2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
6 * A small micro-assembler. It is intentionally kept simple, does only
7 * support a subset of instructions, and does not try to hide pipeline
8 * effects like branch delay slots.
10 * Copyright (C) 2004, 2005, 2006, 2008 Thiemo Seufer
11 * Copyright (C) 2005, 2007 Maciej W. Rozycki
12 * Copyright (C) 2006 Ralf Baechle (ralf@linux-mips.org)
13 * Copyright (C) 2012, 2013 MIPS Technologies, Inc. All rights reserved.
16 #include <linux/kernel.h>
17 #include <linux/types.h>
22 #define UASM_ISA _UASM_ISA_MICROMIPS
29 #define SCIMM_MASK 0x3ff
32 /* This macro sets the non-variable bits of an instruction. */
33 #define M(a, b, c, d, e, f) \
43 static struct insn insn_table_MM
[] = {
44 { insn_addu
, M(mm_pool32a_op
, 0, 0, 0, 0, mm_addu32_op
), RT
| RS
| RD
},
45 { insn_addiu
, M(mm_addiu32_op
, 0, 0, 0, 0, 0), RT
| RS
| SIMM
},
46 { insn_and
, M(mm_pool32a_op
, 0, 0, 0, 0, mm_and_op
), RT
| RS
| RD
},
47 { insn_andi
, M(mm_andi32_op
, 0, 0, 0, 0, 0), RT
| RS
| UIMM
},
48 { insn_beq
, M(mm_beq32_op
, 0, 0, 0, 0, 0), RS
| RT
| BIMM
},
50 { insn_bgez
, M(mm_pool32i_op
, mm_bgez_op
, 0, 0, 0, 0), RS
| BIMM
},
52 { insn_bltz
, M(mm_pool32i_op
, mm_bltz_op
, 0, 0, 0, 0), RS
| BIMM
},
54 { insn_bne
, M(mm_bne32_op
, 0, 0, 0, 0, 0), RT
| RS
| BIMM
},
55 { insn_cache
, M(mm_pool32b_op
, 0, 0, mm_cache_func
, 0, 0), RT
| RS
| SIMM
},
56 { insn_cfc1
, M(mm_pool32f_op
, 0, 0, 0, mm_cfc1_op
, mm_32f_73_op
), RT
| RS
},
57 { insn_cfcmsa
, M(mm_pool32s_op
, 0, msa_cfc_op
, 0, 0, mm_32s_elm_op
), RD
| RE
},
58 { insn_ctc1
, M(mm_pool32f_op
, 0, 0, 0, mm_ctc1_op
, mm_32f_73_op
), RT
| RS
},
59 { insn_ctcmsa
, M(mm_pool32s_op
, 0, msa_ctc_op
, 0, 0, mm_32s_elm_op
), RD
| RE
},
61 { insn_daddiu
, 0, 0 },
62 { insn_di
, M(mm_pool32a_op
, 0, 0, 0, mm_di_op
, mm_pool32axf_op
), RS
},
63 { insn_divu
, M(mm_pool32a_op
, 0, 0, 0, mm_divu_op
, mm_pool32axf_op
), RT
| RS
},
67 { insn_dsll32
, 0, 0 },
70 { insn_dsrl32
, 0, 0 },
72 { insn_drotr32
, 0, 0 },
74 { insn_eret
, M(mm_pool32a_op
, 0, 0, 0, mm_eret_op
, mm_pool32axf_op
), 0 },
75 { insn_ins
, M(mm_pool32a_op
, 0, 0, 0, 0, mm_ins_op
), RT
| RS
| RD
| RE
},
76 { insn_ext
, M(mm_pool32a_op
, 0, 0, 0, 0, mm_ext_op
), RT
| RS
| RD
| RE
},
77 { insn_j
, M(mm_j32_op
, 0, 0, 0, 0, 0), JIMM
},
78 { insn_jal
, M(mm_jal32_op
, 0, 0, 0, 0, 0), JIMM
},
79 { insn_jalr
, M(mm_pool32a_op
, 0, 0, 0, mm_jalr_op
, mm_pool32axf_op
), RT
| RS
},
80 { insn_jr
, M(mm_pool32a_op
, 0, 0, 0, mm_jalr_op
, mm_pool32axf_op
), RS
},
81 { insn_lb
, M(mm_lb32_op
, 0, 0, 0, 0, 0), RT
| RS
| SIMM
},
83 { insn_lh
, M(mm_lh32_op
, 0, 0, 0, 0, 0), RS
| RS
| SIMM
},
84 { insn_ll
, M(mm_pool32c_op
, 0, 0, (mm_ll_func
<< 1), 0, 0), RS
| RT
| SIMM
},
86 { insn_lui
, M(mm_pool32i_op
, mm_lui_op
, 0, 0, 0, 0), RS
| SIMM
},
87 { insn_lw
, M(mm_lw32_op
, 0, 0, 0, 0, 0), RT
| RS
| SIMM
},
88 { insn_mfc0
, M(mm_pool32a_op
, 0, 0, 0, mm_mfc0_op
, mm_pool32axf_op
), RT
| RS
| RD
},
89 { insn_mfhi
, M(mm_pool32a_op
, 0, 0, 0, mm_mfhi32_op
, mm_pool32axf_op
), RS
},
90 { insn_mflo
, M(mm_pool32a_op
, 0, 0, 0, mm_mflo32_op
, mm_pool32axf_op
), RS
},
91 { insn_mtc0
, M(mm_pool32a_op
, 0, 0, 0, mm_mtc0_op
, mm_pool32axf_op
), RT
| RS
| RD
},
92 { insn_mthi
, M(mm_pool32a_op
, 0, 0, 0, mm_mthi32_op
, mm_pool32axf_op
), RS
},
93 { insn_mtlo
, M(mm_pool32a_op
, 0, 0, 0, mm_mtlo32_op
, mm_pool32axf_op
), RS
},
94 { insn_mul
, M(mm_pool32a_op
, 0, 0, 0, 0, mm_mul_op
), RT
| RS
| RD
},
95 { insn_or
, M(mm_pool32a_op
, 0, 0, 0, 0, mm_or32_op
), RT
| RS
| RD
},
96 { insn_ori
, M(mm_ori32_op
, 0, 0, 0, 0, 0), RT
| RS
| UIMM
},
97 { insn_pref
, M(mm_pool32c_op
, 0, 0, (mm_pref_func
<< 1), 0, 0), RT
| RS
| SIMM
},
99 { insn_sc
, M(mm_pool32c_op
, 0, 0, (mm_sc_func
<< 1), 0, 0), RT
| RS
| SIMM
},
102 { insn_sll
, M(mm_pool32a_op
, 0, 0, 0, 0, mm_sll32_op
), RT
| RS
| RD
},
103 { insn_sllv
, M(mm_pool32a_op
, 0, 0, 0, 0, mm_sllv32_op
), RT
| RS
| RD
},
104 { insn_slt
, M(mm_pool32a_op
, 0, 0, 0, 0, mm_slt_op
), RT
| RS
| RD
},
105 { insn_sltiu
, M(mm_sltiu32_op
, 0, 0, 0, 0, 0), RT
| RS
| SIMM
},
106 { insn_sltu
, M(mm_pool32a_op
, 0, 0, 0, 0, mm_sltu_op
), RT
| RS
| RD
},
107 { insn_sra
, M(mm_pool32a_op
, 0, 0, 0, 0, mm_sra_op
), RT
| RS
| RD
},
108 { insn_srl
, M(mm_pool32a_op
, 0, 0, 0, 0, mm_srl32_op
), RT
| RS
| RD
},
109 { insn_srlv
, M(mm_pool32a_op
, 0, 0, 0, 0, mm_srlv32_op
), RT
| RS
| RD
},
110 { insn_rotr
, M(mm_pool32a_op
, 0, 0, 0, 0, mm_rotr_op
), RT
| RS
| RD
},
111 { insn_subu
, M(mm_pool32a_op
, 0, 0, 0, 0, mm_subu32_op
), RT
| RS
| RD
},
112 { insn_sw
, M(mm_sw32_op
, 0, 0, 0, 0, 0), RT
| RS
| SIMM
},
113 { insn_sync
, M(mm_pool32a_op
, 0, 0, 0, mm_sync_op
, mm_pool32axf_op
), RS
},
114 { insn_tlbp
, M(mm_pool32a_op
, 0, 0, 0, mm_tlbp_op
, mm_pool32axf_op
), 0 },
115 { insn_tlbr
, M(mm_pool32a_op
, 0, 0, 0, mm_tlbr_op
, mm_pool32axf_op
), 0 },
116 { insn_tlbwi
, M(mm_pool32a_op
, 0, 0, 0, mm_tlbwi_op
, mm_pool32axf_op
), 0 },
117 { insn_tlbwr
, M(mm_pool32a_op
, 0, 0, 0, mm_tlbwr_op
, mm_pool32axf_op
), 0 },
118 { insn_wait
, M(mm_pool32a_op
, 0, 0, 0, mm_wait_op
, mm_pool32axf_op
), SCIMM
},
119 { insn_wsbh
, M(mm_pool32a_op
, 0, 0, 0, mm_wsbh_op
, mm_pool32axf_op
), RT
| RS
},
120 { insn_xor
, M(mm_pool32a_op
, 0, 0, 0, 0, mm_xor32_op
), RT
| RS
| RD
},
121 { insn_xori
, M(mm_xori32_op
, 0, 0, 0, 0, 0), RT
| RS
| UIMM
},
123 { insn_dinsm
, 0, 0 },
124 { insn_syscall
, M(mm_pool32a_op
, 0, 0, 0, mm_syscall_op
, mm_pool32axf_op
), SCIMM
},
125 { insn_bbit0
, 0, 0 },
126 { insn_bbit1
, 0, 0 },
129 { insn_invalid
, 0, 0 }
134 static inline u32
build_bimm(s32 arg
)
136 WARN(arg
> 0xffff || arg
< -0x10000,
137 KERN_WARNING
"Micro-assembler field overflow\n");
139 WARN(arg
& 0x3, KERN_WARNING
"Invalid micro-assembler branch target\n");
141 return ((arg
< 0) ? (1 << 15) : 0) | ((arg
>> 1) & 0x7fff);
144 static inline u32
build_jimm(u32 arg
)
147 WARN(arg
& ~((JIMM_MASK
<< 2) | 1),
148 KERN_WARNING
"Micro-assembler field overflow\n");
150 return (arg
>> 1) & JIMM_MASK
;
154 * The order of opcode arguments is implicitly left to right,
155 * starting with RS and ending with FUNC or IMM.
157 static void build_insn(u32
**buf
, enum opcode opc
, ...)
159 struct insn
*ip
= NULL
;
164 for (i
= 0; insn_table_MM
[i
].opcode
!= insn_invalid
; i
++)
165 if (insn_table_MM
[i
].opcode
== opc
) {
166 ip
= &insn_table_MM
[i
];
170 if (!ip
|| (opc
== insn_daddiu
&& r4k_daddiu_bug()))
171 panic("Unsupported Micro-assembler instruction %d", opc
);
175 if (ip
->fields
& RS
) {
176 if (opc
== insn_mfc0
|| opc
== insn_mtc0
||
177 opc
== insn_cfc1
|| opc
== insn_ctc1
)
178 op
|= build_rt(va_arg(ap
, u32
));
180 op
|= build_rs(va_arg(ap
, u32
));
182 if (ip
->fields
& RT
) {
183 if (opc
== insn_mfc0
|| opc
== insn_mtc0
||
184 opc
== insn_cfc1
|| opc
== insn_ctc1
)
185 op
|= build_rs(va_arg(ap
, u32
));
187 op
|= build_rt(va_arg(ap
, u32
));
190 op
|= build_rd(va_arg(ap
, u32
));
192 op
|= build_re(va_arg(ap
, u32
));
193 if (ip
->fields
& SIMM
)
194 op
|= build_simm(va_arg(ap
, s32
));
195 if (ip
->fields
& UIMM
)
196 op
|= build_uimm(va_arg(ap
, u32
));
197 if (ip
->fields
& BIMM
)
198 op
|= build_bimm(va_arg(ap
, s32
));
199 if (ip
->fields
& JIMM
)
200 op
|= build_jimm(va_arg(ap
, u32
));
201 if (ip
->fields
& FUNC
)
202 op
|= build_func(va_arg(ap
, u32
));
203 if (ip
->fields
& SET
)
204 op
|= build_set(va_arg(ap
, u32
));
205 if (ip
->fields
& SCIMM
)
206 op
|= build_scimm(va_arg(ap
, u32
));
209 #ifdef CONFIG_CPU_LITTLE_ENDIAN
210 **buf
= ((op
& 0xffff) << 16) | (op
>> 16);
218 __resolve_relocs(struct uasm_reloc
*rel
, struct uasm_label
*lab
)
220 long laddr
= (long)lab
->addr
;
221 long raddr
= (long)rel
->addr
;
225 #ifdef CONFIG_CPU_LITTLE_ENDIAN
226 *rel
->addr
|= (build_bimm(laddr
- (raddr
+ 4)) << 16);
228 *rel
->addr
|= build_bimm(laddr
- (raddr
+ 4));
233 panic("Unsupported Micro-assembler relocation %d",