2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
6 * Copyright (C) 1996 David S. Miller (davem@davemloft.net)
7 * Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002 Ralf Baechle (ralf@gnu.org)
8 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
10 #include <linux/cpu_pm.h>
11 #include <linux/hardirq.h>
12 #include <linux/init.h>
13 #include <linux/highmem.h>
14 #include <linux/kernel.h>
15 #include <linux/linkage.h>
16 #include <linux/preempt.h>
17 #include <linux/sched.h>
18 #include <linux/smp.h>
20 #include <linux/module.h>
21 #include <linux/bitops.h>
23 #include <asm/bcache.h>
24 #include <asm/bootinfo.h>
25 #include <asm/cache.h>
26 #include <asm/cacheops.h>
28 #include <asm/cpu-features.h>
29 #include <asm/cpu-type.h>
32 #include <asm/pgtable.h>
33 #include <asm/r4kcache.h>
34 #include <asm/sections.h>
35 #include <asm/mmu_context.h>
37 #include <asm/cacheflush.h> /* for run_uncached() */
38 #include <asm/traps.h>
39 #include <asm/dma-coherence.h>
40 #include <asm/mips-cm.h>
43 * Bits describing what cache ops an SMP callback function may perform.
45 * R4K_HIT - Virtual user or kernel address based cache operations. The
46 * active_mm must be checked before using user addresses, falling
48 * R4K_INDEX - Index based cache operations.
51 #define R4K_HIT BIT(0)
52 #define R4K_INDEX BIT(1)
55 * r4k_op_needs_ipi() - Decide if a cache op needs to be done on every core.
56 * @type: Type of cache operations (R4K_HIT or R4K_INDEX).
58 * Decides whether a cache op needs to be performed on every core in the system.
59 * This may change depending on the @type of cache operation, as well as the set
60 * of online CPUs, so preemption should be disabled by the caller to prevent CPU
61 * hotplug from changing the result.
63 * Returns: 1 if the cache operation @type should be done on every core in
65 * 0 if the cache operation @type is globalized and only needs to
66 * be performed on a simple CPU.
68 static inline bool r4k_op_needs_ipi(unsigned int type
)
70 /* The MIPS Coherence Manager (CM) globalizes address-based cache ops */
71 if (type
== R4K_HIT
&& mips_cm_present())
75 * Hardware doesn't globalize the required cache ops, so SMP calls may
76 * be needed, but only if there are foreign CPUs (non-siblings with
79 /* cpu_foreign_map[] undeclared when !CONFIG_SMP */
81 return !cpumask_empty(&cpu_foreign_map
[0]);
88 * Special Variant of smp_call_function for use by cache functions:
91 * o collapses to normal function call on UP kernels
92 * o collapses to normal function call on systems with a single shared
94 * o doesn't disable interrupts on the local CPU
96 static inline void r4k_on_each_cpu(unsigned int type
,
97 void (*func
)(void *info
), void *info
)
100 if (r4k_op_needs_ipi(type
))
101 smp_call_function_many(&cpu_foreign_map
[smp_processor_id()],
110 static unsigned long icache_size __read_mostly
;
111 static unsigned long dcache_size __read_mostly
;
112 static unsigned long vcache_size __read_mostly
;
113 static unsigned long scache_size __read_mostly
;
116 * Dummy cache handling routines for machines without boardcaches
118 static void cache_noop(void) {}
120 static struct bcache_ops no_sc_ops
= {
121 .bc_enable
= (void *)cache_noop
,
122 .bc_disable
= (void *)cache_noop
,
123 .bc_wback_inv
= (void *)cache_noop
,
124 .bc_inv
= (void *)cache_noop
127 struct bcache_ops
*bcops
= &no_sc_ops
;
129 #define cpu_is_r4600_v1_x() ((read_c0_prid() & 0xfffffff0) == 0x00002010)
130 #define cpu_is_r4600_v2_x() ((read_c0_prid() & 0xfffffff0) == 0x00002020)
132 #define R4600_HIT_CACHEOP_WAR_IMPL \
134 if (R4600_V2_HIT_CACHEOP_WAR && cpu_is_r4600_v2_x()) \
135 *(volatile unsigned long *)CKSEG1; \
136 if (R4600_V1_HIT_CACHEOP_WAR) \
137 __asm__ __volatile__("nop;nop;nop;nop"); \
140 static void (*r4k_blast_dcache_page
)(unsigned long addr
);
142 static inline void r4k_blast_dcache_page_dc32(unsigned long addr
)
144 R4600_HIT_CACHEOP_WAR_IMPL
;
145 blast_dcache32_page(addr
);
148 static inline void r4k_blast_dcache_page_dc64(unsigned long addr
)
150 blast_dcache64_page(addr
);
153 static inline void r4k_blast_dcache_page_dc128(unsigned long addr
)
155 blast_dcache128_page(addr
);
158 static void r4k_blast_dcache_page_setup(void)
160 unsigned long dc_lsize
= cpu_dcache_line_size();
164 r4k_blast_dcache_page
= (void *)cache_noop
;
167 r4k_blast_dcache_page
= blast_dcache16_page
;
170 r4k_blast_dcache_page
= r4k_blast_dcache_page_dc32
;
173 r4k_blast_dcache_page
= r4k_blast_dcache_page_dc64
;
176 r4k_blast_dcache_page
= r4k_blast_dcache_page_dc128
;
184 #define r4k_blast_dcache_user_page r4k_blast_dcache_page
187 static void (*r4k_blast_dcache_user_page
)(unsigned long addr
);
189 static void r4k_blast_dcache_user_page_setup(void)
191 unsigned long dc_lsize
= cpu_dcache_line_size();
194 r4k_blast_dcache_user_page
= (void *)cache_noop
;
195 else if (dc_lsize
== 16)
196 r4k_blast_dcache_user_page
= blast_dcache16_user_page
;
197 else if (dc_lsize
== 32)
198 r4k_blast_dcache_user_page
= blast_dcache32_user_page
;
199 else if (dc_lsize
== 64)
200 r4k_blast_dcache_user_page
= blast_dcache64_user_page
;
205 static void (* r4k_blast_dcache_page_indexed
)(unsigned long addr
);
207 static void r4k_blast_dcache_page_indexed_setup(void)
209 unsigned long dc_lsize
= cpu_dcache_line_size();
212 r4k_blast_dcache_page_indexed
= (void *)cache_noop
;
213 else if (dc_lsize
== 16)
214 r4k_blast_dcache_page_indexed
= blast_dcache16_page_indexed
;
215 else if (dc_lsize
== 32)
216 r4k_blast_dcache_page_indexed
= blast_dcache32_page_indexed
;
217 else if (dc_lsize
== 64)
218 r4k_blast_dcache_page_indexed
= blast_dcache64_page_indexed
;
219 else if (dc_lsize
== 128)
220 r4k_blast_dcache_page_indexed
= blast_dcache128_page_indexed
;
223 void (* r4k_blast_dcache
)(void);
224 EXPORT_SYMBOL(r4k_blast_dcache
);
226 static void r4k_blast_dcache_setup(void)
228 unsigned long dc_lsize
= cpu_dcache_line_size();
231 r4k_blast_dcache
= (void *)cache_noop
;
232 else if (dc_lsize
== 16)
233 r4k_blast_dcache
= blast_dcache16
;
234 else if (dc_lsize
== 32)
235 r4k_blast_dcache
= blast_dcache32
;
236 else if (dc_lsize
== 64)
237 r4k_blast_dcache
= blast_dcache64
;
238 else if (dc_lsize
== 128)
239 r4k_blast_dcache
= blast_dcache128
;
242 /* force code alignment (used for TX49XX_ICACHE_INDEX_INV_WAR) */
243 #define JUMP_TO_ALIGN(order) \
244 __asm__ __volatile__( \
246 ".align\t" #order "\n\t" \
249 #define CACHE32_UNROLL32_ALIGN JUMP_TO_ALIGN(10) /* 32 * 32 = 1024 */
250 #define CACHE32_UNROLL32_ALIGN2 JUMP_TO_ALIGN(11)
252 static inline void blast_r4600_v1_icache32(void)
256 local_irq_save(flags
);
258 local_irq_restore(flags
);
261 static inline void tx49_blast_icache32(void)
263 unsigned long start
= INDEX_BASE
;
264 unsigned long end
= start
+ current_cpu_data
.icache
.waysize
;
265 unsigned long ws_inc
= 1UL << current_cpu_data
.icache
.waybit
;
266 unsigned long ws_end
= current_cpu_data
.icache
.ways
<<
267 current_cpu_data
.icache
.waybit
;
268 unsigned long ws
, addr
;
270 CACHE32_UNROLL32_ALIGN2
;
271 /* I'm in even chunk. blast odd chunks */
272 for (ws
= 0; ws
< ws_end
; ws
+= ws_inc
)
273 for (addr
= start
+ 0x400; addr
< end
; addr
+= 0x400 * 2)
274 cache32_unroll32(addr
|ws
, Index_Invalidate_I
);
275 CACHE32_UNROLL32_ALIGN
;
276 /* I'm in odd chunk. blast even chunks */
277 for (ws
= 0; ws
< ws_end
; ws
+= ws_inc
)
278 for (addr
= start
; addr
< end
; addr
+= 0x400 * 2)
279 cache32_unroll32(addr
|ws
, Index_Invalidate_I
);
282 static inline void blast_icache32_r4600_v1_page_indexed(unsigned long page
)
286 local_irq_save(flags
);
287 blast_icache32_page_indexed(page
);
288 local_irq_restore(flags
);
291 static inline void tx49_blast_icache32_page_indexed(unsigned long page
)
293 unsigned long indexmask
= current_cpu_data
.icache
.waysize
- 1;
294 unsigned long start
= INDEX_BASE
+ (page
& indexmask
);
295 unsigned long end
= start
+ PAGE_SIZE
;
296 unsigned long ws_inc
= 1UL << current_cpu_data
.icache
.waybit
;
297 unsigned long ws_end
= current_cpu_data
.icache
.ways
<<
298 current_cpu_data
.icache
.waybit
;
299 unsigned long ws
, addr
;
301 CACHE32_UNROLL32_ALIGN2
;
302 /* I'm in even chunk. blast odd chunks */
303 for (ws
= 0; ws
< ws_end
; ws
+= ws_inc
)
304 for (addr
= start
+ 0x400; addr
< end
; addr
+= 0x400 * 2)
305 cache32_unroll32(addr
|ws
, Index_Invalidate_I
);
306 CACHE32_UNROLL32_ALIGN
;
307 /* I'm in odd chunk. blast even chunks */
308 for (ws
= 0; ws
< ws_end
; ws
+= ws_inc
)
309 for (addr
= start
; addr
< end
; addr
+= 0x400 * 2)
310 cache32_unroll32(addr
|ws
, Index_Invalidate_I
);
313 static void (* r4k_blast_icache_page
)(unsigned long addr
);
315 static void r4k_blast_icache_page_setup(void)
317 unsigned long ic_lsize
= cpu_icache_line_size();
320 r4k_blast_icache_page
= (void *)cache_noop
;
321 else if (ic_lsize
== 16)
322 r4k_blast_icache_page
= blast_icache16_page
;
323 else if (ic_lsize
== 32 && current_cpu_type() == CPU_LOONGSON2
)
324 r4k_blast_icache_page
= loongson2_blast_icache32_page
;
325 else if (ic_lsize
== 32)
326 r4k_blast_icache_page
= blast_icache32_page
;
327 else if (ic_lsize
== 64)
328 r4k_blast_icache_page
= blast_icache64_page
;
329 else if (ic_lsize
== 128)
330 r4k_blast_icache_page
= blast_icache128_page
;
334 #define r4k_blast_icache_user_page r4k_blast_icache_page
337 static void (*r4k_blast_icache_user_page
)(unsigned long addr
);
339 static void r4k_blast_icache_user_page_setup(void)
341 unsigned long ic_lsize
= cpu_icache_line_size();
344 r4k_blast_icache_user_page
= (void *)cache_noop
;
345 else if (ic_lsize
== 16)
346 r4k_blast_icache_user_page
= blast_icache16_user_page
;
347 else if (ic_lsize
== 32)
348 r4k_blast_icache_user_page
= blast_icache32_user_page
;
349 else if (ic_lsize
== 64)
350 r4k_blast_icache_user_page
= blast_icache64_user_page
;
355 static void (* r4k_blast_icache_page_indexed
)(unsigned long addr
);
357 static void r4k_blast_icache_page_indexed_setup(void)
359 unsigned long ic_lsize
= cpu_icache_line_size();
362 r4k_blast_icache_page_indexed
= (void *)cache_noop
;
363 else if (ic_lsize
== 16)
364 r4k_blast_icache_page_indexed
= blast_icache16_page_indexed
;
365 else if (ic_lsize
== 32) {
366 if (R4600_V1_INDEX_ICACHEOP_WAR
&& cpu_is_r4600_v1_x())
367 r4k_blast_icache_page_indexed
=
368 blast_icache32_r4600_v1_page_indexed
;
369 else if (TX49XX_ICACHE_INDEX_INV_WAR
)
370 r4k_blast_icache_page_indexed
=
371 tx49_blast_icache32_page_indexed
;
372 else if (current_cpu_type() == CPU_LOONGSON2
)
373 r4k_blast_icache_page_indexed
=
374 loongson2_blast_icache32_page_indexed
;
376 r4k_blast_icache_page_indexed
=
377 blast_icache32_page_indexed
;
378 } else if (ic_lsize
== 64)
379 r4k_blast_icache_page_indexed
= blast_icache64_page_indexed
;
382 void (* r4k_blast_icache
)(void);
383 EXPORT_SYMBOL(r4k_blast_icache
);
385 static void r4k_blast_icache_setup(void)
387 unsigned long ic_lsize
= cpu_icache_line_size();
390 r4k_blast_icache
= (void *)cache_noop
;
391 else if (ic_lsize
== 16)
392 r4k_blast_icache
= blast_icache16
;
393 else if (ic_lsize
== 32) {
394 if (R4600_V1_INDEX_ICACHEOP_WAR
&& cpu_is_r4600_v1_x())
395 r4k_blast_icache
= blast_r4600_v1_icache32
;
396 else if (TX49XX_ICACHE_INDEX_INV_WAR
)
397 r4k_blast_icache
= tx49_blast_icache32
;
398 else if (current_cpu_type() == CPU_LOONGSON2
)
399 r4k_blast_icache
= loongson2_blast_icache32
;
401 r4k_blast_icache
= blast_icache32
;
402 } else if (ic_lsize
== 64)
403 r4k_blast_icache
= blast_icache64
;
404 else if (ic_lsize
== 128)
405 r4k_blast_icache
= blast_icache128
;
408 static void (* r4k_blast_scache_page
)(unsigned long addr
);
410 static void r4k_blast_scache_page_setup(void)
412 unsigned long sc_lsize
= cpu_scache_line_size();
414 if (scache_size
== 0)
415 r4k_blast_scache_page
= (void *)cache_noop
;
416 else if (sc_lsize
== 16)
417 r4k_blast_scache_page
= blast_scache16_page
;
418 else if (sc_lsize
== 32)
419 r4k_blast_scache_page
= blast_scache32_page
;
420 else if (sc_lsize
== 64)
421 r4k_blast_scache_page
= blast_scache64_page
;
422 else if (sc_lsize
== 128)
423 r4k_blast_scache_page
= blast_scache128_page
;
426 static void (* r4k_blast_scache_page_indexed
)(unsigned long addr
);
428 static void r4k_blast_scache_page_indexed_setup(void)
430 unsigned long sc_lsize
= cpu_scache_line_size();
432 if (scache_size
== 0)
433 r4k_blast_scache_page_indexed
= (void *)cache_noop
;
434 else if (sc_lsize
== 16)
435 r4k_blast_scache_page_indexed
= blast_scache16_page_indexed
;
436 else if (sc_lsize
== 32)
437 r4k_blast_scache_page_indexed
= blast_scache32_page_indexed
;
438 else if (sc_lsize
== 64)
439 r4k_blast_scache_page_indexed
= blast_scache64_page_indexed
;
440 else if (sc_lsize
== 128)
441 r4k_blast_scache_page_indexed
= blast_scache128_page_indexed
;
444 static void (* r4k_blast_scache
)(void);
446 static void r4k_blast_scache_setup(void)
448 unsigned long sc_lsize
= cpu_scache_line_size();
450 if (scache_size
== 0)
451 r4k_blast_scache
= (void *)cache_noop
;
452 else if (sc_lsize
== 16)
453 r4k_blast_scache
= blast_scache16
;
454 else if (sc_lsize
== 32)
455 r4k_blast_scache
= blast_scache32
;
456 else if (sc_lsize
== 64)
457 r4k_blast_scache
= blast_scache64
;
458 else if (sc_lsize
== 128)
459 r4k_blast_scache
= blast_scache128
;
462 static inline void local_r4k___flush_cache_all(void * args
)
464 switch (current_cpu_type()) {
476 * These caches are inclusive caches, that is, if something
477 * is not cached in the S-cache, we know it also won't be
478 * in one of the primary caches.
495 static void r4k___flush_cache_all(void)
497 r4k_on_each_cpu(R4K_INDEX
, local_r4k___flush_cache_all
, NULL
);
501 * has_valid_asid() - Determine if an mm already has an ASID.
503 * @type: R4K_HIT or R4K_INDEX, type of cache op.
505 * Determines whether @mm already has an ASID on any of the CPUs which cache ops
506 * of type @type within an r4k_on_each_cpu() call will affect. If
507 * r4k_on_each_cpu() does an SMP call to a single VPE in each core, then the
508 * scope of the operation is confined to sibling CPUs, otherwise all online CPUs
509 * will need to be checked.
511 * Must be called in non-preemptive context.
513 * Returns: 1 if the CPUs affected by @type cache ops have an ASID for @mm.
516 static inline int has_valid_asid(const struct mm_struct
*mm
, unsigned int type
)
519 const cpumask_t
*mask
= cpu_present_mask
;
521 /* cpu_sibling_map[] undeclared when !CONFIG_SMP */
524 * If r4k_on_each_cpu does SMP calls, it does them to a single VPE in
525 * each foreign core, so we only need to worry about siblings.
526 * Otherwise we need to worry about all present CPUs.
528 if (r4k_op_needs_ipi(type
))
529 mask
= &cpu_sibling_map
[smp_processor_id()];
531 for_each_cpu(i
, mask
)
532 if (cpu_context(i
, mm
))
537 static void r4k__flush_cache_vmap(void)
542 static void r4k__flush_cache_vunmap(void)
548 * Note: flush_tlb_range() assumes flush_cache_range() sufficiently flushes
549 * whole caches when vma is executable.
551 static inline void local_r4k_flush_cache_range(void * args
)
553 struct vm_area_struct
*vma
= args
;
554 int exec
= vma
->vm_flags
& VM_EXEC
;
556 if (!has_valid_asid(vma
->vm_mm
, R4K_INDEX
))
560 * If dcache can alias, we must blast it since mapping is changing.
561 * If executable, we must ensure any dirty lines are written back far
562 * enough to be visible to icache.
564 if (cpu_has_dc_aliases
|| (exec
&& !cpu_has_ic_fills_f_dc
))
566 /* If executable, blast stale lines from icache */
571 static void r4k_flush_cache_range(struct vm_area_struct
*vma
,
572 unsigned long start
, unsigned long end
)
574 int exec
= vma
->vm_flags
& VM_EXEC
;
576 if (cpu_has_dc_aliases
|| exec
)
577 r4k_on_each_cpu(R4K_INDEX
, local_r4k_flush_cache_range
, vma
);
580 static inline void local_r4k_flush_cache_mm(void * args
)
582 struct mm_struct
*mm
= args
;
584 if (!has_valid_asid(mm
, R4K_INDEX
))
588 * Kludge alert. For obscure reasons R4000SC and R4400SC go nuts if we
589 * only flush the primary caches but R1x000 behave sane ...
590 * R4000SC and R4400SC indexed S-cache ops also invalidate primary
591 * caches, so we can bail out early.
593 if (current_cpu_type() == CPU_R4000SC
||
594 current_cpu_type() == CPU_R4000MC
||
595 current_cpu_type() == CPU_R4400SC
||
596 current_cpu_type() == CPU_R4400MC
) {
604 static void r4k_flush_cache_mm(struct mm_struct
*mm
)
606 if (!cpu_has_dc_aliases
)
609 r4k_on_each_cpu(R4K_INDEX
, local_r4k_flush_cache_mm
, mm
);
612 struct flush_cache_page_args
{
613 struct vm_area_struct
*vma
;
618 static inline void local_r4k_flush_cache_page(void *args
)
620 struct flush_cache_page_args
*fcp_args
= args
;
621 struct vm_area_struct
*vma
= fcp_args
->vma
;
622 unsigned long addr
= fcp_args
->addr
;
623 struct page
*page
= pfn_to_page(fcp_args
->pfn
);
624 int exec
= vma
->vm_flags
& VM_EXEC
;
625 struct mm_struct
*mm
= vma
->vm_mm
;
626 int map_coherent
= 0;
634 * If owns no valid ASID yet, cannot possibly have gotten
635 * this page into the cache.
637 if (!has_valid_asid(mm
, R4K_HIT
))
641 pgdp
= pgd_offset(mm
, addr
);
642 pudp
= pud_offset(pgdp
, addr
);
643 pmdp
= pmd_offset(pudp
, addr
);
644 ptep
= pte_offset(pmdp
, addr
);
647 * If the page isn't marked valid, the page cannot possibly be
650 if (!(pte_present(*ptep
)))
653 if ((mm
== current
->active_mm
) && (pte_val(*ptep
) & _PAGE_VALID
))
657 * Use kmap_coherent or kmap_atomic to do flushes for
658 * another ASID than the current one.
660 map_coherent
= (cpu_has_dc_aliases
&&
661 page_mapcount(page
) &&
662 !Page_dcache_dirty(page
));
664 vaddr
= kmap_coherent(page
, addr
);
666 vaddr
= kmap_atomic(page
);
667 addr
= (unsigned long)vaddr
;
670 if (cpu_has_dc_aliases
|| (exec
&& !cpu_has_ic_fills_f_dc
)) {
671 vaddr
? r4k_blast_dcache_page(addr
) :
672 r4k_blast_dcache_user_page(addr
);
673 if (exec
&& !cpu_icache_snoops_remote_store
)
674 r4k_blast_scache_page(addr
);
677 if (vaddr
&& cpu_has_vtag_icache
&& mm
== current
->active_mm
) {
678 int cpu
= smp_processor_id();
680 if (cpu_context(cpu
, mm
) != 0)
681 drop_mmu_context(mm
, cpu
);
683 vaddr
? r4k_blast_icache_page(addr
) :
684 r4k_blast_icache_user_page(addr
);
691 kunmap_atomic(vaddr
);
695 static void r4k_flush_cache_page(struct vm_area_struct
*vma
,
696 unsigned long addr
, unsigned long pfn
)
698 struct flush_cache_page_args args
;
704 r4k_on_each_cpu(R4K_HIT
, local_r4k_flush_cache_page
, &args
);
707 static inline void local_r4k_flush_data_cache_page(void * addr
)
709 r4k_blast_dcache_page((unsigned long) addr
);
712 static void r4k_flush_data_cache_page(unsigned long addr
)
715 local_r4k_flush_data_cache_page((void *)addr
);
717 r4k_on_each_cpu(R4K_HIT
, local_r4k_flush_data_cache_page
,
721 struct flush_icache_range_args
{
727 static inline void __local_r4k_flush_icache_range(unsigned long start
,
731 if (!cpu_has_ic_fills_f_dc
) {
732 if (type
== R4K_INDEX
||
733 (type
& R4K_INDEX
&& end
- start
>= dcache_size
)) {
736 R4600_HIT_CACHEOP_WAR_IMPL
;
737 protected_blast_dcache_range(start
, end
);
741 if (type
== R4K_INDEX
||
742 (type
& R4K_INDEX
&& end
- start
> icache_size
))
745 switch (boot_cpu_type()) {
747 protected_loongson2_blast_icache_range(start
, end
);
751 protected_blast_icache_range(start
, end
);
757 * Due to all possible segment mappings, there might cache aliases
758 * caused by the bootloader being in non-EVA mode, and the CPU switching
759 * to EVA during early kernel init. It's best to flush the scache
760 * to avoid having secondary cores fetching stale data and lead to
763 bc_wback_inv(start
, (end
- start
));
768 static inline void local_r4k_flush_icache_range(unsigned long start
,
771 __local_r4k_flush_icache_range(start
, end
, R4K_HIT
| R4K_INDEX
);
774 static inline void local_r4k_flush_icache_range_ipi(void *args
)
776 struct flush_icache_range_args
*fir_args
= args
;
777 unsigned long start
= fir_args
->start
;
778 unsigned long end
= fir_args
->end
;
779 unsigned int type
= fir_args
->type
;
781 __local_r4k_flush_icache_range(start
, end
, type
);
784 static void r4k_flush_icache_range(unsigned long start
, unsigned long end
)
786 struct flush_icache_range_args args
;
787 unsigned long size
, cache_size
;
791 args
.type
= R4K_HIT
| R4K_INDEX
;
794 * Indexed cache ops require an SMP call.
795 * Consider if that can or should be avoided.
798 if (r4k_op_needs_ipi(R4K_INDEX
) && !r4k_op_needs_ipi(R4K_HIT
)) {
800 * If address-based cache ops don't require an SMP call, then
801 * use them exclusively for small flushes.
804 cache_size
= icache_size
;
805 if (!cpu_has_ic_fills_f_dc
) {
807 cache_size
+= dcache_size
;
809 if (size
<= cache_size
)
810 args
.type
&= ~R4K_INDEX
;
812 r4k_on_each_cpu(args
.type
, local_r4k_flush_icache_range_ipi
, &args
);
814 instruction_hazard();
817 #if defined(CONFIG_DMA_NONCOHERENT) || defined(CONFIG_DMA_MAYBE_COHERENT)
819 static void r4k_dma_cache_wback_inv(unsigned long addr
, unsigned long size
)
821 /* Catch bad driver code */
825 if (cpu_has_inclusive_pcaches
) {
826 if (size
>= scache_size
)
829 blast_scache_range(addr
, addr
+ size
);
836 * Either no secondary cache or the available caches don't have the
837 * subset property so we have to flush the primary caches
840 if (size
>= dcache_size
) {
843 R4600_HIT_CACHEOP_WAR_IMPL
;
844 blast_dcache_range(addr
, addr
+ size
);
848 bc_wback_inv(addr
, size
);
852 static void r4k_dma_cache_inv(unsigned long addr
, unsigned long size
)
854 /* Catch bad driver code */
858 if (cpu_has_inclusive_pcaches
) {
859 if (size
>= scache_size
)
863 * There is no clearly documented alignment requirement
864 * for the cache instruction on MIPS processors and
865 * some processors, among them the RM5200 and RM7000
866 * QED processors will throw an address error for cache
867 * hit ops with insufficient alignment. Solved by
868 * aligning the address to cache line size.
870 blast_inv_scache_range(addr
, addr
+ size
);
877 if (size
>= dcache_size
) {
880 R4600_HIT_CACHEOP_WAR_IMPL
;
881 blast_inv_dcache_range(addr
, addr
+ size
);
888 #endif /* CONFIG_DMA_NONCOHERENT || CONFIG_DMA_MAYBE_COHERENT */
890 struct flush_cache_sigtramp_args
{
891 struct mm_struct
*mm
;
897 * While we're protected against bad userland addresses we don't care
898 * very much about what happens in that case. Usually a segmentation
899 * fault will dump the process later on anyway ...
901 static void local_r4k_flush_cache_sigtramp(void *args
)
903 struct flush_cache_sigtramp_args
*fcs_args
= args
;
904 unsigned long addr
= fcs_args
->addr
;
905 struct page
*page
= fcs_args
->page
;
906 struct mm_struct
*mm
= fcs_args
->mm
;
907 int map_coherent
= 0;
910 unsigned long ic_lsize
= cpu_icache_line_size();
911 unsigned long dc_lsize
= cpu_dcache_line_size();
912 unsigned long sc_lsize
= cpu_scache_line_size();
915 * If owns no valid ASID yet, cannot possibly have gotten
916 * this page into the cache.
918 if (!has_valid_asid(mm
, R4K_HIT
))
921 if (mm
== current
->active_mm
) {
925 * Use kmap_coherent or kmap_atomic to do flushes for
926 * another ASID than the current one.
928 map_coherent
= (cpu_has_dc_aliases
&&
929 page_mapcount(page
) &&
930 !Page_dcache_dirty(page
));
932 vaddr
= kmap_coherent(page
, addr
);
934 vaddr
= kmap_atomic(page
);
935 addr
= (unsigned long)vaddr
+ (addr
& ~PAGE_MASK
);
938 R4600_HIT_CACHEOP_WAR_IMPL
;
939 if (!cpu_has_ic_fills_f_dc
) {
941 vaddr
? flush_dcache_line(addr
& ~(dc_lsize
- 1))
942 : protected_writeback_dcache_line(
943 addr
& ~(dc_lsize
- 1));
944 if (!cpu_icache_snoops_remote_store
&& scache_size
)
945 vaddr
? flush_scache_line(addr
& ~(sc_lsize
- 1))
946 : protected_writeback_scache_line(
947 addr
& ~(sc_lsize
- 1));
950 vaddr
? flush_icache_line(addr
& ~(ic_lsize
- 1))
951 : protected_flush_icache_line(addr
& ~(ic_lsize
- 1));
957 kunmap_atomic(vaddr
);
960 if (MIPS4K_ICACHE_REFILL_WAR
) {
961 __asm__
__volatile__ (
964 ".set "MIPS_ISA_LEVEL
"\n\t"
976 : "i" (Hit_Invalidate_I
));
978 if (MIPS_CACHE_SYNC_WAR
)
979 __asm__
__volatile__ ("sync");
982 static void r4k_flush_cache_sigtramp(unsigned long addr
)
984 struct flush_cache_sigtramp_args args
;
987 down_read(¤t
->mm
->mmap_sem
);
989 npages
= get_user_pages_fast(addr
, 1, 0, &args
.page
);
993 args
.mm
= current
->mm
;
996 r4k_on_each_cpu(R4K_HIT
, local_r4k_flush_cache_sigtramp
, &args
);
1000 up_read(¤t
->mm
->mmap_sem
);
1003 static void r4k_flush_icache_all(void)
1005 if (cpu_has_vtag_icache
)
1009 struct flush_kernel_vmap_range_args
{
1010 unsigned long vaddr
;
1014 static inline void local_r4k_flush_kernel_vmap_range_index(void *args
)
1017 * Aliases only affect the primary caches so don't bother with
1018 * S-caches or T-caches.
1023 static inline void local_r4k_flush_kernel_vmap_range(void *args
)
1025 struct flush_kernel_vmap_range_args
*vmra
= args
;
1026 unsigned long vaddr
= vmra
->vaddr
;
1027 int size
= vmra
->size
;
1030 * Aliases only affect the primary caches so don't bother with
1031 * S-caches or T-caches.
1033 R4600_HIT_CACHEOP_WAR_IMPL
;
1034 blast_dcache_range(vaddr
, vaddr
+ size
);
1037 static void r4k_flush_kernel_vmap_range(unsigned long vaddr
, int size
)
1039 struct flush_kernel_vmap_range_args args
;
1041 args
.vaddr
= (unsigned long) vaddr
;
1044 if (size
>= dcache_size
)
1045 r4k_on_each_cpu(R4K_INDEX
,
1046 local_r4k_flush_kernel_vmap_range_index
, NULL
);
1048 r4k_on_each_cpu(R4K_HIT
, local_r4k_flush_kernel_vmap_range
,
1052 static inline void rm7k_erratum31(void)
1054 const unsigned long ic_lsize
= 32;
1057 /* RM7000 erratum #31. The icache is screwed at startup. */
1061 for (addr
= INDEX_BASE
; addr
<= INDEX_BASE
+ 4096; addr
+= ic_lsize
) {
1062 __asm__
__volatile__ (
1064 ".set noreorder\n\t"
1066 "cache\t%1, 0(%0)\n\t"
1067 "cache\t%1, 0x1000(%0)\n\t"
1068 "cache\t%1, 0x2000(%0)\n\t"
1069 "cache\t%1, 0x3000(%0)\n\t"
1070 "cache\t%2, 0(%0)\n\t"
1071 "cache\t%2, 0x1000(%0)\n\t"
1072 "cache\t%2, 0x2000(%0)\n\t"
1073 "cache\t%2, 0x3000(%0)\n\t"
1074 "cache\t%1, 0(%0)\n\t"
1075 "cache\t%1, 0x1000(%0)\n\t"
1076 "cache\t%1, 0x2000(%0)\n\t"
1077 "cache\t%1, 0x3000(%0)\n\t"
1080 : "r" (addr
), "i" (Index_Store_Tag_I
), "i" (Fill
));
1084 static inline int alias_74k_erratum(struct cpuinfo_mips
*c
)
1086 unsigned int imp
= c
->processor_id
& PRID_IMP_MASK
;
1087 unsigned int rev
= c
->processor_id
& PRID_REV_MASK
;
1091 * Early versions of the 74K do not update the cache tags on a
1092 * vtag miss/ptag hit which can occur in the case of KSEG0/KUSEG
1093 * aliases. In this case it is better to treat the cache as always
1094 * having aliases. Also disable the synonym tag update feature
1095 * where available. In this case no opportunistic tag update will
1096 * happen where a load causes a virtual address miss but a physical
1097 * address hit during a D-cache look-up.
1101 if (rev
<= PRID_REV_ENCODE_332(2, 4, 0))
1103 if (rev
== PRID_REV_ENCODE_332(2, 4, 0))
1104 write_c0_config6(read_c0_config6() | MIPS_CONF6_SYND
);
1106 case PRID_IMP_1074K
:
1107 if (rev
<= PRID_REV_ENCODE_332(1, 1, 0)) {
1109 write_c0_config6(read_c0_config6() | MIPS_CONF6_SYND
);
1119 static void b5k_instruction_hazard(void)
1123 __asm__
__volatile__(
1124 " nop; nop; nop; nop; nop; nop; nop; nop\n"
1125 " nop; nop; nop; nop; nop; nop; nop; nop\n"
1126 " nop; nop; nop; nop; nop; nop; nop; nop\n"
1127 " nop; nop; nop; nop; nop; nop; nop; nop\n"
1131 static char *way_string
[] = { NULL
, "direct mapped", "2-way",
1132 "3-way", "4-way", "5-way", "6-way", "7-way", "8-way",
1133 "9-way", "10-way", "11-way", "12-way",
1134 "13-way", "14-way", "15-way", "16-way",
1137 static void probe_pcache(void)
1139 struct cpuinfo_mips
*c
= ¤t_cpu_data
;
1140 unsigned int config
= read_c0_config();
1141 unsigned int prid
= read_c0_prid();
1142 int has_74k_erratum
= 0;
1143 unsigned long config1
;
1146 switch (current_cpu_type()) {
1147 case CPU_R4600
: /* QED style two way caches? */
1151 icache_size
= 1 << (12 + ((config
& CONF_IC
) >> 9));
1152 c
->icache
.linesz
= 16 << ((config
& CONF_IB
) >> 5);
1154 c
->icache
.waybit
= __ffs(icache_size
/2);
1156 dcache_size
= 1 << (12 + ((config
& CONF_DC
) >> 6));
1157 c
->dcache
.linesz
= 16 << ((config
& CONF_DB
) >> 4);
1159 c
->dcache
.waybit
= __ffs(dcache_size
/2);
1161 c
->options
|= MIPS_CPU_CACHE_CDEX_P
;
1166 icache_size
= 1 << (12 + ((config
& CONF_IC
) >> 9));
1167 c
->icache
.linesz
= 16 << ((config
& CONF_IB
) >> 5);
1169 c
->icache
.waybit
= 0;
1171 dcache_size
= 1 << (12 + ((config
& CONF_DC
) >> 6));
1172 c
->dcache
.linesz
= 16 << ((config
& CONF_DB
) >> 4);
1174 c
->dcache
.waybit
= 0;
1176 c
->options
|= MIPS_CPU_CACHE_CDEX_P
| MIPS_CPU_PREFETCH
;
1180 icache_size
= 1 << (12 + ((config
& CONF_IC
) >> 9));
1181 c
->icache
.linesz
= 16 << ((config
& CONF_IB
) >> 5);
1183 c
->icache
.waybit
= 0;
1185 dcache_size
= 1 << (12 + ((config
& CONF_DC
) >> 6));
1186 c
->dcache
.linesz
= 16 << ((config
& CONF_DB
) >> 4);
1188 c
->dcache
.waybit
= 0;
1190 c
->options
|= MIPS_CPU_CACHE_CDEX_P
;
1191 c
->options
|= MIPS_CPU_PREFETCH
;
1201 icache_size
= 1 << (12 + ((config
& CONF_IC
) >> 9));
1202 c
->icache
.linesz
= 16 << ((config
& CONF_IB
) >> 5);
1204 c
->icache
.waybit
= 0; /* doesn't matter */
1206 dcache_size
= 1 << (12 + ((config
& CONF_DC
) >> 6));
1207 c
->dcache
.linesz
= 16 << ((config
& CONF_DB
) >> 4);
1209 c
->dcache
.waybit
= 0; /* does not matter */
1211 c
->options
|= MIPS_CPU_CACHE_CDEX_P
;
1218 icache_size
= 1 << (12 + ((config
& R10K_CONF_IC
) >> 29));
1219 c
->icache
.linesz
= 64;
1221 c
->icache
.waybit
= 0;
1223 dcache_size
= 1 << (12 + ((config
& R10K_CONF_DC
) >> 26));
1224 c
->dcache
.linesz
= 32;
1226 c
->dcache
.waybit
= 0;
1228 c
->options
|= MIPS_CPU_PREFETCH
;
1232 write_c0_config(config
& ~VR41_CONF_P4K
);
1234 /* Workaround for cache instruction bug of VR4131 */
1235 if (c
->processor_id
== 0x0c80U
|| c
->processor_id
== 0x0c81U
||
1236 c
->processor_id
== 0x0c82U
) {
1237 config
|= 0x00400000U
;
1238 if (c
->processor_id
== 0x0c80U
)
1239 config
|= VR41_CONF_BP
;
1240 write_c0_config(config
);
1242 c
->options
|= MIPS_CPU_CACHE_CDEX_P
;
1244 icache_size
= 1 << (10 + ((config
& CONF_IC
) >> 9));
1245 c
->icache
.linesz
= 16 << ((config
& CONF_IB
) >> 5);
1247 c
->icache
.waybit
= __ffs(icache_size
/2);
1249 dcache_size
= 1 << (10 + ((config
& CONF_DC
) >> 6));
1250 c
->dcache
.linesz
= 16 << ((config
& CONF_DB
) >> 4);
1252 c
->dcache
.waybit
= __ffs(dcache_size
/2);
1261 icache_size
= 1 << (10 + ((config
& CONF_IC
) >> 9));
1262 c
->icache
.linesz
= 16 << ((config
& CONF_IB
) >> 5);
1264 c
->icache
.waybit
= 0; /* doesn't matter */
1266 dcache_size
= 1 << (10 + ((config
& CONF_DC
) >> 6));
1267 c
->dcache
.linesz
= 16 << ((config
& CONF_DB
) >> 4);
1269 c
->dcache
.waybit
= 0; /* does not matter */
1271 c
->options
|= MIPS_CPU_CACHE_CDEX_P
;
1277 icache_size
= 1 << (12 + ((config
& CONF_IC
) >> 9));
1278 c
->icache
.linesz
= 16 << ((config
& CONF_IB
) >> 5);
1280 c
->icache
.waybit
= __ffs(icache_size
/ c
->icache
.ways
);
1282 dcache_size
= 1 << (12 + ((config
& CONF_DC
) >> 6));
1283 c
->dcache
.linesz
= 16 << ((config
& CONF_DB
) >> 4);
1285 c
->dcache
.waybit
= __ffs(dcache_size
/ c
->dcache
.ways
);
1287 c
->options
|= MIPS_CPU_CACHE_CDEX_P
;
1288 c
->options
|= MIPS_CPU_PREFETCH
;
1292 icache_size
= 1 << (12 + ((config
& CONF_IC
) >> 9));
1293 c
->icache
.linesz
= 16 << ((config
& CONF_IB
) >> 5);
1298 c
->icache
.waybit
= 0;
1300 dcache_size
= 1 << (12 + ((config
& CONF_DC
) >> 6));
1301 c
->dcache
.linesz
= 16 << ((config
& CONF_DB
) >> 4);
1306 c
->dcache
.waybit
= 0;
1310 config1
= read_c0_config1();
1311 lsize
= (config1
>> 19) & 7;
1313 c
->icache
.linesz
= 2 << lsize
;
1315 c
->icache
.linesz
= 0;
1316 c
->icache
.sets
= 64 << ((config1
>> 22) & 7);
1317 c
->icache
.ways
= 1 + ((config1
>> 16) & 7);
1318 icache_size
= c
->icache
.sets
*
1321 c
->icache
.waybit
= 0;
1323 lsize
= (config1
>> 10) & 7;
1325 c
->dcache
.linesz
= 2 << lsize
;
1327 c
->dcache
.linesz
= 0;
1328 c
->dcache
.sets
= 64 << ((config1
>> 13) & 7);
1329 c
->dcache
.ways
= 1 + ((config1
>> 7) & 7);
1330 dcache_size
= c
->dcache
.sets
*
1333 c
->dcache
.waybit
= 0;
1334 if ((prid
& PRID_REV_MASK
) >= PRID_REV_LOONGSON3A_R2
)
1335 c
->options
|= MIPS_CPU_PREFETCH
;
1338 case CPU_CAVIUM_OCTEON3
:
1339 /* For now lie about the number of ways. */
1340 c
->icache
.linesz
= 128;
1341 c
->icache
.sets
= 16;
1343 c
->icache
.flags
|= MIPS_CACHE_VTAG
;
1344 icache_size
= c
->icache
.sets
* c
->icache
.ways
* c
->icache
.linesz
;
1346 c
->dcache
.linesz
= 128;
1349 dcache_size
= c
->dcache
.sets
* c
->dcache
.ways
* c
->dcache
.linesz
;
1350 c
->options
|= MIPS_CPU_PREFETCH
;
1354 if (!(config
& MIPS_CONF_M
))
1355 panic("Don't know how to probe P-caches on this cpu.");
1358 * So we seem to be a MIPS32 or MIPS64 CPU
1359 * So let's probe the I-cache ...
1361 config1
= read_c0_config1();
1363 lsize
= (config1
>> 19) & 7;
1365 /* IL == 7 is reserved */
1367 panic("Invalid icache line size");
1369 c
->icache
.linesz
= lsize
? 2 << lsize
: 0;
1371 c
->icache
.sets
= 32 << (((config1
>> 22) + 1) & 7);
1372 c
->icache
.ways
= 1 + ((config1
>> 16) & 7);
1374 icache_size
= c
->icache
.sets
*
1377 c
->icache
.waybit
= __ffs(icache_size
/c
->icache
.ways
);
1379 if (config
& MIPS_CONF_VI
)
1380 c
->icache
.flags
|= MIPS_CACHE_VTAG
;
1383 * Now probe the MIPS32 / MIPS64 data cache.
1385 c
->dcache
.flags
= 0;
1387 lsize
= (config1
>> 10) & 7;
1389 /* DL == 7 is reserved */
1391 panic("Invalid dcache line size");
1393 c
->dcache
.linesz
= lsize
? 2 << lsize
: 0;
1395 c
->dcache
.sets
= 32 << (((config1
>> 13) + 1) & 7);
1396 c
->dcache
.ways
= 1 + ((config1
>> 7) & 7);
1398 dcache_size
= c
->dcache
.sets
*
1401 c
->dcache
.waybit
= __ffs(dcache_size
/c
->dcache
.ways
);
1403 c
->options
|= MIPS_CPU_PREFETCH
;
1408 * Processor configuration sanity check for the R4000SC erratum
1409 * #5. With page sizes larger than 32kB there is no possibility
1410 * to get a VCE exception anymore so we don't care about this
1411 * misconfiguration. The case is rather theoretical anyway;
1412 * presumably no vendor is shipping his hardware in the "bad"
1415 if ((prid
& PRID_IMP_MASK
) == PRID_IMP_R4000
&&
1416 (prid
& PRID_REV_MASK
) < PRID_REV_R4400
&&
1417 !(config
& CONF_SC
) && c
->icache
.linesz
!= 16 &&
1418 PAGE_SIZE
<= 0x8000)
1419 panic("Improper R4000SC processor configuration detected");
1421 /* compute a couple of other cache variables */
1422 c
->icache
.waysize
= icache_size
/ c
->icache
.ways
;
1423 c
->dcache
.waysize
= dcache_size
/ c
->dcache
.ways
;
1425 c
->icache
.sets
= c
->icache
.linesz
?
1426 icache_size
/ (c
->icache
.linesz
* c
->icache
.ways
) : 0;
1427 c
->dcache
.sets
= c
->dcache
.linesz
?
1428 dcache_size
/ (c
->dcache
.linesz
* c
->dcache
.ways
) : 0;
1431 * R1x000 P-caches are odd in a positive way. They're 32kB 2-way
1432 * virtually indexed so normally would suffer from aliases. So
1433 * normally they'd suffer from aliases but magic in the hardware deals
1434 * with that for us so we don't need to take care ourselves.
1436 switch (current_cpu_type()) {
1442 c
->dcache
.flags
|= MIPS_CACHE_PINDEX
;
1453 has_74k_erratum
= alias_74k_erratum(c
);
1460 case CPU_INTERAPTIV
:
1464 case CPU_QEMU_GENERIC
:
1468 if (!(read_c0_config7() & MIPS_CONF7_IAR
) &&
1469 (c
->icache
.waysize
> PAGE_SIZE
))
1470 c
->icache
.flags
|= MIPS_CACHE_ALIASES
;
1471 if (!has_74k_erratum
&& (read_c0_config7() & MIPS_CONF7_AR
)) {
1473 * Effectively physically indexed dcache,
1474 * thus no virtual aliases.
1476 c
->dcache
.flags
|= MIPS_CACHE_PINDEX
;
1480 if (has_74k_erratum
|| c
->dcache
.waysize
> PAGE_SIZE
)
1481 c
->dcache
.flags
|= MIPS_CACHE_ALIASES
;
1484 switch (current_cpu_type()) {
1487 * Some older 20Kc chips doesn't have the 'VI' bit in
1488 * the config register.
1490 c
->icache
.flags
|= MIPS_CACHE_VTAG
;
1495 c
->icache
.flags
|= MIPS_CACHE_IC_F_DC
;
1499 c
->icache
.flags
|= MIPS_CACHE_IC_F_DC
;
1500 /* Cache aliases are handled in hardware; allow HIGHMEM */
1501 c
->dcache
.flags
&= ~MIPS_CACHE_ALIASES
;
1506 * LOONGSON2 has 4 way icache, but when using indexed cache op,
1507 * one op will act on all 4 ways
1512 printk("Primary instruction cache %ldkB, %s, %s, linesize %d bytes.\n",
1514 c
->icache
.flags
& MIPS_CACHE_VTAG
? "VIVT" : "VIPT",
1515 way_string
[c
->icache
.ways
], c
->icache
.linesz
);
1517 printk("Primary data cache %ldkB, %s, %s, %s, linesize %d bytes\n",
1518 dcache_size
>> 10, way_string
[c
->dcache
.ways
],
1519 (c
->dcache
.flags
& MIPS_CACHE_PINDEX
) ? "PIPT" : "VIPT",
1520 (c
->dcache
.flags
& MIPS_CACHE_ALIASES
) ?
1521 "cache aliases" : "no aliases",
1525 static void probe_vcache(void)
1527 struct cpuinfo_mips
*c
= ¤t_cpu_data
;
1528 unsigned int config2
, lsize
;
1530 if (current_cpu_type() != CPU_LOONGSON3
)
1533 config2
= read_c0_config2();
1534 if ((lsize
= ((config2
>> 20) & 15)))
1535 c
->vcache
.linesz
= 2 << lsize
;
1537 c
->vcache
.linesz
= lsize
;
1539 c
->vcache
.sets
= 64 << ((config2
>> 24) & 15);
1540 c
->vcache
.ways
= 1 + ((config2
>> 16) & 15);
1542 vcache_size
= c
->vcache
.sets
* c
->vcache
.ways
* c
->vcache
.linesz
;
1544 c
->vcache
.waybit
= 0;
1546 pr_info("Unified victim cache %ldkB %s, linesize %d bytes.\n",
1547 vcache_size
>> 10, way_string
[c
->vcache
.ways
], c
->vcache
.linesz
);
1551 * If you even _breathe_ on this function, look at the gcc output and make sure
1552 * it does not pop things on and off the stack for the cache sizing loop that
1553 * executes in KSEG1 space or else you will crash and burn badly. You have
1556 static int probe_scache(void)
1558 unsigned long flags
, addr
, begin
, end
, pow2
;
1559 unsigned int config
= read_c0_config();
1560 struct cpuinfo_mips
*c
= ¤t_cpu_data
;
1562 if (config
& CONF_SC
)
1565 begin
= (unsigned long) &_stext
;
1566 begin
&= ~((4 * 1024 * 1024) - 1);
1567 end
= begin
+ (4 * 1024 * 1024);
1570 * This is such a bitch, you'd think they would make it easy to do
1571 * this. Away you daemons of stupidity!
1573 local_irq_save(flags
);
1575 /* Fill each size-multiple cache line with a valid tag. */
1577 for (addr
= begin
; addr
< end
; addr
= (begin
+ pow2
)) {
1578 unsigned long *p
= (unsigned long *) addr
;
1579 __asm__
__volatile__("nop" : : "r" (*p
)); /* whee... */
1583 /* Load first line with zero (therefore invalid) tag. */
1586 __asm__
__volatile__("nop; nop; nop; nop;"); /* avoid the hazard */
1587 cache_op(Index_Store_Tag_I
, begin
);
1588 cache_op(Index_Store_Tag_D
, begin
);
1589 cache_op(Index_Store_Tag_SD
, begin
);
1591 /* Now search for the wrap around point. */
1592 pow2
= (128 * 1024);
1593 for (addr
= begin
+ (128 * 1024); addr
< end
; addr
= begin
+ pow2
) {
1594 cache_op(Index_Load_Tag_SD
, addr
);
1595 __asm__
__volatile__("nop; nop; nop; nop;"); /* hazard... */
1596 if (!read_c0_taglo())
1600 local_irq_restore(flags
);
1604 c
->scache
.linesz
= 16 << ((config
& R4K_CONF_SB
) >> 22);
1606 c
->scache
.waybit
= 0; /* does not matter */
1611 static void __init
loongson2_sc_init(void)
1613 struct cpuinfo_mips
*c
= ¤t_cpu_data
;
1615 scache_size
= 512*1024;
1616 c
->scache
.linesz
= 32;
1618 c
->scache
.waybit
= 0;
1619 c
->scache
.waysize
= scache_size
/ (c
->scache
.ways
);
1620 c
->scache
.sets
= scache_size
/ (c
->scache
.linesz
* c
->scache
.ways
);
1621 pr_info("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1622 scache_size
>> 10, way_string
[c
->scache
.ways
], c
->scache
.linesz
);
1624 c
->options
|= MIPS_CPU_INCLUSIVE_CACHES
;
1627 static void __init
loongson3_sc_init(void)
1629 struct cpuinfo_mips
*c
= ¤t_cpu_data
;
1630 unsigned int config2
, lsize
;
1632 config2
= read_c0_config2();
1633 lsize
= (config2
>> 4) & 15;
1635 c
->scache
.linesz
= 2 << lsize
;
1637 c
->scache
.linesz
= 0;
1638 c
->scache
.sets
= 64 << ((config2
>> 8) & 15);
1639 c
->scache
.ways
= 1 + (config2
& 15);
1641 scache_size
= c
->scache
.sets
*
1644 /* Loongson-3 has 4 cores, 1MB scache for each. scaches are shared */
1646 c
->scache
.waybit
= 0;
1647 pr_info("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1648 scache_size
>> 10, way_string
[c
->scache
.ways
], c
->scache
.linesz
);
1650 c
->options
|= MIPS_CPU_INCLUSIVE_CACHES
;
1654 extern int r5k_sc_init(void);
1655 extern int rm7k_sc_init(void);
1656 extern int mips_sc_init(void);
1658 static void setup_scache(void)
1660 struct cpuinfo_mips
*c
= ¤t_cpu_data
;
1661 unsigned int config
= read_c0_config();
1665 * Do the probing thing on R4000SC and R4400SC processors. Other
1666 * processors don't have a S-cache that would be relevant to the
1667 * Linux memory management.
1669 switch (current_cpu_type()) {
1674 sc_present
= run_uncached(probe_scache
);
1676 c
->options
|= MIPS_CPU_CACHE_CDEX_S
;
1683 scache_size
= 0x80000 << ((config
& R10K_CONF_SS
) >> 16);
1684 c
->scache
.linesz
= 64 << ((config
>> 13) & 1);
1686 c
->scache
.waybit
= 0;
1692 #ifdef CONFIG_R5000_CPU_SCACHE
1698 #ifdef CONFIG_RM7000_CPU_SCACHE
1704 loongson2_sc_init();
1708 loongson3_sc_init();
1711 case CPU_CAVIUM_OCTEON3
:
1713 /* don't need to worry about L2, fully coherent */
1717 if (c
->isa_level
& (MIPS_CPU_ISA_M32R1
| MIPS_CPU_ISA_M32R2
|
1718 MIPS_CPU_ISA_M32R6
| MIPS_CPU_ISA_M64R1
|
1719 MIPS_CPU_ISA_M64R2
| MIPS_CPU_ISA_M64R6
)) {
1720 #ifdef CONFIG_MIPS_CPU_SCACHE
1721 if (mips_sc_init ()) {
1722 scache_size
= c
->scache
.ways
* c
->scache
.sets
* c
->scache
.linesz
;
1723 printk("MIPS secondary cache %ldkB, %s, linesize %d bytes.\n",
1725 way_string
[c
->scache
.ways
], c
->scache
.linesz
);
1728 if (!(c
->scache
.flags
& MIPS_CACHE_NOT_PRESENT
))
1729 panic("Dunno how to handle MIPS32 / MIPS64 second level cache");
1739 /* compute a couple of other cache variables */
1740 c
->scache
.waysize
= scache_size
/ c
->scache
.ways
;
1742 c
->scache
.sets
= scache_size
/ (c
->scache
.linesz
* c
->scache
.ways
);
1744 printk("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1745 scache_size
>> 10, way_string
[c
->scache
.ways
], c
->scache
.linesz
);
1747 c
->options
|= MIPS_CPU_INCLUSIVE_CACHES
;
1750 void au1x00_fixup_config_od(void)
1753 * c0_config.od (bit 19) was write only (and read as 0)
1754 * on the early revisions of Alchemy SOCs. It disables the bus
1755 * transaction overlapping and needs to be set to fix various errata.
1757 switch (read_c0_prid()) {
1758 case 0x00030100: /* Au1000 DA */
1759 case 0x00030201: /* Au1000 HA */
1760 case 0x00030202: /* Au1000 HB */
1761 case 0x01030200: /* Au1500 AB */
1763 * Au1100 errata actually keeps silence about this bit, so we set it
1764 * just in case for those revisions that require it to be set according
1765 * to the (now gone) cpu table.
1767 case 0x02030200: /* Au1100 AB */
1768 case 0x02030201: /* Au1100 BA */
1769 case 0x02030202: /* Au1100 BC */
1770 set_c0_config(1 << 19);
1775 /* CP0 hazard avoidance. */
1776 #define NXP_BARRIER() \
1777 __asm__ __volatile__( \
1778 ".set noreorder\n\t" \
1779 "nop; nop; nop; nop; nop; nop;\n\t" \
1782 static void nxp_pr4450_fixup_config(void)
1784 unsigned long config0
;
1786 config0
= read_c0_config();
1788 /* clear all three cache coherency fields */
1789 config0
&= ~(0x7 | (7 << 25) | (7 << 28));
1790 config0
|= (((_page_cachable_default
>> _CACHE_SHIFT
) << 0) |
1791 ((_page_cachable_default
>> _CACHE_SHIFT
) << 25) |
1792 ((_page_cachable_default
>> _CACHE_SHIFT
) << 28));
1793 write_c0_config(config0
);
1797 static int cca
= -1;
1799 static int __init
cca_setup(char *str
)
1801 get_option(&str
, &cca
);
1806 early_param("cca", cca_setup
);
1808 static void coherency_setup(void)
1810 if (cca
< 0 || cca
> 7)
1811 cca
= read_c0_config() & CONF_CM_CMASK
;
1812 _page_cachable_default
= cca
<< _CACHE_SHIFT
;
1814 pr_debug("Using cache attribute %d\n", cca
);
1815 change_c0_config(CONF_CM_CMASK
, cca
);
1818 * c0_status.cu=0 specifies that updates by the sc instruction use
1819 * the coherency mode specified by the TLB; 1 means cachable
1820 * coherent update on write will be used. Not all processors have
1821 * this bit and; some wire it to zero, others like Toshiba had the
1822 * silly idea of putting something else there ...
1824 switch (current_cpu_type()) {
1831 clear_c0_config(CONF_CU
);
1834 * We need to catch the early Alchemy SOCs with
1835 * the write-only co_config.od bit and set it back to one on:
1836 * Au1000 rev DA, HA, HB; Au1100 AB, BA, BC, Au1500 AB
1839 au1x00_fixup_config_od();
1842 case PRID_IMP_PR4450
:
1843 nxp_pr4450_fixup_config();
1848 static void r4k_cache_error_setup(void)
1850 extern char __weak except_vec2_generic
;
1851 extern char __weak except_vec2_sb1
;
1853 switch (current_cpu_type()) {
1856 set_uncached_handler(0x100, &except_vec2_sb1
, 0x80);
1860 set_uncached_handler(0x100, &except_vec2_generic
, 0x80);
1865 void r4k_cache_init(void)
1867 extern void build_clear_page(void);
1868 extern void build_copy_page(void);
1869 struct cpuinfo_mips
*c
= ¤t_cpu_data
;
1875 r4k_blast_dcache_page_setup();
1876 r4k_blast_dcache_page_indexed_setup();
1877 r4k_blast_dcache_setup();
1878 r4k_blast_icache_page_setup();
1879 r4k_blast_icache_page_indexed_setup();
1880 r4k_blast_icache_setup();
1881 r4k_blast_scache_page_setup();
1882 r4k_blast_scache_page_indexed_setup();
1883 r4k_blast_scache_setup();
1885 r4k_blast_dcache_user_page_setup();
1886 r4k_blast_icache_user_page_setup();
1890 * Some MIPS32 and MIPS64 processors have physically indexed caches.
1891 * This code supports virtually indexed processors and will be
1892 * unnecessarily inefficient on physically indexed processors.
1894 if (c
->dcache
.linesz
&& cpu_has_dc_aliases
)
1895 shm_align_mask
= max_t( unsigned long,
1896 c
->dcache
.sets
* c
->dcache
.linesz
- 1,
1899 shm_align_mask
= PAGE_SIZE
-1;
1901 __flush_cache_vmap
= r4k__flush_cache_vmap
;
1902 __flush_cache_vunmap
= r4k__flush_cache_vunmap
;
1904 flush_cache_all
= cache_noop
;
1905 __flush_cache_all
= r4k___flush_cache_all
;
1906 flush_cache_mm
= r4k_flush_cache_mm
;
1907 flush_cache_page
= r4k_flush_cache_page
;
1908 flush_cache_range
= r4k_flush_cache_range
;
1910 __flush_kernel_vmap_range
= r4k_flush_kernel_vmap_range
;
1912 flush_cache_sigtramp
= r4k_flush_cache_sigtramp
;
1913 flush_icache_all
= r4k_flush_icache_all
;
1914 local_flush_data_cache_page
= local_r4k_flush_data_cache_page
;
1915 flush_data_cache_page
= r4k_flush_data_cache_page
;
1916 flush_icache_range
= r4k_flush_icache_range
;
1917 local_flush_icache_range
= local_r4k_flush_icache_range
;
1919 #if defined(CONFIG_DMA_NONCOHERENT) || defined(CONFIG_DMA_MAYBE_COHERENT)
1921 _dma_cache_wback_inv
= (void *)cache_noop
;
1922 _dma_cache_wback
= (void *)cache_noop
;
1923 _dma_cache_inv
= (void *)cache_noop
;
1925 _dma_cache_wback_inv
= r4k_dma_cache_wback_inv
;
1926 _dma_cache_wback
= r4k_dma_cache_wback_inv
;
1927 _dma_cache_inv
= r4k_dma_cache_inv
;
1935 * We want to run CMP kernels on core with and without coherent
1936 * caches. Therefore, do not use CONFIG_MIPS_CMP to decide whether
1937 * or not to flush caches.
1939 local_r4k___flush_cache_all(NULL
);
1942 board_cache_error_setup
= r4k_cache_error_setup
;
1947 switch (current_cpu_type()) {
1950 /* No IPI is needed because all CPUs share the same D$ */
1951 flush_data_cache_page
= r4k_blast_dcache_page
;
1954 /* We lose our superpowers if L2 is disabled */
1955 if (c
->scache
.flags
& MIPS_CACHE_NOT_PRESENT
)
1958 /* I$ fills from D$ just by emptying the write buffers */
1959 flush_cache_page
= (void *)b5k_instruction_hazard
;
1960 flush_cache_range
= (void *)b5k_instruction_hazard
;
1961 flush_cache_sigtramp
= (void *)b5k_instruction_hazard
;
1962 local_flush_data_cache_page
= (void *)b5k_instruction_hazard
;
1963 flush_data_cache_page
= (void *)b5k_instruction_hazard
;
1964 flush_icache_range
= (void *)b5k_instruction_hazard
;
1965 local_flush_icache_range
= (void *)b5k_instruction_hazard
;
1968 /* Optimization: an L2 flush implicitly flushes the L1 */
1969 current_cpu_data
.options
|= MIPS_CPU_INCLUSIVE_CACHES
;
1972 /* Loongson-3 maintains cache coherency by hardware */
1973 __flush_cache_all
= cache_noop
;
1974 __flush_cache_vmap
= cache_noop
;
1975 __flush_cache_vunmap
= cache_noop
;
1976 __flush_kernel_vmap_range
= (void *)cache_noop
;
1977 flush_cache_mm
= (void *)cache_noop
;
1978 flush_cache_page
= (void *)cache_noop
;
1979 flush_cache_range
= (void *)cache_noop
;
1980 flush_cache_sigtramp
= (void *)cache_noop
;
1981 flush_icache_all
= (void *)cache_noop
;
1982 flush_data_cache_page
= (void *)cache_noop
;
1983 local_flush_data_cache_page
= (void *)cache_noop
;
1988 static int r4k_cache_pm_notifier(struct notifier_block
*self
, unsigned long cmd
,
1992 case CPU_PM_ENTER_FAILED
:
2001 static struct notifier_block r4k_cache_pm_notifier_block
= {
2002 .notifier_call
= r4k_cache_pm_notifier
,
2005 int __init
r4k_cache_init_pm(void)
2007 return cpu_pm_register_notifier(&r4k_cache_pm_notifier_block
);
2009 arch_initcall(r4k_cache_init_pm
);