2 * adv7604 - Analog Devices ADV7604 video decoder driver
4 * Copyright 2012 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
6 * This program is free software; you may redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; version 2 of the License.
10 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
11 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
12 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
13 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
14 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
15 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
16 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * References (c = chapter, p = page):
23 * REF_01 - Analog devices, ADV7604, Register Settings Recommendations,
24 * Revision 2.5, June 2010
25 * REF_02 - Analog devices, Register map documentation, Documentation of
26 * the register maps, Software manual, Rev. F, June 2010
27 * REF_03 - Analog devices, ADV7604, Hardware Manual, Rev. F, August 2010
30 #include <linux/delay.h>
31 #include <linux/gpio/consumer.h>
32 #include <linux/hdmi.h>
33 #include <linux/i2c.h>
34 #include <linux/kernel.h>
35 #include <linux/module.h>
36 #include <linux/slab.h>
37 #include <linux/v4l2-dv-timings.h>
38 #include <linux/videodev2.h>
39 #include <linux/workqueue.h>
40 #include <linux/regmap.h>
42 #include <media/i2c/adv7604.h>
43 #include <media/cec.h>
44 #include <media/v4l2-ctrls.h>
45 #include <media/v4l2-device.h>
46 #include <media/v4l2-event.h>
47 #include <media/v4l2-dv-timings.h>
48 #include <media/v4l2-of.h>
51 module_param(debug
, int, 0644);
52 MODULE_PARM_DESC(debug
, "debug level (0-2)");
54 MODULE_DESCRIPTION("Analog Devices ADV7604 video decoder driver");
55 MODULE_AUTHOR("Hans Verkuil <hans.verkuil@cisco.com>");
56 MODULE_AUTHOR("Mats Randgaard <mats.randgaard@cisco.com>");
57 MODULE_LICENSE("GPL");
59 /* ADV7604 system clock frequency */
60 #define ADV76XX_FSC (28636360)
62 #define ADV76XX_RGB_OUT (1 << 1)
64 #define ADV76XX_OP_FORMAT_SEL_8BIT (0 << 0)
65 #define ADV7604_OP_FORMAT_SEL_10BIT (1 << 0)
66 #define ADV76XX_OP_FORMAT_SEL_12BIT (2 << 0)
68 #define ADV76XX_OP_MODE_SEL_SDR_422 (0 << 5)
69 #define ADV7604_OP_MODE_SEL_DDR_422 (1 << 5)
70 #define ADV76XX_OP_MODE_SEL_SDR_444 (2 << 5)
71 #define ADV7604_OP_MODE_SEL_DDR_444 (3 << 5)
72 #define ADV76XX_OP_MODE_SEL_SDR_422_2X (4 << 5)
73 #define ADV7604_OP_MODE_SEL_ADI_CM (5 << 5)
75 #define ADV76XX_OP_CH_SEL_GBR (0 << 5)
76 #define ADV76XX_OP_CH_SEL_GRB (1 << 5)
77 #define ADV76XX_OP_CH_SEL_BGR (2 << 5)
78 #define ADV76XX_OP_CH_SEL_RGB (3 << 5)
79 #define ADV76XX_OP_CH_SEL_BRG (4 << 5)
80 #define ADV76XX_OP_CH_SEL_RBG (5 << 5)
82 #define ADV76XX_OP_SWAP_CB_CR (1 << 0)
84 #define ADV76XX_MAX_ADDRS (3)
92 struct adv76xx_reg_seq
{
97 struct adv76xx_format_info
{
105 struct adv76xx_cfg_read_infoframe
{
112 struct adv76xx_chip_info
{
113 enum adv76xx_type type
;
116 unsigned int max_port
;
117 unsigned int num_dv_ports
;
119 unsigned int edid_enable_reg
;
120 unsigned int edid_status_reg
;
121 unsigned int lcf_reg
;
123 unsigned int cable_det_mask
;
124 unsigned int tdms_lock_mask
;
125 unsigned int fmt_change_digital_mask
;
128 const struct adv76xx_format_info
*formats
;
129 unsigned int nformats
;
131 void (*set_termination
)(struct v4l2_subdev
*sd
, bool enable
);
132 void (*setup_irqs
)(struct v4l2_subdev
*sd
);
133 unsigned int (*read_hdmi_pixelclock
)(struct v4l2_subdev
*sd
);
134 unsigned int (*read_cable_det
)(struct v4l2_subdev
*sd
);
136 /* 0 = AFE, 1 = HDMI */
137 const struct adv76xx_reg_seq
*recommended_settings
[2];
138 unsigned int num_recommended_settings
[2];
140 unsigned long page_mask
;
142 /* Masks for timings */
143 unsigned int linewidth_mask
;
144 unsigned int field0_height_mask
;
145 unsigned int field1_height_mask
;
146 unsigned int hfrontporch_mask
;
147 unsigned int hsync_mask
;
148 unsigned int hbackporch_mask
;
149 unsigned int field0_vfrontporch_mask
;
150 unsigned int field1_vfrontporch_mask
;
151 unsigned int field0_vsync_mask
;
152 unsigned int field1_vsync_mask
;
153 unsigned int field0_vbackporch_mask
;
154 unsigned int field1_vbackporch_mask
;
158 **********************************************************************
160 * Arrays with configuration parameters for the ADV7604
162 **********************************************************************
165 struct adv76xx_state
{
166 const struct adv76xx_chip_info
*info
;
167 struct adv76xx_platform_data pdata
;
169 struct gpio_desc
*hpd_gpio
[4];
170 struct gpio_desc
*reset_gpio
;
172 struct v4l2_subdev sd
;
173 struct media_pad pads
[ADV76XX_PAD_MAX
];
174 unsigned int source_pad
;
176 struct v4l2_ctrl_handler hdl
;
178 enum adv76xx_pad selected_input
;
180 struct v4l2_dv_timings timings
;
181 const struct adv76xx_format_info
*format
;
189 struct v4l2_fract aspect_ratio
;
190 u32 rgb_quantization_range
;
191 struct delayed_work delayed_work_enable_hotplug
;
192 bool restart_stdi_once
;
195 struct cec_adapter
*cec_adap
;
196 u8 cec_addr
[ADV76XX_MAX_ADDRS
];
198 bool cec_enabled_adap
;
201 struct i2c_client
*i2c_clients
[ADV76XX_PAGE_MAX
];
204 struct regmap
*regmap
[ADV76XX_PAGE_MAX
];
207 struct v4l2_ctrl
*detect_tx_5v_ctrl
;
208 struct v4l2_ctrl
*analog_sampling_phase_ctrl
;
209 struct v4l2_ctrl
*free_run_color_manual_ctrl
;
210 struct v4l2_ctrl
*free_run_color_ctrl
;
211 struct v4l2_ctrl
*rgb_quantization_range_ctrl
;
214 static bool adv76xx_has_afe(struct adv76xx_state
*state
)
216 return state
->info
->has_afe
;
219 /* Unsupported timings. This device cannot support 720p30. */
220 static const struct v4l2_dv_timings adv76xx_timings_exceptions
[] = {
221 V4L2_DV_BT_CEA_1280X720P30
,
225 static bool adv76xx_check_dv_timings(const struct v4l2_dv_timings
*t
, void *hdl
)
229 for (i
= 0; adv76xx_timings_exceptions
[i
].bt
.width
; i
++)
230 if (v4l2_match_dv_timings(t
, adv76xx_timings_exceptions
+ i
, 0, false))
235 struct adv76xx_video_standards
{
236 struct v4l2_dv_timings timings
;
241 /* sorted by number of lines */
242 static const struct adv76xx_video_standards adv7604_prim_mode_comp
[] = {
243 /* { V4L2_DV_BT_CEA_720X480P59_94, 0x0a, 0x00 }, TODO flickering */
244 { V4L2_DV_BT_CEA_720X576P50
, 0x0b, 0x00 },
245 { V4L2_DV_BT_CEA_1280X720P50
, 0x19, 0x01 },
246 { V4L2_DV_BT_CEA_1280X720P60
, 0x19, 0x00 },
247 { V4L2_DV_BT_CEA_1920X1080P24
, 0x1e, 0x04 },
248 { V4L2_DV_BT_CEA_1920X1080P25
, 0x1e, 0x03 },
249 { V4L2_DV_BT_CEA_1920X1080P30
, 0x1e, 0x02 },
250 { V4L2_DV_BT_CEA_1920X1080P50
, 0x1e, 0x01 },
251 { V4L2_DV_BT_CEA_1920X1080P60
, 0x1e, 0x00 },
252 /* TODO add 1920x1080P60_RB (CVT timing) */
256 /* sorted by number of lines */
257 static const struct adv76xx_video_standards adv7604_prim_mode_gr
[] = {
258 { V4L2_DV_BT_DMT_640X480P60
, 0x08, 0x00 },
259 { V4L2_DV_BT_DMT_640X480P72
, 0x09, 0x00 },
260 { V4L2_DV_BT_DMT_640X480P75
, 0x0a, 0x00 },
261 { V4L2_DV_BT_DMT_640X480P85
, 0x0b, 0x00 },
262 { V4L2_DV_BT_DMT_800X600P56
, 0x00, 0x00 },
263 { V4L2_DV_BT_DMT_800X600P60
, 0x01, 0x00 },
264 { V4L2_DV_BT_DMT_800X600P72
, 0x02, 0x00 },
265 { V4L2_DV_BT_DMT_800X600P75
, 0x03, 0x00 },
266 { V4L2_DV_BT_DMT_800X600P85
, 0x04, 0x00 },
267 { V4L2_DV_BT_DMT_1024X768P60
, 0x0c, 0x00 },
268 { V4L2_DV_BT_DMT_1024X768P70
, 0x0d, 0x00 },
269 { V4L2_DV_BT_DMT_1024X768P75
, 0x0e, 0x00 },
270 { V4L2_DV_BT_DMT_1024X768P85
, 0x0f, 0x00 },
271 { V4L2_DV_BT_DMT_1280X1024P60
, 0x05, 0x00 },
272 { V4L2_DV_BT_DMT_1280X1024P75
, 0x06, 0x00 },
273 { V4L2_DV_BT_DMT_1360X768P60
, 0x12, 0x00 },
274 { V4L2_DV_BT_DMT_1366X768P60
, 0x13, 0x00 },
275 { V4L2_DV_BT_DMT_1400X1050P60
, 0x14, 0x00 },
276 { V4L2_DV_BT_DMT_1400X1050P75
, 0x15, 0x00 },
277 { V4L2_DV_BT_DMT_1600X1200P60
, 0x16, 0x00 }, /* TODO not tested */
278 /* TODO add 1600X1200P60_RB (not a DMT timing) */
279 { V4L2_DV_BT_DMT_1680X1050P60
, 0x18, 0x00 },
280 { V4L2_DV_BT_DMT_1920X1200P60_RB
, 0x19, 0x00 }, /* TODO not tested */
284 /* sorted by number of lines */
285 static const struct adv76xx_video_standards adv76xx_prim_mode_hdmi_comp
[] = {
286 { V4L2_DV_BT_CEA_720X480P59_94
, 0x0a, 0x00 },
287 { V4L2_DV_BT_CEA_720X576P50
, 0x0b, 0x00 },
288 { V4L2_DV_BT_CEA_1280X720P50
, 0x13, 0x01 },
289 { V4L2_DV_BT_CEA_1280X720P60
, 0x13, 0x00 },
290 { V4L2_DV_BT_CEA_1920X1080P24
, 0x1e, 0x04 },
291 { V4L2_DV_BT_CEA_1920X1080P25
, 0x1e, 0x03 },
292 { V4L2_DV_BT_CEA_1920X1080P30
, 0x1e, 0x02 },
293 { V4L2_DV_BT_CEA_1920X1080P50
, 0x1e, 0x01 },
294 { V4L2_DV_BT_CEA_1920X1080P60
, 0x1e, 0x00 },
298 /* sorted by number of lines */
299 static const struct adv76xx_video_standards adv76xx_prim_mode_hdmi_gr
[] = {
300 { V4L2_DV_BT_DMT_640X480P60
, 0x08, 0x00 },
301 { V4L2_DV_BT_DMT_640X480P72
, 0x09, 0x00 },
302 { V4L2_DV_BT_DMT_640X480P75
, 0x0a, 0x00 },
303 { V4L2_DV_BT_DMT_640X480P85
, 0x0b, 0x00 },
304 { V4L2_DV_BT_DMT_800X600P56
, 0x00, 0x00 },
305 { V4L2_DV_BT_DMT_800X600P60
, 0x01, 0x00 },
306 { V4L2_DV_BT_DMT_800X600P72
, 0x02, 0x00 },
307 { V4L2_DV_BT_DMT_800X600P75
, 0x03, 0x00 },
308 { V4L2_DV_BT_DMT_800X600P85
, 0x04, 0x00 },
309 { V4L2_DV_BT_DMT_1024X768P60
, 0x0c, 0x00 },
310 { V4L2_DV_BT_DMT_1024X768P70
, 0x0d, 0x00 },
311 { V4L2_DV_BT_DMT_1024X768P75
, 0x0e, 0x00 },
312 { V4L2_DV_BT_DMT_1024X768P85
, 0x0f, 0x00 },
313 { V4L2_DV_BT_DMT_1280X1024P60
, 0x05, 0x00 },
314 { V4L2_DV_BT_DMT_1280X1024P75
, 0x06, 0x00 },
318 static const struct v4l2_event adv76xx_ev_fmt
= {
319 .type
= V4L2_EVENT_SOURCE_CHANGE
,
320 .u
.src_change
.changes
= V4L2_EVENT_SRC_CH_RESOLUTION
,
323 /* ----------------------------------------------------------------------- */
325 static inline struct adv76xx_state
*to_state(struct v4l2_subdev
*sd
)
327 return container_of(sd
, struct adv76xx_state
, sd
);
330 static inline unsigned htotal(const struct v4l2_bt_timings
*t
)
332 return V4L2_DV_BT_FRAME_WIDTH(t
);
335 static inline unsigned vtotal(const struct v4l2_bt_timings
*t
)
337 return V4L2_DV_BT_FRAME_HEIGHT(t
);
340 /* ----------------------------------------------------------------------- */
342 static int adv76xx_read_check(struct adv76xx_state
*state
,
343 int client_page
, u8 reg
)
345 struct i2c_client
*client
= state
->i2c_clients
[client_page
];
349 err
= regmap_read(state
->regmap
[client_page
], reg
, &val
);
352 v4l_err(client
, "error reading %02x, %02x\n",
359 /* adv76xx_write_block(): Write raw data with a maximum of I2C_SMBUS_BLOCK_MAX
360 * size to one or more registers.
362 * A value of zero will be returned on success, a negative errno will
363 * be returned in error cases.
365 static int adv76xx_write_block(struct adv76xx_state
*state
, int client_page
,
366 unsigned int init_reg
, const void *val
,
369 struct regmap
*regmap
= state
->regmap
[client_page
];
371 if (val_len
> I2C_SMBUS_BLOCK_MAX
)
372 val_len
= I2C_SMBUS_BLOCK_MAX
;
374 return regmap_raw_write(regmap
, init_reg
, val
, val_len
);
377 /* ----------------------------------------------------------------------- */
379 static inline int io_read(struct v4l2_subdev
*sd
, u8 reg
)
381 struct adv76xx_state
*state
= to_state(sd
);
383 return adv76xx_read_check(state
, ADV76XX_PAGE_IO
, reg
);
386 static inline int io_write(struct v4l2_subdev
*sd
, u8 reg
, u8 val
)
388 struct adv76xx_state
*state
= to_state(sd
);
390 return regmap_write(state
->regmap
[ADV76XX_PAGE_IO
], reg
, val
);
393 static inline int io_write_clr_set(struct v4l2_subdev
*sd
, u8 reg
, u8 mask
,
396 return io_write(sd
, reg
, (io_read(sd
, reg
) & ~mask
) | val
);
399 static inline int avlink_read(struct v4l2_subdev
*sd
, u8 reg
)
401 struct adv76xx_state
*state
= to_state(sd
);
403 return adv76xx_read_check(state
, ADV7604_PAGE_AVLINK
, reg
);
406 static inline int avlink_write(struct v4l2_subdev
*sd
, u8 reg
, u8 val
)
408 struct adv76xx_state
*state
= to_state(sd
);
410 return regmap_write(state
->regmap
[ADV7604_PAGE_AVLINK
], reg
, val
);
413 static inline int cec_read(struct v4l2_subdev
*sd
, u8 reg
)
415 struct adv76xx_state
*state
= to_state(sd
);
417 return adv76xx_read_check(state
, ADV76XX_PAGE_CEC
, reg
);
420 static inline int cec_write(struct v4l2_subdev
*sd
, u8 reg
, u8 val
)
422 struct adv76xx_state
*state
= to_state(sd
);
424 return regmap_write(state
->regmap
[ADV76XX_PAGE_CEC
], reg
, val
);
427 static inline int cec_write_clr_set(struct v4l2_subdev
*sd
, u8 reg
, u8 mask
,
430 return cec_write(sd
, reg
, (cec_read(sd
, reg
) & ~mask
) | val
);
433 static inline int infoframe_read(struct v4l2_subdev
*sd
, u8 reg
)
435 struct adv76xx_state
*state
= to_state(sd
);
437 return adv76xx_read_check(state
, ADV76XX_PAGE_INFOFRAME
, reg
);
440 static inline int infoframe_write(struct v4l2_subdev
*sd
, u8 reg
, u8 val
)
442 struct adv76xx_state
*state
= to_state(sd
);
444 return regmap_write(state
->regmap
[ADV76XX_PAGE_INFOFRAME
], reg
, val
);
447 static inline int afe_read(struct v4l2_subdev
*sd
, u8 reg
)
449 struct adv76xx_state
*state
= to_state(sd
);
451 return adv76xx_read_check(state
, ADV76XX_PAGE_AFE
, reg
);
454 static inline int afe_write(struct v4l2_subdev
*sd
, u8 reg
, u8 val
)
456 struct adv76xx_state
*state
= to_state(sd
);
458 return regmap_write(state
->regmap
[ADV76XX_PAGE_AFE
], reg
, val
);
461 static inline int rep_read(struct v4l2_subdev
*sd
, u8 reg
)
463 struct adv76xx_state
*state
= to_state(sd
);
465 return adv76xx_read_check(state
, ADV76XX_PAGE_REP
, reg
);
468 static inline int rep_write(struct v4l2_subdev
*sd
, u8 reg
, u8 val
)
470 struct adv76xx_state
*state
= to_state(sd
);
472 return regmap_write(state
->regmap
[ADV76XX_PAGE_REP
], reg
, val
);
475 static inline int rep_write_clr_set(struct v4l2_subdev
*sd
, u8 reg
, u8 mask
, u8 val
)
477 return rep_write(sd
, reg
, (rep_read(sd
, reg
) & ~mask
) | val
);
480 static inline int edid_read(struct v4l2_subdev
*sd
, u8 reg
)
482 struct adv76xx_state
*state
= to_state(sd
);
484 return adv76xx_read_check(state
, ADV76XX_PAGE_EDID
, reg
);
487 static inline int edid_write(struct v4l2_subdev
*sd
, u8 reg
, u8 val
)
489 struct adv76xx_state
*state
= to_state(sd
);
491 return regmap_write(state
->regmap
[ADV76XX_PAGE_EDID
], reg
, val
);
494 static inline int edid_write_block(struct v4l2_subdev
*sd
,
495 unsigned int total_len
, const u8
*val
)
497 struct adv76xx_state
*state
= to_state(sd
);
502 v4l2_dbg(2, debug
, sd
, "%s: write EDID block (%d byte)\n",
503 __func__
, total_len
);
505 while (!err
&& i
< total_len
) {
506 len
= (total_len
- i
) > I2C_SMBUS_BLOCK_MAX
?
507 I2C_SMBUS_BLOCK_MAX
:
510 err
= adv76xx_write_block(state
, ADV76XX_PAGE_EDID
,
518 static void adv76xx_set_hpd(struct adv76xx_state
*state
, unsigned int hpd
)
522 for (i
= 0; i
< state
->info
->num_dv_ports
; ++i
)
523 gpiod_set_value_cansleep(state
->hpd_gpio
[i
], hpd
& BIT(i
));
525 v4l2_subdev_notify(&state
->sd
, ADV76XX_HOTPLUG
, &hpd
);
528 static void adv76xx_delayed_work_enable_hotplug(struct work_struct
*work
)
530 struct delayed_work
*dwork
= to_delayed_work(work
);
531 struct adv76xx_state
*state
= container_of(dwork
, struct adv76xx_state
,
532 delayed_work_enable_hotplug
);
533 struct v4l2_subdev
*sd
= &state
->sd
;
535 v4l2_dbg(2, debug
, sd
, "%s: enable hotplug\n", __func__
);
537 adv76xx_set_hpd(state
, state
->edid
.present
);
540 static inline int hdmi_read(struct v4l2_subdev
*sd
, u8 reg
)
542 struct adv76xx_state
*state
= to_state(sd
);
544 return adv76xx_read_check(state
, ADV76XX_PAGE_HDMI
, reg
);
547 static u16
hdmi_read16(struct v4l2_subdev
*sd
, u8 reg
, u16 mask
)
549 return ((hdmi_read(sd
, reg
) << 8) | hdmi_read(sd
, reg
+ 1)) & mask
;
552 static inline int hdmi_write(struct v4l2_subdev
*sd
, u8 reg
, u8 val
)
554 struct adv76xx_state
*state
= to_state(sd
);
556 return regmap_write(state
->regmap
[ADV76XX_PAGE_HDMI
], reg
, val
);
559 static inline int hdmi_write_clr_set(struct v4l2_subdev
*sd
, u8 reg
, u8 mask
, u8 val
)
561 return hdmi_write(sd
, reg
, (hdmi_read(sd
, reg
) & ~mask
) | val
);
564 static inline int test_write(struct v4l2_subdev
*sd
, u8 reg
, u8 val
)
566 struct adv76xx_state
*state
= to_state(sd
);
568 return regmap_write(state
->regmap
[ADV76XX_PAGE_TEST
], reg
, val
);
571 static inline int cp_read(struct v4l2_subdev
*sd
, u8 reg
)
573 struct adv76xx_state
*state
= to_state(sd
);
575 return adv76xx_read_check(state
, ADV76XX_PAGE_CP
, reg
);
578 static u16
cp_read16(struct v4l2_subdev
*sd
, u8 reg
, u16 mask
)
580 return ((cp_read(sd
, reg
) << 8) | cp_read(sd
, reg
+ 1)) & mask
;
583 static inline int cp_write(struct v4l2_subdev
*sd
, u8 reg
, u8 val
)
585 struct adv76xx_state
*state
= to_state(sd
);
587 return regmap_write(state
->regmap
[ADV76XX_PAGE_CP
], reg
, val
);
590 static inline int cp_write_clr_set(struct v4l2_subdev
*sd
, u8 reg
, u8 mask
, u8 val
)
592 return cp_write(sd
, reg
, (cp_read(sd
, reg
) & ~mask
) | val
);
595 static inline int vdp_read(struct v4l2_subdev
*sd
, u8 reg
)
597 struct adv76xx_state
*state
= to_state(sd
);
599 return adv76xx_read_check(state
, ADV7604_PAGE_VDP
, reg
);
602 static inline int vdp_write(struct v4l2_subdev
*sd
, u8 reg
, u8 val
)
604 struct adv76xx_state
*state
= to_state(sd
);
606 return regmap_write(state
->regmap
[ADV7604_PAGE_VDP
], reg
, val
);
609 #define ADV76XX_REG(page, offset) (((page) << 8) | (offset))
610 #define ADV76XX_REG_SEQ_TERM 0xffff
612 #ifdef CONFIG_VIDEO_ADV_DEBUG
613 static int adv76xx_read_reg(struct v4l2_subdev
*sd
, unsigned int reg
)
615 struct adv76xx_state
*state
= to_state(sd
);
616 unsigned int page
= reg
>> 8;
620 if (!(BIT(page
) & state
->info
->page_mask
))
624 err
= regmap_read(state
->regmap
[page
], reg
, &val
);
626 return err
? err
: val
;
630 static int adv76xx_write_reg(struct v4l2_subdev
*sd
, unsigned int reg
, u8 val
)
632 struct adv76xx_state
*state
= to_state(sd
);
633 unsigned int page
= reg
>> 8;
635 if (!(BIT(page
) & state
->info
->page_mask
))
640 return regmap_write(state
->regmap
[page
], reg
, val
);
643 static void adv76xx_write_reg_seq(struct v4l2_subdev
*sd
,
644 const struct adv76xx_reg_seq
*reg_seq
)
648 for (i
= 0; reg_seq
[i
].reg
!= ADV76XX_REG_SEQ_TERM
; i
++)
649 adv76xx_write_reg(sd
, reg_seq
[i
].reg
, reg_seq
[i
].val
);
652 /* -----------------------------------------------------------------------------
656 static const struct adv76xx_format_info adv7604_formats
[] = {
657 { MEDIA_BUS_FMT_RGB888_1X24
, ADV76XX_OP_CH_SEL_RGB
, true, false,
658 ADV76XX_OP_MODE_SEL_SDR_444
| ADV76XX_OP_FORMAT_SEL_8BIT
},
659 { MEDIA_BUS_FMT_YUYV8_2X8
, ADV76XX_OP_CH_SEL_RGB
, false, false,
660 ADV76XX_OP_MODE_SEL_SDR_422
| ADV76XX_OP_FORMAT_SEL_8BIT
},
661 { MEDIA_BUS_FMT_YVYU8_2X8
, ADV76XX_OP_CH_SEL_RGB
, false, true,
662 ADV76XX_OP_MODE_SEL_SDR_422
| ADV76XX_OP_FORMAT_SEL_8BIT
},
663 { MEDIA_BUS_FMT_YUYV10_2X10
, ADV76XX_OP_CH_SEL_RGB
, false, false,
664 ADV76XX_OP_MODE_SEL_SDR_422
| ADV7604_OP_FORMAT_SEL_10BIT
},
665 { MEDIA_BUS_FMT_YVYU10_2X10
, ADV76XX_OP_CH_SEL_RGB
, false, true,
666 ADV76XX_OP_MODE_SEL_SDR_422
| ADV7604_OP_FORMAT_SEL_10BIT
},
667 { MEDIA_BUS_FMT_YUYV12_2X12
, ADV76XX_OP_CH_SEL_RGB
, false, false,
668 ADV76XX_OP_MODE_SEL_SDR_422
| ADV76XX_OP_FORMAT_SEL_12BIT
},
669 { MEDIA_BUS_FMT_YVYU12_2X12
, ADV76XX_OP_CH_SEL_RGB
, false, true,
670 ADV76XX_OP_MODE_SEL_SDR_422
| ADV76XX_OP_FORMAT_SEL_12BIT
},
671 { MEDIA_BUS_FMT_UYVY8_1X16
, ADV76XX_OP_CH_SEL_RBG
, false, false,
672 ADV76XX_OP_MODE_SEL_SDR_422_2X
| ADV76XX_OP_FORMAT_SEL_8BIT
},
673 { MEDIA_BUS_FMT_VYUY8_1X16
, ADV76XX_OP_CH_SEL_RBG
, false, true,
674 ADV76XX_OP_MODE_SEL_SDR_422_2X
| ADV76XX_OP_FORMAT_SEL_8BIT
},
675 { MEDIA_BUS_FMT_YUYV8_1X16
, ADV76XX_OP_CH_SEL_RGB
, false, false,
676 ADV76XX_OP_MODE_SEL_SDR_422_2X
| ADV76XX_OP_FORMAT_SEL_8BIT
},
677 { MEDIA_BUS_FMT_YVYU8_1X16
, ADV76XX_OP_CH_SEL_RGB
, false, true,
678 ADV76XX_OP_MODE_SEL_SDR_422_2X
| ADV76XX_OP_FORMAT_SEL_8BIT
},
679 { MEDIA_BUS_FMT_UYVY10_1X20
, ADV76XX_OP_CH_SEL_RBG
, false, false,
680 ADV76XX_OP_MODE_SEL_SDR_422_2X
| ADV7604_OP_FORMAT_SEL_10BIT
},
681 { MEDIA_BUS_FMT_VYUY10_1X20
, ADV76XX_OP_CH_SEL_RBG
, false, true,
682 ADV76XX_OP_MODE_SEL_SDR_422_2X
| ADV7604_OP_FORMAT_SEL_10BIT
},
683 { MEDIA_BUS_FMT_YUYV10_1X20
, ADV76XX_OP_CH_SEL_RGB
, false, false,
684 ADV76XX_OP_MODE_SEL_SDR_422_2X
| ADV7604_OP_FORMAT_SEL_10BIT
},
685 { MEDIA_BUS_FMT_YVYU10_1X20
, ADV76XX_OP_CH_SEL_RGB
, false, true,
686 ADV76XX_OP_MODE_SEL_SDR_422_2X
| ADV7604_OP_FORMAT_SEL_10BIT
},
687 { MEDIA_BUS_FMT_UYVY12_1X24
, ADV76XX_OP_CH_SEL_RBG
, false, false,
688 ADV76XX_OP_MODE_SEL_SDR_422_2X
| ADV76XX_OP_FORMAT_SEL_12BIT
},
689 { MEDIA_BUS_FMT_VYUY12_1X24
, ADV76XX_OP_CH_SEL_RBG
, false, true,
690 ADV76XX_OP_MODE_SEL_SDR_422_2X
| ADV76XX_OP_FORMAT_SEL_12BIT
},
691 { MEDIA_BUS_FMT_YUYV12_1X24
, ADV76XX_OP_CH_SEL_RGB
, false, false,
692 ADV76XX_OP_MODE_SEL_SDR_422_2X
| ADV76XX_OP_FORMAT_SEL_12BIT
},
693 { MEDIA_BUS_FMT_YVYU12_1X24
, ADV76XX_OP_CH_SEL_RGB
, false, true,
694 ADV76XX_OP_MODE_SEL_SDR_422_2X
| ADV76XX_OP_FORMAT_SEL_12BIT
},
697 static const struct adv76xx_format_info adv7611_formats
[] = {
698 { MEDIA_BUS_FMT_RGB888_1X24
, ADV76XX_OP_CH_SEL_RGB
, true, false,
699 ADV76XX_OP_MODE_SEL_SDR_444
| ADV76XX_OP_FORMAT_SEL_8BIT
},
700 { MEDIA_BUS_FMT_YUYV8_2X8
, ADV76XX_OP_CH_SEL_RGB
, false, false,
701 ADV76XX_OP_MODE_SEL_SDR_422
| ADV76XX_OP_FORMAT_SEL_8BIT
},
702 { MEDIA_BUS_FMT_YVYU8_2X8
, ADV76XX_OP_CH_SEL_RGB
, false, true,
703 ADV76XX_OP_MODE_SEL_SDR_422
| ADV76XX_OP_FORMAT_SEL_8BIT
},
704 { MEDIA_BUS_FMT_YUYV12_2X12
, ADV76XX_OP_CH_SEL_RGB
, false, false,
705 ADV76XX_OP_MODE_SEL_SDR_422
| ADV76XX_OP_FORMAT_SEL_12BIT
},
706 { MEDIA_BUS_FMT_YVYU12_2X12
, ADV76XX_OP_CH_SEL_RGB
, false, true,
707 ADV76XX_OP_MODE_SEL_SDR_422
| ADV76XX_OP_FORMAT_SEL_12BIT
},
708 { MEDIA_BUS_FMT_UYVY8_1X16
, ADV76XX_OP_CH_SEL_RBG
, false, false,
709 ADV76XX_OP_MODE_SEL_SDR_422_2X
| ADV76XX_OP_FORMAT_SEL_8BIT
},
710 { MEDIA_BUS_FMT_VYUY8_1X16
, ADV76XX_OP_CH_SEL_RBG
, false, true,
711 ADV76XX_OP_MODE_SEL_SDR_422_2X
| ADV76XX_OP_FORMAT_SEL_8BIT
},
712 { MEDIA_BUS_FMT_YUYV8_1X16
, ADV76XX_OP_CH_SEL_RGB
, false, false,
713 ADV76XX_OP_MODE_SEL_SDR_422_2X
| ADV76XX_OP_FORMAT_SEL_8BIT
},
714 { MEDIA_BUS_FMT_YVYU8_1X16
, ADV76XX_OP_CH_SEL_RGB
, false, true,
715 ADV76XX_OP_MODE_SEL_SDR_422_2X
| ADV76XX_OP_FORMAT_SEL_8BIT
},
716 { MEDIA_BUS_FMT_UYVY12_1X24
, ADV76XX_OP_CH_SEL_RBG
, false, false,
717 ADV76XX_OP_MODE_SEL_SDR_422_2X
| ADV76XX_OP_FORMAT_SEL_12BIT
},
718 { MEDIA_BUS_FMT_VYUY12_1X24
, ADV76XX_OP_CH_SEL_RBG
, false, true,
719 ADV76XX_OP_MODE_SEL_SDR_422_2X
| ADV76XX_OP_FORMAT_SEL_12BIT
},
720 { MEDIA_BUS_FMT_YUYV12_1X24
, ADV76XX_OP_CH_SEL_RGB
, false, false,
721 ADV76XX_OP_MODE_SEL_SDR_422_2X
| ADV76XX_OP_FORMAT_SEL_12BIT
},
722 { MEDIA_BUS_FMT_YVYU12_1X24
, ADV76XX_OP_CH_SEL_RGB
, false, true,
723 ADV76XX_OP_MODE_SEL_SDR_422_2X
| ADV76XX_OP_FORMAT_SEL_12BIT
},
726 static const struct adv76xx_format_info adv7612_formats
[] = {
727 { MEDIA_BUS_FMT_RGB888_1X24
, ADV76XX_OP_CH_SEL_RGB
, true, false,
728 ADV76XX_OP_MODE_SEL_SDR_444
| ADV76XX_OP_FORMAT_SEL_8BIT
},
729 { MEDIA_BUS_FMT_YUYV8_2X8
, ADV76XX_OP_CH_SEL_RGB
, false, false,
730 ADV76XX_OP_MODE_SEL_SDR_422
| ADV76XX_OP_FORMAT_SEL_8BIT
},
731 { MEDIA_BUS_FMT_YVYU8_2X8
, ADV76XX_OP_CH_SEL_RGB
, false, true,
732 ADV76XX_OP_MODE_SEL_SDR_422
| ADV76XX_OP_FORMAT_SEL_8BIT
},
733 { MEDIA_BUS_FMT_UYVY8_1X16
, ADV76XX_OP_CH_SEL_RBG
, false, false,
734 ADV76XX_OP_MODE_SEL_SDR_422_2X
| ADV76XX_OP_FORMAT_SEL_8BIT
},
735 { MEDIA_BUS_FMT_VYUY8_1X16
, ADV76XX_OP_CH_SEL_RBG
, false, true,
736 ADV76XX_OP_MODE_SEL_SDR_422_2X
| ADV76XX_OP_FORMAT_SEL_8BIT
},
737 { MEDIA_BUS_FMT_YUYV8_1X16
, ADV76XX_OP_CH_SEL_RGB
, false, false,
738 ADV76XX_OP_MODE_SEL_SDR_422_2X
| ADV76XX_OP_FORMAT_SEL_8BIT
},
739 { MEDIA_BUS_FMT_YVYU8_1X16
, ADV76XX_OP_CH_SEL_RGB
, false, true,
740 ADV76XX_OP_MODE_SEL_SDR_422_2X
| ADV76XX_OP_FORMAT_SEL_8BIT
},
743 static const struct adv76xx_format_info
*
744 adv76xx_format_info(struct adv76xx_state
*state
, u32 code
)
748 for (i
= 0; i
< state
->info
->nformats
; ++i
) {
749 if (state
->info
->formats
[i
].code
== code
)
750 return &state
->info
->formats
[i
];
756 /* ----------------------------------------------------------------------- */
758 static inline bool is_analog_input(struct v4l2_subdev
*sd
)
760 struct adv76xx_state
*state
= to_state(sd
);
762 return state
->selected_input
== ADV7604_PAD_VGA_RGB
||
763 state
->selected_input
== ADV7604_PAD_VGA_COMP
;
766 static inline bool is_digital_input(struct v4l2_subdev
*sd
)
768 struct adv76xx_state
*state
= to_state(sd
);
770 return state
->selected_input
== ADV76XX_PAD_HDMI_PORT_A
||
771 state
->selected_input
== ADV7604_PAD_HDMI_PORT_B
||
772 state
->selected_input
== ADV7604_PAD_HDMI_PORT_C
||
773 state
->selected_input
== ADV7604_PAD_HDMI_PORT_D
;
776 static const struct v4l2_dv_timings_cap adv7604_timings_cap_analog
= {
777 .type
= V4L2_DV_BT_656_1120
,
778 /* keep this initialization for compatibility with GCC < 4.4.6 */
780 V4L2_INIT_BT_TIMINGS(0, 1920, 0, 1200, 25000000, 170000000,
781 V4L2_DV_BT_STD_CEA861
| V4L2_DV_BT_STD_DMT
|
782 V4L2_DV_BT_STD_GTF
| V4L2_DV_BT_STD_CVT
,
783 V4L2_DV_BT_CAP_PROGRESSIVE
| V4L2_DV_BT_CAP_REDUCED_BLANKING
|
784 V4L2_DV_BT_CAP_CUSTOM
)
787 static const struct v4l2_dv_timings_cap adv76xx_timings_cap_digital
= {
788 .type
= V4L2_DV_BT_656_1120
,
789 /* keep this initialization for compatibility with GCC < 4.4.6 */
791 V4L2_INIT_BT_TIMINGS(0, 1920, 0, 1200, 25000000, 225000000,
792 V4L2_DV_BT_STD_CEA861
| V4L2_DV_BT_STD_DMT
|
793 V4L2_DV_BT_STD_GTF
| V4L2_DV_BT_STD_CVT
,
794 V4L2_DV_BT_CAP_PROGRESSIVE
| V4L2_DV_BT_CAP_REDUCED_BLANKING
|
795 V4L2_DV_BT_CAP_CUSTOM
)
799 * Return the DV timings capabilities for the requested sink pad. As a special
800 * case, pad value -1 returns the capabilities for the currently selected input.
802 static const struct v4l2_dv_timings_cap
*
803 adv76xx_get_dv_timings_cap(struct v4l2_subdev
*sd
, int pad
)
806 struct adv76xx_state
*state
= to_state(sd
);
808 pad
= state
->selected_input
;
812 case ADV76XX_PAD_HDMI_PORT_A
:
813 case ADV7604_PAD_HDMI_PORT_B
:
814 case ADV7604_PAD_HDMI_PORT_C
:
815 case ADV7604_PAD_HDMI_PORT_D
:
816 return &adv76xx_timings_cap_digital
;
818 case ADV7604_PAD_VGA_RGB
:
819 case ADV7604_PAD_VGA_COMP
:
821 return &adv7604_timings_cap_analog
;
826 /* ----------------------------------------------------------------------- */
828 #ifdef CONFIG_VIDEO_ADV_DEBUG
829 static void adv76xx_inv_register(struct v4l2_subdev
*sd
)
831 v4l2_info(sd
, "0x000-0x0ff: IO Map\n");
832 v4l2_info(sd
, "0x100-0x1ff: AVLink Map\n");
833 v4l2_info(sd
, "0x200-0x2ff: CEC Map\n");
834 v4l2_info(sd
, "0x300-0x3ff: InfoFrame Map\n");
835 v4l2_info(sd
, "0x400-0x4ff: ESDP Map\n");
836 v4l2_info(sd
, "0x500-0x5ff: DPP Map\n");
837 v4l2_info(sd
, "0x600-0x6ff: AFE Map\n");
838 v4l2_info(sd
, "0x700-0x7ff: Repeater Map\n");
839 v4l2_info(sd
, "0x800-0x8ff: EDID Map\n");
840 v4l2_info(sd
, "0x900-0x9ff: HDMI Map\n");
841 v4l2_info(sd
, "0xa00-0xaff: Test Map\n");
842 v4l2_info(sd
, "0xb00-0xbff: CP Map\n");
843 v4l2_info(sd
, "0xc00-0xcff: VDP Map\n");
846 static int adv76xx_g_register(struct v4l2_subdev
*sd
,
847 struct v4l2_dbg_register
*reg
)
851 ret
= adv76xx_read_reg(sd
, reg
->reg
);
853 v4l2_info(sd
, "Register %03llx not supported\n", reg
->reg
);
854 adv76xx_inv_register(sd
);
864 static int adv76xx_s_register(struct v4l2_subdev
*sd
,
865 const struct v4l2_dbg_register
*reg
)
869 ret
= adv76xx_write_reg(sd
, reg
->reg
, reg
->val
);
871 v4l2_info(sd
, "Register %03llx not supported\n", reg
->reg
);
872 adv76xx_inv_register(sd
);
880 static unsigned int adv7604_read_cable_det(struct v4l2_subdev
*sd
)
882 u8 value
= io_read(sd
, 0x6f);
884 return ((value
& 0x10) >> 4)
885 | ((value
& 0x08) >> 2)
886 | ((value
& 0x04) << 0)
887 | ((value
& 0x02) << 2);
890 static unsigned int adv7611_read_cable_det(struct v4l2_subdev
*sd
)
892 u8 value
= io_read(sd
, 0x6f);
897 static unsigned int adv7612_read_cable_det(struct v4l2_subdev
*sd
)
899 /* Reads CABLE_DET_A_RAW. For input B support, need to
900 * account for bit 7 [MSB] of 0x6a (ie. CABLE_DET_B_RAW)
902 u8 value
= io_read(sd
, 0x6f);
907 static int adv76xx_s_detect_tx_5v_ctrl(struct v4l2_subdev
*sd
)
909 struct adv76xx_state
*state
= to_state(sd
);
910 const struct adv76xx_chip_info
*info
= state
->info
;
911 u16 cable_det
= info
->read_cable_det(sd
);
913 return v4l2_ctrl_s_ctrl(state
->detect_tx_5v_ctrl
, cable_det
);
916 static int find_and_set_predefined_video_timings(struct v4l2_subdev
*sd
,
918 const struct adv76xx_video_standards
*predef_vid_timings
,
919 const struct v4l2_dv_timings
*timings
)
923 for (i
= 0; predef_vid_timings
[i
].timings
.bt
.width
; i
++) {
924 if (!v4l2_match_dv_timings(timings
, &predef_vid_timings
[i
].timings
,
925 is_digital_input(sd
) ? 250000 : 1000000, false))
927 io_write(sd
, 0x00, predef_vid_timings
[i
].vid_std
); /* video std */
928 io_write(sd
, 0x01, (predef_vid_timings
[i
].v_freq
<< 4) +
929 prim_mode
); /* v_freq and prim mode */
936 static int configure_predefined_video_timings(struct v4l2_subdev
*sd
,
937 struct v4l2_dv_timings
*timings
)
939 struct adv76xx_state
*state
= to_state(sd
);
942 v4l2_dbg(1, debug
, sd
, "%s", __func__
);
944 if (adv76xx_has_afe(state
)) {
945 /* reset to default values */
946 io_write(sd
, 0x16, 0x43);
947 io_write(sd
, 0x17, 0x5a);
949 /* disable embedded syncs for auto graphics mode */
950 cp_write_clr_set(sd
, 0x81, 0x10, 0x00);
951 cp_write(sd
, 0x8f, 0x00);
952 cp_write(sd
, 0x90, 0x00);
953 cp_write(sd
, 0xa2, 0x00);
954 cp_write(sd
, 0xa3, 0x00);
955 cp_write(sd
, 0xa4, 0x00);
956 cp_write(sd
, 0xa5, 0x00);
957 cp_write(sd
, 0xa6, 0x00);
958 cp_write(sd
, 0xa7, 0x00);
959 cp_write(sd
, 0xab, 0x00);
960 cp_write(sd
, 0xac, 0x00);
962 if (is_analog_input(sd
)) {
963 err
= find_and_set_predefined_video_timings(sd
,
964 0x01, adv7604_prim_mode_comp
, timings
);
966 err
= find_and_set_predefined_video_timings(sd
,
967 0x02, adv7604_prim_mode_gr
, timings
);
968 } else if (is_digital_input(sd
)) {
969 err
= find_and_set_predefined_video_timings(sd
,
970 0x05, adv76xx_prim_mode_hdmi_comp
, timings
);
972 err
= find_and_set_predefined_video_timings(sd
,
973 0x06, adv76xx_prim_mode_hdmi_gr
, timings
);
975 v4l2_dbg(2, debug
, sd
, "%s: Unknown port %d selected\n",
976 __func__
, state
->selected_input
);
984 static void configure_custom_video_timings(struct v4l2_subdev
*sd
,
985 const struct v4l2_bt_timings
*bt
)
987 struct adv76xx_state
*state
= to_state(sd
);
988 u32 width
= htotal(bt
);
989 u32 height
= vtotal(bt
);
990 u16 cp_start_sav
= bt
->hsync
+ bt
->hbackporch
- 4;
991 u16 cp_start_eav
= width
- bt
->hfrontporch
;
992 u16 cp_start_vbi
= height
- bt
->vfrontporch
;
993 u16 cp_end_vbi
= bt
->vsync
+ bt
->vbackporch
;
994 u16 ch1_fr_ll
= (((u32
)bt
->pixelclock
/ 100) > 0) ?
995 ((width
* (ADV76XX_FSC
/ 100)) / ((u32
)bt
->pixelclock
/ 100)) : 0;
997 0xc0 | ((width
>> 8) & 0x1f),
1001 v4l2_dbg(2, debug
, sd
, "%s\n", __func__
);
1003 if (is_analog_input(sd
)) {
1005 io_write(sd
, 0x00, 0x07); /* video std */
1006 io_write(sd
, 0x01, 0x02); /* prim mode */
1007 /* enable embedded syncs for auto graphics mode */
1008 cp_write_clr_set(sd
, 0x81, 0x10, 0x10);
1010 /* Should only be set in auto-graphics mode [REF_02, p. 91-92] */
1011 /* setup PLL_DIV_MAN_EN and PLL_DIV_RATIO */
1012 /* IO-map reg. 0x16 and 0x17 should be written in sequence */
1013 if (regmap_raw_write(state
->regmap
[ADV76XX_PAGE_IO
],
1015 v4l2_err(sd
, "writing to reg 0x16 and 0x17 failed\n");
1017 /* active video - horizontal timing */
1018 cp_write(sd
, 0xa2, (cp_start_sav
>> 4) & 0xff);
1019 cp_write(sd
, 0xa3, ((cp_start_sav
& 0x0f) << 4) |
1020 ((cp_start_eav
>> 8) & 0x0f));
1021 cp_write(sd
, 0xa4, cp_start_eav
& 0xff);
1023 /* active video - vertical timing */
1024 cp_write(sd
, 0xa5, (cp_start_vbi
>> 4) & 0xff);
1025 cp_write(sd
, 0xa6, ((cp_start_vbi
& 0xf) << 4) |
1026 ((cp_end_vbi
>> 8) & 0xf));
1027 cp_write(sd
, 0xa7, cp_end_vbi
& 0xff);
1028 } else if (is_digital_input(sd
)) {
1029 /* set default prim_mode/vid_std for HDMI
1030 according to [REF_03, c. 4.2] */
1031 io_write(sd
, 0x00, 0x02); /* video std */
1032 io_write(sd
, 0x01, 0x06); /* prim mode */
1034 v4l2_dbg(2, debug
, sd
, "%s: Unknown port %d selected\n",
1035 __func__
, state
->selected_input
);
1038 cp_write(sd
, 0x8f, (ch1_fr_ll
>> 8) & 0x7);
1039 cp_write(sd
, 0x90, ch1_fr_ll
& 0xff);
1040 cp_write(sd
, 0xab, (height
>> 4) & 0xff);
1041 cp_write(sd
, 0xac, (height
& 0x0f) << 4);
1044 static void adv76xx_set_offset(struct v4l2_subdev
*sd
, bool auto_offset
, u16 offset_a
, u16 offset_b
, u16 offset_c
)
1046 struct adv76xx_state
*state
= to_state(sd
);
1055 v4l2_dbg(2, debug
, sd
, "%s: %s offset: a = 0x%x, b = 0x%x, c = 0x%x\n",
1056 __func__
, auto_offset
? "Auto" : "Manual",
1057 offset_a
, offset_b
, offset_c
);
1059 offset_buf
[0] = (cp_read(sd
, 0x77) & 0xc0) | ((offset_a
& 0x3f0) >> 4);
1060 offset_buf
[1] = ((offset_a
& 0x00f) << 4) | ((offset_b
& 0x3c0) >> 6);
1061 offset_buf
[2] = ((offset_b
& 0x03f) << 2) | ((offset_c
& 0x300) >> 8);
1062 offset_buf
[3] = offset_c
& 0x0ff;
1064 /* Registers must be written in this order with no i2c access in between */
1065 if (regmap_raw_write(state
->regmap
[ADV76XX_PAGE_CP
],
1066 0x77, offset_buf
, 4))
1067 v4l2_err(sd
, "%s: i2c error writing to CP reg 0x77, 0x78, 0x79, 0x7a\n", __func__
);
1070 static void adv76xx_set_gain(struct v4l2_subdev
*sd
, bool auto_gain
, u16 gain_a
, u16 gain_b
, u16 gain_c
)
1072 struct adv76xx_state
*state
= to_state(sd
);
1075 u8 agc_mode_man
= 1;
1085 v4l2_dbg(2, debug
, sd
, "%s: %s gain: a = 0x%x, b = 0x%x, c = 0x%x\n",
1086 __func__
, auto_gain
? "Auto" : "Manual",
1087 gain_a
, gain_b
, gain_c
);
1089 gain_buf
[0] = ((gain_man
<< 7) | (agc_mode_man
<< 6) | ((gain_a
& 0x3f0) >> 4));
1090 gain_buf
[1] = (((gain_a
& 0x00f) << 4) | ((gain_b
& 0x3c0) >> 6));
1091 gain_buf
[2] = (((gain_b
& 0x03f) << 2) | ((gain_c
& 0x300) >> 8));
1092 gain_buf
[3] = ((gain_c
& 0x0ff));
1094 /* Registers must be written in this order with no i2c access in between */
1095 if (regmap_raw_write(state
->regmap
[ADV76XX_PAGE_CP
],
1097 v4l2_err(sd
, "%s: i2c error writing to CP reg 0x73, 0x74, 0x75, 0x76\n", __func__
);
1100 static void set_rgb_quantization_range(struct v4l2_subdev
*sd
)
1102 struct adv76xx_state
*state
= to_state(sd
);
1103 bool rgb_output
= io_read(sd
, 0x02) & 0x02;
1104 bool hdmi_signal
= hdmi_read(sd
, 0x05) & 0x80;
1105 u8 y
= HDMI_COLORSPACE_RGB
;
1107 if (hdmi_signal
&& (io_read(sd
, 0x60) & 1))
1108 y
= infoframe_read(sd
, 0x01) >> 5;
1110 v4l2_dbg(2, debug
, sd
, "%s: RGB quantization range: %d, RGB out: %d, HDMI: %d\n",
1111 __func__
, state
->rgb_quantization_range
,
1112 rgb_output
, hdmi_signal
);
1114 adv76xx_set_gain(sd
, true, 0x0, 0x0, 0x0);
1115 adv76xx_set_offset(sd
, true, 0x0, 0x0, 0x0);
1116 io_write_clr_set(sd
, 0x02, 0x04, rgb_output
? 0 : 4);
1118 switch (state
->rgb_quantization_range
) {
1119 case V4L2_DV_RGB_RANGE_AUTO
:
1120 if (state
->selected_input
== ADV7604_PAD_VGA_RGB
) {
1121 /* Receiving analog RGB signal
1122 * Set RGB full range (0-255) */
1123 io_write_clr_set(sd
, 0x02, 0xf0, 0x10);
1127 if (state
->selected_input
== ADV7604_PAD_VGA_COMP
) {
1128 /* Receiving analog YPbPr signal
1130 io_write_clr_set(sd
, 0x02, 0xf0, 0xf0);
1135 /* Receiving HDMI signal
1137 io_write_clr_set(sd
, 0x02, 0xf0, 0xf0);
1141 /* Receiving DVI-D signal
1142 * ADV7604 selects RGB limited range regardless of
1143 * input format (CE/IT) in automatic mode */
1144 if (state
->timings
.bt
.flags
& V4L2_DV_FL_IS_CE_VIDEO
) {
1145 /* RGB limited range (16-235) */
1146 io_write_clr_set(sd
, 0x02, 0xf0, 0x00);
1148 /* RGB full range (0-255) */
1149 io_write_clr_set(sd
, 0x02, 0xf0, 0x10);
1151 if (is_digital_input(sd
) && rgb_output
) {
1152 adv76xx_set_offset(sd
, false, 0x40, 0x40, 0x40);
1154 adv76xx_set_gain(sd
, false, 0xe0, 0xe0, 0xe0);
1155 adv76xx_set_offset(sd
, false, 0x70, 0x70, 0x70);
1159 case V4L2_DV_RGB_RANGE_LIMITED
:
1160 if (state
->selected_input
== ADV7604_PAD_VGA_COMP
) {
1161 /* YCrCb limited range (16-235) */
1162 io_write_clr_set(sd
, 0x02, 0xf0, 0x20);
1166 if (y
!= HDMI_COLORSPACE_RGB
)
1169 /* RGB limited range (16-235) */
1170 io_write_clr_set(sd
, 0x02, 0xf0, 0x00);
1173 case V4L2_DV_RGB_RANGE_FULL
:
1174 if (state
->selected_input
== ADV7604_PAD_VGA_COMP
) {
1175 /* YCrCb full range (0-255) */
1176 io_write_clr_set(sd
, 0x02, 0xf0, 0x60);
1180 if (y
!= HDMI_COLORSPACE_RGB
)
1183 /* RGB full range (0-255) */
1184 io_write_clr_set(sd
, 0x02, 0xf0, 0x10);
1186 if (is_analog_input(sd
) || hdmi_signal
)
1189 /* Adjust gain/offset for DVI-D signals only */
1191 adv76xx_set_offset(sd
, false, 0x40, 0x40, 0x40);
1193 adv76xx_set_gain(sd
, false, 0xe0, 0xe0, 0xe0);
1194 adv76xx_set_offset(sd
, false, 0x70, 0x70, 0x70);
1200 static int adv76xx_s_ctrl(struct v4l2_ctrl
*ctrl
)
1202 struct v4l2_subdev
*sd
=
1203 &container_of(ctrl
->handler
, struct adv76xx_state
, hdl
)->sd
;
1205 struct adv76xx_state
*state
= to_state(sd
);
1208 case V4L2_CID_BRIGHTNESS
:
1209 cp_write(sd
, 0x3c, ctrl
->val
);
1211 case V4L2_CID_CONTRAST
:
1212 cp_write(sd
, 0x3a, ctrl
->val
);
1214 case V4L2_CID_SATURATION
:
1215 cp_write(sd
, 0x3b, ctrl
->val
);
1218 cp_write(sd
, 0x3d, ctrl
->val
);
1220 case V4L2_CID_DV_RX_RGB_RANGE
:
1221 state
->rgb_quantization_range
= ctrl
->val
;
1222 set_rgb_quantization_range(sd
);
1224 case V4L2_CID_ADV_RX_ANALOG_SAMPLING_PHASE
:
1225 if (!adv76xx_has_afe(state
))
1227 /* Set the analog sampling phase. This is needed to find the
1228 best sampling phase for analog video: an application or
1229 driver has to try a number of phases and analyze the picture
1230 quality before settling on the best performing phase. */
1231 afe_write(sd
, 0xc8, ctrl
->val
);
1233 case V4L2_CID_ADV_RX_FREE_RUN_COLOR_MANUAL
:
1234 /* Use the default blue color for free running mode,
1235 or supply your own. */
1236 cp_write_clr_set(sd
, 0xbf, 0x04, ctrl
->val
<< 2);
1238 case V4L2_CID_ADV_RX_FREE_RUN_COLOR
:
1239 cp_write(sd
, 0xc0, (ctrl
->val
& 0xff0000) >> 16);
1240 cp_write(sd
, 0xc1, (ctrl
->val
& 0x00ff00) >> 8);
1241 cp_write(sd
, 0xc2, (u8
)(ctrl
->val
& 0x0000ff));
1247 static int adv76xx_g_volatile_ctrl(struct v4l2_ctrl
*ctrl
)
1249 struct v4l2_subdev
*sd
=
1250 &container_of(ctrl
->handler
, struct adv76xx_state
, hdl
)->sd
;
1252 if (ctrl
->id
== V4L2_CID_DV_RX_IT_CONTENT_TYPE
) {
1253 ctrl
->val
= V4L2_DV_IT_CONTENT_TYPE_NO_ITC
;
1254 if ((io_read(sd
, 0x60) & 1) && (infoframe_read(sd
, 0x03) & 0x80))
1255 ctrl
->val
= (infoframe_read(sd
, 0x05) >> 4) & 3;
1261 /* ----------------------------------------------------------------------- */
1263 static inline bool no_power(struct v4l2_subdev
*sd
)
1265 /* Entire chip or CP powered off */
1266 return io_read(sd
, 0x0c) & 0x24;
1269 static inline bool no_signal_tmds(struct v4l2_subdev
*sd
)
1271 struct adv76xx_state
*state
= to_state(sd
);
1273 return !(io_read(sd
, 0x6a) & (0x10 >> state
->selected_input
));
1276 static inline bool no_lock_tmds(struct v4l2_subdev
*sd
)
1278 struct adv76xx_state
*state
= to_state(sd
);
1279 const struct adv76xx_chip_info
*info
= state
->info
;
1281 return (io_read(sd
, 0x6a) & info
->tdms_lock_mask
) != info
->tdms_lock_mask
;
1284 static inline bool is_hdmi(struct v4l2_subdev
*sd
)
1286 return hdmi_read(sd
, 0x05) & 0x80;
1289 static inline bool no_lock_sspd(struct v4l2_subdev
*sd
)
1291 struct adv76xx_state
*state
= to_state(sd
);
1294 * Chips without a AFE don't expose registers for the SSPD, so just assume
1295 * that we have a lock.
1297 if (adv76xx_has_afe(state
))
1300 /* TODO channel 2 */
1301 return ((cp_read(sd
, 0xb5) & 0xd0) != 0xd0);
1304 static inline bool no_lock_stdi(struct v4l2_subdev
*sd
)
1306 /* TODO channel 2 */
1307 return !(cp_read(sd
, 0xb1) & 0x80);
1310 static inline bool no_signal(struct v4l2_subdev
*sd
)
1316 ret
|= no_lock_stdi(sd
);
1317 ret
|= no_lock_sspd(sd
);
1319 if (is_digital_input(sd
)) {
1320 ret
|= no_lock_tmds(sd
);
1321 ret
|= no_signal_tmds(sd
);
1327 static inline bool no_lock_cp(struct v4l2_subdev
*sd
)
1329 struct adv76xx_state
*state
= to_state(sd
);
1331 if (!adv76xx_has_afe(state
))
1334 /* CP has detected a non standard number of lines on the incoming
1335 video compared to what it is configured to receive by s_dv_timings */
1336 return io_read(sd
, 0x12) & 0x01;
1339 static inline bool in_free_run(struct v4l2_subdev
*sd
)
1341 return cp_read(sd
, 0xff) & 0x10;
1344 static int adv76xx_g_input_status(struct v4l2_subdev
*sd
, u32
*status
)
1347 *status
|= no_power(sd
) ? V4L2_IN_ST_NO_POWER
: 0;
1348 *status
|= no_signal(sd
) ? V4L2_IN_ST_NO_SIGNAL
: 0;
1349 if (!in_free_run(sd
) && no_lock_cp(sd
))
1350 *status
|= is_digital_input(sd
) ?
1351 V4L2_IN_ST_NO_SYNC
: V4L2_IN_ST_NO_H_LOCK
;
1353 v4l2_dbg(1, debug
, sd
, "%s: status = 0x%x\n", __func__
, *status
);
1358 /* ----------------------------------------------------------------------- */
1360 struct stdi_readback
{
1366 static int stdi2dv_timings(struct v4l2_subdev
*sd
,
1367 struct stdi_readback
*stdi
,
1368 struct v4l2_dv_timings
*timings
)
1370 struct adv76xx_state
*state
= to_state(sd
);
1371 u32 hfreq
= (ADV76XX_FSC
* 8) / stdi
->bl
;
1375 for (i
= 0; v4l2_dv_timings_presets
[i
].bt
.width
; i
++) {
1376 const struct v4l2_bt_timings
*bt
= &v4l2_dv_timings_presets
[i
].bt
;
1378 if (!v4l2_valid_dv_timings(&v4l2_dv_timings_presets
[i
],
1379 adv76xx_get_dv_timings_cap(sd
, -1),
1380 adv76xx_check_dv_timings
, NULL
))
1382 if (vtotal(bt
) != stdi
->lcf
+ 1)
1384 if (bt
->vsync
!= stdi
->lcvs
)
1387 pix_clk
= hfreq
* htotal(bt
);
1389 if ((pix_clk
< bt
->pixelclock
+ 1000000) &&
1390 (pix_clk
> bt
->pixelclock
- 1000000)) {
1391 *timings
= v4l2_dv_timings_presets
[i
];
1396 if (v4l2_detect_cvt(stdi
->lcf
+ 1, hfreq
, stdi
->lcvs
, 0,
1397 (stdi
->hs_pol
== '+' ? V4L2_DV_HSYNC_POS_POL
: 0) |
1398 (stdi
->vs_pol
== '+' ? V4L2_DV_VSYNC_POS_POL
: 0),
1401 if (v4l2_detect_gtf(stdi
->lcf
+ 1, hfreq
, stdi
->lcvs
,
1402 (stdi
->hs_pol
== '+' ? V4L2_DV_HSYNC_POS_POL
: 0) |
1403 (stdi
->vs_pol
== '+' ? V4L2_DV_VSYNC_POS_POL
: 0),
1404 false, state
->aspect_ratio
, timings
))
1407 v4l2_dbg(2, debug
, sd
,
1408 "%s: No format candidate found for lcvs = %d, lcf=%d, bl = %d, %chsync, %cvsync\n",
1409 __func__
, stdi
->lcvs
, stdi
->lcf
, stdi
->bl
,
1410 stdi
->hs_pol
, stdi
->vs_pol
);
1415 static int read_stdi(struct v4l2_subdev
*sd
, struct stdi_readback
*stdi
)
1417 struct adv76xx_state
*state
= to_state(sd
);
1418 const struct adv76xx_chip_info
*info
= state
->info
;
1421 if (no_lock_stdi(sd
) || no_lock_sspd(sd
)) {
1422 v4l2_dbg(2, debug
, sd
, "%s: STDI and/or SSPD not locked\n", __func__
);
1427 stdi
->bl
= cp_read16(sd
, 0xb1, 0x3fff);
1428 stdi
->lcf
= cp_read16(sd
, info
->lcf_reg
, 0x7ff);
1429 stdi
->lcvs
= cp_read(sd
, 0xb3) >> 3;
1430 stdi
->interlaced
= io_read(sd
, 0x12) & 0x10;
1432 if (adv76xx_has_afe(state
)) {
1434 polarity
= cp_read(sd
, 0xb5);
1435 if ((polarity
& 0x03) == 0x01) {
1436 stdi
->hs_pol
= polarity
& 0x10
1437 ? (polarity
& 0x08 ? '+' : '-') : 'x';
1438 stdi
->vs_pol
= polarity
& 0x40
1439 ? (polarity
& 0x20 ? '+' : '-') : 'x';
1445 polarity
= hdmi_read(sd
, 0x05);
1446 stdi
->hs_pol
= polarity
& 0x20 ? '+' : '-';
1447 stdi
->vs_pol
= polarity
& 0x10 ? '+' : '-';
1450 if (no_lock_stdi(sd
) || no_lock_sspd(sd
)) {
1451 v4l2_dbg(2, debug
, sd
,
1452 "%s: signal lost during readout of STDI/SSPD\n", __func__
);
1456 if (stdi
->lcf
< 239 || stdi
->bl
< 8 || stdi
->bl
== 0x3fff) {
1457 v4l2_dbg(2, debug
, sd
, "%s: invalid signal\n", __func__
);
1458 memset(stdi
, 0, sizeof(struct stdi_readback
));
1462 v4l2_dbg(2, debug
, sd
,
1463 "%s: lcf (frame height - 1) = %d, bl = %d, lcvs (vsync) = %d, %chsync, %cvsync, %s\n",
1464 __func__
, stdi
->lcf
, stdi
->bl
, stdi
->lcvs
,
1465 stdi
->hs_pol
, stdi
->vs_pol
,
1466 stdi
->interlaced
? "interlaced" : "progressive");
1471 static int adv76xx_enum_dv_timings(struct v4l2_subdev
*sd
,
1472 struct v4l2_enum_dv_timings
*timings
)
1474 struct adv76xx_state
*state
= to_state(sd
);
1476 if (timings
->pad
>= state
->source_pad
)
1479 return v4l2_enum_dv_timings_cap(timings
,
1480 adv76xx_get_dv_timings_cap(sd
, timings
->pad
),
1481 adv76xx_check_dv_timings
, NULL
);
1484 static int adv76xx_dv_timings_cap(struct v4l2_subdev
*sd
,
1485 struct v4l2_dv_timings_cap
*cap
)
1487 struct adv76xx_state
*state
= to_state(sd
);
1488 unsigned int pad
= cap
->pad
;
1490 if (cap
->pad
>= state
->source_pad
)
1493 *cap
= *adv76xx_get_dv_timings_cap(sd
, pad
);
1499 /* Fill the optional fields .standards and .flags in struct v4l2_dv_timings
1500 if the format is listed in adv76xx_timings[] */
1501 static void adv76xx_fill_optional_dv_timings_fields(struct v4l2_subdev
*sd
,
1502 struct v4l2_dv_timings
*timings
)
1504 v4l2_find_dv_timings_cap(timings
, adv76xx_get_dv_timings_cap(sd
, -1),
1505 is_digital_input(sd
) ? 250000 : 1000000,
1506 adv76xx_check_dv_timings
, NULL
);
1509 static unsigned int adv7604_read_hdmi_pixelclock(struct v4l2_subdev
*sd
)
1514 a
= hdmi_read(sd
, 0x06);
1515 b
= hdmi_read(sd
, 0x3b);
1518 freq
= a
* 1000000 + ((b
& 0x30) >> 4) * 250000;
1521 /* adjust for deep color mode */
1522 unsigned bits_per_channel
= ((hdmi_read(sd
, 0x0b) & 0x60) >> 4) + 8;
1524 freq
= freq
* 8 / bits_per_channel
;
1530 static unsigned int adv7611_read_hdmi_pixelclock(struct v4l2_subdev
*sd
)
1534 a
= hdmi_read(sd
, 0x51);
1535 b
= hdmi_read(sd
, 0x52);
1538 return ((a
<< 1) | (b
>> 7)) * 1000000 + (b
& 0x7f) * 1000000 / 128;
1541 static int adv76xx_query_dv_timings(struct v4l2_subdev
*sd
,
1542 struct v4l2_dv_timings
*timings
)
1544 struct adv76xx_state
*state
= to_state(sd
);
1545 const struct adv76xx_chip_info
*info
= state
->info
;
1546 struct v4l2_bt_timings
*bt
= &timings
->bt
;
1547 struct stdi_readback stdi
;
1552 memset(timings
, 0, sizeof(struct v4l2_dv_timings
));
1554 if (no_signal(sd
)) {
1555 state
->restart_stdi_once
= true;
1556 v4l2_dbg(1, debug
, sd
, "%s: no valid signal\n", __func__
);
1561 if (read_stdi(sd
, &stdi
)) {
1562 v4l2_dbg(1, debug
, sd
, "%s: STDI/SSPD not locked\n", __func__
);
1565 bt
->interlaced
= stdi
.interlaced
?
1566 V4L2_DV_INTERLACED
: V4L2_DV_PROGRESSIVE
;
1568 if (is_digital_input(sd
)) {
1569 timings
->type
= V4L2_DV_BT_656_1120
;
1571 bt
->width
= hdmi_read16(sd
, 0x07, info
->linewidth_mask
);
1572 bt
->height
= hdmi_read16(sd
, 0x09, info
->field0_height_mask
);
1573 bt
->pixelclock
= info
->read_hdmi_pixelclock(sd
);
1574 bt
->hfrontporch
= hdmi_read16(sd
, 0x20, info
->hfrontporch_mask
);
1575 bt
->hsync
= hdmi_read16(sd
, 0x22, info
->hsync_mask
);
1576 bt
->hbackporch
= hdmi_read16(sd
, 0x24, info
->hbackporch_mask
);
1577 bt
->vfrontporch
= hdmi_read16(sd
, 0x2a,
1578 info
->field0_vfrontporch_mask
) / 2;
1579 bt
->vsync
= hdmi_read16(sd
, 0x2e, info
->field0_vsync_mask
) / 2;
1580 bt
->vbackporch
= hdmi_read16(sd
, 0x32,
1581 info
->field0_vbackporch_mask
) / 2;
1582 bt
->polarities
= ((hdmi_read(sd
, 0x05) & 0x10) ? V4L2_DV_VSYNC_POS_POL
: 0) |
1583 ((hdmi_read(sd
, 0x05) & 0x20) ? V4L2_DV_HSYNC_POS_POL
: 0);
1584 if (bt
->interlaced
== V4L2_DV_INTERLACED
) {
1585 bt
->height
+= hdmi_read16(sd
, 0x0b,
1586 info
->field1_height_mask
);
1587 bt
->il_vfrontporch
= hdmi_read16(sd
, 0x2c,
1588 info
->field1_vfrontporch_mask
) / 2;
1589 bt
->il_vsync
= hdmi_read16(sd
, 0x30,
1590 info
->field1_vsync_mask
) / 2;
1591 bt
->il_vbackporch
= hdmi_read16(sd
, 0x34,
1592 info
->field1_vbackporch_mask
) / 2;
1594 adv76xx_fill_optional_dv_timings_fields(sd
, timings
);
1597 * Since LCVS values are inaccurate [REF_03, p. 275-276],
1598 * stdi2dv_timings() is called with lcvs +-1 if the first attempt fails.
1600 if (!stdi2dv_timings(sd
, &stdi
, timings
))
1603 v4l2_dbg(1, debug
, sd
, "%s: lcvs + 1 = %d\n", __func__
, stdi
.lcvs
);
1604 if (!stdi2dv_timings(sd
, &stdi
, timings
))
1607 v4l2_dbg(1, debug
, sd
, "%s: lcvs - 1 = %d\n", __func__
, stdi
.lcvs
);
1608 if (stdi2dv_timings(sd
, &stdi
, timings
)) {
1610 * The STDI block may measure wrong values, especially
1611 * for lcvs and lcf. If the driver can not find any
1612 * valid timing, the STDI block is restarted to measure
1613 * the video timings again. The function will return an
1614 * error, but the restart of STDI will generate a new
1615 * STDI interrupt and the format detection process will
1618 if (state
->restart_stdi_once
) {
1619 v4l2_dbg(1, debug
, sd
, "%s: restart STDI\n", __func__
);
1620 /* TODO restart STDI for Sync Channel 2 */
1621 /* enter one-shot mode */
1622 cp_write_clr_set(sd
, 0x86, 0x06, 0x00);
1623 /* trigger STDI restart */
1624 cp_write_clr_set(sd
, 0x86, 0x06, 0x04);
1625 /* reset to continuous mode */
1626 cp_write_clr_set(sd
, 0x86, 0x06, 0x02);
1627 state
->restart_stdi_once
= false;
1630 v4l2_dbg(1, debug
, sd
, "%s: format not supported\n", __func__
);
1633 state
->restart_stdi_once
= true;
1637 if (no_signal(sd
)) {
1638 v4l2_dbg(1, debug
, sd
, "%s: signal lost during readout\n", __func__
);
1639 memset(timings
, 0, sizeof(struct v4l2_dv_timings
));
1643 if ((is_analog_input(sd
) && bt
->pixelclock
> 170000000) ||
1644 (is_digital_input(sd
) && bt
->pixelclock
> 225000000)) {
1645 v4l2_dbg(1, debug
, sd
, "%s: pixelclock out of range %d\n",
1646 __func__
, (u32
)bt
->pixelclock
);
1651 v4l2_print_dv_timings(sd
->name
, "adv76xx_query_dv_timings: ",
1657 static int adv76xx_s_dv_timings(struct v4l2_subdev
*sd
,
1658 struct v4l2_dv_timings
*timings
)
1660 struct adv76xx_state
*state
= to_state(sd
);
1661 struct v4l2_bt_timings
*bt
;
1667 if (v4l2_match_dv_timings(&state
->timings
, timings
, 0, false)) {
1668 v4l2_dbg(1, debug
, sd
, "%s: no change\n", __func__
);
1674 if (!v4l2_valid_dv_timings(timings
, adv76xx_get_dv_timings_cap(sd
, -1),
1675 adv76xx_check_dv_timings
, NULL
))
1678 adv76xx_fill_optional_dv_timings_fields(sd
, timings
);
1680 state
->timings
= *timings
;
1682 cp_write_clr_set(sd
, 0x91, 0x40, bt
->interlaced
? 0x40 : 0x00);
1684 /* Use prim_mode and vid_std when available */
1685 err
= configure_predefined_video_timings(sd
, timings
);
1687 /* custom settings when the video format
1688 does not have prim_mode/vid_std */
1689 configure_custom_video_timings(sd
, bt
);
1692 set_rgb_quantization_range(sd
);
1695 v4l2_print_dv_timings(sd
->name
, "adv76xx_s_dv_timings: ",
1700 static int adv76xx_g_dv_timings(struct v4l2_subdev
*sd
,
1701 struct v4l2_dv_timings
*timings
)
1703 struct adv76xx_state
*state
= to_state(sd
);
1705 *timings
= state
->timings
;
1709 static void adv7604_set_termination(struct v4l2_subdev
*sd
, bool enable
)
1711 hdmi_write(sd
, 0x01, enable
? 0x00 : 0x78);
1714 static void adv7611_set_termination(struct v4l2_subdev
*sd
, bool enable
)
1716 hdmi_write(sd
, 0x83, enable
? 0xfe : 0xff);
1719 static void enable_input(struct v4l2_subdev
*sd
)
1721 struct adv76xx_state
*state
= to_state(sd
);
1723 if (is_analog_input(sd
)) {
1724 io_write(sd
, 0x15, 0xb0); /* Disable Tristate of Pins (no audio) */
1725 } else if (is_digital_input(sd
)) {
1726 hdmi_write_clr_set(sd
, 0x00, 0x03, state
->selected_input
);
1727 state
->info
->set_termination(sd
, true);
1728 io_write(sd
, 0x15, 0xa0); /* Disable Tristate of Pins */
1729 hdmi_write_clr_set(sd
, 0x1a, 0x10, 0x00); /* Unmute audio */
1731 v4l2_dbg(2, debug
, sd
, "%s: Unknown port %d selected\n",
1732 __func__
, state
->selected_input
);
1736 static void disable_input(struct v4l2_subdev
*sd
)
1738 struct adv76xx_state
*state
= to_state(sd
);
1740 hdmi_write_clr_set(sd
, 0x1a, 0x10, 0x10); /* Mute audio */
1741 msleep(16); /* 512 samples with >= 32 kHz sample rate [REF_03, c. 7.16.10] */
1742 io_write(sd
, 0x15, 0xbe); /* Tristate all outputs from video core */
1743 state
->info
->set_termination(sd
, false);
1746 static void select_input(struct v4l2_subdev
*sd
)
1748 struct adv76xx_state
*state
= to_state(sd
);
1749 const struct adv76xx_chip_info
*info
= state
->info
;
1751 if (is_analog_input(sd
)) {
1752 adv76xx_write_reg_seq(sd
, info
->recommended_settings
[0]);
1754 afe_write(sd
, 0x00, 0x08); /* power up ADC */
1755 afe_write(sd
, 0x01, 0x06); /* power up Analog Front End */
1756 afe_write(sd
, 0xc8, 0x00); /* phase control */
1757 } else if (is_digital_input(sd
)) {
1758 hdmi_write(sd
, 0x00, state
->selected_input
& 0x03);
1760 adv76xx_write_reg_seq(sd
, info
->recommended_settings
[1]);
1762 if (adv76xx_has_afe(state
)) {
1763 afe_write(sd
, 0x00, 0xff); /* power down ADC */
1764 afe_write(sd
, 0x01, 0xfe); /* power down Analog Front End */
1765 afe_write(sd
, 0xc8, 0x40); /* phase control */
1768 cp_write(sd
, 0x3e, 0x00); /* CP core pre-gain control */
1769 cp_write(sd
, 0xc3, 0x39); /* CP coast control. Graphics mode */
1770 cp_write(sd
, 0x40, 0x80); /* CP core pre-gain control. Graphics mode */
1772 v4l2_dbg(2, debug
, sd
, "%s: Unknown port %d selected\n",
1773 __func__
, state
->selected_input
);
1777 static int adv76xx_s_routing(struct v4l2_subdev
*sd
,
1778 u32 input
, u32 output
, u32 config
)
1780 struct adv76xx_state
*state
= to_state(sd
);
1782 v4l2_dbg(2, debug
, sd
, "%s: input %d, selected input %d",
1783 __func__
, input
, state
->selected_input
);
1785 if (input
== state
->selected_input
)
1788 if (input
> state
->info
->max_port
)
1791 state
->selected_input
= input
;
1797 v4l2_subdev_notify_event(sd
, &adv76xx_ev_fmt
);
1802 static int adv76xx_enum_mbus_code(struct v4l2_subdev
*sd
,
1803 struct v4l2_subdev_pad_config
*cfg
,
1804 struct v4l2_subdev_mbus_code_enum
*code
)
1806 struct adv76xx_state
*state
= to_state(sd
);
1808 if (code
->index
>= state
->info
->nformats
)
1811 code
->code
= state
->info
->formats
[code
->index
].code
;
1816 static void adv76xx_fill_format(struct adv76xx_state
*state
,
1817 struct v4l2_mbus_framefmt
*format
)
1819 memset(format
, 0, sizeof(*format
));
1821 format
->width
= state
->timings
.bt
.width
;
1822 format
->height
= state
->timings
.bt
.height
;
1823 format
->field
= V4L2_FIELD_NONE
;
1824 format
->colorspace
= V4L2_COLORSPACE_SRGB
;
1826 if (state
->timings
.bt
.flags
& V4L2_DV_FL_IS_CE_VIDEO
)
1827 format
->colorspace
= (state
->timings
.bt
.height
<= 576) ?
1828 V4L2_COLORSPACE_SMPTE170M
: V4L2_COLORSPACE_REC709
;
1832 * Compute the op_ch_sel value required to obtain on the bus the component order
1833 * corresponding to the selected format taking into account bus reordering
1834 * applied by the board at the output of the device.
1836 * The following table gives the op_ch_value from the format component order
1837 * (expressed as op_ch_sel value in column) and the bus reordering (expressed as
1838 * adv76xx_bus_order value in row).
1840 * | GBR(0) GRB(1) BGR(2) RGB(3) BRG(4) RBG(5)
1841 * ----------+-------------------------------------------------
1842 * RGB (NOP) | GBR GRB BGR RGB BRG RBG
1843 * GRB (1-2) | BGR RGB GBR GRB RBG BRG
1844 * RBG (2-3) | GRB GBR BRG RBG BGR RGB
1845 * BGR (1-3) | RBG BRG RGB BGR GRB GBR
1846 * BRG (ROR) | BRG RBG GRB GBR RGB BGR
1847 * GBR (ROL) | RGB BGR RBG BRG GBR GRB
1849 static unsigned int adv76xx_op_ch_sel(struct adv76xx_state
*state
)
1851 #define _SEL(a,b,c,d,e,f) { \
1852 ADV76XX_OP_CH_SEL_##a, ADV76XX_OP_CH_SEL_##b, ADV76XX_OP_CH_SEL_##c, \
1853 ADV76XX_OP_CH_SEL_##d, ADV76XX_OP_CH_SEL_##e, ADV76XX_OP_CH_SEL_##f }
1854 #define _BUS(x) [ADV7604_BUS_ORDER_##x]
1856 static const unsigned int op_ch_sel
[6][6] = {
1857 _BUS(RGB
) /* NOP */ = _SEL(GBR
, GRB
, BGR
, RGB
, BRG
, RBG
),
1858 _BUS(GRB
) /* 1-2 */ = _SEL(BGR
, RGB
, GBR
, GRB
, RBG
, BRG
),
1859 _BUS(RBG
) /* 2-3 */ = _SEL(GRB
, GBR
, BRG
, RBG
, BGR
, RGB
),
1860 _BUS(BGR
) /* 1-3 */ = _SEL(RBG
, BRG
, RGB
, BGR
, GRB
, GBR
),
1861 _BUS(BRG
) /* ROR */ = _SEL(BRG
, RBG
, GRB
, GBR
, RGB
, BGR
),
1862 _BUS(GBR
) /* ROL */ = _SEL(RGB
, BGR
, RBG
, BRG
, GBR
, GRB
),
1865 return op_ch_sel
[state
->pdata
.bus_order
][state
->format
->op_ch_sel
>> 5];
1868 static void adv76xx_setup_format(struct adv76xx_state
*state
)
1870 struct v4l2_subdev
*sd
= &state
->sd
;
1872 io_write_clr_set(sd
, 0x02, 0x02,
1873 state
->format
->rgb_out
? ADV76XX_RGB_OUT
: 0);
1874 io_write(sd
, 0x03, state
->format
->op_format_sel
|
1875 state
->pdata
.op_format_mode_sel
);
1876 io_write_clr_set(sd
, 0x04, 0xe0, adv76xx_op_ch_sel(state
));
1877 io_write_clr_set(sd
, 0x05, 0x01,
1878 state
->format
->swap_cb_cr
? ADV76XX_OP_SWAP_CB_CR
: 0);
1879 set_rgb_quantization_range(sd
);
1882 static int adv76xx_get_format(struct v4l2_subdev
*sd
,
1883 struct v4l2_subdev_pad_config
*cfg
,
1884 struct v4l2_subdev_format
*format
)
1886 struct adv76xx_state
*state
= to_state(sd
);
1888 if (format
->pad
!= state
->source_pad
)
1891 adv76xx_fill_format(state
, &format
->format
);
1893 if (format
->which
== V4L2_SUBDEV_FORMAT_TRY
) {
1894 struct v4l2_mbus_framefmt
*fmt
;
1896 fmt
= v4l2_subdev_get_try_format(sd
, cfg
, format
->pad
);
1897 format
->format
.code
= fmt
->code
;
1899 format
->format
.code
= state
->format
->code
;
1905 static int adv76xx_get_selection(struct v4l2_subdev
*sd
,
1906 struct v4l2_subdev_pad_config
*cfg
,
1907 struct v4l2_subdev_selection
*sel
)
1909 struct adv76xx_state
*state
= to_state(sd
);
1911 if (sel
->which
!= V4L2_SUBDEV_FORMAT_ACTIVE
)
1913 /* Only CROP, CROP_DEFAULT and CROP_BOUNDS are supported */
1914 if (sel
->target
> V4L2_SEL_TGT_CROP_BOUNDS
)
1919 sel
->r
.width
= state
->timings
.bt
.width
;
1920 sel
->r
.height
= state
->timings
.bt
.height
;
1925 static int adv76xx_set_format(struct v4l2_subdev
*sd
,
1926 struct v4l2_subdev_pad_config
*cfg
,
1927 struct v4l2_subdev_format
*format
)
1929 struct adv76xx_state
*state
= to_state(sd
);
1930 const struct adv76xx_format_info
*info
;
1932 if (format
->pad
!= state
->source_pad
)
1935 info
= adv76xx_format_info(state
, format
->format
.code
);
1937 info
= adv76xx_format_info(state
, MEDIA_BUS_FMT_YUYV8_2X8
);
1939 adv76xx_fill_format(state
, &format
->format
);
1940 format
->format
.code
= info
->code
;
1942 if (format
->which
== V4L2_SUBDEV_FORMAT_TRY
) {
1943 struct v4l2_mbus_framefmt
*fmt
;
1945 fmt
= v4l2_subdev_get_try_format(sd
, cfg
, format
->pad
);
1946 fmt
->code
= format
->format
.code
;
1948 state
->format
= info
;
1949 adv76xx_setup_format(state
);
1955 #if IS_ENABLED(CONFIG_VIDEO_ADV7604_CEC)
1956 static void adv76xx_cec_tx_raw_status(struct v4l2_subdev
*sd
, u8 tx_raw_status
)
1958 struct adv76xx_state
*state
= to_state(sd
);
1960 if ((cec_read(sd
, 0x11) & 0x01) == 0) {
1961 v4l2_dbg(1, debug
, sd
, "%s: tx raw: tx disabled\n", __func__
);
1965 if (tx_raw_status
& 0x02) {
1966 v4l2_dbg(1, debug
, sd
, "%s: tx raw: arbitration lost\n",
1968 cec_transmit_done(state
->cec_adap
, CEC_TX_STATUS_ARB_LOST
,
1971 if (tx_raw_status
& 0x04) {
1976 v4l2_dbg(1, debug
, sd
, "%s: tx raw: retry failed\n", __func__
);
1978 * We set this status bit since this hardware performs
1981 status
= CEC_TX_STATUS_MAX_RETRIES
;
1982 nack_cnt
= cec_read(sd
, 0x14) & 0xf;
1984 status
|= CEC_TX_STATUS_NACK
;
1985 low_drive_cnt
= cec_read(sd
, 0x14) >> 4;
1987 status
|= CEC_TX_STATUS_LOW_DRIVE
;
1988 cec_transmit_done(state
->cec_adap
, status
,
1989 0, nack_cnt
, low_drive_cnt
, 0);
1992 if (tx_raw_status
& 0x01) {
1993 v4l2_dbg(1, debug
, sd
, "%s: tx raw: ready ok\n", __func__
);
1994 cec_transmit_done(state
->cec_adap
, CEC_TX_STATUS_OK
, 0, 0, 0, 0);
1999 static void adv76xx_cec_isr(struct v4l2_subdev
*sd
, bool *handled
)
2001 struct adv76xx_state
*state
= to_state(sd
);
2004 /* cec controller */
2005 cec_irq
= io_read(sd
, 0x4d) & 0x0f;
2009 v4l2_dbg(1, debug
, sd
, "%s: cec: irq 0x%x\n", __func__
, cec_irq
);
2010 adv76xx_cec_tx_raw_status(sd
, cec_irq
);
2011 if (cec_irq
& 0x08) {
2014 msg
.len
= cec_read(sd
, 0x25) & 0x1f;
2021 for (i
= 0; i
< msg
.len
; i
++)
2022 msg
.msg
[i
] = cec_read(sd
, i
+ 0x15);
2023 cec_write(sd
, 0x26, 0x01); /* re-enable rx */
2024 cec_received_msg(state
->cec_adap
, &msg
);
2028 /* note: the bit order is swapped between 0x4d and 0x4e */
2029 cec_irq
= ((cec_irq
& 0x08) >> 3) | ((cec_irq
& 0x04) >> 1) |
2030 ((cec_irq
& 0x02) << 1) | ((cec_irq
& 0x01) << 3);
2031 io_write(sd
, 0x4e, cec_irq
);
2037 static int adv76xx_cec_adap_enable(struct cec_adapter
*adap
, bool enable
)
2039 struct adv76xx_state
*state
= adap
->priv
;
2040 struct v4l2_subdev
*sd
= &state
->sd
;
2042 if (!state
->cec_enabled_adap
&& enable
) {
2043 cec_write_clr_set(sd
, 0x2a, 0x01, 0x01); /* power up cec */
2044 cec_write(sd
, 0x2c, 0x01); /* cec soft reset */
2045 cec_write_clr_set(sd
, 0x11, 0x01, 0); /* initially disable tx */
2048 /* tx: arbitration lost */
2049 /* tx: retry timeout */
2051 io_write_clr_set(sd
, 0x50, 0x0f, 0x0f);
2052 cec_write(sd
, 0x26, 0x01); /* enable rx */
2053 } else if (state
->cec_enabled_adap
&& !enable
) {
2054 /* disable cec interrupts */
2055 io_write_clr_set(sd
, 0x50, 0x0f, 0x00);
2056 /* disable address mask 1-3 */
2057 cec_write_clr_set(sd
, 0x27, 0x70, 0x00);
2058 /* power down cec section */
2059 cec_write_clr_set(sd
, 0x2a, 0x01, 0x00);
2060 state
->cec_valid_addrs
= 0;
2062 state
->cec_enabled_adap
= enable
;
2063 adv76xx_s_detect_tx_5v_ctrl(sd
);
2067 static int adv76xx_cec_adap_log_addr(struct cec_adapter
*adap
, u8 addr
)
2069 struct adv76xx_state
*state
= adap
->priv
;
2070 struct v4l2_subdev
*sd
= &state
->sd
;
2071 unsigned int i
, free_idx
= ADV76XX_MAX_ADDRS
;
2073 if (!state
->cec_enabled_adap
)
2074 return addr
== CEC_LOG_ADDR_INVALID
? 0 : -EIO
;
2076 if (addr
== CEC_LOG_ADDR_INVALID
) {
2077 cec_write_clr_set(sd
, 0x27, 0x70, 0);
2078 state
->cec_valid_addrs
= 0;
2082 for (i
= 0; i
< ADV76XX_MAX_ADDRS
; i
++) {
2083 bool is_valid
= state
->cec_valid_addrs
& (1 << i
);
2085 if (free_idx
== ADV76XX_MAX_ADDRS
&& !is_valid
)
2087 if (is_valid
&& state
->cec_addr
[i
] == addr
)
2090 if (i
== ADV76XX_MAX_ADDRS
) {
2092 if (i
== ADV76XX_MAX_ADDRS
)
2095 state
->cec_addr
[i
] = addr
;
2096 state
->cec_valid_addrs
|= 1 << i
;
2100 /* enable address mask 0 */
2101 cec_write_clr_set(sd
, 0x27, 0x10, 0x10);
2102 /* set address for mask 0 */
2103 cec_write_clr_set(sd
, 0x28, 0x0f, addr
);
2106 /* enable address mask 1 */
2107 cec_write_clr_set(sd
, 0x27, 0x20, 0x20);
2108 /* set address for mask 1 */
2109 cec_write_clr_set(sd
, 0x28, 0xf0, addr
<< 4);
2112 /* enable address mask 2 */
2113 cec_write_clr_set(sd
, 0x27, 0x40, 0x40);
2114 /* set address for mask 1 */
2115 cec_write_clr_set(sd
, 0x29, 0x0f, addr
);
2121 static int adv76xx_cec_adap_transmit(struct cec_adapter
*adap
, u8 attempts
,
2122 u32 signal_free_time
, struct cec_msg
*msg
)
2124 struct adv76xx_state
*state
= adap
->priv
;
2125 struct v4l2_subdev
*sd
= &state
->sd
;
2130 * The number of retries is the number of attempts - 1, but retry
2131 * at least once. It's not clear if a value of 0 is allowed, so
2132 * let's do at least one retry.
2134 cec_write_clr_set(sd
, 0x12, 0x70, max(1, attempts
- 1) << 4);
2137 v4l2_err(sd
, "%s: len exceeded 16 (%d)\n", __func__
, len
);
2142 for (i
= 0; i
< len
; i
++)
2143 cec_write(sd
, i
, msg
->msg
[i
]);
2145 /* set length (data + header) */
2146 cec_write(sd
, 0x10, len
);
2147 /* start transmit, enable tx */
2148 cec_write(sd
, 0x11, 0x01);
2152 static const struct cec_adap_ops adv76xx_cec_adap_ops
= {
2153 .adap_enable
= adv76xx_cec_adap_enable
,
2154 .adap_log_addr
= adv76xx_cec_adap_log_addr
,
2155 .adap_transmit
= adv76xx_cec_adap_transmit
,
2159 static int adv76xx_isr(struct v4l2_subdev
*sd
, u32 status
, bool *handled
)
2161 struct adv76xx_state
*state
= to_state(sd
);
2162 const struct adv76xx_chip_info
*info
= state
->info
;
2163 const u8 irq_reg_0x43
= io_read(sd
, 0x43);
2164 const u8 irq_reg_0x6b
= io_read(sd
, 0x6b);
2165 const u8 irq_reg_0x70
= io_read(sd
, 0x70);
2166 u8 fmt_change_digital
;
2171 io_write(sd
, 0x44, irq_reg_0x43
);
2173 io_write(sd
, 0x71, irq_reg_0x70
);
2175 io_write(sd
, 0x6c, irq_reg_0x6b
);
2177 v4l2_dbg(2, debug
, sd
, "%s: ", __func__
);
2180 fmt_change
= irq_reg_0x43
& 0x98;
2181 fmt_change_digital
= is_digital_input(sd
)
2182 ? irq_reg_0x6b
& info
->fmt_change_digital_mask
2185 if (fmt_change
|| fmt_change_digital
) {
2186 v4l2_dbg(1, debug
, sd
,
2187 "%s: fmt_change = 0x%x, fmt_change_digital = 0x%x\n",
2188 __func__
, fmt_change
, fmt_change_digital
);
2190 v4l2_subdev_notify_event(sd
, &adv76xx_ev_fmt
);
2196 if (irq_reg_0x6b
& 0x01) {
2197 v4l2_dbg(1, debug
, sd
, "%s: irq %s mode\n", __func__
,
2198 (io_read(sd
, 0x6a) & 0x01) ? "HDMI" : "DVI");
2199 set_rgb_quantization_range(sd
);
2204 #if IS_ENABLED(CONFIG_VIDEO_ADV7604_CEC)
2206 adv76xx_cec_isr(sd
, handled
);
2210 tx_5v
= irq_reg_0x70
& info
->cable_det_mask
;
2212 v4l2_dbg(1, debug
, sd
, "%s: tx_5v: 0x%x\n", __func__
, tx_5v
);
2213 adv76xx_s_detect_tx_5v_ctrl(sd
);
2220 static int adv76xx_get_edid(struct v4l2_subdev
*sd
, struct v4l2_edid
*edid
)
2222 struct adv76xx_state
*state
= to_state(sd
);
2225 memset(edid
->reserved
, 0, sizeof(edid
->reserved
));
2227 switch (edid
->pad
) {
2228 case ADV76XX_PAD_HDMI_PORT_A
:
2229 case ADV7604_PAD_HDMI_PORT_B
:
2230 case ADV7604_PAD_HDMI_PORT_C
:
2231 case ADV7604_PAD_HDMI_PORT_D
:
2232 if (state
->edid
.present
& (1 << edid
->pad
))
2233 data
= state
->edid
.edid
;
2239 if (edid
->start_block
== 0 && edid
->blocks
== 0) {
2240 edid
->blocks
= data
? state
->edid
.blocks
: 0;
2247 if (edid
->start_block
>= state
->edid
.blocks
)
2250 if (edid
->start_block
+ edid
->blocks
> state
->edid
.blocks
)
2251 edid
->blocks
= state
->edid
.blocks
- edid
->start_block
;
2253 memcpy(edid
->edid
, data
+ edid
->start_block
* 128, edid
->blocks
* 128);
2258 static int adv76xx_set_edid(struct v4l2_subdev
*sd
, struct v4l2_edid
*edid
)
2260 struct adv76xx_state
*state
= to_state(sd
);
2261 const struct adv76xx_chip_info
*info
= state
->info
;
2262 unsigned int spa_loc
;
2267 memset(edid
->reserved
, 0, sizeof(edid
->reserved
));
2269 if (edid
->pad
> ADV7604_PAD_HDMI_PORT_D
)
2271 if (edid
->start_block
!= 0)
2273 if (edid
->blocks
== 0) {
2274 /* Disable hotplug and I2C access to EDID RAM from DDC port */
2275 state
->edid
.present
&= ~(1 << edid
->pad
);
2276 adv76xx_set_hpd(state
, state
->edid
.present
);
2277 rep_write_clr_set(sd
, info
->edid_enable_reg
, 0x0f, state
->edid
.present
);
2279 /* Fall back to a 16:9 aspect ratio */
2280 state
->aspect_ratio
.numerator
= 16;
2281 state
->aspect_ratio
.denominator
= 9;
2283 if (!state
->edid
.present
)
2284 state
->edid
.blocks
= 0;
2286 v4l2_dbg(2, debug
, sd
, "%s: clear EDID pad %d, edid.present = 0x%x\n",
2287 __func__
, edid
->pad
, state
->edid
.present
);
2290 if (edid
->blocks
> 2) {
2294 pa
= cec_get_edid_phys_addr(edid
->edid
, edid
->blocks
* 128, &spa_loc
);
2295 err
= cec_phys_addr_validate(pa
, &pa
, NULL
);
2299 v4l2_dbg(2, debug
, sd
, "%s: write EDID pad %d, edid.present = 0x%x\n",
2300 __func__
, edid
->pad
, state
->edid
.present
);
2302 /* Disable hotplug and I2C access to EDID RAM from DDC port */
2303 cancel_delayed_work_sync(&state
->delayed_work_enable_hotplug
);
2304 adv76xx_set_hpd(state
, 0);
2305 rep_write_clr_set(sd
, info
->edid_enable_reg
, 0x0f, 0x00);
2308 * Return an error if no location of the source physical address
2314 switch (edid
->pad
) {
2315 case ADV76XX_PAD_HDMI_PORT_A
:
2316 state
->spa_port_a
[0] = edid
->edid
[spa_loc
];
2317 state
->spa_port_a
[1] = edid
->edid
[spa_loc
+ 1];
2319 case ADV7604_PAD_HDMI_PORT_B
:
2320 rep_write(sd
, 0x70, edid
->edid
[spa_loc
]);
2321 rep_write(sd
, 0x71, edid
->edid
[spa_loc
+ 1]);
2323 case ADV7604_PAD_HDMI_PORT_C
:
2324 rep_write(sd
, 0x72, edid
->edid
[spa_loc
]);
2325 rep_write(sd
, 0x73, edid
->edid
[spa_loc
+ 1]);
2327 case ADV7604_PAD_HDMI_PORT_D
:
2328 rep_write(sd
, 0x74, edid
->edid
[spa_loc
]);
2329 rep_write(sd
, 0x75, edid
->edid
[spa_loc
+ 1]);
2335 if (info
->type
== ADV7604
) {
2336 rep_write(sd
, 0x76, spa_loc
& 0xff);
2337 rep_write_clr_set(sd
, 0x77, 0x40, (spa_loc
& 0x100) >> 2);
2339 /* ADV7612 Software Manual Rev. A, p. 15 */
2340 rep_write(sd
, 0x70, spa_loc
& 0xff);
2341 rep_write_clr_set(sd
, 0x71, 0x01, (spa_loc
& 0x100) >> 8);
2344 edid
->edid
[spa_loc
] = state
->spa_port_a
[0];
2345 edid
->edid
[spa_loc
+ 1] = state
->spa_port_a
[1];
2347 memcpy(state
->edid
.edid
, edid
->edid
, 128 * edid
->blocks
);
2348 state
->edid
.blocks
= edid
->blocks
;
2349 state
->aspect_ratio
= v4l2_calc_aspect_ratio(edid
->edid
[0x15],
2351 state
->edid
.present
|= 1 << edid
->pad
;
2353 err
= edid_write_block(sd
, 128 * edid
->blocks
, state
->edid
.edid
);
2355 v4l2_err(sd
, "error %d writing edid pad %d\n", err
, edid
->pad
);
2359 /* adv76xx calculates the checksums and enables I2C access to internal
2360 EDID RAM from DDC port. */
2361 rep_write_clr_set(sd
, info
->edid_enable_reg
, 0x0f, state
->edid
.present
);
2363 for (i
= 0; i
< 1000; i
++) {
2364 if (rep_read(sd
, info
->edid_status_reg
) & state
->edid
.present
)
2369 v4l2_err(sd
, "error enabling edid (0x%x)\n", state
->edid
.present
);
2372 cec_s_phys_addr(state
->cec_adap
, pa
, false);
2374 /* enable hotplug after 100 ms */
2375 schedule_delayed_work(&state
->delayed_work_enable_hotplug
, HZ
/ 10);
2379 /*********** avi info frame CEA-861-E **************/
2381 static const struct adv76xx_cfg_read_infoframe adv76xx_cri
[] = {
2382 { "AVI", 0x01, 0xe0, 0x00 },
2383 { "Audio", 0x02, 0xe3, 0x1c },
2384 { "SDP", 0x04, 0xe6, 0x2a },
2385 { "Vendor", 0x10, 0xec, 0x54 }
2388 static int adv76xx_read_infoframe(struct v4l2_subdev
*sd
, int index
,
2389 union hdmi_infoframe
*frame
)
2395 if (!(io_read(sd
, 0x60) & adv76xx_cri
[index
].present_mask
)) {
2396 v4l2_info(sd
, "%s infoframe not received\n",
2397 adv76xx_cri
[index
].desc
);
2401 for (i
= 0; i
< 3; i
++)
2402 buffer
[i
] = infoframe_read(sd
,
2403 adv76xx_cri
[index
].head_addr
+ i
);
2405 len
= buffer
[2] + 1;
2407 if (len
+ 3 > sizeof(buffer
)) {
2408 v4l2_err(sd
, "%s: invalid %s infoframe length %d\n", __func__
,
2409 adv76xx_cri
[index
].desc
, len
);
2413 for (i
= 0; i
< len
; i
++)
2414 buffer
[i
+ 3] = infoframe_read(sd
,
2415 adv76xx_cri
[index
].payload_addr
+ i
);
2417 if (hdmi_infoframe_unpack(frame
, buffer
) < 0) {
2418 v4l2_err(sd
, "%s: unpack of %s infoframe failed\n", __func__
,
2419 adv76xx_cri
[index
].desc
);
2425 static void adv76xx_log_infoframes(struct v4l2_subdev
*sd
)
2430 v4l2_info(sd
, "receive DVI-D signal, no infoframes\n");
2434 for (i
= 0; i
< ARRAY_SIZE(adv76xx_cri
); i
++) {
2435 union hdmi_infoframe frame
;
2436 struct i2c_client
*client
= v4l2_get_subdevdata(sd
);
2438 if (adv76xx_read_infoframe(sd
, i
, &frame
))
2440 hdmi_infoframe_log(KERN_INFO
, &client
->dev
, &frame
);
2444 static int adv76xx_log_status(struct v4l2_subdev
*sd
)
2446 struct adv76xx_state
*state
= to_state(sd
);
2447 const struct adv76xx_chip_info
*info
= state
->info
;
2448 struct v4l2_dv_timings timings
;
2449 struct stdi_readback stdi
;
2450 u8 reg_io_0x02
= io_read(sd
, 0x02);
2454 static const char * const csc_coeff_sel_rb
[16] = {
2455 "bypassed", "YPbPr601 -> RGB", "reserved", "YPbPr709 -> RGB",
2456 "reserved", "RGB -> YPbPr601", "reserved", "RGB -> YPbPr709",
2457 "reserved", "YPbPr709 -> YPbPr601", "YPbPr601 -> YPbPr709",
2458 "reserved", "reserved", "reserved", "reserved", "manual"
2460 static const char * const input_color_space_txt
[16] = {
2461 "RGB limited range (16-235)", "RGB full range (0-255)",
2462 "YCbCr Bt.601 (16-235)", "YCbCr Bt.709 (16-235)",
2463 "xvYCC Bt.601", "xvYCC Bt.709",
2464 "YCbCr Bt.601 (0-255)", "YCbCr Bt.709 (0-255)",
2465 "invalid", "invalid", "invalid", "invalid", "invalid",
2466 "invalid", "invalid", "automatic"
2468 static const char * const hdmi_color_space_txt
[16] = {
2469 "RGB limited range (16-235)", "RGB full range (0-255)",
2470 "YCbCr Bt.601 (16-235)", "YCbCr Bt.709 (16-235)",
2471 "xvYCC Bt.601", "xvYCC Bt.709",
2472 "YCbCr Bt.601 (0-255)", "YCbCr Bt.709 (0-255)",
2473 "sYCC", "Adobe YCC 601", "AdobeRGB", "invalid", "invalid",
2474 "invalid", "invalid", "invalid"
2476 static const char * const rgb_quantization_range_txt
[] = {
2478 "RGB limited range (16-235)",
2479 "RGB full range (0-255)",
2481 static const char * const deep_color_mode_txt
[4] = {
2482 "8-bits per channel",
2483 "10-bits per channel",
2484 "12-bits per channel",
2485 "16-bits per channel (not supported)"
2488 v4l2_info(sd
, "-----Chip status-----\n");
2489 v4l2_info(sd
, "Chip power: %s\n", no_power(sd
) ? "off" : "on");
2490 edid_enabled
= rep_read(sd
, info
->edid_status_reg
);
2491 v4l2_info(sd
, "EDID enabled port A: %s, B: %s, C: %s, D: %s\n",
2492 ((edid_enabled
& 0x01) ? "Yes" : "No"),
2493 ((edid_enabled
& 0x02) ? "Yes" : "No"),
2494 ((edid_enabled
& 0x04) ? "Yes" : "No"),
2495 ((edid_enabled
& 0x08) ? "Yes" : "No"));
2496 v4l2_info(sd
, "CEC: %s\n", state
->cec_enabled_adap
?
2497 "enabled" : "disabled");
2498 if (state
->cec_enabled_adap
) {
2501 for (i
= 0; i
< ADV76XX_MAX_ADDRS
; i
++) {
2502 bool is_valid
= state
->cec_valid_addrs
& (1 << i
);
2505 v4l2_info(sd
, "CEC Logical Address: 0x%x\n",
2506 state
->cec_addr
[i
]);
2510 v4l2_info(sd
, "-----Signal status-----\n");
2511 cable_det
= info
->read_cable_det(sd
);
2512 v4l2_info(sd
, "Cable detected (+5V power) port A: %s, B: %s, C: %s, D: %s\n",
2513 ((cable_det
& 0x01) ? "Yes" : "No"),
2514 ((cable_det
& 0x02) ? "Yes" : "No"),
2515 ((cable_det
& 0x04) ? "Yes" : "No"),
2516 ((cable_det
& 0x08) ? "Yes" : "No"));
2517 v4l2_info(sd
, "TMDS signal detected: %s\n",
2518 no_signal_tmds(sd
) ? "false" : "true");
2519 v4l2_info(sd
, "TMDS signal locked: %s\n",
2520 no_lock_tmds(sd
) ? "false" : "true");
2521 v4l2_info(sd
, "SSPD locked: %s\n", no_lock_sspd(sd
) ? "false" : "true");
2522 v4l2_info(sd
, "STDI locked: %s\n", no_lock_stdi(sd
) ? "false" : "true");
2523 v4l2_info(sd
, "CP locked: %s\n", no_lock_cp(sd
) ? "false" : "true");
2524 v4l2_info(sd
, "CP free run: %s\n",
2525 (in_free_run(sd
)) ? "on" : "off");
2526 v4l2_info(sd
, "Prim-mode = 0x%x, video std = 0x%x, v_freq = 0x%x\n",
2527 io_read(sd
, 0x01) & 0x0f, io_read(sd
, 0x00) & 0x3f,
2528 (io_read(sd
, 0x01) & 0x70) >> 4);
2530 v4l2_info(sd
, "-----Video Timings-----\n");
2531 if (read_stdi(sd
, &stdi
))
2532 v4l2_info(sd
, "STDI: not locked\n");
2534 v4l2_info(sd
, "STDI: lcf (frame height - 1) = %d, bl = %d, lcvs (vsync) = %d, %s, %chsync, %cvsync\n",
2535 stdi
.lcf
, stdi
.bl
, stdi
.lcvs
,
2536 stdi
.interlaced
? "interlaced" : "progressive",
2537 stdi
.hs_pol
, stdi
.vs_pol
);
2538 if (adv76xx_query_dv_timings(sd
, &timings
))
2539 v4l2_info(sd
, "No video detected\n");
2541 v4l2_print_dv_timings(sd
->name
, "Detected format: ",
2543 v4l2_print_dv_timings(sd
->name
, "Configured format: ",
2544 &state
->timings
, true);
2549 v4l2_info(sd
, "-----Color space-----\n");
2550 v4l2_info(sd
, "RGB quantization range ctrl: %s\n",
2551 rgb_quantization_range_txt
[state
->rgb_quantization_range
]);
2552 v4l2_info(sd
, "Input color space: %s\n",
2553 input_color_space_txt
[reg_io_0x02
>> 4]);
2554 v4l2_info(sd
, "Output color space: %s %s, alt-gamma %s\n",
2555 (reg_io_0x02
& 0x02) ? "RGB" : "YCbCr",
2556 (((reg_io_0x02
>> 2) & 0x01) ^ (reg_io_0x02
& 0x01)) ?
2557 "(16-235)" : "(0-255)",
2558 (reg_io_0x02
& 0x08) ? "enabled" : "disabled");
2559 v4l2_info(sd
, "Color space conversion: %s\n",
2560 csc_coeff_sel_rb
[cp_read(sd
, info
->cp_csc
) >> 4]);
2562 if (!is_digital_input(sd
))
2565 v4l2_info(sd
, "-----%s status-----\n", is_hdmi(sd
) ? "HDMI" : "DVI-D");
2566 v4l2_info(sd
, "Digital video port selected: %c\n",
2567 (hdmi_read(sd
, 0x00) & 0x03) + 'A');
2568 v4l2_info(sd
, "HDCP encrypted content: %s\n",
2569 (hdmi_read(sd
, 0x05) & 0x40) ? "true" : "false");
2570 v4l2_info(sd
, "HDCP keys read: %s%s\n",
2571 (hdmi_read(sd
, 0x04) & 0x20) ? "yes" : "no",
2572 (hdmi_read(sd
, 0x04) & 0x10) ? "ERROR" : "");
2574 bool audio_pll_locked
= hdmi_read(sd
, 0x04) & 0x01;
2575 bool audio_sample_packet_detect
= hdmi_read(sd
, 0x18) & 0x01;
2576 bool audio_mute
= io_read(sd
, 0x65) & 0x40;
2578 v4l2_info(sd
, "Audio: pll %s, samples %s, %s\n",
2579 audio_pll_locked
? "locked" : "not locked",
2580 audio_sample_packet_detect
? "detected" : "not detected",
2581 audio_mute
? "muted" : "enabled");
2582 if (audio_pll_locked
&& audio_sample_packet_detect
) {
2583 v4l2_info(sd
, "Audio format: %s\n",
2584 (hdmi_read(sd
, 0x07) & 0x20) ? "multi-channel" : "stereo");
2586 v4l2_info(sd
, "Audio CTS: %u\n", (hdmi_read(sd
, 0x5b) << 12) +
2587 (hdmi_read(sd
, 0x5c) << 8) +
2588 (hdmi_read(sd
, 0x5d) & 0xf0));
2589 v4l2_info(sd
, "Audio N: %u\n", ((hdmi_read(sd
, 0x5d) & 0x0f) << 16) +
2590 (hdmi_read(sd
, 0x5e) << 8) +
2591 hdmi_read(sd
, 0x5f));
2592 v4l2_info(sd
, "AV Mute: %s\n", (hdmi_read(sd
, 0x04) & 0x40) ? "on" : "off");
2594 v4l2_info(sd
, "Deep color mode: %s\n", deep_color_mode_txt
[(hdmi_read(sd
, 0x0b) & 0x60) >> 5]);
2595 v4l2_info(sd
, "HDMI colorspace: %s\n", hdmi_color_space_txt
[hdmi_read(sd
, 0x53) & 0xf]);
2597 adv76xx_log_infoframes(sd
);
2603 static int adv76xx_subscribe_event(struct v4l2_subdev
*sd
,
2605 struct v4l2_event_subscription
*sub
)
2607 switch (sub
->type
) {
2608 case V4L2_EVENT_SOURCE_CHANGE
:
2609 return v4l2_src_change_event_subdev_subscribe(sd
, fh
, sub
);
2610 case V4L2_EVENT_CTRL
:
2611 return v4l2_ctrl_subdev_subscribe_event(sd
, fh
, sub
);
2617 static int adv76xx_registered(struct v4l2_subdev
*sd
)
2619 struct adv76xx_state
*state
= to_state(sd
);
2622 err
= cec_register_adapter(state
->cec_adap
);
2624 cec_delete_adapter(state
->cec_adap
);
2628 static void adv76xx_unregistered(struct v4l2_subdev
*sd
)
2630 struct adv76xx_state
*state
= to_state(sd
);
2632 cec_unregister_adapter(state
->cec_adap
);
2635 /* ----------------------------------------------------------------------- */
2637 static const struct v4l2_ctrl_ops adv76xx_ctrl_ops
= {
2638 .s_ctrl
= adv76xx_s_ctrl
,
2639 .g_volatile_ctrl
= adv76xx_g_volatile_ctrl
,
2642 static const struct v4l2_subdev_core_ops adv76xx_core_ops
= {
2643 .log_status
= adv76xx_log_status
,
2644 .interrupt_service_routine
= adv76xx_isr
,
2645 .subscribe_event
= adv76xx_subscribe_event
,
2646 .unsubscribe_event
= v4l2_event_subdev_unsubscribe
,
2647 #ifdef CONFIG_VIDEO_ADV_DEBUG
2648 .g_register
= adv76xx_g_register
,
2649 .s_register
= adv76xx_s_register
,
2653 static const struct v4l2_subdev_video_ops adv76xx_video_ops
= {
2654 .s_routing
= adv76xx_s_routing
,
2655 .g_input_status
= adv76xx_g_input_status
,
2656 .s_dv_timings
= adv76xx_s_dv_timings
,
2657 .g_dv_timings
= adv76xx_g_dv_timings
,
2658 .query_dv_timings
= adv76xx_query_dv_timings
,
2661 static const struct v4l2_subdev_pad_ops adv76xx_pad_ops
= {
2662 .enum_mbus_code
= adv76xx_enum_mbus_code
,
2663 .get_selection
= adv76xx_get_selection
,
2664 .get_fmt
= adv76xx_get_format
,
2665 .set_fmt
= adv76xx_set_format
,
2666 .get_edid
= adv76xx_get_edid
,
2667 .set_edid
= adv76xx_set_edid
,
2668 .dv_timings_cap
= adv76xx_dv_timings_cap
,
2669 .enum_dv_timings
= adv76xx_enum_dv_timings
,
2672 static const struct v4l2_subdev_ops adv76xx_ops
= {
2673 .core
= &adv76xx_core_ops
,
2674 .video
= &adv76xx_video_ops
,
2675 .pad
= &adv76xx_pad_ops
,
2678 static const struct v4l2_subdev_internal_ops adv76xx_int_ops
= {
2679 .registered
= adv76xx_registered
,
2680 .unregistered
= adv76xx_unregistered
,
2683 /* -------------------------- custom ctrls ---------------------------------- */
2685 static const struct v4l2_ctrl_config adv7604_ctrl_analog_sampling_phase
= {
2686 .ops
= &adv76xx_ctrl_ops
,
2687 .id
= V4L2_CID_ADV_RX_ANALOG_SAMPLING_PHASE
,
2688 .name
= "Analog Sampling Phase",
2689 .type
= V4L2_CTRL_TYPE_INTEGER
,
2696 static const struct v4l2_ctrl_config adv76xx_ctrl_free_run_color_manual
= {
2697 .ops
= &adv76xx_ctrl_ops
,
2698 .id
= V4L2_CID_ADV_RX_FREE_RUN_COLOR_MANUAL
,
2699 .name
= "Free Running Color, Manual",
2700 .type
= V4L2_CTRL_TYPE_BOOLEAN
,
2707 static const struct v4l2_ctrl_config adv76xx_ctrl_free_run_color
= {
2708 .ops
= &adv76xx_ctrl_ops
,
2709 .id
= V4L2_CID_ADV_RX_FREE_RUN_COLOR
,
2710 .name
= "Free Running Color",
2711 .type
= V4L2_CTRL_TYPE_INTEGER
,
2718 /* ----------------------------------------------------------------------- */
2720 static int adv76xx_core_init(struct v4l2_subdev
*sd
)
2722 struct adv76xx_state
*state
= to_state(sd
);
2723 const struct adv76xx_chip_info
*info
= state
->info
;
2724 struct adv76xx_platform_data
*pdata
= &state
->pdata
;
2726 hdmi_write(sd
, 0x48,
2727 (pdata
->disable_pwrdnb
? 0x80 : 0) |
2728 (pdata
->disable_cable_det_rst
? 0x40 : 0));
2732 if (pdata
->default_input
>= 0 &&
2733 pdata
->default_input
< state
->source_pad
) {
2734 state
->selected_input
= pdata
->default_input
;
2740 io_write(sd
, 0x0c, 0x42); /* Power up part and power down VDP */
2741 io_write(sd
, 0x0b, 0x44); /* Power down ESDP block */
2742 cp_write(sd
, 0xcf, 0x01); /* Power down macrovision */
2745 io_write_clr_set(sd
, 0x02, 0x0f, pdata
->alt_gamma
<< 3);
2746 io_write_clr_set(sd
, 0x05, 0x0e, pdata
->blank_data
<< 3 |
2747 pdata
->insert_av_codes
<< 2 |
2748 pdata
->replicate_av_codes
<< 1);
2749 adv76xx_setup_format(state
);
2751 cp_write(sd
, 0x69, 0x30); /* Enable CP CSC */
2753 /* VS, HS polarities */
2754 io_write(sd
, 0x06, 0xa0 | pdata
->inv_vs_pol
<< 2 |
2755 pdata
->inv_hs_pol
<< 1 | pdata
->inv_llc_pol
);
2757 /* Adjust drive strength */
2758 io_write(sd
, 0x14, 0x40 | pdata
->dr_str_data
<< 4 |
2759 pdata
->dr_str_clk
<< 2 |
2760 pdata
->dr_str_sync
);
2762 cp_write(sd
, 0xba, (pdata
->hdmi_free_run_mode
<< 1) | 0x01); /* HDMI free run */
2763 cp_write(sd
, 0xf3, 0xdc); /* Low threshold to enter/exit free run mode */
2764 cp_write(sd
, 0xf9, 0x23); /* STDI ch. 1 - LCVS change threshold -
2765 ADI recommended setting [REF_01, c. 2.3.3] */
2766 cp_write(sd
, 0x45, 0x23); /* STDI ch. 2 - LCVS change threshold -
2767 ADI recommended setting [REF_01, c. 2.3.3] */
2768 cp_write(sd
, 0xc9, 0x2d); /* use prim_mode and vid_std as free run resolution
2769 for digital formats */
2772 hdmi_write_clr_set(sd
, 0x15, 0x03, 0x03); /* Mute on FIFO over-/underflow [REF_01, c. 1.2.18] */
2773 hdmi_write_clr_set(sd
, 0x1a, 0x0e, 0x08); /* Wait 1 s before unmute */
2774 hdmi_write_clr_set(sd
, 0x68, 0x06, 0x06); /* FIFO reset on over-/underflow [REF_01, c. 1.2.19] */
2776 /* TODO from platform data */
2777 afe_write(sd
, 0xb5, 0x01); /* Setting MCLK to 256Fs */
2779 if (adv76xx_has_afe(state
)) {
2780 afe_write(sd
, 0x02, pdata
->ain_sel
); /* Select analog input muxing mode */
2781 io_write_clr_set(sd
, 0x30, 1 << 4, pdata
->output_bus_lsb_to_msb
<< 4);
2785 io_write(sd
, 0x40, 0xc0 | pdata
->int1_config
); /* Configure INT1 */
2786 io_write(sd
, 0x46, 0x98); /* Enable SSPD, STDI and CP unlocked interrupts */
2787 io_write(sd
, 0x6e, info
->fmt_change_digital_mask
); /* Enable V_LOCKED and DE_REGEN_LCK interrupts */
2788 io_write(sd
, 0x73, info
->cable_det_mask
); /* Enable cable detection (+5v) interrupts */
2789 info
->setup_irqs(sd
);
2791 return v4l2_ctrl_handler_setup(sd
->ctrl_handler
);
2794 static void adv7604_setup_irqs(struct v4l2_subdev
*sd
)
2796 io_write(sd
, 0x41, 0xd7); /* STDI irq for any change, disable INT2 */
2799 static void adv7611_setup_irqs(struct v4l2_subdev
*sd
)
2801 io_write(sd
, 0x41, 0xd0); /* STDI irq for any change, disable INT2 */
2804 static void adv7612_setup_irqs(struct v4l2_subdev
*sd
)
2806 io_write(sd
, 0x41, 0xd0); /* disable INT2 */
2809 static void adv76xx_unregister_clients(struct adv76xx_state
*state
)
2813 for (i
= 1; i
< ARRAY_SIZE(state
->i2c_clients
); ++i
) {
2814 if (state
->i2c_clients
[i
])
2815 i2c_unregister_device(state
->i2c_clients
[i
]);
2819 static struct i2c_client
*adv76xx_dummy_client(struct v4l2_subdev
*sd
,
2822 struct i2c_client
*client
= v4l2_get_subdevdata(sd
);
2825 io_write(sd
, io_reg
, addr
<< 1);
2826 return i2c_new_dummy(client
->adapter
, io_read(sd
, io_reg
) >> 1);
2829 static const struct adv76xx_reg_seq adv7604_recommended_settings_afe
[] = {
2830 /* reset ADI recommended settings for HDMI: */
2831 /* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 4. */
2832 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x0d), 0x04 }, /* HDMI filter optimization */
2833 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x0d), 0x04 }, /* HDMI filter optimization */
2834 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x3d), 0x00 }, /* DDC bus active pull-up control */
2835 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x3e), 0x74 }, /* TMDS PLL optimization */
2836 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x4e), 0x3b }, /* TMDS PLL optimization */
2837 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x57), 0x74 }, /* TMDS PLL optimization */
2838 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x58), 0x63 }, /* TMDS PLL optimization */
2839 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x8d), 0x18 }, /* equaliser */
2840 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x8e), 0x34 }, /* equaliser */
2841 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x93), 0x88 }, /* equaliser */
2842 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x94), 0x2e }, /* equaliser */
2843 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x96), 0x00 }, /* enable automatic EQ changing */
2845 /* set ADI recommended settings for digitizer */
2846 /* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 17. */
2847 { ADV76XX_REG(ADV76XX_PAGE_AFE
, 0x12), 0x7b }, /* ADC noise shaping filter controls */
2848 { ADV76XX_REG(ADV76XX_PAGE_AFE
, 0x0c), 0x1f }, /* CP core gain controls */
2849 { ADV76XX_REG(ADV76XX_PAGE_CP
, 0x3e), 0x04 }, /* CP core pre-gain control */
2850 { ADV76XX_REG(ADV76XX_PAGE_CP
, 0xc3), 0x39 }, /* CP coast control. Graphics mode */
2851 { ADV76XX_REG(ADV76XX_PAGE_CP
, 0x40), 0x5c }, /* CP core pre-gain control. Graphics mode */
2853 { ADV76XX_REG_SEQ_TERM
, 0 },
2856 static const struct adv76xx_reg_seq adv7604_recommended_settings_hdmi
[] = {
2857 /* set ADI recommended settings for HDMI: */
2858 /* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 4. */
2859 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x0d), 0x84 }, /* HDMI filter optimization */
2860 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x3d), 0x10 }, /* DDC bus active pull-up control */
2861 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x3e), 0x39 }, /* TMDS PLL optimization */
2862 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x4e), 0x3b }, /* TMDS PLL optimization */
2863 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x57), 0xb6 }, /* TMDS PLL optimization */
2864 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x58), 0x03 }, /* TMDS PLL optimization */
2865 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x8d), 0x18 }, /* equaliser */
2866 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x8e), 0x34 }, /* equaliser */
2867 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x93), 0x8b }, /* equaliser */
2868 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x94), 0x2d }, /* equaliser */
2869 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x96), 0x01 }, /* enable automatic EQ changing */
2871 /* reset ADI recommended settings for digitizer */
2872 /* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 17. */
2873 { ADV76XX_REG(ADV76XX_PAGE_AFE
, 0x12), 0xfb }, /* ADC noise shaping filter controls */
2874 { ADV76XX_REG(ADV76XX_PAGE_AFE
, 0x0c), 0x0d }, /* CP core gain controls */
2876 { ADV76XX_REG_SEQ_TERM
, 0 },
2879 static const struct adv76xx_reg_seq adv7611_recommended_settings_hdmi
[] = {
2880 /* ADV7611 Register Settings Recommendations Rev 1.5, May 2014 */
2881 { ADV76XX_REG(ADV76XX_PAGE_CP
, 0x6c), 0x00 },
2882 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x9b), 0x03 },
2883 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x6f), 0x08 },
2884 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x85), 0x1f },
2885 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x87), 0x70 },
2886 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x57), 0xda },
2887 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x58), 0x01 },
2888 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x03), 0x98 },
2889 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x4c), 0x44 },
2890 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x8d), 0x04 },
2891 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x8e), 0x1e },
2893 { ADV76XX_REG_SEQ_TERM
, 0 },
2896 static const struct adv76xx_reg_seq adv7612_recommended_settings_hdmi
[] = {
2897 { ADV76XX_REG(ADV76XX_PAGE_CP
, 0x6c), 0x00 },
2898 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x9b), 0x03 },
2899 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x6f), 0x08 },
2900 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x85), 0x1f },
2901 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x87), 0x70 },
2902 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x57), 0xda },
2903 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x58), 0x01 },
2904 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x03), 0x98 },
2905 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x4c), 0x44 },
2906 { ADV76XX_REG_SEQ_TERM
, 0 },
2909 static const struct adv76xx_chip_info adv76xx_chip_info
[] = {
2913 .max_port
= ADV7604_PAD_VGA_COMP
,
2915 .edid_enable_reg
= 0x77,
2916 .edid_status_reg
= 0x7d,
2918 .tdms_lock_mask
= 0xe0,
2919 .cable_det_mask
= 0x1e,
2920 .fmt_change_digital_mask
= 0xc1,
2922 .formats
= adv7604_formats
,
2923 .nformats
= ARRAY_SIZE(adv7604_formats
),
2924 .set_termination
= adv7604_set_termination
,
2925 .setup_irqs
= adv7604_setup_irqs
,
2926 .read_hdmi_pixelclock
= adv7604_read_hdmi_pixelclock
,
2927 .read_cable_det
= adv7604_read_cable_det
,
2928 .recommended_settings
= {
2929 [0] = adv7604_recommended_settings_afe
,
2930 [1] = adv7604_recommended_settings_hdmi
,
2932 .num_recommended_settings
= {
2933 [0] = ARRAY_SIZE(adv7604_recommended_settings_afe
),
2934 [1] = ARRAY_SIZE(adv7604_recommended_settings_hdmi
),
2936 .page_mask
= BIT(ADV76XX_PAGE_IO
) | BIT(ADV7604_PAGE_AVLINK
) |
2937 BIT(ADV76XX_PAGE_CEC
) | BIT(ADV76XX_PAGE_INFOFRAME
) |
2938 BIT(ADV7604_PAGE_ESDP
) | BIT(ADV7604_PAGE_DPP
) |
2939 BIT(ADV76XX_PAGE_AFE
) | BIT(ADV76XX_PAGE_REP
) |
2940 BIT(ADV76XX_PAGE_EDID
) | BIT(ADV76XX_PAGE_HDMI
) |
2941 BIT(ADV76XX_PAGE_TEST
) | BIT(ADV76XX_PAGE_CP
) |
2942 BIT(ADV7604_PAGE_VDP
),
2943 .linewidth_mask
= 0xfff,
2944 .field0_height_mask
= 0xfff,
2945 .field1_height_mask
= 0xfff,
2946 .hfrontporch_mask
= 0x3ff,
2947 .hsync_mask
= 0x3ff,
2948 .hbackporch_mask
= 0x3ff,
2949 .field0_vfrontporch_mask
= 0x1fff,
2950 .field0_vsync_mask
= 0x1fff,
2951 .field0_vbackporch_mask
= 0x1fff,
2952 .field1_vfrontporch_mask
= 0x1fff,
2953 .field1_vsync_mask
= 0x1fff,
2954 .field1_vbackporch_mask
= 0x1fff,
2959 .max_port
= ADV76XX_PAD_HDMI_PORT_A
,
2961 .edid_enable_reg
= 0x74,
2962 .edid_status_reg
= 0x76,
2964 .tdms_lock_mask
= 0x43,
2965 .cable_det_mask
= 0x01,
2966 .fmt_change_digital_mask
= 0x03,
2968 .formats
= adv7611_formats
,
2969 .nformats
= ARRAY_SIZE(adv7611_formats
),
2970 .set_termination
= adv7611_set_termination
,
2971 .setup_irqs
= adv7611_setup_irqs
,
2972 .read_hdmi_pixelclock
= adv7611_read_hdmi_pixelclock
,
2973 .read_cable_det
= adv7611_read_cable_det
,
2974 .recommended_settings
= {
2975 [1] = adv7611_recommended_settings_hdmi
,
2977 .num_recommended_settings
= {
2978 [1] = ARRAY_SIZE(adv7611_recommended_settings_hdmi
),
2980 .page_mask
= BIT(ADV76XX_PAGE_IO
) | BIT(ADV76XX_PAGE_CEC
) |
2981 BIT(ADV76XX_PAGE_INFOFRAME
) | BIT(ADV76XX_PAGE_AFE
) |
2982 BIT(ADV76XX_PAGE_REP
) | BIT(ADV76XX_PAGE_EDID
) |
2983 BIT(ADV76XX_PAGE_HDMI
) | BIT(ADV76XX_PAGE_CP
),
2984 .linewidth_mask
= 0x1fff,
2985 .field0_height_mask
= 0x1fff,
2986 .field1_height_mask
= 0x1fff,
2987 .hfrontporch_mask
= 0x1fff,
2988 .hsync_mask
= 0x1fff,
2989 .hbackporch_mask
= 0x1fff,
2990 .field0_vfrontporch_mask
= 0x3fff,
2991 .field0_vsync_mask
= 0x3fff,
2992 .field0_vbackporch_mask
= 0x3fff,
2993 .field1_vfrontporch_mask
= 0x3fff,
2994 .field1_vsync_mask
= 0x3fff,
2995 .field1_vbackporch_mask
= 0x3fff,
3000 .max_port
= ADV76XX_PAD_HDMI_PORT_A
, /* B not supported */
3001 .num_dv_ports
= 1, /* normally 2 */
3002 .edid_enable_reg
= 0x74,
3003 .edid_status_reg
= 0x76,
3005 .tdms_lock_mask
= 0x43,
3006 .cable_det_mask
= 0x01,
3007 .fmt_change_digital_mask
= 0x03,
3009 .formats
= adv7612_formats
,
3010 .nformats
= ARRAY_SIZE(adv7612_formats
),
3011 .set_termination
= adv7611_set_termination
,
3012 .setup_irqs
= adv7612_setup_irqs
,
3013 .read_hdmi_pixelclock
= adv7611_read_hdmi_pixelclock
,
3014 .read_cable_det
= adv7612_read_cable_det
,
3015 .recommended_settings
= {
3016 [1] = adv7612_recommended_settings_hdmi
,
3018 .num_recommended_settings
= {
3019 [1] = ARRAY_SIZE(adv7612_recommended_settings_hdmi
),
3021 .page_mask
= BIT(ADV76XX_PAGE_IO
) | BIT(ADV76XX_PAGE_CEC
) |
3022 BIT(ADV76XX_PAGE_INFOFRAME
) | BIT(ADV76XX_PAGE_AFE
) |
3023 BIT(ADV76XX_PAGE_REP
) | BIT(ADV76XX_PAGE_EDID
) |
3024 BIT(ADV76XX_PAGE_HDMI
) | BIT(ADV76XX_PAGE_CP
),
3025 .linewidth_mask
= 0x1fff,
3026 .field0_height_mask
= 0x1fff,
3027 .field1_height_mask
= 0x1fff,
3028 .hfrontporch_mask
= 0x1fff,
3029 .hsync_mask
= 0x1fff,
3030 .hbackporch_mask
= 0x1fff,
3031 .field0_vfrontporch_mask
= 0x3fff,
3032 .field0_vsync_mask
= 0x3fff,
3033 .field0_vbackporch_mask
= 0x3fff,
3034 .field1_vfrontporch_mask
= 0x3fff,
3035 .field1_vsync_mask
= 0x3fff,
3036 .field1_vbackporch_mask
= 0x3fff,
3040 static const struct i2c_device_id adv76xx_i2c_id
[] = {
3041 { "adv7604", (kernel_ulong_t
)&adv76xx_chip_info
[ADV7604
] },
3042 { "adv7611", (kernel_ulong_t
)&adv76xx_chip_info
[ADV7611
] },
3043 { "adv7612", (kernel_ulong_t
)&adv76xx_chip_info
[ADV7612
] },
3046 MODULE_DEVICE_TABLE(i2c
, adv76xx_i2c_id
);
3048 static const struct of_device_id adv76xx_of_id
[] __maybe_unused
= {
3049 { .compatible
= "adi,adv7611", .data
= &adv76xx_chip_info
[ADV7611
] },
3050 { .compatible
= "adi,adv7612", .data
= &adv76xx_chip_info
[ADV7612
] },
3053 MODULE_DEVICE_TABLE(of
, adv76xx_of_id
);
3055 static int adv76xx_parse_dt(struct adv76xx_state
*state
)
3057 struct v4l2_of_endpoint bus_cfg
;
3058 struct device_node
*endpoint
;
3059 struct device_node
*np
;
3064 np
= state
->i2c_clients
[ADV76XX_PAGE_IO
]->dev
.of_node
;
3066 /* Parse the endpoint. */
3067 endpoint
= of_graph_get_next_endpoint(np
, NULL
);
3071 ret
= v4l2_of_parse_endpoint(endpoint
, &bus_cfg
);
3073 of_node_put(endpoint
);
3077 if (!of_property_read_u32(endpoint
, "default-input", &v
))
3078 state
->pdata
.default_input
= v
;
3080 state
->pdata
.default_input
= -1;
3082 of_node_put(endpoint
);
3084 flags
= bus_cfg
.bus
.parallel
.flags
;
3086 if (flags
& V4L2_MBUS_HSYNC_ACTIVE_HIGH
)
3087 state
->pdata
.inv_hs_pol
= 1;
3089 if (flags
& V4L2_MBUS_VSYNC_ACTIVE_HIGH
)
3090 state
->pdata
.inv_vs_pol
= 1;
3092 if (flags
& V4L2_MBUS_PCLK_SAMPLE_RISING
)
3093 state
->pdata
.inv_llc_pol
= 1;
3095 if (bus_cfg
.bus_type
== V4L2_MBUS_BT656
)
3096 state
->pdata
.insert_av_codes
= 1;
3098 /* Disable the interrupt for now as no DT-based board uses it. */
3099 state
->pdata
.int1_config
= ADV76XX_INT1_CONFIG_DISABLED
;
3101 /* Use the default I2C addresses. */
3102 state
->pdata
.i2c_addresses
[ADV7604_PAGE_AVLINK
] = 0x42;
3103 state
->pdata
.i2c_addresses
[ADV76XX_PAGE_CEC
] = 0x40;
3104 state
->pdata
.i2c_addresses
[ADV76XX_PAGE_INFOFRAME
] = 0x3e;
3105 state
->pdata
.i2c_addresses
[ADV7604_PAGE_ESDP
] = 0x38;
3106 state
->pdata
.i2c_addresses
[ADV7604_PAGE_DPP
] = 0x3c;
3107 state
->pdata
.i2c_addresses
[ADV76XX_PAGE_AFE
] = 0x26;
3108 state
->pdata
.i2c_addresses
[ADV76XX_PAGE_REP
] = 0x32;
3109 state
->pdata
.i2c_addresses
[ADV76XX_PAGE_EDID
] = 0x36;
3110 state
->pdata
.i2c_addresses
[ADV76XX_PAGE_HDMI
] = 0x34;
3111 state
->pdata
.i2c_addresses
[ADV76XX_PAGE_TEST
] = 0x30;
3112 state
->pdata
.i2c_addresses
[ADV76XX_PAGE_CP
] = 0x22;
3113 state
->pdata
.i2c_addresses
[ADV7604_PAGE_VDP
] = 0x24;
3115 /* Hardcode the remaining platform data fields. */
3116 state
->pdata
.disable_pwrdnb
= 0;
3117 state
->pdata
.disable_cable_det_rst
= 0;
3118 state
->pdata
.blank_data
= 1;
3119 state
->pdata
.op_format_mode_sel
= ADV7604_OP_FORMAT_MODE0
;
3120 state
->pdata
.bus_order
= ADV7604_BUS_ORDER_RGB
;
3125 static const struct regmap_config adv76xx_regmap_cnf
[] = {
3131 .max_register
= 0xff,
3132 .cache_type
= REGCACHE_NONE
,
3139 .max_register
= 0xff,
3140 .cache_type
= REGCACHE_NONE
,
3147 .max_register
= 0xff,
3148 .cache_type
= REGCACHE_NONE
,
3151 .name
= "infoframe",
3155 .max_register
= 0xff,
3156 .cache_type
= REGCACHE_NONE
,
3163 .max_register
= 0xff,
3164 .cache_type
= REGCACHE_NONE
,
3171 .max_register
= 0xff,
3172 .cache_type
= REGCACHE_NONE
,
3179 .max_register
= 0xff,
3180 .cache_type
= REGCACHE_NONE
,
3187 .max_register
= 0xff,
3188 .cache_type
= REGCACHE_NONE
,
3195 .max_register
= 0xff,
3196 .cache_type
= REGCACHE_NONE
,
3204 .max_register
= 0xff,
3205 .cache_type
= REGCACHE_NONE
,
3212 .max_register
= 0xff,
3213 .cache_type
= REGCACHE_NONE
,
3220 .max_register
= 0xff,
3221 .cache_type
= REGCACHE_NONE
,
3228 .max_register
= 0xff,
3229 .cache_type
= REGCACHE_NONE
,
3233 static int configure_regmap(struct adv76xx_state
*state
, int region
)
3237 if (!state
->i2c_clients
[region
])
3240 state
->regmap
[region
] =
3241 devm_regmap_init_i2c(state
->i2c_clients
[region
],
3242 &adv76xx_regmap_cnf
[region
]);
3244 if (IS_ERR(state
->regmap
[region
])) {
3245 err
= PTR_ERR(state
->regmap
[region
]);
3246 v4l_err(state
->i2c_clients
[region
],
3247 "Error initializing regmap %d with error %d\n",
3255 static int configure_regmaps(struct adv76xx_state
*state
)
3259 for (i
= ADV7604_PAGE_AVLINK
; i
< ADV76XX_PAGE_MAX
; i
++) {
3260 err
= configure_regmap(state
, i
);
3261 if (err
&& (err
!= -ENODEV
))
3267 static void adv76xx_reset(struct adv76xx_state
*state
)
3269 if (state
->reset_gpio
) {
3270 /* ADV76XX can be reset by a low reset pulse of minimum 5 ms. */
3271 gpiod_set_value_cansleep(state
->reset_gpio
, 0);
3272 usleep_range(5000, 10000);
3273 gpiod_set_value_cansleep(state
->reset_gpio
, 1);
3274 /* It is recommended to wait 5 ms after the low pulse before */
3275 /* an I2C write is performed to the ADV76XX. */
3276 usleep_range(5000, 10000);
3280 static int adv76xx_probe(struct i2c_client
*client
,
3281 const struct i2c_device_id
*id
)
3283 static const struct v4l2_dv_timings cea640x480
=
3284 V4L2_DV_BT_CEA_640X480P59_94
;
3285 struct adv76xx_state
*state
;
3286 struct v4l2_ctrl_handler
*hdl
;
3287 struct v4l2_ctrl
*ctrl
;
3288 struct v4l2_subdev
*sd
;
3290 unsigned int val
, val2
;
3293 /* Check if the adapter supports the needed features */
3294 if (!i2c_check_functionality(client
->adapter
, I2C_FUNC_SMBUS_BYTE_DATA
))
3296 v4l_dbg(1, debug
, client
, "detecting adv76xx client on address 0x%x\n",
3299 state
= devm_kzalloc(&client
->dev
, sizeof(*state
), GFP_KERNEL
);
3301 v4l_err(client
, "Could not allocate adv76xx_state memory!\n");
3305 state
->i2c_clients
[ADV76XX_PAGE_IO
] = client
;
3307 /* initialize variables */
3308 state
->restart_stdi_once
= true;
3309 state
->selected_input
= ~0;
3311 if (IS_ENABLED(CONFIG_OF
) && client
->dev
.of_node
) {
3312 const struct of_device_id
*oid
;
3314 oid
= of_match_node(adv76xx_of_id
, client
->dev
.of_node
);
3315 state
->info
= oid
->data
;
3317 err
= adv76xx_parse_dt(state
);
3319 v4l_err(client
, "DT parsing error\n");
3322 } else if (client
->dev
.platform_data
) {
3323 struct adv76xx_platform_data
*pdata
= client
->dev
.platform_data
;
3325 state
->info
= (const struct adv76xx_chip_info
*)id
->driver_data
;
3326 state
->pdata
= *pdata
;
3328 v4l_err(client
, "No platform data!\n");
3332 /* Request GPIOs. */
3333 for (i
= 0; i
< state
->info
->num_dv_ports
; ++i
) {
3334 state
->hpd_gpio
[i
] =
3335 devm_gpiod_get_index_optional(&client
->dev
, "hpd", i
,
3337 if (IS_ERR(state
->hpd_gpio
[i
]))
3338 return PTR_ERR(state
->hpd_gpio
[i
]);
3340 if (state
->hpd_gpio
[i
])
3341 v4l_info(client
, "Handling HPD %u GPIO\n", i
);
3343 state
->reset_gpio
= devm_gpiod_get_optional(&client
->dev
, "reset",
3345 if (IS_ERR(state
->reset_gpio
))
3346 return PTR_ERR(state
->reset_gpio
);
3348 adv76xx_reset(state
);
3350 state
->timings
= cea640x480
;
3351 state
->format
= adv76xx_format_info(state
, MEDIA_BUS_FMT_YUYV8_2X8
);
3354 v4l2_i2c_subdev_init(sd
, client
, &adv76xx_ops
);
3355 snprintf(sd
->name
, sizeof(sd
->name
), "%s %d-%04x",
3356 id
->name
, i2c_adapter_id(client
->adapter
),
3358 sd
->flags
|= V4L2_SUBDEV_FL_HAS_DEVNODE
| V4L2_SUBDEV_FL_HAS_EVENTS
;
3359 sd
->internal_ops
= &adv76xx_int_ops
;
3361 /* Configure IO Regmap region */
3362 err
= configure_regmap(state
, ADV76XX_PAGE_IO
);
3365 v4l2_err(sd
, "Error configuring IO regmap region\n");
3370 * Verify that the chip is present. On ADV7604 the RD_INFO register only
3371 * identifies the revision, while on ADV7611 it identifies the model as
3372 * well. Use the HDMI slave address on ADV7604 and RD_INFO on ADV7611.
3374 switch (state
->info
->type
) {
3376 err
= regmap_read(state
->regmap
[ADV76XX_PAGE_IO
], 0xfb, &val
);
3378 v4l2_err(sd
, "Error %d reading IO Regmap\n", err
);
3382 v4l2_err(sd
, "not an adv7604 on address 0x%x\n",
3389 err
= regmap_read(state
->regmap
[ADV76XX_PAGE_IO
],
3393 v4l2_err(sd
, "Error %d reading IO Regmap\n", err
);
3397 err
= regmap_read(state
->regmap
[ADV76XX_PAGE_IO
],
3401 v4l2_err(sd
, "Error %d reading IO Regmap\n", err
);
3405 if ((state
->info
->type
== ADV7611
&& val
!= 0x2051) ||
3406 (state
->info
->type
== ADV7612
&& val
!= 0x2041)) {
3407 v4l2_err(sd
, "not an adv761x on address 0x%x\n",
3414 /* control handlers */
3416 v4l2_ctrl_handler_init(hdl
, adv76xx_has_afe(state
) ? 9 : 8);
3418 v4l2_ctrl_new_std(hdl
, &adv76xx_ctrl_ops
,
3419 V4L2_CID_BRIGHTNESS
, -128, 127, 1, 0);
3420 v4l2_ctrl_new_std(hdl
, &adv76xx_ctrl_ops
,
3421 V4L2_CID_CONTRAST
, 0, 255, 1, 128);
3422 v4l2_ctrl_new_std(hdl
, &adv76xx_ctrl_ops
,
3423 V4L2_CID_SATURATION
, 0, 255, 1, 128);
3424 v4l2_ctrl_new_std(hdl
, &adv76xx_ctrl_ops
,
3425 V4L2_CID_HUE
, 0, 128, 1, 0);
3426 ctrl
= v4l2_ctrl_new_std_menu(hdl
, &adv76xx_ctrl_ops
,
3427 V4L2_CID_DV_RX_IT_CONTENT_TYPE
, V4L2_DV_IT_CONTENT_TYPE_NO_ITC
,
3428 0, V4L2_DV_IT_CONTENT_TYPE_NO_ITC
);
3430 ctrl
->flags
|= V4L2_CTRL_FLAG_VOLATILE
;
3432 state
->detect_tx_5v_ctrl
= v4l2_ctrl_new_std(hdl
, NULL
,
3433 V4L2_CID_DV_RX_POWER_PRESENT
, 0,
3434 (1 << state
->info
->num_dv_ports
) - 1, 0, 0);
3435 state
->rgb_quantization_range_ctrl
=
3436 v4l2_ctrl_new_std_menu(hdl
, &adv76xx_ctrl_ops
,
3437 V4L2_CID_DV_RX_RGB_RANGE
, V4L2_DV_RGB_RANGE_FULL
,
3438 0, V4L2_DV_RGB_RANGE_AUTO
);
3440 /* custom controls */
3441 if (adv76xx_has_afe(state
))
3442 state
->analog_sampling_phase_ctrl
=
3443 v4l2_ctrl_new_custom(hdl
, &adv7604_ctrl_analog_sampling_phase
, NULL
);
3444 state
->free_run_color_manual_ctrl
=
3445 v4l2_ctrl_new_custom(hdl
, &adv76xx_ctrl_free_run_color_manual
, NULL
);
3446 state
->free_run_color_ctrl
=
3447 v4l2_ctrl_new_custom(hdl
, &adv76xx_ctrl_free_run_color
, NULL
);
3449 sd
->ctrl_handler
= hdl
;
3454 if (adv76xx_s_detect_tx_5v_ctrl(sd
)) {
3459 for (i
= 1; i
< ADV76XX_PAGE_MAX
; ++i
) {
3460 if (!(BIT(i
) & state
->info
->page_mask
))
3463 state
->i2c_clients
[i
] =
3464 adv76xx_dummy_client(sd
, state
->pdata
.i2c_addresses
[i
],
3466 if (state
->i2c_clients
[i
] == NULL
) {
3468 v4l2_err(sd
, "failed to create i2c client %u\n", i
);
3473 INIT_DELAYED_WORK(&state
->delayed_work_enable_hotplug
,
3474 adv76xx_delayed_work_enable_hotplug
);
3476 state
->source_pad
= state
->info
->num_dv_ports
3477 + (state
->info
->has_afe
? 2 : 0);
3478 for (i
= 0; i
< state
->source_pad
; ++i
)
3479 state
->pads
[i
].flags
= MEDIA_PAD_FL_SINK
;
3480 state
->pads
[state
->source_pad
].flags
= MEDIA_PAD_FL_SOURCE
;
3482 err
= media_entity_pads_init(&sd
->entity
, state
->source_pad
+ 1,
3485 goto err_work_queues
;
3487 /* Configure regmaps */
3488 err
= configure_regmaps(state
);
3492 err
= adv76xx_core_init(sd
);
3496 #if IS_ENABLED(CONFIG_VIDEO_ADV7604_CEC)
3497 state
->cec_adap
= cec_allocate_adapter(&adv76xx_cec_adap_ops
,
3498 state
, dev_name(&client
->dev
),
3499 CEC_CAP_TRANSMIT
| CEC_CAP_LOG_ADDRS
|
3500 CEC_CAP_PASSTHROUGH
| CEC_CAP_RC
, ADV76XX_MAX_ADDRS
,
3502 err
= PTR_ERR_OR_ZERO(state
->cec_adap
);
3507 v4l2_info(sd
, "%s found @ 0x%x (%s)\n", client
->name
,
3508 client
->addr
<< 1, client
->adapter
->name
);
3510 err
= v4l2_async_register_subdev(sd
);
3517 media_entity_cleanup(&sd
->entity
);
3519 cancel_delayed_work(&state
->delayed_work_enable_hotplug
);
3521 adv76xx_unregister_clients(state
);
3523 v4l2_ctrl_handler_free(hdl
);
3527 /* ----------------------------------------------------------------------- */
3529 static int adv76xx_remove(struct i2c_client
*client
)
3531 struct v4l2_subdev
*sd
= i2c_get_clientdata(client
);
3532 struct adv76xx_state
*state
= to_state(sd
);
3534 /* disable interrupts */
3535 io_write(sd
, 0x40, 0);
3536 io_write(sd
, 0x41, 0);
3537 io_write(sd
, 0x46, 0);
3538 io_write(sd
, 0x6e, 0);
3539 io_write(sd
, 0x73, 0);
3541 cancel_delayed_work(&state
->delayed_work_enable_hotplug
);
3542 v4l2_async_unregister_subdev(sd
);
3543 media_entity_cleanup(&sd
->entity
);
3544 adv76xx_unregister_clients(to_state(sd
));
3545 v4l2_ctrl_handler_free(sd
->ctrl_handler
);
3549 /* ----------------------------------------------------------------------- */
3551 static struct i2c_driver adv76xx_driver
= {
3554 .of_match_table
= of_match_ptr(adv76xx_of_id
),
3556 .probe
= adv76xx_probe
,
3557 .remove
= adv76xx_remove
,
3558 .id_table
= adv76xx_i2c_id
,
3561 module_i2c_driver(adv76xx_driver
);