap_len
,
890 pci_unmap_page(tx_queue
->efx
->pci_dev
,
891 unmap_addr
, buffer
->unmap_len
,
893 buffer
->unmap_len
= 0;
896 buffer
->continuation
= true;
901 /* Parse the SKB header and initialise state. */
902 static void tso_start(struct tso_state
*st
, const struct sk_buff
*skb
)
904 /* All ethernet/IP/TCP headers combined size is TCP header size
905 * plus offset of TCP header relative to start of packet.
907 st
->header_len
= ((tcp_hdr(skb
)->doff
<< 2u)
908 + PTR_DIFF(tcp_hdr(skb
), skb
->data
));
909 st
->full_packet_size
= st
->header_len
+ skb_shinfo(skb
)->gso_size
;
911 if (st
->protocol
== htons(ETH_P_IP
))
912 st
->ipv4_id
= ntohs(ip_hdr(skb
)->id
);
915 st
->seqnum
= ntohl(tcp_hdr(skb
)->seq
);
917 EFX_BUG_ON_PARANOID(tcp_hdr(skb
)->urg
);
918 EFX_BUG_ON_PARANOID(tcp_hdr(skb
)->syn
);
919 EFX_BUG_ON_PARANOID(tcp_hdr(skb
)->rst
);
921 st
->packet_space
= st
->full_packet_size
;
922 st
->out_len
= skb
->len
- st
->header_len
;
924 st
->unmap_single
= false;
927 static int tso_get_fragment(struct tso_state
*st
, struct efx_nic
*efx
,
930 st
->unmap_addr
= pci_map_page(efx
->pci_dev
, frag
->page
,
931 frag
->page_offset
, frag
->size
,
933 if (likely(!pci_dma_mapping_error(efx
->pci_dev
, st
->unmap_addr
))) {
934 st
->unmap_single
= false;
935 st
->unmap_len
= frag
->size
;
936 st
->in_len
= frag
->size
;
937 st
->dma_addr
= st
->unmap_addr
;
943 static int tso_get_head_fragment(struct tso_state
*st
, struct efx_nic
*efx
,
944 const struct sk_buff
*skb
)
946 int hl
= st
->header_len
;
947 int len
= skb_headlen(skb
) - hl
;
949 st
->unmap_addr
= pci_map_single(efx
->pci_dev
, skb
->data
+ hl
,
950 len
, PCI_DMA_TODEVICE
);
951 if (likely(!pci_dma_mapping_error(efx
->pci_dev
, st
->unmap_addr
))) {
952 st
->unmap_single
= true;
955 st
->dma_addr
= st
->unmap_addr
;
963 * tso_fill_packet_with_fragment - form descriptors for the current fragment
964 * @tx_queue: Efx TX queue
965 * @skb: Socket buffer
968 * Form descriptors for the current fragment, until we reach the end
969 * of fragment or end-of-packet. Return 0 on success, 1 if not enough
970 * space in @tx_queue.
972 static int tso_fill_packet_with_fragment(struct efx_tx_queue
*tx_queue
,
973 const struct sk_buff
*skb
,
974 struct tso_state
*st
)
976 struct efx_tx_buffer
*buffer
;
977 int n
, end_of_packet
, rc
;
981 if (st
->packet_space
== 0)
984 EFX_BUG_ON_PARANOID(st
->in_len
<= 0);
985 EFX_BUG_ON_PARANOID(st
->packet_space
<= 0);
987 n
= min(st
->in_len
, st
->packet_space
);
989 st
->packet_space
-= n
;
993 rc
= efx_tx_queue_insert(tx_queue
, st
->dma_addr
, n
, &buffer
);
994 if (likely(rc
== 0)) {
995 if (st
->out_len
== 0)
996 /* Transfer ownership of the skb */
999 end_of_packet
= st
->out_len
== 0 || st
->packet_space
== 0;
1000 buffer
->continuation
= !end_of_packet
;
1002 if (st
->in_len
== 0) {
1003 /* Transfer ownership of the pci mapping */
1004 buffer
->unmap_len
= st
->unmap_len
;
1005 buffer
->unmap_single
= st
->unmap_single
;
1016 * tso_start_new_packet - generate a new header and prepare for the new packet
1017 * @tx_queue: Efx TX queue
1018 * @skb: Socket buffer
1021 * Generate a new header and prepare for the new packet. Return 0 on
1022 * success, or -1 if failed to alloc header.
1024 static int tso_start_new_packet(struct efx_tx_queue
*tx_queue
,
1025 const struct sk_buff
*skb
,
1026 struct tso_state
*st
)
1028 struct efx_tso_header
*tsoh
;
1029 struct tcphdr
*tsoh_th
;
1033 /* Allocate a DMA-mapped header buffer. */
1034 if (likely(TSOH_SIZE(st
->header_len
) <= TSOH_STD_SIZE
)) {
1035 if (tx_queue
->tso_headers_free
== NULL
) {
1036 if (efx_tsoh_block_alloc(tx_queue
))
1039 EFX_BUG_ON_PARANOID(!tx_queue
->tso_headers_free
);
1040 tsoh
= tx_queue
->tso_headers_free
;
1041 tx_queue
->tso_headers_free
= tsoh
->next
;
1042 tsoh
->unmap_len
= 0;
1044 tx_queue
->tso_long_headers
++;
1045 tsoh
= efx_tsoh_heap_alloc(tx_queue
, st
->header_len
);
1046 if (unlikely(!tsoh
))
1050 header
= TSOH_BUFFER(tsoh
);
1051 tsoh_th
= (struct tcphdr
*)(header
+ SKB_TCP_OFF(skb
));
1053 /* Copy and update the headers. */
1054 memcpy(header
, skb
->data
, st
->header_len
);
1056 tsoh_th
->seq
= htonl(st
->seqnum
);
1057 st
->seqnum
+= skb_shinfo(skb
)->gso_size
;
1058 if (st
->out_len
> skb_shinfo(skb
)->gso_size
) {
1059 /* This packet will not finish the TSO burst. */
1060 ip_length
= st
->full_packet_size
- ETH_HDR_LEN(skb
);
1064 /* This packet will be the last in the TSO burst. */
1065 ip_length
= st
->header_len
- ETH_HDR_LEN(skb
) + st
->out_len
;
1066 tsoh_th
->fin
= tcp_hdr(skb
)->fin
;
1067 tsoh_th
->psh
= tcp_hdr(skb
)->psh
;
1070 if (st
->protocol
== htons(ETH_P_IP
)) {
1071 struct iphdr
*tsoh_iph
=
1072 (struct iphdr
*)(header
+ SKB_IPV4_OFF(skb
));
1074 tsoh_iph
->tot_len
= htons(ip_length
);
1076 /* Linux leaves suitable gaps in the IP ID space for us to fill. */
1077 tsoh_iph
->id
= htons(st
->ipv4_id
);
1080 struct ipv6hdr
*tsoh_iph
=
1081 (struct ipv6hdr
*)(header
+ SKB_IPV6_OFF(skb
));
1083 tsoh_iph
->payload_len
= htons(ip_length
- sizeof(*tsoh_iph
));
1086 st
->packet_space
= skb_shinfo(skb
)->gso_size
;
1087 ++tx_queue
->tso_packets
;
1089 /* Form a descriptor for this header. */
1090 efx_tso_put_header(tx_queue
, tsoh
, st
->header_len
);
1097 * efx_enqueue_skb_tso - segment and transmit a TSO socket buffer
1098 * @tx_queue: Efx TX queue
1099 * @skb: Socket buffer
1101 * Context: You must hold netif_tx_lock() to call this function.
1103 * Add socket buffer @skb to @tx_queue, doing TSO or return != 0 if
1104 * @skb was not enqueued. In all cases @skb is consumed. Return
1105 * %NETDEV_TX_OK or %NETDEV_TX_BUSY.
1107 static int efx_enqueue_skb_tso(struct efx_tx_queue
*tx_queue
,
1108 struct sk_buff
*skb
)
1110 struct efx_nic
*efx
= tx_queue
->efx
;
1111 int frag_i
, rc
, rc2
= NETDEV_TX_OK
;
1112 struct tso_state state
;
1114 /* Find the packet protocol and sanity-check it */
1115 state
.protocol
= efx_tso_check_protocol(skb
);
1117 EFX_BUG_ON_PARANOID(tx_queue
->write_count
!= tx_queue
->insert_count
);
1119 tso_start(&state
, skb
);
1121 /* Assume that skb header area contains exactly the headers, and
1122 * all payload is in the frag list.
1124 if (skb_headlen(skb
) == state
.header_len
) {
1125 /* Grab the first payload fragment. */
1126 EFX_BUG_ON_PARANOID(skb_shinfo(skb
)->nr_frags
< 1);
1128 rc
= tso_get_fragment(&state
, efx
,
1129 skb_shinfo(skb
)->frags
+ frag_i
);
1133 rc
= tso_get_head_fragment(&state
, efx
, skb
);
1139 if (tso_start_new_packet(tx_queue
, skb
, &state
) < 0)
1143 rc
= tso_fill_packet_with_fragment(tx_queue
, skb
, &state
);
1145 rc2
= NETDEV_TX_BUSY
;
1149 /* Move onto the next fragment? */
1150 if (state
.in_len
== 0) {
1151 if (++frag_i
>= skb_shinfo(skb
)->nr_frags
)
1152 /* End of payload reached. */
1154 rc
= tso_get_fragment(&state
, efx
,
1155 skb_shinfo(skb
)->frags
+ frag_i
);
1160 /* Start at new packet? */
1161 if (state
.packet_space
== 0 &&
1162 tso_start_new_packet(tx_queue
, skb
, &state
) < 0)
1166 /* Pass off to hardware */
1167 efx_nic_push_buffers(tx_queue
);
1169 tx_queue
->tso_bursts
++;
1170 return NETDEV_TX_OK
;
1173 netif_err(efx
, tx_err
, efx
->net_dev
,
1174 "Out of memory for TSO headers, or PCI mapping error\n");
1175 dev_kfree_skb_any(skb
);
1178 /* Free the DMA mapping we were in the process of writing out */
1179 if (state
.unmap_len
) {
1180 if (state
.unmap_single
)
1181 pci_unmap_single(efx
->pci_dev
, state
.unmap_addr
,
1182 state
.unmap_len
, PCI_DMA_TODEVICE
);
1184 pci_unmap_page(efx
->pci_dev
, state
.unmap_addr
,
1185 state
.unmap_len
, PCI_DMA_TODEVICE
);
1188 efx_enqueue_unwind(tx_queue
);
1194 * Free up all TSO datastructures associated with tx_queue. This
1195 * routine should be called only once the tx_queue is both empty and
1196 * will no longer be used.
1198 static void efx_fini_tso(struct efx_tx_queue
*tx_queue
)
1202 if (tx_queue
->buffer
) {
1203 for (i
= 0; i
<= tx_queue
->ptr_mask
; ++i
)
1204 efx_tsoh_free(tx_queue
, &tx_queue
->buffer
[i
]);
1207 while (tx_queue
->tso_headers_free
!= NULL
)
1208 efx_tsoh_block_free(tx_queue
, tx_queue
->tso_headers_free
,
1209 tx_queue
->efx
->pci_dev
);