2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
6 * Copyright (C) 2000 Ani Joshi <ajoshi@unixbox.com>
7 * Copyright (C) 2000, 2001, 06 Ralf Baechle <ralf@linux-mips.org>
8 * swiped from i386, and cloned for MIPS by Geert, polished by Ralf.
11 #include <linux/types.h>
12 #include <linux/dma-mapping.h>
14 #include <linux/module.h>
15 #include <linux/scatterlist.h>
16 #include <linux/string.h>
17 #include <linux/gfp.h>
18 #include <linux/highmem.h>
19 #include <linux/dma-contiguous.h>
21 #include <asm/cache.h>
22 #include <asm/cpu-type.h>
25 #include <dma-coherence.h>
27 #ifdef CONFIG_DMA_MAYBE_COHERENT
28 int coherentio
= 0; /* User defined DMA coherency from command line. */
29 EXPORT_SYMBOL_GPL(coherentio
);
30 int hw_coherentio
= 0; /* Actual hardware supported DMA coherency setting. */
32 static int __init
setcoherentio(char *str
)
35 pr_info("Hardware DMA cache coherency (command line)\n");
38 early_param("coherentio", setcoherentio
);
40 static int __init
setnocoherentio(char *str
)
43 pr_info("Software DMA cache coherency (command line)\n");
46 early_param("nocoherentio", setnocoherentio
);
49 static inline struct page
*dma_addr_to_page(struct device
*dev
,
53 plat_dma_addr_to_phys(dev
, dma_addr
) >> PAGE_SHIFT
);
57 * The affected CPUs below in 'cpu_needs_post_dma_flush()' can
58 * speculatively fill random cachelines with stale data at any time,
59 * requiring an extra flush post-DMA.
61 * Warning on the terminology - Linux calls an uncached area coherent;
62 * MIPS terminology calls memory areas with hardware maintained coherency
65 * Note that the R14000 and R16000 should also be checked for in this
66 * condition. However this function is only called on non-I/O-coherent
67 * systems and only the R10000 and R12000 are used in such systems, the
68 * SGI IP28 Indigo² rsp. SGI IP32 aka O2.
70 static inline int cpu_needs_post_dma_flush(struct device
*dev
)
72 return !plat_device_is_coherent(dev
) &&
73 (boot_cpu_type() == CPU_R10000
||
74 boot_cpu_type() == CPU_R12000
||
75 boot_cpu_type() == CPU_BMIPS5000
);
78 static gfp_t
massage_gfp_flags(const struct device
*dev
, gfp_t gfp
)
82 /* ignore region specifiers */
83 gfp
&= ~(__GFP_DMA
| __GFP_DMA32
| __GFP_HIGHMEM
);
90 #if defined(CONFIG_ZONE_DMA32) && defined(CONFIG_ZONE_DMA)
91 if (dev
== NULL
|| dev
->coherent_dma_mask
< DMA_BIT_MASK(32))
93 else if (dev
->coherent_dma_mask
< DMA_BIT_MASK(64))
94 dma_flag
= __GFP_DMA32
;
97 #if defined(CONFIG_ZONE_DMA32) && !defined(CONFIG_ZONE_DMA)
98 if (dev
== NULL
|| dev
->coherent_dma_mask
< DMA_BIT_MASK(64))
99 dma_flag
= __GFP_DMA32
;
102 #if defined(CONFIG_ZONE_DMA) && !defined(CONFIG_ZONE_DMA32)
104 dev
->coherent_dma_mask
< DMA_BIT_MASK(sizeof(phys_addr_t
) * 8))
105 dma_flag
= __GFP_DMA
;
110 /* Don't invoke OOM killer */
111 gfp
|= __GFP_NORETRY
;
113 return gfp
| dma_flag
;
116 static void *mips_dma_alloc_noncoherent(struct device
*dev
, size_t size
,
117 dma_addr_t
* dma_handle
, gfp_t gfp
)
121 gfp
= massage_gfp_flags(dev
, gfp
);
123 ret
= (void *) __get_free_pages(gfp
, get_order(size
));
126 memset(ret
, 0, size
);
127 *dma_handle
= plat_map_dma_mem(dev
, ret
, size
);
133 static void *mips_dma_alloc_coherent(struct device
*dev
, size_t size
,
134 dma_addr_t
*dma_handle
, gfp_t gfp
, unsigned long attrs
)
137 struct page
*page
= NULL
;
138 unsigned int count
= PAGE_ALIGN(size
) >> PAGE_SHIFT
;
141 * XXX: seems like the coherent and non-coherent implementations could
144 if (attrs
& DMA_ATTR_NON_CONSISTENT
)
145 return mips_dma_alloc_noncoherent(dev
, size
, dma_handle
, gfp
);
147 gfp
= massage_gfp_flags(dev
, gfp
);
149 if (IS_ENABLED(CONFIG_DMA_CMA
) && gfpflags_allow_blocking(gfp
))
150 page
= dma_alloc_from_contiguous(dev
,
151 count
, get_order(size
));
153 page
= alloc_pages(gfp
, get_order(size
));
158 ret
= page_address(page
);
159 memset(ret
, 0, size
);
160 *dma_handle
= plat_map_dma_mem(dev
, ret
, size
);
161 if (!plat_device_is_coherent(dev
)) {
162 dma_cache_wback_inv((unsigned long) ret
, size
);
164 ret
= UNCAC_ADDR(ret
);
171 static void mips_dma_free_noncoherent(struct device
*dev
, size_t size
,
172 void *vaddr
, dma_addr_t dma_handle
)
174 plat_unmap_dma_mem(dev
, dma_handle
, size
, DMA_BIDIRECTIONAL
);
175 free_pages((unsigned long) vaddr
, get_order(size
));
178 static void mips_dma_free_coherent(struct device
*dev
, size_t size
, void *vaddr
,
179 dma_addr_t dma_handle
, unsigned long attrs
)
181 unsigned long addr
= (unsigned long) vaddr
;
182 unsigned int count
= PAGE_ALIGN(size
) >> PAGE_SHIFT
;
183 struct page
*page
= NULL
;
185 if (attrs
& DMA_ATTR_NON_CONSISTENT
) {
186 mips_dma_free_noncoherent(dev
, size
, vaddr
, dma_handle
);
190 plat_unmap_dma_mem(dev
, dma_handle
, size
, DMA_BIDIRECTIONAL
);
192 if (!plat_device_is_coherent(dev
) && !hw_coherentio
)
193 addr
= CAC_ADDR(addr
);
195 page
= virt_to_page((void *) addr
);
197 if (!dma_release_from_contiguous(dev
, page
, count
))
198 __free_pages(page
, get_order(size
));
201 static int mips_dma_mmap(struct device
*dev
, struct vm_area_struct
*vma
,
202 void *cpu_addr
, dma_addr_t dma_addr
, size_t size
,
205 unsigned long user_count
= (vma
->vm_end
- vma
->vm_start
) >> PAGE_SHIFT
;
206 unsigned long count
= PAGE_ALIGN(size
) >> PAGE_SHIFT
;
207 unsigned long addr
= (unsigned long)cpu_addr
;
208 unsigned long off
= vma
->vm_pgoff
;
212 if (!plat_device_is_coherent(dev
) && !hw_coherentio
)
213 addr
= CAC_ADDR(addr
);
215 pfn
= page_to_pfn(virt_to_page((void *)addr
));
217 if (attrs
& DMA_ATTR_WRITE_COMBINE
)
218 vma
->vm_page_prot
= pgprot_writecombine(vma
->vm_page_prot
);
220 vma
->vm_page_prot
= pgprot_noncached(vma
->vm_page_prot
);
222 if (dma_mmap_from_coherent(dev
, vma
, cpu_addr
, size
, &ret
))
225 if (off
< count
&& user_count
<= (count
- off
)) {
226 ret
= remap_pfn_range(vma
, vma
->vm_start
,
228 user_count
<< PAGE_SHIFT
,
235 static inline void __dma_sync_virtual(void *addr
, size_t size
,
236 enum dma_data_direction direction
)
240 dma_cache_wback((unsigned long)addr
, size
);
243 case DMA_FROM_DEVICE
:
244 dma_cache_inv((unsigned long)addr
, size
);
247 case DMA_BIDIRECTIONAL
:
248 dma_cache_wback_inv((unsigned long)addr
, size
);
257 * A single sg entry may refer to multiple physically contiguous
258 * pages. But we still need to process highmem pages individually.
259 * If highmem is not configured then the bulk of this loop gets
262 static inline void __dma_sync(struct page
*page
,
263 unsigned long offset
, size_t size
, enum dma_data_direction direction
)
270 if (PageHighMem(page
)) {
273 if (offset
+ len
> PAGE_SIZE
) {
274 if (offset
>= PAGE_SIZE
) {
275 page
+= offset
>> PAGE_SHIFT
;
276 offset
&= ~PAGE_MASK
;
278 len
= PAGE_SIZE
- offset
;
281 addr
= kmap_atomic(page
);
282 __dma_sync_virtual(addr
+ offset
, len
, direction
);
285 __dma_sync_virtual(page_address(page
) + offset
,
293 static void mips_dma_unmap_page(struct device
*dev
, dma_addr_t dma_addr
,
294 size_t size
, enum dma_data_direction direction
, unsigned long attrs
)
296 if (cpu_needs_post_dma_flush(dev
))
297 __dma_sync(dma_addr_to_page(dev
, dma_addr
),
298 dma_addr
& ~PAGE_MASK
, size
, direction
);
299 plat_post_dma_flush(dev
);
300 plat_unmap_dma_mem(dev
, dma_addr
, size
, direction
);
303 static int mips_dma_map_sg(struct device
*dev
, struct scatterlist
*sglist
,
304 int nents
, enum dma_data_direction direction
, unsigned long attrs
)
307 struct scatterlist
*sg
;
309 for_each_sg(sglist
, sg
, nents
, i
) {
310 if (!plat_device_is_coherent(dev
))
311 __dma_sync(sg_page(sg
), sg
->offset
, sg
->length
,
313 #ifdef CONFIG_NEED_SG_DMA_LENGTH
314 sg
->dma_length
= sg
->length
;
316 sg
->dma_address
= plat_map_dma_mem_page(dev
, sg_page(sg
)) +
323 static dma_addr_t
mips_dma_map_page(struct device
*dev
, struct page
*page
,
324 unsigned long offset
, size_t size
, enum dma_data_direction direction
,
327 if (!plat_device_is_coherent(dev
))
328 __dma_sync(page
, offset
, size
, direction
);
330 return plat_map_dma_mem_page(dev
, page
) + offset
;
333 static void mips_dma_unmap_sg(struct device
*dev
, struct scatterlist
*sglist
,
334 int nhwentries
, enum dma_data_direction direction
,
338 struct scatterlist
*sg
;
340 for_each_sg(sglist
, sg
, nhwentries
, i
) {
341 if (!plat_device_is_coherent(dev
) &&
342 direction
!= DMA_TO_DEVICE
)
343 __dma_sync(sg_page(sg
), sg
->offset
, sg
->length
,
345 plat_unmap_dma_mem(dev
, sg
->dma_address
, sg
->length
, direction
);
349 static void mips_dma_sync_single_for_cpu(struct device
*dev
,
350 dma_addr_t dma_handle
, size_t size
, enum dma_data_direction direction
)
352 if (cpu_needs_post_dma_flush(dev
))
353 __dma_sync(dma_addr_to_page(dev
, dma_handle
),
354 dma_handle
& ~PAGE_MASK
, size
, direction
);
355 plat_post_dma_flush(dev
);
358 static void mips_dma_sync_single_for_device(struct device
*dev
,
359 dma_addr_t dma_handle
, size_t size
, enum dma_data_direction direction
)
361 if (!plat_device_is_coherent(dev
))
362 __dma_sync(dma_addr_to_page(dev
, dma_handle
),
363 dma_handle
& ~PAGE_MASK
, size
, direction
);
366 static void mips_dma_sync_sg_for_cpu(struct device
*dev
,
367 struct scatterlist
*sglist
, int nelems
,
368 enum dma_data_direction direction
)
371 struct scatterlist
*sg
;
373 if (cpu_needs_post_dma_flush(dev
)) {
374 for_each_sg(sglist
, sg
, nelems
, i
) {
375 __dma_sync(sg_page(sg
), sg
->offset
, sg
->length
,
379 plat_post_dma_flush(dev
);
382 static void mips_dma_sync_sg_for_device(struct device
*dev
,
383 struct scatterlist
*sglist
, int nelems
,
384 enum dma_data_direction direction
)
387 struct scatterlist
*sg
;
389 if (!plat_device_is_coherent(dev
)) {
390 for_each_sg(sglist
, sg
, nelems
, i
) {
391 __dma_sync(sg_page(sg
), sg
->offset
, sg
->length
,
397 int mips_dma_mapping_error(struct device
*dev
, dma_addr_t dma_addr
)
402 int mips_dma_supported(struct device
*dev
, u64 mask
)
404 return plat_dma_supported(dev
, mask
);
407 void dma_cache_sync(struct device
*dev
, void *vaddr
, size_t size
,
408 enum dma_data_direction direction
)
410 BUG_ON(direction
== DMA_NONE
);
412 if (!plat_device_is_coherent(dev
))
413 __dma_sync_virtual(vaddr
, size
, direction
);
416 EXPORT_SYMBOL(dma_cache_sync
);
418 static struct dma_map_ops mips_default_dma_map_ops
= {
419 .alloc
= mips_dma_alloc_coherent
,
420 .free
= mips_dma_free_coherent
,
421 .mmap
= mips_dma_mmap
,
422 .map_page
= mips_dma_map_page
,
423 .unmap_page
= mips_dma_unmap_page
,
424 .map_sg
= mips_dma_map_sg
,
425 .unmap_sg
= mips_dma_unmap_sg
,
426 .sync_single_for_cpu
= mips_dma_sync_single_for_cpu
,
427 .sync_single_for_device
= mips_dma_sync_single_for_device
,
428 .sync_sg_for_cpu
= mips_dma_sync_sg_for_cpu
,
429 .sync_sg_for_device
= mips_dma_sync_sg_for_device
,
430 .mapping_error
= mips_dma_mapping_error
,
431 .dma_supported
= mips_dma_supported
434 struct dma_map_ops
*mips_dma_map_ops
= &mips_default_dma_map_ops
;
435 EXPORT_SYMBOL(mips_dma_map_ops
);
437 #define PREALLOC_DMA_DEBUG_ENTRIES (1 << 16)
439 static int __init
mips_dma_init(void)
441 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES
);
445 fs_initcall(mips_dma_init
);