2 * Fujitu mb86a20s ISDB-T/ISDB-Tsb Module driver
4 * Copyright (C) 2010-2013 Mauro Carvalho Chehab
5 * Copyright (C) 2009-2010 Douglas Landgraf <dougsland@redhat.com>
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License as
9 * published by the Free Software Foundation version 2.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
17 #include <linux/kernel.h>
18 #include <asm/div64.h>
20 #include "dvb_frontend.h"
25 enum mb86a20s_bandwidth
{
27 MB86A20S_13SEG_PARTIAL
= 1,
32 static u8 mb86a20s_subchannel
[] = {
33 0xb0, 0xc0, 0xd0, 0xe0,
34 0xf0, 0x00, 0x10, 0x20,
37 struct mb86a20s_state
{
38 struct i2c_adapter
*i2c
;
39 const struct mb86a20s_config
*config
;
42 struct dvb_frontend frontend
;
45 enum mb86a20s_bandwidth bw
;
49 u32 estimated_rate
[NUM_LAYERS
];
50 unsigned long get_strength_time
;
60 #define BER_SAMPLING_RATE 1 /* Seconds */
63 * Initialization sequence: Use whatevere default values that PV SBTVD
64 * does on its initialisation, obtained via USB snoop
66 static struct regdata mb86a20s_init1
[] = {
70 { 0x50, 0xd1 }, { 0x51, 0x20 },
73 static struct regdata mb86a20s_init2
[] = {
74 { 0x28, 0x22 }, { 0x29, 0x00 }, { 0x2a, 0x1f }, { 0x2b, 0xf0 },
78 { 0x04, 0x08 }, { 0x05, 0x03 },
79 { 0x04, 0x0e }, { 0x05, 0x00 },
80 { 0x04, 0x0f }, { 0x05, 0x37 },
81 { 0x04, 0x0b }, { 0x05, 0x78 },
82 { 0x04, 0x00 }, { 0x05, 0x00 },
83 { 0x04, 0x01 }, { 0x05, 0x1e },
84 { 0x04, 0x02 }, { 0x05, 0x07 },
85 { 0x04, 0x03 }, { 0x05, 0xd0 },
86 { 0x04, 0x09 }, { 0x05, 0x00 },
87 { 0x04, 0x0a }, { 0x05, 0xff },
88 { 0x04, 0x27 }, { 0x05, 0x00 },
89 { 0x04, 0x28 }, { 0x05, 0x00 },
90 { 0x04, 0x1e }, { 0x05, 0x00 },
91 { 0x04, 0x29 }, { 0x05, 0x64 },
92 { 0x04, 0x32 }, { 0x05, 0x02 },
93 { 0x04, 0x14 }, { 0x05, 0x02 },
94 { 0x04, 0x04 }, { 0x05, 0x00 },
95 { 0x04, 0x05 }, { 0x05, 0x22 },
96 { 0x04, 0x06 }, { 0x05, 0x0e },
97 { 0x04, 0x07 }, { 0x05, 0xd8 },
98 { 0x04, 0x12 }, { 0x05, 0x00 },
99 { 0x04, 0x13 }, { 0x05, 0xff },
100 { 0x04, 0x15 }, { 0x05, 0x4e },
101 { 0x04, 0x16 }, { 0x05, 0x20 },
104 * On this demod, when the bit count reaches the count below,
105 * it collects the bit error count. The bit counters are initialized
106 * to 65535 here. This warrants that all of them will be quickly
107 * calculated when device gets locked. As TMCC is parsed, the values
108 * will be adjusted later in the driver's code.
110 { 0x52, 0x01 }, /* Turn on BER before Viterbi */
111 { 0x50, 0xa7 }, { 0x51, 0x00 },
112 { 0x50, 0xa8 }, { 0x51, 0xff },
113 { 0x50, 0xa9 }, { 0x51, 0xff },
114 { 0x50, 0xaa }, { 0x51, 0x00 },
115 { 0x50, 0xab }, { 0x51, 0xff },
116 { 0x50, 0xac }, { 0x51, 0xff },
117 { 0x50, 0xad }, { 0x51, 0x00 },
118 { 0x50, 0xae }, { 0x51, 0xff },
119 { 0x50, 0xaf }, { 0x51, 0xff },
122 * On this demod, post BER counts blocks. When the count reaches the
123 * value below, it collects the block error count. The block counters
124 * are initialized to 127 here. This warrants that all of them will be
125 * quickly calculated when device gets locked. As TMCC is parsed, the
126 * values will be adjusted later in the driver's code.
128 { 0x5e, 0x07 }, /* Turn on BER after Viterbi */
129 { 0x50, 0xdc }, { 0x51, 0x00 },
130 { 0x50, 0xdd }, { 0x51, 0x7f },
131 { 0x50, 0xde }, { 0x51, 0x00 },
132 { 0x50, 0xdf }, { 0x51, 0x7f },
133 { 0x50, 0xe0 }, { 0x51, 0x00 },
134 { 0x50, 0xe1 }, { 0x51, 0x7f },
137 * On this demod, when the block count reaches the count below,
138 * it collects the block error count. The block counters are initialized
139 * to 127 here. This warrants that all of them will be quickly
140 * calculated when device gets locked. As TMCC is parsed, the values
141 * will be adjusted later in the driver's code.
143 { 0x50, 0xb0 }, { 0x51, 0x07 }, /* Enable PER */
144 { 0x50, 0xb2 }, { 0x51, 0x00 },
145 { 0x50, 0xb3 }, { 0x51, 0x7f },
146 { 0x50, 0xb4 }, { 0x51, 0x00 },
147 { 0x50, 0xb5 }, { 0x51, 0x7f },
148 { 0x50, 0xb6 }, { 0x51, 0x00 },
149 { 0x50, 0xb7 }, { 0x51, 0x7f },
151 { 0x50, 0x50 }, { 0x51, 0x02 }, /* MER manual mode */
152 { 0x50, 0x51 }, { 0x51, 0x04 }, /* MER symbol 4 */
153 { 0x45, 0x04 }, /* CN symbol 4 */
154 { 0x48, 0x04 }, /* CN manual mode */
156 { 0x50, 0xd6 }, { 0x51, 0x1f },
157 { 0x50, 0xd2 }, { 0x51, 0x03 },
158 { 0x50, 0xd7 }, { 0x51, 0xbf },
159 { 0x28, 0x74 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0xff },
160 { 0x28, 0x46 }, { 0x29, 0x00 }, { 0x2a, 0x1a }, { 0x2b, 0x0c },
162 { 0x04, 0x40 }, { 0x05, 0x00 },
163 { 0x28, 0x00 }, { 0x2b, 0x08 },
164 { 0x28, 0x05 }, { 0x2b, 0x00 },
166 { 0x28, 0x06 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x1f },
167 { 0x28, 0x07 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x18 },
168 { 0x28, 0x08 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x12 },
169 { 0x28, 0x09 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x30 },
170 { 0x28, 0x0a }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x37 },
171 { 0x28, 0x0b }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x02 },
172 { 0x28, 0x0c }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x09 },
173 { 0x28, 0x0d }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x06 },
174 { 0x28, 0x0e }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x7b },
175 { 0x28, 0x0f }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x76 },
176 { 0x28, 0x10 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x7d },
177 { 0x28, 0x11 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x08 },
178 { 0x28, 0x12 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x0b },
179 { 0x28, 0x13 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x00 },
180 { 0x28, 0x14 }, { 0x29, 0x00 }, { 0x2a, 0x01 }, { 0x2b, 0xf2 },
181 { 0x28, 0x15 }, { 0x29, 0x00 }, { 0x2a, 0x01 }, { 0x2b, 0xf3 },
182 { 0x28, 0x16 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x05 },
183 { 0x28, 0x17 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x16 },
184 { 0x28, 0x18 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x0f },
185 { 0x28, 0x19 }, { 0x29, 0x00 }, { 0x2a, 0x07 }, { 0x2b, 0xef },
186 { 0x28, 0x1a }, { 0x29, 0x00 }, { 0x2a, 0x07 }, { 0x2b, 0xd8 },
187 { 0x28, 0x1b }, { 0x29, 0x00 }, { 0x2a, 0x07 }, { 0x2b, 0xf1 },
188 { 0x28, 0x1c }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x3d },
189 { 0x28, 0x1d }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x94 },
190 { 0x28, 0x1e }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0xba },
191 { 0x50, 0x1e }, { 0x51, 0x5d },
192 { 0x50, 0x22 }, { 0x51, 0x00 },
193 { 0x50, 0x23 }, { 0x51, 0xc8 },
194 { 0x50, 0x24 }, { 0x51, 0x00 },
195 { 0x50, 0x25 }, { 0x51, 0xf0 },
196 { 0x50, 0x26 }, { 0x51, 0x00 },
197 { 0x50, 0x27 }, { 0x51, 0xc3 },
198 { 0x50, 0x39 }, { 0x51, 0x02 },
201 { 0x28, 0x6a }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x00 },
205 static struct regdata mb86a20s_reset_reception
[] = {
212 static struct regdata mb86a20s_per_ber_reset
[] = {
213 { 0x53, 0x00 }, /* pre BER Counter reset */
216 { 0x5f, 0x00 }, /* post BER Counter reset */
219 { 0x50, 0xb1 }, /* PER Counter reset */
225 * I2C read/write functions and macros
228 static int mb86a20s_i2c_writereg(struct mb86a20s_state
*state
,
229 u8 i2c_addr
, u8 reg
, u8 data
)
231 u8 buf
[] = { reg
, data
};
232 struct i2c_msg msg
= {
233 .addr
= i2c_addr
, .flags
= 0, .buf
= buf
, .len
= 2
237 rc
= i2c_transfer(state
->i2c
, &msg
, 1);
239 dev_err(&state
->i2c
->dev
,
240 "%s: writereg error (rc == %i, reg == 0x%02x, data == 0x%02x)\n",
241 __func__
, rc
, reg
, data
);
248 static int mb86a20s_i2c_writeregdata(struct mb86a20s_state
*state
,
249 u8 i2c_addr
, struct regdata
*rd
, int size
)
253 for (i
= 0; i
< size
; i
++) {
254 rc
= mb86a20s_i2c_writereg(state
, i2c_addr
, rd
[i
].reg
,
262 static int mb86a20s_i2c_readreg(struct mb86a20s_state
*state
,
267 struct i2c_msg msg
[] = {
268 { .addr
= i2c_addr
, .flags
= 0, .buf
= ®
, .len
= 1 },
269 { .addr
= i2c_addr
, .flags
= I2C_M_RD
, .buf
= &val
, .len
= 1 }
272 rc
= i2c_transfer(state
->i2c
, msg
, 2);
275 dev_err(&state
->i2c
->dev
, "%s: reg=0x%x (error=%d)\n",
277 return (rc
< 0) ? rc
: -EIO
;
283 #define mb86a20s_readreg(state, reg) \
284 mb86a20s_i2c_readreg(state, state->config->demod_address, reg)
285 #define mb86a20s_writereg(state, reg, val) \
286 mb86a20s_i2c_writereg(state, state->config->demod_address, reg, val)
287 #define mb86a20s_writeregdata(state, regdata) \
288 mb86a20s_i2c_writeregdata(state, state->config->demod_address, \
289 regdata, ARRAY_SIZE(regdata))
292 * Ancillary internal routines (likely compiled inlined)
294 * The functions below assume that gateway lock has already obtained
297 static int mb86a20s_read_status(struct dvb_frontend
*fe
, enum fe_status
*status
)
299 struct mb86a20s_state
*state
= fe
->demodulator_priv
;
304 val
= mb86a20s_readreg(state
, 0x0a);
310 *status
|= FE_HAS_SIGNAL
;
313 *status
|= FE_HAS_CARRIER
;
316 *status
|= FE_HAS_VITERBI
;
319 *status
|= FE_HAS_SYNC
;
321 if (val
>= 8) /* Maybe 9? */
322 *status
|= FE_HAS_LOCK
;
324 dev_dbg(&state
->i2c
->dev
, "%s: Status = 0x%02x (state = %d)\n",
325 __func__
, *status
, val
);
330 static int mb86a20s_read_signal_strength(struct dvb_frontend
*fe
)
332 struct mb86a20s_state
*state
= fe
->demodulator_priv
;
333 struct dtv_frontend_properties
*c
= &fe
->dtv_property_cache
;
335 unsigned rf_max
, rf_min
, rf
;
337 if (state
->get_strength_time
&&
338 (!time_after(jiffies
, state
->get_strength_time
)))
339 return c
->strength
.stat
[0].uvalue
;
341 /* Reset its value if an error happen */
342 c
->strength
.stat
[0].uvalue
= 0;
344 /* Does a binary search to get RF strength */
348 rf
= (rf_max
+ rf_min
) / 2;
349 rc
= mb86a20s_writereg(state
, 0x04, 0x1f);
352 rc
= mb86a20s_writereg(state
, 0x05, rf
>> 8);
355 rc
= mb86a20s_writereg(state
, 0x04, 0x20);
358 rc
= mb86a20s_writereg(state
, 0x05, rf
);
362 rc
= mb86a20s_readreg(state
, 0x02);
366 rf_min
= (rf_max
+ rf_min
) / 2;
368 rf_max
= (rf_max
+ rf_min
) / 2;
369 if (rf_max
- rf_min
< 4) {
370 rf
= (rf_max
+ rf_min
) / 2;
372 /* Rescale it from 2^12 (4096) to 2^16 */
373 rf
= rf
<< (16 - 12);
377 dev_dbg(&state
->i2c
->dev
,
378 "%s: signal strength = %d (%d < RF=%d < %d)\n",
379 __func__
, rf
, rf_min
, rf
>> 4, rf_max
);
380 c
->strength
.stat
[0].uvalue
= rf
;
381 state
->get_strength_time
= jiffies
+
382 msecs_to_jiffies(1000);
388 static int mb86a20s_get_modulation(struct mb86a20s_state
*state
,
392 static unsigned char reg
[] = {
393 [0] = 0x86, /* Layer A */
394 [1] = 0x8a, /* Layer B */
395 [2] = 0x8e, /* Layer C */
398 if (layer
>= ARRAY_SIZE(reg
))
400 rc
= mb86a20s_writereg(state
, 0x6d, reg
[layer
]);
403 rc
= mb86a20s_readreg(state
, 0x6e);
406 switch ((rc
>> 4) & 0x07) {
420 static int mb86a20s_get_fec(struct mb86a20s_state
*state
,
425 static unsigned char reg
[] = {
426 [0] = 0x87, /* Layer A */
427 [1] = 0x8b, /* Layer B */
428 [2] = 0x8f, /* Layer C */
431 if (layer
>= ARRAY_SIZE(reg
))
433 rc
= mb86a20s_writereg(state
, 0x6d, reg
[layer
]);
436 rc
= mb86a20s_readreg(state
, 0x6e);
439 switch ((rc
>> 4) & 0x07) {
455 static int mb86a20s_get_interleaving(struct mb86a20s_state
*state
,
459 int interleaving
[] = {
463 static unsigned char reg
[] = {
464 [0] = 0x88, /* Layer A */
465 [1] = 0x8c, /* Layer B */
466 [2] = 0x90, /* Layer C */
469 if (layer
>= ARRAY_SIZE(reg
))
471 rc
= mb86a20s_writereg(state
, 0x6d, reg
[layer
]);
474 rc
= mb86a20s_readreg(state
, 0x6e);
478 return interleaving
[(rc
>> 4) & 0x07];
481 static int mb86a20s_get_segment_count(struct mb86a20s_state
*state
,
485 static unsigned char reg
[] = {
486 [0] = 0x89, /* Layer A */
487 [1] = 0x8d, /* Layer B */
488 [2] = 0x91, /* Layer C */
491 dev_dbg(&state
->i2c
->dev
, "%s called.\n", __func__
);
493 if (layer
>= ARRAY_SIZE(reg
))
496 rc
= mb86a20s_writereg(state
, 0x6d, reg
[layer
]);
499 rc
= mb86a20s_readreg(state
, 0x6e);
502 count
= (rc
>> 4) & 0x0f;
504 dev_dbg(&state
->i2c
->dev
, "%s: segments: %d.\n", __func__
, count
);
509 static void mb86a20s_reset_frontend_cache(struct dvb_frontend
*fe
)
511 struct mb86a20s_state
*state
= fe
->demodulator_priv
;
512 struct dtv_frontend_properties
*c
= &fe
->dtv_property_cache
;
514 dev_dbg(&state
->i2c
->dev
, "%s called.\n", __func__
);
516 /* Fixed parameters */
517 c
->delivery_system
= SYS_ISDBT
;
518 c
->bandwidth_hz
= 6000000;
520 /* Initialize values that will be later autodetected */
521 c
->isdbt_layer_enabled
= 0;
522 c
->transmission_mode
= TRANSMISSION_MODE_AUTO
;
523 c
->guard_interval
= GUARD_INTERVAL_AUTO
;
524 c
->isdbt_sb_mode
= 0;
525 c
->isdbt_sb_segment_count
= 0;
529 * Estimates the bit rate using the per-segment bit rate given by
530 * ABNT/NBR 15601 spec (table 4).
532 static u32 isdbt_rate
[3][5][4] = {
534 { 280850, 312060, 330420, 340430 }, /* 1/2 */
535 { 374470, 416080, 440560, 453910 }, /* 2/3 */
536 { 421280, 468090, 495630, 510650 }, /* 3/4 */
537 { 468090, 520100, 550700, 567390 }, /* 5/6 */
538 { 491500, 546110, 578230, 595760 }, /* 7/8 */
540 { 561710, 624130, 660840, 680870 }, /* 1/2 */
541 { 748950, 832170, 881120, 907820 }, /* 2/3 */
542 { 842570, 936190, 991260, 1021300 }, /* 3/4 */
543 { 936190, 1040210, 1101400, 1134780 }, /* 5/6 */
544 { 983000, 1092220, 1156470, 1191520 }, /* 7/8 */
546 { 842570, 936190, 991260, 1021300 }, /* 1/2 */
547 { 1123430, 1248260, 1321680, 1361740 }, /* 2/3 */
548 { 1263860, 1404290, 1486900, 1531950 }, /* 3/4 */
549 { 1404290, 1560320, 1652110, 1702170 }, /* 5/6 */
550 { 1474500, 1638340, 1734710, 1787280 }, /* 7/8 */
554 static void mb86a20s_layer_bitrate(struct dvb_frontend
*fe
, u32 layer
,
555 u32 modulation
, u32 forward_error_correction
,
559 struct mb86a20s_state
*state
= fe
->demodulator_priv
;
564 * If modulation/fec/guard is not detected, the default is
565 * to consider the lowest bit rate, to avoid taking too long time
568 switch (modulation
) {
582 switch (forward_error_correction
) {
602 switch (guard_interval
) {
604 case GUARD_INTERVAL_1_4
:
607 case GUARD_INTERVAL_1_8
:
610 case GUARD_INTERVAL_1_16
:
613 case GUARD_INTERVAL_1_32
:
618 /* Samples BER at BER_SAMPLING_RATE seconds */
619 rate
= isdbt_rate
[mod
][fec
][guard
] * segment
* BER_SAMPLING_RATE
;
621 /* Avoids sampling too quickly or to overflow the register */
624 else if (rate
> (1 << 24) - 1)
625 rate
= (1 << 24) - 1;
627 dev_dbg(&state
->i2c
->dev
,
628 "%s: layer %c bitrate: %d kbps; counter = %d (0x%06x)\n",
629 __func__
, 'A' + layer
,
630 segment
* isdbt_rate
[mod
][fec
][guard
]/1000,
633 state
->estimated_rate
[layer
] = rate
;
636 static int mb86a20s_get_frontend(struct dvb_frontend
*fe
)
638 struct mb86a20s_state
*state
= fe
->demodulator_priv
;
639 struct dtv_frontend_properties
*c
= &fe
->dtv_property_cache
;
642 dev_dbg(&state
->i2c
->dev
, "%s called.\n", __func__
);
644 /* Reset frontend cache to default values */
645 mb86a20s_reset_frontend_cache(fe
);
647 /* Check for partial reception */
648 rc
= mb86a20s_writereg(state
, 0x6d, 0x85);
651 rc
= mb86a20s_readreg(state
, 0x6e);
654 c
->isdbt_partial_reception
= (rc
& 0x10) ? 1 : 0;
656 /* Get per-layer data */
658 for (layer
= 0; layer
< NUM_LAYERS
; layer
++) {
659 dev_dbg(&state
->i2c
->dev
, "%s: getting data for layer %c.\n",
660 __func__
, 'A' + layer
);
662 rc
= mb86a20s_get_segment_count(state
, layer
);
664 goto noperlayer_error
;
665 if (rc
>= 0 && rc
< 14) {
666 c
->layer
[layer
].segment_count
= rc
;
668 c
->layer
[layer
].segment_count
= 0;
669 state
->estimated_rate
[layer
] = 0;
672 c
->isdbt_layer_enabled
|= 1 << layer
;
673 rc
= mb86a20s_get_modulation(state
, layer
);
675 goto noperlayer_error
;
676 dev_dbg(&state
->i2c
->dev
, "%s: modulation %d.\n",
678 c
->layer
[layer
].modulation
= rc
;
679 rc
= mb86a20s_get_fec(state
, layer
);
681 goto noperlayer_error
;
682 dev_dbg(&state
->i2c
->dev
, "%s: FEC %d.\n",
684 c
->layer
[layer
].fec
= rc
;
685 rc
= mb86a20s_get_interleaving(state
, layer
);
687 goto noperlayer_error
;
688 dev_dbg(&state
->i2c
->dev
, "%s: interleaving %d.\n",
690 c
->layer
[layer
].interleaving
= rc
;
691 mb86a20s_layer_bitrate(fe
, layer
, c
->layer
[layer
].modulation
,
694 c
->layer
[layer
].segment_count
);
697 rc
= mb86a20s_writereg(state
, 0x6d, 0x84);
700 if ((rc
& 0x60) == 0x20) {
701 c
->isdbt_sb_mode
= 1;
702 /* At least, one segment should exist */
703 if (!c
->isdbt_sb_segment_count
)
704 c
->isdbt_sb_segment_count
= 1;
707 /* Get transmission mode and guard interval */
708 rc
= mb86a20s_readreg(state
, 0x07);
711 c
->transmission_mode
= TRANSMISSION_MODE_AUTO
;
712 if ((rc
& 0x60) == 0x20) {
713 /* Only modes 2 and 3 are supported */
714 switch ((rc
>> 2) & 0x03) {
716 c
->transmission_mode
= TRANSMISSION_MODE_4K
;
719 c
->transmission_mode
= TRANSMISSION_MODE_8K
;
723 c
->guard_interval
= GUARD_INTERVAL_AUTO
;
725 /* Guard interval 1/32 is not supported */
728 c
->guard_interval
= GUARD_INTERVAL_1_4
;
731 c
->guard_interval
= GUARD_INTERVAL_1_8
;
734 c
->guard_interval
= GUARD_INTERVAL_1_16
;
742 /* per-layer info is incomplete; discard all per-layer */
743 c
->isdbt_layer_enabled
= 0;
748 static int mb86a20s_reset_counters(struct dvb_frontend
*fe
)
750 struct mb86a20s_state
*state
= fe
->demodulator_priv
;
751 struct dtv_frontend_properties
*c
= &fe
->dtv_property_cache
;
754 dev_dbg(&state
->i2c
->dev
, "%s called.\n", __func__
);
756 /* Reset the counters, if the channel changed */
757 if (state
->last_frequency
!= c
->frequency
) {
758 memset(&c
->cnr
, 0, sizeof(c
->cnr
));
759 memset(&c
->pre_bit_error
, 0, sizeof(c
->pre_bit_error
));
760 memset(&c
->pre_bit_count
, 0, sizeof(c
->pre_bit_count
));
761 memset(&c
->post_bit_error
, 0, sizeof(c
->post_bit_error
));
762 memset(&c
->post_bit_count
, 0, sizeof(c
->post_bit_count
));
763 memset(&c
->block_error
, 0, sizeof(c
->block_error
));
764 memset(&c
->block_count
, 0, sizeof(c
->block_count
));
766 state
->last_frequency
= c
->frequency
;
769 /* Clear status for most stats */
771 /* BER/PER counter reset */
772 rc
= mb86a20s_writeregdata(state
, mb86a20s_per_ber_reset
);
776 /* CNR counter reset */
777 rc
= mb86a20s_readreg(state
, 0x45);
781 rc
= mb86a20s_writereg(state
, 0x45, val
| 0x10);
784 rc
= mb86a20s_writereg(state
, 0x45, val
& 0x6f);
788 /* MER counter reset */
789 rc
= mb86a20s_writereg(state
, 0x50, 0x50);
792 rc
= mb86a20s_readreg(state
, 0x51);
796 rc
= mb86a20s_writereg(state
, 0x51, val
| 0x01);
799 rc
= mb86a20s_writereg(state
, 0x51, val
& 0x06);
805 dev_err(&state
->i2c
->dev
,
806 "%s: Can't reset FE statistics (error %d).\n",
812 static int mb86a20s_get_pre_ber(struct dvb_frontend
*fe
,
814 u32
*error
, u32
*count
)
816 struct mb86a20s_state
*state
= fe
->demodulator_priv
;
819 dev_dbg(&state
->i2c
->dev
, "%s called.\n", __func__
);
821 if (layer
>= NUM_LAYERS
)
824 /* Check if the BER measures are already available */
825 rc
= mb86a20s_readreg(state
, 0x54);
829 /* Check if data is available for that layer */
830 if (!(rc
& (1 << layer
))) {
831 dev_dbg(&state
->i2c
->dev
,
832 "%s: preBER for layer %c is not available yet.\n",
833 __func__
, 'A' + layer
);
837 /* Read Bit Error Count */
838 rc
= mb86a20s_readreg(state
, 0x55 + layer
* 3);
842 rc
= mb86a20s_readreg(state
, 0x56 + layer
* 3);
846 rc
= mb86a20s_readreg(state
, 0x57 + layer
* 3);
851 dev_dbg(&state
->i2c
->dev
,
852 "%s: bit error before Viterbi for layer %c: %d.\n",
853 __func__
, 'A' + layer
, *error
);
856 rc
= mb86a20s_writereg(state
, 0x50, 0xa7 + layer
* 3);
859 rc
= mb86a20s_readreg(state
, 0x51);
863 rc
= mb86a20s_writereg(state
, 0x50, 0xa8 + layer
* 3);
866 rc
= mb86a20s_readreg(state
, 0x51);
870 rc
= mb86a20s_writereg(state
, 0x50, 0xa9 + layer
* 3);
873 rc
= mb86a20s_readreg(state
, 0x51);
878 dev_dbg(&state
->i2c
->dev
,
879 "%s: bit count before Viterbi for layer %c: %d.\n",
880 __func__
, 'A' + layer
, *count
);
884 * As we get TMCC data from the frontend, we can better estimate the
885 * BER bit counters, in order to do the BER measure during a longer
886 * time. Use those data, if available, to update the bit count
890 if (state
->estimated_rate
[layer
]
891 && state
->estimated_rate
[layer
] != *count
) {
892 dev_dbg(&state
->i2c
->dev
,
893 "%s: updating layer %c preBER counter to %d.\n",
894 __func__
, 'A' + layer
, state
->estimated_rate
[layer
]);
896 /* Turn off BER before Viterbi */
897 rc
= mb86a20s_writereg(state
, 0x52, 0x00);
899 /* Update counter for this layer */
900 rc
= mb86a20s_writereg(state
, 0x50, 0xa7 + layer
* 3);
903 rc
= mb86a20s_writereg(state
, 0x51,
904 state
->estimated_rate
[layer
] >> 16);
907 rc
= mb86a20s_writereg(state
, 0x50, 0xa8 + layer
* 3);
910 rc
= mb86a20s_writereg(state
, 0x51,
911 state
->estimated_rate
[layer
] >> 8);
914 rc
= mb86a20s_writereg(state
, 0x50, 0xa9 + layer
* 3);
917 rc
= mb86a20s_writereg(state
, 0x51,
918 state
->estimated_rate
[layer
]);
922 /* Turn on BER before Viterbi */
923 rc
= mb86a20s_writereg(state
, 0x52, 0x01);
925 /* Reset all preBER counters */
926 rc
= mb86a20s_writereg(state
, 0x53, 0x00);
929 rc
= mb86a20s_writereg(state
, 0x53, 0x07);
931 /* Reset counter to collect new data */
932 rc
= mb86a20s_readreg(state
, 0x53);
936 rc
= mb86a20s_writereg(state
, 0x53, val
& ~(1 << layer
));
939 rc
= mb86a20s_writereg(state
, 0x53, val
| (1 << layer
));
945 static int mb86a20s_get_post_ber(struct dvb_frontend
*fe
,
947 u32
*error
, u32
*count
)
949 struct mb86a20s_state
*state
= fe
->demodulator_priv
;
950 u32 counter
, collect_rate
;
953 dev_dbg(&state
->i2c
->dev
, "%s called.\n", __func__
);
955 if (layer
>= NUM_LAYERS
)
958 /* Check if the BER measures are already available */
959 rc
= mb86a20s_readreg(state
, 0x60);
963 /* Check if data is available for that layer */
964 if (!(rc
& (1 << layer
))) {
965 dev_dbg(&state
->i2c
->dev
,
966 "%s: post BER for layer %c is not available yet.\n",
967 __func__
, 'A' + layer
);
971 /* Read Bit Error Count */
972 rc
= mb86a20s_readreg(state
, 0x64 + layer
* 3);
976 rc
= mb86a20s_readreg(state
, 0x65 + layer
* 3);
980 rc
= mb86a20s_readreg(state
, 0x66 + layer
* 3);
985 dev_dbg(&state
->i2c
->dev
,
986 "%s: post bit error for layer %c: %d.\n",
987 __func__
, 'A' + layer
, *error
);
990 rc
= mb86a20s_writereg(state
, 0x50, 0xdc + layer
* 2);
993 rc
= mb86a20s_readreg(state
, 0x51);
997 rc
= mb86a20s_writereg(state
, 0x50, 0xdd + layer
* 2);
1000 rc
= mb86a20s_readreg(state
, 0x51);
1004 *count
= counter
* 204 * 8;
1006 dev_dbg(&state
->i2c
->dev
,
1007 "%s: post bit count for layer %c: %d.\n",
1008 __func__
, 'A' + layer
, *count
);
1011 * As we get TMCC data from the frontend, we can better estimate the
1012 * BER bit counters, in order to do the BER measure during a longer
1013 * time. Use those data, if available, to update the bit count
1017 if (!state
->estimated_rate
[layer
])
1018 goto reset_measurement
;
1020 collect_rate
= state
->estimated_rate
[layer
] / 204 / 8;
1021 if (collect_rate
< 32)
1023 if (collect_rate
> 65535)
1024 collect_rate
= 65535;
1025 if (collect_rate
!= counter
) {
1026 dev_dbg(&state
->i2c
->dev
,
1027 "%s: updating postBER counter on layer %c to %d.\n",
1028 __func__
, 'A' + layer
, collect_rate
);
1030 /* Turn off BER after Viterbi */
1031 rc
= mb86a20s_writereg(state
, 0x5e, 0x00);
1033 /* Update counter for this layer */
1034 rc
= mb86a20s_writereg(state
, 0x50, 0xdc + layer
* 2);
1037 rc
= mb86a20s_writereg(state
, 0x51, collect_rate
>> 8);
1040 rc
= mb86a20s_writereg(state
, 0x50, 0xdd + layer
* 2);
1043 rc
= mb86a20s_writereg(state
, 0x51, collect_rate
& 0xff);
1047 /* Turn on BER after Viterbi */
1048 rc
= mb86a20s_writereg(state
, 0x5e, 0x07);
1050 /* Reset all preBER counters */
1051 rc
= mb86a20s_writereg(state
, 0x5f, 0x00);
1054 rc
= mb86a20s_writereg(state
, 0x5f, 0x07);
1060 /* Reset counter to collect new data */
1061 rc
= mb86a20s_readreg(state
, 0x5f);
1065 rc
= mb86a20s_writereg(state
, 0x5f, val
& ~(1 << layer
));
1068 rc
= mb86a20s_writereg(state
, 0x5f, val
| (1 << layer
));
1073 static int mb86a20s_get_blk_error(struct dvb_frontend
*fe
,
1075 u32
*error
, u32
*count
)
1077 struct mb86a20s_state
*state
= fe
->demodulator_priv
;
1080 dev_dbg(&state
->i2c
->dev
, "%s called.\n", __func__
);
1082 if (layer
>= NUM_LAYERS
)
1085 /* Check if the PER measures are already available */
1086 rc
= mb86a20s_writereg(state
, 0x50, 0xb8);
1089 rc
= mb86a20s_readreg(state
, 0x51);
1093 /* Check if data is available for that layer */
1095 if (!(rc
& (1 << layer
))) {
1096 dev_dbg(&state
->i2c
->dev
,
1097 "%s: block counts for layer %c aren't available yet.\n",
1098 __func__
, 'A' + layer
);
1102 /* Read Packet error Count */
1103 rc
= mb86a20s_writereg(state
, 0x50, 0xb9 + layer
* 2);
1106 rc
= mb86a20s_readreg(state
, 0x51);
1110 rc
= mb86a20s_writereg(state
, 0x50, 0xba + layer
* 2);
1113 rc
= mb86a20s_readreg(state
, 0x51);
1117 dev_dbg(&state
->i2c
->dev
, "%s: block error for layer %c: %d.\n",
1118 __func__
, 'A' + layer
, *error
);
1120 /* Read Bit Count */
1121 rc
= mb86a20s_writereg(state
, 0x50, 0xb2 + layer
* 2);
1124 rc
= mb86a20s_readreg(state
, 0x51);
1128 rc
= mb86a20s_writereg(state
, 0x50, 0xb3 + layer
* 2);
1131 rc
= mb86a20s_readreg(state
, 0x51);
1136 dev_dbg(&state
->i2c
->dev
,
1137 "%s: block count for layer %c: %d.\n",
1138 __func__
, 'A' + layer
, *count
);
1141 * As we get TMCC data from the frontend, we can better estimate the
1142 * BER bit counters, in order to do the BER measure during a longer
1143 * time. Use those data, if available, to update the bit count
1147 if (!state
->estimated_rate
[layer
])
1148 goto reset_measurement
;
1150 collect_rate
= state
->estimated_rate
[layer
] / 204 / 8;
1151 if (collect_rate
< 32)
1153 if (collect_rate
> 65535)
1154 collect_rate
= 65535;
1156 if (collect_rate
!= *count
) {
1157 dev_dbg(&state
->i2c
->dev
,
1158 "%s: updating PER counter on layer %c to %d.\n",
1159 __func__
, 'A' + layer
, collect_rate
);
1161 /* Stop PER measurement */
1162 rc
= mb86a20s_writereg(state
, 0x50, 0xb0);
1165 rc
= mb86a20s_writereg(state
, 0x51, 0x00);
1169 /* Update this layer's counter */
1170 rc
= mb86a20s_writereg(state
, 0x50, 0xb2 + layer
* 2);
1173 rc
= mb86a20s_writereg(state
, 0x51, collect_rate
>> 8);
1176 rc
= mb86a20s_writereg(state
, 0x50, 0xb3 + layer
* 2);
1179 rc
= mb86a20s_writereg(state
, 0x51, collect_rate
& 0xff);
1183 /* start PER measurement */
1184 rc
= mb86a20s_writereg(state
, 0x50, 0xb0);
1187 rc
= mb86a20s_writereg(state
, 0x51, 0x07);
1191 /* Reset all counters to collect new data */
1192 rc
= mb86a20s_writereg(state
, 0x50, 0xb1);
1195 rc
= mb86a20s_writereg(state
, 0x51, 0x07);
1198 rc
= mb86a20s_writereg(state
, 0x51, 0x00);
1204 /* Reset counter to collect new data */
1205 rc
= mb86a20s_writereg(state
, 0x50, 0xb1);
1208 rc
= mb86a20s_readreg(state
, 0x51);
1212 rc
= mb86a20s_writereg(state
, 0x51, val
| (1 << layer
));
1215 rc
= mb86a20s_writereg(state
, 0x51, val
& ~(1 << layer
));
1220 struct linear_segments
{
1225 * All tables below return a dB/1000 measurement
1228 static const struct linear_segments cnr_to_db_table
[] = {
1262 static const struct linear_segments cnr_64qam_table
[] = {
1296 static const struct linear_segments cnr_16qam_table
[] = {
1330 static const struct linear_segments cnr_qpsk_table
[] = {
1364 static u32
interpolate_value(u32 value
, const struct linear_segments
*segments
,
1371 if (value
>= segments
[0].x
)
1372 return segments
[0].y
;
1373 if (value
< segments
[len
-1].x
)
1374 return segments
[len
-1].y
;
1376 for (i
= 1; i
< len
- 1; i
++) {
1377 /* If value is identical, no need to interpolate */
1378 if (value
== segments
[i
].x
)
1379 return segments
[i
].y
;
1380 if (value
> segments
[i
].x
)
1384 /* Linear interpolation between the two (x,y) points */
1385 dy
= segments
[i
].y
- segments
[i
- 1].y
;
1386 dx
= segments
[i
- 1].x
- segments
[i
].x
;
1387 tmp64
= value
- segments
[i
].x
;
1390 ret
= segments
[i
].y
- tmp64
;
1395 static int mb86a20s_get_main_CNR(struct dvb_frontend
*fe
)
1397 struct mb86a20s_state
*state
= fe
->demodulator_priv
;
1398 struct dtv_frontend_properties
*c
= &fe
->dtv_property_cache
;
1399 u32 cnr_linear
, cnr
;
1402 /* Check if CNR is available */
1403 rc
= mb86a20s_readreg(state
, 0x45);
1408 dev_dbg(&state
->i2c
->dev
, "%s: CNR is not available yet.\n",
1414 rc
= mb86a20s_readreg(state
, 0x46);
1417 cnr_linear
= rc
<< 8;
1419 rc
= mb86a20s_readreg(state
, 0x46);
1424 cnr
= interpolate_value(cnr_linear
,
1425 cnr_to_db_table
, ARRAY_SIZE(cnr_to_db_table
));
1427 c
->cnr
.stat
[0].scale
= FE_SCALE_DECIBEL
;
1428 c
->cnr
.stat
[0].svalue
= cnr
;
1430 dev_dbg(&state
->i2c
->dev
, "%s: CNR is %d.%03d dB (%d)\n",
1431 __func__
, cnr
/ 1000, cnr
% 1000, cnr_linear
);
1433 /* CNR counter reset */
1434 rc
= mb86a20s_writereg(state
, 0x45, val
| 0x10);
1437 rc
= mb86a20s_writereg(state
, 0x45, val
& 0x6f);
1442 static int mb86a20s_get_blk_error_layer_CNR(struct dvb_frontend
*fe
)
1444 struct mb86a20s_state
*state
= fe
->demodulator_priv
;
1445 struct dtv_frontend_properties
*c
= &fe
->dtv_property_cache
;
1448 const struct linear_segments
*segs
;
1451 dev_dbg(&state
->i2c
->dev
, "%s called.\n", __func__
);
1453 /* Check if the measures are already available */
1454 rc
= mb86a20s_writereg(state
, 0x50, 0x5b);
1457 rc
= mb86a20s_readreg(state
, 0x51);
1461 /* Check if data is available */
1463 dev_dbg(&state
->i2c
->dev
,
1464 "%s: MER measures aren't available yet.\n", __func__
);
1468 /* Read all layers */
1469 for (layer
= 0; layer
< NUM_LAYERS
; layer
++) {
1470 if (!(c
->isdbt_layer_enabled
& (1 << layer
))) {
1471 c
->cnr
.stat
[1 + layer
].scale
= FE_SCALE_NOT_AVAILABLE
;
1475 rc
= mb86a20s_writereg(state
, 0x50, 0x52 + layer
* 3);
1478 rc
= mb86a20s_readreg(state
, 0x51);
1482 rc
= mb86a20s_writereg(state
, 0x50, 0x53 + layer
* 3);
1485 rc
= mb86a20s_readreg(state
, 0x51);
1489 rc
= mb86a20s_writereg(state
, 0x50, 0x54 + layer
* 3);
1492 rc
= mb86a20s_readreg(state
, 0x51);
1497 switch (c
->layer
[layer
].modulation
) {
1500 segs
= cnr_qpsk_table
;
1501 segs_len
= ARRAY_SIZE(cnr_qpsk_table
);
1504 segs
= cnr_16qam_table
;
1505 segs_len
= ARRAY_SIZE(cnr_16qam_table
);
1509 segs
= cnr_64qam_table
;
1510 segs_len
= ARRAY_SIZE(cnr_64qam_table
);
1513 cnr
= interpolate_value(mer
, segs
, segs_len
);
1515 c
->cnr
.stat
[1 + layer
].scale
= FE_SCALE_DECIBEL
;
1516 c
->cnr
.stat
[1 + layer
].svalue
= cnr
;
1518 dev_dbg(&state
->i2c
->dev
,
1519 "%s: CNR for layer %c is %d.%03d dB (MER = %d).\n",
1520 __func__
, 'A' + layer
, cnr
/ 1000, cnr
% 1000, mer
);
1524 /* Start a new MER measurement */
1525 /* MER counter reset */
1526 rc
= mb86a20s_writereg(state
, 0x50, 0x50);
1529 rc
= mb86a20s_readreg(state
, 0x51);
1534 rc
= mb86a20s_writereg(state
, 0x51, val
| 0x01);
1537 rc
= mb86a20s_writereg(state
, 0x51, val
& 0x06);
1544 static void mb86a20s_stats_not_ready(struct dvb_frontend
*fe
)
1546 struct mb86a20s_state
*state
= fe
->demodulator_priv
;
1547 struct dtv_frontend_properties
*c
= &fe
->dtv_property_cache
;
1550 dev_dbg(&state
->i2c
->dev
, "%s called.\n", __func__
);
1552 /* Fill the length of each status counter */
1554 /* Only global stats */
1555 c
->strength
.len
= 1;
1557 /* Per-layer stats - 3 layers + global */
1558 c
->cnr
.len
= NUM_LAYERS
+ 1;
1559 c
->pre_bit_error
.len
= NUM_LAYERS
+ 1;
1560 c
->pre_bit_count
.len
= NUM_LAYERS
+ 1;
1561 c
->post_bit_error
.len
= NUM_LAYERS
+ 1;
1562 c
->post_bit_count
.len
= NUM_LAYERS
+ 1;
1563 c
->block_error
.len
= NUM_LAYERS
+ 1;
1564 c
->block_count
.len
= NUM_LAYERS
+ 1;
1566 /* Signal is always available */
1567 c
->strength
.stat
[0].scale
= FE_SCALE_RELATIVE
;
1568 c
->strength
.stat
[0].uvalue
= 0;
1570 /* Put all of them at FE_SCALE_NOT_AVAILABLE */
1571 for (layer
= 0; layer
< NUM_LAYERS
+ 1; layer
++) {
1572 c
->cnr
.stat
[layer
].scale
= FE_SCALE_NOT_AVAILABLE
;
1573 c
->pre_bit_error
.stat
[layer
].scale
= FE_SCALE_NOT_AVAILABLE
;
1574 c
->pre_bit_count
.stat
[layer
].scale
= FE_SCALE_NOT_AVAILABLE
;
1575 c
->post_bit_error
.stat
[layer
].scale
= FE_SCALE_NOT_AVAILABLE
;
1576 c
->post_bit_count
.stat
[layer
].scale
= FE_SCALE_NOT_AVAILABLE
;
1577 c
->block_error
.stat
[layer
].scale
= FE_SCALE_NOT_AVAILABLE
;
1578 c
->block_count
.stat
[layer
].scale
= FE_SCALE_NOT_AVAILABLE
;
1582 static int mb86a20s_get_stats(struct dvb_frontend
*fe
, int status_nr
)
1584 struct mb86a20s_state
*state
= fe
->demodulator_priv
;
1585 struct dtv_frontend_properties
*c
= &fe
->dtv_property_cache
;
1587 u32 bit_error
= 0, bit_count
= 0;
1588 u32 t_pre_bit_error
= 0, t_pre_bit_count
= 0;
1589 u32 t_post_bit_error
= 0, t_post_bit_count
= 0;
1590 u32 block_error
= 0, block_count
= 0;
1591 u32 t_block_error
= 0, t_block_count
= 0;
1592 int active_layers
= 0, pre_ber_layers
= 0, post_ber_layers
= 0;
1595 dev_dbg(&state
->i2c
->dev
, "%s called.\n", __func__
);
1597 mb86a20s_get_main_CNR(fe
);
1599 /* Get per-layer stats */
1600 mb86a20s_get_blk_error_layer_CNR(fe
);
1603 * At state 7, only CNR is available
1604 * For BER measures, state=9 is required
1605 * FIXME: we may get MER measures with state=8
1610 for (layer
= 0; layer
< NUM_LAYERS
; layer
++) {
1611 if (c
->isdbt_layer_enabled
& (1 << layer
)) {
1612 /* Layer is active and has rc segments */
1615 /* Handle BER before vterbi */
1616 rc
= mb86a20s_get_pre_ber(fe
, layer
,
1617 &bit_error
, &bit_count
);
1619 c
->pre_bit_error
.stat
[1 + layer
].scale
= FE_SCALE_COUNTER
;
1620 c
->pre_bit_error
.stat
[1 + layer
].uvalue
+= bit_error
;
1621 c
->pre_bit_count
.stat
[1 + layer
].scale
= FE_SCALE_COUNTER
;
1622 c
->pre_bit_count
.stat
[1 + layer
].uvalue
+= bit_count
;
1623 } else if (rc
!= -EBUSY
) {
1625 * If an I/O error happened,
1626 * measures are now unavailable
1628 c
->pre_bit_error
.stat
[1 + layer
].scale
= FE_SCALE_NOT_AVAILABLE
;
1629 c
->pre_bit_count
.stat
[1 + layer
].scale
= FE_SCALE_NOT_AVAILABLE
;
1630 dev_err(&state
->i2c
->dev
,
1631 "%s: Can't get BER for layer %c (error %d).\n",
1632 __func__
, 'A' + layer
, rc
);
1634 if (c
->block_error
.stat
[1 + layer
].scale
!= FE_SCALE_NOT_AVAILABLE
)
1637 /* Handle BER post vterbi */
1638 rc
= mb86a20s_get_post_ber(fe
, layer
,
1639 &bit_error
, &bit_count
);
1641 c
->post_bit_error
.stat
[1 + layer
].scale
= FE_SCALE_COUNTER
;
1642 c
->post_bit_error
.stat
[1 + layer
].uvalue
+= bit_error
;
1643 c
->post_bit_count
.stat
[1 + layer
].scale
= FE_SCALE_COUNTER
;
1644 c
->post_bit_count
.stat
[1 + layer
].uvalue
+= bit_count
;
1645 } else if (rc
!= -EBUSY
) {
1647 * If an I/O error happened,
1648 * measures are now unavailable
1650 c
->post_bit_error
.stat
[1 + layer
].scale
= FE_SCALE_NOT_AVAILABLE
;
1651 c
->post_bit_count
.stat
[1 + layer
].scale
= FE_SCALE_NOT_AVAILABLE
;
1652 dev_err(&state
->i2c
->dev
,
1653 "%s: Can't get BER for layer %c (error %d).\n",
1654 __func__
, 'A' + layer
, rc
);
1656 if (c
->block_error
.stat
[1 + layer
].scale
!= FE_SCALE_NOT_AVAILABLE
)
1659 /* Handle Block errors for PER/UCB reports */
1660 rc
= mb86a20s_get_blk_error(fe
, layer
,
1664 c
->block_error
.stat
[1 + layer
].scale
= FE_SCALE_COUNTER
;
1665 c
->block_error
.stat
[1 + layer
].uvalue
+= block_error
;
1666 c
->block_count
.stat
[1 + layer
].scale
= FE_SCALE_COUNTER
;
1667 c
->block_count
.stat
[1 + layer
].uvalue
+= block_count
;
1668 } else if (rc
!= -EBUSY
) {
1670 * If an I/O error happened,
1671 * measures are now unavailable
1673 c
->block_error
.stat
[1 + layer
].scale
= FE_SCALE_NOT_AVAILABLE
;
1674 c
->block_count
.stat
[1 + layer
].scale
= FE_SCALE_NOT_AVAILABLE
;
1675 dev_err(&state
->i2c
->dev
,
1676 "%s: Can't get PER for layer %c (error %d).\n",
1677 __func__
, 'A' + layer
, rc
);
1680 if (c
->block_error
.stat
[1 + layer
].scale
!= FE_SCALE_NOT_AVAILABLE
)
1683 /* Update total preBER */
1684 t_pre_bit_error
+= c
->pre_bit_error
.stat
[1 + layer
].uvalue
;
1685 t_pre_bit_count
+= c
->pre_bit_count
.stat
[1 + layer
].uvalue
;
1687 /* Update total postBER */
1688 t_post_bit_error
+= c
->post_bit_error
.stat
[1 + layer
].uvalue
;
1689 t_post_bit_count
+= c
->post_bit_count
.stat
[1 + layer
].uvalue
;
1691 /* Update total PER */
1692 t_block_error
+= c
->block_error
.stat
[1 + layer
].uvalue
;
1693 t_block_count
+= c
->block_count
.stat
[1 + layer
].uvalue
;
1698 * Start showing global count if at least one error count is
1701 if (pre_ber_layers
) {
1703 * At least one per-layer BER measure was read. We can now
1704 * calculate the total BER
1706 * Total Bit Error/Count is calculated as the sum of the
1707 * bit errors on all active layers.
1709 c
->pre_bit_error
.stat
[0].scale
= FE_SCALE_COUNTER
;
1710 c
->pre_bit_error
.stat
[0].uvalue
= t_pre_bit_error
;
1711 c
->pre_bit_count
.stat
[0].scale
= FE_SCALE_COUNTER
;
1712 c
->pre_bit_count
.stat
[0].uvalue
= t_pre_bit_count
;
1714 c
->pre_bit_error
.stat
[0].scale
= FE_SCALE_NOT_AVAILABLE
;
1715 c
->pre_bit_count
.stat
[0].scale
= FE_SCALE_COUNTER
;
1719 * Start showing global count if at least one error count is
1722 if (post_ber_layers
) {
1724 * At least one per-layer BER measure was read. We can now
1725 * calculate the total BER
1727 * Total Bit Error/Count is calculated as the sum of the
1728 * bit errors on all active layers.
1730 c
->post_bit_error
.stat
[0].scale
= FE_SCALE_COUNTER
;
1731 c
->post_bit_error
.stat
[0].uvalue
= t_post_bit_error
;
1732 c
->post_bit_count
.stat
[0].scale
= FE_SCALE_COUNTER
;
1733 c
->post_bit_count
.stat
[0].uvalue
= t_post_bit_count
;
1735 c
->post_bit_error
.stat
[0].scale
= FE_SCALE_NOT_AVAILABLE
;
1736 c
->post_bit_count
.stat
[0].scale
= FE_SCALE_COUNTER
;
1741 * At least one per-layer UCB measure was read. We can now
1742 * calculate the total UCB
1744 * Total block Error/Count is calculated as the sum of the
1745 * block errors on all active layers.
1747 c
->block_error
.stat
[0].scale
= FE_SCALE_COUNTER
;
1748 c
->block_error
.stat
[0].uvalue
= t_block_error
;
1749 c
->block_count
.stat
[0].scale
= FE_SCALE_COUNTER
;
1750 c
->block_count
.stat
[0].uvalue
= t_block_count
;
1752 c
->block_error
.stat
[0].scale
= FE_SCALE_NOT_AVAILABLE
;
1753 c
->block_count
.stat
[0].scale
= FE_SCALE_COUNTER
;
1760 * The functions below are called via DVB callbacks, so they need to
1761 * properly use the I2C gate control
1764 static int mb86a20s_initfe(struct dvb_frontend
*fe
)
1766 struct mb86a20s_state
*state
= fe
->demodulator_priv
;
1770 u8 regD5
= 1, reg71
, reg09
= 0x3a;
1772 dev_dbg(&state
->i2c
->dev
, "%s called.\n", __func__
);
1774 if (fe
->ops
.i2c_gate_ctrl
)
1775 fe
->ops
.i2c_gate_ctrl(fe
, 0);
1777 /* Initialize the frontend */
1778 rc
= mb86a20s_writeregdata(state
, mb86a20s_init1
);
1782 if (!state
->inversion
)
1784 rc
= mb86a20s_writereg(state
, 0x09, reg09
);
1791 rc
= mb86a20s_writereg(state
, 0x39, reg71
);
1794 rc
= mb86a20s_writereg(state
, 0x71, state
->bw
);
1797 if (state
->subchannel
) {
1798 rc
= mb86a20s_writereg(state
, 0x44, state
->subchannel
);
1803 fclk
= state
->config
->fclk
;
1807 /* Adjust IF frequency to match tuner */
1808 if (fe
->ops
.tuner_ops
.get_if_frequency
)
1809 fe
->ops
.tuner_ops
.get_if_frequency(fe
, &state
->if_freq
);
1811 if (!state
->if_freq
)
1812 state
->if_freq
= 3300000;
1814 pll
= (((u64
)1) << 34) * state
->if_freq
;
1815 do_div(pll
, 63 * fclk
);
1816 pll
= (1 << 25) - pll
;
1817 rc
= mb86a20s_writereg(state
, 0x28, 0x2a);
1820 rc
= mb86a20s_writereg(state
, 0x29, (pll
>> 16) & 0xff);
1823 rc
= mb86a20s_writereg(state
, 0x2a, (pll
>> 8) & 0xff);
1826 rc
= mb86a20s_writereg(state
, 0x2b, pll
& 0xff);
1829 dev_dbg(&state
->i2c
->dev
, "%s: fclk=%d, IF=%d, clock reg=0x%06llx\n",
1830 __func__
, fclk
, state
->if_freq
, (long long)pll
);
1832 /* pll = freq[Hz] * 2^24/10^6 / 16.285714286 */
1833 pll
= state
->if_freq
* 1677721600L;
1834 do_div(pll
, 1628571429L);
1835 rc
= mb86a20s_writereg(state
, 0x28, 0x20);
1838 rc
= mb86a20s_writereg(state
, 0x29, (pll
>> 16) & 0xff);
1841 rc
= mb86a20s_writereg(state
, 0x2a, (pll
>> 8) & 0xff);
1844 rc
= mb86a20s_writereg(state
, 0x2b, pll
& 0xff);
1847 dev_dbg(&state
->i2c
->dev
, "%s: IF=%d, IF reg=0x%06llx\n",
1848 __func__
, state
->if_freq
, (long long)pll
);
1850 if (!state
->config
->is_serial
)
1853 rc
= mb86a20s_writereg(state
, 0x50, 0xd5);
1856 rc
= mb86a20s_writereg(state
, 0x51, regD5
);
1860 rc
= mb86a20s_writeregdata(state
, mb86a20s_init2
);
1866 if (fe
->ops
.i2c_gate_ctrl
)
1867 fe
->ops
.i2c_gate_ctrl(fe
, 1);
1870 state
->need_init
= true;
1871 dev_info(&state
->i2c
->dev
,
1872 "mb86a20s: Init failed. Will try again later\n");
1874 state
->need_init
= false;
1875 dev_dbg(&state
->i2c
->dev
, "Initialization succeeded.\n");
1880 static int mb86a20s_set_frontend(struct dvb_frontend
*fe
)
1882 struct mb86a20s_state
*state
= fe
->demodulator_priv
;
1883 struct dtv_frontend_properties
*c
= &fe
->dtv_property_cache
;
1885 dev_dbg(&state
->i2c
->dev
, "%s called.\n", __func__
);
1887 if (!c
->isdbt_layer_enabled
)
1888 c
->isdbt_layer_enabled
= 7;
1890 if (c
->isdbt_layer_enabled
== 1)
1891 state
->bw
= MB86A20S_1SEG
;
1892 else if (c
->isdbt_partial_reception
)
1893 state
->bw
= MB86A20S_13SEG_PARTIAL
;
1895 state
->bw
= MB86A20S_13SEG
;
1897 if (c
->inversion
== INVERSION_ON
)
1898 state
->inversion
= true;
1900 state
->inversion
= false;
1902 if (!c
->isdbt_sb_mode
) {
1903 state
->subchannel
= 0;
1905 if (c
->isdbt_sb_subchannel
>= ARRAY_SIZE(mb86a20s_subchannel
))
1906 c
->isdbt_sb_subchannel
= 0;
1908 state
->subchannel
= mb86a20s_subchannel
[c
->isdbt_sb_subchannel
];
1912 * Gate should already be opened, but it doesn't hurt to
1915 if (fe
->ops
.i2c_gate_ctrl
)
1916 fe
->ops
.i2c_gate_ctrl(fe
, 1);
1917 fe
->ops
.tuner_ops
.set_params(fe
);
1919 if (fe
->ops
.tuner_ops
.get_if_frequency
)
1920 fe
->ops
.tuner_ops
.get_if_frequency(fe
, &if_freq
);
1923 * Make it more reliable: if, for some reason, the initial
1924 * device initialization doesn't happen, initialize it when
1925 * a SBTVD parameters are adjusted.
1927 * Unfortunately, due to a hard to track bug at tda829x/tda18271,
1928 * the agc callback logic is not called during DVB attach time,
1929 * causing mb86a20s to not be initialized with Kworld SBTVD.
1930 * So, this hack is needed, in order to make Kworld SBTVD to work.
1932 * It is also needed to change the IF after the initial init.
1934 * HACK: Always init the frontend when set_frontend is called:
1935 * it was noticed that, on some devices, it fails to lock on a
1936 * different channel. So, it is better to reset everything, even
1937 * wasting some time, than to loose channel lock.
1939 mb86a20s_initfe(fe
);
1941 if (fe
->ops
.i2c_gate_ctrl
)
1942 fe
->ops
.i2c_gate_ctrl(fe
, 0);
1944 rc
= mb86a20s_writeregdata(state
, mb86a20s_reset_reception
);
1945 mb86a20s_reset_counters(fe
);
1946 mb86a20s_stats_not_ready(fe
);
1948 if (fe
->ops
.i2c_gate_ctrl
)
1949 fe
->ops
.i2c_gate_ctrl(fe
, 1);
1954 static int mb86a20s_read_status_and_stats(struct dvb_frontend
*fe
,
1955 enum fe_status
*status
)
1957 struct mb86a20s_state
*state
= fe
->demodulator_priv
;
1960 dev_dbg(&state
->i2c
->dev
, "%s called.\n", __func__
);
1962 if (fe
->ops
.i2c_gate_ctrl
)
1963 fe
->ops
.i2c_gate_ctrl(fe
, 0);
1966 status_nr
= mb86a20s_read_status(fe
, status
);
1967 if (status_nr
< 7) {
1968 mb86a20s_stats_not_ready(fe
);
1969 mb86a20s_reset_frontend_cache(fe
);
1971 if (status_nr
< 0) {
1972 dev_err(&state
->i2c
->dev
,
1973 "%s: Can't read frontend lock status\n", __func__
);
1977 /* Get signal strength */
1978 rc
= mb86a20s_read_signal_strength(fe
);
1980 dev_err(&state
->i2c
->dev
,
1981 "%s: Can't reset VBER registers.\n", __func__
);
1982 mb86a20s_stats_not_ready(fe
);
1983 mb86a20s_reset_frontend_cache(fe
);
1985 rc
= 0; /* Status is OK */
1989 if (status_nr
>= 7) {
1991 rc
= mb86a20s_get_frontend(fe
);
1993 dev_err(&state
->i2c
->dev
,
1994 "%s: Can't get FE TMCC data.\n", __func__
);
1995 rc
= 0; /* Status is OK */
1999 /* Get statistics */
2000 rc
= mb86a20s_get_stats(fe
, status_nr
);
2001 if (rc
< 0 && rc
!= -EBUSY
) {
2002 dev_err(&state
->i2c
->dev
,
2003 "%s: Can't get FE statistics.\n", __func__
);
2007 rc
= 0; /* Don't return EBUSY to userspace */
2012 mb86a20s_stats_not_ready(fe
);
2015 if (fe
->ops
.i2c_gate_ctrl
)
2016 fe
->ops
.i2c_gate_ctrl(fe
, 1);
2021 static int mb86a20s_read_signal_strength_from_cache(struct dvb_frontend
*fe
,
2024 struct dtv_frontend_properties
*c
= &fe
->dtv_property_cache
;
2027 *strength
= c
->strength
.stat
[0].uvalue
;
2032 static int mb86a20s_tune(struct dvb_frontend
*fe
,
2034 unsigned int mode_flags
,
2035 unsigned int *delay
,
2036 enum fe_status
*status
)
2038 struct mb86a20s_state
*state
= fe
->demodulator_priv
;
2041 dev_dbg(&state
->i2c
->dev
, "%s called.\n", __func__
);
2044 rc
= mb86a20s_set_frontend(fe
);
2046 if (!(mode_flags
& FE_TUNE_MODE_ONESHOT
))
2047 mb86a20s_read_status_and_stats(fe
, status
);
2052 static void mb86a20s_release(struct dvb_frontend
*fe
)
2054 struct mb86a20s_state
*state
= fe
->demodulator_priv
;
2056 dev_dbg(&state
->i2c
->dev
, "%s called.\n", __func__
);
2061 static struct dvb_frontend_ops mb86a20s_ops
;
2063 struct dvb_frontend
*mb86a20s_attach(const struct mb86a20s_config
*config
,
2064 struct i2c_adapter
*i2c
)
2066 struct mb86a20s_state
*state
;
2069 dev_dbg(&i2c
->dev
, "%s called.\n", __func__
);
2071 /* allocate memory for the internal state */
2072 state
= kzalloc(sizeof(struct mb86a20s_state
), GFP_KERNEL
);
2073 if (state
== NULL
) {
2075 "%s: unable to allocate memory for state\n", __func__
);
2079 /* setup the state */
2080 state
->config
= config
;
2083 /* create dvb_frontend */
2084 memcpy(&state
->frontend
.ops
, &mb86a20s_ops
,
2085 sizeof(struct dvb_frontend_ops
));
2086 state
->frontend
.demodulator_priv
= state
;
2088 /* Check if it is a mb86a20s frontend */
2089 rev
= mb86a20s_readreg(state
, 0);
2093 "Detected a Fujitsu mb86a20s frontend\n");
2096 "Frontend revision %d is unknown - aborting.\n",
2101 return &state
->frontend
;
2107 EXPORT_SYMBOL(mb86a20s_attach
);
2109 static struct dvb_frontend_ops mb86a20s_ops
= {
2110 .delsys
= { SYS_ISDBT
},
2111 /* Use dib8000 values per default */
2113 .name
= "Fujitsu mb86A20s",
2114 .caps
= FE_CAN_RECOVER
|
2115 FE_CAN_FEC_1_2
| FE_CAN_FEC_2_3
| FE_CAN_FEC_3_4
|
2116 FE_CAN_FEC_5_6
| FE_CAN_FEC_7_8
| FE_CAN_FEC_AUTO
|
2117 FE_CAN_QPSK
| FE_CAN_QAM_16
| FE_CAN_QAM_64
|
2118 FE_CAN_TRANSMISSION_MODE_AUTO
| FE_CAN_QAM_AUTO
|
2119 FE_CAN_GUARD_INTERVAL_AUTO
| FE_CAN_HIERARCHY_AUTO
,
2120 /* Actually, those values depend on the used tuner */
2121 .frequency_min
= 45000000,
2122 .frequency_max
= 864000000,
2123 .frequency_stepsize
= 62500,
2126 .release
= mb86a20s_release
,
2128 .init
= mb86a20s_initfe
,
2129 .set_frontend
= mb86a20s_set_frontend
,
2130 .read_status
= mb86a20s_read_status_and_stats
,
2131 .read_signal_strength
= mb86a20s_read_signal_strength_from_cache
,
2132 .tune
= mb86a20s_tune
,
2135 MODULE_DESCRIPTION("DVB Frontend module for Fujitsu mb86A20s hardware");
2136 MODULE_AUTHOR("Mauro Carvalho Chehab");
2137 MODULE_LICENSE("GPL");