2 * Linux performance counter support for MIPS.
4 * Copyright (C) 2010 MIPS Technologies, Inc.
5 * Copyright (C) 2011 Cavium Networks, Inc.
6 * Author: Deng-Cheng Zhu
8 * This code is based on the implementation for ARM, which is in turn
9 * based on the sparc64 perf event code and the x86 code. Performance
10 * counter access is based on the MIPS Oprofile code. And the callchain
11 * support references the code of MIPS stacktrace.c.
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License version 2 as
15 * published by the Free Software Foundation.
18 #include <linux/cpumask.h>
19 #include <linux/interrupt.h>
20 #include <linux/smp.h>
21 #include <linux/kernel.h>
22 #include <linux/perf_event.h>
23 #include <linux/uaccess.h>
26 #include <asm/irq_regs.h>
27 #include <asm/stacktrace.h>
28 #include <asm/time.h> /* For perf_irq */
30 #define MIPS_MAX_HWEVENTS 4
31 #define MIPS_TCS_PER_COUNTER 2
32 #define MIPS_CPUID_TO_COUNTER_MASK (MIPS_TCS_PER_COUNTER - 1)
34 struct cpu_hw_events
{
35 /* Array of events on this cpu. */
36 struct perf_event
*events
[MIPS_MAX_HWEVENTS
];
39 * Set the bit (indexed by the counter number) when the counter
40 * is used for an event.
42 unsigned long used_mask
[BITS_TO_LONGS(MIPS_MAX_HWEVENTS
)];
45 * Software copy of the control register for each performance counter.
46 * MIPS CPUs vary in performance counters. They use this differently,
47 * and even may not use it.
49 unsigned int saved_ctrl
[MIPS_MAX_HWEVENTS
];
51 DEFINE_PER_CPU(struct cpu_hw_events
, cpu_hw_events
) = {
55 /* The description of MIPS performance events. */
56 struct mips_perf_event
{
57 unsigned int event_id
;
59 * MIPS performance counters are indexed starting from 0.
60 * CNTR_EVEN indicates the indexes of the counters to be used are
63 unsigned int cntr_mask
;
64 #define CNTR_EVEN 0x55555555
65 #define CNTR_ODD 0xaaaaaaaa
66 #define CNTR_ALL 0xffffffff
67 #ifdef CONFIG_MIPS_MT_SMP
80 static struct mips_perf_event raw_event
;
81 static DEFINE_MUTEX(raw_event_mutex
);
83 #define C(x) PERF_COUNT_HW_CACHE_##x
91 u64 (*read_counter
)(unsigned int idx
);
92 void (*write_counter
)(unsigned int idx
, u64 val
);
93 const struct mips_perf_event
*(*map_raw_event
)(u64 config
);
94 const struct mips_perf_event (*general_event_map
)[PERF_COUNT_HW_MAX
];
95 const struct mips_perf_event (*cache_event_map
)
96 [PERF_COUNT_HW_CACHE_MAX
]
97 [PERF_COUNT_HW_CACHE_OP_MAX
]
98 [PERF_COUNT_HW_CACHE_RESULT_MAX
];
99 unsigned int num_counters
;
102 static struct mips_pmu mipspmu
;
104 #define M_PERFCTL_EXL (1 << 0)
105 #define M_PERFCTL_KERNEL (1 << 1)
106 #define M_PERFCTL_SUPERVISOR (1 << 2)
107 #define M_PERFCTL_USER (1 << 3)
108 #define M_PERFCTL_INTERRUPT_ENABLE (1 << 4)
109 #define M_PERFCTL_EVENT(event) (((event) & 0x3ff) << 5)
110 #define M_PERFCTL_VPEID(vpe) ((vpe) << 16)
112 #ifdef CONFIG_CPU_BMIPS5000
113 #define M_PERFCTL_MT_EN(filter) 0
114 #else /* !CONFIG_CPU_BMIPS5000 */
115 #define M_PERFCTL_MT_EN(filter) ((filter) << 20)
116 #endif /* CONFIG_CPU_BMIPS5000 */
118 #define M_TC_EN_ALL M_PERFCTL_MT_EN(0)
119 #define M_TC_EN_VPE M_PERFCTL_MT_EN(1)
120 #define M_TC_EN_TC M_PERFCTL_MT_EN(2)
121 #define M_PERFCTL_TCID(tcid) ((tcid) << 22)
122 #define M_PERFCTL_WIDE (1 << 30)
123 #define M_PERFCTL_MORE (1 << 31)
124 #define M_PERFCTL_TC (1 << 30)
126 #define M_PERFCTL_COUNT_EVENT_WHENEVER (M_PERFCTL_EXL | \
129 M_PERFCTL_SUPERVISOR | \
130 M_PERFCTL_INTERRUPT_ENABLE)
132 #ifdef CONFIG_MIPS_MT_SMP
133 #define M_PERFCTL_CONFIG_MASK 0x3fff801f
135 #define M_PERFCTL_CONFIG_MASK 0x1f
137 #define M_PERFCTL_EVENT_MASK 0xfe0
140 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
141 static int cpu_has_mipsmt_pertccounters
;
143 static DEFINE_RWLOCK(pmuint_rwlock
);
145 #if defined(CONFIG_CPU_BMIPS5000)
146 #define vpe_id() (cpu_has_mipsmt_pertccounters ? \
147 0 : (smp_processor_id() & MIPS_CPUID_TO_COUNTER_MASK))
150 * FIXME: For VSMP, vpe_id() is redefined for Perf-events, because
151 * cpu_data[cpuid].vpe_id reports 0 for _both_ CPUs.
153 #define vpe_id() (cpu_has_mipsmt_pertccounters ? \
154 0 : smp_processor_id())
157 /* Copied from op_model_mipsxx.c */
158 static unsigned int vpe_shift(void)
160 if (num_possible_cpus() > 1)
166 static unsigned int counters_total_to_per_cpu(unsigned int counters
)
168 return counters
>> vpe_shift();
171 #else /* !CONFIG_MIPS_PERF_SHARED_TC_COUNTERS */
174 #endif /* CONFIG_MIPS_PERF_SHARED_TC_COUNTERS */
176 static void resume_local_counters(void);
177 static void pause_local_counters(void);
178 static irqreturn_t
mipsxx_pmu_handle_irq(int, void *);
179 static int mipsxx_pmu_handle_shared_irq(void);
181 static unsigned int mipsxx_pmu_swizzle_perf_idx(unsigned int idx
)
188 static u64
mipsxx_pmu_read_counter(unsigned int idx
)
190 idx
= mipsxx_pmu_swizzle_perf_idx(idx
);
195 * The counters are unsigned, we must cast to truncate
198 return (u32
)read_c0_perfcntr0();
200 return (u32
)read_c0_perfcntr1();
202 return (u32
)read_c0_perfcntr2();
204 return (u32
)read_c0_perfcntr3();
206 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx
);
211 static u64
mipsxx_pmu_read_counter_64(unsigned int idx
)
213 idx
= mipsxx_pmu_swizzle_perf_idx(idx
);
217 return read_c0_perfcntr0_64();
219 return read_c0_perfcntr1_64();
221 return read_c0_perfcntr2_64();
223 return read_c0_perfcntr3_64();
225 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx
);
230 static void mipsxx_pmu_write_counter(unsigned int idx
, u64 val
)
232 idx
= mipsxx_pmu_swizzle_perf_idx(idx
);
236 write_c0_perfcntr0(val
);
239 write_c0_perfcntr1(val
);
242 write_c0_perfcntr2(val
);
245 write_c0_perfcntr3(val
);
250 static void mipsxx_pmu_write_counter_64(unsigned int idx
, u64 val
)
252 idx
= mipsxx_pmu_swizzle_perf_idx(idx
);
256 write_c0_perfcntr0_64(val
);
259 write_c0_perfcntr1_64(val
);
262 write_c0_perfcntr2_64(val
);
265 write_c0_perfcntr3_64(val
);
270 static unsigned int mipsxx_pmu_read_control(unsigned int idx
)
272 idx
= mipsxx_pmu_swizzle_perf_idx(idx
);
276 return read_c0_perfctrl0();
278 return read_c0_perfctrl1();
280 return read_c0_perfctrl2();
282 return read_c0_perfctrl3();
284 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx
);
289 static void mipsxx_pmu_write_control(unsigned int idx
, unsigned int val
)
291 idx
= mipsxx_pmu_swizzle_perf_idx(idx
);
295 write_c0_perfctrl0(val
);
298 write_c0_perfctrl1(val
);
301 write_c0_perfctrl2(val
);
304 write_c0_perfctrl3(val
);
309 static int mipsxx_pmu_alloc_counter(struct cpu_hw_events
*cpuc
,
310 struct hw_perf_event
*hwc
)
315 * We only need to care the counter mask. The range has been
316 * checked definitely.
318 unsigned long cntr_mask
= (hwc
->event_base
>> 8) & 0xffff;
320 for (i
= mipspmu
.num_counters
- 1; i
>= 0; i
--) {
322 * Note that some MIPS perf events can be counted by both
323 * even and odd counters, wheresas many other are only by
324 * even _or_ odd counters. This introduces an issue that
325 * when the former kind of event takes the counter the
326 * latter kind of event wants to use, then the "counter
327 * allocation" for the latter event will fail. In fact if
328 * they can be dynamically swapped, they both feel happy.
329 * But here we leave this issue alone for now.
331 if (test_bit(i
, &cntr_mask
) &&
332 !test_and_set_bit(i
, cpuc
->used_mask
))
339 static void mipsxx_pmu_enable_event(struct hw_perf_event
*evt
, int idx
)
341 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
343 WARN_ON(idx
< 0 || idx
>= mipspmu
.num_counters
);
345 cpuc
->saved_ctrl
[idx
] = M_PERFCTL_EVENT(evt
->event_base
& 0xff) |
346 (evt
->config_base
& M_PERFCTL_CONFIG_MASK
) |
347 /* Make sure interrupt enabled. */
348 M_PERFCTL_INTERRUPT_ENABLE
;
349 if (IS_ENABLED(CONFIG_CPU_BMIPS5000
))
350 /* enable the counter for the calling thread */
351 cpuc
->saved_ctrl
[idx
] |=
352 (1 << (12 + vpe_id())) | M_PERFCTL_TC
;
355 * We do not actually let the counter run. Leave it until start().
359 static void mipsxx_pmu_disable_event(int idx
)
361 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
364 WARN_ON(idx
< 0 || idx
>= mipspmu
.num_counters
);
366 local_irq_save(flags
);
367 cpuc
->saved_ctrl
[idx
] = mipsxx_pmu_read_control(idx
) &
368 ~M_PERFCTL_COUNT_EVENT_WHENEVER
;
369 mipsxx_pmu_write_control(idx
, cpuc
->saved_ctrl
[idx
]);
370 local_irq_restore(flags
);
373 static int mipspmu_event_set_period(struct perf_event
*event
,
374 struct hw_perf_event
*hwc
,
377 u64 left
= local64_read(&hwc
->period_left
);
378 u64 period
= hwc
->sample_period
;
381 if (unlikely((left
+ period
) & (1ULL << 63))) {
382 /* left underflowed by more than period. */
384 local64_set(&hwc
->period_left
, left
);
385 hwc
->last_period
= period
;
387 } else if (unlikely((left
+ period
) <= period
)) {
388 /* left underflowed by less than period. */
390 local64_set(&hwc
->period_left
, left
);
391 hwc
->last_period
= period
;
395 if (left
> mipspmu
.max_period
) {
396 left
= mipspmu
.max_period
;
397 local64_set(&hwc
->period_left
, left
);
400 local64_set(&hwc
->prev_count
, mipspmu
.overflow
- left
);
402 mipspmu
.write_counter(idx
, mipspmu
.overflow
- left
);
404 perf_event_update_userpage(event
);
409 static void mipspmu_event_update(struct perf_event
*event
,
410 struct hw_perf_event
*hwc
,
413 u64 prev_raw_count
, new_raw_count
;
417 prev_raw_count
= local64_read(&hwc
->prev_count
);
418 new_raw_count
= mipspmu
.read_counter(idx
);
420 if (local64_cmpxchg(&hwc
->prev_count
, prev_raw_count
,
421 new_raw_count
) != prev_raw_count
)
424 delta
= new_raw_count
- prev_raw_count
;
426 local64_add(delta
, &event
->count
);
427 local64_sub(delta
, &hwc
->period_left
);
430 static void mipspmu_start(struct perf_event
*event
, int flags
)
432 struct hw_perf_event
*hwc
= &event
->hw
;
434 if (flags
& PERF_EF_RELOAD
)
435 WARN_ON_ONCE(!(hwc
->state
& PERF_HES_UPTODATE
));
439 /* Set the period for the event. */
440 mipspmu_event_set_period(event
, hwc
, hwc
->idx
);
442 /* Enable the event. */
443 mipsxx_pmu_enable_event(hwc
, hwc
->idx
);
446 static void mipspmu_stop(struct perf_event
*event
, int flags
)
448 struct hw_perf_event
*hwc
= &event
->hw
;
450 if (!(hwc
->state
& PERF_HES_STOPPED
)) {
451 /* We are working on a local event. */
452 mipsxx_pmu_disable_event(hwc
->idx
);
454 mipspmu_event_update(event
, hwc
, hwc
->idx
);
455 hwc
->state
|= PERF_HES_STOPPED
| PERF_HES_UPTODATE
;
459 static int mipspmu_add(struct perf_event
*event
, int flags
)
461 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
462 struct hw_perf_event
*hwc
= &event
->hw
;
466 perf_pmu_disable(event
->pmu
);
468 /* To look for a free counter for this event. */
469 idx
= mipsxx_pmu_alloc_counter(cpuc
, hwc
);
476 * If there is an event in the counter we are going to use then
477 * make sure it is disabled.
480 mipsxx_pmu_disable_event(idx
);
481 cpuc
->events
[idx
] = event
;
483 hwc
->state
= PERF_HES_STOPPED
| PERF_HES_UPTODATE
;
484 if (flags
& PERF_EF_START
)
485 mipspmu_start(event
, PERF_EF_RELOAD
);
487 /* Propagate our changes to the userspace mapping. */
488 perf_event_update_userpage(event
);
491 perf_pmu_enable(event
->pmu
);
495 static void mipspmu_del(struct perf_event
*event
, int flags
)
497 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
498 struct hw_perf_event
*hwc
= &event
->hw
;
501 WARN_ON(idx
< 0 || idx
>= mipspmu
.num_counters
);
503 mipspmu_stop(event
, PERF_EF_UPDATE
);
504 cpuc
->events
[idx
] = NULL
;
505 clear_bit(idx
, cpuc
->used_mask
);
507 perf_event_update_userpage(event
);
510 static void mipspmu_read(struct perf_event
*event
)
512 struct hw_perf_event
*hwc
= &event
->hw
;
514 /* Don't read disabled counters! */
518 mipspmu_event_update(event
, hwc
, hwc
->idx
);
521 static void mipspmu_enable(struct pmu
*pmu
)
523 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
524 write_unlock(&pmuint_rwlock
);
526 resume_local_counters();
530 * MIPS performance counters can be per-TC. The control registers can
531 * not be directly accessed across CPUs. Hence if we want to do global
532 * control, we need cross CPU calls. on_each_cpu() can help us, but we
533 * can not make sure this function is called with interrupts enabled. So
534 * here we pause local counters and then grab a rwlock and leave the
535 * counters on other CPUs alone. If any counter interrupt raises while
536 * we own the write lock, simply pause local counters on that CPU and
537 * spin in the handler. Also we know we won't be switched to another
538 * CPU after pausing local counters and before grabbing the lock.
540 static void mipspmu_disable(struct pmu
*pmu
)
542 pause_local_counters();
543 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
544 write_lock(&pmuint_rwlock
);
548 static atomic_t active_events
= ATOMIC_INIT(0);
549 static DEFINE_MUTEX(pmu_reserve_mutex
);
550 static int (*save_perf_irq
)(void);
552 static int mipspmu_get_irq(void)
556 if (mipspmu
.irq
>= 0) {
557 /* Request my own irq handler. */
558 err
= request_irq(mipspmu
.irq
, mipsxx_pmu_handle_irq
,
559 IRQF_PERCPU
| IRQF_NOBALANCING
|
560 IRQF_NO_THREAD
| IRQF_NO_SUSPEND
|
562 "mips_perf_pmu", &mipspmu
);
564 pr_warn("Unable to request IRQ%d for MIPS performance counters!\n",
567 } else if (cp0_perfcount_irq
< 0) {
569 * We are sharing the irq number with the timer interrupt.
571 save_perf_irq
= perf_irq
;
572 perf_irq
= mipsxx_pmu_handle_shared_irq
;
575 pr_warn("The platform hasn't properly defined its interrupt controller\n");
582 static void mipspmu_free_irq(void)
584 if (mipspmu
.irq
>= 0)
585 free_irq(mipspmu
.irq
, &mipspmu
);
586 else if (cp0_perfcount_irq
< 0)
587 perf_irq
= save_perf_irq
;
591 * mipsxx/rm9000/loongson2 have different performance counters, they have
592 * specific low-level init routines.
594 static void reset_counters(void *arg
);
595 static int __hw_perf_event_init(struct perf_event
*event
);
597 static void hw_perf_event_destroy(struct perf_event
*event
)
599 if (atomic_dec_and_mutex_lock(&active_events
,
600 &pmu_reserve_mutex
)) {
602 * We must not call the destroy function with interrupts
605 on_each_cpu(reset_counters
,
606 (void *)(long)mipspmu
.num_counters
, 1);
608 mutex_unlock(&pmu_reserve_mutex
);
612 static int mipspmu_event_init(struct perf_event
*event
)
616 /* does not support taken branch sampling */
617 if (has_branch_stack(event
))
620 switch (event
->attr
.type
) {
622 case PERF_TYPE_HARDWARE
:
623 case PERF_TYPE_HW_CACHE
:
630 if (event
->cpu
>= nr_cpumask_bits
||
631 (event
->cpu
>= 0 && !cpu_online(event
->cpu
)))
634 if (!atomic_inc_not_zero(&active_events
)) {
635 mutex_lock(&pmu_reserve_mutex
);
636 if (atomic_read(&active_events
) == 0)
637 err
= mipspmu_get_irq();
640 atomic_inc(&active_events
);
641 mutex_unlock(&pmu_reserve_mutex
);
647 return __hw_perf_event_init(event
);
650 static struct pmu pmu
= {
651 .pmu_enable
= mipspmu_enable
,
652 .pmu_disable
= mipspmu_disable
,
653 .event_init
= mipspmu_event_init
,
656 .start
= mipspmu_start
,
657 .stop
= mipspmu_stop
,
658 .read
= mipspmu_read
,
661 static unsigned int mipspmu_perf_event_encode(const struct mips_perf_event
*pev
)
664 * Top 8 bits for range, next 16 bits for cntr_mask, lowest 8 bits for
667 #ifdef CONFIG_MIPS_MT_SMP
668 return ((unsigned int)pev
->range
<< 24) |
669 (pev
->cntr_mask
& 0xffff00) |
670 (pev
->event_id
& 0xff);
672 return (pev
->cntr_mask
& 0xffff00) |
673 (pev
->event_id
& 0xff);
677 static const struct mips_perf_event
*mipspmu_map_general_event(int idx
)
680 if ((*mipspmu
.general_event_map
)[idx
].cntr_mask
== 0)
681 return ERR_PTR(-EOPNOTSUPP
);
682 return &(*mipspmu
.general_event_map
)[idx
];
685 static const struct mips_perf_event
*mipspmu_map_cache_event(u64 config
)
687 unsigned int cache_type
, cache_op
, cache_result
;
688 const struct mips_perf_event
*pev
;
690 cache_type
= (config
>> 0) & 0xff;
691 if (cache_type
>= PERF_COUNT_HW_CACHE_MAX
)
692 return ERR_PTR(-EINVAL
);
694 cache_op
= (config
>> 8) & 0xff;
695 if (cache_op
>= PERF_COUNT_HW_CACHE_OP_MAX
)
696 return ERR_PTR(-EINVAL
);
698 cache_result
= (config
>> 16) & 0xff;
699 if (cache_result
>= PERF_COUNT_HW_CACHE_RESULT_MAX
)
700 return ERR_PTR(-EINVAL
);
702 pev
= &((*mipspmu
.cache_event_map
)
707 if (pev
->cntr_mask
== 0)
708 return ERR_PTR(-EOPNOTSUPP
);
714 static int validate_group(struct perf_event
*event
)
716 struct perf_event
*sibling
, *leader
= event
->group_leader
;
717 struct cpu_hw_events fake_cpuc
;
719 memset(&fake_cpuc
, 0, sizeof(fake_cpuc
));
721 if (mipsxx_pmu_alloc_counter(&fake_cpuc
, &leader
->hw
) < 0)
724 list_for_each_entry(sibling
, &leader
->sibling_list
, group_entry
) {
725 if (mipsxx_pmu_alloc_counter(&fake_cpuc
, &sibling
->hw
) < 0)
729 if (mipsxx_pmu_alloc_counter(&fake_cpuc
, &event
->hw
) < 0)
735 /* This is needed by specific irq handlers in perf_event_*.c */
736 static void handle_associated_event(struct cpu_hw_events
*cpuc
,
737 int idx
, struct perf_sample_data
*data
,
738 struct pt_regs
*regs
)
740 struct perf_event
*event
= cpuc
->events
[idx
];
741 struct hw_perf_event
*hwc
= &event
->hw
;
743 mipspmu_event_update(event
, hwc
, idx
);
744 data
->period
= event
->hw
.last_period
;
745 if (!mipspmu_event_set_period(event
, hwc
, idx
))
748 if (perf_event_overflow(event
, data
, regs
))
749 mipsxx_pmu_disable_event(idx
);
753 static int __n_counters(void)
757 if (!(read_c0_perfctrl0() & M_PERFCTL_MORE
))
759 if (!(read_c0_perfctrl1() & M_PERFCTL_MORE
))
761 if (!(read_c0_perfctrl2() & M_PERFCTL_MORE
))
767 static int n_counters(void)
771 switch (current_cpu_type()) {
783 counters
= __n_counters();
789 static void reset_counters(void *arg
)
791 int counters
= (int)(long)arg
;
794 mipsxx_pmu_write_control(3, 0);
795 mipspmu
.write_counter(3, 0);
797 mipsxx_pmu_write_control(2, 0);
798 mipspmu
.write_counter(2, 0);
800 mipsxx_pmu_write_control(1, 0);
801 mipspmu
.write_counter(1, 0);
803 mipsxx_pmu_write_control(0, 0);
804 mipspmu
.write_counter(0, 0);
808 /* 24K/34K/1004K/interAptiv/loongson1 cores share the same event map. */
809 static const struct mips_perf_event mipsxxcore_event_map
810 [PERF_COUNT_HW_MAX
] = {
811 [PERF_COUNT_HW_CPU_CYCLES
] = { 0x00, CNTR_EVEN
| CNTR_ODD
, P
},
812 [PERF_COUNT_HW_INSTRUCTIONS
] = { 0x01, CNTR_EVEN
| CNTR_ODD
, T
},
813 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS
] = { 0x02, CNTR_EVEN
, T
},
814 [PERF_COUNT_HW_BRANCH_MISSES
] = { 0x02, CNTR_ODD
, T
},
817 /* 74K/proAptiv core has different branch event code. */
818 static const struct mips_perf_event mipsxxcore_event_map2
819 [PERF_COUNT_HW_MAX
] = {
820 [PERF_COUNT_HW_CPU_CYCLES
] = { 0x00, CNTR_EVEN
| CNTR_ODD
, P
},
821 [PERF_COUNT_HW_INSTRUCTIONS
] = { 0x01, CNTR_EVEN
| CNTR_ODD
, T
},
822 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS
] = { 0x27, CNTR_EVEN
, T
},
823 [PERF_COUNT_HW_BRANCH_MISSES
] = { 0x27, CNTR_ODD
, T
},
826 static const struct mips_perf_event i6400_event_map
[PERF_COUNT_HW_MAX
] = {
827 [PERF_COUNT_HW_CPU_CYCLES
] = { 0x00, CNTR_EVEN
| CNTR_ODD
},
828 [PERF_COUNT_HW_INSTRUCTIONS
] = { 0x01, CNTR_EVEN
| CNTR_ODD
},
829 /* These only count dcache, not icache */
830 [PERF_COUNT_HW_CACHE_REFERENCES
] = { 0x45, CNTR_EVEN
| CNTR_ODD
},
831 [PERF_COUNT_HW_CACHE_MISSES
] = { 0x48, CNTR_EVEN
| CNTR_ODD
},
832 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS
] = { 0x15, CNTR_EVEN
| CNTR_ODD
},
833 [PERF_COUNT_HW_BRANCH_MISSES
] = { 0x16, CNTR_EVEN
| CNTR_ODD
},
836 static const struct mips_perf_event loongson3_event_map
[PERF_COUNT_HW_MAX
] = {
837 [PERF_COUNT_HW_CPU_CYCLES
] = { 0x00, CNTR_EVEN
},
838 [PERF_COUNT_HW_INSTRUCTIONS
] = { 0x00, CNTR_ODD
},
839 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS
] = { 0x01, CNTR_EVEN
},
840 [PERF_COUNT_HW_BRANCH_MISSES
] = { 0x01, CNTR_ODD
},
843 static const struct mips_perf_event octeon_event_map
[PERF_COUNT_HW_MAX
] = {
844 [PERF_COUNT_HW_CPU_CYCLES
] = { 0x01, CNTR_ALL
},
845 [PERF_COUNT_HW_INSTRUCTIONS
] = { 0x03, CNTR_ALL
},
846 [PERF_COUNT_HW_CACHE_REFERENCES
] = { 0x2b, CNTR_ALL
},
847 [PERF_COUNT_HW_CACHE_MISSES
] = { 0x2e, CNTR_ALL
},
848 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS
] = { 0x08, CNTR_ALL
},
849 [PERF_COUNT_HW_BRANCH_MISSES
] = { 0x09, CNTR_ALL
},
850 [PERF_COUNT_HW_BUS_CYCLES
] = { 0x25, CNTR_ALL
},
853 static const struct mips_perf_event bmips5000_event_map
854 [PERF_COUNT_HW_MAX
] = {
855 [PERF_COUNT_HW_CPU_CYCLES
] = { 0x00, CNTR_EVEN
| CNTR_ODD
, T
},
856 [PERF_COUNT_HW_INSTRUCTIONS
] = { 0x01, CNTR_EVEN
| CNTR_ODD
, T
},
857 [PERF_COUNT_HW_BRANCH_MISSES
] = { 0x02, CNTR_ODD
, T
},
860 static const struct mips_perf_event xlp_event_map
[PERF_COUNT_HW_MAX
] = {
861 [PERF_COUNT_HW_CPU_CYCLES
] = { 0x01, CNTR_ALL
},
862 [PERF_COUNT_HW_INSTRUCTIONS
] = { 0x18, CNTR_ALL
}, /* PAPI_TOT_INS */
863 [PERF_COUNT_HW_CACHE_REFERENCES
] = { 0x04, CNTR_ALL
}, /* PAPI_L1_ICA */
864 [PERF_COUNT_HW_CACHE_MISSES
] = { 0x07, CNTR_ALL
}, /* PAPI_L1_ICM */
865 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS
] = { 0x1b, CNTR_ALL
}, /* PAPI_BR_CN */
866 [PERF_COUNT_HW_BRANCH_MISSES
] = { 0x1c, CNTR_ALL
}, /* PAPI_BR_MSP */
869 /* 24K/34K/1004K/interAptiv/loongson1 cores share the same cache event map. */
870 static const struct mips_perf_event mipsxxcore_cache_map
871 [PERF_COUNT_HW_CACHE_MAX
]
872 [PERF_COUNT_HW_CACHE_OP_MAX
]
873 [PERF_COUNT_HW_CACHE_RESULT_MAX
] = {
876 * Like some other architectures (e.g. ARM), the performance
877 * counters don't differentiate between read and write
878 * accesses/misses, so this isn't strictly correct, but it's the
879 * best we can do. Writes and reads get combined.
882 [C(RESULT_ACCESS
)] = { 0x0a, CNTR_EVEN
, T
},
883 [C(RESULT_MISS
)] = { 0x0b, CNTR_EVEN
| CNTR_ODD
, T
},
886 [C(RESULT_ACCESS
)] = { 0x0a, CNTR_EVEN
, T
},
887 [C(RESULT_MISS
)] = { 0x0b, CNTR_EVEN
| CNTR_ODD
, T
},
892 [C(RESULT_ACCESS
)] = { 0x09, CNTR_EVEN
, T
},
893 [C(RESULT_MISS
)] = { 0x09, CNTR_ODD
, T
},
896 [C(RESULT_ACCESS
)] = { 0x09, CNTR_EVEN
, T
},
897 [C(RESULT_MISS
)] = { 0x09, CNTR_ODD
, T
},
900 [C(RESULT_ACCESS
)] = { 0x14, CNTR_EVEN
, T
},
902 * Note that MIPS has only "hit" events countable for
903 * the prefetch operation.
909 [C(RESULT_ACCESS
)] = { 0x15, CNTR_ODD
, P
},
910 [C(RESULT_MISS
)] = { 0x16, CNTR_EVEN
, P
},
913 [C(RESULT_ACCESS
)] = { 0x15, CNTR_ODD
, P
},
914 [C(RESULT_MISS
)] = { 0x16, CNTR_EVEN
, P
},
919 [C(RESULT_ACCESS
)] = { 0x06, CNTR_EVEN
, T
},
920 [C(RESULT_MISS
)] = { 0x06, CNTR_ODD
, T
},
923 [C(RESULT_ACCESS
)] = { 0x06, CNTR_EVEN
, T
},
924 [C(RESULT_MISS
)] = { 0x06, CNTR_ODD
, T
},
929 [C(RESULT_ACCESS
)] = { 0x05, CNTR_EVEN
, T
},
930 [C(RESULT_MISS
)] = { 0x05, CNTR_ODD
, T
},
933 [C(RESULT_ACCESS
)] = { 0x05, CNTR_EVEN
, T
},
934 [C(RESULT_MISS
)] = { 0x05, CNTR_ODD
, T
},
938 /* Using the same code for *HW_BRANCH* */
940 [C(RESULT_ACCESS
)] = { 0x02, CNTR_EVEN
, T
},
941 [C(RESULT_MISS
)] = { 0x02, CNTR_ODD
, T
},
944 [C(RESULT_ACCESS
)] = { 0x02, CNTR_EVEN
, T
},
945 [C(RESULT_MISS
)] = { 0x02, CNTR_ODD
, T
},
950 /* 74K/proAptiv core has completely different cache event map. */
951 static const struct mips_perf_event mipsxxcore_cache_map2
952 [PERF_COUNT_HW_CACHE_MAX
]
953 [PERF_COUNT_HW_CACHE_OP_MAX
]
954 [PERF_COUNT_HW_CACHE_RESULT_MAX
] = {
957 * Like some other architectures (e.g. ARM), the performance
958 * counters don't differentiate between read and write
959 * accesses/misses, so this isn't strictly correct, but it's the
960 * best we can do. Writes and reads get combined.
963 [C(RESULT_ACCESS
)] = { 0x17, CNTR_ODD
, T
},
964 [C(RESULT_MISS
)] = { 0x18, CNTR_ODD
, T
},
967 [C(RESULT_ACCESS
)] = { 0x17, CNTR_ODD
, T
},
968 [C(RESULT_MISS
)] = { 0x18, CNTR_ODD
, T
},
973 [C(RESULT_ACCESS
)] = { 0x06, CNTR_EVEN
, T
},
974 [C(RESULT_MISS
)] = { 0x06, CNTR_ODD
, T
},
977 [C(RESULT_ACCESS
)] = { 0x06, CNTR_EVEN
, T
},
978 [C(RESULT_MISS
)] = { 0x06, CNTR_ODD
, T
},
981 [C(RESULT_ACCESS
)] = { 0x34, CNTR_EVEN
, T
},
983 * Note that MIPS has only "hit" events countable for
984 * the prefetch operation.
990 [C(RESULT_ACCESS
)] = { 0x1c, CNTR_ODD
, P
},
991 [C(RESULT_MISS
)] = { 0x1d, CNTR_EVEN
, P
},
994 [C(RESULT_ACCESS
)] = { 0x1c, CNTR_ODD
, P
},
995 [C(RESULT_MISS
)] = { 0x1d, CNTR_EVEN
, P
},
999 * 74K core does not have specific DTLB events. proAptiv core has
1000 * "speculative" DTLB events which are numbered 0x63 (even/odd) and
1001 * not included here. One can use raw events if really needed.
1005 [C(RESULT_ACCESS
)] = { 0x04, CNTR_EVEN
, T
},
1006 [C(RESULT_MISS
)] = { 0x04, CNTR_ODD
, T
},
1009 [C(RESULT_ACCESS
)] = { 0x04, CNTR_EVEN
, T
},
1010 [C(RESULT_MISS
)] = { 0x04, CNTR_ODD
, T
},
1014 /* Using the same code for *HW_BRANCH* */
1016 [C(RESULT_ACCESS
)] = { 0x27, CNTR_EVEN
, T
},
1017 [C(RESULT_MISS
)] = { 0x27, CNTR_ODD
, T
},
1020 [C(RESULT_ACCESS
)] = { 0x27, CNTR_EVEN
, T
},
1021 [C(RESULT_MISS
)] = { 0x27, CNTR_ODD
, T
},
1026 static const struct mips_perf_event i6400_cache_map
1027 [PERF_COUNT_HW_CACHE_MAX
]
1028 [PERF_COUNT_HW_CACHE_OP_MAX
]
1029 [PERF_COUNT_HW_CACHE_RESULT_MAX
] = {
1032 [C(RESULT_ACCESS
)] = { 0x46, CNTR_EVEN
| CNTR_ODD
},
1033 [C(RESULT_MISS
)] = { 0x49, CNTR_EVEN
| CNTR_ODD
},
1036 [C(RESULT_ACCESS
)] = { 0x47, CNTR_EVEN
| CNTR_ODD
},
1037 [C(RESULT_MISS
)] = { 0x4a, CNTR_EVEN
| CNTR_ODD
},
1042 [C(RESULT_ACCESS
)] = { 0x84, CNTR_EVEN
| CNTR_ODD
},
1043 [C(RESULT_MISS
)] = { 0x85, CNTR_EVEN
| CNTR_ODD
},
1047 /* Can't distinguish read & write */
1049 [C(RESULT_ACCESS
)] = { 0x40, CNTR_EVEN
| CNTR_ODD
},
1050 [C(RESULT_MISS
)] = { 0x41, CNTR_EVEN
| CNTR_ODD
},
1053 [C(RESULT_ACCESS
)] = { 0x40, CNTR_EVEN
| CNTR_ODD
},
1054 [C(RESULT_MISS
)] = { 0x41, CNTR_EVEN
| CNTR_ODD
},
1058 /* Conditional branches / mispredicted */
1060 [C(RESULT_ACCESS
)] = { 0x15, CNTR_EVEN
| CNTR_ODD
},
1061 [C(RESULT_MISS
)] = { 0x16, CNTR_EVEN
| CNTR_ODD
},
1066 static const struct mips_perf_event loongson3_cache_map
1067 [PERF_COUNT_HW_CACHE_MAX
]
1068 [PERF_COUNT_HW_CACHE_OP_MAX
]
1069 [PERF_COUNT_HW_CACHE_RESULT_MAX
] = {
1072 * Like some other architectures (e.g. ARM), the performance
1073 * counters don't differentiate between read and write
1074 * accesses/misses, so this isn't strictly correct, but it's the
1075 * best we can do. Writes and reads get combined.
1078 [C(RESULT_MISS
)] = { 0x04, CNTR_ODD
},
1081 [C(RESULT_MISS
)] = { 0x04, CNTR_ODD
},
1086 [C(RESULT_MISS
)] = { 0x04, CNTR_EVEN
},
1089 [C(RESULT_MISS
)] = { 0x04, CNTR_EVEN
},
1094 [C(RESULT_MISS
)] = { 0x09, CNTR_ODD
},
1097 [C(RESULT_MISS
)] = { 0x09, CNTR_ODD
},
1102 [C(RESULT_MISS
)] = { 0x0c, CNTR_ODD
},
1105 [C(RESULT_MISS
)] = { 0x0c, CNTR_ODD
},
1109 /* Using the same code for *HW_BRANCH* */
1111 [C(RESULT_ACCESS
)] = { 0x02, CNTR_EVEN
},
1112 [C(RESULT_MISS
)] = { 0x02, CNTR_ODD
},
1115 [C(RESULT_ACCESS
)] = { 0x02, CNTR_EVEN
},
1116 [C(RESULT_MISS
)] = { 0x02, CNTR_ODD
},
1122 static const struct mips_perf_event bmips5000_cache_map
1123 [PERF_COUNT_HW_CACHE_MAX
]
1124 [PERF_COUNT_HW_CACHE_OP_MAX
]
1125 [PERF_COUNT_HW_CACHE_RESULT_MAX
] = {
1128 * Like some other architectures (e.g. ARM), the performance
1129 * counters don't differentiate between read and write
1130 * accesses/misses, so this isn't strictly correct, but it's the
1131 * best we can do. Writes and reads get combined.
1134 [C(RESULT_ACCESS
)] = { 12, CNTR_EVEN
, T
},
1135 [C(RESULT_MISS
)] = { 12, CNTR_ODD
, T
},
1138 [C(RESULT_ACCESS
)] = { 12, CNTR_EVEN
, T
},
1139 [C(RESULT_MISS
)] = { 12, CNTR_ODD
, T
},
1144 [C(RESULT_ACCESS
)] = { 10, CNTR_EVEN
, T
},
1145 [C(RESULT_MISS
)] = { 10, CNTR_ODD
, T
},
1148 [C(RESULT_ACCESS
)] = { 10, CNTR_EVEN
, T
},
1149 [C(RESULT_MISS
)] = { 10, CNTR_ODD
, T
},
1151 [C(OP_PREFETCH
)] = {
1152 [C(RESULT_ACCESS
)] = { 23, CNTR_EVEN
, T
},
1154 * Note that MIPS has only "hit" events countable for
1155 * the prefetch operation.
1161 [C(RESULT_ACCESS
)] = { 28, CNTR_EVEN
, P
},
1162 [C(RESULT_MISS
)] = { 28, CNTR_ODD
, P
},
1165 [C(RESULT_ACCESS
)] = { 28, CNTR_EVEN
, P
},
1166 [C(RESULT_MISS
)] = { 28, CNTR_ODD
, P
},
1170 /* Using the same code for *HW_BRANCH* */
1172 [C(RESULT_MISS
)] = { 0x02, CNTR_ODD
, T
},
1175 [C(RESULT_MISS
)] = { 0x02, CNTR_ODD
, T
},
1181 static const struct mips_perf_event octeon_cache_map
1182 [PERF_COUNT_HW_CACHE_MAX
]
1183 [PERF_COUNT_HW_CACHE_OP_MAX
]
1184 [PERF_COUNT_HW_CACHE_RESULT_MAX
] = {
1187 [C(RESULT_ACCESS
)] = { 0x2b, CNTR_ALL
},
1188 [C(RESULT_MISS
)] = { 0x2e, CNTR_ALL
},
1191 [C(RESULT_ACCESS
)] = { 0x30, CNTR_ALL
},
1196 [C(RESULT_ACCESS
)] = { 0x18, CNTR_ALL
},
1198 [C(OP_PREFETCH
)] = {
1199 [C(RESULT_ACCESS
)] = { 0x19, CNTR_ALL
},
1204 * Only general DTLB misses are counted use the same event for
1208 [C(RESULT_MISS
)] = { 0x35, CNTR_ALL
},
1211 [C(RESULT_MISS
)] = { 0x35, CNTR_ALL
},
1216 [C(RESULT_MISS
)] = { 0x37, CNTR_ALL
},
1221 static const struct mips_perf_event xlp_cache_map
1222 [PERF_COUNT_HW_CACHE_MAX
]
1223 [PERF_COUNT_HW_CACHE_OP_MAX
]
1224 [PERF_COUNT_HW_CACHE_RESULT_MAX
] = {
1227 [C(RESULT_ACCESS
)] = { 0x31, CNTR_ALL
}, /* PAPI_L1_DCR */
1228 [C(RESULT_MISS
)] = { 0x30, CNTR_ALL
}, /* PAPI_L1_LDM */
1231 [C(RESULT_ACCESS
)] = { 0x2f, CNTR_ALL
}, /* PAPI_L1_DCW */
1232 [C(RESULT_MISS
)] = { 0x2e, CNTR_ALL
}, /* PAPI_L1_STM */
1237 [C(RESULT_ACCESS
)] = { 0x04, CNTR_ALL
}, /* PAPI_L1_ICA */
1238 [C(RESULT_MISS
)] = { 0x07, CNTR_ALL
}, /* PAPI_L1_ICM */
1243 [C(RESULT_ACCESS
)] = { 0x35, CNTR_ALL
}, /* PAPI_L2_DCR */
1244 [C(RESULT_MISS
)] = { 0x37, CNTR_ALL
}, /* PAPI_L2_LDM */
1247 [C(RESULT_ACCESS
)] = { 0x34, CNTR_ALL
}, /* PAPI_L2_DCA */
1248 [C(RESULT_MISS
)] = { 0x36, CNTR_ALL
}, /* PAPI_L2_DCM */
1253 * Only general DTLB misses are counted use the same event for
1257 [C(RESULT_MISS
)] = { 0x2d, CNTR_ALL
}, /* PAPI_TLB_DM */
1260 [C(RESULT_MISS
)] = { 0x2d, CNTR_ALL
}, /* PAPI_TLB_DM */
1265 [C(RESULT_MISS
)] = { 0x08, CNTR_ALL
}, /* PAPI_TLB_IM */
1268 [C(RESULT_MISS
)] = { 0x08, CNTR_ALL
}, /* PAPI_TLB_IM */
1273 [C(RESULT_MISS
)] = { 0x25, CNTR_ALL
},
1278 #ifdef CONFIG_MIPS_MT_SMP
1279 static void check_and_calc_range(struct perf_event
*event
,
1280 const struct mips_perf_event
*pev
)
1282 struct hw_perf_event
*hwc
= &event
->hw
;
1284 if (event
->cpu
>= 0) {
1285 if (pev
->range
> V
) {
1287 * The user selected an event that is processor
1288 * wide, while expecting it to be VPE wide.
1290 hwc
->config_base
|= M_TC_EN_ALL
;
1293 * FIXME: cpu_data[event->cpu].vpe_id reports 0
1296 hwc
->config_base
|= M_PERFCTL_VPEID(event
->cpu
);
1297 hwc
->config_base
|= M_TC_EN_VPE
;
1300 hwc
->config_base
|= M_TC_EN_ALL
;
1303 static void check_and_calc_range(struct perf_event
*event
,
1304 const struct mips_perf_event
*pev
)
1309 static int __hw_perf_event_init(struct perf_event
*event
)
1311 struct perf_event_attr
*attr
= &event
->attr
;
1312 struct hw_perf_event
*hwc
= &event
->hw
;
1313 const struct mips_perf_event
*pev
;
1316 /* Returning MIPS event descriptor for generic perf event. */
1317 if (PERF_TYPE_HARDWARE
== event
->attr
.type
) {
1318 if (event
->attr
.config
>= PERF_COUNT_HW_MAX
)
1320 pev
= mipspmu_map_general_event(event
->attr
.config
);
1321 } else if (PERF_TYPE_HW_CACHE
== event
->attr
.type
) {
1322 pev
= mipspmu_map_cache_event(event
->attr
.config
);
1323 } else if (PERF_TYPE_RAW
== event
->attr
.type
) {
1324 /* We are working on the global raw event. */
1325 mutex_lock(&raw_event_mutex
);
1326 pev
= mipspmu
.map_raw_event(event
->attr
.config
);
1328 /* The event type is not (yet) supported. */
1333 if (PERF_TYPE_RAW
== event
->attr
.type
)
1334 mutex_unlock(&raw_event_mutex
);
1335 return PTR_ERR(pev
);
1339 * We allow max flexibility on how each individual counter shared
1340 * by the single CPU operates (the mode exclusion and the range).
1342 hwc
->config_base
= M_PERFCTL_INTERRUPT_ENABLE
;
1344 /* Calculate range bits and validate it. */
1345 if (num_possible_cpus() > 1)
1346 check_and_calc_range(event
, pev
);
1348 hwc
->event_base
= mipspmu_perf_event_encode(pev
);
1349 if (PERF_TYPE_RAW
== event
->attr
.type
)
1350 mutex_unlock(&raw_event_mutex
);
1352 if (!attr
->exclude_user
)
1353 hwc
->config_base
|= M_PERFCTL_USER
;
1354 if (!attr
->exclude_kernel
) {
1355 hwc
->config_base
|= M_PERFCTL_KERNEL
;
1356 /* MIPS kernel mode: KSU == 00b || EXL == 1 || ERL == 1 */
1357 hwc
->config_base
|= M_PERFCTL_EXL
;
1359 if (!attr
->exclude_hv
)
1360 hwc
->config_base
|= M_PERFCTL_SUPERVISOR
;
1362 hwc
->config_base
&= M_PERFCTL_CONFIG_MASK
;
1364 * The event can belong to another cpu. We do not assign a local
1365 * counter for it for now.
1370 if (!hwc
->sample_period
) {
1371 hwc
->sample_period
= mipspmu
.max_period
;
1372 hwc
->last_period
= hwc
->sample_period
;
1373 local64_set(&hwc
->period_left
, hwc
->sample_period
);
1377 if (event
->group_leader
!= event
)
1378 err
= validate_group(event
);
1380 event
->destroy
= hw_perf_event_destroy
;
1383 event
->destroy(event
);
1388 static void pause_local_counters(void)
1390 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
1391 int ctr
= mipspmu
.num_counters
;
1392 unsigned long flags
;
1394 local_irq_save(flags
);
1397 cpuc
->saved_ctrl
[ctr
] = mipsxx_pmu_read_control(ctr
);
1398 mipsxx_pmu_write_control(ctr
, cpuc
->saved_ctrl
[ctr
] &
1399 ~M_PERFCTL_COUNT_EVENT_WHENEVER
);
1401 local_irq_restore(flags
);
1404 static void resume_local_counters(void)
1406 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
1407 int ctr
= mipspmu
.num_counters
;
1411 mipsxx_pmu_write_control(ctr
, cpuc
->saved_ctrl
[ctr
]);
1415 static int mipsxx_pmu_handle_shared_irq(void)
1417 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
1418 struct perf_sample_data data
;
1419 unsigned int counters
= mipspmu
.num_counters
;
1421 int handled
= IRQ_NONE
;
1422 struct pt_regs
*regs
;
1424 if (cpu_has_perf_cntr_intr_bit
&& !(read_c0_cause() & CAUSEF_PCI
))
1427 * First we pause the local counters, so that when we are locked
1428 * here, the counters are all paused. When it gets locked due to
1429 * perf_disable(), the timer interrupt handler will be delayed.
1431 * See also mipsxx_pmu_start().
1433 pause_local_counters();
1434 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
1435 read_lock(&pmuint_rwlock
);
1438 regs
= get_irq_regs();
1440 perf_sample_data_init(&data
, 0, 0);
1443 #define HANDLE_COUNTER(n) \
1445 if (test_bit(n, cpuc->used_mask)) { \
1446 counter = mipspmu.read_counter(n); \
1447 if (counter & mipspmu.overflow) { \
1448 handle_associated_event(cpuc, n, &data, regs); \
1449 handled = IRQ_HANDLED; \
1459 * Do all the work for the pending perf events. We can do this
1460 * in here because the performance counter interrupt is a regular
1461 * interrupt, not NMI.
1463 if (handled
== IRQ_HANDLED
)
1466 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
1467 read_unlock(&pmuint_rwlock
);
1469 resume_local_counters();
1473 static irqreturn_t
mipsxx_pmu_handle_irq(int irq
, void *dev
)
1475 return mipsxx_pmu_handle_shared_irq();
1479 #define IS_BOTH_COUNTERS_24K_EVENT(b) \
1480 ((b) == 0 || (b) == 1 || (b) == 11)
1483 #define IS_BOTH_COUNTERS_34K_EVENT(b) \
1484 ((b) == 0 || (b) == 1 || (b) == 11)
1485 #ifdef CONFIG_MIPS_MT_SMP
1486 #define IS_RANGE_P_34K_EVENT(r, b) \
1487 ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 || \
1488 (b) == 25 || (b) == 39 || (r) == 44 || (r) == 174 || \
1489 (r) == 176 || ((b) >= 50 && (b) <= 55) || \
1490 ((b) >= 64 && (b) <= 67))
1491 #define IS_RANGE_V_34K_EVENT(r) ((r) == 47)
1495 #define IS_BOTH_COUNTERS_74K_EVENT(b) \
1496 ((b) == 0 || (b) == 1)
1499 #define IS_BOTH_COUNTERS_PROAPTIV_EVENT(b) \
1500 ((b) == 0 || (b) == 1)
1502 #define IS_BOTH_COUNTERS_P5600_EVENT(b) \
1503 ((b) == 0 || (b) == 1)
1506 #define IS_BOTH_COUNTERS_1004K_EVENT(b) \
1507 ((b) == 0 || (b) == 1 || (b) == 11)
1508 #ifdef CONFIG_MIPS_MT_SMP
1509 #define IS_RANGE_P_1004K_EVENT(r, b) \
1510 ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 || \
1511 (b) == 25 || (b) == 36 || (b) == 39 || (r) == 44 || \
1512 (r) == 174 || (r) == 176 || ((b) >= 50 && (b) <= 59) || \
1513 (r) == 188 || (b) == 61 || (b) == 62 || \
1514 ((b) >= 64 && (b) <= 67))
1515 #define IS_RANGE_V_1004K_EVENT(r) ((r) == 47)
1519 #define IS_BOTH_COUNTERS_INTERAPTIV_EVENT(b) \
1520 ((b) == 0 || (b) == 1 || (b) == 11)
1521 #ifdef CONFIG_MIPS_MT_SMP
1522 /* The P/V/T info is not provided for "(b) == 38" in SUM, assume P. */
1523 #define IS_RANGE_P_INTERAPTIV_EVENT(r, b) \
1524 ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 || \
1525 (b) == 25 || (b) == 36 || (b) == 38 || (b) == 39 || \
1526 (r) == 44 || (r) == 174 || (r) == 176 || ((b) >= 50 && \
1527 (b) <= 59) || (r) == 188 || (b) == 61 || (b) == 62 || \
1528 ((b) >= 64 && (b) <= 67))
1529 #define IS_RANGE_V_INTERAPTIV_EVENT(r) ((r) == 47 || (r) == 175)
1533 #define IS_BOTH_COUNTERS_BMIPS5000_EVENT(b) \
1534 ((b) == 0 || (b) == 1)
1538 * For most cores the user can use 0-255 raw events, where 0-127 for the events
1539 * of even counters, and 128-255 for odd counters. Note that bit 7 is used to
1540 * indicate the even/odd bank selector. So, for example, when user wants to take
1541 * the Event Num of 15 for odd counters (by referring to the user manual), then
1542 * 128 needs to be added to 15 as the input for the event config, i.e., 143 (0x8F)
1545 * Some newer cores have even more events, in which case the user can use raw
1546 * events 0-511, where 0-255 are for the events of even counters, and 256-511
1547 * are for odd counters, so bit 8 is used to indicate the even/odd bank selector.
1549 static const struct mips_perf_event
*mipsxx_pmu_map_raw_event(u64 config
)
1551 /* currently most cores have 7-bit event numbers */
1552 unsigned int raw_id
= config
& 0xff;
1553 unsigned int base_id
= raw_id
& 0x7f;
1555 switch (current_cpu_type()) {
1557 if (IS_BOTH_COUNTERS_24K_EVENT(base_id
))
1558 raw_event
.cntr_mask
= CNTR_EVEN
| CNTR_ODD
;
1560 raw_event
.cntr_mask
=
1561 raw_id
> 127 ? CNTR_ODD
: CNTR_EVEN
;
1562 #ifdef CONFIG_MIPS_MT_SMP
1564 * This is actually doing nothing. Non-multithreading
1565 * CPUs will not check and calculate the range.
1567 raw_event
.range
= P
;
1571 if (IS_BOTH_COUNTERS_34K_EVENT(base_id
))
1572 raw_event
.cntr_mask
= CNTR_EVEN
| CNTR_ODD
;
1574 raw_event
.cntr_mask
=
1575 raw_id
> 127 ? CNTR_ODD
: CNTR_EVEN
;
1576 #ifdef CONFIG_MIPS_MT_SMP
1577 if (IS_RANGE_P_34K_EVENT(raw_id
, base_id
))
1578 raw_event
.range
= P
;
1579 else if (unlikely(IS_RANGE_V_34K_EVENT(raw_id
)))
1580 raw_event
.range
= V
;
1582 raw_event
.range
= T
;
1587 if (IS_BOTH_COUNTERS_74K_EVENT(base_id
))
1588 raw_event
.cntr_mask
= CNTR_EVEN
| CNTR_ODD
;
1590 raw_event
.cntr_mask
=
1591 raw_id
> 127 ? CNTR_ODD
: CNTR_EVEN
;
1592 #ifdef CONFIG_MIPS_MT_SMP
1593 raw_event
.range
= P
;
1597 if (IS_BOTH_COUNTERS_PROAPTIV_EVENT(base_id
))
1598 raw_event
.cntr_mask
= CNTR_EVEN
| CNTR_ODD
;
1600 raw_event
.cntr_mask
=
1601 raw_id
> 127 ? CNTR_ODD
: CNTR_EVEN
;
1602 #ifdef CONFIG_MIPS_MT_SMP
1603 raw_event
.range
= P
;
1609 /* 8-bit event numbers */
1610 raw_id
= config
& 0x1ff;
1611 base_id
= raw_id
& 0xff;
1612 if (IS_BOTH_COUNTERS_P5600_EVENT(base_id
))
1613 raw_event
.cntr_mask
= CNTR_EVEN
| CNTR_ODD
;
1615 raw_event
.cntr_mask
=
1616 raw_id
> 255 ? CNTR_ODD
: CNTR_EVEN
;
1617 #ifdef CONFIG_MIPS_MT_SMP
1618 raw_event
.range
= P
;
1622 if (IS_BOTH_COUNTERS_1004K_EVENT(base_id
))
1623 raw_event
.cntr_mask
= CNTR_EVEN
| CNTR_ODD
;
1625 raw_event
.cntr_mask
=
1626 raw_id
> 127 ? CNTR_ODD
: CNTR_EVEN
;
1627 #ifdef CONFIG_MIPS_MT_SMP
1628 if (IS_RANGE_P_1004K_EVENT(raw_id
, base_id
))
1629 raw_event
.range
= P
;
1630 else if (unlikely(IS_RANGE_V_1004K_EVENT(raw_id
)))
1631 raw_event
.range
= V
;
1633 raw_event
.range
= T
;
1636 case CPU_INTERAPTIV
:
1637 if (IS_BOTH_COUNTERS_INTERAPTIV_EVENT(base_id
))
1638 raw_event
.cntr_mask
= CNTR_EVEN
| CNTR_ODD
;
1640 raw_event
.cntr_mask
=
1641 raw_id
> 127 ? CNTR_ODD
: CNTR_EVEN
;
1642 #ifdef CONFIG_MIPS_MT_SMP
1643 if (IS_RANGE_P_INTERAPTIV_EVENT(raw_id
, base_id
))
1644 raw_event
.range
= P
;
1645 else if (unlikely(IS_RANGE_V_INTERAPTIV_EVENT(raw_id
)))
1646 raw_event
.range
= V
;
1648 raw_event
.range
= T
;
1652 if (IS_BOTH_COUNTERS_BMIPS5000_EVENT(base_id
))
1653 raw_event
.cntr_mask
= CNTR_EVEN
| CNTR_ODD
;
1655 raw_event
.cntr_mask
=
1656 raw_id
> 127 ? CNTR_ODD
: CNTR_EVEN
;
1659 raw_event
.cntr_mask
= raw_id
> 127 ? CNTR_ODD
: CNTR_EVEN
;
1663 raw_event
.event_id
= base_id
;
1668 static const struct mips_perf_event
*octeon_pmu_map_raw_event(u64 config
)
1670 unsigned int raw_id
= config
& 0xff;
1671 unsigned int base_id
= raw_id
& 0x7f;
1674 raw_event
.cntr_mask
= CNTR_ALL
;
1675 raw_event
.event_id
= base_id
;
1677 if (current_cpu_type() == CPU_CAVIUM_OCTEON2
) {
1679 return ERR_PTR(-EOPNOTSUPP
);
1682 return ERR_PTR(-EOPNOTSUPP
);
1693 return ERR_PTR(-EOPNOTSUPP
);
1701 static const struct mips_perf_event
*xlp_pmu_map_raw_event(u64 config
)
1703 unsigned int raw_id
= config
& 0xff;
1705 /* Only 1-63 are defined */
1706 if ((raw_id
< 0x01) || (raw_id
> 0x3f))
1707 return ERR_PTR(-EOPNOTSUPP
);
1709 raw_event
.cntr_mask
= CNTR_ALL
;
1710 raw_event
.event_id
= raw_id
;
1716 init_hw_perf_events(void)
1721 pr_info("Performance counters: ");
1723 counters
= n_counters();
1724 if (counters
== 0) {
1725 pr_cont("No available PMU.\n");
1729 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
1730 cpu_has_mipsmt_pertccounters
= read_c0_config7() & (1<<19);
1731 if (!cpu_has_mipsmt_pertccounters
)
1732 counters
= counters_total_to_per_cpu(counters
);
1735 if (get_c0_perfcount_int
)
1736 irq
= get_c0_perfcount_int();
1737 else if (cp0_perfcount_irq
>= 0)
1738 irq
= MIPS_CPU_IRQ_BASE
+ cp0_perfcount_irq
;
1742 mipspmu
.map_raw_event
= mipsxx_pmu_map_raw_event
;
1744 switch (current_cpu_type()) {
1746 mipspmu
.name
= "mips/24K";
1747 mipspmu
.general_event_map
= &mipsxxcore_event_map
;
1748 mipspmu
.cache_event_map
= &mipsxxcore_cache_map
;
1751 mipspmu
.name
= "mips/34K";
1752 mipspmu
.general_event_map
= &mipsxxcore_event_map
;
1753 mipspmu
.cache_event_map
= &mipsxxcore_cache_map
;
1756 mipspmu
.name
= "mips/74K";
1757 mipspmu
.general_event_map
= &mipsxxcore_event_map2
;
1758 mipspmu
.cache_event_map
= &mipsxxcore_cache_map2
;
1761 mipspmu
.name
= "mips/proAptiv";
1762 mipspmu
.general_event_map
= &mipsxxcore_event_map2
;
1763 mipspmu
.cache_event_map
= &mipsxxcore_cache_map2
;
1766 mipspmu
.name
= "mips/P5600";
1767 mipspmu
.general_event_map
= &mipsxxcore_event_map2
;
1768 mipspmu
.cache_event_map
= &mipsxxcore_cache_map2
;
1771 mipspmu
.name
= "mips/P6600";
1772 mipspmu
.general_event_map
= &mipsxxcore_event_map2
;
1773 mipspmu
.cache_event_map
= &mipsxxcore_cache_map2
;
1776 mipspmu
.name
= "mips/I6400";
1777 mipspmu
.general_event_map
= &i6400_event_map
;
1778 mipspmu
.cache_event_map
= &i6400_cache_map
;
1781 mipspmu
.name
= "mips/1004K";
1782 mipspmu
.general_event_map
= &mipsxxcore_event_map
;
1783 mipspmu
.cache_event_map
= &mipsxxcore_cache_map
;
1786 mipspmu
.name
= "mips/1074K";
1787 mipspmu
.general_event_map
= &mipsxxcore_event_map
;
1788 mipspmu
.cache_event_map
= &mipsxxcore_cache_map
;
1790 case CPU_INTERAPTIV
:
1791 mipspmu
.name
= "mips/interAptiv";
1792 mipspmu
.general_event_map
= &mipsxxcore_event_map
;
1793 mipspmu
.cache_event_map
= &mipsxxcore_cache_map
;
1796 mipspmu
.name
= "mips/loongson1";
1797 mipspmu
.general_event_map
= &mipsxxcore_event_map
;
1798 mipspmu
.cache_event_map
= &mipsxxcore_cache_map
;
1801 mipspmu
.name
= "mips/loongson3";
1802 mipspmu
.general_event_map
= &loongson3_event_map
;
1803 mipspmu
.cache_event_map
= &loongson3_cache_map
;
1805 case CPU_CAVIUM_OCTEON
:
1806 case CPU_CAVIUM_OCTEON_PLUS
:
1807 case CPU_CAVIUM_OCTEON2
:
1808 mipspmu
.name
= "octeon";
1809 mipspmu
.general_event_map
= &octeon_event_map
;
1810 mipspmu
.cache_event_map
= &octeon_cache_map
;
1811 mipspmu
.map_raw_event
= octeon_pmu_map_raw_event
;
1814 mipspmu
.name
= "BMIPS5000";
1815 mipspmu
.general_event_map
= &bmips5000_event_map
;
1816 mipspmu
.cache_event_map
= &bmips5000_cache_map
;
1819 mipspmu
.name
= "xlp";
1820 mipspmu
.general_event_map
= &xlp_event_map
;
1821 mipspmu
.cache_event_map
= &xlp_cache_map
;
1822 mipspmu
.map_raw_event
= xlp_pmu_map_raw_event
;
1825 pr_cont("Either hardware does not support performance "
1826 "counters, or not yet implemented.\n");
1830 mipspmu
.num_counters
= counters
;
1833 if (read_c0_perfctrl0() & M_PERFCTL_WIDE
) {
1834 mipspmu
.max_period
= (1ULL << 63) - 1;
1835 mipspmu
.valid_count
= (1ULL << 63) - 1;
1836 mipspmu
.overflow
= 1ULL << 63;
1837 mipspmu
.read_counter
= mipsxx_pmu_read_counter_64
;
1838 mipspmu
.write_counter
= mipsxx_pmu_write_counter_64
;
1841 mipspmu
.max_period
= (1ULL << 31) - 1;
1842 mipspmu
.valid_count
= (1ULL << 31) - 1;
1843 mipspmu
.overflow
= 1ULL << 31;
1844 mipspmu
.read_counter
= mipsxx_pmu_read_counter
;
1845 mipspmu
.write_counter
= mipsxx_pmu_write_counter
;
1849 on_each_cpu(reset_counters
, (void *)(long)counters
, 1);
1851 pr_cont("%s PMU enabled, %d %d-bit counters available to each "
1852 "CPU, irq %d%s\n", mipspmu
.name
, counters
, counter_bits
, irq
,
1853 irq
< 0 ? " (share with timer interrupt)" : "");
1855 perf_pmu_register(&pmu
, "cpu", PERF_TYPE_RAW
);
1859 early_initcall(init_hw_perf_events
);