2 * eCryptfs: Linux filesystem encryption layer
4 * Copyright (C) 1997-2004 Erez Zadok
5 * Copyright (C) 2001-2004 Stony Brook University
6 * Copyright (C) 2004-2007 International Business Machines Corp.
7 * Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
8 * Michael C. Thompson <mcthomps@us.ibm.com>
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2 of the
13 * License, or (at your option) any later version.
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
27 #include <linux/mount.h>
28 #include <linux/pagemap.h>
29 #include <linux/random.h>
30 #include <linux/compiler.h>
31 #include <linux/key.h>
32 #include <linux/namei.h>
33 #include <linux/crypto.h>
34 #include <linux/file.h>
35 #include <linux/scatterlist.h>
36 #include <linux/slab.h>
37 #include <asm/unaligned.h>
38 #include "ecryptfs_kernel.h"
41 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat
*crypt_stat
,
42 struct page
*dst_page
, int dst_offset
,
43 struct page
*src_page
, int src_offset
, int size
,
46 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat
*crypt_stat
,
47 struct page
*dst_page
, int dst_offset
,
48 struct page
*src_page
, int src_offset
, int size
,
53 * @dst: Buffer to take hex character representation of contents of
54 * src; must be at least of size (src_size * 2)
55 * @src: Buffer to be converted to a hex string respresentation
56 * @src_size: number of bytes to convert
58 void ecryptfs_to_hex(char *dst
, char *src
, size_t src_size
)
62 for (x
= 0; x
< src_size
; x
++)
63 sprintf(&dst
[x
* 2], "%.2x", (unsigned char)src
[x
]);
68 * @dst: Buffer to take the bytes from src hex; must be at least of
70 * @src: Buffer to be converted from a hex string respresentation to raw value
71 * @dst_size: size of dst buffer, or number of hex characters pairs to convert
73 void ecryptfs_from_hex(char *dst
, char *src
, int dst_size
)
78 for (x
= 0; x
< dst_size
; x
++) {
80 tmp
[1] = src
[x
* 2 + 1];
81 dst
[x
] = (unsigned char)simple_strtol(tmp
, NULL
, 16);
86 * ecryptfs_calculate_md5 - calculates the md5 of @src
87 * @dst: Pointer to 16 bytes of allocated memory
88 * @crypt_stat: Pointer to crypt_stat struct for the current inode
89 * @src: Data to be md5'd
90 * @len: Length of @src
92 * Uses the allocated crypto context that crypt_stat references to
93 * generate the MD5 sum of the contents of src.
95 static int ecryptfs_calculate_md5(char *dst
,
96 struct ecryptfs_crypt_stat
*crypt_stat
,
99 struct scatterlist sg
;
100 struct hash_desc desc
= {
101 .tfm
= crypt_stat
->hash_tfm
,
102 .flags
= CRYPTO_TFM_REQ_MAY_SLEEP
106 mutex_lock(&crypt_stat
->cs_hash_tfm_mutex
);
107 sg_init_one(&sg
, (u8
*)src
, len
);
109 desc
.tfm
= crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH
, 0,
111 if (IS_ERR(desc
.tfm
)) {
112 rc
= PTR_ERR(desc
.tfm
);
113 ecryptfs_printk(KERN_ERR
, "Error attempting to "
114 "allocate crypto context; rc = [%d]\n",
118 crypt_stat
->hash_tfm
= desc
.tfm
;
120 rc
= crypto_hash_init(&desc
);
123 "%s: Error initializing crypto hash; rc = [%d]\n",
127 rc
= crypto_hash_update(&desc
, &sg
, len
);
130 "%s: Error updating crypto hash; rc = [%d]\n",
134 rc
= crypto_hash_final(&desc
, dst
);
137 "%s: Error finalizing crypto hash; rc = [%d]\n",
142 mutex_unlock(&crypt_stat
->cs_hash_tfm_mutex
);
146 static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name
,
148 char *chaining_modifier
)
150 int cipher_name_len
= strlen(cipher_name
);
151 int chaining_modifier_len
= strlen(chaining_modifier
);
152 int algified_name_len
;
155 algified_name_len
= (chaining_modifier_len
+ cipher_name_len
+ 3);
156 (*algified_name
) = kmalloc(algified_name_len
, GFP_KERNEL
);
157 if (!(*algified_name
)) {
161 snprintf((*algified_name
), algified_name_len
, "%s(%s)",
162 chaining_modifier
, cipher_name
);
170 * @iv: destination for the derived iv vale
171 * @crypt_stat: Pointer to crypt_stat struct for the current inode
172 * @offset: Offset of the extent whose IV we are to derive
174 * Generate the initialization vector from the given root IV and page
177 * Returns zero on success; non-zero on error.
179 int ecryptfs_derive_iv(char *iv
, struct ecryptfs_crypt_stat
*crypt_stat
,
183 char dst
[MD5_DIGEST_SIZE
];
184 char src
[ECRYPTFS_MAX_IV_BYTES
+ 16];
186 if (unlikely(ecryptfs_verbosity
> 0)) {
187 ecryptfs_printk(KERN_DEBUG
, "root iv:\n");
188 ecryptfs_dump_hex(crypt_stat
->root_iv
, crypt_stat
->iv_bytes
);
190 /* TODO: It is probably secure to just cast the least
191 * significant bits of the root IV into an unsigned long and
192 * add the offset to that rather than go through all this
193 * hashing business. -Halcrow */
194 memcpy(src
, crypt_stat
->root_iv
, crypt_stat
->iv_bytes
);
195 memset((src
+ crypt_stat
->iv_bytes
), 0, 16);
196 snprintf((src
+ crypt_stat
->iv_bytes
), 16, "%lld", offset
);
197 if (unlikely(ecryptfs_verbosity
> 0)) {
198 ecryptfs_printk(KERN_DEBUG
, "source:\n");
199 ecryptfs_dump_hex(src
, (crypt_stat
->iv_bytes
+ 16));
201 rc
= ecryptfs_calculate_md5(dst
, crypt_stat
, src
,
202 (crypt_stat
->iv_bytes
+ 16));
204 ecryptfs_printk(KERN_WARNING
, "Error attempting to compute "
205 "MD5 while generating IV for a page\n");
208 memcpy(iv
, dst
, crypt_stat
->iv_bytes
);
209 if (unlikely(ecryptfs_verbosity
> 0)) {
210 ecryptfs_printk(KERN_DEBUG
, "derived iv:\n");
211 ecryptfs_dump_hex(iv
, crypt_stat
->iv_bytes
);
218 * ecryptfs_init_crypt_stat
219 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
221 * Initialize the crypt_stat structure.
224 ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat
*crypt_stat
)
226 memset((void *)crypt_stat
, 0, sizeof(struct ecryptfs_crypt_stat
));
227 INIT_LIST_HEAD(&crypt_stat
->keysig_list
);
228 mutex_init(&crypt_stat
->keysig_list_mutex
);
229 mutex_init(&crypt_stat
->cs_mutex
);
230 mutex_init(&crypt_stat
->cs_tfm_mutex
);
231 mutex_init(&crypt_stat
->cs_hash_tfm_mutex
);
232 crypt_stat
->flags
|= ECRYPTFS_STRUCT_INITIALIZED
;
236 * ecryptfs_destroy_crypt_stat
237 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
239 * Releases all memory associated with a crypt_stat struct.
241 void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat
*crypt_stat
)
243 struct ecryptfs_key_sig
*key_sig
, *key_sig_tmp
;
246 crypto_free_blkcipher(crypt_stat
->tfm
);
247 if (crypt_stat
->hash_tfm
)
248 crypto_free_hash(crypt_stat
->hash_tfm
);
249 list_for_each_entry_safe(key_sig
, key_sig_tmp
,
250 &crypt_stat
->keysig_list
, crypt_stat_list
) {
251 list_del(&key_sig
->crypt_stat_list
);
252 kmem_cache_free(ecryptfs_key_sig_cache
, key_sig
);
254 memset(crypt_stat
, 0, sizeof(struct ecryptfs_crypt_stat
));
257 void ecryptfs_destroy_mount_crypt_stat(
258 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
)
260 struct ecryptfs_global_auth_tok
*auth_tok
, *auth_tok_tmp
;
262 if (!(mount_crypt_stat
->flags
& ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED
))
264 mutex_lock(&mount_crypt_stat
->global_auth_tok_list_mutex
);
265 list_for_each_entry_safe(auth_tok
, auth_tok_tmp
,
266 &mount_crypt_stat
->global_auth_tok_list
,
267 mount_crypt_stat_list
) {
268 list_del(&auth_tok
->mount_crypt_stat_list
);
269 mount_crypt_stat
->num_global_auth_toks
--;
270 if (auth_tok
->global_auth_tok_key
271 && !(auth_tok
->flags
& ECRYPTFS_AUTH_TOK_INVALID
))
272 key_put(auth_tok
->global_auth_tok_key
);
273 kmem_cache_free(ecryptfs_global_auth_tok_cache
, auth_tok
);
275 mutex_unlock(&mount_crypt_stat
->global_auth_tok_list_mutex
);
276 memset(mount_crypt_stat
, 0, sizeof(struct ecryptfs_mount_crypt_stat
));
280 * virt_to_scatterlist
281 * @addr: Virtual address
282 * @size: Size of data; should be an even multiple of the block size
283 * @sg: Pointer to scatterlist array; set to NULL to obtain only
284 * the number of scatterlist structs required in array
285 * @sg_size: Max array size
287 * Fills in a scatterlist array with page references for a passed
290 * Returns the number of scatterlist structs in array used
292 int virt_to_scatterlist(const void *addr
, int size
, struct scatterlist
*sg
,
298 int remainder_of_page
;
300 sg_init_table(sg
, sg_size
);
302 while (size
> 0 && i
< sg_size
) {
303 pg
= virt_to_page(addr
);
304 offset
= offset_in_page(addr
);
306 sg_set_page(&sg
[i
], pg
, 0, offset
);
307 remainder_of_page
= PAGE_CACHE_SIZE
- offset
;
308 if (size
>= remainder_of_page
) {
310 sg
[i
].length
= remainder_of_page
;
311 addr
+= remainder_of_page
;
312 size
-= remainder_of_page
;
327 * encrypt_scatterlist
328 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
329 * @dest_sg: Destination of encrypted data
330 * @src_sg: Data to be encrypted
331 * @size: Length of data to be encrypted
332 * @iv: iv to use during encryption
334 * Returns the number of bytes encrypted; negative value on error
336 static int encrypt_scatterlist(struct ecryptfs_crypt_stat
*crypt_stat
,
337 struct scatterlist
*dest_sg
,
338 struct scatterlist
*src_sg
, int size
,
341 struct blkcipher_desc desc
= {
342 .tfm
= crypt_stat
->tfm
,
344 .flags
= CRYPTO_TFM_REQ_MAY_SLEEP
348 BUG_ON(!crypt_stat
|| !crypt_stat
->tfm
349 || !(crypt_stat
->flags
& ECRYPTFS_STRUCT_INITIALIZED
));
350 if (unlikely(ecryptfs_verbosity
> 0)) {
351 ecryptfs_printk(KERN_DEBUG
, "Key size [%zd]; key:\n",
352 crypt_stat
->key_size
);
353 ecryptfs_dump_hex(crypt_stat
->key
,
354 crypt_stat
->key_size
);
356 /* Consider doing this once, when the file is opened */
357 mutex_lock(&crypt_stat
->cs_tfm_mutex
);
358 if (!(crypt_stat
->flags
& ECRYPTFS_KEY_SET
)) {
359 rc
= crypto_blkcipher_setkey(crypt_stat
->tfm
, crypt_stat
->key
,
360 crypt_stat
->key_size
);
361 crypt_stat
->flags
|= ECRYPTFS_KEY_SET
;
364 ecryptfs_printk(KERN_ERR
, "Error setting key; rc = [%d]\n",
366 mutex_unlock(&crypt_stat
->cs_tfm_mutex
);
370 ecryptfs_printk(KERN_DEBUG
, "Encrypting [%d] bytes.\n", size
);
371 crypto_blkcipher_encrypt_iv(&desc
, dest_sg
, src_sg
, size
);
372 mutex_unlock(&crypt_stat
->cs_tfm_mutex
);
378 * ecryptfs_lower_offset_for_extent
380 * Convert an eCryptfs page index into a lower byte offset
382 static void ecryptfs_lower_offset_for_extent(loff_t
*offset
, loff_t extent_num
,
383 struct ecryptfs_crypt_stat
*crypt_stat
)
385 (*offset
) = ecryptfs_lower_header_size(crypt_stat
)
386 + (crypt_stat
->extent_size
* extent_num
);
390 * ecryptfs_encrypt_extent
391 * @enc_extent_page: Allocated page into which to encrypt the data in
393 * @crypt_stat: crypt_stat containing cryptographic context for the
394 * encryption operation
395 * @page: Page containing plaintext data extent to encrypt
396 * @extent_offset: Page extent offset for use in generating IV
398 * Encrypts one extent of data.
400 * Return zero on success; non-zero otherwise
402 static int ecryptfs_encrypt_extent(struct page
*enc_extent_page
,
403 struct ecryptfs_crypt_stat
*crypt_stat
,
405 unsigned long extent_offset
)
408 char extent_iv
[ECRYPTFS_MAX_IV_BYTES
];
411 extent_base
= (((loff_t
)page
->index
)
412 * (PAGE_CACHE_SIZE
/ crypt_stat
->extent_size
));
413 rc
= ecryptfs_derive_iv(extent_iv
, crypt_stat
,
414 (extent_base
+ extent_offset
));
416 ecryptfs_printk(KERN_ERR
, "Error attempting to derive IV for "
417 "extent [0x%.16llx]; rc = [%d]\n",
418 (unsigned long long)(extent_base
+ extent_offset
), rc
);
421 if (unlikely(ecryptfs_verbosity
> 0)) {
422 ecryptfs_printk(KERN_DEBUG
, "Encrypting extent "
424 ecryptfs_dump_hex(extent_iv
, crypt_stat
->iv_bytes
);
425 ecryptfs_printk(KERN_DEBUG
, "First 8 bytes before "
427 ecryptfs_dump_hex((char *)
429 + (extent_offset
* crypt_stat
->extent_size
)),
432 rc
= ecryptfs_encrypt_page_offset(crypt_stat
, enc_extent_page
, 0,
434 * crypt_stat
->extent_size
),
435 crypt_stat
->extent_size
, extent_iv
);
437 printk(KERN_ERR
"%s: Error attempting to encrypt page with "
438 "page->index = [%ld], extent_offset = [%ld]; "
439 "rc = [%d]\n", __func__
, page
->index
, extent_offset
,
444 if (unlikely(ecryptfs_verbosity
> 0)) {
445 ecryptfs_printk(KERN_DEBUG
, "Encrypt extent [0x%.16llx]; "
447 (unsigned long long)(extent_base
+ extent_offset
), rc
);
448 ecryptfs_printk(KERN_DEBUG
, "First 8 bytes after "
450 ecryptfs_dump_hex((char *)(page_address(enc_extent_page
)), 8);
457 * ecryptfs_encrypt_page
458 * @page: Page mapped from the eCryptfs inode for the file; contains
459 * decrypted content that needs to be encrypted (to a temporary
460 * page; not in place) and written out to the lower file
462 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
463 * that eCryptfs pages may straddle the lower pages -- for instance,
464 * if the file was created on a machine with an 8K page size
465 * (resulting in an 8K header), and then the file is copied onto a
466 * host with a 32K page size, then when reading page 0 of the eCryptfs
467 * file, 24K of page 0 of the lower file will be read and decrypted,
468 * and then 8K of page 1 of the lower file will be read and decrypted.
470 * Returns zero on success; negative on error
472 int ecryptfs_encrypt_page(struct page
*page
)
474 struct inode
*ecryptfs_inode
;
475 struct ecryptfs_crypt_stat
*crypt_stat
;
476 char *enc_extent_virt
;
477 struct page
*enc_extent_page
= NULL
;
478 loff_t extent_offset
;
481 ecryptfs_inode
= page
->mapping
->host
;
483 &(ecryptfs_inode_to_private(ecryptfs_inode
)->crypt_stat
);
484 BUG_ON(!(crypt_stat
->flags
& ECRYPTFS_ENCRYPTED
));
485 enc_extent_page
= alloc_page(GFP_USER
);
486 if (!enc_extent_page
) {
488 ecryptfs_printk(KERN_ERR
, "Error allocating memory for "
489 "encrypted extent\n");
492 enc_extent_virt
= kmap(enc_extent_page
);
493 for (extent_offset
= 0;
494 extent_offset
< (PAGE_CACHE_SIZE
/ crypt_stat
->extent_size
);
498 rc
= ecryptfs_encrypt_extent(enc_extent_page
, crypt_stat
, page
,
501 printk(KERN_ERR
"%s: Error encrypting extent; "
502 "rc = [%d]\n", __func__
, rc
);
505 ecryptfs_lower_offset_for_extent(
506 &offset
, ((((loff_t
)page
->index
)
508 / crypt_stat
->extent_size
))
509 + extent_offset
), crypt_stat
);
510 rc
= ecryptfs_write_lower(ecryptfs_inode
, enc_extent_virt
,
511 offset
, crypt_stat
->extent_size
);
513 ecryptfs_printk(KERN_ERR
, "Error attempting "
514 "to write lower page; rc = [%d]"
521 if (enc_extent_page
) {
522 kunmap(enc_extent_page
);
523 __free_page(enc_extent_page
);
528 static int ecryptfs_decrypt_extent(struct page
*page
,
529 struct ecryptfs_crypt_stat
*crypt_stat
,
530 struct page
*enc_extent_page
,
531 unsigned long extent_offset
)
534 char extent_iv
[ECRYPTFS_MAX_IV_BYTES
];
537 extent_base
= (((loff_t
)page
->index
)
538 * (PAGE_CACHE_SIZE
/ crypt_stat
->extent_size
));
539 rc
= ecryptfs_derive_iv(extent_iv
, crypt_stat
,
540 (extent_base
+ extent_offset
));
542 ecryptfs_printk(KERN_ERR
, "Error attempting to derive IV for "
543 "extent [0x%.16llx]; rc = [%d]\n",
544 (unsigned long long)(extent_base
+ extent_offset
), rc
);
547 if (unlikely(ecryptfs_verbosity
> 0)) {
548 ecryptfs_printk(KERN_DEBUG
, "Decrypting extent "
550 ecryptfs_dump_hex(extent_iv
, crypt_stat
->iv_bytes
);
551 ecryptfs_printk(KERN_DEBUG
, "First 8 bytes before "
553 ecryptfs_dump_hex((char *)
554 (page_address(enc_extent_page
)
555 + (extent_offset
* crypt_stat
->extent_size
)),
558 rc
= ecryptfs_decrypt_page_offset(crypt_stat
, page
,
560 * crypt_stat
->extent_size
),
562 crypt_stat
->extent_size
, extent_iv
);
564 printk(KERN_ERR
"%s: Error attempting to decrypt to page with "
565 "page->index = [%ld], extent_offset = [%ld]; "
566 "rc = [%d]\n", __func__
, page
->index
, extent_offset
,
571 if (unlikely(ecryptfs_verbosity
> 0)) {
572 ecryptfs_printk(KERN_DEBUG
, "Decrypt extent [0x%.16llx]; "
574 (unsigned long long)(extent_base
+ extent_offset
), rc
);
575 ecryptfs_printk(KERN_DEBUG
, "First 8 bytes after "
577 ecryptfs_dump_hex((char *)(page_address(page
)
579 * crypt_stat
->extent_size
)), 8);
586 * ecryptfs_decrypt_page
587 * @page: Page mapped from the eCryptfs inode for the file; data read
588 * and decrypted from the lower file will be written into this
591 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
592 * that eCryptfs pages may straddle the lower pages -- for instance,
593 * if the file was created on a machine with an 8K page size
594 * (resulting in an 8K header), and then the file is copied onto a
595 * host with a 32K page size, then when reading page 0 of the eCryptfs
596 * file, 24K of page 0 of the lower file will be read and decrypted,
597 * and then 8K of page 1 of the lower file will be read and decrypted.
599 * Returns zero on success; negative on error
601 int ecryptfs_decrypt_page(struct page
*page
)
603 struct inode
*ecryptfs_inode
;
604 struct ecryptfs_crypt_stat
*crypt_stat
;
605 char *enc_extent_virt
;
606 struct page
*enc_extent_page
= NULL
;
607 unsigned long extent_offset
;
610 ecryptfs_inode
= page
->mapping
->host
;
612 &(ecryptfs_inode_to_private(ecryptfs_inode
)->crypt_stat
);
613 BUG_ON(!(crypt_stat
->flags
& ECRYPTFS_ENCRYPTED
));
614 enc_extent_page
= alloc_page(GFP_USER
);
615 if (!enc_extent_page
) {
617 ecryptfs_printk(KERN_ERR
, "Error allocating memory for "
618 "encrypted extent\n");
621 enc_extent_virt
= kmap(enc_extent_page
);
622 for (extent_offset
= 0;
623 extent_offset
< (PAGE_CACHE_SIZE
/ crypt_stat
->extent_size
);
627 ecryptfs_lower_offset_for_extent(
628 &offset
, ((page
->index
* (PAGE_CACHE_SIZE
629 / crypt_stat
->extent_size
))
630 + extent_offset
), crypt_stat
);
631 rc
= ecryptfs_read_lower(enc_extent_virt
, offset
,
632 crypt_stat
->extent_size
,
635 ecryptfs_printk(KERN_ERR
, "Error attempting "
636 "to read lower page; rc = [%d]"
640 rc
= ecryptfs_decrypt_extent(page
, crypt_stat
, enc_extent_page
,
643 printk(KERN_ERR
"%s: Error encrypting extent; "
644 "rc = [%d]\n", __func__
, rc
);
649 if (enc_extent_page
) {
650 kunmap(enc_extent_page
);
651 __free_page(enc_extent_page
);
657 * decrypt_scatterlist
658 * @crypt_stat: Cryptographic context
659 * @dest_sg: The destination scatterlist to decrypt into
660 * @src_sg: The source scatterlist to decrypt from
661 * @size: The number of bytes to decrypt
662 * @iv: The initialization vector to use for the decryption
664 * Returns the number of bytes decrypted; negative value on error
666 static int decrypt_scatterlist(struct ecryptfs_crypt_stat
*crypt_stat
,
667 struct scatterlist
*dest_sg
,
668 struct scatterlist
*src_sg
, int size
,
671 struct blkcipher_desc desc
= {
672 .tfm
= crypt_stat
->tfm
,
674 .flags
= CRYPTO_TFM_REQ_MAY_SLEEP
678 /* Consider doing this once, when the file is opened */
679 mutex_lock(&crypt_stat
->cs_tfm_mutex
);
680 rc
= crypto_blkcipher_setkey(crypt_stat
->tfm
, crypt_stat
->key
,
681 crypt_stat
->key_size
);
683 ecryptfs_printk(KERN_ERR
, "Error setting key; rc = [%d]\n",
685 mutex_unlock(&crypt_stat
->cs_tfm_mutex
);
689 ecryptfs_printk(KERN_DEBUG
, "Decrypting [%d] bytes.\n", size
);
690 rc
= crypto_blkcipher_decrypt_iv(&desc
, dest_sg
, src_sg
, size
);
691 mutex_unlock(&crypt_stat
->cs_tfm_mutex
);
693 ecryptfs_printk(KERN_ERR
, "Error decrypting; rc = [%d]\n",
703 * ecryptfs_encrypt_page_offset
704 * @crypt_stat: The cryptographic context
705 * @dst_page: The page to encrypt into
706 * @dst_offset: The offset in the page to encrypt into
707 * @src_page: The page to encrypt from
708 * @src_offset: The offset in the page to encrypt from
709 * @size: The number of bytes to encrypt
710 * @iv: The initialization vector to use for the encryption
712 * Returns the number of bytes encrypted
715 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat
*crypt_stat
,
716 struct page
*dst_page
, int dst_offset
,
717 struct page
*src_page
, int src_offset
, int size
,
720 struct scatterlist src_sg
, dst_sg
;
722 sg_init_table(&src_sg
, 1);
723 sg_init_table(&dst_sg
, 1);
725 sg_set_page(&src_sg
, src_page
, size
, src_offset
);
726 sg_set_page(&dst_sg
, dst_page
, size
, dst_offset
);
727 return encrypt_scatterlist(crypt_stat
, &dst_sg
, &src_sg
, size
, iv
);
731 * ecryptfs_decrypt_page_offset
732 * @crypt_stat: The cryptographic context
733 * @dst_page: The page to decrypt into
734 * @dst_offset: The offset in the page to decrypt into
735 * @src_page: The page to decrypt from
736 * @src_offset: The offset in the page to decrypt from
737 * @size: The number of bytes to decrypt
738 * @iv: The initialization vector to use for the decryption
740 * Returns the number of bytes decrypted
743 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat
*crypt_stat
,
744 struct page
*dst_page
, int dst_offset
,
745 struct page
*src_page
, int src_offset
, int size
,
748 struct scatterlist src_sg
, dst_sg
;
750 sg_init_table(&src_sg
, 1);
751 sg_set_page(&src_sg
, src_page
, size
, src_offset
);
753 sg_init_table(&dst_sg
, 1);
754 sg_set_page(&dst_sg
, dst_page
, size
, dst_offset
);
756 return decrypt_scatterlist(crypt_stat
, &dst_sg
, &src_sg
, size
, iv
);
759 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4
762 * ecryptfs_init_crypt_ctx
763 * @crypt_stat: Uninitialized crypt stats structure
765 * Initialize the crypto context.
767 * TODO: Performance: Keep a cache of initialized cipher contexts;
768 * only init if needed
770 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat
*crypt_stat
)
775 if (!crypt_stat
->cipher
) {
776 ecryptfs_printk(KERN_ERR
, "No cipher specified\n");
779 ecryptfs_printk(KERN_DEBUG
,
780 "Initializing cipher [%s]; strlen = [%d]; "
781 "key_size_bits = [%zd]\n",
782 crypt_stat
->cipher
, (int)strlen(crypt_stat
->cipher
),
783 crypt_stat
->key_size
<< 3);
784 if (crypt_stat
->tfm
) {
788 mutex_lock(&crypt_stat
->cs_tfm_mutex
);
789 rc
= ecryptfs_crypto_api_algify_cipher_name(&full_alg_name
,
790 crypt_stat
->cipher
, "cbc");
793 crypt_stat
->tfm
= crypto_alloc_blkcipher(full_alg_name
, 0,
795 kfree(full_alg_name
);
796 if (IS_ERR(crypt_stat
->tfm
)) {
797 rc
= PTR_ERR(crypt_stat
->tfm
);
798 crypt_stat
->tfm
= NULL
;
799 ecryptfs_printk(KERN_ERR
, "cryptfs: init_crypt_ctx(): "
800 "Error initializing cipher [%s]\n",
804 crypto_blkcipher_set_flags(crypt_stat
->tfm
, CRYPTO_TFM_REQ_WEAK_KEY
);
807 mutex_unlock(&crypt_stat
->cs_tfm_mutex
);
812 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat
*crypt_stat
)
816 crypt_stat
->extent_mask
= 0xFFFFFFFF;
817 crypt_stat
->extent_shift
= 0;
818 if (crypt_stat
->extent_size
== 0)
820 extent_size_tmp
= crypt_stat
->extent_size
;
821 while ((extent_size_tmp
& 0x01) == 0) {
822 extent_size_tmp
>>= 1;
823 crypt_stat
->extent_mask
<<= 1;
824 crypt_stat
->extent_shift
++;
828 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat
*crypt_stat
)
830 /* Default values; may be overwritten as we are parsing the
832 crypt_stat
->extent_size
= ECRYPTFS_DEFAULT_EXTENT_SIZE
;
833 set_extent_mask_and_shift(crypt_stat
);
834 crypt_stat
->iv_bytes
= ECRYPTFS_DEFAULT_IV_BYTES
;
835 if (crypt_stat
->flags
& ECRYPTFS_METADATA_IN_XATTR
)
836 crypt_stat
->metadata_size
= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE
;
838 if (PAGE_CACHE_SIZE
<= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE
)
839 crypt_stat
->metadata_size
=
840 ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE
;
842 crypt_stat
->metadata_size
= PAGE_CACHE_SIZE
;
847 * ecryptfs_compute_root_iv
850 * On error, sets the root IV to all 0's.
852 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat
*crypt_stat
)
855 char dst
[MD5_DIGEST_SIZE
];
857 BUG_ON(crypt_stat
->iv_bytes
> MD5_DIGEST_SIZE
);
858 BUG_ON(crypt_stat
->iv_bytes
<= 0);
859 if (!(crypt_stat
->flags
& ECRYPTFS_KEY_VALID
)) {
861 ecryptfs_printk(KERN_WARNING
, "Session key not valid; "
862 "cannot generate root IV\n");
865 rc
= ecryptfs_calculate_md5(dst
, crypt_stat
, crypt_stat
->key
,
866 crypt_stat
->key_size
);
868 ecryptfs_printk(KERN_WARNING
, "Error attempting to compute "
869 "MD5 while generating root IV\n");
872 memcpy(crypt_stat
->root_iv
, dst
, crypt_stat
->iv_bytes
);
875 memset(crypt_stat
->root_iv
, 0, crypt_stat
->iv_bytes
);
876 crypt_stat
->flags
|= ECRYPTFS_SECURITY_WARNING
;
881 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat
*crypt_stat
)
883 get_random_bytes(crypt_stat
->key
, crypt_stat
->key_size
);
884 crypt_stat
->flags
|= ECRYPTFS_KEY_VALID
;
885 ecryptfs_compute_root_iv(crypt_stat
);
886 if (unlikely(ecryptfs_verbosity
> 0)) {
887 ecryptfs_printk(KERN_DEBUG
, "Generated new session key:\n");
888 ecryptfs_dump_hex(crypt_stat
->key
,
889 crypt_stat
->key_size
);
894 * ecryptfs_copy_mount_wide_flags_to_inode_flags
895 * @crypt_stat: The inode's cryptographic context
896 * @mount_crypt_stat: The mount point's cryptographic context
898 * This function propagates the mount-wide flags to individual inode
901 static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
902 struct ecryptfs_crypt_stat
*crypt_stat
,
903 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
)
905 if (mount_crypt_stat
->flags
& ECRYPTFS_XATTR_METADATA_ENABLED
)
906 crypt_stat
->flags
|= ECRYPTFS_METADATA_IN_XATTR
;
907 if (mount_crypt_stat
->flags
& ECRYPTFS_ENCRYPTED_VIEW_ENABLED
)
908 crypt_stat
->flags
|= ECRYPTFS_VIEW_AS_ENCRYPTED
;
909 if (mount_crypt_stat
->flags
& ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES
) {
910 crypt_stat
->flags
|= ECRYPTFS_ENCRYPT_FILENAMES
;
911 if (mount_crypt_stat
->flags
912 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK
)
913 crypt_stat
->flags
|= ECRYPTFS_ENCFN_USE_MOUNT_FNEK
;
914 else if (mount_crypt_stat
->flags
915 & ECRYPTFS_GLOBAL_ENCFN_USE_FEK
)
916 crypt_stat
->flags
|= ECRYPTFS_ENCFN_USE_FEK
;
920 static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
921 struct ecryptfs_crypt_stat
*crypt_stat
,
922 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
)
924 struct ecryptfs_global_auth_tok
*global_auth_tok
;
927 mutex_lock(&crypt_stat
->keysig_list_mutex
);
928 mutex_lock(&mount_crypt_stat
->global_auth_tok_list_mutex
);
930 list_for_each_entry(global_auth_tok
,
931 &mount_crypt_stat
->global_auth_tok_list
,
932 mount_crypt_stat_list
) {
933 if (global_auth_tok
->flags
& ECRYPTFS_AUTH_TOK_FNEK
)
935 rc
= ecryptfs_add_keysig(crypt_stat
, global_auth_tok
->sig
);
937 printk(KERN_ERR
"Error adding keysig; rc = [%d]\n", rc
);
943 mutex_unlock(&mount_crypt_stat
->global_auth_tok_list_mutex
);
944 mutex_unlock(&crypt_stat
->keysig_list_mutex
);
949 * ecryptfs_set_default_crypt_stat_vals
950 * @crypt_stat: The inode's cryptographic context
951 * @mount_crypt_stat: The mount point's cryptographic context
953 * Default values in the event that policy does not override them.
955 static void ecryptfs_set_default_crypt_stat_vals(
956 struct ecryptfs_crypt_stat
*crypt_stat
,
957 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
)
959 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat
,
961 ecryptfs_set_default_sizes(crypt_stat
);
962 strcpy(crypt_stat
->cipher
, ECRYPTFS_DEFAULT_CIPHER
);
963 crypt_stat
->key_size
= ECRYPTFS_DEFAULT_KEY_BYTES
;
964 crypt_stat
->flags
&= ~(ECRYPTFS_KEY_VALID
);
965 crypt_stat
->file_version
= ECRYPTFS_FILE_VERSION
;
966 crypt_stat
->mount_crypt_stat
= mount_crypt_stat
;
970 * ecryptfs_new_file_context
971 * @ecryptfs_dentry: The eCryptfs dentry
973 * If the crypto context for the file has not yet been established,
974 * this is where we do that. Establishing a new crypto context
975 * involves the following decisions:
976 * - What cipher to use?
977 * - What set of authentication tokens to use?
978 * Here we just worry about getting enough information into the
979 * authentication tokens so that we know that they are available.
980 * We associate the available authentication tokens with the new file
981 * via the set of signatures in the crypt_stat struct. Later, when
982 * the headers are actually written out, we may again defer to
983 * userspace to perform the encryption of the session key; for the
984 * foreseeable future, this will be the case with public key packets.
986 * Returns zero on success; non-zero otherwise
988 int ecryptfs_new_file_context(struct dentry
*ecryptfs_dentry
)
990 struct ecryptfs_crypt_stat
*crypt_stat
=
991 &ecryptfs_inode_to_private(ecryptfs_dentry
->d_inode
)->crypt_stat
;
992 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
=
993 &ecryptfs_superblock_to_private(
994 ecryptfs_dentry
->d_sb
)->mount_crypt_stat
;
998 ecryptfs_set_default_crypt_stat_vals(crypt_stat
, mount_crypt_stat
);
999 crypt_stat
->flags
|= (ECRYPTFS_ENCRYPTED
| ECRYPTFS_KEY_VALID
);
1000 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat
,
1002 rc
= ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat
,
1005 printk(KERN_ERR
"Error attempting to copy mount-wide key sigs "
1006 "to the inode key sigs; rc = [%d]\n", rc
);
1010 strlen(mount_crypt_stat
->global_default_cipher_name
);
1011 memcpy(crypt_stat
->cipher
,
1012 mount_crypt_stat
->global_default_cipher_name
,
1014 crypt_stat
->cipher
[cipher_name_len
] = '\0';
1015 crypt_stat
->key_size
=
1016 mount_crypt_stat
->global_default_cipher_key_size
;
1017 ecryptfs_generate_new_key(crypt_stat
);
1018 rc
= ecryptfs_init_crypt_ctx(crypt_stat
);
1020 ecryptfs_printk(KERN_ERR
, "Error initializing cryptographic "
1021 "context for cipher [%s]: rc = [%d]\n",
1022 crypt_stat
->cipher
, rc
);
1028 * contains_ecryptfs_marker - check for the ecryptfs marker
1029 * @data: The data block in which to check
1031 * Returns one if marker found; zero if not found
1033 static int contains_ecryptfs_marker(char *data
)
1037 m_1
= get_unaligned_be32(data
);
1038 m_2
= get_unaligned_be32(data
+ 4);
1039 if ((m_1
^ MAGIC_ECRYPTFS_MARKER
) == m_2
)
1041 ecryptfs_printk(KERN_DEBUG
, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
1042 "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1
, m_2
,
1043 MAGIC_ECRYPTFS_MARKER
);
1044 ecryptfs_printk(KERN_DEBUG
, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
1045 "[0x%.8x]\n", (m_1
^ MAGIC_ECRYPTFS_MARKER
));
1049 struct ecryptfs_flag_map_elem
{
1054 /* Add support for additional flags by adding elements here. */
1055 static struct ecryptfs_flag_map_elem ecryptfs_flag_map
[] = {
1056 {0x00000001, ECRYPTFS_ENABLE_HMAC
},
1057 {0x00000002, ECRYPTFS_ENCRYPTED
},
1058 {0x00000004, ECRYPTFS_METADATA_IN_XATTR
},
1059 {0x00000008, ECRYPTFS_ENCRYPT_FILENAMES
}
1063 * ecryptfs_process_flags
1064 * @crypt_stat: The cryptographic context
1065 * @page_virt: Source data to be parsed
1066 * @bytes_read: Updated with the number of bytes read
1068 * Returns zero on success; non-zero if the flag set is invalid
1070 static int ecryptfs_process_flags(struct ecryptfs_crypt_stat
*crypt_stat
,
1071 char *page_virt
, int *bytes_read
)
1077 flags
= get_unaligned_be32(page_virt
);
1078 for (i
= 0; i
< ((sizeof(ecryptfs_flag_map
)
1079 / sizeof(struct ecryptfs_flag_map_elem
))); i
++)
1080 if (flags
& ecryptfs_flag_map
[i
].file_flag
) {
1081 crypt_stat
->flags
|= ecryptfs_flag_map
[i
].local_flag
;
1083 crypt_stat
->flags
&= ~(ecryptfs_flag_map
[i
].local_flag
);
1084 /* Version is in top 8 bits of the 32-bit flag vector */
1085 crypt_stat
->file_version
= ((flags
>> 24) & 0xFF);
1091 * write_ecryptfs_marker
1092 * @page_virt: The pointer to in a page to begin writing the marker
1093 * @written: Number of bytes written
1095 * Marker = 0x3c81b7f5
1097 static void write_ecryptfs_marker(char *page_virt
, size_t *written
)
1101 get_random_bytes(&m_1
, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES
/ 2));
1102 m_2
= (m_1
^ MAGIC_ECRYPTFS_MARKER
);
1103 put_unaligned_be32(m_1
, page_virt
);
1104 page_virt
+= (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES
/ 2);
1105 put_unaligned_be32(m_2
, page_virt
);
1106 (*written
) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES
;
1109 void ecryptfs_write_crypt_stat_flags(char *page_virt
,
1110 struct ecryptfs_crypt_stat
*crypt_stat
,
1116 for (i
= 0; i
< ((sizeof(ecryptfs_flag_map
)
1117 / sizeof(struct ecryptfs_flag_map_elem
))); i
++)
1118 if (crypt_stat
->flags
& ecryptfs_flag_map
[i
].local_flag
)
1119 flags
|= ecryptfs_flag_map
[i
].file_flag
;
1120 /* Version is in top 8 bits of the 32-bit flag vector */
1121 flags
|= ((((u8
)crypt_stat
->file_version
) << 24) & 0xFF000000);
1122 put_unaligned_be32(flags
, page_virt
);
1126 struct ecryptfs_cipher_code_str_map_elem
{
1127 char cipher_str
[16];
1131 /* Add support for additional ciphers by adding elements here. The
1132 * cipher_code is whatever OpenPGP applicatoins use to identify the
1133 * ciphers. List in order of probability. */
1134 static struct ecryptfs_cipher_code_str_map_elem
1135 ecryptfs_cipher_code_str_map
[] = {
1136 {"aes",RFC2440_CIPHER_AES_128
},
1137 {"blowfish", RFC2440_CIPHER_BLOWFISH
},
1138 {"des3_ede", RFC2440_CIPHER_DES3_EDE
},
1139 {"cast5", RFC2440_CIPHER_CAST_5
},
1140 {"twofish", RFC2440_CIPHER_TWOFISH
},
1141 {"cast6", RFC2440_CIPHER_CAST_6
},
1142 {"aes", RFC2440_CIPHER_AES_192
},
1143 {"aes", RFC2440_CIPHER_AES_256
}
1147 * ecryptfs_code_for_cipher_string
1148 * @cipher_name: The string alias for the cipher
1149 * @key_bytes: Length of key in bytes; used for AES code selection
1151 * Returns zero on no match, or the cipher code on match
1153 u8
ecryptfs_code_for_cipher_string(char *cipher_name
, size_t key_bytes
)
1157 struct ecryptfs_cipher_code_str_map_elem
*map
=
1158 ecryptfs_cipher_code_str_map
;
1160 if (strcmp(cipher_name
, "aes") == 0) {
1161 switch (key_bytes
) {
1163 code
= RFC2440_CIPHER_AES_128
;
1166 code
= RFC2440_CIPHER_AES_192
;
1169 code
= RFC2440_CIPHER_AES_256
;
1172 for (i
= 0; i
< ARRAY_SIZE(ecryptfs_cipher_code_str_map
); i
++)
1173 if (strcmp(cipher_name
, map
[i
].cipher_str
) == 0) {
1174 code
= map
[i
].cipher_code
;
1182 * ecryptfs_cipher_code_to_string
1183 * @str: Destination to write out the cipher name
1184 * @cipher_code: The code to convert to cipher name string
1186 * Returns zero on success
1188 int ecryptfs_cipher_code_to_string(char *str
, u8 cipher_code
)
1194 for (i
= 0; i
< ARRAY_SIZE(ecryptfs_cipher_code_str_map
); i
++)
1195 if (cipher_code
== ecryptfs_cipher_code_str_map
[i
].cipher_code
)
1196 strcpy(str
, ecryptfs_cipher_code_str_map
[i
].cipher_str
);
1197 if (str
[0] == '\0') {
1198 ecryptfs_printk(KERN_WARNING
, "Cipher code not recognized: "
1199 "[%d]\n", cipher_code
);
1205 int ecryptfs_read_and_validate_header_region(char *data
,
1206 struct inode
*ecryptfs_inode
)
1208 struct ecryptfs_crypt_stat
*crypt_stat
=
1209 &(ecryptfs_inode_to_private(ecryptfs_inode
)->crypt_stat
);
1212 if (crypt_stat
->extent_size
== 0)
1213 crypt_stat
->extent_size
= ECRYPTFS_DEFAULT_EXTENT_SIZE
;
1214 rc
= ecryptfs_read_lower(data
, 0, crypt_stat
->extent_size
,
1217 printk(KERN_ERR
"%s: Error reading header region; rc = [%d]\n",
1221 if (!contains_ecryptfs_marker(data
+ ECRYPTFS_FILE_SIZE_BYTES
)) {
1230 ecryptfs_write_header_metadata(char *virt
,
1231 struct ecryptfs_crypt_stat
*crypt_stat
,
1234 u32 header_extent_size
;
1235 u16 num_header_extents_at_front
;
1237 header_extent_size
= (u32
)crypt_stat
->extent_size
;
1238 num_header_extents_at_front
=
1239 (u16
)(crypt_stat
->metadata_size
/ crypt_stat
->extent_size
);
1240 put_unaligned_be32(header_extent_size
, virt
);
1242 put_unaligned_be16(num_header_extents_at_front
, virt
);
1246 struct kmem_cache
*ecryptfs_header_cache_1
;
1247 struct kmem_cache
*ecryptfs_header_cache_2
;
1250 * ecryptfs_write_headers_virt
1251 * @page_virt: The virtual address to write the headers to
1252 * @max: The size of memory allocated at page_virt
1253 * @size: Set to the number of bytes written by this function
1254 * @crypt_stat: The cryptographic context
1255 * @ecryptfs_dentry: The eCryptfs dentry
1260 * Octets 0-7: Unencrypted file size (big-endian)
1261 * Octets 8-15: eCryptfs special marker
1262 * Octets 16-19: Flags
1263 * Octet 16: File format version number (between 0 and 255)
1264 * Octets 17-18: Reserved
1265 * Octet 19: Bit 1 (lsb): Reserved
1267 * Bits 3-8: Reserved
1268 * Octets 20-23: Header extent size (big-endian)
1269 * Octets 24-25: Number of header extents at front of file
1271 * Octet 26: Begin RFC 2440 authentication token packet set
1273 * Lower data (CBC encrypted)
1275 * Lower data (CBC encrypted)
1278 * Returns zero on success
1280 static int ecryptfs_write_headers_virt(char *page_virt
, size_t max
,
1282 struct ecryptfs_crypt_stat
*crypt_stat
,
1283 struct dentry
*ecryptfs_dentry
)
1289 offset
= ECRYPTFS_FILE_SIZE_BYTES
;
1290 write_ecryptfs_marker((page_virt
+ offset
), &written
);
1292 ecryptfs_write_crypt_stat_flags((page_virt
+ offset
), crypt_stat
,
1295 ecryptfs_write_header_metadata((page_virt
+ offset
), crypt_stat
,
1298 rc
= ecryptfs_generate_key_packet_set((page_virt
+ offset
), crypt_stat
,
1299 ecryptfs_dentry
, &written
,
1302 ecryptfs_printk(KERN_WARNING
, "Error generating key packet "
1303 "set; rc = [%d]\n", rc
);
1312 ecryptfs_write_metadata_to_contents(struct dentry
*ecryptfs_dentry
,
1313 char *virt
, size_t virt_len
)
1317 rc
= ecryptfs_write_lower(ecryptfs_dentry
->d_inode
, virt
,
1320 printk(KERN_ERR
"%s: Error attempting to write header "
1321 "information to lower file; rc = [%d]\n", __func__
, rc
);
1328 ecryptfs_write_metadata_to_xattr(struct dentry
*ecryptfs_dentry
,
1329 char *page_virt
, size_t size
)
1333 rc
= ecryptfs_setxattr(ecryptfs_dentry
, ECRYPTFS_XATTR_NAME
, page_virt
,
1338 static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask
,
1343 page
= alloc_pages(gfp_mask
| __GFP_ZERO
, order
);
1345 return (unsigned long) page_address(page
);
1350 * ecryptfs_write_metadata
1351 * @ecryptfs_dentry: The eCryptfs dentry
1353 * Write the file headers out. This will likely involve a userspace
1354 * callout, in which the session key is encrypted with one or more
1355 * public keys and/or the passphrase necessary to do the encryption is
1356 * retrieved via a prompt. Exactly what happens at this point should
1357 * be policy-dependent.
1359 * Returns zero on success; non-zero on error
1361 int ecryptfs_write_metadata(struct dentry
*ecryptfs_dentry
)
1363 struct ecryptfs_crypt_stat
*crypt_stat
=
1364 &ecryptfs_inode_to_private(ecryptfs_dentry
->d_inode
)->crypt_stat
;
1371 if (likely(crypt_stat
->flags
& ECRYPTFS_ENCRYPTED
)) {
1372 if (!(crypt_stat
->flags
& ECRYPTFS_KEY_VALID
)) {
1373 printk(KERN_ERR
"Key is invalid; bailing out\n");
1378 printk(KERN_WARNING
"%s: Encrypted flag not set\n",
1383 virt_len
= crypt_stat
->metadata_size
;
1384 order
= get_order(virt_len
);
1385 /* Released in this function */
1386 virt
= (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL
, order
);
1388 printk(KERN_ERR
"%s: Out of memory\n", __func__
);
1392 rc
= ecryptfs_write_headers_virt(virt
, virt_len
, &size
, crypt_stat
,
1395 printk(KERN_ERR
"%s: Error whilst writing headers; rc = [%d]\n",
1399 if (crypt_stat
->flags
& ECRYPTFS_METADATA_IN_XATTR
)
1400 rc
= ecryptfs_write_metadata_to_xattr(ecryptfs_dentry
, virt
,
1403 rc
= ecryptfs_write_metadata_to_contents(ecryptfs_dentry
, virt
,
1406 printk(KERN_ERR
"%s: Error writing metadata out to lower file; "
1407 "rc = [%d]\n", __func__
, rc
);
1411 free_pages((unsigned long)virt
, order
);
1416 #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1417 #define ECRYPTFS_VALIDATE_HEADER_SIZE 1
1418 static int parse_header_metadata(struct ecryptfs_crypt_stat
*crypt_stat
,
1419 char *virt
, int *bytes_read
,
1420 int validate_header_size
)
1423 u32 header_extent_size
;
1424 u16 num_header_extents_at_front
;
1426 header_extent_size
= get_unaligned_be32(virt
);
1427 virt
+= sizeof(__be32
);
1428 num_header_extents_at_front
= get_unaligned_be16(virt
);
1429 crypt_stat
->metadata_size
= (((size_t)num_header_extents_at_front
1430 * (size_t)header_extent_size
));
1431 (*bytes_read
) = (sizeof(__be32
) + sizeof(__be16
));
1432 if ((validate_header_size
== ECRYPTFS_VALIDATE_HEADER_SIZE
)
1433 && (crypt_stat
->metadata_size
1434 < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE
)) {
1436 printk(KERN_WARNING
"Invalid header size: [%zd]\n",
1437 crypt_stat
->metadata_size
);
1443 * set_default_header_data
1444 * @crypt_stat: The cryptographic context
1446 * For version 0 file format; this function is only for backwards
1447 * compatibility for files created with the prior versions of
1450 static void set_default_header_data(struct ecryptfs_crypt_stat
*crypt_stat
)
1452 crypt_stat
->metadata_size
= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE
;
1456 * ecryptfs_read_headers_virt
1457 * @page_virt: The virtual address into which to read the headers
1458 * @crypt_stat: The cryptographic context
1459 * @ecryptfs_dentry: The eCryptfs dentry
1460 * @validate_header_size: Whether to validate the header size while reading
1462 * Read/parse the header data. The header format is detailed in the
1463 * comment block for the ecryptfs_write_headers_virt() function.
1465 * Returns zero on success
1467 static int ecryptfs_read_headers_virt(char *page_virt
,
1468 struct ecryptfs_crypt_stat
*crypt_stat
,
1469 struct dentry
*ecryptfs_dentry
,
1470 int validate_header_size
)
1476 ecryptfs_set_default_sizes(crypt_stat
);
1477 crypt_stat
->mount_crypt_stat
= &ecryptfs_superblock_to_private(
1478 ecryptfs_dentry
->d_sb
)->mount_crypt_stat
;
1479 offset
= ECRYPTFS_FILE_SIZE_BYTES
;
1480 rc
= contains_ecryptfs_marker(page_virt
+ offset
);
1485 offset
+= MAGIC_ECRYPTFS_MARKER_SIZE_BYTES
;
1486 rc
= ecryptfs_process_flags(crypt_stat
, (page_virt
+ offset
),
1489 ecryptfs_printk(KERN_WARNING
, "Error processing flags\n");
1492 if (crypt_stat
->file_version
> ECRYPTFS_SUPPORTED_FILE_VERSION
) {
1493 ecryptfs_printk(KERN_WARNING
, "File version is [%d]; only "
1494 "file version [%d] is supported by this "
1495 "version of eCryptfs\n",
1496 crypt_stat
->file_version
,
1497 ECRYPTFS_SUPPORTED_FILE_VERSION
);
1501 offset
+= bytes_read
;
1502 if (crypt_stat
->file_version
>= 1) {
1503 rc
= parse_header_metadata(crypt_stat
, (page_virt
+ offset
),
1504 &bytes_read
, validate_header_size
);
1506 ecryptfs_printk(KERN_WARNING
, "Error reading header "
1507 "metadata; rc = [%d]\n", rc
);
1509 offset
+= bytes_read
;
1511 set_default_header_data(crypt_stat
);
1512 rc
= ecryptfs_parse_packet_set(crypt_stat
, (page_virt
+ offset
),
1519 * ecryptfs_read_xattr_region
1520 * @page_virt: The vitual address into which to read the xattr data
1521 * @ecryptfs_inode: The eCryptfs inode
1523 * Attempts to read the crypto metadata from the extended attribute
1524 * region of the lower file.
1526 * Returns zero on success; non-zero on error
1528 int ecryptfs_read_xattr_region(char *page_virt
, struct inode
*ecryptfs_inode
)
1530 struct dentry
*lower_dentry
=
1531 ecryptfs_inode_to_private(ecryptfs_inode
)->lower_file
->f_dentry
;
1535 size
= ecryptfs_getxattr_lower(lower_dentry
, ECRYPTFS_XATTR_NAME
,
1536 page_virt
, ECRYPTFS_DEFAULT_EXTENT_SIZE
);
1538 if (unlikely(ecryptfs_verbosity
> 0))
1539 printk(KERN_INFO
"Error attempting to read the [%s] "
1540 "xattr from the lower file; return value = "
1541 "[%zd]\n", ECRYPTFS_XATTR_NAME
, size
);
1549 int ecryptfs_read_and_validate_xattr_region(char *page_virt
,
1550 struct dentry
*ecryptfs_dentry
)
1554 rc
= ecryptfs_read_xattr_region(page_virt
, ecryptfs_dentry
->d_inode
);
1557 if (!contains_ecryptfs_marker(page_virt
+ ECRYPTFS_FILE_SIZE_BYTES
)) {
1558 printk(KERN_WARNING
"Valid data found in [%s] xattr, but "
1559 "the marker is invalid\n", ECRYPTFS_XATTR_NAME
);
1567 * ecryptfs_read_metadata
1569 * Common entry point for reading file metadata. From here, we could
1570 * retrieve the header information from the header region of the file,
1571 * the xattr region of the file, or some other repostory that is
1572 * stored separately from the file itself. The current implementation
1573 * supports retrieving the metadata information from the file contents
1574 * and from the xattr region.
1576 * Returns zero if valid headers found and parsed; non-zero otherwise
1578 int ecryptfs_read_metadata(struct dentry
*ecryptfs_dentry
)
1581 char *page_virt
= NULL
;
1582 struct inode
*ecryptfs_inode
= ecryptfs_dentry
->d_inode
;
1583 struct ecryptfs_crypt_stat
*crypt_stat
=
1584 &ecryptfs_inode_to_private(ecryptfs_inode
)->crypt_stat
;
1585 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
=
1586 &ecryptfs_superblock_to_private(
1587 ecryptfs_dentry
->d_sb
)->mount_crypt_stat
;
1589 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat
,
1591 /* Read the first page from the underlying file */
1592 page_virt
= kmem_cache_alloc(ecryptfs_header_cache_1
, GFP_USER
);
1595 printk(KERN_ERR
"%s: Unable to allocate page_virt\n",
1599 rc
= ecryptfs_read_lower(page_virt
, 0, crypt_stat
->extent_size
,
1602 rc
= ecryptfs_read_headers_virt(page_virt
, crypt_stat
,
1604 ECRYPTFS_VALIDATE_HEADER_SIZE
);
1606 memset(page_virt
, 0, PAGE_CACHE_SIZE
);
1607 rc
= ecryptfs_read_xattr_region(page_virt
, ecryptfs_inode
);
1609 printk(KERN_DEBUG
"Valid eCryptfs headers not found in "
1610 "file header region or xattr region\n");
1614 rc
= ecryptfs_read_headers_virt(page_virt
, crypt_stat
,
1616 ECRYPTFS_DONT_VALIDATE_HEADER_SIZE
);
1618 printk(KERN_DEBUG
"Valid eCryptfs headers not found in "
1619 "file xattr region either\n");
1622 if (crypt_stat
->mount_crypt_stat
->flags
1623 & ECRYPTFS_XATTR_METADATA_ENABLED
) {
1624 crypt_stat
->flags
|= ECRYPTFS_METADATA_IN_XATTR
;
1626 printk(KERN_WARNING
"Attempt to access file with "
1627 "crypto metadata only in the extended attribute "
1628 "region, but eCryptfs was mounted without "
1629 "xattr support enabled. eCryptfs will not treat "
1630 "this like an encrypted file.\n");
1636 memset(page_virt
, 0, PAGE_CACHE_SIZE
);
1637 kmem_cache_free(ecryptfs_header_cache_1
, page_virt
);
1643 * ecryptfs_encrypt_filename - encrypt filename
1645 * CBC-encrypts the filename. We do not want to encrypt the same
1646 * filename with the same key and IV, which may happen with hard
1647 * links, so we prepend random bits to each filename.
1649 * Returns zero on success; non-zero otherwise
1652 ecryptfs_encrypt_filename(struct ecryptfs_filename
*filename
,
1653 struct ecryptfs_crypt_stat
*crypt_stat
,
1654 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
)
1658 filename
->encrypted_filename
= NULL
;
1659 filename
->encrypted_filename_size
= 0;
1660 if ((crypt_stat
&& (crypt_stat
->flags
& ECRYPTFS_ENCFN_USE_MOUNT_FNEK
))
1661 || (mount_crypt_stat
&& (mount_crypt_stat
->flags
1662 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK
))) {
1664 size_t remaining_bytes
;
1666 rc
= ecryptfs_write_tag_70_packet(
1668 &filename
->encrypted_filename_size
,
1669 mount_crypt_stat
, NULL
,
1670 filename
->filename_size
);
1672 printk(KERN_ERR
"%s: Error attempting to get packet "
1673 "size for tag 72; rc = [%d]\n", __func__
,
1675 filename
->encrypted_filename_size
= 0;
1678 filename
->encrypted_filename
=
1679 kmalloc(filename
->encrypted_filename_size
, GFP_KERNEL
);
1680 if (!filename
->encrypted_filename
) {
1681 printk(KERN_ERR
"%s: Out of memory whilst attempting "
1682 "to kmalloc [%zd] bytes\n", __func__
,
1683 filename
->encrypted_filename_size
);
1687 remaining_bytes
= filename
->encrypted_filename_size
;
1688 rc
= ecryptfs_write_tag_70_packet(filename
->encrypted_filename
,
1693 filename
->filename_size
);
1695 printk(KERN_ERR
"%s: Error attempting to generate "
1696 "tag 70 packet; rc = [%d]\n", __func__
,
1698 kfree(filename
->encrypted_filename
);
1699 filename
->encrypted_filename
= NULL
;
1700 filename
->encrypted_filename_size
= 0;
1703 filename
->encrypted_filename_size
= packet_size
;
1705 printk(KERN_ERR
"%s: No support for requested filename "
1706 "encryption method in this release\n", __func__
);
1714 static int ecryptfs_copy_filename(char **copied_name
, size_t *copied_name_size
,
1715 const char *name
, size_t name_size
)
1719 (*copied_name
) = kmalloc((name_size
+ 1), GFP_KERNEL
);
1720 if (!(*copied_name
)) {
1724 memcpy((void *)(*copied_name
), (void *)name
, name_size
);
1725 (*copied_name
)[(name_size
)] = '\0'; /* Only for convenience
1726 * in printing out the
1729 (*copied_name_size
) = name_size
;
1735 * ecryptfs_process_key_cipher - Perform key cipher initialization.
1736 * @key_tfm: Crypto context for key material, set by this function
1737 * @cipher_name: Name of the cipher
1738 * @key_size: Size of the key in bytes
1740 * Returns zero on success. Any crypto_tfm structs allocated here
1741 * should be released by other functions, such as on a superblock put
1742 * event, regardless of whether this function succeeds for fails.
1745 ecryptfs_process_key_cipher(struct crypto_blkcipher
**key_tfm
,
1746 char *cipher_name
, size_t *key_size
)
1748 char dummy_key
[ECRYPTFS_MAX_KEY_BYTES
];
1749 char *full_alg_name
= NULL
;
1753 if (*key_size
> ECRYPTFS_MAX_KEY_BYTES
) {
1755 printk(KERN_ERR
"Requested key size is [%zd] bytes; maximum "
1756 "allowable is [%d]\n", *key_size
, ECRYPTFS_MAX_KEY_BYTES
);
1759 rc
= ecryptfs_crypto_api_algify_cipher_name(&full_alg_name
, cipher_name
,
1763 *key_tfm
= crypto_alloc_blkcipher(full_alg_name
, 0, CRYPTO_ALG_ASYNC
);
1764 if (IS_ERR(*key_tfm
)) {
1765 rc
= PTR_ERR(*key_tfm
);
1766 printk(KERN_ERR
"Unable to allocate crypto cipher with name "
1767 "[%s]; rc = [%d]\n", full_alg_name
, rc
);
1770 crypto_blkcipher_set_flags(*key_tfm
, CRYPTO_TFM_REQ_WEAK_KEY
);
1771 if (*key_size
== 0) {
1772 struct blkcipher_alg
*alg
= crypto_blkcipher_alg(*key_tfm
);
1774 *key_size
= alg
->max_keysize
;
1776 get_random_bytes(dummy_key
, *key_size
);
1777 rc
= crypto_blkcipher_setkey(*key_tfm
, dummy_key
, *key_size
);
1779 printk(KERN_ERR
"Error attempting to set key of size [%zd] for "
1780 "cipher [%s]; rc = [%d]\n", *key_size
, full_alg_name
,
1786 kfree(full_alg_name
);
1790 struct kmem_cache
*ecryptfs_key_tfm_cache
;
1791 static struct list_head key_tfm_list
;
1792 struct mutex key_tfm_list_mutex
;
1794 int __init
ecryptfs_init_crypto(void)
1796 mutex_init(&key_tfm_list_mutex
);
1797 INIT_LIST_HEAD(&key_tfm_list
);
1802 * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
1804 * Called only at module unload time
1806 int ecryptfs_destroy_crypto(void)
1808 struct ecryptfs_key_tfm
*key_tfm
, *key_tfm_tmp
;
1810 mutex_lock(&key_tfm_list_mutex
);
1811 list_for_each_entry_safe(key_tfm
, key_tfm_tmp
, &key_tfm_list
,
1813 list_del(&key_tfm
->key_tfm_list
);
1814 if (key_tfm
->key_tfm
)
1815 crypto_free_blkcipher(key_tfm
->key_tfm
);
1816 kmem_cache_free(ecryptfs_key_tfm_cache
, key_tfm
);
1818 mutex_unlock(&key_tfm_list_mutex
);
1823 ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm
**key_tfm
, char *cipher_name
,
1826 struct ecryptfs_key_tfm
*tmp_tfm
;
1829 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex
));
1831 tmp_tfm
= kmem_cache_alloc(ecryptfs_key_tfm_cache
, GFP_KERNEL
);
1832 if (key_tfm
!= NULL
)
1833 (*key_tfm
) = tmp_tfm
;
1836 printk(KERN_ERR
"Error attempting to allocate from "
1837 "ecryptfs_key_tfm_cache\n");
1840 mutex_init(&tmp_tfm
->key_tfm_mutex
);
1841 strncpy(tmp_tfm
->cipher_name
, cipher_name
,
1842 ECRYPTFS_MAX_CIPHER_NAME_SIZE
);
1843 tmp_tfm
->cipher_name
[ECRYPTFS_MAX_CIPHER_NAME_SIZE
] = '\0';
1844 tmp_tfm
->key_size
= key_size
;
1845 rc
= ecryptfs_process_key_cipher(&tmp_tfm
->key_tfm
,
1846 tmp_tfm
->cipher_name
,
1847 &tmp_tfm
->key_size
);
1849 printk(KERN_ERR
"Error attempting to initialize key TFM "
1850 "cipher with name = [%s]; rc = [%d]\n",
1851 tmp_tfm
->cipher_name
, rc
);
1852 kmem_cache_free(ecryptfs_key_tfm_cache
, tmp_tfm
);
1853 if (key_tfm
!= NULL
)
1857 list_add(&tmp_tfm
->key_tfm_list
, &key_tfm_list
);
1863 * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
1864 * @cipher_name: the name of the cipher to search for
1865 * @key_tfm: set to corresponding tfm if found
1867 * Searches for cached key_tfm matching @cipher_name
1868 * Must be called with &key_tfm_list_mutex held
1869 * Returns 1 if found, with @key_tfm set
1870 * Returns 0 if not found, with @key_tfm set to NULL
1872 int ecryptfs_tfm_exists(char *cipher_name
, struct ecryptfs_key_tfm
**key_tfm
)
1874 struct ecryptfs_key_tfm
*tmp_key_tfm
;
1876 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex
));
1878 list_for_each_entry(tmp_key_tfm
, &key_tfm_list
, key_tfm_list
) {
1879 if (strcmp(tmp_key_tfm
->cipher_name
, cipher_name
) == 0) {
1881 (*key_tfm
) = tmp_key_tfm
;
1891 * ecryptfs_get_tfm_and_mutex_for_cipher_name
1893 * @tfm: set to cached tfm found, or new tfm created
1894 * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
1895 * @cipher_name: the name of the cipher to search for and/or add
1897 * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
1898 * Searches for cached item first, and creates new if not found.
1899 * Returns 0 on success, non-zero if adding new cipher failed
1901 int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_blkcipher
**tfm
,
1902 struct mutex
**tfm_mutex
,
1905 struct ecryptfs_key_tfm
*key_tfm
;
1909 (*tfm_mutex
) = NULL
;
1911 mutex_lock(&key_tfm_list_mutex
);
1912 if (!ecryptfs_tfm_exists(cipher_name
, &key_tfm
)) {
1913 rc
= ecryptfs_add_new_key_tfm(&key_tfm
, cipher_name
, 0);
1915 printk(KERN_ERR
"Error adding new key_tfm to list; "
1920 (*tfm
) = key_tfm
->key_tfm
;
1921 (*tfm_mutex
) = &key_tfm
->key_tfm_mutex
;
1923 mutex_unlock(&key_tfm_list_mutex
);
1927 /* 64 characters forming a 6-bit target field */
1928 static unsigned char *portable_filename_chars
= ("-.0123456789ABCD"
1931 "klmnopqrstuvwxyz");
1933 /* We could either offset on every reverse map or just pad some 0x00's
1934 * at the front here */
1935 static const unsigned char filename_rev_map
[] = {
1936 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
1937 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
1938 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
1939 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
1940 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
1941 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
1942 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
1943 0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
1944 0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
1945 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
1946 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
1947 0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
1948 0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
1949 0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
1950 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
1955 * ecryptfs_encode_for_filename
1956 * @dst: Destination location for encoded filename
1957 * @dst_size: Size of the encoded filename in bytes
1958 * @src: Source location for the filename to encode
1959 * @src_size: Size of the source in bytes
1961 void ecryptfs_encode_for_filename(unsigned char *dst
, size_t *dst_size
,
1962 unsigned char *src
, size_t src_size
)
1965 size_t block_num
= 0;
1966 size_t dst_offset
= 0;
1967 unsigned char last_block
[3];
1969 if (src_size
== 0) {
1973 num_blocks
= (src_size
/ 3);
1974 if ((src_size
% 3) == 0) {
1975 memcpy(last_block
, (&src
[src_size
- 3]), 3);
1978 last_block
[2] = 0x00;
1979 switch (src_size
% 3) {
1981 last_block
[0] = src
[src_size
- 1];
1982 last_block
[1] = 0x00;
1985 last_block
[0] = src
[src_size
- 2];
1986 last_block
[1] = src
[src_size
- 1];
1989 (*dst_size
) = (num_blocks
* 4);
1992 while (block_num
< num_blocks
) {
1993 unsigned char *src_block
;
1994 unsigned char dst_block
[4];
1996 if (block_num
== (num_blocks
- 1))
1997 src_block
= last_block
;
1999 src_block
= &src
[block_num
* 3];
2000 dst_block
[0] = ((src_block
[0] >> 2) & 0x3F);
2001 dst_block
[1] = (((src_block
[0] << 4) & 0x30)
2002 | ((src_block
[1] >> 4) & 0x0F));
2003 dst_block
[2] = (((src_block
[1] << 2) & 0x3C)
2004 | ((src_block
[2] >> 6) & 0x03));
2005 dst_block
[3] = (src_block
[2] & 0x3F);
2006 dst
[dst_offset
++] = portable_filename_chars
[dst_block
[0]];
2007 dst
[dst_offset
++] = portable_filename_chars
[dst_block
[1]];
2008 dst
[dst_offset
++] = portable_filename_chars
[dst_block
[2]];
2009 dst
[dst_offset
++] = portable_filename_chars
[dst_block
[3]];
2017 * ecryptfs_decode_from_filename
2018 * @dst: If NULL, this function only sets @dst_size and returns. If
2019 * non-NULL, this function decodes the encoded octets in @src
2020 * into the memory that @dst points to.
2021 * @dst_size: Set to the size of the decoded string.
2022 * @src: The encoded set of octets to decode.
2023 * @src_size: The size of the encoded set of octets to decode.
2026 ecryptfs_decode_from_filename(unsigned char *dst
, size_t *dst_size
,
2027 const unsigned char *src
, size_t src_size
)
2029 u8 current_bit_offset
= 0;
2030 size_t src_byte_offset
= 0;
2031 size_t dst_byte_offset
= 0;
2034 /* Not exact; conservatively long. Every block of 4
2035 * encoded characters decodes into a block of 3
2036 * decoded characters. This segment of code provides
2037 * the caller with the maximum amount of allocated
2038 * space that @dst will need to point to in a
2039 * subsequent call. */
2040 (*dst_size
) = (((src_size
+ 1) * 3) / 4);
2043 while (src_byte_offset
< src_size
) {
2044 unsigned char src_byte
=
2045 filename_rev_map
[(int)src
[src_byte_offset
]];
2047 switch (current_bit_offset
) {
2049 dst
[dst_byte_offset
] = (src_byte
<< 2);
2050 current_bit_offset
= 6;
2053 dst
[dst_byte_offset
++] |= (src_byte
>> 4);
2054 dst
[dst_byte_offset
] = ((src_byte
& 0xF)
2056 current_bit_offset
= 4;
2059 dst
[dst_byte_offset
++] |= (src_byte
>> 2);
2060 dst
[dst_byte_offset
] = (src_byte
<< 6);
2061 current_bit_offset
= 2;
2064 dst
[dst_byte_offset
++] |= (src_byte
);
2065 dst
[dst_byte_offset
] = 0;
2066 current_bit_offset
= 0;
2071 (*dst_size
) = dst_byte_offset
;
2077 * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
2078 * @crypt_stat: The crypt_stat struct associated with the file anem to encode
2079 * @name: The plaintext name
2080 * @length: The length of the plaintext
2081 * @encoded_name: The encypted name
2083 * Encrypts and encodes a filename into something that constitutes a
2084 * valid filename for a filesystem, with printable characters.
2086 * We assume that we have a properly initialized crypto context,
2087 * pointed to by crypt_stat->tfm.
2089 * Returns zero on success; non-zero on otherwise
2091 int ecryptfs_encrypt_and_encode_filename(
2092 char **encoded_name
,
2093 size_t *encoded_name_size
,
2094 struct ecryptfs_crypt_stat
*crypt_stat
,
2095 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
,
2096 const char *name
, size_t name_size
)
2098 size_t encoded_name_no_prefix_size
;
2101 (*encoded_name
) = NULL
;
2102 (*encoded_name_size
) = 0;
2103 if ((crypt_stat
&& (crypt_stat
->flags
& ECRYPTFS_ENCRYPT_FILENAMES
))
2104 || (mount_crypt_stat
&& (mount_crypt_stat
->flags
2105 & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES
))) {
2106 struct ecryptfs_filename
*filename
;
2108 filename
= kzalloc(sizeof(*filename
), GFP_KERNEL
);
2110 printk(KERN_ERR
"%s: Out of memory whilst attempting "
2111 "to kzalloc [%zd] bytes\n", __func__
,
2116 filename
->filename
= (char *)name
;
2117 filename
->filename_size
= name_size
;
2118 rc
= ecryptfs_encrypt_filename(filename
, crypt_stat
,
2121 printk(KERN_ERR
"%s: Error attempting to encrypt "
2122 "filename; rc = [%d]\n", __func__
, rc
);
2126 ecryptfs_encode_for_filename(
2127 NULL
, &encoded_name_no_prefix_size
,
2128 filename
->encrypted_filename
,
2129 filename
->encrypted_filename_size
);
2130 if ((crypt_stat
&& (crypt_stat
->flags
2131 & ECRYPTFS_ENCFN_USE_MOUNT_FNEK
))
2132 || (mount_crypt_stat
2133 && (mount_crypt_stat
->flags
2134 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK
)))
2135 (*encoded_name_size
) =
2136 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2137 + encoded_name_no_prefix_size
);
2139 (*encoded_name_size
) =
2140 (ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2141 + encoded_name_no_prefix_size
);
2142 (*encoded_name
) = kmalloc((*encoded_name_size
) + 1, GFP_KERNEL
);
2143 if (!(*encoded_name
)) {
2144 printk(KERN_ERR
"%s: Out of memory whilst attempting "
2145 "to kzalloc [%zd] bytes\n", __func__
,
2146 (*encoded_name_size
));
2148 kfree(filename
->encrypted_filename
);
2152 if ((crypt_stat
&& (crypt_stat
->flags
2153 & ECRYPTFS_ENCFN_USE_MOUNT_FNEK
))
2154 || (mount_crypt_stat
2155 && (mount_crypt_stat
->flags
2156 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK
))) {
2157 memcpy((*encoded_name
),
2158 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX
,
2159 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
);
2160 ecryptfs_encode_for_filename(
2162 + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
),
2163 &encoded_name_no_prefix_size
,
2164 filename
->encrypted_filename
,
2165 filename
->encrypted_filename_size
);
2166 (*encoded_name_size
) =
2167 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2168 + encoded_name_no_prefix_size
);
2169 (*encoded_name
)[(*encoded_name_size
)] = '\0';
2174 printk(KERN_ERR
"%s: Error attempting to encode "
2175 "encrypted filename; rc = [%d]\n", __func__
,
2177 kfree((*encoded_name
));
2178 (*encoded_name
) = NULL
;
2179 (*encoded_name_size
) = 0;
2181 kfree(filename
->encrypted_filename
);
2184 rc
= ecryptfs_copy_filename(encoded_name
,
2193 * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
2194 * @plaintext_name: The plaintext name
2195 * @plaintext_name_size: The plaintext name size
2196 * @ecryptfs_dir_dentry: eCryptfs directory dentry
2197 * @name: The filename in cipher text
2198 * @name_size: The cipher text name size
2200 * Decrypts and decodes the filename.
2202 * Returns zero on error; non-zero otherwise
2204 int ecryptfs_decode_and_decrypt_filename(char **plaintext_name
,
2205 size_t *plaintext_name_size
,
2206 struct dentry
*ecryptfs_dir_dentry
,
2207 const char *name
, size_t name_size
)
2209 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
=
2210 &ecryptfs_superblock_to_private(
2211 ecryptfs_dir_dentry
->d_sb
)->mount_crypt_stat
;
2213 size_t decoded_name_size
;
2217 if ((mount_crypt_stat
->flags
& ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES
)
2218 && !(mount_crypt_stat
->flags
& ECRYPTFS_ENCRYPTED_VIEW_ENABLED
)
2219 && (name_size
> ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
)
2220 && (strncmp(name
, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX
,
2221 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
) == 0)) {
2222 const char *orig_name
= name
;
2223 size_t orig_name_size
= name_size
;
2225 name
+= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
;
2226 name_size
-= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
;
2227 ecryptfs_decode_from_filename(NULL
, &decoded_name_size
,
2229 decoded_name
= kmalloc(decoded_name_size
, GFP_KERNEL
);
2230 if (!decoded_name
) {
2231 printk(KERN_ERR
"%s: Out of memory whilst attempting "
2232 "to kmalloc [%zd] bytes\n", __func__
,
2237 ecryptfs_decode_from_filename(decoded_name
, &decoded_name_size
,
2239 rc
= ecryptfs_parse_tag_70_packet(plaintext_name
,
2240 plaintext_name_size
,
2246 printk(KERN_INFO
"%s: Could not parse tag 70 packet "
2247 "from filename; copying through filename "
2248 "as-is\n", __func__
);
2249 rc
= ecryptfs_copy_filename(plaintext_name
,
2250 plaintext_name_size
,
2251 orig_name
, orig_name_size
);
2255 rc
= ecryptfs_copy_filename(plaintext_name
,
2256 plaintext_name_size
,
2261 kfree(decoded_name
);