Merge branch 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[cris-mirror.git] / drivers / media / i2c / adv7604.c
blob4003831de712a3101d94e5f97b6b442ee7a74fca
1 /*
2 * adv7604 - Analog Devices ADV7604 video decoder driver
4 * Copyright 2012 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
6 * This program is free software; you may redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; version 2 of the License.
10 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
11 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
12 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
13 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
14 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
15 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
16 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
17 * SOFTWARE.
22 * References (c = chapter, p = page):
23 * REF_01 - Analog devices, ADV7604, Register Settings Recommendations,
24 * Revision 2.5, June 2010
25 * REF_02 - Analog devices, Register map documentation, Documentation of
26 * the register maps, Software manual, Rev. F, June 2010
27 * REF_03 - Analog devices, ADV7604, Hardware Manual, Rev. F, August 2010
30 #include <linux/delay.h>
31 #include <linux/gpio/consumer.h>
32 #include <linux/hdmi.h>
33 #include <linux/i2c.h>
34 #include <linux/kernel.h>
35 #include <linux/module.h>
36 #include <linux/slab.h>
37 #include <linux/v4l2-dv-timings.h>
38 #include <linux/videodev2.h>
39 #include <linux/workqueue.h>
40 #include <linux/regmap.h>
42 #include <media/i2c/adv7604.h>
43 #include <media/cec.h>
44 #include <media/v4l2-ctrls.h>
45 #include <media/v4l2-device.h>
46 #include <media/v4l2-event.h>
47 #include <media/v4l2-dv-timings.h>
48 #include <media/v4l2-of.h>
50 static int debug;
51 module_param(debug, int, 0644);
52 MODULE_PARM_DESC(debug, "debug level (0-2)");
54 MODULE_DESCRIPTION("Analog Devices ADV7604 video decoder driver");
55 MODULE_AUTHOR("Hans Verkuil <hans.verkuil@cisco.com>");
56 MODULE_AUTHOR("Mats Randgaard <mats.randgaard@cisco.com>");
57 MODULE_LICENSE("GPL");
59 /* ADV7604 system clock frequency */
60 #define ADV76XX_FSC (28636360)
62 #define ADV76XX_RGB_OUT (1 << 1)
64 #define ADV76XX_OP_FORMAT_SEL_8BIT (0 << 0)
65 #define ADV7604_OP_FORMAT_SEL_10BIT (1 << 0)
66 #define ADV76XX_OP_FORMAT_SEL_12BIT (2 << 0)
68 #define ADV76XX_OP_MODE_SEL_SDR_422 (0 << 5)
69 #define ADV7604_OP_MODE_SEL_DDR_422 (1 << 5)
70 #define ADV76XX_OP_MODE_SEL_SDR_444 (2 << 5)
71 #define ADV7604_OP_MODE_SEL_DDR_444 (3 << 5)
72 #define ADV76XX_OP_MODE_SEL_SDR_422_2X (4 << 5)
73 #define ADV7604_OP_MODE_SEL_ADI_CM (5 << 5)
75 #define ADV76XX_OP_CH_SEL_GBR (0 << 5)
76 #define ADV76XX_OP_CH_SEL_GRB (1 << 5)
77 #define ADV76XX_OP_CH_SEL_BGR (2 << 5)
78 #define ADV76XX_OP_CH_SEL_RGB (3 << 5)
79 #define ADV76XX_OP_CH_SEL_BRG (4 << 5)
80 #define ADV76XX_OP_CH_SEL_RBG (5 << 5)
82 #define ADV76XX_OP_SWAP_CB_CR (1 << 0)
84 #define ADV76XX_MAX_ADDRS (3)
86 enum adv76xx_type {
87 ADV7604,
88 ADV7611,
89 ADV7612,
92 struct adv76xx_reg_seq {
93 unsigned int reg;
94 u8 val;
97 struct adv76xx_format_info {
98 u32 code;
99 u8 op_ch_sel;
100 bool rgb_out;
101 bool swap_cb_cr;
102 u8 op_format_sel;
105 struct adv76xx_cfg_read_infoframe {
106 const char *desc;
107 u8 present_mask;
108 u8 head_addr;
109 u8 payload_addr;
112 struct adv76xx_chip_info {
113 enum adv76xx_type type;
115 bool has_afe;
116 unsigned int max_port;
117 unsigned int num_dv_ports;
119 unsigned int edid_enable_reg;
120 unsigned int edid_status_reg;
121 unsigned int lcf_reg;
123 unsigned int cable_det_mask;
124 unsigned int tdms_lock_mask;
125 unsigned int fmt_change_digital_mask;
126 unsigned int cp_csc;
128 const struct adv76xx_format_info *formats;
129 unsigned int nformats;
131 void (*set_termination)(struct v4l2_subdev *sd, bool enable);
132 void (*setup_irqs)(struct v4l2_subdev *sd);
133 unsigned int (*read_hdmi_pixelclock)(struct v4l2_subdev *sd);
134 unsigned int (*read_cable_det)(struct v4l2_subdev *sd);
136 /* 0 = AFE, 1 = HDMI */
137 const struct adv76xx_reg_seq *recommended_settings[2];
138 unsigned int num_recommended_settings[2];
140 unsigned long page_mask;
142 /* Masks for timings */
143 unsigned int linewidth_mask;
144 unsigned int field0_height_mask;
145 unsigned int field1_height_mask;
146 unsigned int hfrontporch_mask;
147 unsigned int hsync_mask;
148 unsigned int hbackporch_mask;
149 unsigned int field0_vfrontporch_mask;
150 unsigned int field1_vfrontporch_mask;
151 unsigned int field0_vsync_mask;
152 unsigned int field1_vsync_mask;
153 unsigned int field0_vbackporch_mask;
154 unsigned int field1_vbackporch_mask;
158 **********************************************************************
160 * Arrays with configuration parameters for the ADV7604
162 **********************************************************************
165 struct adv76xx_state {
166 const struct adv76xx_chip_info *info;
167 struct adv76xx_platform_data pdata;
169 struct gpio_desc *hpd_gpio[4];
170 struct gpio_desc *reset_gpio;
172 struct v4l2_subdev sd;
173 struct media_pad pads[ADV76XX_PAD_MAX];
174 unsigned int source_pad;
176 struct v4l2_ctrl_handler hdl;
178 enum adv76xx_pad selected_input;
180 struct v4l2_dv_timings timings;
181 const struct adv76xx_format_info *format;
183 struct {
184 u8 edid[256];
185 u32 present;
186 unsigned blocks;
187 } edid;
188 u16 spa_port_a[2];
189 struct v4l2_fract aspect_ratio;
190 u32 rgb_quantization_range;
191 struct delayed_work delayed_work_enable_hotplug;
192 bool restart_stdi_once;
194 /* CEC */
195 struct cec_adapter *cec_adap;
196 u8 cec_addr[ADV76XX_MAX_ADDRS];
197 u8 cec_valid_addrs;
198 bool cec_enabled_adap;
200 /* i2c clients */
201 struct i2c_client *i2c_clients[ADV76XX_PAGE_MAX];
203 /* Regmaps */
204 struct regmap *regmap[ADV76XX_PAGE_MAX];
206 /* controls */
207 struct v4l2_ctrl *detect_tx_5v_ctrl;
208 struct v4l2_ctrl *analog_sampling_phase_ctrl;
209 struct v4l2_ctrl *free_run_color_manual_ctrl;
210 struct v4l2_ctrl *free_run_color_ctrl;
211 struct v4l2_ctrl *rgb_quantization_range_ctrl;
214 static bool adv76xx_has_afe(struct adv76xx_state *state)
216 return state->info->has_afe;
219 /* Unsupported timings. This device cannot support 720p30. */
220 static const struct v4l2_dv_timings adv76xx_timings_exceptions[] = {
221 V4L2_DV_BT_CEA_1280X720P30,
225 static bool adv76xx_check_dv_timings(const struct v4l2_dv_timings *t, void *hdl)
227 int i;
229 for (i = 0; adv76xx_timings_exceptions[i].bt.width; i++)
230 if (v4l2_match_dv_timings(t, adv76xx_timings_exceptions + i, 0, false))
231 return false;
232 return true;
235 struct adv76xx_video_standards {
236 struct v4l2_dv_timings timings;
237 u8 vid_std;
238 u8 v_freq;
241 /* sorted by number of lines */
242 static const struct adv76xx_video_standards adv7604_prim_mode_comp[] = {
243 /* { V4L2_DV_BT_CEA_720X480P59_94, 0x0a, 0x00 }, TODO flickering */
244 { V4L2_DV_BT_CEA_720X576P50, 0x0b, 0x00 },
245 { V4L2_DV_BT_CEA_1280X720P50, 0x19, 0x01 },
246 { V4L2_DV_BT_CEA_1280X720P60, 0x19, 0x00 },
247 { V4L2_DV_BT_CEA_1920X1080P24, 0x1e, 0x04 },
248 { V4L2_DV_BT_CEA_1920X1080P25, 0x1e, 0x03 },
249 { V4L2_DV_BT_CEA_1920X1080P30, 0x1e, 0x02 },
250 { V4L2_DV_BT_CEA_1920X1080P50, 0x1e, 0x01 },
251 { V4L2_DV_BT_CEA_1920X1080P60, 0x1e, 0x00 },
252 /* TODO add 1920x1080P60_RB (CVT timing) */
253 { },
256 /* sorted by number of lines */
257 static const struct adv76xx_video_standards adv7604_prim_mode_gr[] = {
258 { V4L2_DV_BT_DMT_640X480P60, 0x08, 0x00 },
259 { V4L2_DV_BT_DMT_640X480P72, 0x09, 0x00 },
260 { V4L2_DV_BT_DMT_640X480P75, 0x0a, 0x00 },
261 { V4L2_DV_BT_DMT_640X480P85, 0x0b, 0x00 },
262 { V4L2_DV_BT_DMT_800X600P56, 0x00, 0x00 },
263 { V4L2_DV_BT_DMT_800X600P60, 0x01, 0x00 },
264 { V4L2_DV_BT_DMT_800X600P72, 0x02, 0x00 },
265 { V4L2_DV_BT_DMT_800X600P75, 0x03, 0x00 },
266 { V4L2_DV_BT_DMT_800X600P85, 0x04, 0x00 },
267 { V4L2_DV_BT_DMT_1024X768P60, 0x0c, 0x00 },
268 { V4L2_DV_BT_DMT_1024X768P70, 0x0d, 0x00 },
269 { V4L2_DV_BT_DMT_1024X768P75, 0x0e, 0x00 },
270 { V4L2_DV_BT_DMT_1024X768P85, 0x0f, 0x00 },
271 { V4L2_DV_BT_DMT_1280X1024P60, 0x05, 0x00 },
272 { V4L2_DV_BT_DMT_1280X1024P75, 0x06, 0x00 },
273 { V4L2_DV_BT_DMT_1360X768P60, 0x12, 0x00 },
274 { V4L2_DV_BT_DMT_1366X768P60, 0x13, 0x00 },
275 { V4L2_DV_BT_DMT_1400X1050P60, 0x14, 0x00 },
276 { V4L2_DV_BT_DMT_1400X1050P75, 0x15, 0x00 },
277 { V4L2_DV_BT_DMT_1600X1200P60, 0x16, 0x00 }, /* TODO not tested */
278 /* TODO add 1600X1200P60_RB (not a DMT timing) */
279 { V4L2_DV_BT_DMT_1680X1050P60, 0x18, 0x00 },
280 { V4L2_DV_BT_DMT_1920X1200P60_RB, 0x19, 0x00 }, /* TODO not tested */
281 { },
284 /* sorted by number of lines */
285 static const struct adv76xx_video_standards adv76xx_prim_mode_hdmi_comp[] = {
286 { V4L2_DV_BT_CEA_720X480P59_94, 0x0a, 0x00 },
287 { V4L2_DV_BT_CEA_720X576P50, 0x0b, 0x00 },
288 { V4L2_DV_BT_CEA_1280X720P50, 0x13, 0x01 },
289 { V4L2_DV_BT_CEA_1280X720P60, 0x13, 0x00 },
290 { V4L2_DV_BT_CEA_1920X1080P24, 0x1e, 0x04 },
291 { V4L2_DV_BT_CEA_1920X1080P25, 0x1e, 0x03 },
292 { V4L2_DV_BT_CEA_1920X1080P30, 0x1e, 0x02 },
293 { V4L2_DV_BT_CEA_1920X1080P50, 0x1e, 0x01 },
294 { V4L2_DV_BT_CEA_1920X1080P60, 0x1e, 0x00 },
295 { },
298 /* sorted by number of lines */
299 static const struct adv76xx_video_standards adv76xx_prim_mode_hdmi_gr[] = {
300 { V4L2_DV_BT_DMT_640X480P60, 0x08, 0x00 },
301 { V4L2_DV_BT_DMT_640X480P72, 0x09, 0x00 },
302 { V4L2_DV_BT_DMT_640X480P75, 0x0a, 0x00 },
303 { V4L2_DV_BT_DMT_640X480P85, 0x0b, 0x00 },
304 { V4L2_DV_BT_DMT_800X600P56, 0x00, 0x00 },
305 { V4L2_DV_BT_DMT_800X600P60, 0x01, 0x00 },
306 { V4L2_DV_BT_DMT_800X600P72, 0x02, 0x00 },
307 { V4L2_DV_BT_DMT_800X600P75, 0x03, 0x00 },
308 { V4L2_DV_BT_DMT_800X600P85, 0x04, 0x00 },
309 { V4L2_DV_BT_DMT_1024X768P60, 0x0c, 0x00 },
310 { V4L2_DV_BT_DMT_1024X768P70, 0x0d, 0x00 },
311 { V4L2_DV_BT_DMT_1024X768P75, 0x0e, 0x00 },
312 { V4L2_DV_BT_DMT_1024X768P85, 0x0f, 0x00 },
313 { V4L2_DV_BT_DMT_1280X1024P60, 0x05, 0x00 },
314 { V4L2_DV_BT_DMT_1280X1024P75, 0x06, 0x00 },
315 { },
318 static const struct v4l2_event adv76xx_ev_fmt = {
319 .type = V4L2_EVENT_SOURCE_CHANGE,
320 .u.src_change.changes = V4L2_EVENT_SRC_CH_RESOLUTION,
323 /* ----------------------------------------------------------------------- */
325 static inline struct adv76xx_state *to_state(struct v4l2_subdev *sd)
327 return container_of(sd, struct adv76xx_state, sd);
330 static inline unsigned htotal(const struct v4l2_bt_timings *t)
332 return V4L2_DV_BT_FRAME_WIDTH(t);
335 static inline unsigned vtotal(const struct v4l2_bt_timings *t)
337 return V4L2_DV_BT_FRAME_HEIGHT(t);
340 /* ----------------------------------------------------------------------- */
342 static int adv76xx_read_check(struct adv76xx_state *state,
343 int client_page, u8 reg)
345 struct i2c_client *client = state->i2c_clients[client_page];
346 int err;
347 unsigned int val;
349 err = regmap_read(state->regmap[client_page], reg, &val);
351 if (err) {
352 v4l_err(client, "error reading %02x, %02x\n",
353 client->addr, reg);
354 return err;
356 return val;
359 /* adv76xx_write_block(): Write raw data with a maximum of I2C_SMBUS_BLOCK_MAX
360 * size to one or more registers.
362 * A value of zero will be returned on success, a negative errno will
363 * be returned in error cases.
365 static int adv76xx_write_block(struct adv76xx_state *state, int client_page,
366 unsigned int init_reg, const void *val,
367 size_t val_len)
369 struct regmap *regmap = state->regmap[client_page];
371 if (val_len > I2C_SMBUS_BLOCK_MAX)
372 val_len = I2C_SMBUS_BLOCK_MAX;
374 return regmap_raw_write(regmap, init_reg, val, val_len);
377 /* ----------------------------------------------------------------------- */
379 static inline int io_read(struct v4l2_subdev *sd, u8 reg)
381 struct adv76xx_state *state = to_state(sd);
383 return adv76xx_read_check(state, ADV76XX_PAGE_IO, reg);
386 static inline int io_write(struct v4l2_subdev *sd, u8 reg, u8 val)
388 struct adv76xx_state *state = to_state(sd);
390 return regmap_write(state->regmap[ADV76XX_PAGE_IO], reg, val);
393 static inline int io_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask,
394 u8 val)
396 return io_write(sd, reg, (io_read(sd, reg) & ~mask) | val);
399 static inline int avlink_read(struct v4l2_subdev *sd, u8 reg)
401 struct adv76xx_state *state = to_state(sd);
403 return adv76xx_read_check(state, ADV7604_PAGE_AVLINK, reg);
406 static inline int avlink_write(struct v4l2_subdev *sd, u8 reg, u8 val)
408 struct adv76xx_state *state = to_state(sd);
410 return regmap_write(state->regmap[ADV7604_PAGE_AVLINK], reg, val);
413 static inline int cec_read(struct v4l2_subdev *sd, u8 reg)
415 struct adv76xx_state *state = to_state(sd);
417 return adv76xx_read_check(state, ADV76XX_PAGE_CEC, reg);
420 static inline int cec_write(struct v4l2_subdev *sd, u8 reg, u8 val)
422 struct adv76xx_state *state = to_state(sd);
424 return regmap_write(state->regmap[ADV76XX_PAGE_CEC], reg, val);
427 static inline int cec_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask,
428 u8 val)
430 return cec_write(sd, reg, (cec_read(sd, reg) & ~mask) | val);
433 static inline int infoframe_read(struct v4l2_subdev *sd, u8 reg)
435 struct adv76xx_state *state = to_state(sd);
437 return adv76xx_read_check(state, ADV76XX_PAGE_INFOFRAME, reg);
440 static inline int infoframe_write(struct v4l2_subdev *sd, u8 reg, u8 val)
442 struct adv76xx_state *state = to_state(sd);
444 return regmap_write(state->regmap[ADV76XX_PAGE_INFOFRAME], reg, val);
447 static inline int afe_read(struct v4l2_subdev *sd, u8 reg)
449 struct adv76xx_state *state = to_state(sd);
451 return adv76xx_read_check(state, ADV76XX_PAGE_AFE, reg);
454 static inline int afe_write(struct v4l2_subdev *sd, u8 reg, u8 val)
456 struct adv76xx_state *state = to_state(sd);
458 return regmap_write(state->regmap[ADV76XX_PAGE_AFE], reg, val);
461 static inline int rep_read(struct v4l2_subdev *sd, u8 reg)
463 struct adv76xx_state *state = to_state(sd);
465 return adv76xx_read_check(state, ADV76XX_PAGE_REP, reg);
468 static inline int rep_write(struct v4l2_subdev *sd, u8 reg, u8 val)
470 struct adv76xx_state *state = to_state(sd);
472 return regmap_write(state->regmap[ADV76XX_PAGE_REP], reg, val);
475 static inline int rep_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
477 return rep_write(sd, reg, (rep_read(sd, reg) & ~mask) | val);
480 static inline int edid_read(struct v4l2_subdev *sd, u8 reg)
482 struct adv76xx_state *state = to_state(sd);
484 return adv76xx_read_check(state, ADV76XX_PAGE_EDID, reg);
487 static inline int edid_write(struct v4l2_subdev *sd, u8 reg, u8 val)
489 struct adv76xx_state *state = to_state(sd);
491 return regmap_write(state->regmap[ADV76XX_PAGE_EDID], reg, val);
494 static inline int edid_write_block(struct v4l2_subdev *sd,
495 unsigned int total_len, const u8 *val)
497 struct adv76xx_state *state = to_state(sd);
498 int err = 0;
499 int i = 0;
500 int len = 0;
502 v4l2_dbg(2, debug, sd, "%s: write EDID block (%d byte)\n",
503 __func__, total_len);
505 while (!err && i < total_len) {
506 len = (total_len - i) > I2C_SMBUS_BLOCK_MAX ?
507 I2C_SMBUS_BLOCK_MAX :
508 (total_len - i);
510 err = adv76xx_write_block(state, ADV76XX_PAGE_EDID,
511 i, val + i, len);
512 i += len;
515 return err;
518 static void adv76xx_set_hpd(struct adv76xx_state *state, unsigned int hpd)
520 unsigned int i;
522 for (i = 0; i < state->info->num_dv_ports; ++i)
523 gpiod_set_value_cansleep(state->hpd_gpio[i], hpd & BIT(i));
525 v4l2_subdev_notify(&state->sd, ADV76XX_HOTPLUG, &hpd);
528 static void adv76xx_delayed_work_enable_hotplug(struct work_struct *work)
530 struct delayed_work *dwork = to_delayed_work(work);
531 struct adv76xx_state *state = container_of(dwork, struct adv76xx_state,
532 delayed_work_enable_hotplug);
533 struct v4l2_subdev *sd = &state->sd;
535 v4l2_dbg(2, debug, sd, "%s: enable hotplug\n", __func__);
537 adv76xx_set_hpd(state, state->edid.present);
540 static inline int hdmi_read(struct v4l2_subdev *sd, u8 reg)
542 struct adv76xx_state *state = to_state(sd);
544 return adv76xx_read_check(state, ADV76XX_PAGE_HDMI, reg);
547 static u16 hdmi_read16(struct v4l2_subdev *sd, u8 reg, u16 mask)
549 return ((hdmi_read(sd, reg) << 8) | hdmi_read(sd, reg + 1)) & mask;
552 static inline int hdmi_write(struct v4l2_subdev *sd, u8 reg, u8 val)
554 struct adv76xx_state *state = to_state(sd);
556 return regmap_write(state->regmap[ADV76XX_PAGE_HDMI], reg, val);
559 static inline int hdmi_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
561 return hdmi_write(sd, reg, (hdmi_read(sd, reg) & ~mask) | val);
564 static inline int test_write(struct v4l2_subdev *sd, u8 reg, u8 val)
566 struct adv76xx_state *state = to_state(sd);
568 return regmap_write(state->regmap[ADV76XX_PAGE_TEST], reg, val);
571 static inline int cp_read(struct v4l2_subdev *sd, u8 reg)
573 struct adv76xx_state *state = to_state(sd);
575 return adv76xx_read_check(state, ADV76XX_PAGE_CP, reg);
578 static u16 cp_read16(struct v4l2_subdev *sd, u8 reg, u16 mask)
580 return ((cp_read(sd, reg) << 8) | cp_read(sd, reg + 1)) & mask;
583 static inline int cp_write(struct v4l2_subdev *sd, u8 reg, u8 val)
585 struct adv76xx_state *state = to_state(sd);
587 return regmap_write(state->regmap[ADV76XX_PAGE_CP], reg, val);
590 static inline int cp_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
592 return cp_write(sd, reg, (cp_read(sd, reg) & ~mask) | val);
595 static inline int vdp_read(struct v4l2_subdev *sd, u8 reg)
597 struct adv76xx_state *state = to_state(sd);
599 return adv76xx_read_check(state, ADV7604_PAGE_VDP, reg);
602 static inline int vdp_write(struct v4l2_subdev *sd, u8 reg, u8 val)
604 struct adv76xx_state *state = to_state(sd);
606 return regmap_write(state->regmap[ADV7604_PAGE_VDP], reg, val);
609 #define ADV76XX_REG(page, offset) (((page) << 8) | (offset))
610 #define ADV76XX_REG_SEQ_TERM 0xffff
612 #ifdef CONFIG_VIDEO_ADV_DEBUG
613 static int adv76xx_read_reg(struct v4l2_subdev *sd, unsigned int reg)
615 struct adv76xx_state *state = to_state(sd);
616 unsigned int page = reg >> 8;
617 unsigned int val;
618 int err;
620 if (!(BIT(page) & state->info->page_mask))
621 return -EINVAL;
623 reg &= 0xff;
624 err = regmap_read(state->regmap[page], reg, &val);
626 return err ? err : val;
628 #endif
630 static int adv76xx_write_reg(struct v4l2_subdev *sd, unsigned int reg, u8 val)
632 struct adv76xx_state *state = to_state(sd);
633 unsigned int page = reg >> 8;
635 if (!(BIT(page) & state->info->page_mask))
636 return -EINVAL;
638 reg &= 0xff;
640 return regmap_write(state->regmap[page], reg, val);
643 static void adv76xx_write_reg_seq(struct v4l2_subdev *sd,
644 const struct adv76xx_reg_seq *reg_seq)
646 unsigned int i;
648 for (i = 0; reg_seq[i].reg != ADV76XX_REG_SEQ_TERM; i++)
649 adv76xx_write_reg(sd, reg_seq[i].reg, reg_seq[i].val);
652 /* -----------------------------------------------------------------------------
653 * Format helpers
656 static const struct adv76xx_format_info adv7604_formats[] = {
657 { MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false,
658 ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT },
659 { MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false,
660 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
661 { MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true,
662 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
663 { MEDIA_BUS_FMT_YUYV10_2X10, ADV76XX_OP_CH_SEL_RGB, false, false,
664 ADV76XX_OP_MODE_SEL_SDR_422 | ADV7604_OP_FORMAT_SEL_10BIT },
665 { MEDIA_BUS_FMT_YVYU10_2X10, ADV76XX_OP_CH_SEL_RGB, false, true,
666 ADV76XX_OP_MODE_SEL_SDR_422 | ADV7604_OP_FORMAT_SEL_10BIT },
667 { MEDIA_BUS_FMT_YUYV12_2X12, ADV76XX_OP_CH_SEL_RGB, false, false,
668 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
669 { MEDIA_BUS_FMT_YVYU12_2X12, ADV76XX_OP_CH_SEL_RGB, false, true,
670 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
671 { MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false,
672 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
673 { MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true,
674 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
675 { MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false,
676 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
677 { MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true,
678 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
679 { MEDIA_BUS_FMT_UYVY10_1X20, ADV76XX_OP_CH_SEL_RBG, false, false,
680 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
681 { MEDIA_BUS_FMT_VYUY10_1X20, ADV76XX_OP_CH_SEL_RBG, false, true,
682 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
683 { MEDIA_BUS_FMT_YUYV10_1X20, ADV76XX_OP_CH_SEL_RGB, false, false,
684 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
685 { MEDIA_BUS_FMT_YVYU10_1X20, ADV76XX_OP_CH_SEL_RGB, false, true,
686 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
687 { MEDIA_BUS_FMT_UYVY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, false,
688 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
689 { MEDIA_BUS_FMT_VYUY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, true,
690 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
691 { MEDIA_BUS_FMT_YUYV12_1X24, ADV76XX_OP_CH_SEL_RGB, false, false,
692 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
693 { MEDIA_BUS_FMT_YVYU12_1X24, ADV76XX_OP_CH_SEL_RGB, false, true,
694 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
697 static const struct adv76xx_format_info adv7611_formats[] = {
698 { MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false,
699 ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT },
700 { MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false,
701 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
702 { MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true,
703 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
704 { MEDIA_BUS_FMT_YUYV12_2X12, ADV76XX_OP_CH_SEL_RGB, false, false,
705 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
706 { MEDIA_BUS_FMT_YVYU12_2X12, ADV76XX_OP_CH_SEL_RGB, false, true,
707 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
708 { MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false,
709 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
710 { MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true,
711 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
712 { MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false,
713 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
714 { MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true,
715 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
716 { MEDIA_BUS_FMT_UYVY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, false,
717 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
718 { MEDIA_BUS_FMT_VYUY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, true,
719 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
720 { MEDIA_BUS_FMT_YUYV12_1X24, ADV76XX_OP_CH_SEL_RGB, false, false,
721 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
722 { MEDIA_BUS_FMT_YVYU12_1X24, ADV76XX_OP_CH_SEL_RGB, false, true,
723 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
726 static const struct adv76xx_format_info adv7612_formats[] = {
727 { MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false,
728 ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT },
729 { MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false,
730 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
731 { MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true,
732 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
733 { MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false,
734 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
735 { MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true,
736 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
737 { MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false,
738 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
739 { MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true,
740 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
743 static const struct adv76xx_format_info *
744 adv76xx_format_info(struct adv76xx_state *state, u32 code)
746 unsigned int i;
748 for (i = 0; i < state->info->nformats; ++i) {
749 if (state->info->formats[i].code == code)
750 return &state->info->formats[i];
753 return NULL;
756 /* ----------------------------------------------------------------------- */
758 static inline bool is_analog_input(struct v4l2_subdev *sd)
760 struct adv76xx_state *state = to_state(sd);
762 return state->selected_input == ADV7604_PAD_VGA_RGB ||
763 state->selected_input == ADV7604_PAD_VGA_COMP;
766 static inline bool is_digital_input(struct v4l2_subdev *sd)
768 struct adv76xx_state *state = to_state(sd);
770 return state->selected_input == ADV76XX_PAD_HDMI_PORT_A ||
771 state->selected_input == ADV7604_PAD_HDMI_PORT_B ||
772 state->selected_input == ADV7604_PAD_HDMI_PORT_C ||
773 state->selected_input == ADV7604_PAD_HDMI_PORT_D;
776 static const struct v4l2_dv_timings_cap adv7604_timings_cap_analog = {
777 .type = V4L2_DV_BT_656_1120,
778 /* keep this initialization for compatibility with GCC < 4.4.6 */
779 .reserved = { 0 },
780 V4L2_INIT_BT_TIMINGS(0, 1920, 0, 1200, 25000000, 170000000,
781 V4L2_DV_BT_STD_CEA861 | V4L2_DV_BT_STD_DMT |
782 V4L2_DV_BT_STD_GTF | V4L2_DV_BT_STD_CVT,
783 V4L2_DV_BT_CAP_PROGRESSIVE | V4L2_DV_BT_CAP_REDUCED_BLANKING |
784 V4L2_DV_BT_CAP_CUSTOM)
787 static const struct v4l2_dv_timings_cap adv76xx_timings_cap_digital = {
788 .type = V4L2_DV_BT_656_1120,
789 /* keep this initialization for compatibility with GCC < 4.4.6 */
790 .reserved = { 0 },
791 V4L2_INIT_BT_TIMINGS(0, 1920, 0, 1200, 25000000, 225000000,
792 V4L2_DV_BT_STD_CEA861 | V4L2_DV_BT_STD_DMT |
793 V4L2_DV_BT_STD_GTF | V4L2_DV_BT_STD_CVT,
794 V4L2_DV_BT_CAP_PROGRESSIVE | V4L2_DV_BT_CAP_REDUCED_BLANKING |
795 V4L2_DV_BT_CAP_CUSTOM)
799 * Return the DV timings capabilities for the requested sink pad. As a special
800 * case, pad value -1 returns the capabilities for the currently selected input.
802 static const struct v4l2_dv_timings_cap *
803 adv76xx_get_dv_timings_cap(struct v4l2_subdev *sd, int pad)
805 if (pad == -1) {
806 struct adv76xx_state *state = to_state(sd);
808 pad = state->selected_input;
811 switch (pad) {
812 case ADV76XX_PAD_HDMI_PORT_A:
813 case ADV7604_PAD_HDMI_PORT_B:
814 case ADV7604_PAD_HDMI_PORT_C:
815 case ADV7604_PAD_HDMI_PORT_D:
816 return &adv76xx_timings_cap_digital;
818 case ADV7604_PAD_VGA_RGB:
819 case ADV7604_PAD_VGA_COMP:
820 default:
821 return &adv7604_timings_cap_analog;
826 /* ----------------------------------------------------------------------- */
828 #ifdef CONFIG_VIDEO_ADV_DEBUG
829 static void adv76xx_inv_register(struct v4l2_subdev *sd)
831 v4l2_info(sd, "0x000-0x0ff: IO Map\n");
832 v4l2_info(sd, "0x100-0x1ff: AVLink Map\n");
833 v4l2_info(sd, "0x200-0x2ff: CEC Map\n");
834 v4l2_info(sd, "0x300-0x3ff: InfoFrame Map\n");
835 v4l2_info(sd, "0x400-0x4ff: ESDP Map\n");
836 v4l2_info(sd, "0x500-0x5ff: DPP Map\n");
837 v4l2_info(sd, "0x600-0x6ff: AFE Map\n");
838 v4l2_info(sd, "0x700-0x7ff: Repeater Map\n");
839 v4l2_info(sd, "0x800-0x8ff: EDID Map\n");
840 v4l2_info(sd, "0x900-0x9ff: HDMI Map\n");
841 v4l2_info(sd, "0xa00-0xaff: Test Map\n");
842 v4l2_info(sd, "0xb00-0xbff: CP Map\n");
843 v4l2_info(sd, "0xc00-0xcff: VDP Map\n");
846 static int adv76xx_g_register(struct v4l2_subdev *sd,
847 struct v4l2_dbg_register *reg)
849 int ret;
851 ret = adv76xx_read_reg(sd, reg->reg);
852 if (ret < 0) {
853 v4l2_info(sd, "Register %03llx not supported\n", reg->reg);
854 adv76xx_inv_register(sd);
855 return ret;
858 reg->size = 1;
859 reg->val = ret;
861 return 0;
864 static int adv76xx_s_register(struct v4l2_subdev *sd,
865 const struct v4l2_dbg_register *reg)
867 int ret;
869 ret = adv76xx_write_reg(sd, reg->reg, reg->val);
870 if (ret < 0) {
871 v4l2_info(sd, "Register %03llx not supported\n", reg->reg);
872 adv76xx_inv_register(sd);
873 return ret;
876 return 0;
878 #endif
880 static unsigned int adv7604_read_cable_det(struct v4l2_subdev *sd)
882 u8 value = io_read(sd, 0x6f);
884 return ((value & 0x10) >> 4)
885 | ((value & 0x08) >> 2)
886 | ((value & 0x04) << 0)
887 | ((value & 0x02) << 2);
890 static unsigned int adv7611_read_cable_det(struct v4l2_subdev *sd)
892 u8 value = io_read(sd, 0x6f);
894 return value & 1;
897 static unsigned int adv7612_read_cable_det(struct v4l2_subdev *sd)
899 /* Reads CABLE_DET_A_RAW. For input B support, need to
900 * account for bit 7 [MSB] of 0x6a (ie. CABLE_DET_B_RAW)
902 u8 value = io_read(sd, 0x6f);
904 return value & 1;
907 static int adv76xx_s_detect_tx_5v_ctrl(struct v4l2_subdev *sd)
909 struct adv76xx_state *state = to_state(sd);
910 const struct adv76xx_chip_info *info = state->info;
911 u16 cable_det = info->read_cable_det(sd);
913 return v4l2_ctrl_s_ctrl(state->detect_tx_5v_ctrl, cable_det);
916 static int find_and_set_predefined_video_timings(struct v4l2_subdev *sd,
917 u8 prim_mode,
918 const struct adv76xx_video_standards *predef_vid_timings,
919 const struct v4l2_dv_timings *timings)
921 int i;
923 for (i = 0; predef_vid_timings[i].timings.bt.width; i++) {
924 if (!v4l2_match_dv_timings(timings, &predef_vid_timings[i].timings,
925 is_digital_input(sd) ? 250000 : 1000000, false))
926 continue;
927 io_write(sd, 0x00, predef_vid_timings[i].vid_std); /* video std */
928 io_write(sd, 0x01, (predef_vid_timings[i].v_freq << 4) +
929 prim_mode); /* v_freq and prim mode */
930 return 0;
933 return -1;
936 static int configure_predefined_video_timings(struct v4l2_subdev *sd,
937 struct v4l2_dv_timings *timings)
939 struct adv76xx_state *state = to_state(sd);
940 int err;
942 v4l2_dbg(1, debug, sd, "%s", __func__);
944 if (adv76xx_has_afe(state)) {
945 /* reset to default values */
946 io_write(sd, 0x16, 0x43);
947 io_write(sd, 0x17, 0x5a);
949 /* disable embedded syncs for auto graphics mode */
950 cp_write_clr_set(sd, 0x81, 0x10, 0x00);
951 cp_write(sd, 0x8f, 0x00);
952 cp_write(sd, 0x90, 0x00);
953 cp_write(sd, 0xa2, 0x00);
954 cp_write(sd, 0xa3, 0x00);
955 cp_write(sd, 0xa4, 0x00);
956 cp_write(sd, 0xa5, 0x00);
957 cp_write(sd, 0xa6, 0x00);
958 cp_write(sd, 0xa7, 0x00);
959 cp_write(sd, 0xab, 0x00);
960 cp_write(sd, 0xac, 0x00);
962 if (is_analog_input(sd)) {
963 err = find_and_set_predefined_video_timings(sd,
964 0x01, adv7604_prim_mode_comp, timings);
965 if (err)
966 err = find_and_set_predefined_video_timings(sd,
967 0x02, adv7604_prim_mode_gr, timings);
968 } else if (is_digital_input(sd)) {
969 err = find_and_set_predefined_video_timings(sd,
970 0x05, adv76xx_prim_mode_hdmi_comp, timings);
971 if (err)
972 err = find_and_set_predefined_video_timings(sd,
973 0x06, adv76xx_prim_mode_hdmi_gr, timings);
974 } else {
975 v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
976 __func__, state->selected_input);
977 err = -1;
981 return err;
984 static void configure_custom_video_timings(struct v4l2_subdev *sd,
985 const struct v4l2_bt_timings *bt)
987 struct adv76xx_state *state = to_state(sd);
988 u32 width = htotal(bt);
989 u32 height = vtotal(bt);
990 u16 cp_start_sav = bt->hsync + bt->hbackporch - 4;
991 u16 cp_start_eav = width - bt->hfrontporch;
992 u16 cp_start_vbi = height - bt->vfrontporch;
993 u16 cp_end_vbi = bt->vsync + bt->vbackporch;
994 u16 ch1_fr_ll = (((u32)bt->pixelclock / 100) > 0) ?
995 ((width * (ADV76XX_FSC / 100)) / ((u32)bt->pixelclock / 100)) : 0;
996 const u8 pll[2] = {
997 0xc0 | ((width >> 8) & 0x1f),
998 width & 0xff
1001 v4l2_dbg(2, debug, sd, "%s\n", __func__);
1003 if (is_analog_input(sd)) {
1004 /* auto graphics */
1005 io_write(sd, 0x00, 0x07); /* video std */
1006 io_write(sd, 0x01, 0x02); /* prim mode */
1007 /* enable embedded syncs for auto graphics mode */
1008 cp_write_clr_set(sd, 0x81, 0x10, 0x10);
1010 /* Should only be set in auto-graphics mode [REF_02, p. 91-92] */
1011 /* setup PLL_DIV_MAN_EN and PLL_DIV_RATIO */
1012 /* IO-map reg. 0x16 and 0x17 should be written in sequence */
1013 if (regmap_raw_write(state->regmap[ADV76XX_PAGE_IO],
1014 0x16, pll, 2))
1015 v4l2_err(sd, "writing to reg 0x16 and 0x17 failed\n");
1017 /* active video - horizontal timing */
1018 cp_write(sd, 0xa2, (cp_start_sav >> 4) & 0xff);
1019 cp_write(sd, 0xa3, ((cp_start_sav & 0x0f) << 4) |
1020 ((cp_start_eav >> 8) & 0x0f));
1021 cp_write(sd, 0xa4, cp_start_eav & 0xff);
1023 /* active video - vertical timing */
1024 cp_write(sd, 0xa5, (cp_start_vbi >> 4) & 0xff);
1025 cp_write(sd, 0xa6, ((cp_start_vbi & 0xf) << 4) |
1026 ((cp_end_vbi >> 8) & 0xf));
1027 cp_write(sd, 0xa7, cp_end_vbi & 0xff);
1028 } else if (is_digital_input(sd)) {
1029 /* set default prim_mode/vid_std for HDMI
1030 according to [REF_03, c. 4.2] */
1031 io_write(sd, 0x00, 0x02); /* video std */
1032 io_write(sd, 0x01, 0x06); /* prim mode */
1033 } else {
1034 v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
1035 __func__, state->selected_input);
1038 cp_write(sd, 0x8f, (ch1_fr_ll >> 8) & 0x7);
1039 cp_write(sd, 0x90, ch1_fr_ll & 0xff);
1040 cp_write(sd, 0xab, (height >> 4) & 0xff);
1041 cp_write(sd, 0xac, (height & 0x0f) << 4);
1044 static void adv76xx_set_offset(struct v4l2_subdev *sd, bool auto_offset, u16 offset_a, u16 offset_b, u16 offset_c)
1046 struct adv76xx_state *state = to_state(sd);
1047 u8 offset_buf[4];
1049 if (auto_offset) {
1050 offset_a = 0x3ff;
1051 offset_b = 0x3ff;
1052 offset_c = 0x3ff;
1055 v4l2_dbg(2, debug, sd, "%s: %s offset: a = 0x%x, b = 0x%x, c = 0x%x\n",
1056 __func__, auto_offset ? "Auto" : "Manual",
1057 offset_a, offset_b, offset_c);
1059 offset_buf[0] = (cp_read(sd, 0x77) & 0xc0) | ((offset_a & 0x3f0) >> 4);
1060 offset_buf[1] = ((offset_a & 0x00f) << 4) | ((offset_b & 0x3c0) >> 6);
1061 offset_buf[2] = ((offset_b & 0x03f) << 2) | ((offset_c & 0x300) >> 8);
1062 offset_buf[3] = offset_c & 0x0ff;
1064 /* Registers must be written in this order with no i2c access in between */
1065 if (regmap_raw_write(state->regmap[ADV76XX_PAGE_CP],
1066 0x77, offset_buf, 4))
1067 v4l2_err(sd, "%s: i2c error writing to CP reg 0x77, 0x78, 0x79, 0x7a\n", __func__);
1070 static void adv76xx_set_gain(struct v4l2_subdev *sd, bool auto_gain, u16 gain_a, u16 gain_b, u16 gain_c)
1072 struct adv76xx_state *state = to_state(sd);
1073 u8 gain_buf[4];
1074 u8 gain_man = 1;
1075 u8 agc_mode_man = 1;
1077 if (auto_gain) {
1078 gain_man = 0;
1079 agc_mode_man = 0;
1080 gain_a = 0x100;
1081 gain_b = 0x100;
1082 gain_c = 0x100;
1085 v4l2_dbg(2, debug, sd, "%s: %s gain: a = 0x%x, b = 0x%x, c = 0x%x\n",
1086 __func__, auto_gain ? "Auto" : "Manual",
1087 gain_a, gain_b, gain_c);
1089 gain_buf[0] = ((gain_man << 7) | (agc_mode_man << 6) | ((gain_a & 0x3f0) >> 4));
1090 gain_buf[1] = (((gain_a & 0x00f) << 4) | ((gain_b & 0x3c0) >> 6));
1091 gain_buf[2] = (((gain_b & 0x03f) << 2) | ((gain_c & 0x300) >> 8));
1092 gain_buf[3] = ((gain_c & 0x0ff));
1094 /* Registers must be written in this order with no i2c access in between */
1095 if (regmap_raw_write(state->regmap[ADV76XX_PAGE_CP],
1096 0x73, gain_buf, 4))
1097 v4l2_err(sd, "%s: i2c error writing to CP reg 0x73, 0x74, 0x75, 0x76\n", __func__);
1100 static void set_rgb_quantization_range(struct v4l2_subdev *sd)
1102 struct adv76xx_state *state = to_state(sd);
1103 bool rgb_output = io_read(sd, 0x02) & 0x02;
1104 bool hdmi_signal = hdmi_read(sd, 0x05) & 0x80;
1105 u8 y = HDMI_COLORSPACE_RGB;
1107 if (hdmi_signal && (io_read(sd, 0x60) & 1))
1108 y = infoframe_read(sd, 0x01) >> 5;
1110 v4l2_dbg(2, debug, sd, "%s: RGB quantization range: %d, RGB out: %d, HDMI: %d\n",
1111 __func__, state->rgb_quantization_range,
1112 rgb_output, hdmi_signal);
1114 adv76xx_set_gain(sd, true, 0x0, 0x0, 0x0);
1115 adv76xx_set_offset(sd, true, 0x0, 0x0, 0x0);
1116 io_write_clr_set(sd, 0x02, 0x04, rgb_output ? 0 : 4);
1118 switch (state->rgb_quantization_range) {
1119 case V4L2_DV_RGB_RANGE_AUTO:
1120 if (state->selected_input == ADV7604_PAD_VGA_RGB) {
1121 /* Receiving analog RGB signal
1122 * Set RGB full range (0-255) */
1123 io_write_clr_set(sd, 0x02, 0xf0, 0x10);
1124 break;
1127 if (state->selected_input == ADV7604_PAD_VGA_COMP) {
1128 /* Receiving analog YPbPr signal
1129 * Set automode */
1130 io_write_clr_set(sd, 0x02, 0xf0, 0xf0);
1131 break;
1134 if (hdmi_signal) {
1135 /* Receiving HDMI signal
1136 * Set automode */
1137 io_write_clr_set(sd, 0x02, 0xf0, 0xf0);
1138 break;
1141 /* Receiving DVI-D signal
1142 * ADV7604 selects RGB limited range regardless of
1143 * input format (CE/IT) in automatic mode */
1144 if (state->timings.bt.flags & V4L2_DV_FL_IS_CE_VIDEO) {
1145 /* RGB limited range (16-235) */
1146 io_write_clr_set(sd, 0x02, 0xf0, 0x00);
1147 } else {
1148 /* RGB full range (0-255) */
1149 io_write_clr_set(sd, 0x02, 0xf0, 0x10);
1151 if (is_digital_input(sd) && rgb_output) {
1152 adv76xx_set_offset(sd, false, 0x40, 0x40, 0x40);
1153 } else {
1154 adv76xx_set_gain(sd, false, 0xe0, 0xe0, 0xe0);
1155 adv76xx_set_offset(sd, false, 0x70, 0x70, 0x70);
1158 break;
1159 case V4L2_DV_RGB_RANGE_LIMITED:
1160 if (state->selected_input == ADV7604_PAD_VGA_COMP) {
1161 /* YCrCb limited range (16-235) */
1162 io_write_clr_set(sd, 0x02, 0xf0, 0x20);
1163 break;
1166 if (y != HDMI_COLORSPACE_RGB)
1167 break;
1169 /* RGB limited range (16-235) */
1170 io_write_clr_set(sd, 0x02, 0xf0, 0x00);
1172 break;
1173 case V4L2_DV_RGB_RANGE_FULL:
1174 if (state->selected_input == ADV7604_PAD_VGA_COMP) {
1175 /* YCrCb full range (0-255) */
1176 io_write_clr_set(sd, 0x02, 0xf0, 0x60);
1177 break;
1180 if (y != HDMI_COLORSPACE_RGB)
1181 break;
1183 /* RGB full range (0-255) */
1184 io_write_clr_set(sd, 0x02, 0xf0, 0x10);
1186 if (is_analog_input(sd) || hdmi_signal)
1187 break;
1189 /* Adjust gain/offset for DVI-D signals only */
1190 if (rgb_output) {
1191 adv76xx_set_offset(sd, false, 0x40, 0x40, 0x40);
1192 } else {
1193 adv76xx_set_gain(sd, false, 0xe0, 0xe0, 0xe0);
1194 adv76xx_set_offset(sd, false, 0x70, 0x70, 0x70);
1196 break;
1200 static int adv76xx_s_ctrl(struct v4l2_ctrl *ctrl)
1202 struct v4l2_subdev *sd =
1203 &container_of(ctrl->handler, struct adv76xx_state, hdl)->sd;
1205 struct adv76xx_state *state = to_state(sd);
1207 switch (ctrl->id) {
1208 case V4L2_CID_BRIGHTNESS:
1209 cp_write(sd, 0x3c, ctrl->val);
1210 return 0;
1211 case V4L2_CID_CONTRAST:
1212 cp_write(sd, 0x3a, ctrl->val);
1213 return 0;
1214 case V4L2_CID_SATURATION:
1215 cp_write(sd, 0x3b, ctrl->val);
1216 return 0;
1217 case V4L2_CID_HUE:
1218 cp_write(sd, 0x3d, ctrl->val);
1219 return 0;
1220 case V4L2_CID_DV_RX_RGB_RANGE:
1221 state->rgb_quantization_range = ctrl->val;
1222 set_rgb_quantization_range(sd);
1223 return 0;
1224 case V4L2_CID_ADV_RX_ANALOG_SAMPLING_PHASE:
1225 if (!adv76xx_has_afe(state))
1226 return -EINVAL;
1227 /* Set the analog sampling phase. This is needed to find the
1228 best sampling phase for analog video: an application or
1229 driver has to try a number of phases and analyze the picture
1230 quality before settling on the best performing phase. */
1231 afe_write(sd, 0xc8, ctrl->val);
1232 return 0;
1233 case V4L2_CID_ADV_RX_FREE_RUN_COLOR_MANUAL:
1234 /* Use the default blue color for free running mode,
1235 or supply your own. */
1236 cp_write_clr_set(sd, 0xbf, 0x04, ctrl->val << 2);
1237 return 0;
1238 case V4L2_CID_ADV_RX_FREE_RUN_COLOR:
1239 cp_write(sd, 0xc0, (ctrl->val & 0xff0000) >> 16);
1240 cp_write(sd, 0xc1, (ctrl->val & 0x00ff00) >> 8);
1241 cp_write(sd, 0xc2, (u8)(ctrl->val & 0x0000ff));
1242 return 0;
1244 return -EINVAL;
1247 static int adv76xx_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
1249 struct v4l2_subdev *sd =
1250 &container_of(ctrl->handler, struct adv76xx_state, hdl)->sd;
1252 if (ctrl->id == V4L2_CID_DV_RX_IT_CONTENT_TYPE) {
1253 ctrl->val = V4L2_DV_IT_CONTENT_TYPE_NO_ITC;
1254 if ((io_read(sd, 0x60) & 1) && (infoframe_read(sd, 0x03) & 0x80))
1255 ctrl->val = (infoframe_read(sd, 0x05) >> 4) & 3;
1256 return 0;
1258 return -EINVAL;
1261 /* ----------------------------------------------------------------------- */
1263 static inline bool no_power(struct v4l2_subdev *sd)
1265 /* Entire chip or CP powered off */
1266 return io_read(sd, 0x0c) & 0x24;
1269 static inline bool no_signal_tmds(struct v4l2_subdev *sd)
1271 struct adv76xx_state *state = to_state(sd);
1273 return !(io_read(sd, 0x6a) & (0x10 >> state->selected_input));
1276 static inline bool no_lock_tmds(struct v4l2_subdev *sd)
1278 struct adv76xx_state *state = to_state(sd);
1279 const struct adv76xx_chip_info *info = state->info;
1281 return (io_read(sd, 0x6a) & info->tdms_lock_mask) != info->tdms_lock_mask;
1284 static inline bool is_hdmi(struct v4l2_subdev *sd)
1286 return hdmi_read(sd, 0x05) & 0x80;
1289 static inline bool no_lock_sspd(struct v4l2_subdev *sd)
1291 struct adv76xx_state *state = to_state(sd);
1294 * Chips without a AFE don't expose registers for the SSPD, so just assume
1295 * that we have a lock.
1297 if (adv76xx_has_afe(state))
1298 return false;
1300 /* TODO channel 2 */
1301 return ((cp_read(sd, 0xb5) & 0xd0) != 0xd0);
1304 static inline bool no_lock_stdi(struct v4l2_subdev *sd)
1306 /* TODO channel 2 */
1307 return !(cp_read(sd, 0xb1) & 0x80);
1310 static inline bool no_signal(struct v4l2_subdev *sd)
1312 bool ret;
1314 ret = no_power(sd);
1316 ret |= no_lock_stdi(sd);
1317 ret |= no_lock_sspd(sd);
1319 if (is_digital_input(sd)) {
1320 ret |= no_lock_tmds(sd);
1321 ret |= no_signal_tmds(sd);
1324 return ret;
1327 static inline bool no_lock_cp(struct v4l2_subdev *sd)
1329 struct adv76xx_state *state = to_state(sd);
1331 if (!adv76xx_has_afe(state))
1332 return false;
1334 /* CP has detected a non standard number of lines on the incoming
1335 video compared to what it is configured to receive by s_dv_timings */
1336 return io_read(sd, 0x12) & 0x01;
1339 static inline bool in_free_run(struct v4l2_subdev *sd)
1341 return cp_read(sd, 0xff) & 0x10;
1344 static int adv76xx_g_input_status(struct v4l2_subdev *sd, u32 *status)
1346 *status = 0;
1347 *status |= no_power(sd) ? V4L2_IN_ST_NO_POWER : 0;
1348 *status |= no_signal(sd) ? V4L2_IN_ST_NO_SIGNAL : 0;
1349 if (!in_free_run(sd) && no_lock_cp(sd))
1350 *status |= is_digital_input(sd) ?
1351 V4L2_IN_ST_NO_SYNC : V4L2_IN_ST_NO_H_LOCK;
1353 v4l2_dbg(1, debug, sd, "%s: status = 0x%x\n", __func__, *status);
1355 return 0;
1358 /* ----------------------------------------------------------------------- */
1360 struct stdi_readback {
1361 u16 bl, lcf, lcvs;
1362 u8 hs_pol, vs_pol;
1363 bool interlaced;
1366 static int stdi2dv_timings(struct v4l2_subdev *sd,
1367 struct stdi_readback *stdi,
1368 struct v4l2_dv_timings *timings)
1370 struct adv76xx_state *state = to_state(sd);
1371 u32 hfreq = (ADV76XX_FSC * 8) / stdi->bl;
1372 u32 pix_clk;
1373 int i;
1375 for (i = 0; v4l2_dv_timings_presets[i].bt.width; i++) {
1376 const struct v4l2_bt_timings *bt = &v4l2_dv_timings_presets[i].bt;
1378 if (!v4l2_valid_dv_timings(&v4l2_dv_timings_presets[i],
1379 adv76xx_get_dv_timings_cap(sd, -1),
1380 adv76xx_check_dv_timings, NULL))
1381 continue;
1382 if (vtotal(bt) != stdi->lcf + 1)
1383 continue;
1384 if (bt->vsync != stdi->lcvs)
1385 continue;
1387 pix_clk = hfreq * htotal(bt);
1389 if ((pix_clk < bt->pixelclock + 1000000) &&
1390 (pix_clk > bt->pixelclock - 1000000)) {
1391 *timings = v4l2_dv_timings_presets[i];
1392 return 0;
1396 if (v4l2_detect_cvt(stdi->lcf + 1, hfreq, stdi->lcvs, 0,
1397 (stdi->hs_pol == '+' ? V4L2_DV_HSYNC_POS_POL : 0) |
1398 (stdi->vs_pol == '+' ? V4L2_DV_VSYNC_POS_POL : 0),
1399 false, timings))
1400 return 0;
1401 if (v4l2_detect_gtf(stdi->lcf + 1, hfreq, stdi->lcvs,
1402 (stdi->hs_pol == '+' ? V4L2_DV_HSYNC_POS_POL : 0) |
1403 (stdi->vs_pol == '+' ? V4L2_DV_VSYNC_POS_POL : 0),
1404 false, state->aspect_ratio, timings))
1405 return 0;
1407 v4l2_dbg(2, debug, sd,
1408 "%s: No format candidate found for lcvs = %d, lcf=%d, bl = %d, %chsync, %cvsync\n",
1409 __func__, stdi->lcvs, stdi->lcf, stdi->bl,
1410 stdi->hs_pol, stdi->vs_pol);
1411 return -1;
1415 static int read_stdi(struct v4l2_subdev *sd, struct stdi_readback *stdi)
1417 struct adv76xx_state *state = to_state(sd);
1418 const struct adv76xx_chip_info *info = state->info;
1419 u8 polarity;
1421 if (no_lock_stdi(sd) || no_lock_sspd(sd)) {
1422 v4l2_dbg(2, debug, sd, "%s: STDI and/or SSPD not locked\n", __func__);
1423 return -1;
1426 /* read STDI */
1427 stdi->bl = cp_read16(sd, 0xb1, 0x3fff);
1428 stdi->lcf = cp_read16(sd, info->lcf_reg, 0x7ff);
1429 stdi->lcvs = cp_read(sd, 0xb3) >> 3;
1430 stdi->interlaced = io_read(sd, 0x12) & 0x10;
1432 if (adv76xx_has_afe(state)) {
1433 /* read SSPD */
1434 polarity = cp_read(sd, 0xb5);
1435 if ((polarity & 0x03) == 0x01) {
1436 stdi->hs_pol = polarity & 0x10
1437 ? (polarity & 0x08 ? '+' : '-') : 'x';
1438 stdi->vs_pol = polarity & 0x40
1439 ? (polarity & 0x20 ? '+' : '-') : 'x';
1440 } else {
1441 stdi->hs_pol = 'x';
1442 stdi->vs_pol = 'x';
1444 } else {
1445 polarity = hdmi_read(sd, 0x05);
1446 stdi->hs_pol = polarity & 0x20 ? '+' : '-';
1447 stdi->vs_pol = polarity & 0x10 ? '+' : '-';
1450 if (no_lock_stdi(sd) || no_lock_sspd(sd)) {
1451 v4l2_dbg(2, debug, sd,
1452 "%s: signal lost during readout of STDI/SSPD\n", __func__);
1453 return -1;
1456 if (stdi->lcf < 239 || stdi->bl < 8 || stdi->bl == 0x3fff) {
1457 v4l2_dbg(2, debug, sd, "%s: invalid signal\n", __func__);
1458 memset(stdi, 0, sizeof(struct stdi_readback));
1459 return -1;
1462 v4l2_dbg(2, debug, sd,
1463 "%s: lcf (frame height - 1) = %d, bl = %d, lcvs (vsync) = %d, %chsync, %cvsync, %s\n",
1464 __func__, stdi->lcf, stdi->bl, stdi->lcvs,
1465 stdi->hs_pol, stdi->vs_pol,
1466 stdi->interlaced ? "interlaced" : "progressive");
1468 return 0;
1471 static int adv76xx_enum_dv_timings(struct v4l2_subdev *sd,
1472 struct v4l2_enum_dv_timings *timings)
1474 struct adv76xx_state *state = to_state(sd);
1476 if (timings->pad >= state->source_pad)
1477 return -EINVAL;
1479 return v4l2_enum_dv_timings_cap(timings,
1480 adv76xx_get_dv_timings_cap(sd, timings->pad),
1481 adv76xx_check_dv_timings, NULL);
1484 static int adv76xx_dv_timings_cap(struct v4l2_subdev *sd,
1485 struct v4l2_dv_timings_cap *cap)
1487 struct adv76xx_state *state = to_state(sd);
1488 unsigned int pad = cap->pad;
1490 if (cap->pad >= state->source_pad)
1491 return -EINVAL;
1493 *cap = *adv76xx_get_dv_timings_cap(sd, pad);
1494 cap->pad = pad;
1496 return 0;
1499 /* Fill the optional fields .standards and .flags in struct v4l2_dv_timings
1500 if the format is listed in adv76xx_timings[] */
1501 static void adv76xx_fill_optional_dv_timings_fields(struct v4l2_subdev *sd,
1502 struct v4l2_dv_timings *timings)
1504 v4l2_find_dv_timings_cap(timings, adv76xx_get_dv_timings_cap(sd, -1),
1505 is_digital_input(sd) ? 250000 : 1000000,
1506 adv76xx_check_dv_timings, NULL);
1509 static unsigned int adv7604_read_hdmi_pixelclock(struct v4l2_subdev *sd)
1511 unsigned int freq;
1512 int a, b;
1514 a = hdmi_read(sd, 0x06);
1515 b = hdmi_read(sd, 0x3b);
1516 if (a < 0 || b < 0)
1517 return 0;
1518 freq = a * 1000000 + ((b & 0x30) >> 4) * 250000;
1520 if (is_hdmi(sd)) {
1521 /* adjust for deep color mode */
1522 unsigned bits_per_channel = ((hdmi_read(sd, 0x0b) & 0x60) >> 4) + 8;
1524 freq = freq * 8 / bits_per_channel;
1527 return freq;
1530 static unsigned int adv7611_read_hdmi_pixelclock(struct v4l2_subdev *sd)
1532 int a, b;
1534 a = hdmi_read(sd, 0x51);
1535 b = hdmi_read(sd, 0x52);
1536 if (a < 0 || b < 0)
1537 return 0;
1538 return ((a << 1) | (b >> 7)) * 1000000 + (b & 0x7f) * 1000000 / 128;
1541 static int adv76xx_query_dv_timings(struct v4l2_subdev *sd,
1542 struct v4l2_dv_timings *timings)
1544 struct adv76xx_state *state = to_state(sd);
1545 const struct adv76xx_chip_info *info = state->info;
1546 struct v4l2_bt_timings *bt = &timings->bt;
1547 struct stdi_readback stdi;
1549 if (!timings)
1550 return -EINVAL;
1552 memset(timings, 0, sizeof(struct v4l2_dv_timings));
1554 if (no_signal(sd)) {
1555 state->restart_stdi_once = true;
1556 v4l2_dbg(1, debug, sd, "%s: no valid signal\n", __func__);
1557 return -ENOLINK;
1560 /* read STDI */
1561 if (read_stdi(sd, &stdi)) {
1562 v4l2_dbg(1, debug, sd, "%s: STDI/SSPD not locked\n", __func__);
1563 return -ENOLINK;
1565 bt->interlaced = stdi.interlaced ?
1566 V4L2_DV_INTERLACED : V4L2_DV_PROGRESSIVE;
1568 if (is_digital_input(sd)) {
1569 timings->type = V4L2_DV_BT_656_1120;
1571 bt->width = hdmi_read16(sd, 0x07, info->linewidth_mask);
1572 bt->height = hdmi_read16(sd, 0x09, info->field0_height_mask);
1573 bt->pixelclock = info->read_hdmi_pixelclock(sd);
1574 bt->hfrontporch = hdmi_read16(sd, 0x20, info->hfrontporch_mask);
1575 bt->hsync = hdmi_read16(sd, 0x22, info->hsync_mask);
1576 bt->hbackporch = hdmi_read16(sd, 0x24, info->hbackporch_mask);
1577 bt->vfrontporch = hdmi_read16(sd, 0x2a,
1578 info->field0_vfrontporch_mask) / 2;
1579 bt->vsync = hdmi_read16(sd, 0x2e, info->field0_vsync_mask) / 2;
1580 bt->vbackporch = hdmi_read16(sd, 0x32,
1581 info->field0_vbackporch_mask) / 2;
1582 bt->polarities = ((hdmi_read(sd, 0x05) & 0x10) ? V4L2_DV_VSYNC_POS_POL : 0) |
1583 ((hdmi_read(sd, 0x05) & 0x20) ? V4L2_DV_HSYNC_POS_POL : 0);
1584 if (bt->interlaced == V4L2_DV_INTERLACED) {
1585 bt->height += hdmi_read16(sd, 0x0b,
1586 info->field1_height_mask);
1587 bt->il_vfrontporch = hdmi_read16(sd, 0x2c,
1588 info->field1_vfrontporch_mask) / 2;
1589 bt->il_vsync = hdmi_read16(sd, 0x30,
1590 info->field1_vsync_mask) / 2;
1591 bt->il_vbackporch = hdmi_read16(sd, 0x34,
1592 info->field1_vbackporch_mask) / 2;
1594 adv76xx_fill_optional_dv_timings_fields(sd, timings);
1595 } else {
1596 /* find format
1597 * Since LCVS values are inaccurate [REF_03, p. 275-276],
1598 * stdi2dv_timings() is called with lcvs +-1 if the first attempt fails.
1600 if (!stdi2dv_timings(sd, &stdi, timings))
1601 goto found;
1602 stdi.lcvs += 1;
1603 v4l2_dbg(1, debug, sd, "%s: lcvs + 1 = %d\n", __func__, stdi.lcvs);
1604 if (!stdi2dv_timings(sd, &stdi, timings))
1605 goto found;
1606 stdi.lcvs -= 2;
1607 v4l2_dbg(1, debug, sd, "%s: lcvs - 1 = %d\n", __func__, stdi.lcvs);
1608 if (stdi2dv_timings(sd, &stdi, timings)) {
1610 * The STDI block may measure wrong values, especially
1611 * for lcvs and lcf. If the driver can not find any
1612 * valid timing, the STDI block is restarted to measure
1613 * the video timings again. The function will return an
1614 * error, but the restart of STDI will generate a new
1615 * STDI interrupt and the format detection process will
1616 * restart.
1618 if (state->restart_stdi_once) {
1619 v4l2_dbg(1, debug, sd, "%s: restart STDI\n", __func__);
1620 /* TODO restart STDI for Sync Channel 2 */
1621 /* enter one-shot mode */
1622 cp_write_clr_set(sd, 0x86, 0x06, 0x00);
1623 /* trigger STDI restart */
1624 cp_write_clr_set(sd, 0x86, 0x06, 0x04);
1625 /* reset to continuous mode */
1626 cp_write_clr_set(sd, 0x86, 0x06, 0x02);
1627 state->restart_stdi_once = false;
1628 return -ENOLINK;
1630 v4l2_dbg(1, debug, sd, "%s: format not supported\n", __func__);
1631 return -ERANGE;
1633 state->restart_stdi_once = true;
1635 found:
1637 if (no_signal(sd)) {
1638 v4l2_dbg(1, debug, sd, "%s: signal lost during readout\n", __func__);
1639 memset(timings, 0, sizeof(struct v4l2_dv_timings));
1640 return -ENOLINK;
1643 if ((is_analog_input(sd) && bt->pixelclock > 170000000) ||
1644 (is_digital_input(sd) && bt->pixelclock > 225000000)) {
1645 v4l2_dbg(1, debug, sd, "%s: pixelclock out of range %d\n",
1646 __func__, (u32)bt->pixelclock);
1647 return -ERANGE;
1650 if (debug > 1)
1651 v4l2_print_dv_timings(sd->name, "adv76xx_query_dv_timings: ",
1652 timings, true);
1654 return 0;
1657 static int adv76xx_s_dv_timings(struct v4l2_subdev *sd,
1658 struct v4l2_dv_timings *timings)
1660 struct adv76xx_state *state = to_state(sd);
1661 struct v4l2_bt_timings *bt;
1662 int err;
1664 if (!timings)
1665 return -EINVAL;
1667 if (v4l2_match_dv_timings(&state->timings, timings, 0, false)) {
1668 v4l2_dbg(1, debug, sd, "%s: no change\n", __func__);
1669 return 0;
1672 bt = &timings->bt;
1674 if (!v4l2_valid_dv_timings(timings, adv76xx_get_dv_timings_cap(sd, -1),
1675 adv76xx_check_dv_timings, NULL))
1676 return -ERANGE;
1678 adv76xx_fill_optional_dv_timings_fields(sd, timings);
1680 state->timings = *timings;
1682 cp_write_clr_set(sd, 0x91, 0x40, bt->interlaced ? 0x40 : 0x00);
1684 /* Use prim_mode and vid_std when available */
1685 err = configure_predefined_video_timings(sd, timings);
1686 if (err) {
1687 /* custom settings when the video format
1688 does not have prim_mode/vid_std */
1689 configure_custom_video_timings(sd, bt);
1692 set_rgb_quantization_range(sd);
1694 if (debug > 1)
1695 v4l2_print_dv_timings(sd->name, "adv76xx_s_dv_timings: ",
1696 timings, true);
1697 return 0;
1700 static int adv76xx_g_dv_timings(struct v4l2_subdev *sd,
1701 struct v4l2_dv_timings *timings)
1703 struct adv76xx_state *state = to_state(sd);
1705 *timings = state->timings;
1706 return 0;
1709 static void adv7604_set_termination(struct v4l2_subdev *sd, bool enable)
1711 hdmi_write(sd, 0x01, enable ? 0x00 : 0x78);
1714 static void adv7611_set_termination(struct v4l2_subdev *sd, bool enable)
1716 hdmi_write(sd, 0x83, enable ? 0xfe : 0xff);
1719 static void enable_input(struct v4l2_subdev *sd)
1721 struct adv76xx_state *state = to_state(sd);
1723 if (is_analog_input(sd)) {
1724 io_write(sd, 0x15, 0xb0); /* Disable Tristate of Pins (no audio) */
1725 } else if (is_digital_input(sd)) {
1726 hdmi_write_clr_set(sd, 0x00, 0x03, state->selected_input);
1727 state->info->set_termination(sd, true);
1728 io_write(sd, 0x15, 0xa0); /* Disable Tristate of Pins */
1729 hdmi_write_clr_set(sd, 0x1a, 0x10, 0x00); /* Unmute audio */
1730 } else {
1731 v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
1732 __func__, state->selected_input);
1736 static void disable_input(struct v4l2_subdev *sd)
1738 struct adv76xx_state *state = to_state(sd);
1740 hdmi_write_clr_set(sd, 0x1a, 0x10, 0x10); /* Mute audio */
1741 msleep(16); /* 512 samples with >= 32 kHz sample rate [REF_03, c. 7.16.10] */
1742 io_write(sd, 0x15, 0xbe); /* Tristate all outputs from video core */
1743 state->info->set_termination(sd, false);
1746 static void select_input(struct v4l2_subdev *sd)
1748 struct adv76xx_state *state = to_state(sd);
1749 const struct adv76xx_chip_info *info = state->info;
1751 if (is_analog_input(sd)) {
1752 adv76xx_write_reg_seq(sd, info->recommended_settings[0]);
1754 afe_write(sd, 0x00, 0x08); /* power up ADC */
1755 afe_write(sd, 0x01, 0x06); /* power up Analog Front End */
1756 afe_write(sd, 0xc8, 0x00); /* phase control */
1757 } else if (is_digital_input(sd)) {
1758 hdmi_write(sd, 0x00, state->selected_input & 0x03);
1760 adv76xx_write_reg_seq(sd, info->recommended_settings[1]);
1762 if (adv76xx_has_afe(state)) {
1763 afe_write(sd, 0x00, 0xff); /* power down ADC */
1764 afe_write(sd, 0x01, 0xfe); /* power down Analog Front End */
1765 afe_write(sd, 0xc8, 0x40); /* phase control */
1768 cp_write(sd, 0x3e, 0x00); /* CP core pre-gain control */
1769 cp_write(sd, 0xc3, 0x39); /* CP coast control. Graphics mode */
1770 cp_write(sd, 0x40, 0x80); /* CP core pre-gain control. Graphics mode */
1771 } else {
1772 v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
1773 __func__, state->selected_input);
1777 static int adv76xx_s_routing(struct v4l2_subdev *sd,
1778 u32 input, u32 output, u32 config)
1780 struct adv76xx_state *state = to_state(sd);
1782 v4l2_dbg(2, debug, sd, "%s: input %d, selected input %d",
1783 __func__, input, state->selected_input);
1785 if (input == state->selected_input)
1786 return 0;
1788 if (input > state->info->max_port)
1789 return -EINVAL;
1791 state->selected_input = input;
1793 disable_input(sd);
1794 select_input(sd);
1795 enable_input(sd);
1797 v4l2_subdev_notify_event(sd, &adv76xx_ev_fmt);
1799 return 0;
1802 static int adv76xx_enum_mbus_code(struct v4l2_subdev *sd,
1803 struct v4l2_subdev_pad_config *cfg,
1804 struct v4l2_subdev_mbus_code_enum *code)
1806 struct adv76xx_state *state = to_state(sd);
1808 if (code->index >= state->info->nformats)
1809 return -EINVAL;
1811 code->code = state->info->formats[code->index].code;
1813 return 0;
1816 static void adv76xx_fill_format(struct adv76xx_state *state,
1817 struct v4l2_mbus_framefmt *format)
1819 memset(format, 0, sizeof(*format));
1821 format->width = state->timings.bt.width;
1822 format->height = state->timings.bt.height;
1823 format->field = V4L2_FIELD_NONE;
1824 format->colorspace = V4L2_COLORSPACE_SRGB;
1826 if (state->timings.bt.flags & V4L2_DV_FL_IS_CE_VIDEO)
1827 format->colorspace = (state->timings.bt.height <= 576) ?
1828 V4L2_COLORSPACE_SMPTE170M : V4L2_COLORSPACE_REC709;
1832 * Compute the op_ch_sel value required to obtain on the bus the component order
1833 * corresponding to the selected format taking into account bus reordering
1834 * applied by the board at the output of the device.
1836 * The following table gives the op_ch_value from the format component order
1837 * (expressed as op_ch_sel value in column) and the bus reordering (expressed as
1838 * adv76xx_bus_order value in row).
1840 * | GBR(0) GRB(1) BGR(2) RGB(3) BRG(4) RBG(5)
1841 * ----------+-------------------------------------------------
1842 * RGB (NOP) | GBR GRB BGR RGB BRG RBG
1843 * GRB (1-2) | BGR RGB GBR GRB RBG BRG
1844 * RBG (2-3) | GRB GBR BRG RBG BGR RGB
1845 * BGR (1-3) | RBG BRG RGB BGR GRB GBR
1846 * BRG (ROR) | BRG RBG GRB GBR RGB BGR
1847 * GBR (ROL) | RGB BGR RBG BRG GBR GRB
1849 static unsigned int adv76xx_op_ch_sel(struct adv76xx_state *state)
1851 #define _SEL(a,b,c,d,e,f) { \
1852 ADV76XX_OP_CH_SEL_##a, ADV76XX_OP_CH_SEL_##b, ADV76XX_OP_CH_SEL_##c, \
1853 ADV76XX_OP_CH_SEL_##d, ADV76XX_OP_CH_SEL_##e, ADV76XX_OP_CH_SEL_##f }
1854 #define _BUS(x) [ADV7604_BUS_ORDER_##x]
1856 static const unsigned int op_ch_sel[6][6] = {
1857 _BUS(RGB) /* NOP */ = _SEL(GBR, GRB, BGR, RGB, BRG, RBG),
1858 _BUS(GRB) /* 1-2 */ = _SEL(BGR, RGB, GBR, GRB, RBG, BRG),
1859 _BUS(RBG) /* 2-3 */ = _SEL(GRB, GBR, BRG, RBG, BGR, RGB),
1860 _BUS(BGR) /* 1-3 */ = _SEL(RBG, BRG, RGB, BGR, GRB, GBR),
1861 _BUS(BRG) /* ROR */ = _SEL(BRG, RBG, GRB, GBR, RGB, BGR),
1862 _BUS(GBR) /* ROL */ = _SEL(RGB, BGR, RBG, BRG, GBR, GRB),
1865 return op_ch_sel[state->pdata.bus_order][state->format->op_ch_sel >> 5];
1868 static void adv76xx_setup_format(struct adv76xx_state *state)
1870 struct v4l2_subdev *sd = &state->sd;
1872 io_write_clr_set(sd, 0x02, 0x02,
1873 state->format->rgb_out ? ADV76XX_RGB_OUT : 0);
1874 io_write(sd, 0x03, state->format->op_format_sel |
1875 state->pdata.op_format_mode_sel);
1876 io_write_clr_set(sd, 0x04, 0xe0, adv76xx_op_ch_sel(state));
1877 io_write_clr_set(sd, 0x05, 0x01,
1878 state->format->swap_cb_cr ? ADV76XX_OP_SWAP_CB_CR : 0);
1879 set_rgb_quantization_range(sd);
1882 static int adv76xx_get_format(struct v4l2_subdev *sd,
1883 struct v4l2_subdev_pad_config *cfg,
1884 struct v4l2_subdev_format *format)
1886 struct adv76xx_state *state = to_state(sd);
1888 if (format->pad != state->source_pad)
1889 return -EINVAL;
1891 adv76xx_fill_format(state, &format->format);
1893 if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
1894 struct v4l2_mbus_framefmt *fmt;
1896 fmt = v4l2_subdev_get_try_format(sd, cfg, format->pad);
1897 format->format.code = fmt->code;
1898 } else {
1899 format->format.code = state->format->code;
1902 return 0;
1905 static int adv76xx_get_selection(struct v4l2_subdev *sd,
1906 struct v4l2_subdev_pad_config *cfg,
1907 struct v4l2_subdev_selection *sel)
1909 struct adv76xx_state *state = to_state(sd);
1911 if (sel->which != V4L2_SUBDEV_FORMAT_ACTIVE)
1912 return -EINVAL;
1913 /* Only CROP, CROP_DEFAULT and CROP_BOUNDS are supported */
1914 if (sel->target > V4L2_SEL_TGT_CROP_BOUNDS)
1915 return -EINVAL;
1917 sel->r.left = 0;
1918 sel->r.top = 0;
1919 sel->r.width = state->timings.bt.width;
1920 sel->r.height = state->timings.bt.height;
1922 return 0;
1925 static int adv76xx_set_format(struct v4l2_subdev *sd,
1926 struct v4l2_subdev_pad_config *cfg,
1927 struct v4l2_subdev_format *format)
1929 struct adv76xx_state *state = to_state(sd);
1930 const struct adv76xx_format_info *info;
1932 if (format->pad != state->source_pad)
1933 return -EINVAL;
1935 info = adv76xx_format_info(state, format->format.code);
1936 if (info == NULL)
1937 info = adv76xx_format_info(state, MEDIA_BUS_FMT_YUYV8_2X8);
1939 adv76xx_fill_format(state, &format->format);
1940 format->format.code = info->code;
1942 if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
1943 struct v4l2_mbus_framefmt *fmt;
1945 fmt = v4l2_subdev_get_try_format(sd, cfg, format->pad);
1946 fmt->code = format->format.code;
1947 } else {
1948 state->format = info;
1949 adv76xx_setup_format(state);
1952 return 0;
1955 #if IS_ENABLED(CONFIG_VIDEO_ADV7604_CEC)
1956 static void adv76xx_cec_tx_raw_status(struct v4l2_subdev *sd, u8 tx_raw_status)
1958 struct adv76xx_state *state = to_state(sd);
1960 if ((cec_read(sd, 0x11) & 0x01) == 0) {
1961 v4l2_dbg(1, debug, sd, "%s: tx raw: tx disabled\n", __func__);
1962 return;
1965 if (tx_raw_status & 0x02) {
1966 v4l2_dbg(1, debug, sd, "%s: tx raw: arbitration lost\n",
1967 __func__);
1968 cec_transmit_done(state->cec_adap, CEC_TX_STATUS_ARB_LOST,
1969 1, 0, 0, 0);
1971 if (tx_raw_status & 0x04) {
1972 u8 status;
1973 u8 nack_cnt;
1974 u8 low_drive_cnt;
1976 v4l2_dbg(1, debug, sd, "%s: tx raw: retry failed\n", __func__);
1978 * We set this status bit since this hardware performs
1979 * retransmissions.
1981 status = CEC_TX_STATUS_MAX_RETRIES;
1982 nack_cnt = cec_read(sd, 0x14) & 0xf;
1983 if (nack_cnt)
1984 status |= CEC_TX_STATUS_NACK;
1985 low_drive_cnt = cec_read(sd, 0x14) >> 4;
1986 if (low_drive_cnt)
1987 status |= CEC_TX_STATUS_LOW_DRIVE;
1988 cec_transmit_done(state->cec_adap, status,
1989 0, nack_cnt, low_drive_cnt, 0);
1990 return;
1992 if (tx_raw_status & 0x01) {
1993 v4l2_dbg(1, debug, sd, "%s: tx raw: ready ok\n", __func__);
1994 cec_transmit_done(state->cec_adap, CEC_TX_STATUS_OK, 0, 0, 0, 0);
1995 return;
1999 static void adv76xx_cec_isr(struct v4l2_subdev *sd, bool *handled)
2001 struct adv76xx_state *state = to_state(sd);
2002 u8 cec_irq;
2004 /* cec controller */
2005 cec_irq = io_read(sd, 0x4d) & 0x0f;
2006 if (!cec_irq)
2007 return;
2009 v4l2_dbg(1, debug, sd, "%s: cec: irq 0x%x\n", __func__, cec_irq);
2010 adv76xx_cec_tx_raw_status(sd, cec_irq);
2011 if (cec_irq & 0x08) {
2012 struct cec_msg msg;
2014 msg.len = cec_read(sd, 0x25) & 0x1f;
2015 if (msg.len > 16)
2016 msg.len = 16;
2018 if (msg.len) {
2019 u8 i;
2021 for (i = 0; i < msg.len; i++)
2022 msg.msg[i] = cec_read(sd, i + 0x15);
2023 cec_write(sd, 0x26, 0x01); /* re-enable rx */
2024 cec_received_msg(state->cec_adap, &msg);
2028 /* note: the bit order is swapped between 0x4d and 0x4e */
2029 cec_irq = ((cec_irq & 0x08) >> 3) | ((cec_irq & 0x04) >> 1) |
2030 ((cec_irq & 0x02) << 1) | ((cec_irq & 0x01) << 3);
2031 io_write(sd, 0x4e, cec_irq);
2033 if (handled)
2034 *handled = true;
2037 static int adv76xx_cec_adap_enable(struct cec_adapter *adap, bool enable)
2039 struct adv76xx_state *state = adap->priv;
2040 struct v4l2_subdev *sd = &state->sd;
2042 if (!state->cec_enabled_adap && enable) {
2043 cec_write_clr_set(sd, 0x2a, 0x01, 0x01); /* power up cec */
2044 cec_write(sd, 0x2c, 0x01); /* cec soft reset */
2045 cec_write_clr_set(sd, 0x11, 0x01, 0); /* initially disable tx */
2046 /* enabled irqs: */
2047 /* tx: ready */
2048 /* tx: arbitration lost */
2049 /* tx: retry timeout */
2050 /* rx: ready */
2051 io_write_clr_set(sd, 0x50, 0x0f, 0x0f);
2052 cec_write(sd, 0x26, 0x01); /* enable rx */
2053 } else if (state->cec_enabled_adap && !enable) {
2054 /* disable cec interrupts */
2055 io_write_clr_set(sd, 0x50, 0x0f, 0x00);
2056 /* disable address mask 1-3 */
2057 cec_write_clr_set(sd, 0x27, 0x70, 0x00);
2058 /* power down cec section */
2059 cec_write_clr_set(sd, 0x2a, 0x01, 0x00);
2060 state->cec_valid_addrs = 0;
2062 state->cec_enabled_adap = enable;
2063 adv76xx_s_detect_tx_5v_ctrl(sd);
2064 return 0;
2067 static int adv76xx_cec_adap_log_addr(struct cec_adapter *adap, u8 addr)
2069 struct adv76xx_state *state = adap->priv;
2070 struct v4l2_subdev *sd = &state->sd;
2071 unsigned int i, free_idx = ADV76XX_MAX_ADDRS;
2073 if (!state->cec_enabled_adap)
2074 return addr == CEC_LOG_ADDR_INVALID ? 0 : -EIO;
2076 if (addr == CEC_LOG_ADDR_INVALID) {
2077 cec_write_clr_set(sd, 0x27, 0x70, 0);
2078 state->cec_valid_addrs = 0;
2079 return 0;
2082 for (i = 0; i < ADV76XX_MAX_ADDRS; i++) {
2083 bool is_valid = state->cec_valid_addrs & (1 << i);
2085 if (free_idx == ADV76XX_MAX_ADDRS && !is_valid)
2086 free_idx = i;
2087 if (is_valid && state->cec_addr[i] == addr)
2088 return 0;
2090 if (i == ADV76XX_MAX_ADDRS) {
2091 i = free_idx;
2092 if (i == ADV76XX_MAX_ADDRS)
2093 return -ENXIO;
2095 state->cec_addr[i] = addr;
2096 state->cec_valid_addrs |= 1 << i;
2098 switch (i) {
2099 case 0:
2100 /* enable address mask 0 */
2101 cec_write_clr_set(sd, 0x27, 0x10, 0x10);
2102 /* set address for mask 0 */
2103 cec_write_clr_set(sd, 0x28, 0x0f, addr);
2104 break;
2105 case 1:
2106 /* enable address mask 1 */
2107 cec_write_clr_set(sd, 0x27, 0x20, 0x20);
2108 /* set address for mask 1 */
2109 cec_write_clr_set(sd, 0x28, 0xf0, addr << 4);
2110 break;
2111 case 2:
2112 /* enable address mask 2 */
2113 cec_write_clr_set(sd, 0x27, 0x40, 0x40);
2114 /* set address for mask 1 */
2115 cec_write_clr_set(sd, 0x29, 0x0f, addr);
2116 break;
2118 return 0;
2121 static int adv76xx_cec_adap_transmit(struct cec_adapter *adap, u8 attempts,
2122 u32 signal_free_time, struct cec_msg *msg)
2124 struct adv76xx_state *state = adap->priv;
2125 struct v4l2_subdev *sd = &state->sd;
2126 u8 len = msg->len;
2127 unsigned int i;
2130 * The number of retries is the number of attempts - 1, but retry
2131 * at least once. It's not clear if a value of 0 is allowed, so
2132 * let's do at least one retry.
2134 cec_write_clr_set(sd, 0x12, 0x70, max(1, attempts - 1) << 4);
2136 if (len > 16) {
2137 v4l2_err(sd, "%s: len exceeded 16 (%d)\n", __func__, len);
2138 return -EINVAL;
2141 /* write data */
2142 for (i = 0; i < len; i++)
2143 cec_write(sd, i, msg->msg[i]);
2145 /* set length (data + header) */
2146 cec_write(sd, 0x10, len);
2147 /* start transmit, enable tx */
2148 cec_write(sd, 0x11, 0x01);
2149 return 0;
2152 static const struct cec_adap_ops adv76xx_cec_adap_ops = {
2153 .adap_enable = adv76xx_cec_adap_enable,
2154 .adap_log_addr = adv76xx_cec_adap_log_addr,
2155 .adap_transmit = adv76xx_cec_adap_transmit,
2157 #endif
2159 static int adv76xx_isr(struct v4l2_subdev *sd, u32 status, bool *handled)
2161 struct adv76xx_state *state = to_state(sd);
2162 const struct adv76xx_chip_info *info = state->info;
2163 const u8 irq_reg_0x43 = io_read(sd, 0x43);
2164 const u8 irq_reg_0x6b = io_read(sd, 0x6b);
2165 const u8 irq_reg_0x70 = io_read(sd, 0x70);
2166 u8 fmt_change_digital;
2167 u8 fmt_change;
2168 u8 tx_5v;
2170 if (irq_reg_0x43)
2171 io_write(sd, 0x44, irq_reg_0x43);
2172 if (irq_reg_0x70)
2173 io_write(sd, 0x71, irq_reg_0x70);
2174 if (irq_reg_0x6b)
2175 io_write(sd, 0x6c, irq_reg_0x6b);
2177 v4l2_dbg(2, debug, sd, "%s: ", __func__);
2179 /* format change */
2180 fmt_change = irq_reg_0x43 & 0x98;
2181 fmt_change_digital = is_digital_input(sd)
2182 ? irq_reg_0x6b & info->fmt_change_digital_mask
2183 : 0;
2185 if (fmt_change || fmt_change_digital) {
2186 v4l2_dbg(1, debug, sd,
2187 "%s: fmt_change = 0x%x, fmt_change_digital = 0x%x\n",
2188 __func__, fmt_change, fmt_change_digital);
2190 v4l2_subdev_notify_event(sd, &adv76xx_ev_fmt);
2192 if (handled)
2193 *handled = true;
2195 /* HDMI/DVI mode */
2196 if (irq_reg_0x6b & 0x01) {
2197 v4l2_dbg(1, debug, sd, "%s: irq %s mode\n", __func__,
2198 (io_read(sd, 0x6a) & 0x01) ? "HDMI" : "DVI");
2199 set_rgb_quantization_range(sd);
2200 if (handled)
2201 *handled = true;
2204 #if IS_ENABLED(CONFIG_VIDEO_ADV7604_CEC)
2205 /* cec */
2206 adv76xx_cec_isr(sd, handled);
2207 #endif
2209 /* tx 5v detect */
2210 tx_5v = irq_reg_0x70 & info->cable_det_mask;
2211 if (tx_5v) {
2212 v4l2_dbg(1, debug, sd, "%s: tx_5v: 0x%x\n", __func__, tx_5v);
2213 adv76xx_s_detect_tx_5v_ctrl(sd);
2214 if (handled)
2215 *handled = true;
2217 return 0;
2220 static int adv76xx_get_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid)
2222 struct adv76xx_state *state = to_state(sd);
2223 u8 *data = NULL;
2225 memset(edid->reserved, 0, sizeof(edid->reserved));
2227 switch (edid->pad) {
2228 case ADV76XX_PAD_HDMI_PORT_A:
2229 case ADV7604_PAD_HDMI_PORT_B:
2230 case ADV7604_PAD_HDMI_PORT_C:
2231 case ADV7604_PAD_HDMI_PORT_D:
2232 if (state->edid.present & (1 << edid->pad))
2233 data = state->edid.edid;
2234 break;
2235 default:
2236 return -EINVAL;
2239 if (edid->start_block == 0 && edid->blocks == 0) {
2240 edid->blocks = data ? state->edid.blocks : 0;
2241 return 0;
2244 if (data == NULL)
2245 return -ENODATA;
2247 if (edid->start_block >= state->edid.blocks)
2248 return -EINVAL;
2250 if (edid->start_block + edid->blocks > state->edid.blocks)
2251 edid->blocks = state->edid.blocks - edid->start_block;
2253 memcpy(edid->edid, data + edid->start_block * 128, edid->blocks * 128);
2255 return 0;
2258 static int adv76xx_set_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid)
2260 struct adv76xx_state *state = to_state(sd);
2261 const struct adv76xx_chip_info *info = state->info;
2262 unsigned int spa_loc;
2263 u16 pa;
2264 int err;
2265 int i;
2267 memset(edid->reserved, 0, sizeof(edid->reserved));
2269 if (edid->pad > ADV7604_PAD_HDMI_PORT_D)
2270 return -EINVAL;
2271 if (edid->start_block != 0)
2272 return -EINVAL;
2273 if (edid->blocks == 0) {
2274 /* Disable hotplug and I2C access to EDID RAM from DDC port */
2275 state->edid.present &= ~(1 << edid->pad);
2276 adv76xx_set_hpd(state, state->edid.present);
2277 rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, state->edid.present);
2279 /* Fall back to a 16:9 aspect ratio */
2280 state->aspect_ratio.numerator = 16;
2281 state->aspect_ratio.denominator = 9;
2283 if (!state->edid.present)
2284 state->edid.blocks = 0;
2286 v4l2_dbg(2, debug, sd, "%s: clear EDID pad %d, edid.present = 0x%x\n",
2287 __func__, edid->pad, state->edid.present);
2288 return 0;
2290 if (edid->blocks > 2) {
2291 edid->blocks = 2;
2292 return -E2BIG;
2294 pa = cec_get_edid_phys_addr(edid->edid, edid->blocks * 128, &spa_loc);
2295 err = cec_phys_addr_validate(pa, &pa, NULL);
2296 if (err)
2297 return err;
2299 v4l2_dbg(2, debug, sd, "%s: write EDID pad %d, edid.present = 0x%x\n",
2300 __func__, edid->pad, state->edid.present);
2302 /* Disable hotplug and I2C access to EDID RAM from DDC port */
2303 cancel_delayed_work_sync(&state->delayed_work_enable_hotplug);
2304 adv76xx_set_hpd(state, 0);
2305 rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, 0x00);
2308 * Return an error if no location of the source physical address
2309 * was found.
2311 if (spa_loc == 0)
2312 return -EINVAL;
2314 switch (edid->pad) {
2315 case ADV76XX_PAD_HDMI_PORT_A:
2316 state->spa_port_a[0] = edid->edid[spa_loc];
2317 state->spa_port_a[1] = edid->edid[spa_loc + 1];
2318 break;
2319 case ADV7604_PAD_HDMI_PORT_B:
2320 rep_write(sd, 0x70, edid->edid[spa_loc]);
2321 rep_write(sd, 0x71, edid->edid[spa_loc + 1]);
2322 break;
2323 case ADV7604_PAD_HDMI_PORT_C:
2324 rep_write(sd, 0x72, edid->edid[spa_loc]);
2325 rep_write(sd, 0x73, edid->edid[spa_loc + 1]);
2326 break;
2327 case ADV7604_PAD_HDMI_PORT_D:
2328 rep_write(sd, 0x74, edid->edid[spa_loc]);
2329 rep_write(sd, 0x75, edid->edid[spa_loc + 1]);
2330 break;
2331 default:
2332 return -EINVAL;
2335 if (info->type == ADV7604) {
2336 rep_write(sd, 0x76, spa_loc & 0xff);
2337 rep_write_clr_set(sd, 0x77, 0x40, (spa_loc & 0x100) >> 2);
2338 } else {
2339 /* ADV7612 Software Manual Rev. A, p. 15 */
2340 rep_write(sd, 0x70, spa_loc & 0xff);
2341 rep_write_clr_set(sd, 0x71, 0x01, (spa_loc & 0x100) >> 8);
2344 edid->edid[spa_loc] = state->spa_port_a[0];
2345 edid->edid[spa_loc + 1] = state->spa_port_a[1];
2347 memcpy(state->edid.edid, edid->edid, 128 * edid->blocks);
2348 state->edid.blocks = edid->blocks;
2349 state->aspect_ratio = v4l2_calc_aspect_ratio(edid->edid[0x15],
2350 edid->edid[0x16]);
2351 state->edid.present |= 1 << edid->pad;
2353 err = edid_write_block(sd, 128 * edid->blocks, state->edid.edid);
2354 if (err < 0) {
2355 v4l2_err(sd, "error %d writing edid pad %d\n", err, edid->pad);
2356 return err;
2359 /* adv76xx calculates the checksums and enables I2C access to internal
2360 EDID RAM from DDC port. */
2361 rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, state->edid.present);
2363 for (i = 0; i < 1000; i++) {
2364 if (rep_read(sd, info->edid_status_reg) & state->edid.present)
2365 break;
2366 mdelay(1);
2368 if (i == 1000) {
2369 v4l2_err(sd, "error enabling edid (0x%x)\n", state->edid.present);
2370 return -EIO;
2372 cec_s_phys_addr(state->cec_adap, pa, false);
2374 /* enable hotplug after 100 ms */
2375 schedule_delayed_work(&state->delayed_work_enable_hotplug, HZ / 10);
2376 return 0;
2379 /*********** avi info frame CEA-861-E **************/
2381 static const struct adv76xx_cfg_read_infoframe adv76xx_cri[] = {
2382 { "AVI", 0x01, 0xe0, 0x00 },
2383 { "Audio", 0x02, 0xe3, 0x1c },
2384 { "SDP", 0x04, 0xe6, 0x2a },
2385 { "Vendor", 0x10, 0xec, 0x54 }
2388 static int adv76xx_read_infoframe(struct v4l2_subdev *sd, int index,
2389 union hdmi_infoframe *frame)
2391 uint8_t buffer[32];
2392 u8 len;
2393 int i;
2395 if (!(io_read(sd, 0x60) & adv76xx_cri[index].present_mask)) {
2396 v4l2_info(sd, "%s infoframe not received\n",
2397 adv76xx_cri[index].desc);
2398 return -ENOENT;
2401 for (i = 0; i < 3; i++)
2402 buffer[i] = infoframe_read(sd,
2403 adv76xx_cri[index].head_addr + i);
2405 len = buffer[2] + 1;
2407 if (len + 3 > sizeof(buffer)) {
2408 v4l2_err(sd, "%s: invalid %s infoframe length %d\n", __func__,
2409 adv76xx_cri[index].desc, len);
2410 return -ENOENT;
2413 for (i = 0; i < len; i++)
2414 buffer[i + 3] = infoframe_read(sd,
2415 adv76xx_cri[index].payload_addr + i);
2417 if (hdmi_infoframe_unpack(frame, buffer) < 0) {
2418 v4l2_err(sd, "%s: unpack of %s infoframe failed\n", __func__,
2419 adv76xx_cri[index].desc);
2420 return -ENOENT;
2422 return 0;
2425 static void adv76xx_log_infoframes(struct v4l2_subdev *sd)
2427 int i;
2429 if (!is_hdmi(sd)) {
2430 v4l2_info(sd, "receive DVI-D signal, no infoframes\n");
2431 return;
2434 for (i = 0; i < ARRAY_SIZE(adv76xx_cri); i++) {
2435 union hdmi_infoframe frame;
2436 struct i2c_client *client = v4l2_get_subdevdata(sd);
2438 if (adv76xx_read_infoframe(sd, i, &frame))
2439 return;
2440 hdmi_infoframe_log(KERN_INFO, &client->dev, &frame);
2444 static int adv76xx_log_status(struct v4l2_subdev *sd)
2446 struct adv76xx_state *state = to_state(sd);
2447 const struct adv76xx_chip_info *info = state->info;
2448 struct v4l2_dv_timings timings;
2449 struct stdi_readback stdi;
2450 u8 reg_io_0x02 = io_read(sd, 0x02);
2451 u8 edid_enabled;
2452 u8 cable_det;
2454 static const char * const csc_coeff_sel_rb[16] = {
2455 "bypassed", "YPbPr601 -> RGB", "reserved", "YPbPr709 -> RGB",
2456 "reserved", "RGB -> YPbPr601", "reserved", "RGB -> YPbPr709",
2457 "reserved", "YPbPr709 -> YPbPr601", "YPbPr601 -> YPbPr709",
2458 "reserved", "reserved", "reserved", "reserved", "manual"
2460 static const char * const input_color_space_txt[16] = {
2461 "RGB limited range (16-235)", "RGB full range (0-255)",
2462 "YCbCr Bt.601 (16-235)", "YCbCr Bt.709 (16-235)",
2463 "xvYCC Bt.601", "xvYCC Bt.709",
2464 "YCbCr Bt.601 (0-255)", "YCbCr Bt.709 (0-255)",
2465 "invalid", "invalid", "invalid", "invalid", "invalid",
2466 "invalid", "invalid", "automatic"
2468 static const char * const hdmi_color_space_txt[16] = {
2469 "RGB limited range (16-235)", "RGB full range (0-255)",
2470 "YCbCr Bt.601 (16-235)", "YCbCr Bt.709 (16-235)",
2471 "xvYCC Bt.601", "xvYCC Bt.709",
2472 "YCbCr Bt.601 (0-255)", "YCbCr Bt.709 (0-255)",
2473 "sYCC", "Adobe YCC 601", "AdobeRGB", "invalid", "invalid",
2474 "invalid", "invalid", "invalid"
2476 static const char * const rgb_quantization_range_txt[] = {
2477 "Automatic",
2478 "RGB limited range (16-235)",
2479 "RGB full range (0-255)",
2481 static const char * const deep_color_mode_txt[4] = {
2482 "8-bits per channel",
2483 "10-bits per channel",
2484 "12-bits per channel",
2485 "16-bits per channel (not supported)"
2488 v4l2_info(sd, "-----Chip status-----\n");
2489 v4l2_info(sd, "Chip power: %s\n", no_power(sd) ? "off" : "on");
2490 edid_enabled = rep_read(sd, info->edid_status_reg);
2491 v4l2_info(sd, "EDID enabled port A: %s, B: %s, C: %s, D: %s\n",
2492 ((edid_enabled & 0x01) ? "Yes" : "No"),
2493 ((edid_enabled & 0x02) ? "Yes" : "No"),
2494 ((edid_enabled & 0x04) ? "Yes" : "No"),
2495 ((edid_enabled & 0x08) ? "Yes" : "No"));
2496 v4l2_info(sd, "CEC: %s\n", state->cec_enabled_adap ?
2497 "enabled" : "disabled");
2498 if (state->cec_enabled_adap) {
2499 int i;
2501 for (i = 0; i < ADV76XX_MAX_ADDRS; i++) {
2502 bool is_valid = state->cec_valid_addrs & (1 << i);
2504 if (is_valid)
2505 v4l2_info(sd, "CEC Logical Address: 0x%x\n",
2506 state->cec_addr[i]);
2510 v4l2_info(sd, "-----Signal status-----\n");
2511 cable_det = info->read_cable_det(sd);
2512 v4l2_info(sd, "Cable detected (+5V power) port A: %s, B: %s, C: %s, D: %s\n",
2513 ((cable_det & 0x01) ? "Yes" : "No"),
2514 ((cable_det & 0x02) ? "Yes" : "No"),
2515 ((cable_det & 0x04) ? "Yes" : "No"),
2516 ((cable_det & 0x08) ? "Yes" : "No"));
2517 v4l2_info(sd, "TMDS signal detected: %s\n",
2518 no_signal_tmds(sd) ? "false" : "true");
2519 v4l2_info(sd, "TMDS signal locked: %s\n",
2520 no_lock_tmds(sd) ? "false" : "true");
2521 v4l2_info(sd, "SSPD locked: %s\n", no_lock_sspd(sd) ? "false" : "true");
2522 v4l2_info(sd, "STDI locked: %s\n", no_lock_stdi(sd) ? "false" : "true");
2523 v4l2_info(sd, "CP locked: %s\n", no_lock_cp(sd) ? "false" : "true");
2524 v4l2_info(sd, "CP free run: %s\n",
2525 (in_free_run(sd)) ? "on" : "off");
2526 v4l2_info(sd, "Prim-mode = 0x%x, video std = 0x%x, v_freq = 0x%x\n",
2527 io_read(sd, 0x01) & 0x0f, io_read(sd, 0x00) & 0x3f,
2528 (io_read(sd, 0x01) & 0x70) >> 4);
2530 v4l2_info(sd, "-----Video Timings-----\n");
2531 if (read_stdi(sd, &stdi))
2532 v4l2_info(sd, "STDI: not locked\n");
2533 else
2534 v4l2_info(sd, "STDI: lcf (frame height - 1) = %d, bl = %d, lcvs (vsync) = %d, %s, %chsync, %cvsync\n",
2535 stdi.lcf, stdi.bl, stdi.lcvs,
2536 stdi.interlaced ? "interlaced" : "progressive",
2537 stdi.hs_pol, stdi.vs_pol);
2538 if (adv76xx_query_dv_timings(sd, &timings))
2539 v4l2_info(sd, "No video detected\n");
2540 else
2541 v4l2_print_dv_timings(sd->name, "Detected format: ",
2542 &timings, true);
2543 v4l2_print_dv_timings(sd->name, "Configured format: ",
2544 &state->timings, true);
2546 if (no_signal(sd))
2547 return 0;
2549 v4l2_info(sd, "-----Color space-----\n");
2550 v4l2_info(sd, "RGB quantization range ctrl: %s\n",
2551 rgb_quantization_range_txt[state->rgb_quantization_range]);
2552 v4l2_info(sd, "Input color space: %s\n",
2553 input_color_space_txt[reg_io_0x02 >> 4]);
2554 v4l2_info(sd, "Output color space: %s %s, alt-gamma %s\n",
2555 (reg_io_0x02 & 0x02) ? "RGB" : "YCbCr",
2556 (((reg_io_0x02 >> 2) & 0x01) ^ (reg_io_0x02 & 0x01)) ?
2557 "(16-235)" : "(0-255)",
2558 (reg_io_0x02 & 0x08) ? "enabled" : "disabled");
2559 v4l2_info(sd, "Color space conversion: %s\n",
2560 csc_coeff_sel_rb[cp_read(sd, info->cp_csc) >> 4]);
2562 if (!is_digital_input(sd))
2563 return 0;
2565 v4l2_info(sd, "-----%s status-----\n", is_hdmi(sd) ? "HDMI" : "DVI-D");
2566 v4l2_info(sd, "Digital video port selected: %c\n",
2567 (hdmi_read(sd, 0x00) & 0x03) + 'A');
2568 v4l2_info(sd, "HDCP encrypted content: %s\n",
2569 (hdmi_read(sd, 0x05) & 0x40) ? "true" : "false");
2570 v4l2_info(sd, "HDCP keys read: %s%s\n",
2571 (hdmi_read(sd, 0x04) & 0x20) ? "yes" : "no",
2572 (hdmi_read(sd, 0x04) & 0x10) ? "ERROR" : "");
2573 if (is_hdmi(sd)) {
2574 bool audio_pll_locked = hdmi_read(sd, 0x04) & 0x01;
2575 bool audio_sample_packet_detect = hdmi_read(sd, 0x18) & 0x01;
2576 bool audio_mute = io_read(sd, 0x65) & 0x40;
2578 v4l2_info(sd, "Audio: pll %s, samples %s, %s\n",
2579 audio_pll_locked ? "locked" : "not locked",
2580 audio_sample_packet_detect ? "detected" : "not detected",
2581 audio_mute ? "muted" : "enabled");
2582 if (audio_pll_locked && audio_sample_packet_detect) {
2583 v4l2_info(sd, "Audio format: %s\n",
2584 (hdmi_read(sd, 0x07) & 0x20) ? "multi-channel" : "stereo");
2586 v4l2_info(sd, "Audio CTS: %u\n", (hdmi_read(sd, 0x5b) << 12) +
2587 (hdmi_read(sd, 0x5c) << 8) +
2588 (hdmi_read(sd, 0x5d) & 0xf0));
2589 v4l2_info(sd, "Audio N: %u\n", ((hdmi_read(sd, 0x5d) & 0x0f) << 16) +
2590 (hdmi_read(sd, 0x5e) << 8) +
2591 hdmi_read(sd, 0x5f));
2592 v4l2_info(sd, "AV Mute: %s\n", (hdmi_read(sd, 0x04) & 0x40) ? "on" : "off");
2594 v4l2_info(sd, "Deep color mode: %s\n", deep_color_mode_txt[(hdmi_read(sd, 0x0b) & 0x60) >> 5]);
2595 v4l2_info(sd, "HDMI colorspace: %s\n", hdmi_color_space_txt[hdmi_read(sd, 0x53) & 0xf]);
2597 adv76xx_log_infoframes(sd);
2600 return 0;
2603 static int adv76xx_subscribe_event(struct v4l2_subdev *sd,
2604 struct v4l2_fh *fh,
2605 struct v4l2_event_subscription *sub)
2607 switch (sub->type) {
2608 case V4L2_EVENT_SOURCE_CHANGE:
2609 return v4l2_src_change_event_subdev_subscribe(sd, fh, sub);
2610 case V4L2_EVENT_CTRL:
2611 return v4l2_ctrl_subdev_subscribe_event(sd, fh, sub);
2612 default:
2613 return -EINVAL;
2617 static int adv76xx_registered(struct v4l2_subdev *sd)
2619 struct adv76xx_state *state = to_state(sd);
2620 int err;
2622 err = cec_register_adapter(state->cec_adap);
2623 if (err)
2624 cec_delete_adapter(state->cec_adap);
2625 return err;
2628 static void adv76xx_unregistered(struct v4l2_subdev *sd)
2630 struct adv76xx_state *state = to_state(sd);
2632 cec_unregister_adapter(state->cec_adap);
2635 /* ----------------------------------------------------------------------- */
2637 static const struct v4l2_ctrl_ops adv76xx_ctrl_ops = {
2638 .s_ctrl = adv76xx_s_ctrl,
2639 .g_volatile_ctrl = adv76xx_g_volatile_ctrl,
2642 static const struct v4l2_subdev_core_ops adv76xx_core_ops = {
2643 .log_status = adv76xx_log_status,
2644 .interrupt_service_routine = adv76xx_isr,
2645 .subscribe_event = adv76xx_subscribe_event,
2646 .unsubscribe_event = v4l2_event_subdev_unsubscribe,
2647 #ifdef CONFIG_VIDEO_ADV_DEBUG
2648 .g_register = adv76xx_g_register,
2649 .s_register = adv76xx_s_register,
2650 #endif
2653 static const struct v4l2_subdev_video_ops adv76xx_video_ops = {
2654 .s_routing = adv76xx_s_routing,
2655 .g_input_status = adv76xx_g_input_status,
2656 .s_dv_timings = adv76xx_s_dv_timings,
2657 .g_dv_timings = adv76xx_g_dv_timings,
2658 .query_dv_timings = adv76xx_query_dv_timings,
2661 static const struct v4l2_subdev_pad_ops adv76xx_pad_ops = {
2662 .enum_mbus_code = adv76xx_enum_mbus_code,
2663 .get_selection = adv76xx_get_selection,
2664 .get_fmt = adv76xx_get_format,
2665 .set_fmt = adv76xx_set_format,
2666 .get_edid = adv76xx_get_edid,
2667 .set_edid = adv76xx_set_edid,
2668 .dv_timings_cap = adv76xx_dv_timings_cap,
2669 .enum_dv_timings = adv76xx_enum_dv_timings,
2672 static const struct v4l2_subdev_ops adv76xx_ops = {
2673 .core = &adv76xx_core_ops,
2674 .video = &adv76xx_video_ops,
2675 .pad = &adv76xx_pad_ops,
2678 static const struct v4l2_subdev_internal_ops adv76xx_int_ops = {
2679 .registered = adv76xx_registered,
2680 .unregistered = adv76xx_unregistered,
2683 /* -------------------------- custom ctrls ---------------------------------- */
2685 static const struct v4l2_ctrl_config adv7604_ctrl_analog_sampling_phase = {
2686 .ops = &adv76xx_ctrl_ops,
2687 .id = V4L2_CID_ADV_RX_ANALOG_SAMPLING_PHASE,
2688 .name = "Analog Sampling Phase",
2689 .type = V4L2_CTRL_TYPE_INTEGER,
2690 .min = 0,
2691 .max = 0x1f,
2692 .step = 1,
2693 .def = 0,
2696 static const struct v4l2_ctrl_config adv76xx_ctrl_free_run_color_manual = {
2697 .ops = &adv76xx_ctrl_ops,
2698 .id = V4L2_CID_ADV_RX_FREE_RUN_COLOR_MANUAL,
2699 .name = "Free Running Color, Manual",
2700 .type = V4L2_CTRL_TYPE_BOOLEAN,
2701 .min = false,
2702 .max = true,
2703 .step = 1,
2704 .def = false,
2707 static const struct v4l2_ctrl_config adv76xx_ctrl_free_run_color = {
2708 .ops = &adv76xx_ctrl_ops,
2709 .id = V4L2_CID_ADV_RX_FREE_RUN_COLOR,
2710 .name = "Free Running Color",
2711 .type = V4L2_CTRL_TYPE_INTEGER,
2712 .min = 0x0,
2713 .max = 0xffffff,
2714 .step = 0x1,
2715 .def = 0x0,
2718 /* ----------------------------------------------------------------------- */
2720 static int adv76xx_core_init(struct v4l2_subdev *sd)
2722 struct adv76xx_state *state = to_state(sd);
2723 const struct adv76xx_chip_info *info = state->info;
2724 struct adv76xx_platform_data *pdata = &state->pdata;
2726 hdmi_write(sd, 0x48,
2727 (pdata->disable_pwrdnb ? 0x80 : 0) |
2728 (pdata->disable_cable_det_rst ? 0x40 : 0));
2730 disable_input(sd);
2732 if (pdata->default_input >= 0 &&
2733 pdata->default_input < state->source_pad) {
2734 state->selected_input = pdata->default_input;
2735 select_input(sd);
2736 enable_input(sd);
2739 /* power */
2740 io_write(sd, 0x0c, 0x42); /* Power up part and power down VDP */
2741 io_write(sd, 0x0b, 0x44); /* Power down ESDP block */
2742 cp_write(sd, 0xcf, 0x01); /* Power down macrovision */
2744 /* video format */
2745 io_write_clr_set(sd, 0x02, 0x0f, pdata->alt_gamma << 3);
2746 io_write_clr_set(sd, 0x05, 0x0e, pdata->blank_data << 3 |
2747 pdata->insert_av_codes << 2 |
2748 pdata->replicate_av_codes << 1);
2749 adv76xx_setup_format(state);
2751 cp_write(sd, 0x69, 0x30); /* Enable CP CSC */
2753 /* VS, HS polarities */
2754 io_write(sd, 0x06, 0xa0 | pdata->inv_vs_pol << 2 |
2755 pdata->inv_hs_pol << 1 | pdata->inv_llc_pol);
2757 /* Adjust drive strength */
2758 io_write(sd, 0x14, 0x40 | pdata->dr_str_data << 4 |
2759 pdata->dr_str_clk << 2 |
2760 pdata->dr_str_sync);
2762 cp_write(sd, 0xba, (pdata->hdmi_free_run_mode << 1) | 0x01); /* HDMI free run */
2763 cp_write(sd, 0xf3, 0xdc); /* Low threshold to enter/exit free run mode */
2764 cp_write(sd, 0xf9, 0x23); /* STDI ch. 1 - LCVS change threshold -
2765 ADI recommended setting [REF_01, c. 2.3.3] */
2766 cp_write(sd, 0x45, 0x23); /* STDI ch. 2 - LCVS change threshold -
2767 ADI recommended setting [REF_01, c. 2.3.3] */
2768 cp_write(sd, 0xc9, 0x2d); /* use prim_mode and vid_std as free run resolution
2769 for digital formats */
2771 /* HDMI audio */
2772 hdmi_write_clr_set(sd, 0x15, 0x03, 0x03); /* Mute on FIFO over-/underflow [REF_01, c. 1.2.18] */
2773 hdmi_write_clr_set(sd, 0x1a, 0x0e, 0x08); /* Wait 1 s before unmute */
2774 hdmi_write_clr_set(sd, 0x68, 0x06, 0x06); /* FIFO reset on over-/underflow [REF_01, c. 1.2.19] */
2776 /* TODO from platform data */
2777 afe_write(sd, 0xb5, 0x01); /* Setting MCLK to 256Fs */
2779 if (adv76xx_has_afe(state)) {
2780 afe_write(sd, 0x02, pdata->ain_sel); /* Select analog input muxing mode */
2781 io_write_clr_set(sd, 0x30, 1 << 4, pdata->output_bus_lsb_to_msb << 4);
2784 /* interrupts */
2785 io_write(sd, 0x40, 0xc0 | pdata->int1_config); /* Configure INT1 */
2786 io_write(sd, 0x46, 0x98); /* Enable SSPD, STDI and CP unlocked interrupts */
2787 io_write(sd, 0x6e, info->fmt_change_digital_mask); /* Enable V_LOCKED and DE_REGEN_LCK interrupts */
2788 io_write(sd, 0x73, info->cable_det_mask); /* Enable cable detection (+5v) interrupts */
2789 info->setup_irqs(sd);
2791 return v4l2_ctrl_handler_setup(sd->ctrl_handler);
2794 static void adv7604_setup_irqs(struct v4l2_subdev *sd)
2796 io_write(sd, 0x41, 0xd7); /* STDI irq for any change, disable INT2 */
2799 static void adv7611_setup_irqs(struct v4l2_subdev *sd)
2801 io_write(sd, 0x41, 0xd0); /* STDI irq for any change, disable INT2 */
2804 static void adv7612_setup_irqs(struct v4l2_subdev *sd)
2806 io_write(sd, 0x41, 0xd0); /* disable INT2 */
2809 static void adv76xx_unregister_clients(struct adv76xx_state *state)
2811 unsigned int i;
2813 for (i = 1; i < ARRAY_SIZE(state->i2c_clients); ++i) {
2814 if (state->i2c_clients[i])
2815 i2c_unregister_device(state->i2c_clients[i]);
2819 static struct i2c_client *adv76xx_dummy_client(struct v4l2_subdev *sd,
2820 u8 addr, u8 io_reg)
2822 struct i2c_client *client = v4l2_get_subdevdata(sd);
2824 if (addr)
2825 io_write(sd, io_reg, addr << 1);
2826 return i2c_new_dummy(client->adapter, io_read(sd, io_reg) >> 1);
2829 static const struct adv76xx_reg_seq adv7604_recommended_settings_afe[] = {
2830 /* reset ADI recommended settings for HDMI: */
2831 /* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 4. */
2832 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x04 }, /* HDMI filter optimization */
2833 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x04 }, /* HDMI filter optimization */
2834 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3d), 0x00 }, /* DDC bus active pull-up control */
2835 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3e), 0x74 }, /* TMDS PLL optimization */
2836 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4e), 0x3b }, /* TMDS PLL optimization */
2837 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0x74 }, /* TMDS PLL optimization */
2838 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x63 }, /* TMDS PLL optimization */
2839 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x18 }, /* equaliser */
2840 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x34 }, /* equaliser */
2841 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x93), 0x88 }, /* equaliser */
2842 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x94), 0x2e }, /* equaliser */
2843 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x96), 0x00 }, /* enable automatic EQ changing */
2845 /* set ADI recommended settings for digitizer */
2846 /* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 17. */
2847 { ADV76XX_REG(ADV76XX_PAGE_AFE, 0x12), 0x7b }, /* ADC noise shaping filter controls */
2848 { ADV76XX_REG(ADV76XX_PAGE_AFE, 0x0c), 0x1f }, /* CP core gain controls */
2849 { ADV76XX_REG(ADV76XX_PAGE_CP, 0x3e), 0x04 }, /* CP core pre-gain control */
2850 { ADV76XX_REG(ADV76XX_PAGE_CP, 0xc3), 0x39 }, /* CP coast control. Graphics mode */
2851 { ADV76XX_REG(ADV76XX_PAGE_CP, 0x40), 0x5c }, /* CP core pre-gain control. Graphics mode */
2853 { ADV76XX_REG_SEQ_TERM, 0 },
2856 static const struct adv76xx_reg_seq adv7604_recommended_settings_hdmi[] = {
2857 /* set ADI recommended settings for HDMI: */
2858 /* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 4. */
2859 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x84 }, /* HDMI filter optimization */
2860 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3d), 0x10 }, /* DDC bus active pull-up control */
2861 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3e), 0x39 }, /* TMDS PLL optimization */
2862 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4e), 0x3b }, /* TMDS PLL optimization */
2863 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xb6 }, /* TMDS PLL optimization */
2864 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x03 }, /* TMDS PLL optimization */
2865 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x18 }, /* equaliser */
2866 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x34 }, /* equaliser */
2867 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x93), 0x8b }, /* equaliser */
2868 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x94), 0x2d }, /* equaliser */
2869 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x96), 0x01 }, /* enable automatic EQ changing */
2871 /* reset ADI recommended settings for digitizer */
2872 /* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 17. */
2873 { ADV76XX_REG(ADV76XX_PAGE_AFE, 0x12), 0xfb }, /* ADC noise shaping filter controls */
2874 { ADV76XX_REG(ADV76XX_PAGE_AFE, 0x0c), 0x0d }, /* CP core gain controls */
2876 { ADV76XX_REG_SEQ_TERM, 0 },
2879 static const struct adv76xx_reg_seq adv7611_recommended_settings_hdmi[] = {
2880 /* ADV7611 Register Settings Recommendations Rev 1.5, May 2014 */
2881 { ADV76XX_REG(ADV76XX_PAGE_CP, 0x6c), 0x00 },
2882 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x9b), 0x03 },
2883 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x6f), 0x08 },
2884 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x85), 0x1f },
2885 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x87), 0x70 },
2886 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xda },
2887 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x01 },
2888 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x03), 0x98 },
2889 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4c), 0x44 },
2890 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x04 },
2891 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x1e },
2893 { ADV76XX_REG_SEQ_TERM, 0 },
2896 static const struct adv76xx_reg_seq adv7612_recommended_settings_hdmi[] = {
2897 { ADV76XX_REG(ADV76XX_PAGE_CP, 0x6c), 0x00 },
2898 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x9b), 0x03 },
2899 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x6f), 0x08 },
2900 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x85), 0x1f },
2901 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x87), 0x70 },
2902 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xda },
2903 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x01 },
2904 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x03), 0x98 },
2905 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4c), 0x44 },
2906 { ADV76XX_REG_SEQ_TERM, 0 },
2909 static const struct adv76xx_chip_info adv76xx_chip_info[] = {
2910 [ADV7604] = {
2911 .type = ADV7604,
2912 .has_afe = true,
2913 .max_port = ADV7604_PAD_VGA_COMP,
2914 .num_dv_ports = 4,
2915 .edid_enable_reg = 0x77,
2916 .edid_status_reg = 0x7d,
2917 .lcf_reg = 0xb3,
2918 .tdms_lock_mask = 0xe0,
2919 .cable_det_mask = 0x1e,
2920 .fmt_change_digital_mask = 0xc1,
2921 .cp_csc = 0xfc,
2922 .formats = adv7604_formats,
2923 .nformats = ARRAY_SIZE(adv7604_formats),
2924 .set_termination = adv7604_set_termination,
2925 .setup_irqs = adv7604_setup_irqs,
2926 .read_hdmi_pixelclock = adv7604_read_hdmi_pixelclock,
2927 .read_cable_det = adv7604_read_cable_det,
2928 .recommended_settings = {
2929 [0] = adv7604_recommended_settings_afe,
2930 [1] = adv7604_recommended_settings_hdmi,
2932 .num_recommended_settings = {
2933 [0] = ARRAY_SIZE(adv7604_recommended_settings_afe),
2934 [1] = ARRAY_SIZE(adv7604_recommended_settings_hdmi),
2936 .page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV7604_PAGE_AVLINK) |
2937 BIT(ADV76XX_PAGE_CEC) | BIT(ADV76XX_PAGE_INFOFRAME) |
2938 BIT(ADV7604_PAGE_ESDP) | BIT(ADV7604_PAGE_DPP) |
2939 BIT(ADV76XX_PAGE_AFE) | BIT(ADV76XX_PAGE_REP) |
2940 BIT(ADV76XX_PAGE_EDID) | BIT(ADV76XX_PAGE_HDMI) |
2941 BIT(ADV76XX_PAGE_TEST) | BIT(ADV76XX_PAGE_CP) |
2942 BIT(ADV7604_PAGE_VDP),
2943 .linewidth_mask = 0xfff,
2944 .field0_height_mask = 0xfff,
2945 .field1_height_mask = 0xfff,
2946 .hfrontporch_mask = 0x3ff,
2947 .hsync_mask = 0x3ff,
2948 .hbackporch_mask = 0x3ff,
2949 .field0_vfrontporch_mask = 0x1fff,
2950 .field0_vsync_mask = 0x1fff,
2951 .field0_vbackporch_mask = 0x1fff,
2952 .field1_vfrontporch_mask = 0x1fff,
2953 .field1_vsync_mask = 0x1fff,
2954 .field1_vbackporch_mask = 0x1fff,
2956 [ADV7611] = {
2957 .type = ADV7611,
2958 .has_afe = false,
2959 .max_port = ADV76XX_PAD_HDMI_PORT_A,
2960 .num_dv_ports = 1,
2961 .edid_enable_reg = 0x74,
2962 .edid_status_reg = 0x76,
2963 .lcf_reg = 0xa3,
2964 .tdms_lock_mask = 0x43,
2965 .cable_det_mask = 0x01,
2966 .fmt_change_digital_mask = 0x03,
2967 .cp_csc = 0xf4,
2968 .formats = adv7611_formats,
2969 .nformats = ARRAY_SIZE(adv7611_formats),
2970 .set_termination = adv7611_set_termination,
2971 .setup_irqs = adv7611_setup_irqs,
2972 .read_hdmi_pixelclock = adv7611_read_hdmi_pixelclock,
2973 .read_cable_det = adv7611_read_cable_det,
2974 .recommended_settings = {
2975 [1] = adv7611_recommended_settings_hdmi,
2977 .num_recommended_settings = {
2978 [1] = ARRAY_SIZE(adv7611_recommended_settings_hdmi),
2980 .page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV76XX_PAGE_CEC) |
2981 BIT(ADV76XX_PAGE_INFOFRAME) | BIT(ADV76XX_PAGE_AFE) |
2982 BIT(ADV76XX_PAGE_REP) | BIT(ADV76XX_PAGE_EDID) |
2983 BIT(ADV76XX_PAGE_HDMI) | BIT(ADV76XX_PAGE_CP),
2984 .linewidth_mask = 0x1fff,
2985 .field0_height_mask = 0x1fff,
2986 .field1_height_mask = 0x1fff,
2987 .hfrontporch_mask = 0x1fff,
2988 .hsync_mask = 0x1fff,
2989 .hbackporch_mask = 0x1fff,
2990 .field0_vfrontporch_mask = 0x3fff,
2991 .field0_vsync_mask = 0x3fff,
2992 .field0_vbackporch_mask = 0x3fff,
2993 .field1_vfrontporch_mask = 0x3fff,
2994 .field1_vsync_mask = 0x3fff,
2995 .field1_vbackporch_mask = 0x3fff,
2997 [ADV7612] = {
2998 .type = ADV7612,
2999 .has_afe = false,
3000 .max_port = ADV76XX_PAD_HDMI_PORT_A, /* B not supported */
3001 .num_dv_ports = 1, /* normally 2 */
3002 .edid_enable_reg = 0x74,
3003 .edid_status_reg = 0x76,
3004 .lcf_reg = 0xa3,
3005 .tdms_lock_mask = 0x43,
3006 .cable_det_mask = 0x01,
3007 .fmt_change_digital_mask = 0x03,
3008 .cp_csc = 0xf4,
3009 .formats = adv7612_formats,
3010 .nformats = ARRAY_SIZE(adv7612_formats),
3011 .set_termination = adv7611_set_termination,
3012 .setup_irqs = adv7612_setup_irqs,
3013 .read_hdmi_pixelclock = adv7611_read_hdmi_pixelclock,
3014 .read_cable_det = adv7612_read_cable_det,
3015 .recommended_settings = {
3016 [1] = adv7612_recommended_settings_hdmi,
3018 .num_recommended_settings = {
3019 [1] = ARRAY_SIZE(adv7612_recommended_settings_hdmi),
3021 .page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV76XX_PAGE_CEC) |
3022 BIT(ADV76XX_PAGE_INFOFRAME) | BIT(ADV76XX_PAGE_AFE) |
3023 BIT(ADV76XX_PAGE_REP) | BIT(ADV76XX_PAGE_EDID) |
3024 BIT(ADV76XX_PAGE_HDMI) | BIT(ADV76XX_PAGE_CP),
3025 .linewidth_mask = 0x1fff,
3026 .field0_height_mask = 0x1fff,
3027 .field1_height_mask = 0x1fff,
3028 .hfrontporch_mask = 0x1fff,
3029 .hsync_mask = 0x1fff,
3030 .hbackporch_mask = 0x1fff,
3031 .field0_vfrontporch_mask = 0x3fff,
3032 .field0_vsync_mask = 0x3fff,
3033 .field0_vbackporch_mask = 0x3fff,
3034 .field1_vfrontporch_mask = 0x3fff,
3035 .field1_vsync_mask = 0x3fff,
3036 .field1_vbackporch_mask = 0x3fff,
3040 static const struct i2c_device_id adv76xx_i2c_id[] = {
3041 { "adv7604", (kernel_ulong_t)&adv76xx_chip_info[ADV7604] },
3042 { "adv7611", (kernel_ulong_t)&adv76xx_chip_info[ADV7611] },
3043 { "adv7612", (kernel_ulong_t)&adv76xx_chip_info[ADV7612] },
3046 MODULE_DEVICE_TABLE(i2c, adv76xx_i2c_id);
3048 static const struct of_device_id adv76xx_of_id[] __maybe_unused = {
3049 { .compatible = "adi,adv7611", .data = &adv76xx_chip_info[ADV7611] },
3050 { .compatible = "adi,adv7612", .data = &adv76xx_chip_info[ADV7612] },
3053 MODULE_DEVICE_TABLE(of, adv76xx_of_id);
3055 static int adv76xx_parse_dt(struct adv76xx_state *state)
3057 struct v4l2_of_endpoint bus_cfg;
3058 struct device_node *endpoint;
3059 struct device_node *np;
3060 unsigned int flags;
3061 int ret;
3062 u32 v;
3064 np = state->i2c_clients[ADV76XX_PAGE_IO]->dev.of_node;
3066 /* Parse the endpoint. */
3067 endpoint = of_graph_get_next_endpoint(np, NULL);
3068 if (!endpoint)
3069 return -EINVAL;
3071 ret = v4l2_of_parse_endpoint(endpoint, &bus_cfg);
3072 if (ret) {
3073 of_node_put(endpoint);
3074 return ret;
3077 if (!of_property_read_u32(endpoint, "default-input", &v))
3078 state->pdata.default_input = v;
3079 else
3080 state->pdata.default_input = -1;
3082 of_node_put(endpoint);
3084 flags = bus_cfg.bus.parallel.flags;
3086 if (flags & V4L2_MBUS_HSYNC_ACTIVE_HIGH)
3087 state->pdata.inv_hs_pol = 1;
3089 if (flags & V4L2_MBUS_VSYNC_ACTIVE_HIGH)
3090 state->pdata.inv_vs_pol = 1;
3092 if (flags & V4L2_MBUS_PCLK_SAMPLE_RISING)
3093 state->pdata.inv_llc_pol = 1;
3095 if (bus_cfg.bus_type == V4L2_MBUS_BT656)
3096 state->pdata.insert_av_codes = 1;
3098 /* Disable the interrupt for now as no DT-based board uses it. */
3099 state->pdata.int1_config = ADV76XX_INT1_CONFIG_DISABLED;
3101 /* Use the default I2C addresses. */
3102 state->pdata.i2c_addresses[ADV7604_PAGE_AVLINK] = 0x42;
3103 state->pdata.i2c_addresses[ADV76XX_PAGE_CEC] = 0x40;
3104 state->pdata.i2c_addresses[ADV76XX_PAGE_INFOFRAME] = 0x3e;
3105 state->pdata.i2c_addresses[ADV7604_PAGE_ESDP] = 0x38;
3106 state->pdata.i2c_addresses[ADV7604_PAGE_DPP] = 0x3c;
3107 state->pdata.i2c_addresses[ADV76XX_PAGE_AFE] = 0x26;
3108 state->pdata.i2c_addresses[ADV76XX_PAGE_REP] = 0x32;
3109 state->pdata.i2c_addresses[ADV76XX_PAGE_EDID] = 0x36;
3110 state->pdata.i2c_addresses[ADV76XX_PAGE_HDMI] = 0x34;
3111 state->pdata.i2c_addresses[ADV76XX_PAGE_TEST] = 0x30;
3112 state->pdata.i2c_addresses[ADV76XX_PAGE_CP] = 0x22;
3113 state->pdata.i2c_addresses[ADV7604_PAGE_VDP] = 0x24;
3115 /* Hardcode the remaining platform data fields. */
3116 state->pdata.disable_pwrdnb = 0;
3117 state->pdata.disable_cable_det_rst = 0;
3118 state->pdata.blank_data = 1;
3119 state->pdata.op_format_mode_sel = ADV7604_OP_FORMAT_MODE0;
3120 state->pdata.bus_order = ADV7604_BUS_ORDER_RGB;
3122 return 0;
3125 static const struct regmap_config adv76xx_regmap_cnf[] = {
3127 .name = "io",
3128 .reg_bits = 8,
3129 .val_bits = 8,
3131 .max_register = 0xff,
3132 .cache_type = REGCACHE_NONE,
3135 .name = "avlink",
3136 .reg_bits = 8,
3137 .val_bits = 8,
3139 .max_register = 0xff,
3140 .cache_type = REGCACHE_NONE,
3143 .name = "cec",
3144 .reg_bits = 8,
3145 .val_bits = 8,
3147 .max_register = 0xff,
3148 .cache_type = REGCACHE_NONE,
3151 .name = "infoframe",
3152 .reg_bits = 8,
3153 .val_bits = 8,
3155 .max_register = 0xff,
3156 .cache_type = REGCACHE_NONE,
3159 .name = "esdp",
3160 .reg_bits = 8,
3161 .val_bits = 8,
3163 .max_register = 0xff,
3164 .cache_type = REGCACHE_NONE,
3167 .name = "epp",
3168 .reg_bits = 8,
3169 .val_bits = 8,
3171 .max_register = 0xff,
3172 .cache_type = REGCACHE_NONE,
3175 .name = "afe",
3176 .reg_bits = 8,
3177 .val_bits = 8,
3179 .max_register = 0xff,
3180 .cache_type = REGCACHE_NONE,
3183 .name = "rep",
3184 .reg_bits = 8,
3185 .val_bits = 8,
3187 .max_register = 0xff,
3188 .cache_type = REGCACHE_NONE,
3191 .name = "edid",
3192 .reg_bits = 8,
3193 .val_bits = 8,
3195 .max_register = 0xff,
3196 .cache_type = REGCACHE_NONE,
3200 .name = "hdmi",
3201 .reg_bits = 8,
3202 .val_bits = 8,
3204 .max_register = 0xff,
3205 .cache_type = REGCACHE_NONE,
3208 .name = "test",
3209 .reg_bits = 8,
3210 .val_bits = 8,
3212 .max_register = 0xff,
3213 .cache_type = REGCACHE_NONE,
3216 .name = "cp",
3217 .reg_bits = 8,
3218 .val_bits = 8,
3220 .max_register = 0xff,
3221 .cache_type = REGCACHE_NONE,
3224 .name = "vdp",
3225 .reg_bits = 8,
3226 .val_bits = 8,
3228 .max_register = 0xff,
3229 .cache_type = REGCACHE_NONE,
3233 static int configure_regmap(struct adv76xx_state *state, int region)
3235 int err;
3237 if (!state->i2c_clients[region])
3238 return -ENODEV;
3240 state->regmap[region] =
3241 devm_regmap_init_i2c(state->i2c_clients[region],
3242 &adv76xx_regmap_cnf[region]);
3244 if (IS_ERR(state->regmap[region])) {
3245 err = PTR_ERR(state->regmap[region]);
3246 v4l_err(state->i2c_clients[region],
3247 "Error initializing regmap %d with error %d\n",
3248 region, err);
3249 return -EINVAL;
3252 return 0;
3255 static int configure_regmaps(struct adv76xx_state *state)
3257 int i, err;
3259 for (i = ADV7604_PAGE_AVLINK ; i < ADV76XX_PAGE_MAX; i++) {
3260 err = configure_regmap(state, i);
3261 if (err && (err != -ENODEV))
3262 return err;
3264 return 0;
3267 static void adv76xx_reset(struct adv76xx_state *state)
3269 if (state->reset_gpio) {
3270 /* ADV76XX can be reset by a low reset pulse of minimum 5 ms. */
3271 gpiod_set_value_cansleep(state->reset_gpio, 0);
3272 usleep_range(5000, 10000);
3273 gpiod_set_value_cansleep(state->reset_gpio, 1);
3274 /* It is recommended to wait 5 ms after the low pulse before */
3275 /* an I2C write is performed to the ADV76XX. */
3276 usleep_range(5000, 10000);
3280 static int adv76xx_probe(struct i2c_client *client,
3281 const struct i2c_device_id *id)
3283 static const struct v4l2_dv_timings cea640x480 =
3284 V4L2_DV_BT_CEA_640X480P59_94;
3285 struct adv76xx_state *state;
3286 struct v4l2_ctrl_handler *hdl;
3287 struct v4l2_ctrl *ctrl;
3288 struct v4l2_subdev *sd;
3289 unsigned int i;
3290 unsigned int val, val2;
3291 int err;
3293 /* Check if the adapter supports the needed features */
3294 if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA))
3295 return -EIO;
3296 v4l_dbg(1, debug, client, "detecting adv76xx client on address 0x%x\n",
3297 client->addr << 1);
3299 state = devm_kzalloc(&client->dev, sizeof(*state), GFP_KERNEL);
3300 if (!state) {
3301 v4l_err(client, "Could not allocate adv76xx_state memory!\n");
3302 return -ENOMEM;
3305 state->i2c_clients[ADV76XX_PAGE_IO] = client;
3307 /* initialize variables */
3308 state->restart_stdi_once = true;
3309 state->selected_input = ~0;
3311 if (IS_ENABLED(CONFIG_OF) && client->dev.of_node) {
3312 const struct of_device_id *oid;
3314 oid = of_match_node(adv76xx_of_id, client->dev.of_node);
3315 state->info = oid->data;
3317 err = adv76xx_parse_dt(state);
3318 if (err < 0) {
3319 v4l_err(client, "DT parsing error\n");
3320 return err;
3322 } else if (client->dev.platform_data) {
3323 struct adv76xx_platform_data *pdata = client->dev.platform_data;
3325 state->info = (const struct adv76xx_chip_info *)id->driver_data;
3326 state->pdata = *pdata;
3327 } else {
3328 v4l_err(client, "No platform data!\n");
3329 return -ENODEV;
3332 /* Request GPIOs. */
3333 for (i = 0; i < state->info->num_dv_ports; ++i) {
3334 state->hpd_gpio[i] =
3335 devm_gpiod_get_index_optional(&client->dev, "hpd", i,
3336 GPIOD_OUT_LOW);
3337 if (IS_ERR(state->hpd_gpio[i]))
3338 return PTR_ERR(state->hpd_gpio[i]);
3340 if (state->hpd_gpio[i])
3341 v4l_info(client, "Handling HPD %u GPIO\n", i);
3343 state->reset_gpio = devm_gpiod_get_optional(&client->dev, "reset",
3344 GPIOD_OUT_HIGH);
3345 if (IS_ERR(state->reset_gpio))
3346 return PTR_ERR(state->reset_gpio);
3348 adv76xx_reset(state);
3350 state->timings = cea640x480;
3351 state->format = adv76xx_format_info(state, MEDIA_BUS_FMT_YUYV8_2X8);
3353 sd = &state->sd;
3354 v4l2_i2c_subdev_init(sd, client, &adv76xx_ops);
3355 snprintf(sd->name, sizeof(sd->name), "%s %d-%04x",
3356 id->name, i2c_adapter_id(client->adapter),
3357 client->addr);
3358 sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE | V4L2_SUBDEV_FL_HAS_EVENTS;
3359 sd->internal_ops = &adv76xx_int_ops;
3361 /* Configure IO Regmap region */
3362 err = configure_regmap(state, ADV76XX_PAGE_IO);
3364 if (err) {
3365 v4l2_err(sd, "Error configuring IO regmap region\n");
3366 return -ENODEV;
3370 * Verify that the chip is present. On ADV7604 the RD_INFO register only
3371 * identifies the revision, while on ADV7611 it identifies the model as
3372 * well. Use the HDMI slave address on ADV7604 and RD_INFO on ADV7611.
3374 switch (state->info->type) {
3375 case ADV7604:
3376 err = regmap_read(state->regmap[ADV76XX_PAGE_IO], 0xfb, &val);
3377 if (err) {
3378 v4l2_err(sd, "Error %d reading IO Regmap\n", err);
3379 return -ENODEV;
3381 if (val != 0x68) {
3382 v4l2_err(sd, "not an adv7604 on address 0x%x\n",
3383 client->addr << 1);
3384 return -ENODEV;
3386 break;
3387 case ADV7611:
3388 case ADV7612:
3389 err = regmap_read(state->regmap[ADV76XX_PAGE_IO],
3390 0xea,
3391 &val);
3392 if (err) {
3393 v4l2_err(sd, "Error %d reading IO Regmap\n", err);
3394 return -ENODEV;
3396 val2 = val << 8;
3397 err = regmap_read(state->regmap[ADV76XX_PAGE_IO],
3398 0xeb,
3399 &val);
3400 if (err) {
3401 v4l2_err(sd, "Error %d reading IO Regmap\n", err);
3402 return -ENODEV;
3404 val |= val2;
3405 if ((state->info->type == ADV7611 && val != 0x2051) ||
3406 (state->info->type == ADV7612 && val != 0x2041)) {
3407 v4l2_err(sd, "not an adv761x on address 0x%x\n",
3408 client->addr << 1);
3409 return -ENODEV;
3411 break;
3414 /* control handlers */
3415 hdl = &state->hdl;
3416 v4l2_ctrl_handler_init(hdl, adv76xx_has_afe(state) ? 9 : 8);
3418 v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3419 V4L2_CID_BRIGHTNESS, -128, 127, 1, 0);
3420 v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3421 V4L2_CID_CONTRAST, 0, 255, 1, 128);
3422 v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3423 V4L2_CID_SATURATION, 0, 255, 1, 128);
3424 v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3425 V4L2_CID_HUE, 0, 128, 1, 0);
3426 ctrl = v4l2_ctrl_new_std_menu(hdl, &adv76xx_ctrl_ops,
3427 V4L2_CID_DV_RX_IT_CONTENT_TYPE, V4L2_DV_IT_CONTENT_TYPE_NO_ITC,
3428 0, V4L2_DV_IT_CONTENT_TYPE_NO_ITC);
3429 if (ctrl)
3430 ctrl->flags |= V4L2_CTRL_FLAG_VOLATILE;
3432 state->detect_tx_5v_ctrl = v4l2_ctrl_new_std(hdl, NULL,
3433 V4L2_CID_DV_RX_POWER_PRESENT, 0,
3434 (1 << state->info->num_dv_ports) - 1, 0, 0);
3435 state->rgb_quantization_range_ctrl =
3436 v4l2_ctrl_new_std_menu(hdl, &adv76xx_ctrl_ops,
3437 V4L2_CID_DV_RX_RGB_RANGE, V4L2_DV_RGB_RANGE_FULL,
3438 0, V4L2_DV_RGB_RANGE_AUTO);
3440 /* custom controls */
3441 if (adv76xx_has_afe(state))
3442 state->analog_sampling_phase_ctrl =
3443 v4l2_ctrl_new_custom(hdl, &adv7604_ctrl_analog_sampling_phase, NULL);
3444 state->free_run_color_manual_ctrl =
3445 v4l2_ctrl_new_custom(hdl, &adv76xx_ctrl_free_run_color_manual, NULL);
3446 state->free_run_color_ctrl =
3447 v4l2_ctrl_new_custom(hdl, &adv76xx_ctrl_free_run_color, NULL);
3449 sd->ctrl_handler = hdl;
3450 if (hdl->error) {
3451 err = hdl->error;
3452 goto err_hdl;
3454 if (adv76xx_s_detect_tx_5v_ctrl(sd)) {
3455 err = -ENODEV;
3456 goto err_hdl;
3459 for (i = 1; i < ADV76XX_PAGE_MAX; ++i) {
3460 if (!(BIT(i) & state->info->page_mask))
3461 continue;
3463 state->i2c_clients[i] =
3464 adv76xx_dummy_client(sd, state->pdata.i2c_addresses[i],
3465 0xf2 + i);
3466 if (state->i2c_clients[i] == NULL) {
3467 err = -ENOMEM;
3468 v4l2_err(sd, "failed to create i2c client %u\n", i);
3469 goto err_i2c;
3473 INIT_DELAYED_WORK(&state->delayed_work_enable_hotplug,
3474 adv76xx_delayed_work_enable_hotplug);
3476 state->source_pad = state->info->num_dv_ports
3477 + (state->info->has_afe ? 2 : 0);
3478 for (i = 0; i < state->source_pad; ++i)
3479 state->pads[i].flags = MEDIA_PAD_FL_SINK;
3480 state->pads[state->source_pad].flags = MEDIA_PAD_FL_SOURCE;
3482 err = media_entity_pads_init(&sd->entity, state->source_pad + 1,
3483 state->pads);
3484 if (err)
3485 goto err_work_queues;
3487 /* Configure regmaps */
3488 err = configure_regmaps(state);
3489 if (err)
3490 goto err_entity;
3492 err = adv76xx_core_init(sd);
3493 if (err)
3494 goto err_entity;
3496 #if IS_ENABLED(CONFIG_VIDEO_ADV7604_CEC)
3497 state->cec_adap = cec_allocate_adapter(&adv76xx_cec_adap_ops,
3498 state, dev_name(&client->dev),
3499 CEC_CAP_TRANSMIT | CEC_CAP_LOG_ADDRS |
3500 CEC_CAP_PASSTHROUGH | CEC_CAP_RC, ADV76XX_MAX_ADDRS,
3501 &client->dev);
3502 err = PTR_ERR_OR_ZERO(state->cec_adap);
3503 if (err)
3504 goto err_entity;
3505 #endif
3507 v4l2_info(sd, "%s found @ 0x%x (%s)\n", client->name,
3508 client->addr << 1, client->adapter->name);
3510 err = v4l2_async_register_subdev(sd);
3511 if (err)
3512 goto err_entity;
3514 return 0;
3516 err_entity:
3517 media_entity_cleanup(&sd->entity);
3518 err_work_queues:
3519 cancel_delayed_work(&state->delayed_work_enable_hotplug);
3520 err_i2c:
3521 adv76xx_unregister_clients(state);
3522 err_hdl:
3523 v4l2_ctrl_handler_free(hdl);
3524 return err;
3527 /* ----------------------------------------------------------------------- */
3529 static int adv76xx_remove(struct i2c_client *client)
3531 struct v4l2_subdev *sd = i2c_get_clientdata(client);
3532 struct adv76xx_state *state = to_state(sd);
3534 /* disable interrupts */
3535 io_write(sd, 0x40, 0);
3536 io_write(sd, 0x41, 0);
3537 io_write(sd, 0x46, 0);
3538 io_write(sd, 0x6e, 0);
3539 io_write(sd, 0x73, 0);
3541 cancel_delayed_work(&state->delayed_work_enable_hotplug);
3542 v4l2_async_unregister_subdev(sd);
3543 media_entity_cleanup(&sd->entity);
3544 adv76xx_unregister_clients(to_state(sd));
3545 v4l2_ctrl_handler_free(sd->ctrl_handler);
3546 return 0;
3549 /* ----------------------------------------------------------------------- */
3551 static struct i2c_driver adv76xx_driver = {
3552 .driver = {
3553 .name = "adv7604",
3554 .of_match_table = of_match_ptr(adv76xx_of_id),
3556 .probe = adv76xx_probe,
3557 .remove = adv76xx_remove,
3558 .id_table = adv76xx_i2c_id,
3561 module_i2c_driver(adv76xx_driver);