2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
30 #include "print-tree.h"
31 #include "transaction.h"
34 #include "free-space-cache.h"
36 static int update_block_group(struct btrfs_trans_handle
*trans
,
37 struct btrfs_root
*root
,
38 u64 bytenr
, u64 num_bytes
, int alloc
);
39 static int update_reserved_bytes(struct btrfs_block_group_cache
*cache
,
40 u64 num_bytes
, int reserve
, int sinfo
);
41 static int __btrfs_free_extent(struct btrfs_trans_handle
*trans
,
42 struct btrfs_root
*root
,
43 u64 bytenr
, u64 num_bytes
, u64 parent
,
44 u64 root_objectid
, u64 owner_objectid
,
45 u64 owner_offset
, int refs_to_drop
,
46 struct btrfs_delayed_extent_op
*extra_op
);
47 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op
*extent_op
,
48 struct extent_buffer
*leaf
,
49 struct btrfs_extent_item
*ei
);
50 static int alloc_reserved_file_extent(struct btrfs_trans_handle
*trans
,
51 struct btrfs_root
*root
,
52 u64 parent
, u64 root_objectid
,
53 u64 flags
, u64 owner
, u64 offset
,
54 struct btrfs_key
*ins
, int ref_mod
);
55 static int alloc_reserved_tree_block(struct btrfs_trans_handle
*trans
,
56 struct btrfs_root
*root
,
57 u64 parent
, u64 root_objectid
,
58 u64 flags
, struct btrfs_disk_key
*key
,
59 int level
, struct btrfs_key
*ins
);
60 static int do_chunk_alloc(struct btrfs_trans_handle
*trans
,
61 struct btrfs_root
*extent_root
, u64 alloc_bytes
,
62 u64 flags
, int force
);
63 static int find_next_key(struct btrfs_path
*path
, int level
,
64 struct btrfs_key
*key
);
65 static void dump_space_info(struct btrfs_space_info
*info
, u64 bytes
,
66 int dump_block_groups
);
69 block_group_cache_done(struct btrfs_block_group_cache
*cache
)
72 return cache
->cached
== BTRFS_CACHE_FINISHED
;
75 static int block_group_bits(struct btrfs_block_group_cache
*cache
, u64 bits
)
77 return (cache
->flags
& bits
) == bits
;
80 void btrfs_get_block_group(struct btrfs_block_group_cache
*cache
)
82 atomic_inc(&cache
->count
);
85 void btrfs_put_block_group(struct btrfs_block_group_cache
*cache
)
87 if (atomic_dec_and_test(&cache
->count
)) {
88 WARN_ON(cache
->pinned
> 0);
89 WARN_ON(cache
->reserved
> 0);
90 WARN_ON(cache
->reserved_pinned
> 0);
96 * this adds the block group to the fs_info rb tree for the block group
99 static int btrfs_add_block_group_cache(struct btrfs_fs_info
*info
,
100 struct btrfs_block_group_cache
*block_group
)
103 struct rb_node
*parent
= NULL
;
104 struct btrfs_block_group_cache
*cache
;
106 spin_lock(&info
->block_group_cache_lock
);
107 p
= &info
->block_group_cache_tree
.rb_node
;
111 cache
= rb_entry(parent
, struct btrfs_block_group_cache
,
113 if (block_group
->key
.objectid
< cache
->key
.objectid
) {
115 } else if (block_group
->key
.objectid
> cache
->key
.objectid
) {
118 spin_unlock(&info
->block_group_cache_lock
);
123 rb_link_node(&block_group
->cache_node
, parent
, p
);
124 rb_insert_color(&block_group
->cache_node
,
125 &info
->block_group_cache_tree
);
126 spin_unlock(&info
->block_group_cache_lock
);
132 * This will return the block group at or after bytenr if contains is 0, else
133 * it will return the block group that contains the bytenr
135 static struct btrfs_block_group_cache
*
136 block_group_cache_tree_search(struct btrfs_fs_info
*info
, u64 bytenr
,
139 struct btrfs_block_group_cache
*cache
, *ret
= NULL
;
143 spin_lock(&info
->block_group_cache_lock
);
144 n
= info
->block_group_cache_tree
.rb_node
;
147 cache
= rb_entry(n
, struct btrfs_block_group_cache
,
149 end
= cache
->key
.objectid
+ cache
->key
.offset
- 1;
150 start
= cache
->key
.objectid
;
152 if (bytenr
< start
) {
153 if (!contains
&& (!ret
|| start
< ret
->key
.objectid
))
156 } else if (bytenr
> start
) {
157 if (contains
&& bytenr
<= end
) {
168 btrfs_get_block_group(ret
);
169 spin_unlock(&info
->block_group_cache_lock
);
174 static int add_excluded_extent(struct btrfs_root
*root
,
175 u64 start
, u64 num_bytes
)
177 u64 end
= start
+ num_bytes
- 1;
178 set_extent_bits(&root
->fs_info
->freed_extents
[0],
179 start
, end
, EXTENT_UPTODATE
, GFP_NOFS
);
180 set_extent_bits(&root
->fs_info
->freed_extents
[1],
181 start
, end
, EXTENT_UPTODATE
, GFP_NOFS
);
185 static void free_excluded_extents(struct btrfs_root
*root
,
186 struct btrfs_block_group_cache
*cache
)
190 start
= cache
->key
.objectid
;
191 end
= start
+ cache
->key
.offset
- 1;
193 clear_extent_bits(&root
->fs_info
->freed_extents
[0],
194 start
, end
, EXTENT_UPTODATE
, GFP_NOFS
);
195 clear_extent_bits(&root
->fs_info
->freed_extents
[1],
196 start
, end
, EXTENT_UPTODATE
, GFP_NOFS
);
199 static int exclude_super_stripes(struct btrfs_root
*root
,
200 struct btrfs_block_group_cache
*cache
)
207 if (cache
->key
.objectid
< BTRFS_SUPER_INFO_OFFSET
) {
208 stripe_len
= BTRFS_SUPER_INFO_OFFSET
- cache
->key
.objectid
;
209 cache
->bytes_super
+= stripe_len
;
210 ret
= add_excluded_extent(root
, cache
->key
.objectid
,
215 for (i
= 0; i
< BTRFS_SUPER_MIRROR_MAX
; i
++) {
216 bytenr
= btrfs_sb_offset(i
);
217 ret
= btrfs_rmap_block(&root
->fs_info
->mapping_tree
,
218 cache
->key
.objectid
, bytenr
,
219 0, &logical
, &nr
, &stripe_len
);
223 cache
->bytes_super
+= stripe_len
;
224 ret
= add_excluded_extent(root
, logical
[nr
],
234 static struct btrfs_caching_control
*
235 get_caching_control(struct btrfs_block_group_cache
*cache
)
237 struct btrfs_caching_control
*ctl
;
239 spin_lock(&cache
->lock
);
240 if (cache
->cached
!= BTRFS_CACHE_STARTED
) {
241 spin_unlock(&cache
->lock
);
245 /* We're loading it the fast way, so we don't have a caching_ctl. */
246 if (!cache
->caching_ctl
) {
247 spin_unlock(&cache
->lock
);
251 ctl
= cache
->caching_ctl
;
252 atomic_inc(&ctl
->count
);
253 spin_unlock(&cache
->lock
);
257 static void put_caching_control(struct btrfs_caching_control
*ctl
)
259 if (atomic_dec_and_test(&ctl
->count
))
264 * this is only called by cache_block_group, since we could have freed extents
265 * we need to check the pinned_extents for any extents that can't be used yet
266 * since their free space will be released as soon as the transaction commits.
268 static u64
add_new_free_space(struct btrfs_block_group_cache
*block_group
,
269 struct btrfs_fs_info
*info
, u64 start
, u64 end
)
271 u64 extent_start
, extent_end
, size
, total_added
= 0;
274 while (start
< end
) {
275 ret
= find_first_extent_bit(info
->pinned_extents
, start
,
276 &extent_start
, &extent_end
,
277 EXTENT_DIRTY
| EXTENT_UPTODATE
);
281 if (extent_start
<= start
) {
282 start
= extent_end
+ 1;
283 } else if (extent_start
> start
&& extent_start
< end
) {
284 size
= extent_start
- start
;
286 ret
= btrfs_add_free_space(block_group
, start
,
289 start
= extent_end
+ 1;
298 ret
= btrfs_add_free_space(block_group
, start
, size
);
305 static int caching_kthread(void *data
)
307 struct btrfs_block_group_cache
*block_group
= data
;
308 struct btrfs_fs_info
*fs_info
= block_group
->fs_info
;
309 struct btrfs_caching_control
*caching_ctl
= block_group
->caching_ctl
;
310 struct btrfs_root
*extent_root
= fs_info
->extent_root
;
311 struct btrfs_path
*path
;
312 struct extent_buffer
*leaf
;
313 struct btrfs_key key
;
319 path
= btrfs_alloc_path();
323 last
= max_t(u64
, block_group
->key
.objectid
, BTRFS_SUPER_INFO_OFFSET
);
326 * We don't want to deadlock with somebody trying to allocate a new
327 * extent for the extent root while also trying to search the extent
328 * root to add free space. So we skip locking and search the commit
329 * root, since its read-only
331 path
->skip_locking
= 1;
332 path
->search_commit_root
= 1;
337 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
339 mutex_lock(&caching_ctl
->mutex
);
340 /* need to make sure the commit_root doesn't disappear */
341 down_read(&fs_info
->extent_commit_sem
);
343 ret
= btrfs_search_slot(NULL
, extent_root
, &key
, path
, 0, 0);
347 leaf
= path
->nodes
[0];
348 nritems
= btrfs_header_nritems(leaf
);
352 if (fs_info
->closing
> 1) {
357 if (path
->slots
[0] < nritems
) {
358 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
360 ret
= find_next_key(path
, 0, &key
);
364 caching_ctl
->progress
= last
;
365 btrfs_release_path(extent_root
, path
);
366 up_read(&fs_info
->extent_commit_sem
);
367 mutex_unlock(&caching_ctl
->mutex
);
368 if (btrfs_transaction_in_commit(fs_info
))
375 if (key
.objectid
< block_group
->key
.objectid
) {
380 if (key
.objectid
>= block_group
->key
.objectid
+
381 block_group
->key
.offset
)
384 if (key
.type
== BTRFS_EXTENT_ITEM_KEY
) {
385 total_found
+= add_new_free_space(block_group
,
388 last
= key
.objectid
+ key
.offset
;
390 if (total_found
> (1024 * 1024 * 2)) {
392 wake_up(&caching_ctl
->wait
);
399 total_found
+= add_new_free_space(block_group
, fs_info
, last
,
400 block_group
->key
.objectid
+
401 block_group
->key
.offset
);
402 caching_ctl
->progress
= (u64
)-1;
404 spin_lock(&block_group
->lock
);
405 block_group
->caching_ctl
= NULL
;
406 block_group
->cached
= BTRFS_CACHE_FINISHED
;
407 spin_unlock(&block_group
->lock
);
410 btrfs_free_path(path
);
411 up_read(&fs_info
->extent_commit_sem
);
413 free_excluded_extents(extent_root
, block_group
);
415 mutex_unlock(&caching_ctl
->mutex
);
416 wake_up(&caching_ctl
->wait
);
418 put_caching_control(caching_ctl
);
419 atomic_dec(&block_group
->space_info
->caching_threads
);
420 btrfs_put_block_group(block_group
);
425 static int cache_block_group(struct btrfs_block_group_cache
*cache
,
426 struct btrfs_trans_handle
*trans
,
427 struct btrfs_root
*root
,
430 struct btrfs_fs_info
*fs_info
= cache
->fs_info
;
431 struct btrfs_caching_control
*caching_ctl
;
432 struct task_struct
*tsk
;
436 if (cache
->cached
!= BTRFS_CACHE_NO
)
440 * We can't do the read from on-disk cache during a commit since we need
441 * to have the normal tree locking. Also if we are currently trying to
442 * allocate blocks for the tree root we can't do the fast caching since
443 * we likely hold important locks.
445 if (!trans
->transaction
->in_commit
&&
446 (root
&& root
!= root
->fs_info
->tree_root
)) {
447 spin_lock(&cache
->lock
);
448 if (cache
->cached
!= BTRFS_CACHE_NO
) {
449 spin_unlock(&cache
->lock
);
452 cache
->cached
= BTRFS_CACHE_STARTED
;
453 spin_unlock(&cache
->lock
);
455 ret
= load_free_space_cache(fs_info
, cache
);
457 spin_lock(&cache
->lock
);
459 cache
->cached
= BTRFS_CACHE_FINISHED
;
460 cache
->last_byte_to_unpin
= (u64
)-1;
462 cache
->cached
= BTRFS_CACHE_NO
;
464 spin_unlock(&cache
->lock
);
466 free_excluded_extents(fs_info
->extent_root
, cache
);
474 caching_ctl
= kzalloc(sizeof(*caching_ctl
), GFP_KERNEL
);
475 BUG_ON(!caching_ctl
);
477 INIT_LIST_HEAD(&caching_ctl
->list
);
478 mutex_init(&caching_ctl
->mutex
);
479 init_waitqueue_head(&caching_ctl
->wait
);
480 caching_ctl
->block_group
= cache
;
481 caching_ctl
->progress
= cache
->key
.objectid
;
482 /* one for caching kthread, one for caching block group list */
483 atomic_set(&caching_ctl
->count
, 2);
485 spin_lock(&cache
->lock
);
486 if (cache
->cached
!= BTRFS_CACHE_NO
) {
487 spin_unlock(&cache
->lock
);
491 cache
->caching_ctl
= caching_ctl
;
492 cache
->cached
= BTRFS_CACHE_STARTED
;
493 spin_unlock(&cache
->lock
);
495 down_write(&fs_info
->extent_commit_sem
);
496 list_add_tail(&caching_ctl
->list
, &fs_info
->caching_block_groups
);
497 up_write(&fs_info
->extent_commit_sem
);
499 atomic_inc(&cache
->space_info
->caching_threads
);
500 btrfs_get_block_group(cache
);
502 tsk
= kthread_run(caching_kthread
, cache
, "btrfs-cache-%llu\n",
503 cache
->key
.objectid
);
506 printk(KERN_ERR
"error running thread %d\n", ret
);
514 * return the block group that starts at or after bytenr
516 static struct btrfs_block_group_cache
*
517 btrfs_lookup_first_block_group(struct btrfs_fs_info
*info
, u64 bytenr
)
519 struct btrfs_block_group_cache
*cache
;
521 cache
= block_group_cache_tree_search(info
, bytenr
, 0);
527 * return the block group that contains the given bytenr
529 struct btrfs_block_group_cache
*btrfs_lookup_block_group(
530 struct btrfs_fs_info
*info
,
533 struct btrfs_block_group_cache
*cache
;
535 cache
= block_group_cache_tree_search(info
, bytenr
, 1);
540 static struct btrfs_space_info
*__find_space_info(struct btrfs_fs_info
*info
,
543 struct list_head
*head
= &info
->space_info
;
544 struct btrfs_space_info
*found
;
546 flags
&= BTRFS_BLOCK_GROUP_DATA
| BTRFS_BLOCK_GROUP_SYSTEM
|
547 BTRFS_BLOCK_GROUP_METADATA
;
550 list_for_each_entry_rcu(found
, head
, list
) {
551 if (found
->flags
& flags
) {
561 * after adding space to the filesystem, we need to clear the full flags
562 * on all the space infos.
564 void btrfs_clear_space_info_full(struct btrfs_fs_info
*info
)
566 struct list_head
*head
= &info
->space_info
;
567 struct btrfs_space_info
*found
;
570 list_for_each_entry_rcu(found
, head
, list
)
575 static u64
div_factor(u64 num
, int factor
)
584 static u64
div_factor_fine(u64 num
, int factor
)
593 u64
btrfs_find_block_group(struct btrfs_root
*root
,
594 u64 search_start
, u64 search_hint
, int owner
)
596 struct btrfs_block_group_cache
*cache
;
598 u64 last
= max(search_hint
, search_start
);
605 cache
= btrfs_lookup_first_block_group(root
->fs_info
, last
);
609 spin_lock(&cache
->lock
);
610 last
= cache
->key
.objectid
+ cache
->key
.offset
;
611 used
= btrfs_block_group_used(&cache
->item
);
613 if ((full_search
|| !cache
->ro
) &&
614 block_group_bits(cache
, BTRFS_BLOCK_GROUP_METADATA
)) {
615 if (used
+ cache
->pinned
+ cache
->reserved
<
616 div_factor(cache
->key
.offset
, factor
)) {
617 group_start
= cache
->key
.objectid
;
618 spin_unlock(&cache
->lock
);
619 btrfs_put_block_group(cache
);
623 spin_unlock(&cache
->lock
);
624 btrfs_put_block_group(cache
);
632 if (!full_search
&& factor
< 10) {
642 /* simple helper to search for an existing extent at a given offset */
643 int btrfs_lookup_extent(struct btrfs_root
*root
, u64 start
, u64 len
)
646 struct btrfs_key key
;
647 struct btrfs_path
*path
;
649 path
= btrfs_alloc_path();
651 key
.objectid
= start
;
653 btrfs_set_key_type(&key
, BTRFS_EXTENT_ITEM_KEY
);
654 ret
= btrfs_search_slot(NULL
, root
->fs_info
->extent_root
, &key
, path
,
656 btrfs_free_path(path
);
661 * helper function to lookup reference count and flags of extent.
663 * the head node for delayed ref is used to store the sum of all the
664 * reference count modifications queued up in the rbtree. the head
665 * node may also store the extent flags to set. This way you can check
666 * to see what the reference count and extent flags would be if all of
667 * the delayed refs are not processed.
669 int btrfs_lookup_extent_info(struct btrfs_trans_handle
*trans
,
670 struct btrfs_root
*root
, u64 bytenr
,
671 u64 num_bytes
, u64
*refs
, u64
*flags
)
673 struct btrfs_delayed_ref_head
*head
;
674 struct btrfs_delayed_ref_root
*delayed_refs
;
675 struct btrfs_path
*path
;
676 struct btrfs_extent_item
*ei
;
677 struct extent_buffer
*leaf
;
678 struct btrfs_key key
;
684 path
= btrfs_alloc_path();
688 key
.objectid
= bytenr
;
689 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
690 key
.offset
= num_bytes
;
692 path
->skip_locking
= 1;
693 path
->search_commit_root
= 1;
696 ret
= btrfs_search_slot(trans
, root
->fs_info
->extent_root
,
702 leaf
= path
->nodes
[0];
703 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
704 if (item_size
>= sizeof(*ei
)) {
705 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
706 struct btrfs_extent_item
);
707 num_refs
= btrfs_extent_refs(leaf
, ei
);
708 extent_flags
= btrfs_extent_flags(leaf
, ei
);
710 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
711 struct btrfs_extent_item_v0
*ei0
;
712 BUG_ON(item_size
!= sizeof(*ei0
));
713 ei0
= btrfs_item_ptr(leaf
, path
->slots
[0],
714 struct btrfs_extent_item_v0
);
715 num_refs
= btrfs_extent_refs_v0(leaf
, ei0
);
716 /* FIXME: this isn't correct for data */
717 extent_flags
= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
722 BUG_ON(num_refs
== 0);
732 delayed_refs
= &trans
->transaction
->delayed_refs
;
733 spin_lock(&delayed_refs
->lock
);
734 head
= btrfs_find_delayed_ref_head(trans
, bytenr
);
736 if (!mutex_trylock(&head
->mutex
)) {
737 atomic_inc(&head
->node
.refs
);
738 spin_unlock(&delayed_refs
->lock
);
740 btrfs_release_path(root
->fs_info
->extent_root
, path
);
742 mutex_lock(&head
->mutex
);
743 mutex_unlock(&head
->mutex
);
744 btrfs_put_delayed_ref(&head
->node
);
747 if (head
->extent_op
&& head
->extent_op
->update_flags
)
748 extent_flags
|= head
->extent_op
->flags_to_set
;
750 BUG_ON(num_refs
== 0);
752 num_refs
+= head
->node
.ref_mod
;
753 mutex_unlock(&head
->mutex
);
755 spin_unlock(&delayed_refs
->lock
);
757 WARN_ON(num_refs
== 0);
761 *flags
= extent_flags
;
763 btrfs_free_path(path
);
768 * Back reference rules. Back refs have three main goals:
770 * 1) differentiate between all holders of references to an extent so that
771 * when a reference is dropped we can make sure it was a valid reference
772 * before freeing the extent.
774 * 2) Provide enough information to quickly find the holders of an extent
775 * if we notice a given block is corrupted or bad.
777 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
778 * maintenance. This is actually the same as #2, but with a slightly
779 * different use case.
781 * There are two kinds of back refs. The implicit back refs is optimized
782 * for pointers in non-shared tree blocks. For a given pointer in a block,
783 * back refs of this kind provide information about the block's owner tree
784 * and the pointer's key. These information allow us to find the block by
785 * b-tree searching. The full back refs is for pointers in tree blocks not
786 * referenced by their owner trees. The location of tree block is recorded
787 * in the back refs. Actually the full back refs is generic, and can be
788 * used in all cases the implicit back refs is used. The major shortcoming
789 * of the full back refs is its overhead. Every time a tree block gets
790 * COWed, we have to update back refs entry for all pointers in it.
792 * For a newly allocated tree block, we use implicit back refs for
793 * pointers in it. This means most tree related operations only involve
794 * implicit back refs. For a tree block created in old transaction, the
795 * only way to drop a reference to it is COW it. So we can detect the
796 * event that tree block loses its owner tree's reference and do the
797 * back refs conversion.
799 * When a tree block is COW'd through a tree, there are four cases:
801 * The reference count of the block is one and the tree is the block's
802 * owner tree. Nothing to do in this case.
804 * The reference count of the block is one and the tree is not the
805 * block's owner tree. In this case, full back refs is used for pointers
806 * in the block. Remove these full back refs, add implicit back refs for
807 * every pointers in the new block.
809 * The reference count of the block is greater than one and the tree is
810 * the block's owner tree. In this case, implicit back refs is used for
811 * pointers in the block. Add full back refs for every pointers in the
812 * block, increase lower level extents' reference counts. The original
813 * implicit back refs are entailed to the new block.
815 * The reference count of the block is greater than one and the tree is
816 * not the block's owner tree. Add implicit back refs for every pointer in
817 * the new block, increase lower level extents' reference count.
819 * Back Reference Key composing:
821 * The key objectid corresponds to the first byte in the extent,
822 * The key type is used to differentiate between types of back refs.
823 * There are different meanings of the key offset for different types
826 * File extents can be referenced by:
828 * - multiple snapshots, subvolumes, or different generations in one subvol
829 * - different files inside a single subvolume
830 * - different offsets inside a file (bookend extents in file.c)
832 * The extent ref structure for the implicit back refs has fields for:
834 * - Objectid of the subvolume root
835 * - objectid of the file holding the reference
836 * - original offset in the file
837 * - how many bookend extents
839 * The key offset for the implicit back refs is hash of the first
842 * The extent ref structure for the full back refs has field for:
844 * - number of pointers in the tree leaf
846 * The key offset for the implicit back refs is the first byte of
849 * When a file extent is allocated, The implicit back refs is used.
850 * the fields are filled in:
852 * (root_key.objectid, inode objectid, offset in file, 1)
854 * When a file extent is removed file truncation, we find the
855 * corresponding implicit back refs and check the following fields:
857 * (btrfs_header_owner(leaf), inode objectid, offset in file)
859 * Btree extents can be referenced by:
861 * - Different subvolumes
863 * Both the implicit back refs and the full back refs for tree blocks
864 * only consist of key. The key offset for the implicit back refs is
865 * objectid of block's owner tree. The key offset for the full back refs
866 * is the first byte of parent block.
868 * When implicit back refs is used, information about the lowest key and
869 * level of the tree block are required. These information are stored in
870 * tree block info structure.
873 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
874 static int convert_extent_item_v0(struct btrfs_trans_handle
*trans
,
875 struct btrfs_root
*root
,
876 struct btrfs_path
*path
,
877 u64 owner
, u32 extra_size
)
879 struct btrfs_extent_item
*item
;
880 struct btrfs_extent_item_v0
*ei0
;
881 struct btrfs_extent_ref_v0
*ref0
;
882 struct btrfs_tree_block_info
*bi
;
883 struct extent_buffer
*leaf
;
884 struct btrfs_key key
;
885 struct btrfs_key found_key
;
886 u32 new_size
= sizeof(*item
);
890 leaf
= path
->nodes
[0];
891 BUG_ON(btrfs_item_size_nr(leaf
, path
->slots
[0]) != sizeof(*ei0
));
893 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
894 ei0
= btrfs_item_ptr(leaf
, path
->slots
[0],
895 struct btrfs_extent_item_v0
);
896 refs
= btrfs_extent_refs_v0(leaf
, ei0
);
898 if (owner
== (u64
)-1) {
900 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
901 ret
= btrfs_next_leaf(root
, path
);
905 leaf
= path
->nodes
[0];
907 btrfs_item_key_to_cpu(leaf
, &found_key
,
909 BUG_ON(key
.objectid
!= found_key
.objectid
);
910 if (found_key
.type
!= BTRFS_EXTENT_REF_V0_KEY
) {
914 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
915 struct btrfs_extent_ref_v0
);
916 owner
= btrfs_ref_objectid_v0(leaf
, ref0
);
920 btrfs_release_path(root
, path
);
922 if (owner
< BTRFS_FIRST_FREE_OBJECTID
)
923 new_size
+= sizeof(*bi
);
925 new_size
-= sizeof(*ei0
);
926 ret
= btrfs_search_slot(trans
, root
, &key
, path
,
927 new_size
+ extra_size
, 1);
932 ret
= btrfs_extend_item(trans
, root
, path
, new_size
);
935 leaf
= path
->nodes
[0];
936 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
937 btrfs_set_extent_refs(leaf
, item
, refs
);
938 /* FIXME: get real generation */
939 btrfs_set_extent_generation(leaf
, item
, 0);
940 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
941 btrfs_set_extent_flags(leaf
, item
,
942 BTRFS_EXTENT_FLAG_TREE_BLOCK
|
943 BTRFS_BLOCK_FLAG_FULL_BACKREF
);
944 bi
= (struct btrfs_tree_block_info
*)(item
+ 1);
945 /* FIXME: get first key of the block */
946 memset_extent_buffer(leaf
, 0, (unsigned long)bi
, sizeof(*bi
));
947 btrfs_set_tree_block_level(leaf
, bi
, (int)owner
);
949 btrfs_set_extent_flags(leaf
, item
, BTRFS_EXTENT_FLAG_DATA
);
951 btrfs_mark_buffer_dirty(leaf
);
956 static u64
hash_extent_data_ref(u64 root_objectid
, u64 owner
, u64 offset
)
958 u32 high_crc
= ~(u32
)0;
959 u32 low_crc
= ~(u32
)0;
962 lenum
= cpu_to_le64(root_objectid
);
963 high_crc
= crc32c(high_crc
, &lenum
, sizeof(lenum
));
964 lenum
= cpu_to_le64(owner
);
965 low_crc
= crc32c(low_crc
, &lenum
, sizeof(lenum
));
966 lenum
= cpu_to_le64(offset
);
967 low_crc
= crc32c(low_crc
, &lenum
, sizeof(lenum
));
969 return ((u64
)high_crc
<< 31) ^ (u64
)low_crc
;
972 static u64
hash_extent_data_ref_item(struct extent_buffer
*leaf
,
973 struct btrfs_extent_data_ref
*ref
)
975 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf
, ref
),
976 btrfs_extent_data_ref_objectid(leaf
, ref
),
977 btrfs_extent_data_ref_offset(leaf
, ref
));
980 static int match_extent_data_ref(struct extent_buffer
*leaf
,
981 struct btrfs_extent_data_ref
*ref
,
982 u64 root_objectid
, u64 owner
, u64 offset
)
984 if (btrfs_extent_data_ref_root(leaf
, ref
) != root_objectid
||
985 btrfs_extent_data_ref_objectid(leaf
, ref
) != owner
||
986 btrfs_extent_data_ref_offset(leaf
, ref
) != offset
)
991 static noinline
int lookup_extent_data_ref(struct btrfs_trans_handle
*trans
,
992 struct btrfs_root
*root
,
993 struct btrfs_path
*path
,
994 u64 bytenr
, u64 parent
,
996 u64 owner
, u64 offset
)
998 struct btrfs_key key
;
999 struct btrfs_extent_data_ref
*ref
;
1000 struct extent_buffer
*leaf
;
1006 key
.objectid
= bytenr
;
1008 key
.type
= BTRFS_SHARED_DATA_REF_KEY
;
1009 key
.offset
= parent
;
1011 key
.type
= BTRFS_EXTENT_DATA_REF_KEY
;
1012 key
.offset
= hash_extent_data_ref(root_objectid
,
1017 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1026 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1027 key
.type
= BTRFS_EXTENT_REF_V0_KEY
;
1028 btrfs_release_path(root
, path
);
1029 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1040 leaf
= path
->nodes
[0];
1041 nritems
= btrfs_header_nritems(leaf
);
1043 if (path
->slots
[0] >= nritems
) {
1044 ret
= btrfs_next_leaf(root
, path
);
1050 leaf
= path
->nodes
[0];
1051 nritems
= btrfs_header_nritems(leaf
);
1055 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1056 if (key
.objectid
!= bytenr
||
1057 key
.type
!= BTRFS_EXTENT_DATA_REF_KEY
)
1060 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1061 struct btrfs_extent_data_ref
);
1063 if (match_extent_data_ref(leaf
, ref
, root_objectid
,
1066 btrfs_release_path(root
, path
);
1078 static noinline
int insert_extent_data_ref(struct btrfs_trans_handle
*trans
,
1079 struct btrfs_root
*root
,
1080 struct btrfs_path
*path
,
1081 u64 bytenr
, u64 parent
,
1082 u64 root_objectid
, u64 owner
,
1083 u64 offset
, int refs_to_add
)
1085 struct btrfs_key key
;
1086 struct extent_buffer
*leaf
;
1091 key
.objectid
= bytenr
;
1093 key
.type
= BTRFS_SHARED_DATA_REF_KEY
;
1094 key
.offset
= parent
;
1095 size
= sizeof(struct btrfs_shared_data_ref
);
1097 key
.type
= BTRFS_EXTENT_DATA_REF_KEY
;
1098 key
.offset
= hash_extent_data_ref(root_objectid
,
1100 size
= sizeof(struct btrfs_extent_data_ref
);
1103 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
, size
);
1104 if (ret
&& ret
!= -EEXIST
)
1107 leaf
= path
->nodes
[0];
1109 struct btrfs_shared_data_ref
*ref
;
1110 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1111 struct btrfs_shared_data_ref
);
1113 btrfs_set_shared_data_ref_count(leaf
, ref
, refs_to_add
);
1115 num_refs
= btrfs_shared_data_ref_count(leaf
, ref
);
1116 num_refs
+= refs_to_add
;
1117 btrfs_set_shared_data_ref_count(leaf
, ref
, num_refs
);
1120 struct btrfs_extent_data_ref
*ref
;
1121 while (ret
== -EEXIST
) {
1122 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1123 struct btrfs_extent_data_ref
);
1124 if (match_extent_data_ref(leaf
, ref
, root_objectid
,
1127 btrfs_release_path(root
, path
);
1129 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
1131 if (ret
&& ret
!= -EEXIST
)
1134 leaf
= path
->nodes
[0];
1136 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1137 struct btrfs_extent_data_ref
);
1139 btrfs_set_extent_data_ref_root(leaf
, ref
,
1141 btrfs_set_extent_data_ref_objectid(leaf
, ref
, owner
);
1142 btrfs_set_extent_data_ref_offset(leaf
, ref
, offset
);
1143 btrfs_set_extent_data_ref_count(leaf
, ref
, refs_to_add
);
1145 num_refs
= btrfs_extent_data_ref_count(leaf
, ref
);
1146 num_refs
+= refs_to_add
;
1147 btrfs_set_extent_data_ref_count(leaf
, ref
, num_refs
);
1150 btrfs_mark_buffer_dirty(leaf
);
1153 btrfs_release_path(root
, path
);
1157 static noinline
int remove_extent_data_ref(struct btrfs_trans_handle
*trans
,
1158 struct btrfs_root
*root
,
1159 struct btrfs_path
*path
,
1162 struct btrfs_key key
;
1163 struct btrfs_extent_data_ref
*ref1
= NULL
;
1164 struct btrfs_shared_data_ref
*ref2
= NULL
;
1165 struct extent_buffer
*leaf
;
1169 leaf
= path
->nodes
[0];
1170 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1172 if (key
.type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1173 ref1
= btrfs_item_ptr(leaf
, path
->slots
[0],
1174 struct btrfs_extent_data_ref
);
1175 num_refs
= btrfs_extent_data_ref_count(leaf
, ref1
);
1176 } else if (key
.type
== BTRFS_SHARED_DATA_REF_KEY
) {
1177 ref2
= btrfs_item_ptr(leaf
, path
->slots
[0],
1178 struct btrfs_shared_data_ref
);
1179 num_refs
= btrfs_shared_data_ref_count(leaf
, ref2
);
1180 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1181 } else if (key
.type
== BTRFS_EXTENT_REF_V0_KEY
) {
1182 struct btrfs_extent_ref_v0
*ref0
;
1183 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1184 struct btrfs_extent_ref_v0
);
1185 num_refs
= btrfs_ref_count_v0(leaf
, ref0
);
1191 BUG_ON(num_refs
< refs_to_drop
);
1192 num_refs
-= refs_to_drop
;
1194 if (num_refs
== 0) {
1195 ret
= btrfs_del_item(trans
, root
, path
);
1197 if (key
.type
== BTRFS_EXTENT_DATA_REF_KEY
)
1198 btrfs_set_extent_data_ref_count(leaf
, ref1
, num_refs
);
1199 else if (key
.type
== BTRFS_SHARED_DATA_REF_KEY
)
1200 btrfs_set_shared_data_ref_count(leaf
, ref2
, num_refs
);
1201 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1203 struct btrfs_extent_ref_v0
*ref0
;
1204 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1205 struct btrfs_extent_ref_v0
);
1206 btrfs_set_ref_count_v0(leaf
, ref0
, num_refs
);
1209 btrfs_mark_buffer_dirty(leaf
);
1214 static noinline u32
extent_data_ref_count(struct btrfs_root
*root
,
1215 struct btrfs_path
*path
,
1216 struct btrfs_extent_inline_ref
*iref
)
1218 struct btrfs_key key
;
1219 struct extent_buffer
*leaf
;
1220 struct btrfs_extent_data_ref
*ref1
;
1221 struct btrfs_shared_data_ref
*ref2
;
1224 leaf
= path
->nodes
[0];
1225 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1227 if (btrfs_extent_inline_ref_type(leaf
, iref
) ==
1228 BTRFS_EXTENT_DATA_REF_KEY
) {
1229 ref1
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1230 num_refs
= btrfs_extent_data_ref_count(leaf
, ref1
);
1232 ref2
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
1233 num_refs
= btrfs_shared_data_ref_count(leaf
, ref2
);
1235 } else if (key
.type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1236 ref1
= btrfs_item_ptr(leaf
, path
->slots
[0],
1237 struct btrfs_extent_data_ref
);
1238 num_refs
= btrfs_extent_data_ref_count(leaf
, ref1
);
1239 } else if (key
.type
== BTRFS_SHARED_DATA_REF_KEY
) {
1240 ref2
= btrfs_item_ptr(leaf
, path
->slots
[0],
1241 struct btrfs_shared_data_ref
);
1242 num_refs
= btrfs_shared_data_ref_count(leaf
, ref2
);
1243 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1244 } else if (key
.type
== BTRFS_EXTENT_REF_V0_KEY
) {
1245 struct btrfs_extent_ref_v0
*ref0
;
1246 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1247 struct btrfs_extent_ref_v0
);
1248 num_refs
= btrfs_ref_count_v0(leaf
, ref0
);
1256 static noinline
int lookup_tree_block_ref(struct btrfs_trans_handle
*trans
,
1257 struct btrfs_root
*root
,
1258 struct btrfs_path
*path
,
1259 u64 bytenr
, u64 parent
,
1262 struct btrfs_key key
;
1265 key
.objectid
= bytenr
;
1267 key
.type
= BTRFS_SHARED_BLOCK_REF_KEY
;
1268 key
.offset
= parent
;
1270 key
.type
= BTRFS_TREE_BLOCK_REF_KEY
;
1271 key
.offset
= root_objectid
;
1274 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1277 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1278 if (ret
== -ENOENT
&& parent
) {
1279 btrfs_release_path(root
, path
);
1280 key
.type
= BTRFS_EXTENT_REF_V0_KEY
;
1281 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1289 static noinline
int insert_tree_block_ref(struct btrfs_trans_handle
*trans
,
1290 struct btrfs_root
*root
,
1291 struct btrfs_path
*path
,
1292 u64 bytenr
, u64 parent
,
1295 struct btrfs_key key
;
1298 key
.objectid
= bytenr
;
1300 key
.type
= BTRFS_SHARED_BLOCK_REF_KEY
;
1301 key
.offset
= parent
;
1303 key
.type
= BTRFS_TREE_BLOCK_REF_KEY
;
1304 key
.offset
= root_objectid
;
1307 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
, 0);
1308 btrfs_release_path(root
, path
);
1312 static inline int extent_ref_type(u64 parent
, u64 owner
)
1315 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1317 type
= BTRFS_SHARED_BLOCK_REF_KEY
;
1319 type
= BTRFS_TREE_BLOCK_REF_KEY
;
1322 type
= BTRFS_SHARED_DATA_REF_KEY
;
1324 type
= BTRFS_EXTENT_DATA_REF_KEY
;
1329 static int find_next_key(struct btrfs_path
*path
, int level
,
1330 struct btrfs_key
*key
)
1333 for (; level
< BTRFS_MAX_LEVEL
; level
++) {
1334 if (!path
->nodes
[level
])
1336 if (path
->slots
[level
] + 1 >=
1337 btrfs_header_nritems(path
->nodes
[level
]))
1340 btrfs_item_key_to_cpu(path
->nodes
[level
], key
,
1341 path
->slots
[level
] + 1);
1343 btrfs_node_key_to_cpu(path
->nodes
[level
], key
,
1344 path
->slots
[level
] + 1);
1351 * look for inline back ref. if back ref is found, *ref_ret is set
1352 * to the address of inline back ref, and 0 is returned.
1354 * if back ref isn't found, *ref_ret is set to the address where it
1355 * should be inserted, and -ENOENT is returned.
1357 * if insert is true and there are too many inline back refs, the path
1358 * points to the extent item, and -EAGAIN is returned.
1360 * NOTE: inline back refs are ordered in the same way that back ref
1361 * items in the tree are ordered.
1363 static noinline_for_stack
1364 int lookup_inline_extent_backref(struct btrfs_trans_handle
*trans
,
1365 struct btrfs_root
*root
,
1366 struct btrfs_path
*path
,
1367 struct btrfs_extent_inline_ref
**ref_ret
,
1368 u64 bytenr
, u64 num_bytes
,
1369 u64 parent
, u64 root_objectid
,
1370 u64 owner
, u64 offset
, int insert
)
1372 struct btrfs_key key
;
1373 struct extent_buffer
*leaf
;
1374 struct btrfs_extent_item
*ei
;
1375 struct btrfs_extent_inline_ref
*iref
;
1386 key
.objectid
= bytenr
;
1387 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
1388 key
.offset
= num_bytes
;
1390 want
= extent_ref_type(parent
, owner
);
1392 extra_size
= btrfs_extent_inline_ref_size(want
);
1393 path
->keep_locks
= 1;
1396 ret
= btrfs_search_slot(trans
, root
, &key
, path
, extra_size
, 1);
1403 leaf
= path
->nodes
[0];
1404 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1405 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1406 if (item_size
< sizeof(*ei
)) {
1411 ret
= convert_extent_item_v0(trans
, root
, path
, owner
,
1417 leaf
= path
->nodes
[0];
1418 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1421 BUG_ON(item_size
< sizeof(*ei
));
1423 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1424 flags
= btrfs_extent_flags(leaf
, ei
);
1426 ptr
= (unsigned long)(ei
+ 1);
1427 end
= (unsigned long)ei
+ item_size
;
1429 if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
) {
1430 ptr
+= sizeof(struct btrfs_tree_block_info
);
1433 BUG_ON(!(flags
& BTRFS_EXTENT_FLAG_DATA
));
1442 iref
= (struct btrfs_extent_inline_ref
*)ptr
;
1443 type
= btrfs_extent_inline_ref_type(leaf
, iref
);
1447 ptr
+= btrfs_extent_inline_ref_size(type
);
1451 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1452 struct btrfs_extent_data_ref
*dref
;
1453 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1454 if (match_extent_data_ref(leaf
, dref
, root_objectid
,
1459 if (hash_extent_data_ref_item(leaf
, dref
) <
1460 hash_extent_data_ref(root_objectid
, owner
, offset
))
1464 ref_offset
= btrfs_extent_inline_ref_offset(leaf
, iref
);
1466 if (parent
== ref_offset
) {
1470 if (ref_offset
< parent
)
1473 if (root_objectid
== ref_offset
) {
1477 if (ref_offset
< root_objectid
)
1481 ptr
+= btrfs_extent_inline_ref_size(type
);
1483 if (err
== -ENOENT
&& insert
) {
1484 if (item_size
+ extra_size
>=
1485 BTRFS_MAX_EXTENT_ITEM_SIZE(root
)) {
1490 * To add new inline back ref, we have to make sure
1491 * there is no corresponding back ref item.
1492 * For simplicity, we just do not add new inline back
1493 * ref if there is any kind of item for this block
1495 if (find_next_key(path
, 0, &key
) == 0 &&
1496 key
.objectid
== bytenr
&&
1497 key
.type
< BTRFS_BLOCK_GROUP_ITEM_KEY
) {
1502 *ref_ret
= (struct btrfs_extent_inline_ref
*)ptr
;
1505 path
->keep_locks
= 0;
1506 btrfs_unlock_up_safe(path
, 1);
1512 * helper to add new inline back ref
1514 static noinline_for_stack
1515 int setup_inline_extent_backref(struct btrfs_trans_handle
*trans
,
1516 struct btrfs_root
*root
,
1517 struct btrfs_path
*path
,
1518 struct btrfs_extent_inline_ref
*iref
,
1519 u64 parent
, u64 root_objectid
,
1520 u64 owner
, u64 offset
, int refs_to_add
,
1521 struct btrfs_delayed_extent_op
*extent_op
)
1523 struct extent_buffer
*leaf
;
1524 struct btrfs_extent_item
*ei
;
1527 unsigned long item_offset
;
1533 leaf
= path
->nodes
[0];
1534 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1535 item_offset
= (unsigned long)iref
- (unsigned long)ei
;
1537 type
= extent_ref_type(parent
, owner
);
1538 size
= btrfs_extent_inline_ref_size(type
);
1540 ret
= btrfs_extend_item(trans
, root
, path
, size
);
1543 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1544 refs
= btrfs_extent_refs(leaf
, ei
);
1545 refs
+= refs_to_add
;
1546 btrfs_set_extent_refs(leaf
, ei
, refs
);
1548 __run_delayed_extent_op(extent_op
, leaf
, ei
);
1550 ptr
= (unsigned long)ei
+ item_offset
;
1551 end
= (unsigned long)ei
+ btrfs_item_size_nr(leaf
, path
->slots
[0]);
1552 if (ptr
< end
- size
)
1553 memmove_extent_buffer(leaf
, ptr
+ size
, ptr
,
1556 iref
= (struct btrfs_extent_inline_ref
*)ptr
;
1557 btrfs_set_extent_inline_ref_type(leaf
, iref
, type
);
1558 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1559 struct btrfs_extent_data_ref
*dref
;
1560 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1561 btrfs_set_extent_data_ref_root(leaf
, dref
, root_objectid
);
1562 btrfs_set_extent_data_ref_objectid(leaf
, dref
, owner
);
1563 btrfs_set_extent_data_ref_offset(leaf
, dref
, offset
);
1564 btrfs_set_extent_data_ref_count(leaf
, dref
, refs_to_add
);
1565 } else if (type
== BTRFS_SHARED_DATA_REF_KEY
) {
1566 struct btrfs_shared_data_ref
*sref
;
1567 sref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
1568 btrfs_set_shared_data_ref_count(leaf
, sref
, refs_to_add
);
1569 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
1570 } else if (type
== BTRFS_SHARED_BLOCK_REF_KEY
) {
1571 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
1573 btrfs_set_extent_inline_ref_offset(leaf
, iref
, root_objectid
);
1575 btrfs_mark_buffer_dirty(leaf
);
1579 static int lookup_extent_backref(struct btrfs_trans_handle
*trans
,
1580 struct btrfs_root
*root
,
1581 struct btrfs_path
*path
,
1582 struct btrfs_extent_inline_ref
**ref_ret
,
1583 u64 bytenr
, u64 num_bytes
, u64 parent
,
1584 u64 root_objectid
, u64 owner
, u64 offset
)
1588 ret
= lookup_inline_extent_backref(trans
, root
, path
, ref_ret
,
1589 bytenr
, num_bytes
, parent
,
1590 root_objectid
, owner
, offset
, 0);
1594 btrfs_release_path(root
, path
);
1597 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1598 ret
= lookup_tree_block_ref(trans
, root
, path
, bytenr
, parent
,
1601 ret
= lookup_extent_data_ref(trans
, root
, path
, bytenr
, parent
,
1602 root_objectid
, owner
, offset
);
1608 * helper to update/remove inline back ref
1610 static noinline_for_stack
1611 int update_inline_extent_backref(struct btrfs_trans_handle
*trans
,
1612 struct btrfs_root
*root
,
1613 struct btrfs_path
*path
,
1614 struct btrfs_extent_inline_ref
*iref
,
1616 struct btrfs_delayed_extent_op
*extent_op
)
1618 struct extent_buffer
*leaf
;
1619 struct btrfs_extent_item
*ei
;
1620 struct btrfs_extent_data_ref
*dref
= NULL
;
1621 struct btrfs_shared_data_ref
*sref
= NULL
;
1630 leaf
= path
->nodes
[0];
1631 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1632 refs
= btrfs_extent_refs(leaf
, ei
);
1633 WARN_ON(refs_to_mod
< 0 && refs
+ refs_to_mod
<= 0);
1634 refs
+= refs_to_mod
;
1635 btrfs_set_extent_refs(leaf
, ei
, refs
);
1637 __run_delayed_extent_op(extent_op
, leaf
, ei
);
1639 type
= btrfs_extent_inline_ref_type(leaf
, iref
);
1641 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1642 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1643 refs
= btrfs_extent_data_ref_count(leaf
, dref
);
1644 } else if (type
== BTRFS_SHARED_DATA_REF_KEY
) {
1645 sref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
1646 refs
= btrfs_shared_data_ref_count(leaf
, sref
);
1649 BUG_ON(refs_to_mod
!= -1);
1652 BUG_ON(refs_to_mod
< 0 && refs
< -refs_to_mod
);
1653 refs
+= refs_to_mod
;
1656 if (type
== BTRFS_EXTENT_DATA_REF_KEY
)
1657 btrfs_set_extent_data_ref_count(leaf
, dref
, refs
);
1659 btrfs_set_shared_data_ref_count(leaf
, sref
, refs
);
1661 size
= btrfs_extent_inline_ref_size(type
);
1662 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1663 ptr
= (unsigned long)iref
;
1664 end
= (unsigned long)ei
+ item_size
;
1665 if (ptr
+ size
< end
)
1666 memmove_extent_buffer(leaf
, ptr
, ptr
+ size
,
1669 ret
= btrfs_truncate_item(trans
, root
, path
, item_size
, 1);
1672 btrfs_mark_buffer_dirty(leaf
);
1676 static noinline_for_stack
1677 int insert_inline_extent_backref(struct btrfs_trans_handle
*trans
,
1678 struct btrfs_root
*root
,
1679 struct btrfs_path
*path
,
1680 u64 bytenr
, u64 num_bytes
, u64 parent
,
1681 u64 root_objectid
, u64 owner
,
1682 u64 offset
, int refs_to_add
,
1683 struct btrfs_delayed_extent_op
*extent_op
)
1685 struct btrfs_extent_inline_ref
*iref
;
1688 ret
= lookup_inline_extent_backref(trans
, root
, path
, &iref
,
1689 bytenr
, num_bytes
, parent
,
1690 root_objectid
, owner
, offset
, 1);
1692 BUG_ON(owner
< BTRFS_FIRST_FREE_OBJECTID
);
1693 ret
= update_inline_extent_backref(trans
, root
, path
, iref
,
1694 refs_to_add
, extent_op
);
1695 } else if (ret
== -ENOENT
) {
1696 ret
= setup_inline_extent_backref(trans
, root
, path
, iref
,
1697 parent
, root_objectid
,
1698 owner
, offset
, refs_to_add
,
1704 static int insert_extent_backref(struct btrfs_trans_handle
*trans
,
1705 struct btrfs_root
*root
,
1706 struct btrfs_path
*path
,
1707 u64 bytenr
, u64 parent
, u64 root_objectid
,
1708 u64 owner
, u64 offset
, int refs_to_add
)
1711 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1712 BUG_ON(refs_to_add
!= 1);
1713 ret
= insert_tree_block_ref(trans
, root
, path
, bytenr
,
1714 parent
, root_objectid
);
1716 ret
= insert_extent_data_ref(trans
, root
, path
, bytenr
,
1717 parent
, root_objectid
,
1718 owner
, offset
, refs_to_add
);
1723 static int remove_extent_backref(struct btrfs_trans_handle
*trans
,
1724 struct btrfs_root
*root
,
1725 struct btrfs_path
*path
,
1726 struct btrfs_extent_inline_ref
*iref
,
1727 int refs_to_drop
, int is_data
)
1731 BUG_ON(!is_data
&& refs_to_drop
!= 1);
1733 ret
= update_inline_extent_backref(trans
, root
, path
, iref
,
1734 -refs_to_drop
, NULL
);
1735 } else if (is_data
) {
1736 ret
= remove_extent_data_ref(trans
, root
, path
, refs_to_drop
);
1738 ret
= btrfs_del_item(trans
, root
, path
);
1743 static void btrfs_issue_discard(struct block_device
*bdev
,
1746 blkdev_issue_discard(bdev
, start
>> 9, len
>> 9, GFP_KERNEL
, 0);
1749 static int btrfs_discard_extent(struct btrfs_root
*root
, u64 bytenr
,
1753 u64 map_length
= num_bytes
;
1754 struct btrfs_multi_bio
*multi
= NULL
;
1756 if (!btrfs_test_opt(root
, DISCARD
))
1759 /* Tell the block device(s) that the sectors can be discarded */
1760 ret
= btrfs_map_block(&root
->fs_info
->mapping_tree
, READ
,
1761 bytenr
, &map_length
, &multi
, 0);
1763 struct btrfs_bio_stripe
*stripe
= multi
->stripes
;
1766 if (map_length
> num_bytes
)
1767 map_length
= num_bytes
;
1769 for (i
= 0; i
< multi
->num_stripes
; i
++, stripe
++) {
1770 btrfs_issue_discard(stripe
->dev
->bdev
,
1780 int btrfs_inc_extent_ref(struct btrfs_trans_handle
*trans
,
1781 struct btrfs_root
*root
,
1782 u64 bytenr
, u64 num_bytes
, u64 parent
,
1783 u64 root_objectid
, u64 owner
, u64 offset
)
1786 BUG_ON(owner
< BTRFS_FIRST_FREE_OBJECTID
&&
1787 root_objectid
== BTRFS_TREE_LOG_OBJECTID
);
1789 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1790 ret
= btrfs_add_delayed_tree_ref(trans
, bytenr
, num_bytes
,
1791 parent
, root_objectid
, (int)owner
,
1792 BTRFS_ADD_DELAYED_REF
, NULL
);
1794 ret
= btrfs_add_delayed_data_ref(trans
, bytenr
, num_bytes
,
1795 parent
, root_objectid
, owner
, offset
,
1796 BTRFS_ADD_DELAYED_REF
, NULL
);
1801 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle
*trans
,
1802 struct btrfs_root
*root
,
1803 u64 bytenr
, u64 num_bytes
,
1804 u64 parent
, u64 root_objectid
,
1805 u64 owner
, u64 offset
, int refs_to_add
,
1806 struct btrfs_delayed_extent_op
*extent_op
)
1808 struct btrfs_path
*path
;
1809 struct extent_buffer
*leaf
;
1810 struct btrfs_extent_item
*item
;
1815 path
= btrfs_alloc_path();
1820 path
->leave_spinning
= 1;
1821 /* this will setup the path even if it fails to insert the back ref */
1822 ret
= insert_inline_extent_backref(trans
, root
->fs_info
->extent_root
,
1823 path
, bytenr
, num_bytes
, parent
,
1824 root_objectid
, owner
, offset
,
1825 refs_to_add
, extent_op
);
1829 if (ret
!= -EAGAIN
) {
1834 leaf
= path
->nodes
[0];
1835 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1836 refs
= btrfs_extent_refs(leaf
, item
);
1837 btrfs_set_extent_refs(leaf
, item
, refs
+ refs_to_add
);
1839 __run_delayed_extent_op(extent_op
, leaf
, item
);
1841 btrfs_mark_buffer_dirty(leaf
);
1842 btrfs_release_path(root
->fs_info
->extent_root
, path
);
1845 path
->leave_spinning
= 1;
1847 /* now insert the actual backref */
1848 ret
= insert_extent_backref(trans
, root
->fs_info
->extent_root
,
1849 path
, bytenr
, parent
, root_objectid
,
1850 owner
, offset
, refs_to_add
);
1853 btrfs_free_path(path
);
1857 static int run_delayed_data_ref(struct btrfs_trans_handle
*trans
,
1858 struct btrfs_root
*root
,
1859 struct btrfs_delayed_ref_node
*node
,
1860 struct btrfs_delayed_extent_op
*extent_op
,
1861 int insert_reserved
)
1864 struct btrfs_delayed_data_ref
*ref
;
1865 struct btrfs_key ins
;
1870 ins
.objectid
= node
->bytenr
;
1871 ins
.offset
= node
->num_bytes
;
1872 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
1874 ref
= btrfs_delayed_node_to_data_ref(node
);
1875 if (node
->type
== BTRFS_SHARED_DATA_REF_KEY
)
1876 parent
= ref
->parent
;
1878 ref_root
= ref
->root
;
1880 if (node
->action
== BTRFS_ADD_DELAYED_REF
&& insert_reserved
) {
1882 BUG_ON(extent_op
->update_key
);
1883 flags
|= extent_op
->flags_to_set
;
1885 ret
= alloc_reserved_file_extent(trans
, root
,
1886 parent
, ref_root
, flags
,
1887 ref
->objectid
, ref
->offset
,
1888 &ins
, node
->ref_mod
);
1889 } else if (node
->action
== BTRFS_ADD_DELAYED_REF
) {
1890 ret
= __btrfs_inc_extent_ref(trans
, root
, node
->bytenr
,
1891 node
->num_bytes
, parent
,
1892 ref_root
, ref
->objectid
,
1893 ref
->offset
, node
->ref_mod
,
1895 } else if (node
->action
== BTRFS_DROP_DELAYED_REF
) {
1896 ret
= __btrfs_free_extent(trans
, root
, node
->bytenr
,
1897 node
->num_bytes
, parent
,
1898 ref_root
, ref
->objectid
,
1899 ref
->offset
, node
->ref_mod
,
1907 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op
*extent_op
,
1908 struct extent_buffer
*leaf
,
1909 struct btrfs_extent_item
*ei
)
1911 u64 flags
= btrfs_extent_flags(leaf
, ei
);
1912 if (extent_op
->update_flags
) {
1913 flags
|= extent_op
->flags_to_set
;
1914 btrfs_set_extent_flags(leaf
, ei
, flags
);
1917 if (extent_op
->update_key
) {
1918 struct btrfs_tree_block_info
*bi
;
1919 BUG_ON(!(flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
));
1920 bi
= (struct btrfs_tree_block_info
*)(ei
+ 1);
1921 btrfs_set_tree_block_key(leaf
, bi
, &extent_op
->key
);
1925 static int run_delayed_extent_op(struct btrfs_trans_handle
*trans
,
1926 struct btrfs_root
*root
,
1927 struct btrfs_delayed_ref_node
*node
,
1928 struct btrfs_delayed_extent_op
*extent_op
)
1930 struct btrfs_key key
;
1931 struct btrfs_path
*path
;
1932 struct btrfs_extent_item
*ei
;
1933 struct extent_buffer
*leaf
;
1938 path
= btrfs_alloc_path();
1942 key
.objectid
= node
->bytenr
;
1943 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
1944 key
.offset
= node
->num_bytes
;
1947 path
->leave_spinning
= 1;
1948 ret
= btrfs_search_slot(trans
, root
->fs_info
->extent_root
, &key
,
1959 leaf
= path
->nodes
[0];
1960 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1961 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1962 if (item_size
< sizeof(*ei
)) {
1963 ret
= convert_extent_item_v0(trans
, root
->fs_info
->extent_root
,
1969 leaf
= path
->nodes
[0];
1970 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1973 BUG_ON(item_size
< sizeof(*ei
));
1974 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1975 __run_delayed_extent_op(extent_op
, leaf
, ei
);
1977 btrfs_mark_buffer_dirty(leaf
);
1979 btrfs_free_path(path
);
1983 static int run_delayed_tree_ref(struct btrfs_trans_handle
*trans
,
1984 struct btrfs_root
*root
,
1985 struct btrfs_delayed_ref_node
*node
,
1986 struct btrfs_delayed_extent_op
*extent_op
,
1987 int insert_reserved
)
1990 struct btrfs_delayed_tree_ref
*ref
;
1991 struct btrfs_key ins
;
1995 ins
.objectid
= node
->bytenr
;
1996 ins
.offset
= node
->num_bytes
;
1997 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
1999 ref
= btrfs_delayed_node_to_tree_ref(node
);
2000 if (node
->type
== BTRFS_SHARED_BLOCK_REF_KEY
)
2001 parent
= ref
->parent
;
2003 ref_root
= ref
->root
;
2005 BUG_ON(node
->ref_mod
!= 1);
2006 if (node
->action
== BTRFS_ADD_DELAYED_REF
&& insert_reserved
) {
2007 BUG_ON(!extent_op
|| !extent_op
->update_flags
||
2008 !extent_op
->update_key
);
2009 ret
= alloc_reserved_tree_block(trans
, root
,
2011 extent_op
->flags_to_set
,
2014 } else if (node
->action
== BTRFS_ADD_DELAYED_REF
) {
2015 ret
= __btrfs_inc_extent_ref(trans
, root
, node
->bytenr
,
2016 node
->num_bytes
, parent
, ref_root
,
2017 ref
->level
, 0, 1, extent_op
);
2018 } else if (node
->action
== BTRFS_DROP_DELAYED_REF
) {
2019 ret
= __btrfs_free_extent(trans
, root
, node
->bytenr
,
2020 node
->num_bytes
, parent
, ref_root
,
2021 ref
->level
, 0, 1, extent_op
);
2028 /* helper function to actually process a single delayed ref entry */
2029 static int run_one_delayed_ref(struct btrfs_trans_handle
*trans
,
2030 struct btrfs_root
*root
,
2031 struct btrfs_delayed_ref_node
*node
,
2032 struct btrfs_delayed_extent_op
*extent_op
,
2033 int insert_reserved
)
2036 if (btrfs_delayed_ref_is_head(node
)) {
2037 struct btrfs_delayed_ref_head
*head
;
2039 * we've hit the end of the chain and we were supposed
2040 * to insert this extent into the tree. But, it got
2041 * deleted before we ever needed to insert it, so all
2042 * we have to do is clean up the accounting
2045 head
= btrfs_delayed_node_to_head(node
);
2046 if (insert_reserved
) {
2047 btrfs_pin_extent(root
, node
->bytenr
,
2048 node
->num_bytes
, 1);
2049 if (head
->is_data
) {
2050 ret
= btrfs_del_csums(trans
, root
,
2056 mutex_unlock(&head
->mutex
);
2060 if (node
->type
== BTRFS_TREE_BLOCK_REF_KEY
||
2061 node
->type
== BTRFS_SHARED_BLOCK_REF_KEY
)
2062 ret
= run_delayed_tree_ref(trans
, root
, node
, extent_op
,
2064 else if (node
->type
== BTRFS_EXTENT_DATA_REF_KEY
||
2065 node
->type
== BTRFS_SHARED_DATA_REF_KEY
)
2066 ret
= run_delayed_data_ref(trans
, root
, node
, extent_op
,
2073 static noinline
struct btrfs_delayed_ref_node
*
2074 select_delayed_ref(struct btrfs_delayed_ref_head
*head
)
2076 struct rb_node
*node
;
2077 struct btrfs_delayed_ref_node
*ref
;
2078 int action
= BTRFS_ADD_DELAYED_REF
;
2081 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2082 * this prevents ref count from going down to zero when
2083 * there still are pending delayed ref.
2085 node
= rb_prev(&head
->node
.rb_node
);
2089 ref
= rb_entry(node
, struct btrfs_delayed_ref_node
,
2091 if (ref
->bytenr
!= head
->node
.bytenr
)
2093 if (ref
->action
== action
)
2095 node
= rb_prev(node
);
2097 if (action
== BTRFS_ADD_DELAYED_REF
) {
2098 action
= BTRFS_DROP_DELAYED_REF
;
2104 static noinline
int run_clustered_refs(struct btrfs_trans_handle
*trans
,
2105 struct btrfs_root
*root
,
2106 struct list_head
*cluster
)
2108 struct btrfs_delayed_ref_root
*delayed_refs
;
2109 struct btrfs_delayed_ref_node
*ref
;
2110 struct btrfs_delayed_ref_head
*locked_ref
= NULL
;
2111 struct btrfs_delayed_extent_op
*extent_op
;
2114 int must_insert_reserved
= 0;
2116 delayed_refs
= &trans
->transaction
->delayed_refs
;
2119 /* pick a new head ref from the cluster list */
2120 if (list_empty(cluster
))
2123 locked_ref
= list_entry(cluster
->next
,
2124 struct btrfs_delayed_ref_head
, cluster
);
2126 /* grab the lock that says we are going to process
2127 * all the refs for this head */
2128 ret
= btrfs_delayed_ref_lock(trans
, locked_ref
);
2131 * we may have dropped the spin lock to get the head
2132 * mutex lock, and that might have given someone else
2133 * time to free the head. If that's true, it has been
2134 * removed from our list and we can move on.
2136 if (ret
== -EAGAIN
) {
2144 * record the must insert reserved flag before we
2145 * drop the spin lock.
2147 must_insert_reserved
= locked_ref
->must_insert_reserved
;
2148 locked_ref
->must_insert_reserved
= 0;
2150 extent_op
= locked_ref
->extent_op
;
2151 locked_ref
->extent_op
= NULL
;
2154 * locked_ref is the head node, so we have to go one
2155 * node back for any delayed ref updates
2157 ref
= select_delayed_ref(locked_ref
);
2159 /* All delayed refs have been processed, Go ahead
2160 * and send the head node to run_one_delayed_ref,
2161 * so that any accounting fixes can happen
2163 ref
= &locked_ref
->node
;
2165 if (extent_op
&& must_insert_reserved
) {
2171 spin_unlock(&delayed_refs
->lock
);
2173 ret
= run_delayed_extent_op(trans
, root
,
2179 spin_lock(&delayed_refs
->lock
);
2183 list_del_init(&locked_ref
->cluster
);
2188 rb_erase(&ref
->rb_node
, &delayed_refs
->root
);
2189 delayed_refs
->num_entries
--;
2191 spin_unlock(&delayed_refs
->lock
);
2193 ret
= run_one_delayed_ref(trans
, root
, ref
, extent_op
,
2194 must_insert_reserved
);
2197 btrfs_put_delayed_ref(ref
);
2202 spin_lock(&delayed_refs
->lock
);
2208 * this starts processing the delayed reference count updates and
2209 * extent insertions we have queued up so far. count can be
2210 * 0, which means to process everything in the tree at the start
2211 * of the run (but not newly added entries), or it can be some target
2212 * number you'd like to process.
2214 int btrfs_run_delayed_refs(struct btrfs_trans_handle
*trans
,
2215 struct btrfs_root
*root
, unsigned long count
)
2217 struct rb_node
*node
;
2218 struct btrfs_delayed_ref_root
*delayed_refs
;
2219 struct btrfs_delayed_ref_node
*ref
;
2220 struct list_head cluster
;
2222 int run_all
= count
== (unsigned long)-1;
2225 if (root
== root
->fs_info
->extent_root
)
2226 root
= root
->fs_info
->tree_root
;
2228 delayed_refs
= &trans
->transaction
->delayed_refs
;
2229 INIT_LIST_HEAD(&cluster
);
2231 spin_lock(&delayed_refs
->lock
);
2233 count
= delayed_refs
->num_entries
* 2;
2237 if (!(run_all
|| run_most
) &&
2238 delayed_refs
->num_heads_ready
< 64)
2242 * go find something we can process in the rbtree. We start at
2243 * the beginning of the tree, and then build a cluster
2244 * of refs to process starting at the first one we are able to
2247 ret
= btrfs_find_ref_cluster(trans
, &cluster
,
2248 delayed_refs
->run_delayed_start
);
2252 ret
= run_clustered_refs(trans
, root
, &cluster
);
2255 count
-= min_t(unsigned long, ret
, count
);
2262 node
= rb_first(&delayed_refs
->root
);
2265 count
= (unsigned long)-1;
2268 ref
= rb_entry(node
, struct btrfs_delayed_ref_node
,
2270 if (btrfs_delayed_ref_is_head(ref
)) {
2271 struct btrfs_delayed_ref_head
*head
;
2273 head
= btrfs_delayed_node_to_head(ref
);
2274 atomic_inc(&ref
->refs
);
2276 spin_unlock(&delayed_refs
->lock
);
2277 mutex_lock(&head
->mutex
);
2278 mutex_unlock(&head
->mutex
);
2280 btrfs_put_delayed_ref(ref
);
2284 node
= rb_next(node
);
2286 spin_unlock(&delayed_refs
->lock
);
2287 schedule_timeout(1);
2291 spin_unlock(&delayed_refs
->lock
);
2295 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle
*trans
,
2296 struct btrfs_root
*root
,
2297 u64 bytenr
, u64 num_bytes
, u64 flags
,
2300 struct btrfs_delayed_extent_op
*extent_op
;
2303 extent_op
= kmalloc(sizeof(*extent_op
), GFP_NOFS
);
2307 extent_op
->flags_to_set
= flags
;
2308 extent_op
->update_flags
= 1;
2309 extent_op
->update_key
= 0;
2310 extent_op
->is_data
= is_data
? 1 : 0;
2312 ret
= btrfs_add_delayed_extent_op(trans
, bytenr
, num_bytes
, extent_op
);
2318 static noinline
int check_delayed_ref(struct btrfs_trans_handle
*trans
,
2319 struct btrfs_root
*root
,
2320 struct btrfs_path
*path
,
2321 u64 objectid
, u64 offset
, u64 bytenr
)
2323 struct btrfs_delayed_ref_head
*head
;
2324 struct btrfs_delayed_ref_node
*ref
;
2325 struct btrfs_delayed_data_ref
*data_ref
;
2326 struct btrfs_delayed_ref_root
*delayed_refs
;
2327 struct rb_node
*node
;
2331 delayed_refs
= &trans
->transaction
->delayed_refs
;
2332 spin_lock(&delayed_refs
->lock
);
2333 head
= btrfs_find_delayed_ref_head(trans
, bytenr
);
2337 if (!mutex_trylock(&head
->mutex
)) {
2338 atomic_inc(&head
->node
.refs
);
2339 spin_unlock(&delayed_refs
->lock
);
2341 btrfs_release_path(root
->fs_info
->extent_root
, path
);
2343 mutex_lock(&head
->mutex
);
2344 mutex_unlock(&head
->mutex
);
2345 btrfs_put_delayed_ref(&head
->node
);
2349 node
= rb_prev(&head
->node
.rb_node
);
2353 ref
= rb_entry(node
, struct btrfs_delayed_ref_node
, rb_node
);
2355 if (ref
->bytenr
!= bytenr
)
2359 if (ref
->type
!= BTRFS_EXTENT_DATA_REF_KEY
)
2362 data_ref
= btrfs_delayed_node_to_data_ref(ref
);
2364 node
= rb_prev(node
);
2366 ref
= rb_entry(node
, struct btrfs_delayed_ref_node
, rb_node
);
2367 if (ref
->bytenr
== bytenr
)
2371 if (data_ref
->root
!= root
->root_key
.objectid
||
2372 data_ref
->objectid
!= objectid
|| data_ref
->offset
!= offset
)
2377 mutex_unlock(&head
->mutex
);
2379 spin_unlock(&delayed_refs
->lock
);
2383 static noinline
int check_committed_ref(struct btrfs_trans_handle
*trans
,
2384 struct btrfs_root
*root
,
2385 struct btrfs_path
*path
,
2386 u64 objectid
, u64 offset
, u64 bytenr
)
2388 struct btrfs_root
*extent_root
= root
->fs_info
->extent_root
;
2389 struct extent_buffer
*leaf
;
2390 struct btrfs_extent_data_ref
*ref
;
2391 struct btrfs_extent_inline_ref
*iref
;
2392 struct btrfs_extent_item
*ei
;
2393 struct btrfs_key key
;
2397 key
.objectid
= bytenr
;
2398 key
.offset
= (u64
)-1;
2399 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
2401 ret
= btrfs_search_slot(NULL
, extent_root
, &key
, path
, 0, 0);
2407 if (path
->slots
[0] == 0)
2411 leaf
= path
->nodes
[0];
2412 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2414 if (key
.objectid
!= bytenr
|| key
.type
!= BTRFS_EXTENT_ITEM_KEY
)
2418 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
2419 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2420 if (item_size
< sizeof(*ei
)) {
2421 WARN_ON(item_size
!= sizeof(struct btrfs_extent_item_v0
));
2425 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
2427 if (item_size
!= sizeof(*ei
) +
2428 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY
))
2431 if (btrfs_extent_generation(leaf
, ei
) <=
2432 btrfs_root_last_snapshot(&root
->root_item
))
2435 iref
= (struct btrfs_extent_inline_ref
*)(ei
+ 1);
2436 if (btrfs_extent_inline_ref_type(leaf
, iref
) !=
2437 BTRFS_EXTENT_DATA_REF_KEY
)
2440 ref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
2441 if (btrfs_extent_refs(leaf
, ei
) !=
2442 btrfs_extent_data_ref_count(leaf
, ref
) ||
2443 btrfs_extent_data_ref_root(leaf
, ref
) !=
2444 root
->root_key
.objectid
||
2445 btrfs_extent_data_ref_objectid(leaf
, ref
) != objectid
||
2446 btrfs_extent_data_ref_offset(leaf
, ref
) != offset
)
2454 int btrfs_cross_ref_exist(struct btrfs_trans_handle
*trans
,
2455 struct btrfs_root
*root
,
2456 u64 objectid
, u64 offset
, u64 bytenr
)
2458 struct btrfs_path
*path
;
2462 path
= btrfs_alloc_path();
2467 ret
= check_committed_ref(trans
, root
, path
, objectid
,
2469 if (ret
&& ret
!= -ENOENT
)
2472 ret2
= check_delayed_ref(trans
, root
, path
, objectid
,
2474 } while (ret2
== -EAGAIN
);
2476 if (ret2
&& ret2
!= -ENOENT
) {
2481 if (ret
!= -ENOENT
|| ret2
!= -ENOENT
)
2484 btrfs_free_path(path
);
2485 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
)
2491 int btrfs_cache_ref(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
2492 struct extent_buffer
*buf
, u32 nr_extents
)
2494 struct btrfs_key key
;
2495 struct btrfs_file_extent_item
*fi
;
2503 if (!root
->ref_cows
)
2506 if (root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
) {
2508 root_gen
= root
->root_key
.offset
;
2511 root_gen
= trans
->transid
- 1;
2514 level
= btrfs_header_level(buf
);
2515 nritems
= btrfs_header_nritems(buf
);
2518 struct btrfs_leaf_ref
*ref
;
2519 struct btrfs_extent_info
*info
;
2521 ref
= btrfs_alloc_leaf_ref(root
, nr_extents
);
2527 ref
->root_gen
= root_gen
;
2528 ref
->bytenr
= buf
->start
;
2529 ref
->owner
= btrfs_header_owner(buf
);
2530 ref
->generation
= btrfs_header_generation(buf
);
2531 ref
->nritems
= nr_extents
;
2532 info
= ref
->extents
;
2534 for (i
= 0; nr_extents
> 0 && i
< nritems
; i
++) {
2536 btrfs_item_key_to_cpu(buf
, &key
, i
);
2537 if (btrfs_key_type(&key
) != BTRFS_EXTENT_DATA_KEY
)
2539 fi
= btrfs_item_ptr(buf
, i
,
2540 struct btrfs_file_extent_item
);
2541 if (btrfs_file_extent_type(buf
, fi
) ==
2542 BTRFS_FILE_EXTENT_INLINE
)
2544 disk_bytenr
= btrfs_file_extent_disk_bytenr(buf
, fi
);
2545 if (disk_bytenr
== 0)
2548 info
->bytenr
= disk_bytenr
;
2550 btrfs_file_extent_disk_num_bytes(buf
, fi
);
2551 info
->objectid
= key
.objectid
;
2552 info
->offset
= key
.offset
;
2556 ret
= btrfs_add_leaf_ref(root
, ref
, shared
);
2557 if (ret
== -EEXIST
&& shared
) {
2558 struct btrfs_leaf_ref
*old
;
2559 old
= btrfs_lookup_leaf_ref(root
, ref
->bytenr
);
2561 btrfs_remove_leaf_ref(root
, old
);
2562 btrfs_free_leaf_ref(root
, old
);
2563 ret
= btrfs_add_leaf_ref(root
, ref
, shared
);
2566 btrfs_free_leaf_ref(root
, ref
);
2572 /* when a block goes through cow, we update the reference counts of
2573 * everything that block points to. The internal pointers of the block
2574 * can be in just about any order, and it is likely to have clusters of
2575 * things that are close together and clusters of things that are not.
2577 * To help reduce the seeks that come with updating all of these reference
2578 * counts, sort them by byte number before actual updates are done.
2580 * struct refsort is used to match byte number to slot in the btree block.
2581 * we sort based on the byte number and then use the slot to actually
2584 * struct refsort is smaller than strcut btrfs_item and smaller than
2585 * struct btrfs_key_ptr. Since we're currently limited to the page size
2586 * for a btree block, there's no way for a kmalloc of refsorts for a
2587 * single node to be bigger than a page.
2595 * for passing into sort()
2597 static int refsort_cmp(const void *a_void
, const void *b_void
)
2599 const struct refsort
*a
= a_void
;
2600 const struct refsort
*b
= b_void
;
2602 if (a
->bytenr
< b
->bytenr
)
2604 if (a
->bytenr
> b
->bytenr
)
2610 static int __btrfs_mod_ref(struct btrfs_trans_handle
*trans
,
2611 struct btrfs_root
*root
,
2612 struct extent_buffer
*buf
,
2613 int full_backref
, int inc
)
2620 struct btrfs_key key
;
2621 struct btrfs_file_extent_item
*fi
;
2625 int (*process_func
)(struct btrfs_trans_handle
*, struct btrfs_root
*,
2626 u64
, u64
, u64
, u64
, u64
, u64
);
2628 ref_root
= btrfs_header_owner(buf
);
2629 nritems
= btrfs_header_nritems(buf
);
2630 level
= btrfs_header_level(buf
);
2632 if (!root
->ref_cows
&& level
== 0)
2636 process_func
= btrfs_inc_extent_ref
;
2638 process_func
= btrfs_free_extent
;
2641 parent
= buf
->start
;
2645 for (i
= 0; i
< nritems
; i
++) {
2647 btrfs_item_key_to_cpu(buf
, &key
, i
);
2648 if (btrfs_key_type(&key
) != BTRFS_EXTENT_DATA_KEY
)
2650 fi
= btrfs_item_ptr(buf
, i
,
2651 struct btrfs_file_extent_item
);
2652 if (btrfs_file_extent_type(buf
, fi
) ==
2653 BTRFS_FILE_EXTENT_INLINE
)
2655 bytenr
= btrfs_file_extent_disk_bytenr(buf
, fi
);
2659 num_bytes
= btrfs_file_extent_disk_num_bytes(buf
, fi
);
2660 key
.offset
-= btrfs_file_extent_offset(buf
, fi
);
2661 ret
= process_func(trans
, root
, bytenr
, num_bytes
,
2662 parent
, ref_root
, key
.objectid
,
2667 bytenr
= btrfs_node_blockptr(buf
, i
);
2668 num_bytes
= btrfs_level_size(root
, level
- 1);
2669 ret
= process_func(trans
, root
, bytenr
, num_bytes
,
2670 parent
, ref_root
, level
- 1, 0);
2681 int btrfs_inc_ref(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
2682 struct extent_buffer
*buf
, int full_backref
)
2684 return __btrfs_mod_ref(trans
, root
, buf
, full_backref
, 1);
2687 int btrfs_dec_ref(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
2688 struct extent_buffer
*buf
, int full_backref
)
2690 return __btrfs_mod_ref(trans
, root
, buf
, full_backref
, 0);
2693 static int write_one_cache_group(struct btrfs_trans_handle
*trans
,
2694 struct btrfs_root
*root
,
2695 struct btrfs_path
*path
,
2696 struct btrfs_block_group_cache
*cache
)
2699 struct btrfs_root
*extent_root
= root
->fs_info
->extent_root
;
2701 struct extent_buffer
*leaf
;
2703 ret
= btrfs_search_slot(trans
, extent_root
, &cache
->key
, path
, 0, 1);
2708 leaf
= path
->nodes
[0];
2709 bi
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
2710 write_extent_buffer(leaf
, &cache
->item
, bi
, sizeof(cache
->item
));
2711 btrfs_mark_buffer_dirty(leaf
);
2712 btrfs_release_path(extent_root
, path
);
2720 static struct btrfs_block_group_cache
*
2721 next_block_group(struct btrfs_root
*root
,
2722 struct btrfs_block_group_cache
*cache
)
2724 struct rb_node
*node
;
2725 spin_lock(&root
->fs_info
->block_group_cache_lock
);
2726 node
= rb_next(&cache
->cache_node
);
2727 btrfs_put_block_group(cache
);
2729 cache
= rb_entry(node
, struct btrfs_block_group_cache
,
2731 btrfs_get_block_group(cache
);
2734 spin_unlock(&root
->fs_info
->block_group_cache_lock
);
2738 static int cache_save_setup(struct btrfs_block_group_cache
*block_group
,
2739 struct btrfs_trans_handle
*trans
,
2740 struct btrfs_path
*path
)
2742 struct btrfs_root
*root
= block_group
->fs_info
->tree_root
;
2743 struct inode
*inode
= NULL
;
2745 int dcs
= BTRFS_DC_ERROR
;
2751 * If this block group is smaller than 100 megs don't bother caching the
2754 if (block_group
->key
.offset
< (100 * 1024 * 1024)) {
2755 spin_lock(&block_group
->lock
);
2756 block_group
->disk_cache_state
= BTRFS_DC_WRITTEN
;
2757 spin_unlock(&block_group
->lock
);
2762 inode
= lookup_free_space_inode(root
, block_group
, path
);
2763 if (IS_ERR(inode
) && PTR_ERR(inode
) != -ENOENT
) {
2764 ret
= PTR_ERR(inode
);
2765 btrfs_release_path(root
, path
);
2769 if (IS_ERR(inode
)) {
2773 if (block_group
->ro
)
2776 ret
= create_free_space_inode(root
, trans
, block_group
, path
);
2783 * We want to set the generation to 0, that way if anything goes wrong
2784 * from here on out we know not to trust this cache when we load up next
2787 BTRFS_I(inode
)->generation
= 0;
2788 ret
= btrfs_update_inode(trans
, root
, inode
);
2791 if (i_size_read(inode
) > 0) {
2792 ret
= btrfs_truncate_free_space_cache(root
, trans
, path
,
2798 spin_lock(&block_group
->lock
);
2799 if (block_group
->cached
!= BTRFS_CACHE_FINISHED
) {
2800 /* We're not cached, don't bother trying to write stuff out */
2801 dcs
= BTRFS_DC_WRITTEN
;
2802 spin_unlock(&block_group
->lock
);
2805 spin_unlock(&block_group
->lock
);
2807 num_pages
= (int)div64_u64(block_group
->key
.offset
, 1024 * 1024 * 1024);
2812 * Just to make absolutely sure we have enough space, we're going to
2813 * preallocate 12 pages worth of space for each block group. In
2814 * practice we ought to use at most 8, but we need extra space so we can
2815 * add our header and have a terminator between the extents and the
2819 num_pages
*= PAGE_CACHE_SIZE
;
2821 ret
= btrfs_check_data_free_space(inode
, num_pages
);
2825 ret
= btrfs_prealloc_file_range_trans(inode
, trans
, 0, 0, num_pages
,
2826 num_pages
, num_pages
,
2829 dcs
= BTRFS_DC_SETUP
;
2830 btrfs_free_reserved_data_space(inode
, num_pages
);
2834 btrfs_release_path(root
, path
);
2836 spin_lock(&block_group
->lock
);
2837 block_group
->disk_cache_state
= dcs
;
2838 spin_unlock(&block_group
->lock
);
2843 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle
*trans
,
2844 struct btrfs_root
*root
)
2846 struct btrfs_block_group_cache
*cache
;
2848 struct btrfs_path
*path
;
2851 path
= btrfs_alloc_path();
2857 cache
= btrfs_lookup_first_block_group(root
->fs_info
, last
);
2859 if (cache
->disk_cache_state
== BTRFS_DC_CLEAR
)
2861 cache
= next_block_group(root
, cache
);
2869 err
= cache_save_setup(cache
, trans
, path
);
2870 last
= cache
->key
.objectid
+ cache
->key
.offset
;
2871 btrfs_put_block_group(cache
);
2876 err
= btrfs_run_delayed_refs(trans
, root
,
2881 cache
= btrfs_lookup_first_block_group(root
->fs_info
, last
);
2883 if (cache
->disk_cache_state
== BTRFS_DC_CLEAR
) {
2884 btrfs_put_block_group(cache
);
2890 cache
= next_block_group(root
, cache
);
2899 if (cache
->disk_cache_state
== BTRFS_DC_SETUP
)
2900 cache
->disk_cache_state
= BTRFS_DC_NEED_WRITE
;
2902 last
= cache
->key
.objectid
+ cache
->key
.offset
;
2904 err
= write_one_cache_group(trans
, root
, path
, cache
);
2906 btrfs_put_block_group(cache
);
2911 * I don't think this is needed since we're just marking our
2912 * preallocated extent as written, but just in case it can't
2916 err
= btrfs_run_delayed_refs(trans
, root
,
2921 cache
= btrfs_lookup_first_block_group(root
->fs_info
, last
);
2924 * Really this shouldn't happen, but it could if we
2925 * couldn't write the entire preallocated extent and
2926 * splitting the extent resulted in a new block.
2929 btrfs_put_block_group(cache
);
2932 if (cache
->disk_cache_state
== BTRFS_DC_NEED_WRITE
)
2934 cache
= next_block_group(root
, cache
);
2943 btrfs_write_out_cache(root
, trans
, cache
, path
);
2946 * If we didn't have an error then the cache state is still
2947 * NEED_WRITE, so we can set it to WRITTEN.
2949 if (cache
->disk_cache_state
== BTRFS_DC_NEED_WRITE
)
2950 cache
->disk_cache_state
= BTRFS_DC_WRITTEN
;
2951 last
= cache
->key
.objectid
+ cache
->key
.offset
;
2952 btrfs_put_block_group(cache
);
2955 btrfs_free_path(path
);
2959 int btrfs_extent_readonly(struct btrfs_root
*root
, u64 bytenr
)
2961 struct btrfs_block_group_cache
*block_group
;
2964 block_group
= btrfs_lookup_block_group(root
->fs_info
, bytenr
);
2965 if (!block_group
|| block_group
->ro
)
2968 btrfs_put_block_group(block_group
);
2972 static int update_space_info(struct btrfs_fs_info
*info
, u64 flags
,
2973 u64 total_bytes
, u64 bytes_used
,
2974 struct btrfs_space_info
**space_info
)
2976 struct btrfs_space_info
*found
;
2980 if (flags
& (BTRFS_BLOCK_GROUP_DUP
| BTRFS_BLOCK_GROUP_RAID1
|
2981 BTRFS_BLOCK_GROUP_RAID10
))
2986 found
= __find_space_info(info
, flags
);
2988 spin_lock(&found
->lock
);
2989 found
->total_bytes
+= total_bytes
;
2990 found
->disk_total
+= total_bytes
* factor
;
2991 found
->bytes_used
+= bytes_used
;
2992 found
->disk_used
+= bytes_used
* factor
;
2994 spin_unlock(&found
->lock
);
2995 *space_info
= found
;
2998 found
= kzalloc(sizeof(*found
), GFP_NOFS
);
3002 for (i
= 0; i
< BTRFS_NR_RAID_TYPES
; i
++)
3003 INIT_LIST_HEAD(&found
->block_groups
[i
]);
3004 init_rwsem(&found
->groups_sem
);
3005 spin_lock_init(&found
->lock
);
3006 found
->flags
= flags
& (BTRFS_BLOCK_GROUP_DATA
|
3007 BTRFS_BLOCK_GROUP_SYSTEM
|
3008 BTRFS_BLOCK_GROUP_METADATA
);
3009 found
->total_bytes
= total_bytes
;
3010 found
->disk_total
= total_bytes
* factor
;
3011 found
->bytes_used
= bytes_used
;
3012 found
->disk_used
= bytes_used
* factor
;
3013 found
->bytes_pinned
= 0;
3014 found
->bytes_reserved
= 0;
3015 found
->bytes_readonly
= 0;
3016 found
->bytes_may_use
= 0;
3018 found
->force_alloc
= 0;
3019 *space_info
= found
;
3020 list_add_rcu(&found
->list
, &info
->space_info
);
3021 atomic_set(&found
->caching_threads
, 0);
3025 static void set_avail_alloc_bits(struct btrfs_fs_info
*fs_info
, u64 flags
)
3027 u64 extra_flags
= flags
& (BTRFS_BLOCK_GROUP_RAID0
|
3028 BTRFS_BLOCK_GROUP_RAID1
|
3029 BTRFS_BLOCK_GROUP_RAID10
|
3030 BTRFS_BLOCK_GROUP_DUP
);
3032 if (flags
& BTRFS_BLOCK_GROUP_DATA
)
3033 fs_info
->avail_data_alloc_bits
|= extra_flags
;
3034 if (flags
& BTRFS_BLOCK_GROUP_METADATA
)
3035 fs_info
->avail_metadata_alloc_bits
|= extra_flags
;
3036 if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
)
3037 fs_info
->avail_system_alloc_bits
|= extra_flags
;
3041 u64
btrfs_reduce_alloc_profile(struct btrfs_root
*root
, u64 flags
)
3044 * we add in the count of missing devices because we want
3045 * to make sure that any RAID levels on a degraded FS
3046 * continue to be honored.
3048 u64 num_devices
= root
->fs_info
->fs_devices
->rw_devices
+
3049 root
->fs_info
->fs_devices
->missing_devices
;
3051 if (num_devices
== 1)
3052 flags
&= ~(BTRFS_BLOCK_GROUP_RAID1
| BTRFS_BLOCK_GROUP_RAID0
);
3053 if (num_devices
< 4)
3054 flags
&= ~BTRFS_BLOCK_GROUP_RAID10
;
3056 if ((flags
& BTRFS_BLOCK_GROUP_DUP
) &&
3057 (flags
& (BTRFS_BLOCK_GROUP_RAID1
|
3058 BTRFS_BLOCK_GROUP_RAID10
))) {
3059 flags
&= ~BTRFS_BLOCK_GROUP_DUP
;
3062 if ((flags
& BTRFS_BLOCK_GROUP_RAID1
) &&
3063 (flags
& BTRFS_BLOCK_GROUP_RAID10
)) {
3064 flags
&= ~BTRFS_BLOCK_GROUP_RAID1
;
3067 if ((flags
& BTRFS_BLOCK_GROUP_RAID0
) &&
3068 ((flags
& BTRFS_BLOCK_GROUP_RAID1
) |
3069 (flags
& BTRFS_BLOCK_GROUP_RAID10
) |
3070 (flags
& BTRFS_BLOCK_GROUP_DUP
)))
3071 flags
&= ~BTRFS_BLOCK_GROUP_RAID0
;
3075 static u64
get_alloc_profile(struct btrfs_root
*root
, u64 flags
)
3077 if (flags
& BTRFS_BLOCK_GROUP_DATA
)
3078 flags
|= root
->fs_info
->avail_data_alloc_bits
&
3079 root
->fs_info
->data_alloc_profile
;
3080 else if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
)
3081 flags
|= root
->fs_info
->avail_system_alloc_bits
&
3082 root
->fs_info
->system_alloc_profile
;
3083 else if (flags
& BTRFS_BLOCK_GROUP_METADATA
)
3084 flags
|= root
->fs_info
->avail_metadata_alloc_bits
&
3085 root
->fs_info
->metadata_alloc_profile
;
3086 return btrfs_reduce_alloc_profile(root
, flags
);
3089 u64
btrfs_get_alloc_profile(struct btrfs_root
*root
, int data
)
3094 flags
= BTRFS_BLOCK_GROUP_DATA
;
3095 else if (root
== root
->fs_info
->chunk_root
)
3096 flags
= BTRFS_BLOCK_GROUP_SYSTEM
;
3098 flags
= BTRFS_BLOCK_GROUP_METADATA
;
3100 return get_alloc_profile(root
, flags
);
3103 void btrfs_set_inode_space_info(struct btrfs_root
*root
, struct inode
*inode
)
3105 BTRFS_I(inode
)->space_info
= __find_space_info(root
->fs_info
,
3106 BTRFS_BLOCK_GROUP_DATA
);
3110 * This will check the space that the inode allocates from to make sure we have
3111 * enough space for bytes.
3113 int btrfs_check_data_free_space(struct inode
*inode
, u64 bytes
)
3115 struct btrfs_space_info
*data_sinfo
;
3116 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3118 int ret
= 0, committed
= 0, alloc_chunk
= 1;
3120 /* make sure bytes are sectorsize aligned */
3121 bytes
= (bytes
+ root
->sectorsize
- 1) & ~((u64
)root
->sectorsize
- 1);
3123 if (root
== root
->fs_info
->tree_root
) {
3128 data_sinfo
= BTRFS_I(inode
)->space_info
;
3133 /* make sure we have enough space to handle the data first */
3134 spin_lock(&data_sinfo
->lock
);
3135 used
= data_sinfo
->bytes_used
+ data_sinfo
->bytes_reserved
+
3136 data_sinfo
->bytes_pinned
+ data_sinfo
->bytes_readonly
+
3137 data_sinfo
->bytes_may_use
;
3139 if (used
+ bytes
> data_sinfo
->total_bytes
) {
3140 struct btrfs_trans_handle
*trans
;
3143 * if we don't have enough free bytes in this space then we need
3144 * to alloc a new chunk.
3146 if (!data_sinfo
->full
&& alloc_chunk
) {
3149 data_sinfo
->force_alloc
= 1;
3150 spin_unlock(&data_sinfo
->lock
);
3152 alloc_target
= btrfs_get_alloc_profile(root
, 1);
3153 trans
= btrfs_join_transaction(root
, 1);
3155 return PTR_ERR(trans
);
3157 ret
= do_chunk_alloc(trans
, root
->fs_info
->extent_root
,
3158 bytes
+ 2 * 1024 * 1024,
3160 btrfs_end_transaction(trans
, root
);
3169 btrfs_set_inode_space_info(root
, inode
);
3170 data_sinfo
= BTRFS_I(inode
)->space_info
;
3174 spin_unlock(&data_sinfo
->lock
);
3176 /* commit the current transaction and try again */
3178 if (!committed
&& !root
->fs_info
->open_ioctl_trans
) {
3180 trans
= btrfs_join_transaction(root
, 1);
3182 return PTR_ERR(trans
);
3183 ret
= btrfs_commit_transaction(trans
, root
);
3189 #if 0 /* I hope we never need this code again, just in case */
3190 printk(KERN_ERR
"no space left, need %llu, %llu bytes_used, "
3191 "%llu bytes_reserved, " "%llu bytes_pinned, "
3192 "%llu bytes_readonly, %llu may use %llu total\n",
3193 (unsigned long long)bytes
,
3194 (unsigned long long)data_sinfo
->bytes_used
,
3195 (unsigned long long)data_sinfo
->bytes_reserved
,
3196 (unsigned long long)data_sinfo
->bytes_pinned
,
3197 (unsigned long long)data_sinfo
->bytes_readonly
,
3198 (unsigned long long)data_sinfo
->bytes_may_use
,
3199 (unsigned long long)data_sinfo
->total_bytes
);
3203 data_sinfo
->bytes_may_use
+= bytes
;
3204 BTRFS_I(inode
)->reserved_bytes
+= bytes
;
3205 spin_unlock(&data_sinfo
->lock
);
3211 * called when we are clearing an delalloc extent from the
3212 * inode's io_tree or there was an error for whatever reason
3213 * after calling btrfs_check_data_free_space
3215 void btrfs_free_reserved_data_space(struct inode
*inode
, u64 bytes
)
3217 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3218 struct btrfs_space_info
*data_sinfo
;
3220 /* make sure bytes are sectorsize aligned */
3221 bytes
= (bytes
+ root
->sectorsize
- 1) & ~((u64
)root
->sectorsize
- 1);
3223 data_sinfo
= BTRFS_I(inode
)->space_info
;
3224 spin_lock(&data_sinfo
->lock
);
3225 data_sinfo
->bytes_may_use
-= bytes
;
3226 BTRFS_I(inode
)->reserved_bytes
-= bytes
;
3227 spin_unlock(&data_sinfo
->lock
);
3230 static void force_metadata_allocation(struct btrfs_fs_info
*info
)
3232 struct list_head
*head
= &info
->space_info
;
3233 struct btrfs_space_info
*found
;
3236 list_for_each_entry_rcu(found
, head
, list
) {
3237 if (found
->flags
& BTRFS_BLOCK_GROUP_METADATA
)
3238 found
->force_alloc
= 1;
3243 static int should_alloc_chunk(struct btrfs_root
*root
,
3244 struct btrfs_space_info
*sinfo
, u64 alloc_bytes
)
3246 u64 num_bytes
= sinfo
->total_bytes
- sinfo
->bytes_readonly
;
3249 if (sinfo
->bytes_used
+ sinfo
->bytes_reserved
+
3250 alloc_bytes
+ 256 * 1024 * 1024 < num_bytes
)
3253 if (sinfo
->bytes_used
+ sinfo
->bytes_reserved
+
3254 alloc_bytes
< div_factor(num_bytes
, 8))
3257 thresh
= btrfs_super_total_bytes(&root
->fs_info
->super_copy
);
3258 thresh
= max_t(u64
, 256 * 1024 * 1024, div_factor_fine(thresh
, 5));
3260 if (num_bytes
> thresh
&& sinfo
->bytes_used
< div_factor(num_bytes
, 3))
3266 static int do_chunk_alloc(struct btrfs_trans_handle
*trans
,
3267 struct btrfs_root
*extent_root
, u64 alloc_bytes
,
3268 u64 flags
, int force
)
3270 struct btrfs_space_info
*space_info
;
3271 struct btrfs_fs_info
*fs_info
= extent_root
->fs_info
;
3274 mutex_lock(&fs_info
->chunk_mutex
);
3276 flags
= btrfs_reduce_alloc_profile(extent_root
, flags
);
3278 space_info
= __find_space_info(extent_root
->fs_info
, flags
);
3280 ret
= update_space_info(extent_root
->fs_info
, flags
,
3284 BUG_ON(!space_info
);
3286 spin_lock(&space_info
->lock
);
3287 if (space_info
->force_alloc
)
3289 if (space_info
->full
) {
3290 spin_unlock(&space_info
->lock
);
3294 if (!force
&& !should_alloc_chunk(extent_root
, space_info
,
3296 spin_unlock(&space_info
->lock
);
3299 spin_unlock(&space_info
->lock
);
3302 * If we have mixed data/metadata chunks we want to make sure we keep
3303 * allocating mixed chunks instead of individual chunks.
3305 if (btrfs_mixed_space_info(space_info
))
3306 flags
|= (BTRFS_BLOCK_GROUP_DATA
| BTRFS_BLOCK_GROUP_METADATA
);
3309 * if we're doing a data chunk, go ahead and make sure that
3310 * we keep a reasonable number of metadata chunks allocated in the
3313 if (flags
& BTRFS_BLOCK_GROUP_DATA
&& fs_info
->metadata_ratio
) {
3314 fs_info
->data_chunk_allocations
++;
3315 if (!(fs_info
->data_chunk_allocations
%
3316 fs_info
->metadata_ratio
))
3317 force_metadata_allocation(fs_info
);
3320 ret
= btrfs_alloc_chunk(trans
, extent_root
, flags
);
3321 spin_lock(&space_info
->lock
);
3323 space_info
->full
= 1;
3326 space_info
->force_alloc
= 0;
3327 spin_unlock(&space_info
->lock
);
3329 mutex_unlock(&extent_root
->fs_info
->chunk_mutex
);
3334 * shrink metadata reservation for delalloc
3336 static int shrink_delalloc(struct btrfs_trans_handle
*trans
,
3337 struct btrfs_root
*root
, u64 to_reclaim
, int sync
)
3339 struct btrfs_block_rsv
*block_rsv
;
3340 struct btrfs_space_info
*space_info
;
3345 int nr_pages
= (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT
;
3347 unsigned long progress
;
3349 block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
3350 space_info
= block_rsv
->space_info
;
3353 reserved
= space_info
->bytes_reserved
;
3354 progress
= space_info
->reservation_progress
;
3359 max_reclaim
= min(reserved
, to_reclaim
);
3361 while (loops
< 1024) {
3362 /* have the flusher threads jump in and do some IO */
3364 nr_pages
= min_t(unsigned long, nr_pages
,
3365 root
->fs_info
->delalloc_bytes
>> PAGE_CACHE_SHIFT
);
3366 writeback_inodes_sb_nr_if_idle(root
->fs_info
->sb
, nr_pages
);
3368 spin_lock(&space_info
->lock
);
3369 if (reserved
> space_info
->bytes_reserved
)
3370 reclaimed
+= reserved
- space_info
->bytes_reserved
;
3371 reserved
= space_info
->bytes_reserved
;
3372 spin_unlock(&space_info
->lock
);
3376 if (reserved
== 0 || reclaimed
>= max_reclaim
)
3379 if (trans
&& trans
->transaction
->blocked
)
3382 time_left
= schedule_timeout_interruptible(1);
3384 /* We were interrupted, exit */
3388 /* we've kicked the IO a few times, if anything has been freed,
3389 * exit. There is no sense in looping here for a long time
3390 * when we really need to commit the transaction, or there are
3391 * just too many writers without enough free space
3396 if (progress
!= space_info
->reservation_progress
)
3401 return reclaimed
>= to_reclaim
;
3405 * Retries tells us how many times we've called reserve_metadata_bytes. The
3406 * idea is if this is the first call (retries == 0) then we will add to our
3407 * reserved count if we can't make the allocation in order to hold our place
3408 * while we go and try and free up space. That way for retries > 1 we don't try
3409 * and add space, we just check to see if the amount of unused space is >= the
3410 * total space, meaning that our reservation is valid.
3412 * However if we don't intend to retry this reservation, pass -1 as retries so
3413 * that it short circuits this logic.
3415 static int reserve_metadata_bytes(struct btrfs_trans_handle
*trans
,
3416 struct btrfs_root
*root
,
3417 struct btrfs_block_rsv
*block_rsv
,
3418 u64 orig_bytes
, int flush
)
3420 struct btrfs_space_info
*space_info
= block_rsv
->space_info
;
3422 u64 num_bytes
= orig_bytes
;
3425 bool reserved
= false;
3426 bool committed
= false;
3433 spin_lock(&space_info
->lock
);
3434 unused
= space_info
->bytes_used
+ space_info
->bytes_reserved
+
3435 space_info
->bytes_pinned
+ space_info
->bytes_readonly
+
3436 space_info
->bytes_may_use
;
3439 * The idea here is that we've not already over-reserved the block group
3440 * then we can go ahead and save our reservation first and then start
3441 * flushing if we need to. Otherwise if we've already overcommitted
3442 * lets start flushing stuff first and then come back and try to make
3445 if (unused
<= space_info
->total_bytes
) {
3446 unused
= space_info
->total_bytes
- unused
;
3447 if (unused
>= num_bytes
) {
3449 space_info
->bytes_reserved
+= orig_bytes
;
3453 * Ok set num_bytes to orig_bytes since we aren't
3454 * overocmmitted, this way we only try and reclaim what
3457 num_bytes
= orig_bytes
;
3461 * Ok we're over committed, set num_bytes to the overcommitted
3462 * amount plus the amount of bytes that we need for this
3465 num_bytes
= unused
- space_info
->total_bytes
+
3466 (orig_bytes
* (retries
+ 1));
3470 * Couldn't make our reservation, save our place so while we're trying
3471 * to reclaim space we can actually use it instead of somebody else
3472 * stealing it from us.
3474 if (ret
&& !reserved
) {
3475 space_info
->bytes_reserved
+= orig_bytes
;
3479 spin_unlock(&space_info
->lock
);
3488 * We do synchronous shrinking since we don't actually unreserve
3489 * metadata until after the IO is completed.
3491 ret
= shrink_delalloc(trans
, root
, num_bytes
, 1);
3498 * So if we were overcommitted it's possible that somebody else flushed
3499 * out enough space and we simply didn't have enough space to reclaim,
3500 * so go back around and try again.
3507 spin_lock(&space_info
->lock
);
3509 * Not enough space to be reclaimed, don't bother committing the
3512 if (space_info
->bytes_pinned
< orig_bytes
)
3514 spin_unlock(&space_info
->lock
);
3519 if (trans
|| committed
)
3523 trans
= btrfs_join_transaction(root
, 1);
3526 ret
= btrfs_commit_transaction(trans
, root
);
3535 spin_lock(&space_info
->lock
);
3536 space_info
->bytes_reserved
-= orig_bytes
;
3537 spin_unlock(&space_info
->lock
);
3543 static struct btrfs_block_rsv
*get_block_rsv(struct btrfs_trans_handle
*trans
,
3544 struct btrfs_root
*root
)
3546 struct btrfs_block_rsv
*block_rsv
;
3548 block_rsv
= trans
->block_rsv
;
3550 block_rsv
= root
->block_rsv
;
3553 block_rsv
= &root
->fs_info
->empty_block_rsv
;
3558 static int block_rsv_use_bytes(struct btrfs_block_rsv
*block_rsv
,
3562 spin_lock(&block_rsv
->lock
);
3563 if (block_rsv
->reserved
>= num_bytes
) {
3564 block_rsv
->reserved
-= num_bytes
;
3565 if (block_rsv
->reserved
< block_rsv
->size
)
3566 block_rsv
->full
= 0;
3569 spin_unlock(&block_rsv
->lock
);
3573 static void block_rsv_add_bytes(struct btrfs_block_rsv
*block_rsv
,
3574 u64 num_bytes
, int update_size
)
3576 spin_lock(&block_rsv
->lock
);
3577 block_rsv
->reserved
+= num_bytes
;
3579 block_rsv
->size
+= num_bytes
;
3580 else if (block_rsv
->reserved
>= block_rsv
->size
)
3581 block_rsv
->full
= 1;
3582 spin_unlock(&block_rsv
->lock
);
3585 void block_rsv_release_bytes(struct btrfs_block_rsv
*block_rsv
,
3586 struct btrfs_block_rsv
*dest
, u64 num_bytes
)
3588 struct btrfs_space_info
*space_info
= block_rsv
->space_info
;
3590 spin_lock(&block_rsv
->lock
);
3591 if (num_bytes
== (u64
)-1)
3592 num_bytes
= block_rsv
->size
;
3593 block_rsv
->size
-= num_bytes
;
3594 if (block_rsv
->reserved
>= block_rsv
->size
) {
3595 num_bytes
= block_rsv
->reserved
- block_rsv
->size
;
3596 block_rsv
->reserved
= block_rsv
->size
;
3597 block_rsv
->full
= 1;
3601 spin_unlock(&block_rsv
->lock
);
3603 if (num_bytes
> 0) {
3605 spin_lock(&dest
->lock
);
3609 bytes_to_add
= dest
->size
- dest
->reserved
;
3610 bytes_to_add
= min(num_bytes
, bytes_to_add
);
3611 dest
->reserved
+= bytes_to_add
;
3612 if (dest
->reserved
>= dest
->size
)
3614 num_bytes
-= bytes_to_add
;
3616 spin_unlock(&dest
->lock
);
3619 spin_lock(&space_info
->lock
);
3620 space_info
->bytes_reserved
-= num_bytes
;
3621 space_info
->reservation_progress
++;
3622 spin_unlock(&space_info
->lock
);
3627 static int block_rsv_migrate_bytes(struct btrfs_block_rsv
*src
,
3628 struct btrfs_block_rsv
*dst
, u64 num_bytes
)
3632 ret
= block_rsv_use_bytes(src
, num_bytes
);
3636 block_rsv_add_bytes(dst
, num_bytes
, 1);
3640 void btrfs_init_block_rsv(struct btrfs_block_rsv
*rsv
)
3642 memset(rsv
, 0, sizeof(*rsv
));
3643 spin_lock_init(&rsv
->lock
);
3644 atomic_set(&rsv
->usage
, 1);
3646 INIT_LIST_HEAD(&rsv
->list
);
3649 struct btrfs_block_rsv
*btrfs_alloc_block_rsv(struct btrfs_root
*root
)
3651 struct btrfs_block_rsv
*block_rsv
;
3652 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3654 block_rsv
= kmalloc(sizeof(*block_rsv
), GFP_NOFS
);
3658 btrfs_init_block_rsv(block_rsv
);
3659 block_rsv
->space_info
= __find_space_info(fs_info
,
3660 BTRFS_BLOCK_GROUP_METADATA
);
3664 void btrfs_free_block_rsv(struct btrfs_root
*root
,
3665 struct btrfs_block_rsv
*rsv
)
3667 if (rsv
&& atomic_dec_and_test(&rsv
->usage
)) {
3668 btrfs_block_rsv_release(root
, rsv
, (u64
)-1);
3675 * make the block_rsv struct be able to capture freed space.
3676 * the captured space will re-add to the the block_rsv struct
3677 * after transaction commit
3679 void btrfs_add_durable_block_rsv(struct btrfs_fs_info
*fs_info
,
3680 struct btrfs_block_rsv
*block_rsv
)
3682 block_rsv
->durable
= 1;
3683 mutex_lock(&fs_info
->durable_block_rsv_mutex
);
3684 list_add_tail(&block_rsv
->list
, &fs_info
->durable_block_rsv_list
);
3685 mutex_unlock(&fs_info
->durable_block_rsv_mutex
);
3688 int btrfs_block_rsv_add(struct btrfs_trans_handle
*trans
,
3689 struct btrfs_root
*root
,
3690 struct btrfs_block_rsv
*block_rsv
,
3698 ret
= reserve_metadata_bytes(trans
, root
, block_rsv
, num_bytes
, 1);
3700 block_rsv_add_bytes(block_rsv
, num_bytes
, 1);
3707 int btrfs_block_rsv_check(struct btrfs_trans_handle
*trans
,
3708 struct btrfs_root
*root
,
3709 struct btrfs_block_rsv
*block_rsv
,
3710 u64 min_reserved
, int min_factor
)
3713 int commit_trans
= 0;
3719 spin_lock(&block_rsv
->lock
);
3721 num_bytes
= div_factor(block_rsv
->size
, min_factor
);
3722 if (min_reserved
> num_bytes
)
3723 num_bytes
= min_reserved
;
3725 if (block_rsv
->reserved
>= num_bytes
) {
3728 num_bytes
-= block_rsv
->reserved
;
3729 if (block_rsv
->durable
&&
3730 block_rsv
->freed
[0] + block_rsv
->freed
[1] >= num_bytes
)
3733 spin_unlock(&block_rsv
->lock
);
3737 if (block_rsv
->refill_used
) {
3738 ret
= reserve_metadata_bytes(trans
, root
, block_rsv
,
3741 block_rsv_add_bytes(block_rsv
, num_bytes
, 0);
3750 trans
= btrfs_join_transaction(root
, 1);
3751 BUG_ON(IS_ERR(trans
));
3752 ret
= btrfs_commit_transaction(trans
, root
);
3759 int btrfs_block_rsv_migrate(struct btrfs_block_rsv
*src_rsv
,
3760 struct btrfs_block_rsv
*dst_rsv
,
3763 return block_rsv_migrate_bytes(src_rsv
, dst_rsv
, num_bytes
);
3766 void btrfs_block_rsv_release(struct btrfs_root
*root
,
3767 struct btrfs_block_rsv
*block_rsv
,
3770 struct btrfs_block_rsv
*global_rsv
= &root
->fs_info
->global_block_rsv
;
3771 if (global_rsv
->full
|| global_rsv
== block_rsv
||
3772 block_rsv
->space_info
!= global_rsv
->space_info
)
3774 block_rsv_release_bytes(block_rsv
, global_rsv
, num_bytes
);
3778 * helper to calculate size of global block reservation.
3779 * the desired value is sum of space used by extent tree,
3780 * checksum tree and root tree
3782 static u64
calc_global_metadata_size(struct btrfs_fs_info
*fs_info
)
3784 struct btrfs_space_info
*sinfo
;
3788 int csum_size
= btrfs_super_csum_size(&fs_info
->super_copy
);
3791 * per tree used space accounting can be inaccuracy, so we
3794 spin_lock(&fs_info
->extent_root
->accounting_lock
);
3795 num_bytes
= btrfs_root_used(&fs_info
->extent_root
->root_item
);
3796 spin_unlock(&fs_info
->extent_root
->accounting_lock
);
3798 spin_lock(&fs_info
->csum_root
->accounting_lock
);
3799 num_bytes
+= btrfs_root_used(&fs_info
->csum_root
->root_item
);
3800 spin_unlock(&fs_info
->csum_root
->accounting_lock
);
3802 spin_lock(&fs_info
->tree_root
->accounting_lock
);
3803 num_bytes
+= btrfs_root_used(&fs_info
->tree_root
->root_item
);
3804 spin_unlock(&fs_info
->tree_root
->accounting_lock
);
3806 sinfo
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_DATA
);
3807 spin_lock(&sinfo
->lock
);
3808 data_used
= sinfo
->bytes_used
;
3809 spin_unlock(&sinfo
->lock
);
3811 sinfo
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_METADATA
);
3812 spin_lock(&sinfo
->lock
);
3813 if (sinfo
->flags
& BTRFS_BLOCK_GROUP_DATA
)
3815 meta_used
= sinfo
->bytes_used
;
3816 spin_unlock(&sinfo
->lock
);
3818 num_bytes
= (data_used
>> fs_info
->sb
->s_blocksize_bits
) *
3820 num_bytes
+= div64_u64(data_used
+ meta_used
, 50);
3822 if (num_bytes
* 3 > meta_used
)
3823 num_bytes
= div64_u64(meta_used
, 3);
3825 return ALIGN(num_bytes
, fs_info
->extent_root
->leafsize
<< 10);
3828 static void update_global_block_rsv(struct btrfs_fs_info
*fs_info
)
3830 struct btrfs_block_rsv
*block_rsv
= &fs_info
->global_block_rsv
;
3831 struct btrfs_space_info
*sinfo
= block_rsv
->space_info
;
3834 num_bytes
= calc_global_metadata_size(fs_info
);
3836 spin_lock(&block_rsv
->lock
);
3837 spin_lock(&sinfo
->lock
);
3839 block_rsv
->size
= num_bytes
;
3841 num_bytes
= sinfo
->bytes_used
+ sinfo
->bytes_pinned
+
3842 sinfo
->bytes_reserved
+ sinfo
->bytes_readonly
+
3843 sinfo
->bytes_may_use
;
3845 if (sinfo
->total_bytes
> num_bytes
) {
3846 num_bytes
= sinfo
->total_bytes
- num_bytes
;
3847 block_rsv
->reserved
+= num_bytes
;
3848 sinfo
->bytes_reserved
+= num_bytes
;
3851 if (block_rsv
->reserved
>= block_rsv
->size
) {
3852 num_bytes
= block_rsv
->reserved
- block_rsv
->size
;
3853 sinfo
->bytes_reserved
-= num_bytes
;
3854 sinfo
->reservation_progress
++;
3855 block_rsv
->reserved
= block_rsv
->size
;
3856 block_rsv
->full
= 1;
3859 printk(KERN_INFO
"global block rsv size %llu reserved %llu\n",
3860 block_rsv
->size
, block_rsv
->reserved
);
3862 spin_unlock(&sinfo
->lock
);
3863 spin_unlock(&block_rsv
->lock
);
3866 static void init_global_block_rsv(struct btrfs_fs_info
*fs_info
)
3868 struct btrfs_space_info
*space_info
;
3870 space_info
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_SYSTEM
);
3871 fs_info
->chunk_block_rsv
.space_info
= space_info
;
3872 fs_info
->chunk_block_rsv
.priority
= 10;
3874 space_info
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_METADATA
);
3875 fs_info
->global_block_rsv
.space_info
= space_info
;
3876 fs_info
->global_block_rsv
.priority
= 10;
3877 fs_info
->global_block_rsv
.refill_used
= 1;
3878 fs_info
->delalloc_block_rsv
.space_info
= space_info
;
3879 fs_info
->trans_block_rsv
.space_info
= space_info
;
3880 fs_info
->empty_block_rsv
.space_info
= space_info
;
3881 fs_info
->empty_block_rsv
.priority
= 10;
3883 fs_info
->extent_root
->block_rsv
= &fs_info
->global_block_rsv
;
3884 fs_info
->csum_root
->block_rsv
= &fs_info
->global_block_rsv
;
3885 fs_info
->dev_root
->block_rsv
= &fs_info
->global_block_rsv
;
3886 fs_info
->tree_root
->block_rsv
= &fs_info
->global_block_rsv
;
3887 fs_info
->chunk_root
->block_rsv
= &fs_info
->chunk_block_rsv
;
3889 btrfs_add_durable_block_rsv(fs_info
, &fs_info
->global_block_rsv
);
3891 btrfs_add_durable_block_rsv(fs_info
, &fs_info
->delalloc_block_rsv
);
3893 update_global_block_rsv(fs_info
);
3896 static void release_global_block_rsv(struct btrfs_fs_info
*fs_info
)
3898 block_rsv_release_bytes(&fs_info
->global_block_rsv
, NULL
, (u64
)-1);
3899 WARN_ON(fs_info
->delalloc_block_rsv
.size
> 0);
3900 WARN_ON(fs_info
->delalloc_block_rsv
.reserved
> 0);
3901 WARN_ON(fs_info
->trans_block_rsv
.size
> 0);
3902 WARN_ON(fs_info
->trans_block_rsv
.reserved
> 0);
3903 WARN_ON(fs_info
->chunk_block_rsv
.size
> 0);
3904 WARN_ON(fs_info
->chunk_block_rsv
.reserved
> 0);
3907 static u64
calc_trans_metadata_size(struct btrfs_root
*root
, int num_items
)
3909 return (root
->leafsize
+ root
->nodesize
* (BTRFS_MAX_LEVEL
- 1)) *
3913 int btrfs_trans_reserve_metadata(struct btrfs_trans_handle
*trans
,
3914 struct btrfs_root
*root
,
3920 if (num_items
== 0 || root
->fs_info
->chunk_root
== root
)
3923 num_bytes
= calc_trans_metadata_size(root
, num_items
);
3924 ret
= btrfs_block_rsv_add(trans
, root
, &root
->fs_info
->trans_block_rsv
,
3927 trans
->bytes_reserved
+= num_bytes
;
3928 trans
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
3933 void btrfs_trans_release_metadata(struct btrfs_trans_handle
*trans
,
3934 struct btrfs_root
*root
)
3936 if (!trans
->bytes_reserved
)
3939 BUG_ON(trans
->block_rsv
!= &root
->fs_info
->trans_block_rsv
);
3940 btrfs_block_rsv_release(root
, trans
->block_rsv
,
3941 trans
->bytes_reserved
);
3942 trans
->bytes_reserved
= 0;
3945 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle
*trans
,
3946 struct inode
*inode
)
3948 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3949 struct btrfs_block_rsv
*src_rsv
= get_block_rsv(trans
, root
);
3950 struct btrfs_block_rsv
*dst_rsv
= root
->orphan_block_rsv
;
3953 * one for deleting orphan item, one for updating inode and
3954 * two for calling btrfs_truncate_inode_items.
3956 * btrfs_truncate_inode_items is a delete operation, it frees
3957 * more space than it uses in most cases. So two units of
3958 * metadata space should be enough for calling it many times.
3959 * If all of the metadata space is used, we can commit
3960 * transaction and use space it freed.
3962 u64 num_bytes
= calc_trans_metadata_size(root
, 4);
3963 return block_rsv_migrate_bytes(src_rsv
, dst_rsv
, num_bytes
);
3966 void btrfs_orphan_release_metadata(struct inode
*inode
)
3968 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3969 u64 num_bytes
= calc_trans_metadata_size(root
, 4);
3970 btrfs_block_rsv_release(root
, root
->orphan_block_rsv
, num_bytes
);
3973 int btrfs_snap_reserve_metadata(struct btrfs_trans_handle
*trans
,
3974 struct btrfs_pending_snapshot
*pending
)
3976 struct btrfs_root
*root
= pending
->root
;
3977 struct btrfs_block_rsv
*src_rsv
= get_block_rsv(trans
, root
);
3978 struct btrfs_block_rsv
*dst_rsv
= &pending
->block_rsv
;
3980 * two for root back/forward refs, two for directory entries
3981 * and one for root of the snapshot.
3983 u64 num_bytes
= calc_trans_metadata_size(root
, 5);
3984 dst_rsv
->space_info
= src_rsv
->space_info
;
3985 return block_rsv_migrate_bytes(src_rsv
, dst_rsv
, num_bytes
);
3988 static u64
calc_csum_metadata_size(struct inode
*inode
, u64 num_bytes
)
3990 return num_bytes
>>= 3;
3993 int btrfs_delalloc_reserve_metadata(struct inode
*inode
, u64 num_bytes
)
3995 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3996 struct btrfs_block_rsv
*block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
4001 if (btrfs_transaction_in_commit(root
->fs_info
))
4002 schedule_timeout(1);
4004 num_bytes
= ALIGN(num_bytes
, root
->sectorsize
);
4006 spin_lock(&BTRFS_I(inode
)->accounting_lock
);
4007 nr_extents
= atomic_read(&BTRFS_I(inode
)->outstanding_extents
) + 1;
4008 if (nr_extents
> BTRFS_I(inode
)->reserved_extents
) {
4009 nr_extents
-= BTRFS_I(inode
)->reserved_extents
;
4010 to_reserve
= calc_trans_metadata_size(root
, nr_extents
);
4015 spin_unlock(&BTRFS_I(inode
)->accounting_lock
);
4016 to_reserve
+= calc_csum_metadata_size(inode
, num_bytes
);
4017 ret
= reserve_metadata_bytes(NULL
, root
, block_rsv
, to_reserve
, 1);
4021 spin_lock(&BTRFS_I(inode
)->accounting_lock
);
4022 BTRFS_I(inode
)->reserved_extents
+= nr_extents
;
4023 atomic_inc(&BTRFS_I(inode
)->outstanding_extents
);
4024 spin_unlock(&BTRFS_I(inode
)->accounting_lock
);
4026 block_rsv_add_bytes(block_rsv
, to_reserve
, 1);
4028 if (block_rsv
->size
> 512 * 1024 * 1024)
4029 shrink_delalloc(NULL
, root
, to_reserve
, 0);
4034 void btrfs_delalloc_release_metadata(struct inode
*inode
, u64 num_bytes
)
4036 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4040 num_bytes
= ALIGN(num_bytes
, root
->sectorsize
);
4041 atomic_dec(&BTRFS_I(inode
)->outstanding_extents
);
4042 WARN_ON(atomic_read(&BTRFS_I(inode
)->outstanding_extents
) < 0);
4044 spin_lock(&BTRFS_I(inode
)->accounting_lock
);
4045 nr_extents
= atomic_read(&BTRFS_I(inode
)->outstanding_extents
);
4046 if (nr_extents
< BTRFS_I(inode
)->reserved_extents
) {
4047 nr_extents
= BTRFS_I(inode
)->reserved_extents
- nr_extents
;
4048 BTRFS_I(inode
)->reserved_extents
-= nr_extents
;
4052 spin_unlock(&BTRFS_I(inode
)->accounting_lock
);
4054 to_free
= calc_csum_metadata_size(inode
, num_bytes
);
4056 to_free
+= calc_trans_metadata_size(root
, nr_extents
);
4058 btrfs_block_rsv_release(root
, &root
->fs_info
->delalloc_block_rsv
,
4062 int btrfs_delalloc_reserve_space(struct inode
*inode
, u64 num_bytes
)
4066 ret
= btrfs_check_data_free_space(inode
, num_bytes
);
4070 ret
= btrfs_delalloc_reserve_metadata(inode
, num_bytes
);
4072 btrfs_free_reserved_data_space(inode
, num_bytes
);
4079 void btrfs_delalloc_release_space(struct inode
*inode
, u64 num_bytes
)
4081 btrfs_delalloc_release_metadata(inode
, num_bytes
);
4082 btrfs_free_reserved_data_space(inode
, num_bytes
);
4085 static int update_block_group(struct btrfs_trans_handle
*trans
,
4086 struct btrfs_root
*root
,
4087 u64 bytenr
, u64 num_bytes
, int alloc
)
4089 struct btrfs_block_group_cache
*cache
= NULL
;
4090 struct btrfs_fs_info
*info
= root
->fs_info
;
4091 u64 total
= num_bytes
;
4096 /* block accounting for super block */
4097 spin_lock(&info
->delalloc_lock
);
4098 old_val
= btrfs_super_bytes_used(&info
->super_copy
);
4100 old_val
+= num_bytes
;
4102 old_val
-= num_bytes
;
4103 btrfs_set_super_bytes_used(&info
->super_copy
, old_val
);
4104 spin_unlock(&info
->delalloc_lock
);
4107 cache
= btrfs_lookup_block_group(info
, bytenr
);
4110 if (cache
->flags
& (BTRFS_BLOCK_GROUP_DUP
|
4111 BTRFS_BLOCK_GROUP_RAID1
|
4112 BTRFS_BLOCK_GROUP_RAID10
))
4117 * If this block group has free space cache written out, we
4118 * need to make sure to load it if we are removing space. This
4119 * is because we need the unpinning stage to actually add the
4120 * space back to the block group, otherwise we will leak space.
4122 if (!alloc
&& cache
->cached
== BTRFS_CACHE_NO
)
4123 cache_block_group(cache
, trans
, NULL
, 1);
4125 byte_in_group
= bytenr
- cache
->key
.objectid
;
4126 WARN_ON(byte_in_group
> cache
->key
.offset
);
4128 spin_lock(&cache
->space_info
->lock
);
4129 spin_lock(&cache
->lock
);
4131 if (btrfs_super_cache_generation(&info
->super_copy
) != 0 &&
4132 cache
->disk_cache_state
< BTRFS_DC_CLEAR
)
4133 cache
->disk_cache_state
= BTRFS_DC_CLEAR
;
4136 old_val
= btrfs_block_group_used(&cache
->item
);
4137 num_bytes
= min(total
, cache
->key
.offset
- byte_in_group
);
4139 old_val
+= num_bytes
;
4140 btrfs_set_block_group_used(&cache
->item
, old_val
);
4141 cache
->reserved
-= num_bytes
;
4142 cache
->space_info
->bytes_reserved
-= num_bytes
;
4143 cache
->space_info
->reservation_progress
++;
4144 cache
->space_info
->bytes_used
+= num_bytes
;
4145 cache
->space_info
->disk_used
+= num_bytes
* factor
;
4146 spin_unlock(&cache
->lock
);
4147 spin_unlock(&cache
->space_info
->lock
);
4149 old_val
-= num_bytes
;
4150 btrfs_set_block_group_used(&cache
->item
, old_val
);
4151 cache
->pinned
+= num_bytes
;
4152 cache
->space_info
->bytes_pinned
+= num_bytes
;
4153 cache
->space_info
->bytes_used
-= num_bytes
;
4154 cache
->space_info
->disk_used
-= num_bytes
* factor
;
4155 spin_unlock(&cache
->lock
);
4156 spin_unlock(&cache
->space_info
->lock
);
4158 set_extent_dirty(info
->pinned_extents
,
4159 bytenr
, bytenr
+ num_bytes
- 1,
4160 GFP_NOFS
| __GFP_NOFAIL
);
4162 btrfs_put_block_group(cache
);
4164 bytenr
+= num_bytes
;
4169 static u64
first_logical_byte(struct btrfs_root
*root
, u64 search_start
)
4171 struct btrfs_block_group_cache
*cache
;
4174 cache
= btrfs_lookup_first_block_group(root
->fs_info
, search_start
);
4178 bytenr
= cache
->key
.objectid
;
4179 btrfs_put_block_group(cache
);
4184 static int pin_down_extent(struct btrfs_root
*root
,
4185 struct btrfs_block_group_cache
*cache
,
4186 u64 bytenr
, u64 num_bytes
, int reserved
)
4188 spin_lock(&cache
->space_info
->lock
);
4189 spin_lock(&cache
->lock
);
4190 cache
->pinned
+= num_bytes
;
4191 cache
->space_info
->bytes_pinned
+= num_bytes
;
4193 cache
->reserved
-= num_bytes
;
4194 cache
->space_info
->bytes_reserved
-= num_bytes
;
4195 cache
->space_info
->reservation_progress
++;
4197 spin_unlock(&cache
->lock
);
4198 spin_unlock(&cache
->space_info
->lock
);
4200 set_extent_dirty(root
->fs_info
->pinned_extents
, bytenr
,
4201 bytenr
+ num_bytes
- 1, GFP_NOFS
| __GFP_NOFAIL
);
4206 * this function must be called within transaction
4208 int btrfs_pin_extent(struct btrfs_root
*root
,
4209 u64 bytenr
, u64 num_bytes
, int reserved
)
4211 struct btrfs_block_group_cache
*cache
;
4213 cache
= btrfs_lookup_block_group(root
->fs_info
, bytenr
);
4216 pin_down_extent(root
, cache
, bytenr
, num_bytes
, reserved
);
4218 btrfs_put_block_group(cache
);
4223 * update size of reserved extents. this function may return -EAGAIN
4224 * if 'reserve' is true or 'sinfo' is false.
4226 static int update_reserved_bytes(struct btrfs_block_group_cache
*cache
,
4227 u64 num_bytes
, int reserve
, int sinfo
)
4231 struct btrfs_space_info
*space_info
= cache
->space_info
;
4232 spin_lock(&space_info
->lock
);
4233 spin_lock(&cache
->lock
);
4238 cache
->reserved
+= num_bytes
;
4239 space_info
->bytes_reserved
+= num_bytes
;
4243 space_info
->bytes_readonly
+= num_bytes
;
4244 cache
->reserved
-= num_bytes
;
4245 space_info
->bytes_reserved
-= num_bytes
;
4246 space_info
->reservation_progress
++;
4248 spin_unlock(&cache
->lock
);
4249 spin_unlock(&space_info
->lock
);
4251 spin_lock(&cache
->lock
);
4256 cache
->reserved
+= num_bytes
;
4258 cache
->reserved
-= num_bytes
;
4260 spin_unlock(&cache
->lock
);
4265 int btrfs_prepare_extent_commit(struct btrfs_trans_handle
*trans
,
4266 struct btrfs_root
*root
)
4268 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4269 struct btrfs_caching_control
*next
;
4270 struct btrfs_caching_control
*caching_ctl
;
4271 struct btrfs_block_group_cache
*cache
;
4273 down_write(&fs_info
->extent_commit_sem
);
4275 list_for_each_entry_safe(caching_ctl
, next
,
4276 &fs_info
->caching_block_groups
, list
) {
4277 cache
= caching_ctl
->block_group
;
4278 if (block_group_cache_done(cache
)) {
4279 cache
->last_byte_to_unpin
= (u64
)-1;
4280 list_del_init(&caching_ctl
->list
);
4281 put_caching_control(caching_ctl
);
4283 cache
->last_byte_to_unpin
= caching_ctl
->progress
;
4287 if (fs_info
->pinned_extents
== &fs_info
->freed_extents
[0])
4288 fs_info
->pinned_extents
= &fs_info
->freed_extents
[1];
4290 fs_info
->pinned_extents
= &fs_info
->freed_extents
[0];
4292 up_write(&fs_info
->extent_commit_sem
);
4294 update_global_block_rsv(fs_info
);
4298 static int unpin_extent_range(struct btrfs_root
*root
, u64 start
, u64 end
)
4300 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4301 struct btrfs_block_group_cache
*cache
= NULL
;
4304 while (start
<= end
) {
4306 start
>= cache
->key
.objectid
+ cache
->key
.offset
) {
4308 btrfs_put_block_group(cache
);
4309 cache
= btrfs_lookup_block_group(fs_info
, start
);
4313 len
= cache
->key
.objectid
+ cache
->key
.offset
- start
;
4314 len
= min(len
, end
+ 1 - start
);
4316 if (start
< cache
->last_byte_to_unpin
) {
4317 len
= min(len
, cache
->last_byte_to_unpin
- start
);
4318 btrfs_add_free_space(cache
, start
, len
);
4323 spin_lock(&cache
->space_info
->lock
);
4324 spin_lock(&cache
->lock
);
4325 cache
->pinned
-= len
;
4326 cache
->space_info
->bytes_pinned
-= len
;
4328 cache
->space_info
->bytes_readonly
+= len
;
4329 } else if (cache
->reserved_pinned
> 0) {
4330 len
= min(len
, cache
->reserved_pinned
);
4331 cache
->reserved_pinned
-= len
;
4332 cache
->space_info
->bytes_reserved
+= len
;
4334 spin_unlock(&cache
->lock
);
4335 spin_unlock(&cache
->space_info
->lock
);
4339 btrfs_put_block_group(cache
);
4343 int btrfs_finish_extent_commit(struct btrfs_trans_handle
*trans
,
4344 struct btrfs_root
*root
)
4346 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4347 struct extent_io_tree
*unpin
;
4348 struct btrfs_block_rsv
*block_rsv
;
4349 struct btrfs_block_rsv
*next_rsv
;
4355 if (fs_info
->pinned_extents
== &fs_info
->freed_extents
[0])
4356 unpin
= &fs_info
->freed_extents
[1];
4358 unpin
= &fs_info
->freed_extents
[0];
4361 ret
= find_first_extent_bit(unpin
, 0, &start
, &end
,
4366 ret
= btrfs_discard_extent(root
, start
, end
+ 1 - start
);
4368 clear_extent_dirty(unpin
, start
, end
, GFP_NOFS
);
4369 unpin_extent_range(root
, start
, end
);
4373 mutex_lock(&fs_info
->durable_block_rsv_mutex
);
4374 list_for_each_entry_safe(block_rsv
, next_rsv
,
4375 &fs_info
->durable_block_rsv_list
, list
) {
4377 idx
= trans
->transid
& 0x1;
4378 if (block_rsv
->freed
[idx
] > 0) {
4379 block_rsv_add_bytes(block_rsv
,
4380 block_rsv
->freed
[idx
], 0);
4381 block_rsv
->freed
[idx
] = 0;
4383 if (atomic_read(&block_rsv
->usage
) == 0) {
4384 btrfs_block_rsv_release(root
, block_rsv
, (u64
)-1);
4386 if (block_rsv
->freed
[0] == 0 &&
4387 block_rsv
->freed
[1] == 0) {
4388 list_del_init(&block_rsv
->list
);
4392 btrfs_block_rsv_release(root
, block_rsv
, 0);
4395 mutex_unlock(&fs_info
->durable_block_rsv_mutex
);
4400 static int __btrfs_free_extent(struct btrfs_trans_handle
*trans
,
4401 struct btrfs_root
*root
,
4402 u64 bytenr
, u64 num_bytes
, u64 parent
,
4403 u64 root_objectid
, u64 owner_objectid
,
4404 u64 owner_offset
, int refs_to_drop
,
4405 struct btrfs_delayed_extent_op
*extent_op
)
4407 struct btrfs_key key
;
4408 struct btrfs_path
*path
;
4409 struct btrfs_fs_info
*info
= root
->fs_info
;
4410 struct btrfs_root
*extent_root
= info
->extent_root
;
4411 struct extent_buffer
*leaf
;
4412 struct btrfs_extent_item
*ei
;
4413 struct btrfs_extent_inline_ref
*iref
;
4416 int extent_slot
= 0;
4417 int found_extent
= 0;
4422 path
= btrfs_alloc_path();
4427 path
->leave_spinning
= 1;
4429 is_data
= owner_objectid
>= BTRFS_FIRST_FREE_OBJECTID
;
4430 BUG_ON(!is_data
&& refs_to_drop
!= 1);
4432 ret
= lookup_extent_backref(trans
, extent_root
, path
, &iref
,
4433 bytenr
, num_bytes
, parent
,
4434 root_objectid
, owner_objectid
,
4437 extent_slot
= path
->slots
[0];
4438 while (extent_slot
>= 0) {
4439 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
4441 if (key
.objectid
!= bytenr
)
4443 if (key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
4444 key
.offset
== num_bytes
) {
4448 if (path
->slots
[0] - extent_slot
> 5)
4452 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4453 item_size
= btrfs_item_size_nr(path
->nodes
[0], extent_slot
);
4454 if (found_extent
&& item_size
< sizeof(*ei
))
4457 if (!found_extent
) {
4459 ret
= remove_extent_backref(trans
, extent_root
, path
,
4463 btrfs_release_path(extent_root
, path
);
4464 path
->leave_spinning
= 1;
4466 key
.objectid
= bytenr
;
4467 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
4468 key
.offset
= num_bytes
;
4470 ret
= btrfs_search_slot(trans
, extent_root
,
4473 printk(KERN_ERR
"umm, got %d back from search"
4474 ", was looking for %llu\n", ret
,
4475 (unsigned long long)bytenr
);
4476 btrfs_print_leaf(extent_root
, path
->nodes
[0]);
4479 extent_slot
= path
->slots
[0];
4482 btrfs_print_leaf(extent_root
, path
->nodes
[0]);
4484 printk(KERN_ERR
"btrfs unable to find ref byte nr %llu "
4485 "parent %llu root %llu owner %llu offset %llu\n",
4486 (unsigned long long)bytenr
,
4487 (unsigned long long)parent
,
4488 (unsigned long long)root_objectid
,
4489 (unsigned long long)owner_objectid
,
4490 (unsigned long long)owner_offset
);
4493 leaf
= path
->nodes
[0];
4494 item_size
= btrfs_item_size_nr(leaf
, extent_slot
);
4495 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4496 if (item_size
< sizeof(*ei
)) {
4497 BUG_ON(found_extent
|| extent_slot
!= path
->slots
[0]);
4498 ret
= convert_extent_item_v0(trans
, extent_root
, path
,
4502 btrfs_release_path(extent_root
, path
);
4503 path
->leave_spinning
= 1;
4505 key
.objectid
= bytenr
;
4506 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
4507 key
.offset
= num_bytes
;
4509 ret
= btrfs_search_slot(trans
, extent_root
, &key
, path
,
4512 printk(KERN_ERR
"umm, got %d back from search"
4513 ", was looking for %llu\n", ret
,
4514 (unsigned long long)bytenr
);
4515 btrfs_print_leaf(extent_root
, path
->nodes
[0]);
4518 extent_slot
= path
->slots
[0];
4519 leaf
= path
->nodes
[0];
4520 item_size
= btrfs_item_size_nr(leaf
, extent_slot
);
4523 BUG_ON(item_size
< sizeof(*ei
));
4524 ei
= btrfs_item_ptr(leaf
, extent_slot
,
4525 struct btrfs_extent_item
);
4526 if (owner_objectid
< BTRFS_FIRST_FREE_OBJECTID
) {
4527 struct btrfs_tree_block_info
*bi
;
4528 BUG_ON(item_size
< sizeof(*ei
) + sizeof(*bi
));
4529 bi
= (struct btrfs_tree_block_info
*)(ei
+ 1);
4530 WARN_ON(owner_objectid
!= btrfs_tree_block_level(leaf
, bi
));
4533 refs
= btrfs_extent_refs(leaf
, ei
);
4534 BUG_ON(refs
< refs_to_drop
);
4535 refs
-= refs_to_drop
;
4539 __run_delayed_extent_op(extent_op
, leaf
, ei
);
4541 * In the case of inline back ref, reference count will
4542 * be updated by remove_extent_backref
4545 BUG_ON(!found_extent
);
4547 btrfs_set_extent_refs(leaf
, ei
, refs
);
4548 btrfs_mark_buffer_dirty(leaf
);
4551 ret
= remove_extent_backref(trans
, extent_root
, path
,
4558 BUG_ON(is_data
&& refs_to_drop
!=
4559 extent_data_ref_count(root
, path
, iref
));
4561 BUG_ON(path
->slots
[0] != extent_slot
);
4563 BUG_ON(path
->slots
[0] != extent_slot
+ 1);
4564 path
->slots
[0] = extent_slot
;
4569 ret
= btrfs_del_items(trans
, extent_root
, path
, path
->slots
[0],
4572 btrfs_release_path(extent_root
, path
);
4575 ret
= btrfs_del_csums(trans
, root
, bytenr
, num_bytes
);
4578 invalidate_mapping_pages(info
->btree_inode
->i_mapping
,
4579 bytenr
>> PAGE_CACHE_SHIFT
,
4580 (bytenr
+ num_bytes
- 1) >> PAGE_CACHE_SHIFT
);
4583 ret
= update_block_group(trans
, root
, bytenr
, num_bytes
, 0);
4586 btrfs_free_path(path
);
4591 * when we free an block, it is possible (and likely) that we free the last
4592 * delayed ref for that extent as well. This searches the delayed ref tree for
4593 * a given extent, and if there are no other delayed refs to be processed, it
4594 * removes it from the tree.
4596 static noinline
int check_ref_cleanup(struct btrfs_trans_handle
*trans
,
4597 struct btrfs_root
*root
, u64 bytenr
)
4599 struct btrfs_delayed_ref_head
*head
;
4600 struct btrfs_delayed_ref_root
*delayed_refs
;
4601 struct btrfs_delayed_ref_node
*ref
;
4602 struct rb_node
*node
;
4605 delayed_refs
= &trans
->transaction
->delayed_refs
;
4606 spin_lock(&delayed_refs
->lock
);
4607 head
= btrfs_find_delayed_ref_head(trans
, bytenr
);
4611 node
= rb_prev(&head
->node
.rb_node
);
4615 ref
= rb_entry(node
, struct btrfs_delayed_ref_node
, rb_node
);
4617 /* there are still entries for this ref, we can't drop it */
4618 if (ref
->bytenr
== bytenr
)
4621 if (head
->extent_op
) {
4622 if (!head
->must_insert_reserved
)
4624 kfree(head
->extent_op
);
4625 head
->extent_op
= NULL
;
4629 * waiting for the lock here would deadlock. If someone else has it
4630 * locked they are already in the process of dropping it anyway
4632 if (!mutex_trylock(&head
->mutex
))
4636 * at this point we have a head with no other entries. Go
4637 * ahead and process it.
4639 head
->node
.in_tree
= 0;
4640 rb_erase(&head
->node
.rb_node
, &delayed_refs
->root
);
4642 delayed_refs
->num_entries
--;
4645 * we don't take a ref on the node because we're removing it from the
4646 * tree, so we just steal the ref the tree was holding.
4648 delayed_refs
->num_heads
--;
4649 if (list_empty(&head
->cluster
))
4650 delayed_refs
->num_heads_ready
--;
4652 list_del_init(&head
->cluster
);
4653 spin_unlock(&delayed_refs
->lock
);
4655 BUG_ON(head
->extent_op
);
4656 if (head
->must_insert_reserved
)
4659 mutex_unlock(&head
->mutex
);
4660 btrfs_put_delayed_ref(&head
->node
);
4663 spin_unlock(&delayed_refs
->lock
);
4667 void btrfs_free_tree_block(struct btrfs_trans_handle
*trans
,
4668 struct btrfs_root
*root
,
4669 struct extent_buffer
*buf
,
4670 u64 parent
, int last_ref
)
4672 struct btrfs_block_rsv
*block_rsv
;
4673 struct btrfs_block_group_cache
*cache
= NULL
;
4676 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
4677 ret
= btrfs_add_delayed_tree_ref(trans
, buf
->start
, buf
->len
,
4678 parent
, root
->root_key
.objectid
,
4679 btrfs_header_level(buf
),
4680 BTRFS_DROP_DELAYED_REF
, NULL
);
4687 block_rsv
= get_block_rsv(trans
, root
);
4688 cache
= btrfs_lookup_block_group(root
->fs_info
, buf
->start
);
4689 if (block_rsv
->space_info
!= cache
->space_info
)
4692 if (btrfs_header_generation(buf
) == trans
->transid
) {
4693 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
4694 ret
= check_ref_cleanup(trans
, root
, buf
->start
);
4699 if (btrfs_header_flag(buf
, BTRFS_HEADER_FLAG_WRITTEN
)) {
4700 pin_down_extent(root
, cache
, buf
->start
, buf
->len
, 1);
4704 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY
, &buf
->bflags
));
4706 btrfs_add_free_space(cache
, buf
->start
, buf
->len
);
4707 ret
= update_reserved_bytes(cache
, buf
->len
, 0, 0);
4708 if (ret
== -EAGAIN
) {
4709 /* block group became read-only */
4710 update_reserved_bytes(cache
, buf
->len
, 0, 1);
4715 spin_lock(&block_rsv
->lock
);
4716 if (block_rsv
->reserved
< block_rsv
->size
) {
4717 block_rsv
->reserved
+= buf
->len
;
4720 spin_unlock(&block_rsv
->lock
);
4723 spin_lock(&cache
->space_info
->lock
);
4724 cache
->space_info
->bytes_reserved
-= buf
->len
;
4725 cache
->space_info
->reservation_progress
++;
4726 spin_unlock(&cache
->space_info
->lock
);
4731 if (block_rsv
->durable
&& !cache
->ro
) {
4733 spin_lock(&cache
->lock
);
4735 cache
->reserved_pinned
+= buf
->len
;
4738 spin_unlock(&cache
->lock
);
4741 spin_lock(&block_rsv
->lock
);
4742 block_rsv
->freed
[trans
->transid
& 0x1] += buf
->len
;
4743 spin_unlock(&block_rsv
->lock
);
4747 btrfs_put_block_group(cache
);
4750 int btrfs_free_extent(struct btrfs_trans_handle
*trans
,
4751 struct btrfs_root
*root
,
4752 u64 bytenr
, u64 num_bytes
, u64 parent
,
4753 u64 root_objectid
, u64 owner
, u64 offset
)
4758 * tree log blocks never actually go into the extent allocation
4759 * tree, just update pinning info and exit early.
4761 if (root_objectid
== BTRFS_TREE_LOG_OBJECTID
) {
4762 WARN_ON(owner
>= BTRFS_FIRST_FREE_OBJECTID
);
4763 /* unlocks the pinned mutex */
4764 btrfs_pin_extent(root
, bytenr
, num_bytes
, 1);
4766 } else if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
4767 ret
= btrfs_add_delayed_tree_ref(trans
, bytenr
, num_bytes
,
4768 parent
, root_objectid
, (int)owner
,
4769 BTRFS_DROP_DELAYED_REF
, NULL
);
4772 ret
= btrfs_add_delayed_data_ref(trans
, bytenr
, num_bytes
,
4773 parent
, root_objectid
, owner
,
4774 offset
, BTRFS_DROP_DELAYED_REF
, NULL
);
4780 static u64
stripe_align(struct btrfs_root
*root
, u64 val
)
4782 u64 mask
= ((u64
)root
->stripesize
- 1);
4783 u64 ret
= (val
+ mask
) & ~mask
;
4788 * when we wait for progress in the block group caching, its because
4789 * our allocation attempt failed at least once. So, we must sleep
4790 * and let some progress happen before we try again.
4792 * This function will sleep at least once waiting for new free space to
4793 * show up, and then it will check the block group free space numbers
4794 * for our min num_bytes. Another option is to have it go ahead
4795 * and look in the rbtree for a free extent of a given size, but this
4799 wait_block_group_cache_progress(struct btrfs_block_group_cache
*cache
,
4802 struct btrfs_caching_control
*caching_ctl
;
4805 caching_ctl
= get_caching_control(cache
);
4809 wait_event(caching_ctl
->wait
, block_group_cache_done(cache
) ||
4810 (cache
->free_space
>= num_bytes
));
4812 put_caching_control(caching_ctl
);
4817 wait_block_group_cache_done(struct btrfs_block_group_cache
*cache
)
4819 struct btrfs_caching_control
*caching_ctl
;
4822 caching_ctl
= get_caching_control(cache
);
4826 wait_event(caching_ctl
->wait
, block_group_cache_done(cache
));
4828 put_caching_control(caching_ctl
);
4832 static int get_block_group_index(struct btrfs_block_group_cache
*cache
)
4835 if (cache
->flags
& BTRFS_BLOCK_GROUP_RAID10
)
4837 else if (cache
->flags
& BTRFS_BLOCK_GROUP_RAID1
)
4839 else if (cache
->flags
& BTRFS_BLOCK_GROUP_DUP
)
4841 else if (cache
->flags
& BTRFS_BLOCK_GROUP_RAID0
)
4848 enum btrfs_loop_type
{
4849 LOOP_FIND_IDEAL
= 0,
4850 LOOP_CACHING_NOWAIT
= 1,
4851 LOOP_CACHING_WAIT
= 2,
4852 LOOP_ALLOC_CHUNK
= 3,
4853 LOOP_NO_EMPTY_SIZE
= 4,
4857 * walks the btree of allocated extents and find a hole of a given size.
4858 * The key ins is changed to record the hole:
4859 * ins->objectid == block start
4860 * ins->flags = BTRFS_EXTENT_ITEM_KEY
4861 * ins->offset == number of blocks
4862 * Any available blocks before search_start are skipped.
4864 static noinline
int find_free_extent(struct btrfs_trans_handle
*trans
,
4865 struct btrfs_root
*orig_root
,
4866 u64 num_bytes
, u64 empty_size
,
4867 u64 search_start
, u64 search_end
,
4868 u64 hint_byte
, struct btrfs_key
*ins
,
4872 struct btrfs_root
*root
= orig_root
->fs_info
->extent_root
;
4873 struct btrfs_free_cluster
*last_ptr
= NULL
;
4874 struct btrfs_block_group_cache
*block_group
= NULL
;
4875 int empty_cluster
= 2 * 1024 * 1024;
4876 int allowed_chunk_alloc
= 0;
4877 int done_chunk_alloc
= 0;
4878 struct btrfs_space_info
*space_info
;
4879 int last_ptr_loop
= 0;
4882 bool found_uncached_bg
= false;
4883 bool failed_cluster_refill
= false;
4884 bool failed_alloc
= false;
4885 bool use_cluster
= true;
4886 u64 ideal_cache_percent
= 0;
4887 u64 ideal_cache_offset
= 0;
4889 WARN_ON(num_bytes
< root
->sectorsize
);
4890 btrfs_set_key_type(ins
, BTRFS_EXTENT_ITEM_KEY
);
4894 space_info
= __find_space_info(root
->fs_info
, data
);
4896 printk(KERN_ERR
"No space info for %d\n", data
);
4901 * If the space info is for both data and metadata it means we have a
4902 * small filesystem and we can't use the clustering stuff.
4904 if (btrfs_mixed_space_info(space_info
))
4905 use_cluster
= false;
4907 if (orig_root
->ref_cows
|| empty_size
)
4908 allowed_chunk_alloc
= 1;
4910 if (data
& BTRFS_BLOCK_GROUP_METADATA
&& use_cluster
) {
4911 last_ptr
= &root
->fs_info
->meta_alloc_cluster
;
4912 if (!btrfs_test_opt(root
, SSD
))
4913 empty_cluster
= 64 * 1024;
4916 if ((data
& BTRFS_BLOCK_GROUP_DATA
) && use_cluster
&&
4917 btrfs_test_opt(root
, SSD
)) {
4918 last_ptr
= &root
->fs_info
->data_alloc_cluster
;
4922 spin_lock(&last_ptr
->lock
);
4923 if (last_ptr
->block_group
)
4924 hint_byte
= last_ptr
->window_start
;
4925 spin_unlock(&last_ptr
->lock
);
4928 search_start
= max(search_start
, first_logical_byte(root
, 0));
4929 search_start
= max(search_start
, hint_byte
);
4934 if (search_start
== hint_byte
) {
4936 block_group
= btrfs_lookup_block_group(root
->fs_info
,
4939 * we don't want to use the block group if it doesn't match our
4940 * allocation bits, or if its not cached.
4942 * However if we are re-searching with an ideal block group
4943 * picked out then we don't care that the block group is cached.
4945 if (block_group
&& block_group_bits(block_group
, data
) &&
4946 (block_group
->cached
!= BTRFS_CACHE_NO
||
4947 search_start
== ideal_cache_offset
)) {
4948 down_read(&space_info
->groups_sem
);
4949 if (list_empty(&block_group
->list
) ||
4952 * someone is removing this block group,
4953 * we can't jump into the have_block_group
4954 * target because our list pointers are not
4957 btrfs_put_block_group(block_group
);
4958 up_read(&space_info
->groups_sem
);
4960 index
= get_block_group_index(block_group
);
4961 goto have_block_group
;
4963 } else if (block_group
) {
4964 btrfs_put_block_group(block_group
);
4968 down_read(&space_info
->groups_sem
);
4969 list_for_each_entry(block_group
, &space_info
->block_groups
[index
],
4974 btrfs_get_block_group(block_group
);
4975 search_start
= block_group
->key
.objectid
;
4978 * this can happen if we end up cycling through all the
4979 * raid types, but we want to make sure we only allocate
4980 * for the proper type.
4982 if (!block_group_bits(block_group
, data
)) {
4983 u64 extra
= BTRFS_BLOCK_GROUP_DUP
|
4984 BTRFS_BLOCK_GROUP_RAID1
|
4985 BTRFS_BLOCK_GROUP_RAID10
;
4988 * if they asked for extra copies and this block group
4989 * doesn't provide them, bail. This does allow us to
4990 * fill raid0 from raid1.
4992 if ((data
& extra
) && !(block_group
->flags
& extra
))
4997 if (unlikely(block_group
->cached
== BTRFS_CACHE_NO
)) {
5000 ret
= cache_block_group(block_group
, trans
,
5002 if (block_group
->cached
== BTRFS_CACHE_FINISHED
)
5003 goto have_block_group
;
5005 free_percent
= btrfs_block_group_used(&block_group
->item
);
5006 free_percent
*= 100;
5007 free_percent
= div64_u64(free_percent
,
5008 block_group
->key
.offset
);
5009 free_percent
= 100 - free_percent
;
5010 if (free_percent
> ideal_cache_percent
&&
5011 likely(!block_group
->ro
)) {
5012 ideal_cache_offset
= block_group
->key
.objectid
;
5013 ideal_cache_percent
= free_percent
;
5017 * We only want to start kthread caching if we are at
5018 * the point where we will wait for caching to make
5019 * progress, or if our ideal search is over and we've
5020 * found somebody to start caching.
5022 if (loop
> LOOP_CACHING_NOWAIT
||
5023 (loop
> LOOP_FIND_IDEAL
&&
5024 atomic_read(&space_info
->caching_threads
) < 2)) {
5025 ret
= cache_block_group(block_group
, trans
,
5029 found_uncached_bg
= true;
5032 * If loop is set for cached only, try the next block
5035 if (loop
== LOOP_FIND_IDEAL
)
5039 cached
= block_group_cache_done(block_group
);
5040 if (unlikely(!cached
))
5041 found_uncached_bg
= true;
5043 if (unlikely(block_group
->ro
))
5047 * Ok we want to try and use the cluster allocator, so lets look
5048 * there, unless we are on LOOP_NO_EMPTY_SIZE, since we will
5049 * have tried the cluster allocator plenty of times at this
5050 * point and not have found anything, so we are likely way too
5051 * fragmented for the clustering stuff to find anything, so lets
5052 * just skip it and let the allocator find whatever block it can
5055 if (last_ptr
&& loop
< LOOP_NO_EMPTY_SIZE
) {
5057 * the refill lock keeps out other
5058 * people trying to start a new cluster
5060 spin_lock(&last_ptr
->refill_lock
);
5061 if (last_ptr
->block_group
&&
5062 (last_ptr
->block_group
->ro
||
5063 !block_group_bits(last_ptr
->block_group
, data
))) {
5065 goto refill_cluster
;
5068 offset
= btrfs_alloc_from_cluster(block_group
, last_ptr
,
5069 num_bytes
, search_start
);
5071 /* we have a block, we're done */
5072 spin_unlock(&last_ptr
->refill_lock
);
5076 spin_lock(&last_ptr
->lock
);
5078 * whoops, this cluster doesn't actually point to
5079 * this block group. Get a ref on the block
5080 * group is does point to and try again
5082 if (!last_ptr_loop
&& last_ptr
->block_group
&&
5083 last_ptr
->block_group
!= block_group
) {
5085 btrfs_put_block_group(block_group
);
5086 block_group
= last_ptr
->block_group
;
5087 btrfs_get_block_group(block_group
);
5088 spin_unlock(&last_ptr
->lock
);
5089 spin_unlock(&last_ptr
->refill_lock
);
5092 search_start
= block_group
->key
.objectid
;
5094 * we know this block group is properly
5095 * in the list because
5096 * btrfs_remove_block_group, drops the
5097 * cluster before it removes the block
5098 * group from the list
5100 goto have_block_group
;
5102 spin_unlock(&last_ptr
->lock
);
5105 * this cluster didn't work out, free it and
5108 btrfs_return_cluster_to_free_space(NULL
, last_ptr
);
5112 /* allocate a cluster in this block group */
5113 ret
= btrfs_find_space_cluster(trans
, root
,
5114 block_group
, last_ptr
,
5116 empty_cluster
+ empty_size
);
5119 * now pull our allocation out of this
5122 offset
= btrfs_alloc_from_cluster(block_group
,
5123 last_ptr
, num_bytes
,
5126 /* we found one, proceed */
5127 spin_unlock(&last_ptr
->refill_lock
);
5130 } else if (!cached
&& loop
> LOOP_CACHING_NOWAIT
5131 && !failed_cluster_refill
) {
5132 spin_unlock(&last_ptr
->refill_lock
);
5134 failed_cluster_refill
= true;
5135 wait_block_group_cache_progress(block_group
,
5136 num_bytes
+ empty_cluster
+ empty_size
);
5137 goto have_block_group
;
5141 * at this point we either didn't find a cluster
5142 * or we weren't able to allocate a block from our
5143 * cluster. Free the cluster we've been trying
5144 * to use, and go to the next block group
5146 btrfs_return_cluster_to_free_space(NULL
, last_ptr
);
5147 spin_unlock(&last_ptr
->refill_lock
);
5151 offset
= btrfs_find_space_for_alloc(block_group
, search_start
,
5152 num_bytes
, empty_size
);
5154 * If we didn't find a chunk, and we haven't failed on this
5155 * block group before, and this block group is in the middle of
5156 * caching and we are ok with waiting, then go ahead and wait
5157 * for progress to be made, and set failed_alloc to true.
5159 * If failed_alloc is true then we've already waited on this
5160 * block group once and should move on to the next block group.
5162 if (!offset
&& !failed_alloc
&& !cached
&&
5163 loop
> LOOP_CACHING_NOWAIT
) {
5164 wait_block_group_cache_progress(block_group
,
5165 num_bytes
+ empty_size
);
5166 failed_alloc
= true;
5167 goto have_block_group
;
5168 } else if (!offset
) {
5172 search_start
= stripe_align(root
, offset
);
5173 /* move on to the next group */
5174 if (search_start
+ num_bytes
>= search_end
) {
5175 btrfs_add_free_space(block_group
, offset
, num_bytes
);
5179 /* move on to the next group */
5180 if (search_start
+ num_bytes
>
5181 block_group
->key
.objectid
+ block_group
->key
.offset
) {
5182 btrfs_add_free_space(block_group
, offset
, num_bytes
);
5186 ins
->objectid
= search_start
;
5187 ins
->offset
= num_bytes
;
5189 if (offset
< search_start
)
5190 btrfs_add_free_space(block_group
, offset
,
5191 search_start
- offset
);
5192 BUG_ON(offset
> search_start
);
5194 ret
= update_reserved_bytes(block_group
, num_bytes
, 1,
5195 (data
& BTRFS_BLOCK_GROUP_DATA
));
5196 if (ret
== -EAGAIN
) {
5197 btrfs_add_free_space(block_group
, offset
, num_bytes
);
5201 /* we are all good, lets return */
5202 ins
->objectid
= search_start
;
5203 ins
->offset
= num_bytes
;
5205 if (offset
< search_start
)
5206 btrfs_add_free_space(block_group
, offset
,
5207 search_start
- offset
);
5208 BUG_ON(offset
> search_start
);
5211 failed_cluster_refill
= false;
5212 failed_alloc
= false;
5213 BUG_ON(index
!= get_block_group_index(block_group
));
5214 btrfs_put_block_group(block_group
);
5216 up_read(&space_info
->groups_sem
);
5218 if (!ins
->objectid
&& ++index
< BTRFS_NR_RAID_TYPES
)
5221 /* LOOP_FIND_IDEAL, only search caching/cached bg's, and don't wait for
5222 * for them to make caching progress. Also
5223 * determine the best possible bg to cache
5224 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
5225 * caching kthreads as we move along
5226 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
5227 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
5228 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
5231 if (!ins
->objectid
&& loop
< LOOP_NO_EMPTY_SIZE
&&
5232 (found_uncached_bg
|| empty_size
|| empty_cluster
||
5233 allowed_chunk_alloc
)) {
5235 if (loop
== LOOP_FIND_IDEAL
&& found_uncached_bg
) {
5236 found_uncached_bg
= false;
5238 if (!ideal_cache_percent
&&
5239 atomic_read(&space_info
->caching_threads
))
5243 * 1 of the following 2 things have happened so far
5245 * 1) We found an ideal block group for caching that
5246 * is mostly full and will cache quickly, so we might
5247 * as well wait for it.
5249 * 2) We searched for cached only and we didn't find
5250 * anything, and we didn't start any caching kthreads
5251 * either, so chances are we will loop through and
5252 * start a couple caching kthreads, and then come back
5253 * around and just wait for them. This will be slower
5254 * because we will have 2 caching kthreads reading at
5255 * the same time when we could have just started one
5256 * and waited for it to get far enough to give us an
5257 * allocation, so go ahead and go to the wait caching
5260 loop
= LOOP_CACHING_WAIT
;
5261 search_start
= ideal_cache_offset
;
5262 ideal_cache_percent
= 0;
5264 } else if (loop
== LOOP_FIND_IDEAL
) {
5266 * Didn't find a uncached bg, wait on anything we find
5269 loop
= LOOP_CACHING_WAIT
;
5273 if (loop
< LOOP_CACHING_WAIT
) {
5278 if (loop
== LOOP_ALLOC_CHUNK
) {
5283 if (allowed_chunk_alloc
) {
5284 ret
= do_chunk_alloc(trans
, root
, num_bytes
+
5285 2 * 1024 * 1024, data
, 1);
5286 allowed_chunk_alloc
= 0;
5287 done_chunk_alloc
= 1;
5288 } else if (!done_chunk_alloc
) {
5289 space_info
->force_alloc
= 1;
5292 if (loop
< LOOP_NO_EMPTY_SIZE
) {
5297 } else if (!ins
->objectid
) {
5301 /* we found what we needed */
5302 if (ins
->objectid
) {
5303 if (!(data
& BTRFS_BLOCK_GROUP_DATA
))
5304 trans
->block_group
= block_group
->key
.objectid
;
5306 btrfs_put_block_group(block_group
);
5313 static void dump_space_info(struct btrfs_space_info
*info
, u64 bytes
,
5314 int dump_block_groups
)
5316 struct btrfs_block_group_cache
*cache
;
5319 spin_lock(&info
->lock
);
5320 printk(KERN_INFO
"space_info has %llu free, is %sfull\n",
5321 (unsigned long long)(info
->total_bytes
- info
->bytes_used
-
5322 info
->bytes_pinned
- info
->bytes_reserved
-
5323 info
->bytes_readonly
),
5324 (info
->full
) ? "" : "not ");
5325 printk(KERN_INFO
"space_info total=%llu, used=%llu, pinned=%llu, "
5326 "reserved=%llu, may_use=%llu, readonly=%llu\n",
5327 (unsigned long long)info
->total_bytes
,
5328 (unsigned long long)info
->bytes_used
,
5329 (unsigned long long)info
->bytes_pinned
,
5330 (unsigned long long)info
->bytes_reserved
,
5331 (unsigned long long)info
->bytes_may_use
,
5332 (unsigned long long)info
->bytes_readonly
);
5333 spin_unlock(&info
->lock
);
5335 if (!dump_block_groups
)
5338 down_read(&info
->groups_sem
);
5340 list_for_each_entry(cache
, &info
->block_groups
[index
], list
) {
5341 spin_lock(&cache
->lock
);
5342 printk(KERN_INFO
"block group %llu has %llu bytes, %llu used "
5343 "%llu pinned %llu reserved\n",
5344 (unsigned long long)cache
->key
.objectid
,
5345 (unsigned long long)cache
->key
.offset
,
5346 (unsigned long long)btrfs_block_group_used(&cache
->item
),
5347 (unsigned long long)cache
->pinned
,
5348 (unsigned long long)cache
->reserved
);
5349 btrfs_dump_free_space(cache
, bytes
);
5350 spin_unlock(&cache
->lock
);
5352 if (++index
< BTRFS_NR_RAID_TYPES
)
5354 up_read(&info
->groups_sem
);
5357 int btrfs_reserve_extent(struct btrfs_trans_handle
*trans
,
5358 struct btrfs_root
*root
,
5359 u64 num_bytes
, u64 min_alloc_size
,
5360 u64 empty_size
, u64 hint_byte
,
5361 u64 search_end
, struct btrfs_key
*ins
,
5365 u64 search_start
= 0;
5367 data
= btrfs_get_alloc_profile(root
, data
);
5370 * the only place that sets empty_size is btrfs_realloc_node, which
5371 * is not called recursively on allocations
5373 if (empty_size
|| root
->ref_cows
)
5374 ret
= do_chunk_alloc(trans
, root
->fs_info
->extent_root
,
5375 num_bytes
+ 2 * 1024 * 1024, data
, 0);
5377 WARN_ON(num_bytes
< root
->sectorsize
);
5378 ret
= find_free_extent(trans
, root
, num_bytes
, empty_size
,
5379 search_start
, search_end
, hint_byte
,
5382 if (ret
== -ENOSPC
&& num_bytes
> min_alloc_size
) {
5383 num_bytes
= num_bytes
>> 1;
5384 num_bytes
= num_bytes
& ~(root
->sectorsize
- 1);
5385 num_bytes
= max(num_bytes
, min_alloc_size
);
5386 do_chunk_alloc(trans
, root
->fs_info
->extent_root
,
5387 num_bytes
, data
, 1);
5390 if (ret
== -ENOSPC
&& btrfs_test_opt(root
, ENOSPC_DEBUG
)) {
5391 struct btrfs_space_info
*sinfo
;
5393 sinfo
= __find_space_info(root
->fs_info
, data
);
5394 printk(KERN_ERR
"btrfs allocation failed flags %llu, "
5395 "wanted %llu\n", (unsigned long long)data
,
5396 (unsigned long long)num_bytes
);
5397 dump_space_info(sinfo
, num_bytes
, 1);
5403 int btrfs_free_reserved_extent(struct btrfs_root
*root
, u64 start
, u64 len
)
5405 struct btrfs_block_group_cache
*cache
;
5408 cache
= btrfs_lookup_block_group(root
->fs_info
, start
);
5410 printk(KERN_ERR
"Unable to find block group for %llu\n",
5411 (unsigned long long)start
);
5415 ret
= btrfs_discard_extent(root
, start
, len
);
5417 btrfs_add_free_space(cache
, start
, len
);
5418 update_reserved_bytes(cache
, len
, 0, 1);
5419 btrfs_put_block_group(cache
);
5424 static int alloc_reserved_file_extent(struct btrfs_trans_handle
*trans
,
5425 struct btrfs_root
*root
,
5426 u64 parent
, u64 root_objectid
,
5427 u64 flags
, u64 owner
, u64 offset
,
5428 struct btrfs_key
*ins
, int ref_mod
)
5431 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5432 struct btrfs_extent_item
*extent_item
;
5433 struct btrfs_extent_inline_ref
*iref
;
5434 struct btrfs_path
*path
;
5435 struct extent_buffer
*leaf
;
5440 type
= BTRFS_SHARED_DATA_REF_KEY
;
5442 type
= BTRFS_EXTENT_DATA_REF_KEY
;
5444 size
= sizeof(*extent_item
) + btrfs_extent_inline_ref_size(type
);
5446 path
= btrfs_alloc_path();
5449 path
->leave_spinning
= 1;
5450 ret
= btrfs_insert_empty_item(trans
, fs_info
->extent_root
, path
,
5454 leaf
= path
->nodes
[0];
5455 extent_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
5456 struct btrfs_extent_item
);
5457 btrfs_set_extent_refs(leaf
, extent_item
, ref_mod
);
5458 btrfs_set_extent_generation(leaf
, extent_item
, trans
->transid
);
5459 btrfs_set_extent_flags(leaf
, extent_item
,
5460 flags
| BTRFS_EXTENT_FLAG_DATA
);
5462 iref
= (struct btrfs_extent_inline_ref
*)(extent_item
+ 1);
5463 btrfs_set_extent_inline_ref_type(leaf
, iref
, type
);
5465 struct btrfs_shared_data_ref
*ref
;
5466 ref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
5467 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
5468 btrfs_set_shared_data_ref_count(leaf
, ref
, ref_mod
);
5470 struct btrfs_extent_data_ref
*ref
;
5471 ref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
5472 btrfs_set_extent_data_ref_root(leaf
, ref
, root_objectid
);
5473 btrfs_set_extent_data_ref_objectid(leaf
, ref
, owner
);
5474 btrfs_set_extent_data_ref_offset(leaf
, ref
, offset
);
5475 btrfs_set_extent_data_ref_count(leaf
, ref
, ref_mod
);
5478 btrfs_mark_buffer_dirty(path
->nodes
[0]);
5479 btrfs_free_path(path
);
5481 ret
= update_block_group(trans
, root
, ins
->objectid
, ins
->offset
, 1);
5483 printk(KERN_ERR
"btrfs update block group failed for %llu "
5484 "%llu\n", (unsigned long long)ins
->objectid
,
5485 (unsigned long long)ins
->offset
);
5491 static int alloc_reserved_tree_block(struct btrfs_trans_handle
*trans
,
5492 struct btrfs_root
*root
,
5493 u64 parent
, u64 root_objectid
,
5494 u64 flags
, struct btrfs_disk_key
*key
,
5495 int level
, struct btrfs_key
*ins
)
5498 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5499 struct btrfs_extent_item
*extent_item
;
5500 struct btrfs_tree_block_info
*block_info
;
5501 struct btrfs_extent_inline_ref
*iref
;
5502 struct btrfs_path
*path
;
5503 struct extent_buffer
*leaf
;
5504 u32 size
= sizeof(*extent_item
) + sizeof(*block_info
) + sizeof(*iref
);
5506 path
= btrfs_alloc_path();
5509 path
->leave_spinning
= 1;
5510 ret
= btrfs_insert_empty_item(trans
, fs_info
->extent_root
, path
,
5514 leaf
= path
->nodes
[0];
5515 extent_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
5516 struct btrfs_extent_item
);
5517 btrfs_set_extent_refs(leaf
, extent_item
, 1);
5518 btrfs_set_extent_generation(leaf
, extent_item
, trans
->transid
);
5519 btrfs_set_extent_flags(leaf
, extent_item
,
5520 flags
| BTRFS_EXTENT_FLAG_TREE_BLOCK
);
5521 block_info
= (struct btrfs_tree_block_info
*)(extent_item
+ 1);
5523 btrfs_set_tree_block_key(leaf
, block_info
, key
);
5524 btrfs_set_tree_block_level(leaf
, block_info
, level
);
5526 iref
= (struct btrfs_extent_inline_ref
*)(block_info
+ 1);
5528 BUG_ON(!(flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
));
5529 btrfs_set_extent_inline_ref_type(leaf
, iref
,
5530 BTRFS_SHARED_BLOCK_REF_KEY
);
5531 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
5533 btrfs_set_extent_inline_ref_type(leaf
, iref
,
5534 BTRFS_TREE_BLOCK_REF_KEY
);
5535 btrfs_set_extent_inline_ref_offset(leaf
, iref
, root_objectid
);
5538 btrfs_mark_buffer_dirty(leaf
);
5539 btrfs_free_path(path
);
5541 ret
= update_block_group(trans
, root
, ins
->objectid
, ins
->offset
, 1);
5543 printk(KERN_ERR
"btrfs update block group failed for %llu "
5544 "%llu\n", (unsigned long long)ins
->objectid
,
5545 (unsigned long long)ins
->offset
);
5551 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle
*trans
,
5552 struct btrfs_root
*root
,
5553 u64 root_objectid
, u64 owner
,
5554 u64 offset
, struct btrfs_key
*ins
)
5558 BUG_ON(root_objectid
== BTRFS_TREE_LOG_OBJECTID
);
5560 ret
= btrfs_add_delayed_data_ref(trans
, ins
->objectid
, ins
->offset
,
5561 0, root_objectid
, owner
, offset
,
5562 BTRFS_ADD_DELAYED_EXTENT
, NULL
);
5567 * this is used by the tree logging recovery code. It records that
5568 * an extent has been allocated and makes sure to clear the free
5569 * space cache bits as well
5571 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle
*trans
,
5572 struct btrfs_root
*root
,
5573 u64 root_objectid
, u64 owner
, u64 offset
,
5574 struct btrfs_key
*ins
)
5577 struct btrfs_block_group_cache
*block_group
;
5578 struct btrfs_caching_control
*caching_ctl
;
5579 u64 start
= ins
->objectid
;
5580 u64 num_bytes
= ins
->offset
;
5582 block_group
= btrfs_lookup_block_group(root
->fs_info
, ins
->objectid
);
5583 cache_block_group(block_group
, trans
, NULL
, 0);
5584 caching_ctl
= get_caching_control(block_group
);
5587 BUG_ON(!block_group_cache_done(block_group
));
5588 ret
= btrfs_remove_free_space(block_group
, start
, num_bytes
);
5591 mutex_lock(&caching_ctl
->mutex
);
5593 if (start
>= caching_ctl
->progress
) {
5594 ret
= add_excluded_extent(root
, start
, num_bytes
);
5596 } else if (start
+ num_bytes
<= caching_ctl
->progress
) {
5597 ret
= btrfs_remove_free_space(block_group
,
5601 num_bytes
= caching_ctl
->progress
- start
;
5602 ret
= btrfs_remove_free_space(block_group
,
5606 start
= caching_ctl
->progress
;
5607 num_bytes
= ins
->objectid
+ ins
->offset
-
5608 caching_ctl
->progress
;
5609 ret
= add_excluded_extent(root
, start
, num_bytes
);
5613 mutex_unlock(&caching_ctl
->mutex
);
5614 put_caching_control(caching_ctl
);
5617 ret
= update_reserved_bytes(block_group
, ins
->offset
, 1, 1);
5619 btrfs_put_block_group(block_group
);
5620 ret
= alloc_reserved_file_extent(trans
, root
, 0, root_objectid
,
5621 0, owner
, offset
, ins
, 1);
5625 struct extent_buffer
*btrfs_init_new_buffer(struct btrfs_trans_handle
*trans
,
5626 struct btrfs_root
*root
,
5627 u64 bytenr
, u32 blocksize
,
5630 struct extent_buffer
*buf
;
5632 buf
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
5634 return ERR_PTR(-ENOMEM
);
5635 btrfs_set_header_generation(buf
, trans
->transid
);
5636 btrfs_set_buffer_lockdep_class(buf
, level
);
5637 btrfs_tree_lock(buf
);
5638 clean_tree_block(trans
, root
, buf
);
5640 btrfs_set_lock_blocking(buf
);
5641 btrfs_set_buffer_uptodate(buf
);
5643 if (root
->root_key
.objectid
== BTRFS_TREE_LOG_OBJECTID
) {
5645 * we allow two log transactions at a time, use different
5646 * EXENT bit to differentiate dirty pages.
5648 if (root
->log_transid
% 2 == 0)
5649 set_extent_dirty(&root
->dirty_log_pages
, buf
->start
,
5650 buf
->start
+ buf
->len
- 1, GFP_NOFS
);
5652 set_extent_new(&root
->dirty_log_pages
, buf
->start
,
5653 buf
->start
+ buf
->len
- 1, GFP_NOFS
);
5655 set_extent_dirty(&trans
->transaction
->dirty_pages
, buf
->start
,
5656 buf
->start
+ buf
->len
- 1, GFP_NOFS
);
5658 trans
->blocks_used
++;
5659 /* this returns a buffer locked for blocking */
5663 static struct btrfs_block_rsv
*
5664 use_block_rsv(struct btrfs_trans_handle
*trans
,
5665 struct btrfs_root
*root
, u32 blocksize
)
5667 struct btrfs_block_rsv
*block_rsv
;
5668 struct btrfs_block_rsv
*global_rsv
= &root
->fs_info
->global_block_rsv
;
5671 block_rsv
= get_block_rsv(trans
, root
);
5673 if (block_rsv
->size
== 0) {
5674 ret
= reserve_metadata_bytes(trans
, root
, block_rsv
,
5677 * If we couldn't reserve metadata bytes try and use some from
5678 * the global reserve.
5680 if (ret
&& block_rsv
!= global_rsv
) {
5681 ret
= block_rsv_use_bytes(global_rsv
, blocksize
);
5684 return ERR_PTR(ret
);
5686 return ERR_PTR(ret
);
5691 ret
= block_rsv_use_bytes(block_rsv
, blocksize
);
5696 ret
= reserve_metadata_bytes(trans
, root
, block_rsv
, blocksize
,
5699 spin_lock(&block_rsv
->lock
);
5700 block_rsv
->size
+= blocksize
;
5701 spin_unlock(&block_rsv
->lock
);
5703 } else if (ret
&& block_rsv
!= global_rsv
) {
5704 ret
= block_rsv_use_bytes(global_rsv
, blocksize
);
5710 return ERR_PTR(-ENOSPC
);
5713 static void unuse_block_rsv(struct btrfs_block_rsv
*block_rsv
, u32 blocksize
)
5715 block_rsv_add_bytes(block_rsv
, blocksize
, 0);
5716 block_rsv_release_bytes(block_rsv
, NULL
, 0);
5720 * finds a free extent and does all the dirty work required for allocation
5721 * returns the key for the extent through ins, and a tree buffer for
5722 * the first block of the extent through buf.
5724 * returns the tree buffer or NULL.
5726 struct extent_buffer
*btrfs_alloc_free_block(struct btrfs_trans_handle
*trans
,
5727 struct btrfs_root
*root
, u32 blocksize
,
5728 u64 parent
, u64 root_objectid
,
5729 struct btrfs_disk_key
*key
, int level
,
5730 u64 hint
, u64 empty_size
)
5732 struct btrfs_key ins
;
5733 struct btrfs_block_rsv
*block_rsv
;
5734 struct extent_buffer
*buf
;
5739 block_rsv
= use_block_rsv(trans
, root
, blocksize
);
5740 if (IS_ERR(block_rsv
))
5741 return ERR_CAST(block_rsv
);
5743 ret
= btrfs_reserve_extent(trans
, root
, blocksize
, blocksize
,
5744 empty_size
, hint
, (u64
)-1, &ins
, 0);
5746 unuse_block_rsv(block_rsv
, blocksize
);
5747 return ERR_PTR(ret
);
5750 buf
= btrfs_init_new_buffer(trans
, root
, ins
.objectid
,
5752 BUG_ON(IS_ERR(buf
));
5754 if (root_objectid
== BTRFS_TREE_RELOC_OBJECTID
) {
5756 parent
= ins
.objectid
;
5757 flags
|= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
5761 if (root_objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
5762 struct btrfs_delayed_extent_op
*extent_op
;
5763 extent_op
= kmalloc(sizeof(*extent_op
), GFP_NOFS
);
5766 memcpy(&extent_op
->key
, key
, sizeof(extent_op
->key
));
5768 memset(&extent_op
->key
, 0, sizeof(extent_op
->key
));
5769 extent_op
->flags_to_set
= flags
;
5770 extent_op
->update_key
= 1;
5771 extent_op
->update_flags
= 1;
5772 extent_op
->is_data
= 0;
5774 ret
= btrfs_add_delayed_tree_ref(trans
, ins
.objectid
,
5775 ins
.offset
, parent
, root_objectid
,
5776 level
, BTRFS_ADD_DELAYED_EXTENT
,
5783 struct walk_control
{
5784 u64 refs
[BTRFS_MAX_LEVEL
];
5785 u64 flags
[BTRFS_MAX_LEVEL
];
5786 struct btrfs_key update_progress
;
5796 #define DROP_REFERENCE 1
5797 #define UPDATE_BACKREF 2
5799 static noinline
void reada_walk_down(struct btrfs_trans_handle
*trans
,
5800 struct btrfs_root
*root
,
5801 struct walk_control
*wc
,
5802 struct btrfs_path
*path
)
5810 struct btrfs_key key
;
5811 struct extent_buffer
*eb
;
5816 if (path
->slots
[wc
->level
] < wc
->reada_slot
) {
5817 wc
->reada_count
= wc
->reada_count
* 2 / 3;
5818 wc
->reada_count
= max(wc
->reada_count
, 2);
5820 wc
->reada_count
= wc
->reada_count
* 3 / 2;
5821 wc
->reada_count
= min_t(int, wc
->reada_count
,
5822 BTRFS_NODEPTRS_PER_BLOCK(root
));
5825 eb
= path
->nodes
[wc
->level
];
5826 nritems
= btrfs_header_nritems(eb
);
5827 blocksize
= btrfs_level_size(root
, wc
->level
- 1);
5829 for (slot
= path
->slots
[wc
->level
]; slot
< nritems
; slot
++) {
5830 if (nread
>= wc
->reada_count
)
5834 bytenr
= btrfs_node_blockptr(eb
, slot
);
5835 generation
= btrfs_node_ptr_generation(eb
, slot
);
5837 if (slot
== path
->slots
[wc
->level
])
5840 if (wc
->stage
== UPDATE_BACKREF
&&
5841 generation
<= root
->root_key
.offset
)
5844 /* We don't lock the tree block, it's OK to be racy here */
5845 ret
= btrfs_lookup_extent_info(trans
, root
, bytenr
, blocksize
,
5850 if (wc
->stage
== DROP_REFERENCE
) {
5854 if (wc
->level
== 1 &&
5855 (flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
))
5857 if (!wc
->update_ref
||
5858 generation
<= root
->root_key
.offset
)
5860 btrfs_node_key_to_cpu(eb
, &key
, slot
);
5861 ret
= btrfs_comp_cpu_keys(&key
,
5862 &wc
->update_progress
);
5866 if (wc
->level
== 1 &&
5867 (flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
))
5871 ret
= readahead_tree_block(root
, bytenr
, blocksize
,
5877 wc
->reada_slot
= slot
;
5881 * hepler to process tree block while walking down the tree.
5883 * when wc->stage == UPDATE_BACKREF, this function updates
5884 * back refs for pointers in the block.
5886 * NOTE: return value 1 means we should stop walking down.
5888 static noinline
int walk_down_proc(struct btrfs_trans_handle
*trans
,
5889 struct btrfs_root
*root
,
5890 struct btrfs_path
*path
,
5891 struct walk_control
*wc
, int lookup_info
)
5893 int level
= wc
->level
;
5894 struct extent_buffer
*eb
= path
->nodes
[level
];
5895 u64 flag
= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
5898 if (wc
->stage
== UPDATE_BACKREF
&&
5899 btrfs_header_owner(eb
) != root
->root_key
.objectid
)
5903 * when reference count of tree block is 1, it won't increase
5904 * again. once full backref flag is set, we never clear it.
5907 ((wc
->stage
== DROP_REFERENCE
&& wc
->refs
[level
] != 1) ||
5908 (wc
->stage
== UPDATE_BACKREF
&& !(wc
->flags
[level
] & flag
)))) {
5909 BUG_ON(!path
->locks
[level
]);
5910 ret
= btrfs_lookup_extent_info(trans
, root
,
5915 BUG_ON(wc
->refs
[level
] == 0);
5918 if (wc
->stage
== DROP_REFERENCE
) {
5919 if (wc
->refs
[level
] > 1)
5922 if (path
->locks
[level
] && !wc
->keep_locks
) {
5923 btrfs_tree_unlock(eb
);
5924 path
->locks
[level
] = 0;
5929 /* wc->stage == UPDATE_BACKREF */
5930 if (!(wc
->flags
[level
] & flag
)) {
5931 BUG_ON(!path
->locks
[level
]);
5932 ret
= btrfs_inc_ref(trans
, root
, eb
, 1);
5934 ret
= btrfs_dec_ref(trans
, root
, eb
, 0);
5936 ret
= btrfs_set_disk_extent_flags(trans
, root
, eb
->start
,
5939 wc
->flags
[level
] |= flag
;
5943 * the block is shared by multiple trees, so it's not good to
5944 * keep the tree lock
5946 if (path
->locks
[level
] && level
> 0) {
5947 btrfs_tree_unlock(eb
);
5948 path
->locks
[level
] = 0;
5954 * hepler to process tree block pointer.
5956 * when wc->stage == DROP_REFERENCE, this function checks
5957 * reference count of the block pointed to. if the block
5958 * is shared and we need update back refs for the subtree
5959 * rooted at the block, this function changes wc->stage to
5960 * UPDATE_BACKREF. if the block is shared and there is no
5961 * need to update back, this function drops the reference
5964 * NOTE: return value 1 means we should stop walking down.
5966 static noinline
int do_walk_down(struct btrfs_trans_handle
*trans
,
5967 struct btrfs_root
*root
,
5968 struct btrfs_path
*path
,
5969 struct walk_control
*wc
, int *lookup_info
)
5975 struct btrfs_key key
;
5976 struct extent_buffer
*next
;
5977 int level
= wc
->level
;
5981 generation
= btrfs_node_ptr_generation(path
->nodes
[level
],
5982 path
->slots
[level
]);
5984 * if the lower level block was created before the snapshot
5985 * was created, we know there is no need to update back refs
5988 if (wc
->stage
== UPDATE_BACKREF
&&
5989 generation
<= root
->root_key
.offset
) {
5994 bytenr
= btrfs_node_blockptr(path
->nodes
[level
], path
->slots
[level
]);
5995 blocksize
= btrfs_level_size(root
, level
- 1);
5997 next
= btrfs_find_tree_block(root
, bytenr
, blocksize
);
5999 next
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
6004 btrfs_tree_lock(next
);
6005 btrfs_set_lock_blocking(next
);
6007 ret
= btrfs_lookup_extent_info(trans
, root
, bytenr
, blocksize
,
6008 &wc
->refs
[level
- 1],
6009 &wc
->flags
[level
- 1]);
6011 BUG_ON(wc
->refs
[level
- 1] == 0);
6014 if (wc
->stage
== DROP_REFERENCE
) {
6015 if (wc
->refs
[level
- 1] > 1) {
6017 (wc
->flags
[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF
))
6020 if (!wc
->update_ref
||
6021 generation
<= root
->root_key
.offset
)
6024 btrfs_node_key_to_cpu(path
->nodes
[level
], &key
,
6025 path
->slots
[level
]);
6026 ret
= btrfs_comp_cpu_keys(&key
, &wc
->update_progress
);
6030 wc
->stage
= UPDATE_BACKREF
;
6031 wc
->shared_level
= level
- 1;
6035 (wc
->flags
[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF
))
6039 if (!btrfs_buffer_uptodate(next
, generation
)) {
6040 btrfs_tree_unlock(next
);
6041 free_extent_buffer(next
);
6047 if (reada
&& level
== 1)
6048 reada_walk_down(trans
, root
, wc
, path
);
6049 next
= read_tree_block(root
, bytenr
, blocksize
, generation
);
6050 btrfs_tree_lock(next
);
6051 btrfs_set_lock_blocking(next
);
6055 BUG_ON(level
!= btrfs_header_level(next
));
6056 path
->nodes
[level
] = next
;
6057 path
->slots
[level
] = 0;
6058 path
->locks
[level
] = 1;
6064 wc
->refs
[level
- 1] = 0;
6065 wc
->flags
[level
- 1] = 0;
6066 if (wc
->stage
== DROP_REFERENCE
) {
6067 if (wc
->flags
[level
] & BTRFS_BLOCK_FLAG_FULL_BACKREF
) {
6068 parent
= path
->nodes
[level
]->start
;
6070 BUG_ON(root
->root_key
.objectid
!=
6071 btrfs_header_owner(path
->nodes
[level
]));
6075 ret
= btrfs_free_extent(trans
, root
, bytenr
, blocksize
, parent
,
6076 root
->root_key
.objectid
, level
- 1, 0);
6079 btrfs_tree_unlock(next
);
6080 free_extent_buffer(next
);
6086 * hepler to process tree block while walking up the tree.
6088 * when wc->stage == DROP_REFERENCE, this function drops
6089 * reference count on the block.
6091 * when wc->stage == UPDATE_BACKREF, this function changes
6092 * wc->stage back to DROP_REFERENCE if we changed wc->stage
6093 * to UPDATE_BACKREF previously while processing the block.
6095 * NOTE: return value 1 means we should stop walking up.
6097 static noinline
int walk_up_proc(struct btrfs_trans_handle
*trans
,
6098 struct btrfs_root
*root
,
6099 struct btrfs_path
*path
,
6100 struct walk_control
*wc
)
6103 int level
= wc
->level
;
6104 struct extent_buffer
*eb
= path
->nodes
[level
];
6107 if (wc
->stage
== UPDATE_BACKREF
) {
6108 BUG_ON(wc
->shared_level
< level
);
6109 if (level
< wc
->shared_level
)
6112 ret
= find_next_key(path
, level
+ 1, &wc
->update_progress
);
6116 wc
->stage
= DROP_REFERENCE
;
6117 wc
->shared_level
= -1;
6118 path
->slots
[level
] = 0;
6121 * check reference count again if the block isn't locked.
6122 * we should start walking down the tree again if reference
6125 if (!path
->locks
[level
]) {
6127 btrfs_tree_lock(eb
);
6128 btrfs_set_lock_blocking(eb
);
6129 path
->locks
[level
] = 1;
6131 ret
= btrfs_lookup_extent_info(trans
, root
,
6136 BUG_ON(wc
->refs
[level
] == 0);
6137 if (wc
->refs
[level
] == 1) {
6138 btrfs_tree_unlock(eb
);
6139 path
->locks
[level
] = 0;
6145 /* wc->stage == DROP_REFERENCE */
6146 BUG_ON(wc
->refs
[level
] > 1 && !path
->locks
[level
]);
6148 if (wc
->refs
[level
] == 1) {
6150 if (wc
->flags
[level
] & BTRFS_BLOCK_FLAG_FULL_BACKREF
)
6151 ret
= btrfs_dec_ref(trans
, root
, eb
, 1);
6153 ret
= btrfs_dec_ref(trans
, root
, eb
, 0);
6156 /* make block locked assertion in clean_tree_block happy */
6157 if (!path
->locks
[level
] &&
6158 btrfs_header_generation(eb
) == trans
->transid
) {
6159 btrfs_tree_lock(eb
);
6160 btrfs_set_lock_blocking(eb
);
6161 path
->locks
[level
] = 1;
6163 clean_tree_block(trans
, root
, eb
);
6166 if (eb
== root
->node
) {
6167 if (wc
->flags
[level
] & BTRFS_BLOCK_FLAG_FULL_BACKREF
)
6170 BUG_ON(root
->root_key
.objectid
!=
6171 btrfs_header_owner(eb
));
6173 if (wc
->flags
[level
+ 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF
)
6174 parent
= path
->nodes
[level
+ 1]->start
;
6176 BUG_ON(root
->root_key
.objectid
!=
6177 btrfs_header_owner(path
->nodes
[level
+ 1]));
6180 btrfs_free_tree_block(trans
, root
, eb
, parent
, wc
->refs
[level
] == 1);
6182 wc
->refs
[level
] = 0;
6183 wc
->flags
[level
] = 0;
6187 static noinline
int walk_down_tree(struct btrfs_trans_handle
*trans
,
6188 struct btrfs_root
*root
,
6189 struct btrfs_path
*path
,
6190 struct walk_control
*wc
)
6192 int level
= wc
->level
;
6193 int lookup_info
= 1;
6196 while (level
>= 0) {
6197 ret
= walk_down_proc(trans
, root
, path
, wc
, lookup_info
);
6204 if (path
->slots
[level
] >=
6205 btrfs_header_nritems(path
->nodes
[level
]))
6208 ret
= do_walk_down(trans
, root
, path
, wc
, &lookup_info
);
6210 path
->slots
[level
]++;
6219 static noinline
int walk_up_tree(struct btrfs_trans_handle
*trans
,
6220 struct btrfs_root
*root
,
6221 struct btrfs_path
*path
,
6222 struct walk_control
*wc
, int max_level
)
6224 int level
= wc
->level
;
6227 path
->slots
[level
] = btrfs_header_nritems(path
->nodes
[level
]);
6228 while (level
< max_level
&& path
->nodes
[level
]) {
6230 if (path
->slots
[level
] + 1 <
6231 btrfs_header_nritems(path
->nodes
[level
])) {
6232 path
->slots
[level
]++;
6235 ret
= walk_up_proc(trans
, root
, path
, wc
);
6239 if (path
->locks
[level
]) {
6240 btrfs_tree_unlock(path
->nodes
[level
]);
6241 path
->locks
[level
] = 0;
6243 free_extent_buffer(path
->nodes
[level
]);
6244 path
->nodes
[level
] = NULL
;
6252 * drop a subvolume tree.
6254 * this function traverses the tree freeing any blocks that only
6255 * referenced by the tree.
6257 * when a shared tree block is found. this function decreases its
6258 * reference count by one. if update_ref is true, this function
6259 * also make sure backrefs for the shared block and all lower level
6260 * blocks are properly updated.
6262 int btrfs_drop_snapshot(struct btrfs_root
*root
,
6263 struct btrfs_block_rsv
*block_rsv
, int update_ref
)
6265 struct btrfs_path
*path
;
6266 struct btrfs_trans_handle
*trans
;
6267 struct btrfs_root
*tree_root
= root
->fs_info
->tree_root
;
6268 struct btrfs_root_item
*root_item
= &root
->root_item
;
6269 struct walk_control
*wc
;
6270 struct btrfs_key key
;
6275 path
= btrfs_alloc_path();
6278 wc
= kzalloc(sizeof(*wc
), GFP_NOFS
);
6281 trans
= btrfs_start_transaction(tree_root
, 0);
6282 BUG_ON(IS_ERR(trans
));
6285 trans
->block_rsv
= block_rsv
;
6287 if (btrfs_disk_key_objectid(&root_item
->drop_progress
) == 0) {
6288 level
= btrfs_header_level(root
->node
);
6289 path
->nodes
[level
] = btrfs_lock_root_node(root
);
6290 btrfs_set_lock_blocking(path
->nodes
[level
]);
6291 path
->slots
[level
] = 0;
6292 path
->locks
[level
] = 1;
6293 memset(&wc
->update_progress
, 0,
6294 sizeof(wc
->update_progress
));
6296 btrfs_disk_key_to_cpu(&key
, &root_item
->drop_progress
);
6297 memcpy(&wc
->update_progress
, &key
,
6298 sizeof(wc
->update_progress
));
6300 level
= root_item
->drop_level
;
6302 path
->lowest_level
= level
;
6303 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
6304 path
->lowest_level
= 0;
6312 * unlock our path, this is safe because only this
6313 * function is allowed to delete this snapshot
6315 btrfs_unlock_up_safe(path
, 0);
6317 level
= btrfs_header_level(root
->node
);
6319 btrfs_tree_lock(path
->nodes
[level
]);
6320 btrfs_set_lock_blocking(path
->nodes
[level
]);
6322 ret
= btrfs_lookup_extent_info(trans
, root
,
6323 path
->nodes
[level
]->start
,
6324 path
->nodes
[level
]->len
,
6328 BUG_ON(wc
->refs
[level
] == 0);
6330 if (level
== root_item
->drop_level
)
6333 btrfs_tree_unlock(path
->nodes
[level
]);
6334 WARN_ON(wc
->refs
[level
] != 1);
6340 wc
->shared_level
= -1;
6341 wc
->stage
= DROP_REFERENCE
;
6342 wc
->update_ref
= update_ref
;
6344 wc
->reada_count
= BTRFS_NODEPTRS_PER_BLOCK(root
);
6347 ret
= walk_down_tree(trans
, root
, path
, wc
);
6353 ret
= walk_up_tree(trans
, root
, path
, wc
, BTRFS_MAX_LEVEL
);
6360 BUG_ON(wc
->stage
!= DROP_REFERENCE
);
6364 if (wc
->stage
== DROP_REFERENCE
) {
6366 btrfs_node_key(path
->nodes
[level
],
6367 &root_item
->drop_progress
,
6368 path
->slots
[level
]);
6369 root_item
->drop_level
= level
;
6372 BUG_ON(wc
->level
== 0);
6373 if (btrfs_should_end_transaction(trans
, tree_root
)) {
6374 ret
= btrfs_update_root(trans
, tree_root
,
6379 btrfs_end_transaction_throttle(trans
, tree_root
);
6380 trans
= btrfs_start_transaction(tree_root
, 0);
6381 BUG_ON(IS_ERR(trans
));
6383 trans
->block_rsv
= block_rsv
;
6386 btrfs_release_path(root
, path
);
6389 ret
= btrfs_del_root(trans
, tree_root
, &root
->root_key
);
6392 if (root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
) {
6393 ret
= btrfs_find_last_root(tree_root
, root
->root_key
.objectid
,
6397 /* if we fail to delete the orphan item this time
6398 * around, it'll get picked up the next time.
6400 * The most common failure here is just -ENOENT.
6402 btrfs_del_orphan_item(trans
, tree_root
,
6403 root
->root_key
.objectid
);
6407 if (root
->in_radix
) {
6408 btrfs_free_fs_root(tree_root
->fs_info
, root
);
6410 free_extent_buffer(root
->node
);
6411 free_extent_buffer(root
->commit_root
);
6415 btrfs_end_transaction_throttle(trans
, tree_root
);
6417 btrfs_free_path(path
);
6422 * drop subtree rooted at tree block 'node'.
6424 * NOTE: this function will unlock and release tree block 'node'
6426 int btrfs_drop_subtree(struct btrfs_trans_handle
*trans
,
6427 struct btrfs_root
*root
,
6428 struct extent_buffer
*node
,
6429 struct extent_buffer
*parent
)
6431 struct btrfs_path
*path
;
6432 struct walk_control
*wc
;
6438 BUG_ON(root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
);
6440 path
= btrfs_alloc_path();
6443 wc
= kzalloc(sizeof(*wc
), GFP_NOFS
);
6446 btrfs_assert_tree_locked(parent
);
6447 parent_level
= btrfs_header_level(parent
);
6448 extent_buffer_get(parent
);
6449 path
->nodes
[parent_level
] = parent
;
6450 path
->slots
[parent_level
] = btrfs_header_nritems(parent
);
6452 btrfs_assert_tree_locked(node
);
6453 level
= btrfs_header_level(node
);
6454 path
->nodes
[level
] = node
;
6455 path
->slots
[level
] = 0;
6456 path
->locks
[level
] = 1;
6458 wc
->refs
[parent_level
] = 1;
6459 wc
->flags
[parent_level
] = BTRFS_BLOCK_FLAG_FULL_BACKREF
;
6461 wc
->shared_level
= -1;
6462 wc
->stage
= DROP_REFERENCE
;
6465 wc
->reada_count
= BTRFS_NODEPTRS_PER_BLOCK(root
);
6468 wret
= walk_down_tree(trans
, root
, path
, wc
);
6474 wret
= walk_up_tree(trans
, root
, path
, wc
, parent_level
);
6482 btrfs_free_path(path
);
6487 static unsigned long calc_ra(unsigned long start
, unsigned long last
,
6490 return min(last
, start
+ nr
- 1);
6493 static noinline
int relocate_inode_pages(struct inode
*inode
, u64 start
,
6498 unsigned long first_index
;
6499 unsigned long last_index
;
6502 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
6503 struct file_ra_state
*ra
;
6504 struct btrfs_ordered_extent
*ordered
;
6505 unsigned int total_read
= 0;
6506 unsigned int total_dirty
= 0;
6509 ra
= kzalloc(sizeof(*ra
), GFP_NOFS
);
6513 mutex_lock(&inode
->i_mutex
);
6514 first_index
= start
>> PAGE_CACHE_SHIFT
;
6515 last_index
= (start
+ len
- 1) >> PAGE_CACHE_SHIFT
;
6517 /* make sure the dirty trick played by the caller work */
6518 ret
= invalidate_inode_pages2_range(inode
->i_mapping
,
6519 first_index
, last_index
);
6523 file_ra_state_init(ra
, inode
->i_mapping
);
6525 for (i
= first_index
; i
<= last_index
; i
++) {
6526 if (total_read
% ra
->ra_pages
== 0) {
6527 btrfs_force_ra(inode
->i_mapping
, ra
, NULL
, i
,
6528 calc_ra(i
, last_index
, ra
->ra_pages
));
6532 if (((u64
)i
<< PAGE_CACHE_SHIFT
) > i_size_read(inode
))
6534 page
= grab_cache_page(inode
->i_mapping
, i
);
6539 if (!PageUptodate(page
)) {
6540 btrfs_readpage(NULL
, page
);
6542 if (!PageUptodate(page
)) {
6544 page_cache_release(page
);
6549 wait_on_page_writeback(page
);
6551 page_start
= (u64
)page
->index
<< PAGE_CACHE_SHIFT
;
6552 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
6553 lock_extent(io_tree
, page_start
, page_end
, GFP_NOFS
);
6555 ordered
= btrfs_lookup_ordered_extent(inode
, page_start
);
6557 unlock_extent(io_tree
, page_start
, page_end
, GFP_NOFS
);
6559 page_cache_release(page
);
6560 btrfs_start_ordered_extent(inode
, ordered
, 1);
6561 btrfs_put_ordered_extent(ordered
);
6564 set_page_extent_mapped(page
);
6566 if (i
== first_index
)
6567 set_extent_bits(io_tree
, page_start
, page_end
,
6568 EXTENT_BOUNDARY
, GFP_NOFS
);
6569 btrfs_set_extent_delalloc(inode
, page_start
, page_end
);
6571 set_page_dirty(page
);
6574 unlock_extent(io_tree
, page_start
, page_end
, GFP_NOFS
);
6576 page_cache_release(page
);
6581 mutex_unlock(&inode
->i_mutex
);
6582 balance_dirty_pages_ratelimited_nr(inode
->i_mapping
, total_dirty
);
6586 static noinline
int relocate_data_extent(struct inode
*reloc_inode
,
6587 struct btrfs_key
*extent_key
,
6590 struct btrfs_root
*root
= BTRFS_I(reloc_inode
)->root
;
6591 struct extent_map_tree
*em_tree
= &BTRFS_I(reloc_inode
)->extent_tree
;
6592 struct extent_map
*em
;
6593 u64 start
= extent_key
->objectid
- offset
;
6594 u64 end
= start
+ extent_key
->offset
- 1;
6596 em
= alloc_extent_map(GFP_NOFS
);
6600 em
->len
= extent_key
->offset
;
6601 em
->block_len
= extent_key
->offset
;
6602 em
->block_start
= extent_key
->objectid
;
6603 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
6604 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
6606 /* setup extent map to cheat btrfs_readpage */
6607 lock_extent(&BTRFS_I(reloc_inode
)->io_tree
, start
, end
, GFP_NOFS
);
6610 write_lock(&em_tree
->lock
);
6611 ret
= add_extent_mapping(em_tree
, em
);
6612 write_unlock(&em_tree
->lock
);
6613 if (ret
!= -EEXIST
) {
6614 free_extent_map(em
);
6617 btrfs_drop_extent_cache(reloc_inode
, start
, end
, 0);
6619 unlock_extent(&BTRFS_I(reloc_inode
)->io_tree
, start
, end
, GFP_NOFS
);
6621 return relocate_inode_pages(reloc_inode
, start
, extent_key
->offset
);
6624 struct btrfs_ref_path
{
6626 u64 nodes
[BTRFS_MAX_LEVEL
];
6628 u64 root_generation
;
6635 struct btrfs_key node_keys
[BTRFS_MAX_LEVEL
];
6636 u64 new_nodes
[BTRFS_MAX_LEVEL
];
6639 struct disk_extent
{
6650 static int is_cowonly_root(u64 root_objectid
)
6652 if (root_objectid
== BTRFS_ROOT_TREE_OBJECTID
||
6653 root_objectid
== BTRFS_EXTENT_TREE_OBJECTID
||
6654 root_objectid
== BTRFS_CHUNK_TREE_OBJECTID
||
6655 root_objectid
== BTRFS_DEV_TREE_OBJECTID
||
6656 root_objectid
== BTRFS_TREE_LOG_OBJECTID
||
6657 root_objectid
== BTRFS_CSUM_TREE_OBJECTID
)
6662 static noinline
int __next_ref_path(struct btrfs_trans_handle
*trans
,
6663 struct btrfs_root
*extent_root
,
6664 struct btrfs_ref_path
*ref_path
,
6667 struct extent_buffer
*leaf
;
6668 struct btrfs_path
*path
;
6669 struct btrfs_extent_ref
*ref
;
6670 struct btrfs_key key
;
6671 struct btrfs_key found_key
;
6677 path
= btrfs_alloc_path();
6682 ref_path
->lowest_level
= -1;
6683 ref_path
->current_level
= -1;
6684 ref_path
->shared_level
= -1;
6688 level
= ref_path
->current_level
- 1;
6689 while (level
>= -1) {
6691 if (level
< ref_path
->lowest_level
)
6695 bytenr
= ref_path
->nodes
[level
];
6697 bytenr
= ref_path
->extent_start
;
6698 BUG_ON(bytenr
== 0);
6700 parent
= ref_path
->nodes
[level
+ 1];
6701 ref_path
->nodes
[level
+ 1] = 0;
6702 ref_path
->current_level
= level
;
6703 BUG_ON(parent
== 0);
6705 key
.objectid
= bytenr
;
6706 key
.offset
= parent
+ 1;
6707 key
.type
= BTRFS_EXTENT_REF_KEY
;
6709 ret
= btrfs_search_slot(trans
, extent_root
, &key
, path
, 0, 0);
6714 leaf
= path
->nodes
[0];
6715 nritems
= btrfs_header_nritems(leaf
);
6716 if (path
->slots
[0] >= nritems
) {
6717 ret
= btrfs_next_leaf(extent_root
, path
);
6722 leaf
= path
->nodes
[0];
6725 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
6726 if (found_key
.objectid
== bytenr
&&
6727 found_key
.type
== BTRFS_EXTENT_REF_KEY
) {
6728 if (level
< ref_path
->shared_level
)
6729 ref_path
->shared_level
= level
;
6734 btrfs_release_path(extent_root
, path
);
6737 /* reached lowest level */
6741 level
= ref_path
->current_level
;
6742 while (level
< BTRFS_MAX_LEVEL
- 1) {
6746 bytenr
= ref_path
->nodes
[level
];
6748 bytenr
= ref_path
->extent_start
;
6750 BUG_ON(bytenr
== 0);
6752 key
.objectid
= bytenr
;
6754 key
.type
= BTRFS_EXTENT_REF_KEY
;
6756 ret
= btrfs_search_slot(trans
, extent_root
, &key
, path
, 0, 0);
6760 leaf
= path
->nodes
[0];
6761 nritems
= btrfs_header_nritems(leaf
);
6762 if (path
->slots
[0] >= nritems
) {
6763 ret
= btrfs_next_leaf(extent_root
, path
);
6767 /* the extent was freed by someone */
6768 if (ref_path
->lowest_level
== level
)
6770 btrfs_release_path(extent_root
, path
);
6773 leaf
= path
->nodes
[0];
6776 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
6777 if (found_key
.objectid
!= bytenr
||
6778 found_key
.type
!= BTRFS_EXTENT_REF_KEY
) {
6779 /* the extent was freed by someone */
6780 if (ref_path
->lowest_level
== level
) {
6784 btrfs_release_path(extent_root
, path
);
6788 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
6789 struct btrfs_extent_ref
);
6790 ref_objectid
= btrfs_ref_objectid(leaf
, ref
);
6791 if (ref_objectid
< BTRFS_FIRST_FREE_OBJECTID
) {
6793 level
= (int)ref_objectid
;
6794 BUG_ON(level
>= BTRFS_MAX_LEVEL
);
6795 ref_path
->lowest_level
= level
;
6796 ref_path
->current_level
= level
;
6797 ref_path
->nodes
[level
] = bytenr
;
6799 WARN_ON(ref_objectid
!= level
);
6802 WARN_ON(level
!= -1);
6806 if (ref_path
->lowest_level
== level
) {
6807 ref_path
->owner_objectid
= ref_objectid
;
6808 ref_path
->num_refs
= btrfs_ref_num_refs(leaf
, ref
);
6812 * the block is tree root or the block isn't in reference
6815 if (found_key
.objectid
== found_key
.offset
||
6816 is_cowonly_root(btrfs_ref_root(leaf
, ref
))) {
6817 ref_path
->root_objectid
= btrfs_ref_root(leaf
, ref
);
6818 ref_path
->root_generation
=
6819 btrfs_ref_generation(leaf
, ref
);
6821 /* special reference from the tree log */
6822 ref_path
->nodes
[0] = found_key
.offset
;
6823 ref_path
->current_level
= 0;
6830 BUG_ON(ref_path
->nodes
[level
] != 0);
6831 ref_path
->nodes
[level
] = found_key
.offset
;
6832 ref_path
->current_level
= level
;
6835 * the reference was created in the running transaction,
6836 * no need to continue walking up.
6838 if (btrfs_ref_generation(leaf
, ref
) == trans
->transid
) {
6839 ref_path
->root_objectid
= btrfs_ref_root(leaf
, ref
);
6840 ref_path
->root_generation
=
6841 btrfs_ref_generation(leaf
, ref
);
6846 btrfs_release_path(extent_root
, path
);
6849 /* reached max tree level, but no tree root found. */
6852 btrfs_free_path(path
);
6856 static int btrfs_first_ref_path(struct btrfs_trans_handle
*trans
,
6857 struct btrfs_root
*extent_root
,
6858 struct btrfs_ref_path
*ref_path
,
6861 memset(ref_path
, 0, sizeof(*ref_path
));
6862 ref_path
->extent_start
= extent_start
;
6864 return __next_ref_path(trans
, extent_root
, ref_path
, 1);
6867 static int btrfs_next_ref_path(struct btrfs_trans_handle
*trans
,
6868 struct btrfs_root
*extent_root
,
6869 struct btrfs_ref_path
*ref_path
)
6871 return __next_ref_path(trans
, extent_root
, ref_path
, 0);
6874 static noinline
int get_new_locations(struct inode
*reloc_inode
,
6875 struct btrfs_key
*extent_key
,
6876 u64 offset
, int no_fragment
,
6877 struct disk_extent
**extents
,
6880 struct btrfs_root
*root
= BTRFS_I(reloc_inode
)->root
;
6881 struct btrfs_path
*path
;
6882 struct btrfs_file_extent_item
*fi
;
6883 struct extent_buffer
*leaf
;
6884 struct disk_extent
*exts
= *extents
;
6885 struct btrfs_key found_key
;
6890 int max
= *nr_extents
;
6893 WARN_ON(!no_fragment
&& *extents
);
6896 exts
= kmalloc(sizeof(*exts
) * max
, GFP_NOFS
);
6901 path
= btrfs_alloc_path();
6904 cur_pos
= extent_key
->objectid
- offset
;
6905 last_byte
= extent_key
->objectid
+ extent_key
->offset
;
6906 ret
= btrfs_lookup_file_extent(NULL
, root
, path
, reloc_inode
->i_ino
,
6916 leaf
= path
->nodes
[0];
6917 nritems
= btrfs_header_nritems(leaf
);
6918 if (path
->slots
[0] >= nritems
) {
6919 ret
= btrfs_next_leaf(root
, path
);
6924 leaf
= path
->nodes
[0];
6927 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
6928 if (found_key
.offset
!= cur_pos
||
6929 found_key
.type
!= BTRFS_EXTENT_DATA_KEY
||
6930 found_key
.objectid
!= reloc_inode
->i_ino
)
6933 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
6934 struct btrfs_file_extent_item
);
6935 if (btrfs_file_extent_type(leaf
, fi
) !=
6936 BTRFS_FILE_EXTENT_REG
||
6937 btrfs_file_extent_disk_bytenr(leaf
, fi
) == 0)
6941 struct disk_extent
*old
= exts
;
6943 exts
= kzalloc(sizeof(*exts
) * max
, GFP_NOFS
);
6944 memcpy(exts
, old
, sizeof(*exts
) * nr
);
6945 if (old
!= *extents
)
6949 exts
[nr
].disk_bytenr
=
6950 btrfs_file_extent_disk_bytenr(leaf
, fi
);
6951 exts
[nr
].disk_num_bytes
=
6952 btrfs_file_extent_disk_num_bytes(leaf
, fi
);
6953 exts
[nr
].offset
= btrfs_file_extent_offset(leaf
, fi
);
6954 exts
[nr
].num_bytes
= btrfs_file_extent_num_bytes(leaf
, fi
);
6955 exts
[nr
].ram_bytes
= btrfs_file_extent_ram_bytes(leaf
, fi
);
6956 exts
[nr
].compression
= btrfs_file_extent_compression(leaf
, fi
);
6957 exts
[nr
].encryption
= btrfs_file_extent_encryption(leaf
, fi
);
6958 exts
[nr
].other_encoding
= btrfs_file_extent_other_encoding(leaf
,
6960 BUG_ON(exts
[nr
].offset
> 0);
6961 BUG_ON(exts
[nr
].compression
|| exts
[nr
].encryption
);
6962 BUG_ON(exts
[nr
].num_bytes
!= exts
[nr
].disk_num_bytes
);
6964 cur_pos
+= exts
[nr
].num_bytes
;
6967 if (cur_pos
+ offset
>= last_byte
)
6977 BUG_ON(cur_pos
+ offset
> last_byte
);
6978 if (cur_pos
+ offset
< last_byte
) {
6984 btrfs_free_path(path
);
6986 if (exts
!= *extents
)
6995 static noinline
int replace_one_extent(struct btrfs_trans_handle
*trans
,
6996 struct btrfs_root
*root
,
6997 struct btrfs_path
*path
,
6998 struct btrfs_key
*extent_key
,
6999 struct btrfs_key
*leaf_key
,
7000 struct btrfs_ref_path
*ref_path
,
7001 struct disk_extent
*new_extents
,
7004 struct extent_buffer
*leaf
;
7005 struct btrfs_file_extent_item
*fi
;
7006 struct inode
*inode
= NULL
;
7007 struct btrfs_key key
;
7012 u64 search_end
= (u64
)-1;
7015 int extent_locked
= 0;
7019 memcpy(&key
, leaf_key
, sizeof(key
));
7020 if (ref_path
->owner_objectid
!= BTRFS_MULTIPLE_OBJECTIDS
) {
7021 if (key
.objectid
< ref_path
->owner_objectid
||
7022 (key
.objectid
== ref_path
->owner_objectid
&&
7023 key
.type
< BTRFS_EXTENT_DATA_KEY
)) {
7024 key
.objectid
= ref_path
->owner_objectid
;
7025 key
.type
= BTRFS_EXTENT_DATA_KEY
;
7031 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
7035 leaf
= path
->nodes
[0];
7036 nritems
= btrfs_header_nritems(leaf
);
7038 if (extent_locked
&& ret
> 0) {
7040 * the file extent item was modified by someone
7041 * before the extent got locked.
7043 unlock_extent(&BTRFS_I(inode
)->io_tree
, lock_start
,
7044 lock_end
, GFP_NOFS
);
7048 if (path
->slots
[0] >= nritems
) {
7049 if (++nr_scaned
> 2)
7052 BUG_ON(extent_locked
);
7053 ret
= btrfs_next_leaf(root
, path
);
7058 leaf
= path
->nodes
[0];
7059 nritems
= btrfs_header_nritems(leaf
);
7062 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
7064 if (ref_path
->owner_objectid
!= BTRFS_MULTIPLE_OBJECTIDS
) {
7065 if ((key
.objectid
> ref_path
->owner_objectid
) ||
7066 (key
.objectid
== ref_path
->owner_objectid
&&
7067 key
.type
> BTRFS_EXTENT_DATA_KEY
) ||
7068 key
.offset
>= search_end
)
7072 if (inode
&& key
.objectid
!= inode
->i_ino
) {
7073 BUG_ON(extent_locked
);
7074 btrfs_release_path(root
, path
);
7075 mutex_unlock(&inode
->i_mutex
);
7081 if (key
.type
!= BTRFS_EXTENT_DATA_KEY
) {
7086 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
7087 struct btrfs_file_extent_item
);
7088 extent_type
= btrfs_file_extent_type(leaf
, fi
);
7089 if ((extent_type
!= BTRFS_FILE_EXTENT_REG
&&
7090 extent_type
!= BTRFS_FILE_EXTENT_PREALLOC
) ||
7091 (btrfs_file_extent_disk_bytenr(leaf
, fi
) !=
7092 extent_key
->objectid
)) {
7098 num_bytes
= btrfs_file_extent_num_bytes(leaf
, fi
);
7099 ext_offset
= btrfs_file_extent_offset(leaf
, fi
);
7101 if (search_end
== (u64
)-1) {
7102 search_end
= key
.offset
- ext_offset
+
7103 btrfs_file_extent_ram_bytes(leaf
, fi
);
7106 if (!extent_locked
) {
7107 lock_start
= key
.offset
;
7108 lock_end
= lock_start
+ num_bytes
- 1;
7110 if (lock_start
> key
.offset
||
7111 lock_end
+ 1 < key
.offset
+ num_bytes
) {
7112 unlock_extent(&BTRFS_I(inode
)->io_tree
,
7113 lock_start
, lock_end
, GFP_NOFS
);
7119 btrfs_release_path(root
, path
);
7121 inode
= btrfs_iget_locked(root
->fs_info
->sb
,
7122 key
.objectid
, root
);
7123 if (inode
->i_state
& I_NEW
) {
7124 BTRFS_I(inode
)->root
= root
;
7125 BTRFS_I(inode
)->location
.objectid
=
7127 BTRFS_I(inode
)->location
.type
=
7128 BTRFS_INODE_ITEM_KEY
;
7129 BTRFS_I(inode
)->location
.offset
= 0;
7130 btrfs_read_locked_inode(inode
);
7131 unlock_new_inode(inode
);
7134 * some code call btrfs_commit_transaction while
7135 * holding the i_mutex, so we can't use mutex_lock
7138 if (is_bad_inode(inode
) ||
7139 !mutex_trylock(&inode
->i_mutex
)) {
7142 key
.offset
= (u64
)-1;
7147 if (!extent_locked
) {
7148 struct btrfs_ordered_extent
*ordered
;
7150 btrfs_release_path(root
, path
);
7152 lock_extent(&BTRFS_I(inode
)->io_tree
, lock_start
,
7153 lock_end
, GFP_NOFS
);
7154 ordered
= btrfs_lookup_first_ordered_extent(inode
,
7157 ordered
->file_offset
<= lock_end
&&
7158 ordered
->file_offset
+ ordered
->len
> lock_start
) {
7159 unlock_extent(&BTRFS_I(inode
)->io_tree
,
7160 lock_start
, lock_end
, GFP_NOFS
);
7161 btrfs_start_ordered_extent(inode
, ordered
, 1);
7162 btrfs_put_ordered_extent(ordered
);
7163 key
.offset
+= num_bytes
;
7167 btrfs_put_ordered_extent(ordered
);
7173 if (nr_extents
== 1) {
7174 /* update extent pointer in place */
7175 btrfs_set_file_extent_disk_bytenr(leaf
, fi
,
7176 new_extents
[0].disk_bytenr
);
7177 btrfs_set_file_extent_disk_num_bytes(leaf
, fi
,
7178 new_extents
[0].disk_num_bytes
);
7179 btrfs_mark_buffer_dirty(leaf
);
7181 btrfs_drop_extent_cache(inode
, key
.offset
,
7182 key
.offset
+ num_bytes
- 1, 0);
7184 ret
= btrfs_inc_extent_ref(trans
, root
,
7185 new_extents
[0].disk_bytenr
,
7186 new_extents
[0].disk_num_bytes
,
7188 root
->root_key
.objectid
,
7193 ret
= btrfs_free_extent(trans
, root
,
7194 extent_key
->objectid
,
7197 btrfs_header_owner(leaf
),
7198 btrfs_header_generation(leaf
),
7202 btrfs_release_path(root
, path
);
7203 key
.offset
+= num_bytes
;
7211 * drop old extent pointer at first, then insert the
7212 * new pointers one bye one
7214 btrfs_release_path(root
, path
);
7215 ret
= btrfs_drop_extents(trans
, root
, inode
, key
.offset
,
7216 key
.offset
+ num_bytes
,
7217 key
.offset
, &alloc_hint
);
7220 for (i
= 0; i
< nr_extents
; i
++) {
7221 if (ext_offset
>= new_extents
[i
].num_bytes
) {
7222 ext_offset
-= new_extents
[i
].num_bytes
;
7225 extent_len
= min(new_extents
[i
].num_bytes
-
7226 ext_offset
, num_bytes
);
7228 ret
= btrfs_insert_empty_item(trans
, root
,
7233 leaf
= path
->nodes
[0];
7234 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
7235 struct btrfs_file_extent_item
);
7236 btrfs_set_file_extent_generation(leaf
, fi
,
7238 btrfs_set_file_extent_type(leaf
, fi
,
7239 BTRFS_FILE_EXTENT_REG
);
7240 btrfs_set_file_extent_disk_bytenr(leaf
, fi
,
7241 new_extents
[i
].disk_bytenr
);
7242 btrfs_set_file_extent_disk_num_bytes(leaf
, fi
,
7243 new_extents
[i
].disk_num_bytes
);
7244 btrfs_set_file_extent_ram_bytes(leaf
, fi
,
7245 new_extents
[i
].ram_bytes
);
7247 btrfs_set_file_extent_compression(leaf
, fi
,
7248 new_extents
[i
].compression
);
7249 btrfs_set_file_extent_encryption(leaf
, fi
,
7250 new_extents
[i
].encryption
);
7251 btrfs_set_file_extent_other_encoding(leaf
, fi
,
7252 new_extents
[i
].other_encoding
);
7254 btrfs_set_file_extent_num_bytes(leaf
, fi
,
7256 ext_offset
+= new_extents
[i
].offset
;
7257 btrfs_set_file_extent_offset(leaf
, fi
,
7259 btrfs_mark_buffer_dirty(leaf
);
7261 btrfs_drop_extent_cache(inode
, key
.offset
,
7262 key
.offset
+ extent_len
- 1, 0);
7264 ret
= btrfs_inc_extent_ref(trans
, root
,
7265 new_extents
[i
].disk_bytenr
,
7266 new_extents
[i
].disk_num_bytes
,
7268 root
->root_key
.objectid
,
7269 trans
->transid
, key
.objectid
);
7271 btrfs_release_path(root
, path
);
7273 inode_add_bytes(inode
, extent_len
);
7276 num_bytes
-= extent_len
;
7277 key
.offset
+= extent_len
;
7282 BUG_ON(i
>= nr_extents
);
7286 if (extent_locked
) {
7287 unlock_extent(&BTRFS_I(inode
)->io_tree
, lock_start
,
7288 lock_end
, GFP_NOFS
);
7292 if (ref_path
->owner_objectid
!= BTRFS_MULTIPLE_OBJECTIDS
&&
7293 key
.offset
>= search_end
)
7300 btrfs_release_path(root
, path
);
7302 mutex_unlock(&inode
->i_mutex
);
7303 if (extent_locked
) {
7304 unlock_extent(&BTRFS_I(inode
)->io_tree
, lock_start
,
7305 lock_end
, GFP_NOFS
);
7312 int btrfs_reloc_tree_cache_ref(struct btrfs_trans_handle
*trans
,
7313 struct btrfs_root
*root
,
7314 struct extent_buffer
*buf
, u64 orig_start
)
7319 BUG_ON(btrfs_header_generation(buf
) != trans
->transid
);
7320 BUG_ON(root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
);
7322 level
= btrfs_header_level(buf
);
7324 struct btrfs_leaf_ref
*ref
;
7325 struct btrfs_leaf_ref
*orig_ref
;
7327 orig_ref
= btrfs_lookup_leaf_ref(root
, orig_start
);
7331 ref
= btrfs_alloc_leaf_ref(root
, orig_ref
->nritems
);
7333 btrfs_free_leaf_ref(root
, orig_ref
);
7337 ref
->nritems
= orig_ref
->nritems
;
7338 memcpy(ref
->extents
, orig_ref
->extents
,
7339 sizeof(ref
->extents
[0]) * ref
->nritems
);
7341 btrfs_free_leaf_ref(root
, orig_ref
);
7343 ref
->root_gen
= trans
->transid
;
7344 ref
->bytenr
= buf
->start
;
7345 ref
->owner
= btrfs_header_owner(buf
);
7346 ref
->generation
= btrfs_header_generation(buf
);
7348 ret
= btrfs_add_leaf_ref(root
, ref
, 0);
7350 btrfs_free_leaf_ref(root
, ref
);
7355 static noinline
int invalidate_extent_cache(struct btrfs_root
*root
,
7356 struct extent_buffer
*leaf
,
7357 struct btrfs_block_group_cache
*group
,
7358 struct btrfs_root
*target_root
)
7360 struct btrfs_key key
;
7361 struct inode
*inode
= NULL
;
7362 struct btrfs_file_extent_item
*fi
;
7363 struct extent_state
*cached_state
= NULL
;
7365 u64 skip_objectid
= 0;
7369 nritems
= btrfs_header_nritems(leaf
);
7370 for (i
= 0; i
< nritems
; i
++) {
7371 btrfs_item_key_to_cpu(leaf
, &key
, i
);
7372 if (key
.objectid
== skip_objectid
||
7373 key
.type
!= BTRFS_EXTENT_DATA_KEY
)
7375 fi
= btrfs_item_ptr(leaf
, i
, struct btrfs_file_extent_item
);
7376 if (btrfs_file_extent_type(leaf
, fi
) ==
7377 BTRFS_FILE_EXTENT_INLINE
)
7379 if (btrfs_file_extent_disk_bytenr(leaf
, fi
) == 0)
7381 if (!inode
|| inode
->i_ino
!= key
.objectid
) {
7383 inode
= btrfs_ilookup(target_root
->fs_info
->sb
,
7384 key
.objectid
, target_root
, 1);
7387 skip_objectid
= key
.objectid
;
7390 num_bytes
= btrfs_file_extent_num_bytes(leaf
, fi
);
7392 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, key
.offset
,
7393 key
.offset
+ num_bytes
- 1, 0, &cached_state
,
7395 btrfs_drop_extent_cache(inode
, key
.offset
,
7396 key
.offset
+ num_bytes
- 1, 1);
7397 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, key
.offset
,
7398 key
.offset
+ num_bytes
- 1, &cached_state
,
7406 static noinline
int replace_extents_in_leaf(struct btrfs_trans_handle
*trans
,
7407 struct btrfs_root
*root
,
7408 struct extent_buffer
*leaf
,
7409 struct btrfs_block_group_cache
*group
,
7410 struct inode
*reloc_inode
)
7412 struct btrfs_key key
;
7413 struct btrfs_key extent_key
;
7414 struct btrfs_file_extent_item
*fi
;
7415 struct btrfs_leaf_ref
*ref
;
7416 struct disk_extent
*new_extent
;
7425 new_extent
= kmalloc(sizeof(*new_extent
), GFP_NOFS
);
7426 BUG_ON(!new_extent
);
7428 ref
= btrfs_lookup_leaf_ref(root
, leaf
->start
);
7432 nritems
= btrfs_header_nritems(leaf
);
7433 for (i
= 0; i
< nritems
; i
++) {
7434 btrfs_item_key_to_cpu(leaf
, &key
, i
);
7435 if (btrfs_key_type(&key
) != BTRFS_EXTENT_DATA_KEY
)
7437 fi
= btrfs_item_ptr(leaf
, i
, struct btrfs_file_extent_item
);
7438 if (btrfs_file_extent_type(leaf
, fi
) ==
7439 BTRFS_FILE_EXTENT_INLINE
)
7441 bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
7442 num_bytes
= btrfs_file_extent_disk_num_bytes(leaf
, fi
);
7447 if (bytenr
>= group
->key
.objectid
+ group
->key
.offset
||
7448 bytenr
+ num_bytes
<= group
->key
.objectid
)
7451 extent_key
.objectid
= bytenr
;
7452 extent_key
.offset
= num_bytes
;
7453 extent_key
.type
= BTRFS_EXTENT_ITEM_KEY
;
7455 ret
= get_new_locations(reloc_inode
, &extent_key
,
7456 group
->key
.objectid
, 1,
7457 &new_extent
, &nr_extent
);
7462 BUG_ON(ref
->extents
[ext_index
].bytenr
!= bytenr
);
7463 BUG_ON(ref
->extents
[ext_index
].num_bytes
!= num_bytes
);
7464 ref
->extents
[ext_index
].bytenr
= new_extent
->disk_bytenr
;
7465 ref
->extents
[ext_index
].num_bytes
= new_extent
->disk_num_bytes
;
7467 btrfs_set_file_extent_disk_bytenr(leaf
, fi
,
7468 new_extent
->disk_bytenr
);
7469 btrfs_set_file_extent_disk_num_bytes(leaf
, fi
,
7470 new_extent
->disk_num_bytes
);
7471 btrfs_mark_buffer_dirty(leaf
);
7473 ret
= btrfs_inc_extent_ref(trans
, root
,
7474 new_extent
->disk_bytenr
,
7475 new_extent
->disk_num_bytes
,
7477 root
->root_key
.objectid
,
7478 trans
->transid
, key
.objectid
);
7481 ret
= btrfs_free_extent(trans
, root
,
7482 bytenr
, num_bytes
, leaf
->start
,
7483 btrfs_header_owner(leaf
),
7484 btrfs_header_generation(leaf
),
7490 BUG_ON(ext_index
+ 1 != ref
->nritems
);
7491 btrfs_free_leaf_ref(root
, ref
);
7495 int btrfs_free_reloc_root(struct btrfs_trans_handle
*trans
,
7496 struct btrfs_root
*root
)
7498 struct btrfs_root
*reloc_root
;
7501 if (root
->reloc_root
) {
7502 reloc_root
= root
->reloc_root
;
7503 root
->reloc_root
= NULL
;
7504 list_add(&reloc_root
->dead_list
,
7505 &root
->fs_info
->dead_reloc_roots
);
7507 btrfs_set_root_bytenr(&reloc_root
->root_item
,
7508 reloc_root
->node
->start
);
7509 btrfs_set_root_level(&root
->root_item
,
7510 btrfs_header_level(reloc_root
->node
));
7511 memset(&reloc_root
->root_item
.drop_progress
, 0,
7512 sizeof(struct btrfs_disk_key
));
7513 reloc_root
->root_item
.drop_level
= 0;
7515 ret
= btrfs_update_root(trans
, root
->fs_info
->tree_root
,
7516 &reloc_root
->root_key
,
7517 &reloc_root
->root_item
);
7523 int btrfs_drop_dead_reloc_roots(struct btrfs_root
*root
)
7525 struct btrfs_trans_handle
*trans
;
7526 struct btrfs_root
*reloc_root
;
7527 struct btrfs_root
*prev_root
= NULL
;
7528 struct list_head dead_roots
;
7532 INIT_LIST_HEAD(&dead_roots
);
7533 list_splice_init(&root
->fs_info
->dead_reloc_roots
, &dead_roots
);
7535 while (!list_empty(&dead_roots
)) {
7536 reloc_root
= list_entry(dead_roots
.prev
,
7537 struct btrfs_root
, dead_list
);
7538 list_del_init(&reloc_root
->dead_list
);
7540 BUG_ON(reloc_root
->commit_root
!= NULL
);
7542 trans
= btrfs_join_transaction(root
, 1);
7543 BUG_ON(IS_ERR(trans
));
7545 mutex_lock(&root
->fs_info
->drop_mutex
);
7546 ret
= btrfs_drop_snapshot(trans
, reloc_root
);
7549 mutex_unlock(&root
->fs_info
->drop_mutex
);
7551 nr
= trans
->blocks_used
;
7552 ret
= btrfs_end_transaction(trans
, root
);
7554 btrfs_btree_balance_dirty(root
, nr
);
7557 free_extent_buffer(reloc_root
->node
);
7559 ret
= btrfs_del_root(trans
, root
->fs_info
->tree_root
,
7560 &reloc_root
->root_key
);
7562 mutex_unlock(&root
->fs_info
->drop_mutex
);
7564 nr
= trans
->blocks_used
;
7565 ret
= btrfs_end_transaction(trans
, root
);
7567 btrfs_btree_balance_dirty(root
, nr
);
7570 prev_root
= reloc_root
;
7573 btrfs_remove_leaf_refs(prev_root
, (u64
)-1, 0);
7579 int btrfs_add_dead_reloc_root(struct btrfs_root
*root
)
7581 list_add(&root
->dead_list
, &root
->fs_info
->dead_reloc_roots
);
7585 int btrfs_cleanup_reloc_trees(struct btrfs_root
*root
)
7587 struct btrfs_root
*reloc_root
;
7588 struct btrfs_trans_handle
*trans
;
7589 struct btrfs_key location
;
7593 mutex_lock(&root
->fs_info
->tree_reloc_mutex
);
7594 ret
= btrfs_find_dead_roots(root
, BTRFS_TREE_RELOC_OBJECTID
, NULL
);
7596 found
= !list_empty(&root
->fs_info
->dead_reloc_roots
);
7597 mutex_unlock(&root
->fs_info
->tree_reloc_mutex
);
7600 trans
= btrfs_start_transaction(root
, 1);
7601 BUG_ON(IS_ERR(trans
));
7602 ret
= btrfs_commit_transaction(trans
, root
);
7606 location
.objectid
= BTRFS_DATA_RELOC_TREE_OBJECTID
;
7607 location
.offset
= (u64
)-1;
7608 location
.type
= BTRFS_ROOT_ITEM_KEY
;
7610 reloc_root
= btrfs_read_fs_root_no_name(root
->fs_info
, &location
);
7611 BUG_ON(!reloc_root
);
7612 btrfs_orphan_cleanup(reloc_root
);
7616 static noinline
int init_reloc_tree(struct btrfs_trans_handle
*trans
,
7617 struct btrfs_root
*root
)
7619 struct btrfs_root
*reloc_root
;
7620 struct extent_buffer
*eb
;
7621 struct btrfs_root_item
*root_item
;
7622 struct btrfs_key root_key
;
7625 BUG_ON(!root
->ref_cows
);
7626 if (root
->reloc_root
)
7629 root_item
= kmalloc(sizeof(*root_item
), GFP_NOFS
);
7632 ret
= btrfs_copy_root(trans
, root
, root
->commit_root
,
7633 &eb
, BTRFS_TREE_RELOC_OBJECTID
);
7636 root_key
.objectid
= BTRFS_TREE_RELOC_OBJECTID
;
7637 root_key
.offset
= root
->root_key
.objectid
;
7638 root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
7640 memcpy(root_item
, &root
->root_item
, sizeof(root_item
));
7641 btrfs_set_root_refs(root_item
, 0);
7642 btrfs_set_root_bytenr(root_item
, eb
->start
);
7643 btrfs_set_root_level(root_item
, btrfs_header_level(eb
));
7644 btrfs_set_root_generation(root_item
, trans
->transid
);
7646 btrfs_tree_unlock(eb
);
7647 free_extent_buffer(eb
);
7649 ret
= btrfs_insert_root(trans
, root
->fs_info
->tree_root
,
7650 &root_key
, root_item
);
7654 reloc_root
= btrfs_read_fs_root_no_radix(root
->fs_info
->tree_root
,
7656 BUG_ON(!reloc_root
);
7657 reloc_root
->last_trans
= trans
->transid
;
7658 reloc_root
->commit_root
= NULL
;
7659 reloc_root
->ref_tree
= &root
->fs_info
->reloc_ref_tree
;
7661 root
->reloc_root
= reloc_root
;
7666 * Core function of space balance.
7668 * The idea is using reloc trees to relocate tree blocks in reference
7669 * counted roots. There is one reloc tree for each subvol, and all
7670 * reloc trees share same root key objectid. Reloc trees are snapshots
7671 * of the latest committed roots of subvols (root->commit_root).
7673 * To relocate a tree block referenced by a subvol, there are two steps.
7674 * COW the block through subvol's reloc tree, then update block pointer
7675 * in the subvol to point to the new block. Since all reloc trees share
7676 * same root key objectid, doing special handing for tree blocks owned
7677 * by them is easy. Once a tree block has been COWed in one reloc tree,
7678 * we can use the resulting new block directly when the same block is
7679 * required to COW again through other reloc trees. By this way, relocated
7680 * tree blocks are shared between reloc trees, so they are also shared
7683 static noinline
int relocate_one_path(struct btrfs_trans_handle
*trans
,
7684 struct btrfs_root
*root
,
7685 struct btrfs_path
*path
,
7686 struct btrfs_key
*first_key
,
7687 struct btrfs_ref_path
*ref_path
,
7688 struct btrfs_block_group_cache
*group
,
7689 struct inode
*reloc_inode
)
7691 struct btrfs_root
*reloc_root
;
7692 struct extent_buffer
*eb
= NULL
;
7693 struct btrfs_key
*keys
;
7697 int lowest_level
= 0;
7700 if (ref_path
->owner_objectid
< BTRFS_FIRST_FREE_OBJECTID
)
7701 lowest_level
= ref_path
->owner_objectid
;
7703 if (!root
->ref_cows
) {
7704 path
->lowest_level
= lowest_level
;
7705 ret
= btrfs_search_slot(trans
, root
, first_key
, path
, 0, 1);
7707 path
->lowest_level
= 0;
7708 btrfs_release_path(root
, path
);
7712 mutex_lock(&root
->fs_info
->tree_reloc_mutex
);
7713 ret
= init_reloc_tree(trans
, root
);
7715 reloc_root
= root
->reloc_root
;
7717 shared_level
= ref_path
->shared_level
;
7718 ref_path
->shared_level
= BTRFS_MAX_LEVEL
- 1;
7720 keys
= ref_path
->node_keys
;
7721 nodes
= ref_path
->new_nodes
;
7722 memset(&keys
[shared_level
+ 1], 0,
7723 sizeof(*keys
) * (BTRFS_MAX_LEVEL
- shared_level
- 1));
7724 memset(&nodes
[shared_level
+ 1], 0,
7725 sizeof(*nodes
) * (BTRFS_MAX_LEVEL
- shared_level
- 1));
7727 if (nodes
[lowest_level
] == 0) {
7728 path
->lowest_level
= lowest_level
;
7729 ret
= btrfs_search_slot(trans
, reloc_root
, first_key
, path
,
7732 for (level
= lowest_level
; level
< BTRFS_MAX_LEVEL
; level
++) {
7733 eb
= path
->nodes
[level
];
7734 if (!eb
|| eb
== reloc_root
->node
)
7736 nodes
[level
] = eb
->start
;
7738 btrfs_item_key_to_cpu(eb
, &keys
[level
], 0);
7740 btrfs_node_key_to_cpu(eb
, &keys
[level
], 0);
7743 ref_path
->owner_objectid
>= BTRFS_FIRST_FREE_OBJECTID
) {
7744 eb
= path
->nodes
[0];
7745 ret
= replace_extents_in_leaf(trans
, reloc_root
, eb
,
7746 group
, reloc_inode
);
7749 btrfs_release_path(reloc_root
, path
);
7751 ret
= btrfs_merge_path(trans
, reloc_root
, keys
, nodes
,
7757 * replace tree blocks in the fs tree with tree blocks in
7760 ret
= btrfs_merge_path(trans
, root
, keys
, nodes
, lowest_level
);
7763 if (ref_path
->owner_objectid
>= BTRFS_FIRST_FREE_OBJECTID
) {
7764 ret
= btrfs_search_slot(trans
, reloc_root
, first_key
, path
,
7767 extent_buffer_get(path
->nodes
[0]);
7768 eb
= path
->nodes
[0];
7769 btrfs_release_path(reloc_root
, path
);
7770 ret
= invalidate_extent_cache(reloc_root
, eb
, group
, root
);
7772 free_extent_buffer(eb
);
7775 mutex_unlock(&root
->fs_info
->tree_reloc_mutex
);
7776 path
->lowest_level
= 0;
7780 static noinline
int relocate_tree_block(struct btrfs_trans_handle
*trans
,
7781 struct btrfs_root
*root
,
7782 struct btrfs_path
*path
,
7783 struct btrfs_key
*first_key
,
7784 struct btrfs_ref_path
*ref_path
)
7788 ret
= relocate_one_path(trans
, root
, path
, first_key
,
7789 ref_path
, NULL
, NULL
);
7795 static noinline
int del_extent_zero(struct btrfs_trans_handle
*trans
,
7796 struct btrfs_root
*extent_root
,
7797 struct btrfs_path
*path
,
7798 struct btrfs_key
*extent_key
)
7802 ret
= btrfs_search_slot(trans
, extent_root
, extent_key
, path
, -1, 1);
7805 ret
= btrfs_del_item(trans
, extent_root
, path
);
7807 btrfs_release_path(extent_root
, path
);
7811 static noinline
struct btrfs_root
*read_ref_root(struct btrfs_fs_info
*fs_info
,
7812 struct btrfs_ref_path
*ref_path
)
7814 struct btrfs_key root_key
;
7816 root_key
.objectid
= ref_path
->root_objectid
;
7817 root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
7818 if (is_cowonly_root(ref_path
->root_objectid
))
7819 root_key
.offset
= 0;
7821 root_key
.offset
= (u64
)-1;
7823 return btrfs_read_fs_root_no_name(fs_info
, &root_key
);
7826 static noinline
int relocate_one_extent(struct btrfs_root
*extent_root
,
7827 struct btrfs_path
*path
,
7828 struct btrfs_key
*extent_key
,
7829 struct btrfs_block_group_cache
*group
,
7830 struct inode
*reloc_inode
, int pass
)
7832 struct btrfs_trans_handle
*trans
;
7833 struct btrfs_root
*found_root
;
7834 struct btrfs_ref_path
*ref_path
= NULL
;
7835 struct disk_extent
*new_extents
= NULL
;
7840 struct btrfs_key first_key
;
7844 trans
= btrfs_start_transaction(extent_root
, 1);
7845 BUG_ON(IS_ERR(trans
));
7847 if (extent_key
->objectid
== 0) {
7848 ret
= del_extent_zero(trans
, extent_root
, path
, extent_key
);
7852 ref_path
= kmalloc(sizeof(*ref_path
), GFP_NOFS
);
7858 for (loops
= 0; ; loops
++) {
7860 ret
= btrfs_first_ref_path(trans
, extent_root
, ref_path
,
7861 extent_key
->objectid
);
7863 ret
= btrfs_next_ref_path(trans
, extent_root
, ref_path
);
7870 if (ref_path
->root_objectid
== BTRFS_TREE_LOG_OBJECTID
||
7871 ref_path
->root_objectid
== BTRFS_TREE_RELOC_OBJECTID
)
7874 found_root
= read_ref_root(extent_root
->fs_info
, ref_path
);
7875 BUG_ON(!found_root
);
7877 * for reference counted tree, only process reference paths
7878 * rooted at the latest committed root.
7880 if (found_root
->ref_cows
&&
7881 ref_path
->root_generation
!= found_root
->root_key
.offset
)
7884 if (ref_path
->owner_objectid
>= BTRFS_FIRST_FREE_OBJECTID
) {
7887 * copy data extents to new locations
7889 u64 group_start
= group
->key
.objectid
;
7890 ret
= relocate_data_extent(reloc_inode
,
7899 level
= ref_path
->owner_objectid
;
7902 if (prev_block
!= ref_path
->nodes
[level
]) {
7903 struct extent_buffer
*eb
;
7904 u64 block_start
= ref_path
->nodes
[level
];
7905 u64 block_size
= btrfs_level_size(found_root
, level
);
7907 eb
= read_tree_block(found_root
, block_start
,
7909 btrfs_tree_lock(eb
);
7910 BUG_ON(level
!= btrfs_header_level(eb
));
7913 btrfs_item_key_to_cpu(eb
, &first_key
, 0);
7915 btrfs_node_key_to_cpu(eb
, &first_key
, 0);
7917 btrfs_tree_unlock(eb
);
7918 free_extent_buffer(eb
);
7919 prev_block
= block_start
;
7922 mutex_lock(&extent_root
->fs_info
->trans_mutex
);
7923 btrfs_record_root_in_trans(found_root
);
7924 mutex_unlock(&extent_root
->fs_info
->trans_mutex
);
7925 if (ref_path
->owner_objectid
>= BTRFS_FIRST_FREE_OBJECTID
) {
7927 * try to update data extent references while
7928 * keeping metadata shared between snapshots.
7931 ret
= relocate_one_path(trans
, found_root
,
7932 path
, &first_key
, ref_path
,
7933 group
, reloc_inode
);
7939 * use fallback method to process the remaining
7943 u64 group_start
= group
->key
.objectid
;
7944 new_extents
= kmalloc(sizeof(*new_extents
),
7947 ret
= get_new_locations(reloc_inode
,
7955 ret
= replace_one_extent(trans
, found_root
,
7957 &first_key
, ref_path
,
7958 new_extents
, nr_extents
);
7960 ret
= relocate_tree_block(trans
, found_root
, path
,
7961 &first_key
, ref_path
);
7968 btrfs_end_transaction(trans
, extent_root
);
7975 static u64
update_block_group_flags(struct btrfs_root
*root
, u64 flags
)
7978 u64 stripped
= BTRFS_BLOCK_GROUP_RAID0
|
7979 BTRFS_BLOCK_GROUP_RAID1
| BTRFS_BLOCK_GROUP_RAID10
;
7982 * we add in the count of missing devices because we want
7983 * to make sure that any RAID levels on a degraded FS
7984 * continue to be honored.
7986 num_devices
= root
->fs_info
->fs_devices
->rw_devices
+
7987 root
->fs_info
->fs_devices
->missing_devices
;
7989 if (num_devices
== 1) {
7990 stripped
|= BTRFS_BLOCK_GROUP_DUP
;
7991 stripped
= flags
& ~stripped
;
7993 /* turn raid0 into single device chunks */
7994 if (flags
& BTRFS_BLOCK_GROUP_RAID0
)
7997 /* turn mirroring into duplication */
7998 if (flags
& (BTRFS_BLOCK_GROUP_RAID1
|
7999 BTRFS_BLOCK_GROUP_RAID10
))
8000 return stripped
| BTRFS_BLOCK_GROUP_DUP
;
8003 /* they already had raid on here, just return */
8004 if (flags
& stripped
)
8007 stripped
|= BTRFS_BLOCK_GROUP_DUP
;
8008 stripped
= flags
& ~stripped
;
8010 /* switch duplicated blocks with raid1 */
8011 if (flags
& BTRFS_BLOCK_GROUP_DUP
)
8012 return stripped
| BTRFS_BLOCK_GROUP_RAID1
;
8014 /* turn single device chunks into raid0 */
8015 return stripped
| BTRFS_BLOCK_GROUP_RAID0
;
8020 static int set_block_group_ro(struct btrfs_block_group_cache
*cache
)
8022 struct btrfs_space_info
*sinfo
= cache
->space_info
;
8029 spin_lock(&sinfo
->lock
);
8030 spin_lock(&cache
->lock
);
8031 num_bytes
= cache
->key
.offset
- cache
->reserved
- cache
->pinned
-
8032 cache
->bytes_super
- btrfs_block_group_used(&cache
->item
);
8034 if (sinfo
->bytes_used
+ sinfo
->bytes_reserved
+ sinfo
->bytes_pinned
+
8035 sinfo
->bytes_may_use
+ sinfo
->bytes_readonly
+
8036 cache
->reserved_pinned
+ num_bytes
<= sinfo
->total_bytes
) {
8037 sinfo
->bytes_readonly
+= num_bytes
;
8038 sinfo
->bytes_reserved
+= cache
->reserved_pinned
;
8039 cache
->reserved_pinned
= 0;
8044 spin_unlock(&cache
->lock
);
8045 spin_unlock(&sinfo
->lock
);
8049 int btrfs_set_block_group_ro(struct btrfs_root
*root
,
8050 struct btrfs_block_group_cache
*cache
)
8053 struct btrfs_trans_handle
*trans
;
8059 trans
= btrfs_join_transaction(root
, 1);
8060 BUG_ON(IS_ERR(trans
));
8062 alloc_flags
= update_block_group_flags(root
, cache
->flags
);
8063 if (alloc_flags
!= cache
->flags
)
8064 do_chunk_alloc(trans
, root
, 2 * 1024 * 1024, alloc_flags
, 1);
8066 ret
= set_block_group_ro(cache
);
8069 alloc_flags
= get_alloc_profile(root
, cache
->space_info
->flags
);
8070 ret
= do_chunk_alloc(trans
, root
, 2 * 1024 * 1024, alloc_flags
, 1);
8073 ret
= set_block_group_ro(cache
);
8075 btrfs_end_transaction(trans
, root
);
8079 int btrfs_force_chunk_alloc(struct btrfs_trans_handle
*trans
,
8080 struct btrfs_root
*root
, u64 type
)
8082 u64 alloc_flags
= get_alloc_profile(root
, type
);
8083 return do_chunk_alloc(trans
, root
, 2 * 1024 * 1024, alloc_flags
, 1);
8087 * helper to account the unused space of all the readonly block group in the
8088 * list. takes mirrors into account.
8090 static u64
__btrfs_get_ro_block_group_free_space(struct list_head
*groups_list
)
8092 struct btrfs_block_group_cache
*block_group
;
8096 list_for_each_entry(block_group
, groups_list
, list
) {
8097 spin_lock(&block_group
->lock
);
8099 if (!block_group
->ro
) {
8100 spin_unlock(&block_group
->lock
);
8104 if (block_group
->flags
& (BTRFS_BLOCK_GROUP_RAID1
|
8105 BTRFS_BLOCK_GROUP_RAID10
|
8106 BTRFS_BLOCK_GROUP_DUP
))
8111 free_bytes
+= (block_group
->key
.offset
-
8112 btrfs_block_group_used(&block_group
->item
)) *
8115 spin_unlock(&block_group
->lock
);
8122 * helper to account the unused space of all the readonly block group in the
8123 * space_info. takes mirrors into account.
8125 u64
btrfs_account_ro_block_groups_free_space(struct btrfs_space_info
*sinfo
)
8130 spin_lock(&sinfo
->lock
);
8132 for(i
= 0; i
< BTRFS_NR_RAID_TYPES
; i
++)
8133 if (!list_empty(&sinfo
->block_groups
[i
]))
8134 free_bytes
+= __btrfs_get_ro_block_group_free_space(
8135 &sinfo
->block_groups
[i
]);
8137 spin_unlock(&sinfo
->lock
);
8142 int btrfs_set_block_group_rw(struct btrfs_root
*root
,
8143 struct btrfs_block_group_cache
*cache
)
8145 struct btrfs_space_info
*sinfo
= cache
->space_info
;
8150 spin_lock(&sinfo
->lock
);
8151 spin_lock(&cache
->lock
);
8152 num_bytes
= cache
->key
.offset
- cache
->reserved
- cache
->pinned
-
8153 cache
->bytes_super
- btrfs_block_group_used(&cache
->item
);
8154 sinfo
->bytes_readonly
-= num_bytes
;
8156 spin_unlock(&cache
->lock
);
8157 spin_unlock(&sinfo
->lock
);
8162 * checks to see if its even possible to relocate this block group.
8164 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
8165 * ok to go ahead and try.
8167 int btrfs_can_relocate(struct btrfs_root
*root
, u64 bytenr
)
8169 struct btrfs_block_group_cache
*block_group
;
8170 struct btrfs_space_info
*space_info
;
8171 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
8172 struct btrfs_device
*device
;
8176 block_group
= btrfs_lookup_block_group(root
->fs_info
, bytenr
);
8178 /* odd, couldn't find the block group, leave it alone */
8182 /* no bytes used, we're good */
8183 if (!btrfs_block_group_used(&block_group
->item
))
8186 space_info
= block_group
->space_info
;
8187 spin_lock(&space_info
->lock
);
8189 full
= space_info
->full
;
8192 * if this is the last block group we have in this space, we can't
8193 * relocate it unless we're able to allocate a new chunk below.
8195 * Otherwise, we need to make sure we have room in the space to handle
8196 * all of the extents from this block group. If we can, we're good
8198 if ((space_info
->total_bytes
!= block_group
->key
.offset
) &&
8199 (space_info
->bytes_used
+ space_info
->bytes_reserved
+
8200 space_info
->bytes_pinned
+ space_info
->bytes_readonly
+
8201 btrfs_block_group_used(&block_group
->item
) <
8202 space_info
->total_bytes
)) {
8203 spin_unlock(&space_info
->lock
);
8206 spin_unlock(&space_info
->lock
);
8209 * ok we don't have enough space, but maybe we have free space on our
8210 * devices to allocate new chunks for relocation, so loop through our
8211 * alloc devices and guess if we have enough space. However, if we
8212 * were marked as full, then we know there aren't enough chunks, and we
8219 mutex_lock(&root
->fs_info
->chunk_mutex
);
8220 list_for_each_entry(device
, &fs_devices
->alloc_list
, dev_alloc_list
) {
8221 u64 min_free
= btrfs_block_group_used(&block_group
->item
);
8225 * check to make sure we can actually find a chunk with enough
8226 * space to fit our block group in.
8228 if (device
->total_bytes
> device
->bytes_used
+ min_free
) {
8229 ret
= find_free_dev_extent(NULL
, device
, min_free
,
8236 mutex_unlock(&root
->fs_info
->chunk_mutex
);
8238 btrfs_put_block_group(block_group
);
8242 static int find_first_block_group(struct btrfs_root
*root
,
8243 struct btrfs_path
*path
, struct btrfs_key
*key
)
8246 struct btrfs_key found_key
;
8247 struct extent_buffer
*leaf
;
8250 ret
= btrfs_search_slot(NULL
, root
, key
, path
, 0, 0);
8255 slot
= path
->slots
[0];
8256 leaf
= path
->nodes
[0];
8257 if (slot
>= btrfs_header_nritems(leaf
)) {
8258 ret
= btrfs_next_leaf(root
, path
);
8265 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
8267 if (found_key
.objectid
>= key
->objectid
&&
8268 found_key
.type
== BTRFS_BLOCK_GROUP_ITEM_KEY
) {
8278 void btrfs_put_block_group_cache(struct btrfs_fs_info
*info
)
8280 struct btrfs_block_group_cache
*block_group
;
8284 struct inode
*inode
;
8286 block_group
= btrfs_lookup_first_block_group(info
, last
);
8287 while (block_group
) {
8288 spin_lock(&block_group
->lock
);
8289 if (block_group
->iref
)
8291 spin_unlock(&block_group
->lock
);
8292 block_group
= next_block_group(info
->tree_root
,
8302 inode
= block_group
->inode
;
8303 block_group
->iref
= 0;
8304 block_group
->inode
= NULL
;
8305 spin_unlock(&block_group
->lock
);
8307 last
= block_group
->key
.objectid
+ block_group
->key
.offset
;
8308 btrfs_put_block_group(block_group
);
8312 int btrfs_free_block_groups(struct btrfs_fs_info
*info
)
8314 struct btrfs_block_group_cache
*block_group
;
8315 struct btrfs_space_info
*space_info
;
8316 struct btrfs_caching_control
*caching_ctl
;
8319 down_write(&info
->extent_commit_sem
);
8320 while (!list_empty(&info
->caching_block_groups
)) {
8321 caching_ctl
= list_entry(info
->caching_block_groups
.next
,
8322 struct btrfs_caching_control
, list
);
8323 list_del(&caching_ctl
->list
);
8324 put_caching_control(caching_ctl
);
8326 up_write(&info
->extent_commit_sem
);
8328 spin_lock(&info
->block_group_cache_lock
);
8329 while ((n
= rb_last(&info
->block_group_cache_tree
)) != NULL
) {
8330 block_group
= rb_entry(n
, struct btrfs_block_group_cache
,
8332 rb_erase(&block_group
->cache_node
,
8333 &info
->block_group_cache_tree
);
8334 spin_unlock(&info
->block_group_cache_lock
);
8336 down_write(&block_group
->space_info
->groups_sem
);
8337 list_del(&block_group
->list
);
8338 up_write(&block_group
->space_info
->groups_sem
);
8340 if (block_group
->cached
== BTRFS_CACHE_STARTED
)
8341 wait_block_group_cache_done(block_group
);
8344 * We haven't cached this block group, which means we could
8345 * possibly have excluded extents on this block group.
8347 if (block_group
->cached
== BTRFS_CACHE_NO
)
8348 free_excluded_extents(info
->extent_root
, block_group
);
8350 btrfs_remove_free_space_cache(block_group
);
8351 btrfs_put_block_group(block_group
);
8353 spin_lock(&info
->block_group_cache_lock
);
8355 spin_unlock(&info
->block_group_cache_lock
);
8357 /* now that all the block groups are freed, go through and
8358 * free all the space_info structs. This is only called during
8359 * the final stages of unmount, and so we know nobody is
8360 * using them. We call synchronize_rcu() once before we start,
8361 * just to be on the safe side.
8365 release_global_block_rsv(info
);
8367 while(!list_empty(&info
->space_info
)) {
8368 space_info
= list_entry(info
->space_info
.next
,
8369 struct btrfs_space_info
,
8371 if (space_info
->bytes_pinned
> 0 ||
8372 space_info
->bytes_reserved
> 0) {
8374 dump_space_info(space_info
, 0, 0);
8376 list_del(&space_info
->list
);
8382 static void __link_block_group(struct btrfs_space_info
*space_info
,
8383 struct btrfs_block_group_cache
*cache
)
8385 int index
= get_block_group_index(cache
);
8387 down_write(&space_info
->groups_sem
);
8388 list_add_tail(&cache
->list
, &space_info
->block_groups
[index
]);
8389 up_write(&space_info
->groups_sem
);
8392 int btrfs_read_block_groups(struct btrfs_root
*root
)
8394 struct btrfs_path
*path
;
8396 struct btrfs_block_group_cache
*cache
;
8397 struct btrfs_fs_info
*info
= root
->fs_info
;
8398 struct btrfs_space_info
*space_info
;
8399 struct btrfs_key key
;
8400 struct btrfs_key found_key
;
8401 struct extent_buffer
*leaf
;
8405 root
= info
->extent_root
;
8408 btrfs_set_key_type(&key
, BTRFS_BLOCK_GROUP_ITEM_KEY
);
8409 path
= btrfs_alloc_path();
8413 cache_gen
= btrfs_super_cache_generation(&root
->fs_info
->super_copy
);
8414 if (cache_gen
!= 0 &&
8415 btrfs_super_generation(&root
->fs_info
->super_copy
) != cache_gen
)
8417 if (btrfs_test_opt(root
, CLEAR_CACHE
))
8419 if (!btrfs_test_opt(root
, SPACE_CACHE
) && cache_gen
)
8420 printk(KERN_INFO
"btrfs: disk space caching is enabled\n");
8423 ret
= find_first_block_group(root
, path
, &key
);
8428 leaf
= path
->nodes
[0];
8429 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
8430 cache
= kzalloc(sizeof(*cache
), GFP_NOFS
);
8436 atomic_set(&cache
->count
, 1);
8437 spin_lock_init(&cache
->lock
);
8438 spin_lock_init(&cache
->tree_lock
);
8439 cache
->fs_info
= info
;
8440 INIT_LIST_HEAD(&cache
->list
);
8441 INIT_LIST_HEAD(&cache
->cluster_list
);
8444 cache
->disk_cache_state
= BTRFS_DC_CLEAR
;
8447 * we only want to have 32k of ram per block group for keeping
8448 * track of free space, and if we pass 1/2 of that we want to
8449 * start converting things over to using bitmaps
8451 cache
->extents_thresh
= ((1024 * 32) / 2) /
8452 sizeof(struct btrfs_free_space
);
8454 read_extent_buffer(leaf
, &cache
->item
,
8455 btrfs_item_ptr_offset(leaf
, path
->slots
[0]),
8456 sizeof(cache
->item
));
8457 memcpy(&cache
->key
, &found_key
, sizeof(found_key
));
8459 key
.objectid
= found_key
.objectid
+ found_key
.offset
;
8460 btrfs_release_path(root
, path
);
8461 cache
->flags
= btrfs_block_group_flags(&cache
->item
);
8462 cache
->sectorsize
= root
->sectorsize
;
8465 * We need to exclude the super stripes now so that the space
8466 * info has super bytes accounted for, otherwise we'll think
8467 * we have more space than we actually do.
8469 exclude_super_stripes(root
, cache
);
8472 * check for two cases, either we are full, and therefore
8473 * don't need to bother with the caching work since we won't
8474 * find any space, or we are empty, and we can just add all
8475 * the space in and be done with it. This saves us _alot_ of
8476 * time, particularly in the full case.
8478 if (found_key
.offset
== btrfs_block_group_used(&cache
->item
)) {
8479 cache
->last_byte_to_unpin
= (u64
)-1;
8480 cache
->cached
= BTRFS_CACHE_FINISHED
;
8481 free_excluded_extents(root
, cache
);
8482 } else if (btrfs_block_group_used(&cache
->item
) == 0) {
8483 cache
->last_byte_to_unpin
= (u64
)-1;
8484 cache
->cached
= BTRFS_CACHE_FINISHED
;
8485 add_new_free_space(cache
, root
->fs_info
,
8487 found_key
.objectid
+
8489 free_excluded_extents(root
, cache
);
8492 ret
= update_space_info(info
, cache
->flags
, found_key
.offset
,
8493 btrfs_block_group_used(&cache
->item
),
8496 cache
->space_info
= space_info
;
8497 spin_lock(&cache
->space_info
->lock
);
8498 cache
->space_info
->bytes_readonly
+= cache
->bytes_super
;
8499 spin_unlock(&cache
->space_info
->lock
);
8501 __link_block_group(space_info
, cache
);
8503 ret
= btrfs_add_block_group_cache(root
->fs_info
, cache
);
8506 set_avail_alloc_bits(root
->fs_info
, cache
->flags
);
8507 if (btrfs_chunk_readonly(root
, cache
->key
.objectid
))
8508 set_block_group_ro(cache
);
8511 list_for_each_entry_rcu(space_info
, &root
->fs_info
->space_info
, list
) {
8512 if (!(get_alloc_profile(root
, space_info
->flags
) &
8513 (BTRFS_BLOCK_GROUP_RAID10
|
8514 BTRFS_BLOCK_GROUP_RAID1
|
8515 BTRFS_BLOCK_GROUP_DUP
)))
8518 * avoid allocating from un-mirrored block group if there are
8519 * mirrored block groups.
8521 list_for_each_entry(cache
, &space_info
->block_groups
[3], list
)
8522 set_block_group_ro(cache
);
8523 list_for_each_entry(cache
, &space_info
->block_groups
[4], list
)
8524 set_block_group_ro(cache
);
8527 init_global_block_rsv(info
);
8530 btrfs_free_path(path
);
8534 int btrfs_make_block_group(struct btrfs_trans_handle
*trans
,
8535 struct btrfs_root
*root
, u64 bytes_used
,
8536 u64 type
, u64 chunk_objectid
, u64 chunk_offset
,
8540 struct btrfs_root
*extent_root
;
8541 struct btrfs_block_group_cache
*cache
;
8543 extent_root
= root
->fs_info
->extent_root
;
8545 root
->fs_info
->last_trans_log_full_commit
= trans
->transid
;
8547 cache
= kzalloc(sizeof(*cache
), GFP_NOFS
);
8551 cache
->key
.objectid
= chunk_offset
;
8552 cache
->key
.offset
= size
;
8553 cache
->key
.type
= BTRFS_BLOCK_GROUP_ITEM_KEY
;
8554 cache
->sectorsize
= root
->sectorsize
;
8555 cache
->fs_info
= root
->fs_info
;
8558 * we only want to have 32k of ram per block group for keeping track
8559 * of free space, and if we pass 1/2 of that we want to start
8560 * converting things over to using bitmaps
8562 cache
->extents_thresh
= ((1024 * 32) / 2) /
8563 sizeof(struct btrfs_free_space
);
8564 atomic_set(&cache
->count
, 1);
8565 spin_lock_init(&cache
->lock
);
8566 spin_lock_init(&cache
->tree_lock
);
8567 INIT_LIST_HEAD(&cache
->list
);
8568 INIT_LIST_HEAD(&cache
->cluster_list
);
8570 btrfs_set_block_group_used(&cache
->item
, bytes_used
);
8571 btrfs_set_block_group_chunk_objectid(&cache
->item
, chunk_objectid
);
8572 cache
->flags
= type
;
8573 btrfs_set_block_group_flags(&cache
->item
, type
);
8575 cache
->last_byte_to_unpin
= (u64
)-1;
8576 cache
->cached
= BTRFS_CACHE_FINISHED
;
8577 exclude_super_stripes(root
, cache
);
8579 add_new_free_space(cache
, root
->fs_info
, chunk_offset
,
8580 chunk_offset
+ size
);
8582 free_excluded_extents(root
, cache
);
8584 ret
= update_space_info(root
->fs_info
, cache
->flags
, size
, bytes_used
,
8585 &cache
->space_info
);
8588 spin_lock(&cache
->space_info
->lock
);
8589 cache
->space_info
->bytes_readonly
+= cache
->bytes_super
;
8590 spin_unlock(&cache
->space_info
->lock
);
8592 __link_block_group(cache
->space_info
, cache
);
8594 ret
= btrfs_add_block_group_cache(root
->fs_info
, cache
);
8597 ret
= btrfs_insert_item(trans
, extent_root
, &cache
->key
, &cache
->item
,
8598 sizeof(cache
->item
));
8601 set_avail_alloc_bits(extent_root
->fs_info
, type
);
8606 int btrfs_remove_block_group(struct btrfs_trans_handle
*trans
,
8607 struct btrfs_root
*root
, u64 group_start
)
8609 struct btrfs_path
*path
;
8610 struct btrfs_block_group_cache
*block_group
;
8611 struct btrfs_free_cluster
*cluster
;
8612 struct btrfs_root
*tree_root
= root
->fs_info
->tree_root
;
8613 struct btrfs_key key
;
8614 struct inode
*inode
;
8618 root
= root
->fs_info
->extent_root
;
8620 block_group
= btrfs_lookup_block_group(root
->fs_info
, group_start
);
8621 BUG_ON(!block_group
);
8622 BUG_ON(!block_group
->ro
);
8624 memcpy(&key
, &block_group
->key
, sizeof(key
));
8625 if (block_group
->flags
& (BTRFS_BLOCK_GROUP_DUP
|
8626 BTRFS_BLOCK_GROUP_RAID1
|
8627 BTRFS_BLOCK_GROUP_RAID10
))
8632 /* make sure this block group isn't part of an allocation cluster */
8633 cluster
= &root
->fs_info
->data_alloc_cluster
;
8634 spin_lock(&cluster
->refill_lock
);
8635 btrfs_return_cluster_to_free_space(block_group
, cluster
);
8636 spin_unlock(&cluster
->refill_lock
);
8639 * make sure this block group isn't part of a metadata
8640 * allocation cluster
8642 cluster
= &root
->fs_info
->meta_alloc_cluster
;
8643 spin_lock(&cluster
->refill_lock
);
8644 btrfs_return_cluster_to_free_space(block_group
, cluster
);
8645 spin_unlock(&cluster
->refill_lock
);
8647 path
= btrfs_alloc_path();
8650 inode
= lookup_free_space_inode(root
, block_group
, path
);
8651 if (!IS_ERR(inode
)) {
8652 btrfs_orphan_add(trans
, inode
);
8654 /* One for the block groups ref */
8655 spin_lock(&block_group
->lock
);
8656 if (block_group
->iref
) {
8657 block_group
->iref
= 0;
8658 block_group
->inode
= NULL
;
8659 spin_unlock(&block_group
->lock
);
8662 spin_unlock(&block_group
->lock
);
8664 /* One for our lookup ref */
8668 key
.objectid
= BTRFS_FREE_SPACE_OBJECTID
;
8669 key
.offset
= block_group
->key
.objectid
;
8672 ret
= btrfs_search_slot(trans
, tree_root
, &key
, path
, -1, 1);
8676 btrfs_release_path(tree_root
, path
);
8678 ret
= btrfs_del_item(trans
, tree_root
, path
);
8681 btrfs_release_path(tree_root
, path
);
8684 spin_lock(&root
->fs_info
->block_group_cache_lock
);
8685 rb_erase(&block_group
->cache_node
,
8686 &root
->fs_info
->block_group_cache_tree
);
8687 spin_unlock(&root
->fs_info
->block_group_cache_lock
);
8689 down_write(&block_group
->space_info
->groups_sem
);
8691 * we must use list_del_init so people can check to see if they
8692 * are still on the list after taking the semaphore
8694 list_del_init(&block_group
->list
);
8695 up_write(&block_group
->space_info
->groups_sem
);
8697 if (block_group
->cached
== BTRFS_CACHE_STARTED
)
8698 wait_block_group_cache_done(block_group
);
8700 btrfs_remove_free_space_cache(block_group
);
8702 spin_lock(&block_group
->space_info
->lock
);
8703 block_group
->space_info
->total_bytes
-= block_group
->key
.offset
;
8704 block_group
->space_info
->bytes_readonly
-= block_group
->key
.offset
;
8705 block_group
->space_info
->disk_total
-= block_group
->key
.offset
* factor
;
8706 spin_unlock(&block_group
->space_info
->lock
);
8708 memcpy(&key
, &block_group
->key
, sizeof(key
));
8710 btrfs_clear_space_info_full(root
->fs_info
);
8712 btrfs_put_block_group(block_group
);
8713 btrfs_put_block_group(block_group
);
8715 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
8721 ret
= btrfs_del_item(trans
, root
, path
);
8723 btrfs_free_path(path
);
8727 int btrfs_error_unpin_extent_range(struct btrfs_root
*root
, u64 start
, u64 end
)
8729 return unpin_extent_range(root
, start
, end
);
8732 int btrfs_error_discard_extent(struct btrfs_root
*root
, u64 bytenr
,
8735 return btrfs_discard_extent(root
, bytenr
, num_bytes
);