2 * CCI cache coherent interconnect driver
4 * Copyright (C) 2013 ARM Ltd.
5 * Author: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
12 * kind, whether express or implied; without even the implied warranty
13 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
17 #include <linux/arm-cci.h>
19 #include <linux/interrupt.h>
20 #include <linux/module.h>
21 #include <linux/of_address.h>
22 #include <linux/of_irq.h>
23 #include <linux/of_platform.h>
24 #include <linux/perf_event.h>
25 #include <linux/platform_device.h>
26 #include <linux/slab.h>
27 #include <linux/spinlock.h>
29 #include <asm/cacheflush.h>
30 #include <asm/smp_plat.h>
32 static void __iomem
*cci_ctrl_base
;
33 static unsigned long cci_ctrl_phys
;
35 #ifdef CONFIG_ARM_CCI400_PORT_CTRL
38 unsigned int nb_ace_lite
;
41 static const struct cci_nb_ports cci400_ports
= {
46 #define CCI400_PORTS_DATA (&cci400_ports)
48 #define CCI400_PORTS_DATA (NULL)
51 static const struct of_device_id arm_cci_matches
[] = {
52 #ifdef CONFIG_ARM_CCI400_COMMON
53 {.compatible
= "arm,cci-400", .data
= CCI400_PORTS_DATA
},
55 #ifdef CONFIG_ARM_CCI5xx_PMU
56 { .compatible
= "arm,cci-500", },
57 { .compatible
= "arm,cci-550", },
62 #ifdef CONFIG_ARM_CCI_PMU
64 #define DRIVER_NAME "ARM-CCI"
65 #define DRIVER_NAME_PMU DRIVER_NAME " PMU"
67 #define CCI_PMCR 0x0100
68 #define CCI_PID2 0x0fe8
70 #define CCI_PMCR_CEN 0x00000001
71 #define CCI_PMCR_NCNT_MASK 0x0000f800
72 #define CCI_PMCR_NCNT_SHIFT 11
74 #define CCI_PID2_REV_MASK 0xf0
75 #define CCI_PID2_REV_SHIFT 4
77 #define CCI_PMU_EVT_SEL 0x000
78 #define CCI_PMU_CNTR 0x004
79 #define CCI_PMU_CNTR_CTRL 0x008
80 #define CCI_PMU_OVRFLW 0x00c
82 #define CCI_PMU_OVRFLW_FLAG 1
84 #define CCI_PMU_CNTR_SIZE(model) ((model)->cntr_size)
85 #define CCI_PMU_CNTR_BASE(model, idx) ((idx) * CCI_PMU_CNTR_SIZE(model))
86 #define CCI_PMU_CNTR_MASK ((1ULL << 32) -1)
87 #define CCI_PMU_CNTR_LAST(cci_pmu) (cci_pmu->num_cntrs - 1)
89 #define CCI_PMU_MAX_HW_CNTRS(model) \
90 ((model)->num_hw_cntrs + (model)->fixed_hw_cntrs)
92 /* Types of interfaces that can generate events */
96 #ifdef CONFIG_ARM_CCI5xx_PMU
107 struct cci_pmu_hw_events
{
108 struct perf_event
**events
;
109 unsigned long *used_mask
;
110 raw_spinlock_t pmu_lock
;
115 * struct cci_pmu_model:
116 * @fixed_hw_cntrs - Number of fixed event counters
117 * @num_hw_cntrs - Maximum number of programmable event counters
118 * @cntr_size - Size of an event counter mapping
120 struct cci_pmu_model
{
125 struct attribute
**format_attrs
;
126 struct attribute
**event_attrs
;
127 struct event_range event_ranges
[CCI_IF_MAX
];
128 int (*validate_hw_event
)(struct cci_pmu
*, unsigned long);
129 int (*get_event_idx
)(struct cci_pmu
*, struct cci_pmu_hw_events
*, unsigned long);
130 void (*write_counters
)(struct cci_pmu
*, unsigned long *);
133 static struct cci_pmu_model cci_pmu_models
[];
140 unsigned long active_irqs
;
141 const struct cci_pmu_model
*model
;
142 struct cci_pmu_hw_events hw_events
;
143 struct platform_device
*plat_device
;
145 atomic_t active_events
;
146 struct mutex reserve_mutex
;
147 struct list_head entry
;
151 #define to_cci_pmu(c) (container_of(c, struct cci_pmu, pmu))
153 static DEFINE_MUTEX(cci_pmu_mutex
);
154 static LIST_HEAD(cci_pmu_list
);
157 #ifdef CONFIG_ARM_CCI400_PMU
161 #ifdef CONFIG_ARM_CCI5xx_PMU
168 static void pmu_write_counters(struct cci_pmu
*cci_pmu
,
169 unsigned long *mask
);
170 static ssize_t
cci_pmu_format_show(struct device
*dev
,
171 struct device_attribute
*attr
, char *buf
);
172 static ssize_t
cci_pmu_event_show(struct device
*dev
,
173 struct device_attribute
*attr
, char *buf
);
175 #define CCI_EXT_ATTR_ENTRY(_name, _func, _config) \
176 &((struct dev_ext_attribute[]) { \
177 { __ATTR(_name, S_IRUGO, _func, NULL), (void *)_config } \
180 #define CCI_FORMAT_EXT_ATTR_ENTRY(_name, _config) \
181 CCI_EXT_ATTR_ENTRY(_name, cci_pmu_format_show, (char *)_config)
182 #define CCI_EVENT_EXT_ATTR_ENTRY(_name, _config) \
183 CCI_EXT_ATTR_ENTRY(_name, cci_pmu_event_show, (unsigned long)_config)
185 /* CCI400 PMU Specific definitions */
187 #ifdef CONFIG_ARM_CCI400_PMU
190 #define CCI400_PORT_S0 0
191 #define CCI400_PORT_S1 1
192 #define CCI400_PORT_S2 2
193 #define CCI400_PORT_S3 3
194 #define CCI400_PORT_S4 4
195 #define CCI400_PORT_M0 5
196 #define CCI400_PORT_M1 6
197 #define CCI400_PORT_M2 7
199 #define CCI400_R1_PX 5
202 * Instead of an event id to monitor CCI cycles, a dedicated counter is
203 * provided. Use 0xff to represent CCI cycles and hope that no future revisions
204 * make use of this event in hardware.
206 enum cci400_perf_events
{
207 CCI400_PMU_CYCLES
= 0xff
210 #define CCI400_PMU_CYCLE_CNTR_IDX 0
211 #define CCI400_PMU_CNTR0_IDX 1
214 * CCI PMU event id is an 8-bit value made of two parts - bits 7:5 for one of 8
215 * ports and bits 4:0 are event codes. There are different event codes
216 * associated with each port type.
218 * Additionally, the range of events associated with the port types changed
219 * between Rev0 and Rev1.
221 * The constants below define the range of valid codes for each port type for
222 * the different revisions and are used to validate the event to be monitored.
225 #define CCI400_PMU_EVENT_MASK 0xffUL
226 #define CCI400_PMU_EVENT_SOURCE_SHIFT 5
227 #define CCI400_PMU_EVENT_SOURCE_MASK 0x7
228 #define CCI400_PMU_EVENT_CODE_SHIFT 0
229 #define CCI400_PMU_EVENT_CODE_MASK 0x1f
230 #define CCI400_PMU_EVENT_SOURCE(event) \
231 ((event >> CCI400_PMU_EVENT_SOURCE_SHIFT) & \
232 CCI400_PMU_EVENT_SOURCE_MASK)
233 #define CCI400_PMU_EVENT_CODE(event) \
234 ((event >> CCI400_PMU_EVENT_CODE_SHIFT) & CCI400_PMU_EVENT_CODE_MASK)
236 #define CCI400_R0_SLAVE_PORT_MIN_EV 0x00
237 #define CCI400_R0_SLAVE_PORT_MAX_EV 0x13
238 #define CCI400_R0_MASTER_PORT_MIN_EV 0x14
239 #define CCI400_R0_MASTER_PORT_MAX_EV 0x1a
241 #define CCI400_R1_SLAVE_PORT_MIN_EV 0x00
242 #define CCI400_R1_SLAVE_PORT_MAX_EV 0x14
243 #define CCI400_R1_MASTER_PORT_MIN_EV 0x00
244 #define CCI400_R1_MASTER_PORT_MAX_EV 0x11
246 #define CCI400_CYCLE_EVENT_EXT_ATTR_ENTRY(_name, _config) \
247 CCI_EXT_ATTR_ENTRY(_name, cci400_pmu_cycle_event_show, \
248 (unsigned long)_config)
250 static ssize_t
cci400_pmu_cycle_event_show(struct device
*dev
,
251 struct device_attribute
*attr
, char *buf
);
253 static struct attribute
*cci400_pmu_format_attrs
[] = {
254 CCI_FORMAT_EXT_ATTR_ENTRY(event
, "config:0-4"),
255 CCI_FORMAT_EXT_ATTR_ENTRY(source
, "config:5-7"),
259 static struct attribute
*cci400_r0_pmu_event_attrs
[] = {
261 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_any
, 0x0),
262 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_device
, 0x01),
263 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_normal_or_nonshareable
, 0x2),
264 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_inner_or_outershareable
, 0x3),
265 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_cache_maintenance
, 0x4),
266 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_mem_barrier
, 0x5),
267 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_sync_barrier
, 0x6),
268 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_dvm_msg
, 0x7),
269 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_dvm_msg_sync
, 0x8),
270 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_stall_tt_full
, 0x9),
271 CCI_EVENT_EXT_ATTR_ENTRY(si_r_data_last_hs_snoop
, 0xA),
272 CCI_EVENT_EXT_ATTR_ENTRY(si_r_data_stall_rvalids_h_rready_l
, 0xB),
273 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_any
, 0xC),
274 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_device
, 0xD),
275 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_normal_or_nonshareable
, 0xE),
276 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_inner_or_outershare_wback_wclean
, 0xF),
277 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_write_unique
, 0x10),
278 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_write_line_unique
, 0x11),
279 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_evict
, 0x12),
280 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_stall_tt_full
, 0x13),
282 CCI_EVENT_EXT_ATTR_ENTRY(mi_retry_speculative_fetch
, 0x14),
283 CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_addr_hazard
, 0x15),
284 CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_id_hazard
, 0x16),
285 CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_tt_full
, 0x17),
286 CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_barrier_hazard
, 0x18),
287 CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_barrier_hazard
, 0x19),
288 CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_tt_full
, 0x1A),
289 /* Special event for cycles counter */
290 CCI400_CYCLE_EVENT_EXT_ATTR_ENTRY(cycles
, 0xff),
294 static struct attribute
*cci400_r1_pmu_event_attrs
[] = {
296 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_any
, 0x0),
297 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_device
, 0x01),
298 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_normal_or_nonshareable
, 0x2),
299 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_inner_or_outershareable
, 0x3),
300 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_cache_maintenance
, 0x4),
301 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_mem_barrier
, 0x5),
302 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_sync_barrier
, 0x6),
303 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_dvm_msg
, 0x7),
304 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_dvm_msg_sync
, 0x8),
305 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_stall_tt_full
, 0x9),
306 CCI_EVENT_EXT_ATTR_ENTRY(si_r_data_last_hs_snoop
, 0xA),
307 CCI_EVENT_EXT_ATTR_ENTRY(si_r_data_stall_rvalids_h_rready_l
, 0xB),
308 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_any
, 0xC),
309 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_device
, 0xD),
310 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_normal_or_nonshareable
, 0xE),
311 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_inner_or_outershare_wback_wclean
, 0xF),
312 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_write_unique
, 0x10),
313 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_write_line_unique
, 0x11),
314 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_evict
, 0x12),
315 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_stall_tt_full
, 0x13),
316 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_stall_slave_id_hazard
, 0x14),
318 CCI_EVENT_EXT_ATTR_ENTRY(mi_retry_speculative_fetch
, 0x0),
319 CCI_EVENT_EXT_ATTR_ENTRY(mi_stall_cycle_addr_hazard
, 0x1),
320 CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_master_id_hazard
, 0x2),
321 CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_hi_prio_rtq_full
, 0x3),
322 CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_barrier_hazard
, 0x4),
323 CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_barrier_hazard
, 0x5),
324 CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_wtq_full
, 0x6),
325 CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_low_prio_rtq_full
, 0x7),
326 CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_mid_prio_rtq_full
, 0x8),
327 CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_qvn_vn0
, 0x9),
328 CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_qvn_vn1
, 0xA),
329 CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_qvn_vn2
, 0xB),
330 CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_qvn_vn3
, 0xC),
331 CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_qvn_vn0
, 0xD),
332 CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_qvn_vn1
, 0xE),
333 CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_qvn_vn2
, 0xF),
334 CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_qvn_vn3
, 0x10),
335 CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_unique_or_line_unique_addr_hazard
, 0x11),
336 /* Special event for cycles counter */
337 CCI400_CYCLE_EVENT_EXT_ATTR_ENTRY(cycles
, 0xff),
341 static ssize_t
cci400_pmu_cycle_event_show(struct device
*dev
,
342 struct device_attribute
*attr
, char *buf
)
344 struct dev_ext_attribute
*eattr
= container_of(attr
,
345 struct dev_ext_attribute
, attr
);
346 return snprintf(buf
, PAGE_SIZE
, "config=0x%lx\n", (unsigned long)eattr
->var
);
349 static int cci400_get_event_idx(struct cci_pmu
*cci_pmu
,
350 struct cci_pmu_hw_events
*hw
,
351 unsigned long cci_event
)
355 /* cycles event idx is fixed */
356 if (cci_event
== CCI400_PMU_CYCLES
) {
357 if (test_and_set_bit(CCI400_PMU_CYCLE_CNTR_IDX
, hw
->used_mask
))
360 return CCI400_PMU_CYCLE_CNTR_IDX
;
363 for (idx
= CCI400_PMU_CNTR0_IDX
; idx
<= CCI_PMU_CNTR_LAST(cci_pmu
); ++idx
)
364 if (!test_and_set_bit(idx
, hw
->used_mask
))
367 /* No counters available */
371 static int cci400_validate_hw_event(struct cci_pmu
*cci_pmu
, unsigned long hw_event
)
373 u8 ev_source
= CCI400_PMU_EVENT_SOURCE(hw_event
);
374 u8 ev_code
= CCI400_PMU_EVENT_CODE(hw_event
);
377 if (hw_event
& ~CCI400_PMU_EVENT_MASK
)
380 if (hw_event
== CCI400_PMU_CYCLES
)
389 /* Slave Interface */
390 if_type
= CCI_IF_SLAVE
;
395 /* Master Interface */
396 if_type
= CCI_IF_MASTER
;
402 if (ev_code
>= cci_pmu
->model
->event_ranges
[if_type
].min
&&
403 ev_code
<= cci_pmu
->model
->event_ranges
[if_type
].max
)
409 static int probe_cci400_revision(void)
412 rev
= readl_relaxed(cci_ctrl_base
+ CCI_PID2
) & CCI_PID2_REV_MASK
;
413 rev
>>= CCI_PID2_REV_SHIFT
;
415 if (rev
< CCI400_R1_PX
)
421 static const struct cci_pmu_model
*probe_cci_model(struct platform_device
*pdev
)
423 if (platform_has_secure_cci_access())
424 return &cci_pmu_models
[probe_cci400_revision()];
427 #else /* !CONFIG_ARM_CCI400_PMU */
428 static inline struct cci_pmu_model
*probe_cci_model(struct platform_device
*pdev
)
432 #endif /* CONFIG_ARM_CCI400_PMU */
434 #ifdef CONFIG_ARM_CCI5xx_PMU
437 * CCI5xx PMU event id is an 9-bit value made of two parts.
438 * bits [8:5] - Source for the event
439 * bits [4:0] - Event code (specific to type of interface)
445 #define CCI5xx_PORT_S0 0x0
446 #define CCI5xx_PORT_S1 0x1
447 #define CCI5xx_PORT_S2 0x2
448 #define CCI5xx_PORT_S3 0x3
449 #define CCI5xx_PORT_S4 0x4
450 #define CCI5xx_PORT_S5 0x5
451 #define CCI5xx_PORT_S6 0x6
453 #define CCI5xx_PORT_M0 0x8
454 #define CCI5xx_PORT_M1 0x9
455 #define CCI5xx_PORT_M2 0xa
456 #define CCI5xx_PORT_M3 0xb
457 #define CCI5xx_PORT_M4 0xc
458 #define CCI5xx_PORT_M5 0xd
459 #define CCI5xx_PORT_M6 0xe
461 #define CCI5xx_PORT_GLOBAL 0xf
463 #define CCI5xx_PMU_EVENT_MASK 0x1ffUL
464 #define CCI5xx_PMU_EVENT_SOURCE_SHIFT 0x5
465 #define CCI5xx_PMU_EVENT_SOURCE_MASK 0xf
466 #define CCI5xx_PMU_EVENT_CODE_SHIFT 0x0
467 #define CCI5xx_PMU_EVENT_CODE_MASK 0x1f
469 #define CCI5xx_PMU_EVENT_SOURCE(event) \
470 ((event >> CCI5xx_PMU_EVENT_SOURCE_SHIFT) & CCI5xx_PMU_EVENT_SOURCE_MASK)
471 #define CCI5xx_PMU_EVENT_CODE(event) \
472 ((event >> CCI5xx_PMU_EVENT_CODE_SHIFT) & CCI5xx_PMU_EVENT_CODE_MASK)
474 #define CCI5xx_SLAVE_PORT_MIN_EV 0x00
475 #define CCI5xx_SLAVE_PORT_MAX_EV 0x1f
476 #define CCI5xx_MASTER_PORT_MIN_EV 0x00
477 #define CCI5xx_MASTER_PORT_MAX_EV 0x06
478 #define CCI5xx_GLOBAL_PORT_MIN_EV 0x00
479 #define CCI5xx_GLOBAL_PORT_MAX_EV 0x0f
482 #define CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(_name, _config) \
483 CCI_EXT_ATTR_ENTRY(_name, cci5xx_pmu_global_event_show, \
484 (unsigned long) _config)
486 static ssize_t
cci5xx_pmu_global_event_show(struct device
*dev
,
487 struct device_attribute
*attr
, char *buf
);
489 static struct attribute
*cci5xx_pmu_format_attrs
[] = {
490 CCI_FORMAT_EXT_ATTR_ENTRY(event
, "config:0-4"),
491 CCI_FORMAT_EXT_ATTR_ENTRY(source
, "config:5-8"),
495 static struct attribute
*cci5xx_pmu_event_attrs
[] = {
497 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_arvalid
, 0x0),
498 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_dev
, 0x1),
499 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_nonshareable
, 0x2),
500 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_shareable_non_alloc
, 0x3),
501 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_shareable_alloc
, 0x4),
502 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_invalidate
, 0x5),
503 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_cache_maint
, 0x6),
504 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_dvm_msg
, 0x7),
505 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_rval
, 0x8),
506 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_rlast_snoop
, 0x9),
507 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_awalid
, 0xA),
508 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_dev
, 0xB),
509 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_non_shareable
, 0xC),
510 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_share_wb
, 0xD),
511 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_share_wlu
, 0xE),
512 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_share_wunique
, 0xF),
513 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_evict
, 0x10),
514 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_wrevict
, 0x11),
515 CCI_EVENT_EXT_ATTR_ENTRY(si_w_data_beat
, 0x12),
516 CCI_EVENT_EXT_ATTR_ENTRY(si_srq_acvalid
, 0x13),
517 CCI_EVENT_EXT_ATTR_ENTRY(si_srq_read
, 0x14),
518 CCI_EVENT_EXT_ATTR_ENTRY(si_srq_clean
, 0x15),
519 CCI_EVENT_EXT_ATTR_ENTRY(si_srq_data_transfer_low
, 0x16),
520 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_stall_arvalid
, 0x17),
521 CCI_EVENT_EXT_ATTR_ENTRY(si_r_data_stall
, 0x18),
522 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_stall
, 0x19),
523 CCI_EVENT_EXT_ATTR_ENTRY(si_w_data_stall
, 0x1A),
524 CCI_EVENT_EXT_ATTR_ENTRY(si_w_resp_stall
, 0x1B),
525 CCI_EVENT_EXT_ATTR_ENTRY(si_srq_stall
, 0x1C),
526 CCI_EVENT_EXT_ATTR_ENTRY(si_s_data_stall
, 0x1D),
527 CCI_EVENT_EXT_ATTR_ENTRY(si_rq_stall_ot_limit
, 0x1E),
528 CCI_EVENT_EXT_ATTR_ENTRY(si_r_stall_arbit
, 0x1F),
531 CCI_EVENT_EXT_ATTR_ENTRY(mi_r_data_beat_any
, 0x0),
532 CCI_EVENT_EXT_ATTR_ENTRY(mi_w_data_beat_any
, 0x1),
533 CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall
, 0x2),
534 CCI_EVENT_EXT_ATTR_ENTRY(mi_r_data_stall
, 0x3),
535 CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall
, 0x4),
536 CCI_EVENT_EXT_ATTR_ENTRY(mi_w_data_stall
, 0x5),
537 CCI_EVENT_EXT_ATTR_ENTRY(mi_w_resp_stall
, 0x6),
540 CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_filter_bank_0_1
, 0x0),
541 CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_filter_bank_2_3
, 0x1),
542 CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_filter_bank_4_5
, 0x2),
543 CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_filter_bank_6_7
, 0x3),
544 CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_miss_filter_bank_0_1
, 0x4),
545 CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_miss_filter_bank_2_3
, 0x5),
546 CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_miss_filter_bank_4_5
, 0x6),
547 CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_miss_filter_bank_6_7
, 0x7),
548 CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_back_invalidation
, 0x8),
549 CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_stall_alloc_busy
, 0x9),
550 CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_stall_tt_full
, 0xA),
551 CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_wrq
, 0xB),
552 CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_cd_hs
, 0xC),
553 CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_rq_stall_addr_hazard
, 0xD),
554 CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_rq_stall_tt_full
, 0xE),
555 CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_rq_tzmp1_prot
, 0xF),
559 static ssize_t
cci5xx_pmu_global_event_show(struct device
*dev
,
560 struct device_attribute
*attr
, char *buf
)
562 struct dev_ext_attribute
*eattr
= container_of(attr
,
563 struct dev_ext_attribute
, attr
);
564 /* Global events have single fixed source code */
565 return snprintf(buf
, PAGE_SIZE
, "event=0x%lx,source=0x%x\n",
566 (unsigned long)eattr
->var
, CCI5xx_PORT_GLOBAL
);
570 * CCI500 provides 8 independent event counters that can count
571 * any of the events available.
572 * CCI500 PMU event source ids
573 * 0x0-0x6 - Slave interfaces
574 * 0x8-0xD - Master interfaces
575 * 0xf - Global Events
578 static int cci500_validate_hw_event(struct cci_pmu
*cci_pmu
,
579 unsigned long hw_event
)
581 u32 ev_source
= CCI5xx_PMU_EVENT_SOURCE(hw_event
);
582 u32 ev_code
= CCI5xx_PMU_EVENT_CODE(hw_event
);
585 if (hw_event
& ~CCI5xx_PMU_EVENT_MASK
)
596 if_type
= CCI_IF_SLAVE
;
604 if_type
= CCI_IF_MASTER
;
606 case CCI5xx_PORT_GLOBAL
:
607 if_type
= CCI_IF_GLOBAL
;
613 if (ev_code
>= cci_pmu
->model
->event_ranges
[if_type
].min
&&
614 ev_code
<= cci_pmu
->model
->event_ranges
[if_type
].max
)
621 * CCI550 provides 8 independent event counters that can count
622 * any of the events available.
623 * CCI550 PMU event source ids
624 * 0x0-0x6 - Slave interfaces
625 * 0x8-0xe - Master interfaces
626 * 0xf - Global Events
629 static int cci550_validate_hw_event(struct cci_pmu
*cci_pmu
,
630 unsigned long hw_event
)
632 u32 ev_source
= CCI5xx_PMU_EVENT_SOURCE(hw_event
);
633 u32 ev_code
= CCI5xx_PMU_EVENT_CODE(hw_event
);
636 if (hw_event
& ~CCI5xx_PMU_EVENT_MASK
)
647 if_type
= CCI_IF_SLAVE
;
656 if_type
= CCI_IF_MASTER
;
658 case CCI5xx_PORT_GLOBAL
:
659 if_type
= CCI_IF_GLOBAL
;
665 if (ev_code
>= cci_pmu
->model
->event_ranges
[if_type
].min
&&
666 ev_code
<= cci_pmu
->model
->event_ranges
[if_type
].max
)
672 #endif /* CONFIG_ARM_CCI5xx_PMU */
675 * Program the CCI PMU counters which have PERF_HES_ARCH set
676 * with the event period and mark them ready before we enable
679 static void cci_pmu_sync_counters(struct cci_pmu
*cci_pmu
)
682 struct cci_pmu_hw_events
*cci_hw
= &cci_pmu
->hw_events
;
684 DECLARE_BITMAP(mask
, cci_pmu
->num_cntrs
);
686 bitmap_zero(mask
, cci_pmu
->num_cntrs
);
687 for_each_set_bit(i
, cci_pmu
->hw_events
.used_mask
, cci_pmu
->num_cntrs
) {
688 struct perf_event
*event
= cci_hw
->events
[i
];
693 /* Leave the events which are not counting */
694 if (event
->hw
.state
& PERF_HES_STOPPED
)
696 if (event
->hw
.state
& PERF_HES_ARCH
) {
698 event
->hw
.state
&= ~PERF_HES_ARCH
;
702 pmu_write_counters(cci_pmu
, mask
);
705 /* Should be called with cci_pmu->hw_events->pmu_lock held */
706 static void __cci_pmu_enable_nosync(struct cci_pmu
*cci_pmu
)
710 /* Enable all the PMU counters. */
711 val
= readl_relaxed(cci_ctrl_base
+ CCI_PMCR
) | CCI_PMCR_CEN
;
712 writel(val
, cci_ctrl_base
+ CCI_PMCR
);
715 /* Should be called with cci_pmu->hw_events->pmu_lock held */
716 static void __cci_pmu_enable_sync(struct cci_pmu
*cci_pmu
)
718 cci_pmu_sync_counters(cci_pmu
);
719 __cci_pmu_enable_nosync(cci_pmu
);
722 /* Should be called with cci_pmu->hw_events->pmu_lock held */
723 static void __cci_pmu_disable(void)
727 /* Disable all the PMU counters. */
728 val
= readl_relaxed(cci_ctrl_base
+ CCI_PMCR
) & ~CCI_PMCR_CEN
;
729 writel(val
, cci_ctrl_base
+ CCI_PMCR
);
732 static ssize_t
cci_pmu_format_show(struct device
*dev
,
733 struct device_attribute
*attr
, char *buf
)
735 struct dev_ext_attribute
*eattr
= container_of(attr
,
736 struct dev_ext_attribute
, attr
);
737 return snprintf(buf
, PAGE_SIZE
, "%s\n", (char *)eattr
->var
);
740 static ssize_t
cci_pmu_event_show(struct device
*dev
,
741 struct device_attribute
*attr
, char *buf
)
743 struct dev_ext_attribute
*eattr
= container_of(attr
,
744 struct dev_ext_attribute
, attr
);
745 /* source parameter is mandatory for normal PMU events */
746 return snprintf(buf
, PAGE_SIZE
, "source=?,event=0x%lx\n",
747 (unsigned long)eattr
->var
);
750 static int pmu_is_valid_counter(struct cci_pmu
*cci_pmu
, int idx
)
752 return 0 <= idx
&& idx
<= CCI_PMU_CNTR_LAST(cci_pmu
);
755 static u32
pmu_read_register(struct cci_pmu
*cci_pmu
, int idx
, unsigned int offset
)
757 return readl_relaxed(cci_pmu
->base
+
758 CCI_PMU_CNTR_BASE(cci_pmu
->model
, idx
) + offset
);
761 static void pmu_write_register(struct cci_pmu
*cci_pmu
, u32 value
,
762 int idx
, unsigned int offset
)
764 writel_relaxed(value
, cci_pmu
->base
+
765 CCI_PMU_CNTR_BASE(cci_pmu
->model
, idx
) + offset
);
768 static void pmu_disable_counter(struct cci_pmu
*cci_pmu
, int idx
)
770 pmu_write_register(cci_pmu
, 0, idx
, CCI_PMU_CNTR_CTRL
);
773 static void pmu_enable_counter(struct cci_pmu
*cci_pmu
, int idx
)
775 pmu_write_register(cci_pmu
, 1, idx
, CCI_PMU_CNTR_CTRL
);
778 static bool __maybe_unused
779 pmu_counter_is_enabled(struct cci_pmu
*cci_pmu
, int idx
)
781 return (pmu_read_register(cci_pmu
, idx
, CCI_PMU_CNTR_CTRL
) & 0x1) != 0;
784 static void pmu_set_event(struct cci_pmu
*cci_pmu
, int idx
, unsigned long event
)
786 pmu_write_register(cci_pmu
, event
, idx
, CCI_PMU_EVT_SEL
);
790 * For all counters on the CCI-PMU, disable any 'enabled' counters,
791 * saving the changed counters in the mask, so that we can restore
792 * it later using pmu_restore_counters. The mask is private to the
793 * caller. We cannot rely on the used_mask maintained by the CCI_PMU
794 * as it only tells us if the counter is assigned to perf_event or not.
795 * The state of the perf_event cannot be locked by the PMU layer, hence
796 * we check the individual counter status (which can be locked by
797 * cci_pm->hw_events->pmu_lock).
799 * @mask should be initialised to empty by the caller.
801 static void __maybe_unused
802 pmu_save_counters(struct cci_pmu
*cci_pmu
, unsigned long *mask
)
806 for (i
= 0; i
< cci_pmu
->num_cntrs
; i
++) {
807 if (pmu_counter_is_enabled(cci_pmu
, i
)) {
809 pmu_disable_counter(cci_pmu
, i
);
815 * Restore the status of the counters. Reversal of the pmu_save_counters().
816 * For each counter set in the mask, enable the counter back.
818 static void __maybe_unused
819 pmu_restore_counters(struct cci_pmu
*cci_pmu
, unsigned long *mask
)
823 for_each_set_bit(i
, mask
, cci_pmu
->num_cntrs
)
824 pmu_enable_counter(cci_pmu
, i
);
828 * Returns the number of programmable counters actually implemented
831 static u32
pmu_get_max_counters(void)
833 return (readl_relaxed(cci_ctrl_base
+ CCI_PMCR
) &
834 CCI_PMCR_NCNT_MASK
) >> CCI_PMCR_NCNT_SHIFT
;
837 static int pmu_get_event_idx(struct cci_pmu_hw_events
*hw
, struct perf_event
*event
)
839 struct cci_pmu
*cci_pmu
= to_cci_pmu(event
->pmu
);
840 unsigned long cci_event
= event
->hw
.config_base
;
843 if (cci_pmu
->model
->get_event_idx
)
844 return cci_pmu
->model
->get_event_idx(cci_pmu
, hw
, cci_event
);
846 /* Generic code to find an unused idx from the mask */
847 for(idx
= 0; idx
<= CCI_PMU_CNTR_LAST(cci_pmu
); idx
++)
848 if (!test_and_set_bit(idx
, hw
->used_mask
))
851 /* No counters available */
855 static int pmu_map_event(struct perf_event
*event
)
857 struct cci_pmu
*cci_pmu
= to_cci_pmu(event
->pmu
);
859 if (event
->attr
.type
< PERF_TYPE_MAX
||
860 !cci_pmu
->model
->validate_hw_event
)
863 return cci_pmu
->model
->validate_hw_event(cci_pmu
, event
->attr
.config
);
866 static int pmu_request_irq(struct cci_pmu
*cci_pmu
, irq_handler_t handler
)
869 struct platform_device
*pmu_device
= cci_pmu
->plat_device
;
871 if (unlikely(!pmu_device
))
874 if (cci_pmu
->nr_irqs
< 1) {
875 dev_err(&pmu_device
->dev
, "no irqs for CCI PMUs defined\n");
880 * Register all available CCI PMU interrupts. In the interrupt handler
881 * we iterate over the counters checking for interrupt source (the
882 * overflowing counter) and clear it.
884 * This should allow handling of non-unique interrupt for the counters.
886 for (i
= 0; i
< cci_pmu
->nr_irqs
; i
++) {
887 int err
= request_irq(cci_pmu
->irqs
[i
], handler
, IRQF_SHARED
,
888 "arm-cci-pmu", cci_pmu
);
890 dev_err(&pmu_device
->dev
, "unable to request IRQ%d for ARM CCI PMU counters\n",
895 set_bit(i
, &cci_pmu
->active_irqs
);
901 static void pmu_free_irq(struct cci_pmu
*cci_pmu
)
905 for (i
= 0; i
< cci_pmu
->nr_irqs
; i
++) {
906 if (!test_and_clear_bit(i
, &cci_pmu
->active_irqs
))
909 free_irq(cci_pmu
->irqs
[i
], cci_pmu
);
913 static u32
pmu_read_counter(struct perf_event
*event
)
915 struct cci_pmu
*cci_pmu
= to_cci_pmu(event
->pmu
);
916 struct hw_perf_event
*hw_counter
= &event
->hw
;
917 int idx
= hw_counter
->idx
;
920 if (unlikely(!pmu_is_valid_counter(cci_pmu
, idx
))) {
921 dev_err(&cci_pmu
->plat_device
->dev
, "Invalid CCI PMU counter %d\n", idx
);
924 value
= pmu_read_register(cci_pmu
, idx
, CCI_PMU_CNTR
);
929 static void pmu_write_counter(struct cci_pmu
*cci_pmu
, u32 value
, int idx
)
931 pmu_write_register(cci_pmu
, value
, idx
, CCI_PMU_CNTR
);
934 static void __pmu_write_counters(struct cci_pmu
*cci_pmu
, unsigned long *mask
)
937 struct cci_pmu_hw_events
*cci_hw
= &cci_pmu
->hw_events
;
939 for_each_set_bit(i
, mask
, cci_pmu
->num_cntrs
) {
940 struct perf_event
*event
= cci_hw
->events
[i
];
944 pmu_write_counter(cci_pmu
, local64_read(&event
->hw
.prev_count
), i
);
948 static void pmu_write_counters(struct cci_pmu
*cci_pmu
, unsigned long *mask
)
950 if (cci_pmu
->model
->write_counters
)
951 cci_pmu
->model
->write_counters(cci_pmu
, mask
);
953 __pmu_write_counters(cci_pmu
, mask
);
956 #ifdef CONFIG_ARM_CCI5xx_PMU
959 * CCI-500/CCI-550 has advanced power saving policies, which could gate the
960 * clocks to the PMU counters, which makes the writes to them ineffective.
961 * The only way to write to those counters is when the global counters
962 * are enabled and the particular counter is enabled.
964 * So we do the following :
966 * 1) Disable all the PMU counters, saving their current state
967 * 2) Enable the global PMU profiling, now that all counters are
970 * For each counter to be programmed, repeat steps 3-7:
972 * 3) Write an invalid event code to the event control register for the
973 counter, so that the counters are not modified.
974 * 4) Enable the counter control for the counter.
975 * 5) Set the counter value
976 * 6) Disable the counter
977 * 7) Restore the event in the target counter
979 * 8) Disable the global PMU.
980 * 9) Restore the status of the rest of the counters.
982 * We choose an event which for CCI-5xx is guaranteed not to count.
983 * We use the highest possible event code (0x1f) for the master interface 0.
985 #define CCI5xx_INVALID_EVENT ((CCI5xx_PORT_M0 << CCI5xx_PMU_EVENT_SOURCE_SHIFT) | \
986 (CCI5xx_PMU_EVENT_CODE_MASK << CCI5xx_PMU_EVENT_CODE_SHIFT))
987 static void cci5xx_pmu_write_counters(struct cci_pmu
*cci_pmu
, unsigned long *mask
)
990 DECLARE_BITMAP(saved_mask
, cci_pmu
->num_cntrs
);
992 bitmap_zero(saved_mask
, cci_pmu
->num_cntrs
);
993 pmu_save_counters(cci_pmu
, saved_mask
);
996 * Now that all the counters are disabled, we can safely turn the PMU on,
997 * without syncing the status of the counters
999 __cci_pmu_enable_nosync(cci_pmu
);
1001 for_each_set_bit(i
, mask
, cci_pmu
->num_cntrs
) {
1002 struct perf_event
*event
= cci_pmu
->hw_events
.events
[i
];
1004 if (WARN_ON(!event
))
1007 pmu_set_event(cci_pmu
, i
, CCI5xx_INVALID_EVENT
);
1008 pmu_enable_counter(cci_pmu
, i
);
1009 pmu_write_counter(cci_pmu
, local64_read(&event
->hw
.prev_count
), i
);
1010 pmu_disable_counter(cci_pmu
, i
);
1011 pmu_set_event(cci_pmu
, i
, event
->hw
.config_base
);
1014 __cci_pmu_disable();
1016 pmu_restore_counters(cci_pmu
, saved_mask
);
1019 #endif /* CONFIG_ARM_CCI5xx_PMU */
1021 static u64
pmu_event_update(struct perf_event
*event
)
1023 struct hw_perf_event
*hwc
= &event
->hw
;
1024 u64 delta
, prev_raw_count
, new_raw_count
;
1027 prev_raw_count
= local64_read(&hwc
->prev_count
);
1028 new_raw_count
= pmu_read_counter(event
);
1029 } while (local64_cmpxchg(&hwc
->prev_count
, prev_raw_count
,
1030 new_raw_count
) != prev_raw_count
);
1032 delta
= (new_raw_count
- prev_raw_count
) & CCI_PMU_CNTR_MASK
;
1034 local64_add(delta
, &event
->count
);
1036 return new_raw_count
;
1039 static void pmu_read(struct perf_event
*event
)
1041 pmu_event_update(event
);
1044 static void pmu_event_set_period(struct perf_event
*event
)
1046 struct hw_perf_event
*hwc
= &event
->hw
;
1048 * The CCI PMU counters have a period of 2^32. To account for the
1049 * possiblity of extreme interrupt latency we program for a period of
1050 * half that. Hopefully we can handle the interrupt before another 2^31
1051 * events occur and the counter overtakes its previous value.
1053 u64 val
= 1ULL << 31;
1054 local64_set(&hwc
->prev_count
, val
);
1057 * CCI PMU uses PERF_HES_ARCH to keep track of the counters, whose
1058 * values needs to be sync-ed with the s/w state before the PMU is
1060 * Mark this counter for sync.
1062 hwc
->state
|= PERF_HES_ARCH
;
1065 static irqreturn_t
pmu_handle_irq(int irq_num
, void *dev
)
1067 unsigned long flags
;
1068 struct cci_pmu
*cci_pmu
= dev
;
1069 struct cci_pmu_hw_events
*events
= &cci_pmu
->hw_events
;
1070 int idx
, handled
= IRQ_NONE
;
1072 raw_spin_lock_irqsave(&events
->pmu_lock
, flags
);
1074 /* Disable the PMU while we walk through the counters */
1075 __cci_pmu_disable();
1077 * Iterate over counters and update the corresponding perf events.
1078 * This should work regardless of whether we have per-counter overflow
1079 * interrupt or a combined overflow interrupt.
1081 for (idx
= 0; idx
<= CCI_PMU_CNTR_LAST(cci_pmu
); idx
++) {
1082 struct perf_event
*event
= events
->events
[idx
];
1087 /* Did this counter overflow? */
1088 if (!(pmu_read_register(cci_pmu
, idx
, CCI_PMU_OVRFLW
) &
1089 CCI_PMU_OVRFLW_FLAG
))
1092 pmu_write_register(cci_pmu
, CCI_PMU_OVRFLW_FLAG
, idx
,
1095 pmu_event_update(event
);
1096 pmu_event_set_period(event
);
1097 handled
= IRQ_HANDLED
;
1100 /* Enable the PMU and sync possibly overflowed counters */
1101 __cci_pmu_enable_sync(cci_pmu
);
1102 raw_spin_unlock_irqrestore(&events
->pmu_lock
, flags
);
1104 return IRQ_RETVAL(handled
);
1107 static int cci_pmu_get_hw(struct cci_pmu
*cci_pmu
)
1109 int ret
= pmu_request_irq(cci_pmu
, pmu_handle_irq
);
1111 pmu_free_irq(cci_pmu
);
1117 static void cci_pmu_put_hw(struct cci_pmu
*cci_pmu
)
1119 pmu_free_irq(cci_pmu
);
1122 static void hw_perf_event_destroy(struct perf_event
*event
)
1124 struct cci_pmu
*cci_pmu
= to_cci_pmu(event
->pmu
);
1125 atomic_t
*active_events
= &cci_pmu
->active_events
;
1126 struct mutex
*reserve_mutex
= &cci_pmu
->reserve_mutex
;
1128 if (atomic_dec_and_mutex_lock(active_events
, reserve_mutex
)) {
1129 cci_pmu_put_hw(cci_pmu
);
1130 mutex_unlock(reserve_mutex
);
1134 static void cci_pmu_enable(struct pmu
*pmu
)
1136 struct cci_pmu
*cci_pmu
= to_cci_pmu(pmu
);
1137 struct cci_pmu_hw_events
*hw_events
= &cci_pmu
->hw_events
;
1138 int enabled
= bitmap_weight(hw_events
->used_mask
, cci_pmu
->num_cntrs
);
1139 unsigned long flags
;
1144 raw_spin_lock_irqsave(&hw_events
->pmu_lock
, flags
);
1145 __cci_pmu_enable_sync(cci_pmu
);
1146 raw_spin_unlock_irqrestore(&hw_events
->pmu_lock
, flags
);
1150 static void cci_pmu_disable(struct pmu
*pmu
)
1152 struct cci_pmu
*cci_pmu
= to_cci_pmu(pmu
);
1153 struct cci_pmu_hw_events
*hw_events
= &cci_pmu
->hw_events
;
1154 unsigned long flags
;
1156 raw_spin_lock_irqsave(&hw_events
->pmu_lock
, flags
);
1157 __cci_pmu_disable();
1158 raw_spin_unlock_irqrestore(&hw_events
->pmu_lock
, flags
);
1162 * Check if the idx represents a non-programmable counter.
1163 * All the fixed event counters are mapped before the programmable
1166 static bool pmu_fixed_hw_idx(struct cci_pmu
*cci_pmu
, int idx
)
1168 return (idx
>= 0) && (idx
< cci_pmu
->model
->fixed_hw_cntrs
);
1171 static void cci_pmu_start(struct perf_event
*event
, int pmu_flags
)
1173 struct cci_pmu
*cci_pmu
= to_cci_pmu(event
->pmu
);
1174 struct cci_pmu_hw_events
*hw_events
= &cci_pmu
->hw_events
;
1175 struct hw_perf_event
*hwc
= &event
->hw
;
1177 unsigned long flags
;
1180 * To handle interrupt latency, we always reprogram the period
1181 * regardlesss of PERF_EF_RELOAD.
1183 if (pmu_flags
& PERF_EF_RELOAD
)
1184 WARN_ON_ONCE(!(hwc
->state
& PERF_HES_UPTODATE
));
1188 if (unlikely(!pmu_is_valid_counter(cci_pmu
, idx
))) {
1189 dev_err(&cci_pmu
->plat_device
->dev
, "Invalid CCI PMU counter %d\n", idx
);
1193 raw_spin_lock_irqsave(&hw_events
->pmu_lock
, flags
);
1195 /* Configure the counter unless you are counting a fixed event */
1196 if (!pmu_fixed_hw_idx(cci_pmu
, idx
))
1197 pmu_set_event(cci_pmu
, idx
, hwc
->config_base
);
1199 pmu_event_set_period(event
);
1200 pmu_enable_counter(cci_pmu
, idx
);
1202 raw_spin_unlock_irqrestore(&hw_events
->pmu_lock
, flags
);
1205 static void cci_pmu_stop(struct perf_event
*event
, int pmu_flags
)
1207 struct cci_pmu
*cci_pmu
= to_cci_pmu(event
->pmu
);
1208 struct hw_perf_event
*hwc
= &event
->hw
;
1211 if (hwc
->state
& PERF_HES_STOPPED
)
1214 if (unlikely(!pmu_is_valid_counter(cci_pmu
, idx
))) {
1215 dev_err(&cci_pmu
->plat_device
->dev
, "Invalid CCI PMU counter %d\n", idx
);
1220 * We always reprogram the counter, so ignore PERF_EF_UPDATE. See
1223 pmu_disable_counter(cci_pmu
, idx
);
1224 pmu_event_update(event
);
1225 hwc
->state
|= PERF_HES_STOPPED
| PERF_HES_UPTODATE
;
1228 static int cci_pmu_add(struct perf_event
*event
, int flags
)
1230 struct cci_pmu
*cci_pmu
= to_cci_pmu(event
->pmu
);
1231 struct cci_pmu_hw_events
*hw_events
= &cci_pmu
->hw_events
;
1232 struct hw_perf_event
*hwc
= &event
->hw
;
1236 perf_pmu_disable(event
->pmu
);
1238 /* If we don't have a space for the counter then finish early. */
1239 idx
= pmu_get_event_idx(hw_events
, event
);
1245 event
->hw
.idx
= idx
;
1246 hw_events
->events
[idx
] = event
;
1248 hwc
->state
= PERF_HES_STOPPED
| PERF_HES_UPTODATE
;
1249 if (flags
& PERF_EF_START
)
1250 cci_pmu_start(event
, PERF_EF_RELOAD
);
1252 /* Propagate our changes to the userspace mapping. */
1253 perf_event_update_userpage(event
);
1256 perf_pmu_enable(event
->pmu
);
1260 static void cci_pmu_del(struct perf_event
*event
, int flags
)
1262 struct cci_pmu
*cci_pmu
= to_cci_pmu(event
->pmu
);
1263 struct cci_pmu_hw_events
*hw_events
= &cci_pmu
->hw_events
;
1264 struct hw_perf_event
*hwc
= &event
->hw
;
1267 cci_pmu_stop(event
, PERF_EF_UPDATE
);
1268 hw_events
->events
[idx
] = NULL
;
1269 clear_bit(idx
, hw_events
->used_mask
);
1271 perf_event_update_userpage(event
);
1275 validate_event(struct pmu
*cci_pmu
,
1276 struct cci_pmu_hw_events
*hw_events
,
1277 struct perf_event
*event
)
1279 if (is_software_event(event
))
1283 * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
1284 * core perf code won't check that the pmu->ctx == leader->ctx
1285 * until after pmu->event_init(event).
1287 if (event
->pmu
!= cci_pmu
)
1290 if (event
->state
< PERF_EVENT_STATE_OFF
)
1293 if (event
->state
== PERF_EVENT_STATE_OFF
&& !event
->attr
.enable_on_exec
)
1296 return pmu_get_event_idx(hw_events
, event
) >= 0;
1300 validate_group(struct perf_event
*event
)
1302 struct perf_event
*sibling
, *leader
= event
->group_leader
;
1303 struct cci_pmu
*cci_pmu
= to_cci_pmu(event
->pmu
);
1304 unsigned long mask
[BITS_TO_LONGS(cci_pmu
->num_cntrs
)];
1305 struct cci_pmu_hw_events fake_pmu
= {
1307 * Initialise the fake PMU. We only need to populate the
1308 * used_mask for the purposes of validation.
1312 memset(mask
, 0, BITS_TO_LONGS(cci_pmu
->num_cntrs
) * sizeof(unsigned long));
1314 if (!validate_event(event
->pmu
, &fake_pmu
, leader
))
1317 list_for_each_entry(sibling
, &leader
->sibling_list
, group_entry
) {
1318 if (!validate_event(event
->pmu
, &fake_pmu
, sibling
))
1322 if (!validate_event(event
->pmu
, &fake_pmu
, event
))
1329 __hw_perf_event_init(struct perf_event
*event
)
1331 struct hw_perf_event
*hwc
= &event
->hw
;
1334 mapping
= pmu_map_event(event
);
1337 pr_debug("event %x:%llx not supported\n", event
->attr
.type
,
1338 event
->attr
.config
);
1343 * We don't assign an index until we actually place the event onto
1344 * hardware. Use -1 to signify that we haven't decided where to put it
1348 hwc
->config_base
= 0;
1350 hwc
->event_base
= 0;
1353 * Store the event encoding into the config_base field.
1355 hwc
->config_base
|= (unsigned long)mapping
;
1358 * Limit the sample_period to half of the counter width. That way, the
1359 * new counter value is far less likely to overtake the previous one
1360 * unless you have some serious IRQ latency issues.
1362 hwc
->sample_period
= CCI_PMU_CNTR_MASK
>> 1;
1363 hwc
->last_period
= hwc
->sample_period
;
1364 local64_set(&hwc
->period_left
, hwc
->sample_period
);
1366 if (event
->group_leader
!= event
) {
1367 if (validate_group(event
) != 0)
1374 static int cci_pmu_event_init(struct perf_event
*event
)
1376 struct cci_pmu
*cci_pmu
= to_cci_pmu(event
->pmu
);
1377 atomic_t
*active_events
= &cci_pmu
->active_events
;
1381 if (event
->attr
.type
!= event
->pmu
->type
)
1384 /* Shared by all CPUs, no meaningful state to sample */
1385 if (is_sampling_event(event
) || event
->attach_state
& PERF_ATTACH_TASK
)
1388 /* We have no filtering of any kind */
1389 if (event
->attr
.exclude_user
||
1390 event
->attr
.exclude_kernel
||
1391 event
->attr
.exclude_hv
||
1392 event
->attr
.exclude_idle
||
1393 event
->attr
.exclude_host
||
1394 event
->attr
.exclude_guest
)
1398 * Following the example set by other "uncore" PMUs, we accept any CPU
1399 * and rewrite its affinity dynamically rather than having perf core
1400 * handle cpu == -1 and pid == -1 for this case.
1402 * The perf core will pin online CPUs for the duration of this call and
1403 * the event being installed into its context, so the PMU's CPU can't
1404 * change under our feet.
1406 cpu
= cpumask_first(&cci_pmu
->cpus
);
1407 if (event
->cpu
< 0 || cpu
< 0)
1411 event
->destroy
= hw_perf_event_destroy
;
1412 if (!atomic_inc_not_zero(active_events
)) {
1413 mutex_lock(&cci_pmu
->reserve_mutex
);
1414 if (atomic_read(active_events
) == 0)
1415 err
= cci_pmu_get_hw(cci_pmu
);
1417 atomic_inc(active_events
);
1418 mutex_unlock(&cci_pmu
->reserve_mutex
);
1423 err
= __hw_perf_event_init(event
);
1425 hw_perf_event_destroy(event
);
1430 static ssize_t
pmu_cpumask_attr_show(struct device
*dev
,
1431 struct device_attribute
*attr
, char *buf
)
1433 struct pmu
*pmu
= dev_get_drvdata(dev
);
1434 struct cci_pmu
*cci_pmu
= to_cci_pmu(pmu
);
1436 int n
= scnprintf(buf
, PAGE_SIZE
- 1, "%*pbl",
1437 cpumask_pr_args(&cci_pmu
->cpus
));
1443 static struct device_attribute pmu_cpumask_attr
=
1444 __ATTR(cpumask
, S_IRUGO
, pmu_cpumask_attr_show
, NULL
);
1446 static struct attribute
*pmu_attrs
[] = {
1447 &pmu_cpumask_attr
.attr
,
1451 static struct attribute_group pmu_attr_group
= {
1455 static struct attribute_group pmu_format_attr_group
= {
1457 .attrs
= NULL
, /* Filled in cci_pmu_init_attrs */
1460 static struct attribute_group pmu_event_attr_group
= {
1462 .attrs
= NULL
, /* Filled in cci_pmu_init_attrs */
1465 static const struct attribute_group
*pmu_attr_groups
[] = {
1467 &pmu_format_attr_group
,
1468 &pmu_event_attr_group
,
1472 static int cci_pmu_init(struct cci_pmu
*cci_pmu
, struct platform_device
*pdev
)
1474 const struct cci_pmu_model
*model
= cci_pmu
->model
;
1475 char *name
= model
->name
;
1478 pmu_event_attr_group
.attrs
= model
->event_attrs
;
1479 pmu_format_attr_group
.attrs
= model
->format_attrs
;
1481 cci_pmu
->pmu
= (struct pmu
) {
1482 .name
= cci_pmu
->model
->name
,
1483 .task_ctx_nr
= perf_invalid_context
,
1484 .pmu_enable
= cci_pmu_enable
,
1485 .pmu_disable
= cci_pmu_disable
,
1486 .event_init
= cci_pmu_event_init
,
1489 .start
= cci_pmu_start
,
1490 .stop
= cci_pmu_stop
,
1492 .attr_groups
= pmu_attr_groups
,
1495 cci_pmu
->plat_device
= pdev
;
1496 num_cntrs
= pmu_get_max_counters();
1497 if (num_cntrs
> cci_pmu
->model
->num_hw_cntrs
) {
1498 dev_warn(&pdev
->dev
,
1499 "PMU implements more counters(%d) than supported by"
1500 " the model(%d), truncated.",
1501 num_cntrs
, cci_pmu
->model
->num_hw_cntrs
);
1502 num_cntrs
= cci_pmu
->model
->num_hw_cntrs
;
1504 cci_pmu
->num_cntrs
= num_cntrs
+ cci_pmu
->model
->fixed_hw_cntrs
;
1506 return perf_pmu_register(&cci_pmu
->pmu
, name
, -1);
1509 static int cci_pmu_offline_cpu(unsigned int cpu
)
1511 struct cci_pmu
*cci_pmu
;
1512 unsigned int target
;
1514 mutex_lock(&cci_pmu_mutex
);
1515 list_for_each_entry(cci_pmu
, &cci_pmu_list
, entry
) {
1516 if (!cpumask_test_and_clear_cpu(cpu
, &cci_pmu
->cpus
))
1518 target
= cpumask_any_but(cpu_online_mask
, cpu
);
1519 if (target
>= nr_cpu_ids
)
1522 * TODO: migrate context once core races on event->ctx have
1525 cpumask_set_cpu(target
, &cci_pmu
->cpus
);
1527 mutex_unlock(&cci_pmu_mutex
);
1531 static struct cci_pmu_model cci_pmu_models
[] = {
1532 #ifdef CONFIG_ARM_CCI400_PMU
1535 .fixed_hw_cntrs
= 1, /* Cycle counter */
1538 .format_attrs
= cci400_pmu_format_attrs
,
1539 .event_attrs
= cci400_r0_pmu_event_attrs
,
1542 CCI400_R0_SLAVE_PORT_MIN_EV
,
1543 CCI400_R0_SLAVE_PORT_MAX_EV
,
1546 CCI400_R0_MASTER_PORT_MIN_EV
,
1547 CCI400_R0_MASTER_PORT_MAX_EV
,
1550 .validate_hw_event
= cci400_validate_hw_event
,
1551 .get_event_idx
= cci400_get_event_idx
,
1554 .name
= "CCI_400_r1",
1555 .fixed_hw_cntrs
= 1, /* Cycle counter */
1558 .format_attrs
= cci400_pmu_format_attrs
,
1559 .event_attrs
= cci400_r1_pmu_event_attrs
,
1562 CCI400_R1_SLAVE_PORT_MIN_EV
,
1563 CCI400_R1_SLAVE_PORT_MAX_EV
,
1566 CCI400_R1_MASTER_PORT_MIN_EV
,
1567 CCI400_R1_MASTER_PORT_MAX_EV
,
1570 .validate_hw_event
= cci400_validate_hw_event
,
1571 .get_event_idx
= cci400_get_event_idx
,
1574 #ifdef CONFIG_ARM_CCI5xx_PMU
1577 .fixed_hw_cntrs
= 0,
1579 .cntr_size
= SZ_64K
,
1580 .format_attrs
= cci5xx_pmu_format_attrs
,
1581 .event_attrs
= cci5xx_pmu_event_attrs
,
1584 CCI5xx_SLAVE_PORT_MIN_EV
,
1585 CCI5xx_SLAVE_PORT_MAX_EV
,
1588 CCI5xx_MASTER_PORT_MIN_EV
,
1589 CCI5xx_MASTER_PORT_MAX_EV
,
1592 CCI5xx_GLOBAL_PORT_MIN_EV
,
1593 CCI5xx_GLOBAL_PORT_MAX_EV
,
1596 .validate_hw_event
= cci500_validate_hw_event
,
1597 .write_counters
= cci5xx_pmu_write_counters
,
1601 .fixed_hw_cntrs
= 0,
1603 .cntr_size
= SZ_64K
,
1604 .format_attrs
= cci5xx_pmu_format_attrs
,
1605 .event_attrs
= cci5xx_pmu_event_attrs
,
1608 CCI5xx_SLAVE_PORT_MIN_EV
,
1609 CCI5xx_SLAVE_PORT_MAX_EV
,
1612 CCI5xx_MASTER_PORT_MIN_EV
,
1613 CCI5xx_MASTER_PORT_MAX_EV
,
1616 CCI5xx_GLOBAL_PORT_MIN_EV
,
1617 CCI5xx_GLOBAL_PORT_MAX_EV
,
1620 .validate_hw_event
= cci550_validate_hw_event
,
1621 .write_counters
= cci5xx_pmu_write_counters
,
1626 static const struct of_device_id arm_cci_pmu_matches
[] = {
1627 #ifdef CONFIG_ARM_CCI400_PMU
1629 .compatible
= "arm,cci-400-pmu",
1633 .compatible
= "arm,cci-400-pmu,r0",
1634 .data
= &cci_pmu_models
[CCI400_R0
],
1637 .compatible
= "arm,cci-400-pmu,r1",
1638 .data
= &cci_pmu_models
[CCI400_R1
],
1641 #ifdef CONFIG_ARM_CCI5xx_PMU
1643 .compatible
= "arm,cci-500-pmu,r0",
1644 .data
= &cci_pmu_models
[CCI500_R0
],
1647 .compatible
= "arm,cci-550-pmu,r0",
1648 .data
= &cci_pmu_models
[CCI550_R0
],
1654 static inline const struct cci_pmu_model
*get_cci_model(struct platform_device
*pdev
)
1656 const struct of_device_id
*match
= of_match_node(arm_cci_pmu_matches
,
1663 dev_warn(&pdev
->dev
, "DEPRECATED compatible property,"
1664 "requires secure access to CCI registers");
1665 return probe_cci_model(pdev
);
1668 static bool is_duplicate_irq(int irq
, int *irqs
, int nr_irqs
)
1672 for (i
= 0; i
< nr_irqs
; i
++)
1679 static struct cci_pmu
*cci_pmu_alloc(struct platform_device
*pdev
)
1681 struct cci_pmu
*cci_pmu
;
1682 const struct cci_pmu_model
*model
;
1685 * All allocations are devm_* hence we don't have to free
1686 * them explicitly on an error, as it would end up in driver
1689 model
= get_cci_model(pdev
);
1691 dev_warn(&pdev
->dev
, "CCI PMU version not supported\n");
1692 return ERR_PTR(-ENODEV
);
1695 cci_pmu
= devm_kzalloc(&pdev
->dev
, sizeof(*cci_pmu
), GFP_KERNEL
);
1697 return ERR_PTR(-ENOMEM
);
1699 cci_pmu
->model
= model
;
1700 cci_pmu
->irqs
= devm_kcalloc(&pdev
->dev
, CCI_PMU_MAX_HW_CNTRS(model
),
1701 sizeof(*cci_pmu
->irqs
), GFP_KERNEL
);
1703 return ERR_PTR(-ENOMEM
);
1704 cci_pmu
->hw_events
.events
= devm_kcalloc(&pdev
->dev
,
1705 CCI_PMU_MAX_HW_CNTRS(model
),
1706 sizeof(*cci_pmu
->hw_events
.events
),
1708 if (!cci_pmu
->hw_events
.events
)
1709 return ERR_PTR(-ENOMEM
);
1710 cci_pmu
->hw_events
.used_mask
= devm_kcalloc(&pdev
->dev
,
1711 BITS_TO_LONGS(CCI_PMU_MAX_HW_CNTRS(model
)),
1712 sizeof(*cci_pmu
->hw_events
.used_mask
),
1714 if (!cci_pmu
->hw_events
.used_mask
)
1715 return ERR_PTR(-ENOMEM
);
1721 static int cci_pmu_probe(struct platform_device
*pdev
)
1723 struct resource
*res
;
1724 struct cci_pmu
*cci_pmu
;
1727 cci_pmu
= cci_pmu_alloc(pdev
);
1728 if (IS_ERR(cci_pmu
))
1729 return PTR_ERR(cci_pmu
);
1731 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1732 cci_pmu
->base
= devm_ioremap_resource(&pdev
->dev
, res
);
1733 if (IS_ERR(cci_pmu
->base
))
1737 * CCI PMU has one overflow interrupt per counter; but some may be tied
1738 * together to a common interrupt.
1740 cci_pmu
->nr_irqs
= 0;
1741 for (i
= 0; i
< CCI_PMU_MAX_HW_CNTRS(cci_pmu
->model
); i
++) {
1742 irq
= platform_get_irq(pdev
, i
);
1746 if (is_duplicate_irq(irq
, cci_pmu
->irqs
, cci_pmu
->nr_irqs
))
1749 cci_pmu
->irqs
[cci_pmu
->nr_irqs
++] = irq
;
1753 * Ensure that the device tree has as many interrupts as the number
1756 if (i
< CCI_PMU_MAX_HW_CNTRS(cci_pmu
->model
)) {
1757 dev_warn(&pdev
->dev
, "In-correct number of interrupts: %d, should be %d\n",
1758 i
, CCI_PMU_MAX_HW_CNTRS(cci_pmu
->model
));
1762 raw_spin_lock_init(&cci_pmu
->hw_events
.pmu_lock
);
1763 mutex_init(&cci_pmu
->reserve_mutex
);
1764 atomic_set(&cci_pmu
->active_events
, 0);
1765 cpumask_set_cpu(smp_processor_id(), &cci_pmu
->cpus
);
1767 ret
= cci_pmu_init(cci_pmu
, pdev
);
1771 mutex_lock(&cci_pmu_mutex
);
1772 list_add(&cci_pmu
->entry
, &cci_pmu_list
);
1773 mutex_unlock(&cci_pmu_mutex
);
1775 pr_info("ARM %s PMU driver probed", cci_pmu
->model
->name
);
1779 static int cci_platform_probe(struct platform_device
*pdev
)
1784 return of_platform_populate(pdev
->dev
.of_node
, NULL
, NULL
, &pdev
->dev
);
1787 static struct platform_driver cci_pmu_driver
= {
1789 .name
= DRIVER_NAME_PMU
,
1790 .of_match_table
= arm_cci_pmu_matches
,
1792 .probe
= cci_pmu_probe
,
1795 static struct platform_driver cci_platform_driver
= {
1797 .name
= DRIVER_NAME
,
1798 .of_match_table
= arm_cci_matches
,
1800 .probe
= cci_platform_probe
,
1803 static int __init
cci_platform_init(void)
1807 ret
= cpuhp_setup_state_nocalls(CPUHP_AP_PERF_ARM_CCI_ONLINE
,
1808 "AP_PERF_ARM_CCI_ONLINE", NULL
,
1809 cci_pmu_offline_cpu
);
1813 ret
= platform_driver_register(&cci_pmu_driver
);
1817 return platform_driver_register(&cci_platform_driver
);
1820 #else /* !CONFIG_ARM_CCI_PMU */
1822 static int __init
cci_platform_init(void)
1827 #endif /* CONFIG_ARM_CCI_PMU */
1829 #ifdef CONFIG_ARM_CCI400_PORT_CTRL
1831 #define CCI_PORT_CTRL 0x0
1832 #define CCI_CTRL_STATUS 0xc
1834 #define CCI_ENABLE_SNOOP_REQ 0x1
1835 #define CCI_ENABLE_DVM_REQ 0x2
1836 #define CCI_ENABLE_REQ (CCI_ENABLE_SNOOP_REQ | CCI_ENABLE_DVM_REQ)
1838 enum cci_ace_port_type
{
1839 ACE_INVALID_PORT
= 0x0,
1844 struct cci_ace_port
{
1847 enum cci_ace_port_type type
;
1848 struct device_node
*dn
;
1851 static struct cci_ace_port
*ports
;
1852 static unsigned int nb_cci_ports
;
1860 * Use the port MSB as valid flag, shift can be made dynamic
1861 * by computing number of bits required for port indexes.
1862 * Code disabling CCI cpu ports runs with D-cache invalidated
1863 * and SCTLR bit clear so data accesses must be kept to a minimum
1864 * to improve performance; for now shift is left static to
1865 * avoid one more data access while disabling the CCI port.
1867 #define PORT_VALID_SHIFT 31
1868 #define PORT_VALID (0x1 << PORT_VALID_SHIFT)
1870 static inline void init_cpu_port(struct cpu_port
*port
, u32 index
, u64 mpidr
)
1872 port
->port
= PORT_VALID
| index
;
1873 port
->mpidr
= mpidr
;
1876 static inline bool cpu_port_is_valid(struct cpu_port
*port
)
1878 return !!(port
->port
& PORT_VALID
);
1881 static inline bool cpu_port_match(struct cpu_port
*port
, u64 mpidr
)
1883 return port
->mpidr
== (mpidr
& MPIDR_HWID_BITMASK
);
1886 static struct cpu_port cpu_port
[NR_CPUS
];
1889 * __cci_ace_get_port - Function to retrieve the port index connected to
1892 * @dn: device node of the device to look-up
1896 * - CCI port index if success
1897 * - -ENODEV if failure
1899 static int __cci_ace_get_port(struct device_node
*dn
, int type
)
1903 struct device_node
*cci_portn
;
1905 cci_portn
= of_parse_phandle(dn
, "cci-control-port", 0);
1906 for (i
= 0; i
< nb_cci_ports
; i
++) {
1907 ace_match
= ports
[i
].type
== type
;
1908 if (ace_match
&& cci_portn
== ports
[i
].dn
)
1914 int cci_ace_get_port(struct device_node
*dn
)
1916 return __cci_ace_get_port(dn
, ACE_LITE_PORT
);
1918 EXPORT_SYMBOL_GPL(cci_ace_get_port
);
1920 static void cci_ace_init_ports(void)
1923 struct device_node
*cpun
;
1926 * Port index look-up speeds up the function disabling ports by CPU,
1927 * since the logical to port index mapping is done once and does
1928 * not change after system boot.
1929 * The stashed index array is initialized for all possible CPUs
1932 for_each_possible_cpu(cpu
) {
1933 /* too early to use cpu->of_node */
1934 cpun
= of_get_cpu_node(cpu
, NULL
);
1936 if (WARN(!cpun
, "Missing cpu device node\n"))
1939 port
= __cci_ace_get_port(cpun
, ACE_PORT
);
1943 init_cpu_port(&cpu_port
[cpu
], port
, cpu_logical_map(cpu
));
1946 for_each_possible_cpu(cpu
) {
1947 WARN(!cpu_port_is_valid(&cpu_port
[cpu
]),
1948 "CPU %u does not have an associated CCI port\n",
1953 * Functions to enable/disable a CCI interconnect slave port
1955 * They are called by low-level power management code to disable slave
1956 * interfaces snoops and DVM broadcast.
1957 * Since they may execute with cache data allocation disabled and
1958 * after the caches have been cleaned and invalidated the functions provide
1959 * no explicit locking since they may run with D-cache disabled, so normal
1960 * cacheable kernel locks based on ldrex/strex may not work.
1961 * Locking has to be provided by BSP implementations to ensure proper
1966 * cci_port_control() - function to control a CCI port
1968 * @port: index of the port to setup
1969 * @enable: if true enables the port, if false disables it
1971 static void notrace
cci_port_control(unsigned int port
, bool enable
)
1973 void __iomem
*base
= ports
[port
].base
;
1975 writel_relaxed(enable
? CCI_ENABLE_REQ
: 0, base
+ CCI_PORT_CTRL
);
1977 * This function is called from power down procedures
1978 * and must not execute any instruction that might
1979 * cause the processor to be put in a quiescent state
1980 * (eg wfi). Hence, cpu_relax() can not be added to this
1981 * read loop to optimize power, since it might hide possibly
1982 * disruptive operations.
1984 while (readl_relaxed(cci_ctrl_base
+ CCI_CTRL_STATUS
) & 0x1)
1989 * cci_disable_port_by_cpu() - function to disable a CCI port by CPU
1992 * @mpidr: mpidr of the CPU whose CCI port should be disabled
1994 * Disabling a CCI port for a CPU implies disabling the CCI port
1995 * controlling that CPU cluster. Code disabling CPU CCI ports
1996 * must make sure that the CPU running the code is the last active CPU
1997 * in the cluster ie all other CPUs are quiescent in a low power state.
2001 * -ENODEV on port look-up failure
2003 int notrace
cci_disable_port_by_cpu(u64 mpidr
)
2007 for (cpu
= 0; cpu
< nr_cpu_ids
; cpu
++) {
2008 is_valid
= cpu_port_is_valid(&cpu_port
[cpu
]);
2009 if (is_valid
&& cpu_port_match(&cpu_port
[cpu
], mpidr
)) {
2010 cci_port_control(cpu_port
[cpu
].port
, false);
2016 EXPORT_SYMBOL_GPL(cci_disable_port_by_cpu
);
2019 * cci_enable_port_for_self() - enable a CCI port for calling CPU
2021 * Enabling a CCI port for the calling CPU implies enabling the CCI
2022 * port controlling that CPU's cluster. Caller must make sure that the
2023 * CPU running the code is the first active CPU in the cluster and all
2024 * other CPUs are quiescent in a low power state or waiting for this CPU
2025 * to complete the CCI initialization.
2027 * Because this is called when the MMU is still off and with no stack,
2028 * the code must be position independent and ideally rely on callee
2029 * clobbered registers only. To achieve this we must code this function
2030 * entirely in assembler.
2032 * On success this returns with the proper CCI port enabled. In case of
2033 * any failure this never returns as the inability to enable the CCI is
2034 * fatal and there is no possible recovery at this stage.
2036 asmlinkage
void __naked
cci_enable_port_for_self(void)
2040 " mrc p15, 0, r0, c0, c0, 5 @ get MPIDR value \n"
2041 " and r0, r0, #"__stringify(MPIDR_HWID_BITMASK
)" \n"
2044 " add r1, r1, r2 @ &cpu_port \n"
2045 " add ip, r1, %[sizeof_cpu_port] \n"
2047 /* Loop over the cpu_port array looking for a matching MPIDR */
2048 "1: ldr r2, [r1, %[offsetof_cpu_port_mpidr_lsb]] \n"
2049 " cmp r2, r0 @ compare MPIDR \n"
2052 /* Found a match, now test port validity */
2053 " ldr r3, [r1, %[offsetof_cpu_port_port]] \n"
2054 " tst r3, #"__stringify(PORT_VALID
)" \n"
2057 /* no match, loop with the next cpu_port entry */
2058 "2: add r1, r1, %[sizeof_struct_cpu_port] \n"
2059 " cmp r1, ip @ done? \n"
2062 /* CCI port not found -- cheaply try to stall this CPU */
2063 "cci_port_not_found: \n"
2066 " b cci_port_not_found \n"
2068 /* Use matched port index to look up the corresponding ports entry */
2069 "3: bic r3, r3, #"__stringify(PORT_VALID
)" \n"
2071 " ldmia r0, {r1, r2} \n"
2072 " sub r1, r1, r0 @ virt - phys \n"
2073 " ldr r0, [r0, r2] @ *(&ports) \n"
2074 " mov r2, %[sizeof_struct_ace_port] \n"
2075 " mla r0, r2, r3, r0 @ &ports[index] \n"
2076 " sub r0, r0, r1 @ virt_to_phys() \n"
2078 /* Enable the CCI port */
2079 " ldr r0, [r0, %[offsetof_port_phys]] \n"
2080 " mov r3, %[cci_enable_req]\n"
2081 " str r3, [r0, #"__stringify(CCI_PORT_CTRL
)"] \n"
2083 /* poll the status reg for completion */
2086 " ldr r0, [r0, r1] @ cci_ctrl_base \n"
2087 "4: ldr r1, [r0, #"__stringify(CCI_CTRL_STATUS
)"] \n"
2088 " tst r1, %[cci_control_status_bits] \n"
2095 "5: .word cpu_port - . \n"
2097 " .word ports - 6b \n"
2098 "7: .word cci_ctrl_phys - . \n"
2100 [sizeof_cpu_port
] "i" (sizeof(cpu_port
)),
2101 [cci_enable_req
] "i" cpu_to_le32(CCI_ENABLE_REQ
),
2102 [cci_control_status_bits
] "i" cpu_to_le32(1),
2104 [offsetof_cpu_port_mpidr_lsb
] "i" (offsetof(struct cpu_port
, mpidr
)),
2106 [offsetof_cpu_port_mpidr_lsb
] "i" (offsetof(struct cpu_port
, mpidr
)+4),
2108 [offsetof_cpu_port_port
] "i" (offsetof(struct cpu_port
, port
)),
2109 [sizeof_struct_cpu_port
] "i" (sizeof(struct cpu_port
)),
2110 [sizeof_struct_ace_port
] "i" (sizeof(struct cci_ace_port
)),
2111 [offsetof_port_phys
] "i" (offsetof(struct cci_ace_port
, phys
)) );
2117 * __cci_control_port_by_device() - function to control a CCI port by device
2120 * @dn: device node pointer of the device whose CCI port should be
2122 * @enable: if true enables the port, if false disables it
2126 * -ENODEV on port look-up failure
2128 int notrace
__cci_control_port_by_device(struct device_node
*dn
, bool enable
)
2135 port
= __cci_ace_get_port(dn
, ACE_LITE_PORT
);
2136 if (WARN_ONCE(port
< 0, "node %s ACE lite port look-up failure\n",
2139 cci_port_control(port
, enable
);
2142 EXPORT_SYMBOL_GPL(__cci_control_port_by_device
);
2145 * __cci_control_port_by_index() - function to control a CCI port by port index
2147 * @port: port index previously retrieved with cci_ace_get_port()
2148 * @enable: if true enables the port, if false disables it
2152 * -ENODEV on port index out of range
2153 * -EPERM if operation carried out on an ACE PORT
2155 int notrace
__cci_control_port_by_index(u32 port
, bool enable
)
2157 if (port
>= nb_cci_ports
|| ports
[port
].type
== ACE_INVALID_PORT
)
2160 * CCI control for ports connected to CPUS is extremely fragile
2161 * and must be made to go through a specific and controlled
2162 * interface (ie cci_disable_port_by_cpu(); control by general purpose
2163 * indexing is therefore disabled for ACE ports.
2165 if (ports
[port
].type
== ACE_PORT
)
2168 cci_port_control(port
, enable
);
2171 EXPORT_SYMBOL_GPL(__cci_control_port_by_index
);
2173 static const struct of_device_id arm_cci_ctrl_if_matches
[] = {
2174 {.compatible
= "arm,cci-400-ctrl-if", },
2178 static int cci_probe_ports(struct device_node
*np
)
2180 struct cci_nb_ports
const *cci_config
;
2181 int ret
, i
, nb_ace
= 0, nb_ace_lite
= 0;
2182 struct device_node
*cp
;
2183 struct resource res
;
2184 const char *match_str
;
2188 cci_config
= of_match_node(arm_cci_matches
, np
)->data
;
2192 nb_cci_ports
= cci_config
->nb_ace
+ cci_config
->nb_ace_lite
;
2194 ports
= kcalloc(nb_cci_ports
, sizeof(*ports
), GFP_KERNEL
);
2198 for_each_child_of_node(np
, cp
) {
2199 if (!of_match_node(arm_cci_ctrl_if_matches
, cp
))
2202 i
= nb_ace
+ nb_ace_lite
;
2204 if (i
>= nb_cci_ports
)
2207 if (of_property_read_string(cp
, "interface-type",
2209 WARN(1, "node %s missing interface-type property\n",
2213 is_ace
= strcmp(match_str
, "ace") == 0;
2214 if (!is_ace
&& strcmp(match_str
, "ace-lite")) {
2215 WARN(1, "node %s containing invalid interface-type property, skipping it\n",
2220 ret
= of_address_to_resource(cp
, 0, &res
);
2222 ports
[i
].base
= ioremap(res
.start
, resource_size(&res
));
2223 ports
[i
].phys
= res
.start
;
2225 if (ret
|| !ports
[i
].base
) {
2226 WARN(1, "unable to ioremap CCI port %d\n", i
);
2231 if (WARN_ON(nb_ace
>= cci_config
->nb_ace
))
2233 ports
[i
].type
= ACE_PORT
;
2236 if (WARN_ON(nb_ace_lite
>= cci_config
->nb_ace_lite
))
2238 ports
[i
].type
= ACE_LITE_PORT
;
2244 /* initialize a stashed array of ACE ports to speed-up look-up */
2245 cci_ace_init_ports();
2248 * Multi-cluster systems may need this data when non-coherent, during
2249 * cluster power-up/power-down. Make sure it reaches main memory.
2251 sync_cache_w(&cci_ctrl_base
);
2252 sync_cache_w(&cci_ctrl_phys
);
2253 sync_cache_w(&ports
);
2254 sync_cache_w(&cpu_port
);
2255 __sync_cache_range_w(ports
, sizeof(*ports
) * nb_cci_ports
);
2256 pr_info("ARM CCI driver probed\n");
2260 #else /* !CONFIG_ARM_CCI400_PORT_CTRL */
2261 static inline int cci_probe_ports(struct device_node
*np
)
2265 #endif /* CONFIG_ARM_CCI400_PORT_CTRL */
2267 static int cci_probe(void)
2270 struct device_node
*np
;
2271 struct resource res
;
2273 np
= of_find_matching_node(NULL
, arm_cci_matches
);
2274 if(!np
|| !of_device_is_available(np
))
2277 ret
= of_address_to_resource(np
, 0, &res
);
2279 cci_ctrl_base
= ioremap(res
.start
, resource_size(&res
));
2280 cci_ctrl_phys
= res
.start
;
2282 if (ret
|| !cci_ctrl_base
) {
2283 WARN(1, "unable to ioremap CCI ctrl\n");
2287 return cci_probe_ports(np
);
2290 static int cci_init_status
= -EAGAIN
;
2291 static DEFINE_MUTEX(cci_probing
);
2293 static int cci_init(void)
2295 if (cci_init_status
!= -EAGAIN
)
2296 return cci_init_status
;
2298 mutex_lock(&cci_probing
);
2299 if (cci_init_status
== -EAGAIN
)
2300 cci_init_status
= cci_probe();
2301 mutex_unlock(&cci_probing
);
2302 return cci_init_status
;
2306 * To sort out early init calls ordering a helper function is provided to
2307 * check if the CCI driver has beed initialized. Function check if the driver
2308 * has been initialized, if not it calls the init function that probes
2309 * the driver and updates the return value.
2311 bool cci_probed(void)
2313 return cci_init() == 0;
2315 EXPORT_SYMBOL_GPL(cci_probed
);
2317 early_initcall(cci_init
);
2318 core_initcall(cci_platform_init
);
2319 MODULE_LICENSE("GPL");
2320 MODULE_DESCRIPTION("ARM CCI support");