Merge branch 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[cris-mirror.git] / drivers / media / pci / tw68 / tw68-video.c
blob5e8212845c871b5886f317ce98628dfc1c00735e
1 /*
2 * tw68 functions to handle video data
4 * Much of this code is derived from the cx88 and sa7134 drivers, which
5 * were in turn derived from the bt87x driver. The original work was by
6 * Gerd Knorr; more recently the code was enhanced by Mauro Carvalho Chehab,
7 * Hans Verkuil, Andy Walls and many others. Their work is gratefully
8 * acknowledged. Full credit goes to them - any problems within this code
9 * are mine.
11 * Copyright (C) 2009 William M. Brack
13 * Refactored and updated to the latest v4l core frameworks:
15 * Copyright (C) 2014 Hans Verkuil <hverkuil@xs4all.nl>
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
28 #include <linux/module.h>
29 #include <media/v4l2-common.h>
30 #include <media/v4l2-event.h>
31 #include <media/videobuf2-dma-sg.h>
33 #include "tw68.h"
34 #include "tw68-reg.h"
36 /* ------------------------------------------------------------------ */
37 /* data structs for video */
39 * FIXME -
40 * Note that the saa7134 has formats, e.g. YUV420, which are classified
41 * as "planar". These affect overlay mode, and are flagged with a field
42 * ".planar" in the format. Do we need to implement this in this driver?
44 static const struct tw68_format formats[] = {
46 .name = "15 bpp RGB, le",
47 .fourcc = V4L2_PIX_FMT_RGB555,
48 .depth = 16,
49 .twformat = ColorFormatRGB15,
50 }, {
51 .name = "15 bpp RGB, be",
52 .fourcc = V4L2_PIX_FMT_RGB555X,
53 .depth = 16,
54 .twformat = ColorFormatRGB15 | ColorFormatBSWAP,
55 }, {
56 .name = "16 bpp RGB, le",
57 .fourcc = V4L2_PIX_FMT_RGB565,
58 .depth = 16,
59 .twformat = ColorFormatRGB16,
60 }, {
61 .name = "16 bpp RGB, be",
62 .fourcc = V4L2_PIX_FMT_RGB565X,
63 .depth = 16,
64 .twformat = ColorFormatRGB16 | ColorFormatBSWAP,
65 }, {
66 .name = "24 bpp RGB, le",
67 .fourcc = V4L2_PIX_FMT_BGR24,
68 .depth = 24,
69 .twformat = ColorFormatRGB24,
70 }, {
71 .name = "24 bpp RGB, be",
72 .fourcc = V4L2_PIX_FMT_RGB24,
73 .depth = 24,
74 .twformat = ColorFormatRGB24 | ColorFormatBSWAP,
75 }, {
76 .name = "32 bpp RGB, le",
77 .fourcc = V4L2_PIX_FMT_BGR32,
78 .depth = 32,
79 .twformat = ColorFormatRGB32,
80 }, {
81 .name = "32 bpp RGB, be",
82 .fourcc = V4L2_PIX_FMT_RGB32,
83 .depth = 32,
84 .twformat = ColorFormatRGB32 | ColorFormatBSWAP |
85 ColorFormatWSWAP,
86 }, {
87 .name = "4:2:2 packed, YUYV",
88 .fourcc = V4L2_PIX_FMT_YUYV,
89 .depth = 16,
90 .twformat = ColorFormatYUY2,
91 }, {
92 .name = "4:2:2 packed, UYVY",
93 .fourcc = V4L2_PIX_FMT_UYVY,
94 .depth = 16,
95 .twformat = ColorFormatYUY2 | ColorFormatBSWAP,
98 #define FORMATS ARRAY_SIZE(formats)
100 #define NORM_625_50 \
101 .h_delay = 3, \
102 .h_delay0 = 133, \
103 .h_start = 0, \
104 .h_stop = 719, \
105 .v_delay = 24, \
106 .vbi_v_start_0 = 7, \
107 .vbi_v_stop_0 = 22, \
108 .video_v_start = 24, \
109 .video_v_stop = 311, \
110 .vbi_v_start_1 = 319
112 #define NORM_525_60 \
113 .h_delay = 8, \
114 .h_delay0 = 138, \
115 .h_start = 0, \
116 .h_stop = 719, \
117 .v_delay = 22, \
118 .vbi_v_start_0 = 10, \
119 .vbi_v_stop_0 = 21, \
120 .video_v_start = 22, \
121 .video_v_stop = 262, \
122 .vbi_v_start_1 = 273
125 * The following table is searched by tw68_s_std, first for a specific
126 * match, then for an entry which contains the desired id. The table
127 * entries should therefore be ordered in ascending order of specificity.
129 static const struct tw68_tvnorm tvnorms[] = {
131 .name = "PAL", /* autodetect */
132 .id = V4L2_STD_PAL,
133 NORM_625_50,
135 .sync_control = 0x18,
136 .luma_control = 0x40,
137 .chroma_ctrl1 = 0x81,
138 .chroma_gain = 0x2a,
139 .chroma_ctrl2 = 0x06,
140 .vgate_misc = 0x1c,
141 .format = VideoFormatPALBDGHI,
142 }, {
143 .name = "NTSC",
144 .id = V4L2_STD_NTSC,
145 NORM_525_60,
147 .sync_control = 0x59,
148 .luma_control = 0x40,
149 .chroma_ctrl1 = 0x89,
150 .chroma_gain = 0x2a,
151 .chroma_ctrl2 = 0x0e,
152 .vgate_misc = 0x18,
153 .format = VideoFormatNTSC,
154 }, {
155 .name = "SECAM",
156 .id = V4L2_STD_SECAM,
157 NORM_625_50,
159 .sync_control = 0x18,
160 .luma_control = 0x1b,
161 .chroma_ctrl1 = 0xd1,
162 .chroma_gain = 0x80,
163 .chroma_ctrl2 = 0x00,
164 .vgate_misc = 0x1c,
165 .format = VideoFormatSECAM,
166 }, {
167 .name = "PAL-M",
168 .id = V4L2_STD_PAL_M,
169 NORM_525_60,
171 .sync_control = 0x59,
172 .luma_control = 0x40,
173 .chroma_ctrl1 = 0xb9,
174 .chroma_gain = 0x2a,
175 .chroma_ctrl2 = 0x0e,
176 .vgate_misc = 0x18,
177 .format = VideoFormatPALM,
178 }, {
179 .name = "PAL-Nc",
180 .id = V4L2_STD_PAL_Nc,
181 NORM_625_50,
183 .sync_control = 0x18,
184 .luma_control = 0x40,
185 .chroma_ctrl1 = 0xa1,
186 .chroma_gain = 0x2a,
187 .chroma_ctrl2 = 0x06,
188 .vgate_misc = 0x1c,
189 .format = VideoFormatPALNC,
190 }, {
191 .name = "PAL-60",
192 .id = V4L2_STD_PAL_60,
193 .h_delay = 186,
194 .h_start = 0,
195 .h_stop = 719,
196 .v_delay = 26,
197 .video_v_start = 23,
198 .video_v_stop = 262,
199 .vbi_v_start_0 = 10,
200 .vbi_v_stop_0 = 21,
201 .vbi_v_start_1 = 273,
203 .sync_control = 0x18,
204 .luma_control = 0x40,
205 .chroma_ctrl1 = 0x81,
206 .chroma_gain = 0x2a,
207 .chroma_ctrl2 = 0x06,
208 .vgate_misc = 0x1c,
209 .format = VideoFormatPAL60,
212 #define TVNORMS ARRAY_SIZE(tvnorms)
214 static const struct tw68_format *format_by_fourcc(unsigned int fourcc)
216 unsigned int i;
218 for (i = 0; i < FORMATS; i++)
219 if (formats[i].fourcc == fourcc)
220 return formats+i;
221 return NULL;
225 /* ------------------------------------------------------------------ */
227 * Note that the cropping rectangles are described in terms of a single
228 * frame, i.e. line positions are only 1/2 the interlaced equivalent
230 static void set_tvnorm(struct tw68_dev *dev, const struct tw68_tvnorm *norm)
232 if (norm != dev->tvnorm) {
233 dev->width = 720;
234 dev->height = (norm->id & V4L2_STD_525_60) ? 480 : 576;
235 dev->tvnorm = norm;
236 tw68_set_tvnorm_hw(dev);
241 * tw68_set_scale
243 * Scaling and Cropping for video decoding
245 * We are working with 3 values for horizontal and vertical - scale,
246 * delay and active.
248 * HACTIVE represent the actual number of pixels in the "usable" image,
249 * before scaling. HDELAY represents the number of pixels skipped
250 * between the start of the horizontal sync and the start of the image.
251 * HSCALE is calculated using the formula
252 * HSCALE = (HACTIVE / (#pixels desired)) * 256
254 * The vertical registers are similar, except based upon the total number
255 * of lines in the image, and the first line of the image (i.e. ignoring
256 * vertical sync and VBI).
258 * Note that the number of bytes reaching the FIFO (and hence needing
259 * to be processed by the DMAP program) is completely dependent upon
260 * these values, especially HSCALE.
262 * Parameters:
263 * @dev pointer to the device structure, needed for
264 * getting current norm (as well as debug print)
265 * @width actual image width (from user buffer)
266 * @height actual image height
267 * @field indicates Top, Bottom or Interlaced
269 static int tw68_set_scale(struct tw68_dev *dev, unsigned int width,
270 unsigned int height, enum v4l2_field field)
272 const struct tw68_tvnorm *norm = dev->tvnorm;
273 /* set individually for debugging clarity */
274 int hactive, hdelay, hscale;
275 int vactive, vdelay, vscale;
276 int comb;
278 if (V4L2_FIELD_HAS_BOTH(field)) /* if field is interlaced */
279 height /= 2; /* we must set for 1-frame */
281 pr_debug("%s: width=%d, height=%d, both=%d\n"
282 " tvnorm h_delay=%d, h_start=%d, h_stop=%d, "
283 "v_delay=%d, v_start=%d, v_stop=%d\n" , __func__,
284 width, height, V4L2_FIELD_HAS_BOTH(field),
285 norm->h_delay, norm->h_start, norm->h_stop,
286 norm->v_delay, norm->video_v_start,
287 norm->video_v_stop);
289 switch (dev->vdecoder) {
290 case TW6800:
291 hdelay = norm->h_delay0;
292 break;
293 default:
294 hdelay = norm->h_delay;
295 break;
298 hdelay += norm->h_start;
299 hactive = norm->h_stop - norm->h_start + 1;
301 hscale = (hactive * 256) / (width);
303 vdelay = norm->v_delay;
304 vactive = ((norm->id & V4L2_STD_525_60) ? 524 : 624) / 2 - norm->video_v_start;
305 vscale = (vactive * 256) / height;
307 pr_debug("%s: %dx%d [%s%s,%s]\n", __func__,
308 width, height,
309 V4L2_FIELD_HAS_TOP(field) ? "T" : "",
310 V4L2_FIELD_HAS_BOTTOM(field) ? "B" : "",
311 v4l2_norm_to_name(dev->tvnorm->id));
312 pr_debug("%s: hactive=%d, hdelay=%d, hscale=%d; "
313 "vactive=%d, vdelay=%d, vscale=%d\n", __func__,
314 hactive, hdelay, hscale, vactive, vdelay, vscale);
316 comb = ((vdelay & 0x300) >> 2) |
317 ((vactive & 0x300) >> 4) |
318 ((hdelay & 0x300) >> 6) |
319 ((hactive & 0x300) >> 8);
320 pr_debug("%s: setting CROP_HI=%02x, VDELAY_LO=%02x, "
321 "VACTIVE_LO=%02x, HDELAY_LO=%02x, HACTIVE_LO=%02x\n",
322 __func__, comb, vdelay, vactive, hdelay, hactive);
323 tw_writeb(TW68_CROP_HI, comb);
324 tw_writeb(TW68_VDELAY_LO, vdelay & 0xff);
325 tw_writeb(TW68_VACTIVE_LO, vactive & 0xff);
326 tw_writeb(TW68_HDELAY_LO, hdelay & 0xff);
327 tw_writeb(TW68_HACTIVE_LO, hactive & 0xff);
329 comb = ((vscale & 0xf00) >> 4) | ((hscale & 0xf00) >> 8);
330 pr_debug("%s: setting SCALE_HI=%02x, VSCALE_LO=%02x, "
331 "HSCALE_LO=%02x\n", __func__, comb, vscale, hscale);
332 tw_writeb(TW68_SCALE_HI, comb);
333 tw_writeb(TW68_VSCALE_LO, vscale);
334 tw_writeb(TW68_HSCALE_LO, hscale);
336 return 0;
339 /* ------------------------------------------------------------------ */
341 int tw68_video_start_dma(struct tw68_dev *dev, struct tw68_buf *buf)
343 /* Set cropping and scaling */
344 tw68_set_scale(dev, dev->width, dev->height, dev->field);
346 * Set start address for RISC program. Note that if the DMAP
347 * processor is currently running, it must be stopped before
348 * a new address can be set.
350 tw_clearl(TW68_DMAC, TW68_DMAP_EN);
351 tw_writel(TW68_DMAP_SA, buf->dma);
352 /* Clear any pending interrupts */
353 tw_writel(TW68_INTSTAT, dev->board_virqmask);
354 /* Enable the risc engine and the fifo */
355 tw_andorl(TW68_DMAC, 0xff, dev->fmt->twformat |
356 ColorFormatGamma | TW68_DMAP_EN | TW68_FIFO_EN);
357 dev->pci_irqmask |= dev->board_virqmask;
358 tw_setl(TW68_INTMASK, dev->pci_irqmask);
359 return 0;
362 /* ------------------------------------------------------------------ */
364 /* calc max # of buffers from size (must not exceed the 4MB virtual
365 * address space per DMA channel) */
366 static int tw68_buffer_count(unsigned int size, unsigned int count)
368 unsigned int maxcount;
370 maxcount = (4 * 1024 * 1024) / roundup(size, PAGE_SIZE);
371 if (count > maxcount)
372 count = maxcount;
373 return count;
376 /* ------------------------------------------------------------- */
377 /* vb2 queue operations */
379 static int tw68_queue_setup(struct vb2_queue *q,
380 unsigned int *num_buffers, unsigned int *num_planes,
381 unsigned int sizes[], struct device *alloc_devs[])
383 struct tw68_dev *dev = vb2_get_drv_priv(q);
384 unsigned tot_bufs = q->num_buffers + *num_buffers;
385 unsigned size = (dev->fmt->depth * dev->width * dev->height) >> 3;
387 if (tot_bufs < 2)
388 tot_bufs = 2;
389 tot_bufs = tw68_buffer_count(size, tot_bufs);
390 *num_buffers = tot_bufs - q->num_buffers;
392 * We allow create_bufs, but only if the sizeimage is >= as the
393 * current sizeimage. The tw68_buffer_count calculation becomes quite
394 * difficult otherwise.
396 if (*num_planes)
397 return sizes[0] < size ? -EINVAL : 0;
398 *num_planes = 1;
399 sizes[0] = size;
401 return 0;
405 * The risc program for each buffers works as follows: it starts with a simple
406 * 'JUMP to addr + 8', which is effectively a NOP. Then the program to DMA the
407 * buffer follows and at the end we have a JUMP back to the start + 8 (skipping
408 * the initial JUMP).
410 * This is the program of the first buffer to be queued if the active list is
411 * empty and it just keeps DMAing this buffer without generating any interrupts.
413 * If a new buffer is added then the initial JUMP in the program generates an
414 * interrupt as well which signals that the previous buffer has been DMAed
415 * successfully and that it can be returned to userspace.
417 * It also sets the final jump of the previous buffer to the start of the new
418 * buffer, thus chaining the new buffer into the DMA chain. This is a single
419 * atomic u32 write, so there is no race condition.
421 * The end-result of all this that you only get an interrupt when a buffer
422 * is ready, so the control flow is very easy.
424 static void tw68_buf_queue(struct vb2_buffer *vb)
426 struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
427 struct vb2_queue *vq = vb->vb2_queue;
428 struct tw68_dev *dev = vb2_get_drv_priv(vq);
429 struct tw68_buf *buf = container_of(vbuf, struct tw68_buf, vb);
430 struct tw68_buf *prev;
431 unsigned long flags;
433 spin_lock_irqsave(&dev->slock, flags);
435 /* append a 'JUMP to start of buffer' to the buffer risc program */
436 buf->jmp[0] = cpu_to_le32(RISC_JUMP);
437 buf->jmp[1] = cpu_to_le32(buf->dma + 8);
439 if (!list_empty(&dev->active)) {
440 prev = list_entry(dev->active.prev, struct tw68_buf, list);
441 buf->cpu[0] |= cpu_to_le32(RISC_INT_BIT);
442 prev->jmp[1] = cpu_to_le32(buf->dma);
444 list_add_tail(&buf->list, &dev->active);
445 spin_unlock_irqrestore(&dev->slock, flags);
449 * buffer_prepare
451 * Set the ancilliary information into the buffer structure. This
452 * includes generating the necessary risc program if it hasn't already
453 * been done for the current buffer format.
454 * The structure fh contains the details of the format requested by the
455 * user - type, width, height and #fields. This is compared with the
456 * last format set for the current buffer. If they differ, the risc
457 * code (which controls the filling of the buffer) is (re-)generated.
459 static int tw68_buf_prepare(struct vb2_buffer *vb)
461 struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
462 struct vb2_queue *vq = vb->vb2_queue;
463 struct tw68_dev *dev = vb2_get_drv_priv(vq);
464 struct tw68_buf *buf = container_of(vbuf, struct tw68_buf, vb);
465 struct sg_table *dma = vb2_dma_sg_plane_desc(vb, 0);
466 unsigned size, bpl;
468 size = (dev->width * dev->height * dev->fmt->depth) >> 3;
469 if (vb2_plane_size(vb, 0) < size)
470 return -EINVAL;
471 vb2_set_plane_payload(vb, 0, size);
473 bpl = (dev->width * dev->fmt->depth) >> 3;
474 switch (dev->field) {
475 case V4L2_FIELD_TOP:
476 tw68_risc_buffer(dev->pci, buf, dma->sgl,
477 0, UNSET, bpl, 0, dev->height);
478 break;
479 case V4L2_FIELD_BOTTOM:
480 tw68_risc_buffer(dev->pci, buf, dma->sgl,
481 UNSET, 0, bpl, 0, dev->height);
482 break;
483 case V4L2_FIELD_SEQ_TB:
484 tw68_risc_buffer(dev->pci, buf, dma->sgl,
485 0, bpl * (dev->height >> 1),
486 bpl, 0, dev->height >> 1);
487 break;
488 case V4L2_FIELD_SEQ_BT:
489 tw68_risc_buffer(dev->pci, buf, dma->sgl,
490 bpl * (dev->height >> 1), 0,
491 bpl, 0, dev->height >> 1);
492 break;
493 case V4L2_FIELD_INTERLACED:
494 default:
495 tw68_risc_buffer(dev->pci, buf, dma->sgl,
496 0, bpl, bpl, bpl, dev->height >> 1);
497 break;
499 return 0;
502 static void tw68_buf_finish(struct vb2_buffer *vb)
504 struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
505 struct vb2_queue *vq = vb->vb2_queue;
506 struct tw68_dev *dev = vb2_get_drv_priv(vq);
507 struct tw68_buf *buf = container_of(vbuf, struct tw68_buf, vb);
509 pci_free_consistent(dev->pci, buf->size, buf->cpu, buf->dma);
512 static int tw68_start_streaming(struct vb2_queue *q, unsigned int count)
514 struct tw68_dev *dev = vb2_get_drv_priv(q);
515 struct tw68_buf *buf =
516 container_of(dev->active.next, struct tw68_buf, list);
518 dev->seqnr = 0;
519 tw68_video_start_dma(dev, buf);
520 return 0;
523 static void tw68_stop_streaming(struct vb2_queue *q)
525 struct tw68_dev *dev = vb2_get_drv_priv(q);
527 /* Stop risc & fifo */
528 tw_clearl(TW68_DMAC, TW68_DMAP_EN | TW68_FIFO_EN);
529 while (!list_empty(&dev->active)) {
530 struct tw68_buf *buf =
531 container_of(dev->active.next, struct tw68_buf, list);
533 list_del(&buf->list);
534 vb2_buffer_done(&buf->vb.vb2_buf, VB2_BUF_STATE_ERROR);
538 static struct vb2_ops tw68_video_qops = {
539 .queue_setup = tw68_queue_setup,
540 .buf_queue = tw68_buf_queue,
541 .buf_prepare = tw68_buf_prepare,
542 .buf_finish = tw68_buf_finish,
543 .start_streaming = tw68_start_streaming,
544 .stop_streaming = tw68_stop_streaming,
545 .wait_prepare = vb2_ops_wait_prepare,
546 .wait_finish = vb2_ops_wait_finish,
549 /* ------------------------------------------------------------------ */
551 static int tw68_s_ctrl(struct v4l2_ctrl *ctrl)
553 struct tw68_dev *dev =
554 container_of(ctrl->handler, struct tw68_dev, hdl);
556 switch (ctrl->id) {
557 case V4L2_CID_BRIGHTNESS:
558 tw_writeb(TW68_BRIGHT, ctrl->val);
559 break;
560 case V4L2_CID_HUE:
561 tw_writeb(TW68_HUE, ctrl->val);
562 break;
563 case V4L2_CID_CONTRAST:
564 tw_writeb(TW68_CONTRAST, ctrl->val);
565 break;
566 case V4L2_CID_SATURATION:
567 tw_writeb(TW68_SAT_U, ctrl->val);
568 tw_writeb(TW68_SAT_V, ctrl->val);
569 break;
570 case V4L2_CID_COLOR_KILLER:
571 if (ctrl->val)
572 tw_andorb(TW68_MISC2, 0xe0, 0xe0);
573 else
574 tw_andorb(TW68_MISC2, 0xe0, 0x00);
575 break;
576 case V4L2_CID_CHROMA_AGC:
577 if (ctrl->val)
578 tw_andorb(TW68_LOOP, 0x30, 0x20);
579 else
580 tw_andorb(TW68_LOOP, 0x30, 0x00);
581 break;
583 return 0;
586 /* ------------------------------------------------------------------ */
589 * Note that this routine returns what is stored in the fh structure, and
590 * does not interrogate any of the device registers.
592 static int tw68_g_fmt_vid_cap(struct file *file, void *priv,
593 struct v4l2_format *f)
595 struct tw68_dev *dev = video_drvdata(file);
597 f->fmt.pix.width = dev->width;
598 f->fmt.pix.height = dev->height;
599 f->fmt.pix.field = dev->field;
600 f->fmt.pix.pixelformat = dev->fmt->fourcc;
601 f->fmt.pix.bytesperline =
602 (f->fmt.pix.width * (dev->fmt->depth)) >> 3;
603 f->fmt.pix.sizeimage =
604 f->fmt.pix.height * f->fmt.pix.bytesperline;
605 f->fmt.pix.colorspace = V4L2_COLORSPACE_SMPTE170M;
606 f->fmt.pix.priv = 0;
607 return 0;
610 static int tw68_try_fmt_vid_cap(struct file *file, void *priv,
611 struct v4l2_format *f)
613 struct tw68_dev *dev = video_drvdata(file);
614 const struct tw68_format *fmt;
615 enum v4l2_field field;
616 unsigned int maxh;
618 fmt = format_by_fourcc(f->fmt.pix.pixelformat);
619 if (NULL == fmt)
620 return -EINVAL;
622 field = f->fmt.pix.field;
623 maxh = (dev->tvnorm->id & V4L2_STD_525_60) ? 480 : 576;
625 switch (field) {
626 case V4L2_FIELD_TOP:
627 case V4L2_FIELD_BOTTOM:
628 break;
629 case V4L2_FIELD_INTERLACED:
630 case V4L2_FIELD_SEQ_BT:
631 case V4L2_FIELD_SEQ_TB:
632 maxh = maxh * 2;
633 break;
634 default:
635 field = (f->fmt.pix.height > maxh / 2)
636 ? V4L2_FIELD_INTERLACED
637 : V4L2_FIELD_BOTTOM;
638 break;
641 f->fmt.pix.field = field;
642 if (f->fmt.pix.width < 48)
643 f->fmt.pix.width = 48;
644 if (f->fmt.pix.height < 32)
645 f->fmt.pix.height = 32;
646 if (f->fmt.pix.width > 720)
647 f->fmt.pix.width = 720;
648 if (f->fmt.pix.height > maxh)
649 f->fmt.pix.height = maxh;
650 f->fmt.pix.width &= ~0x03;
651 f->fmt.pix.bytesperline =
652 (f->fmt.pix.width * (fmt->depth)) >> 3;
653 f->fmt.pix.sizeimage =
654 f->fmt.pix.height * f->fmt.pix.bytesperline;
655 f->fmt.pix.colorspace = V4L2_COLORSPACE_SMPTE170M;
656 return 0;
660 * Note that tw68_s_fmt_vid_cap sets the information into the fh structure,
661 * and it will be used for all future new buffers. However, there could be
662 * some number of buffers on the "active" chain which will be filled before
663 * the change takes place.
665 static int tw68_s_fmt_vid_cap(struct file *file, void *priv,
666 struct v4l2_format *f)
668 struct tw68_dev *dev = video_drvdata(file);
669 int err;
671 err = tw68_try_fmt_vid_cap(file, priv, f);
672 if (0 != err)
673 return err;
675 dev->fmt = format_by_fourcc(f->fmt.pix.pixelformat);
676 dev->width = f->fmt.pix.width;
677 dev->height = f->fmt.pix.height;
678 dev->field = f->fmt.pix.field;
679 return 0;
682 static int tw68_enum_input(struct file *file, void *priv,
683 struct v4l2_input *i)
685 struct tw68_dev *dev = video_drvdata(file);
686 unsigned int n;
688 n = i->index;
689 if (n >= TW68_INPUT_MAX)
690 return -EINVAL;
691 i->index = n;
692 i->type = V4L2_INPUT_TYPE_CAMERA;
693 snprintf(i->name, sizeof(i->name), "Composite %d", n);
695 /* If the query is for the current input, get live data */
696 if (n == dev->input) {
697 int v1 = tw_readb(TW68_STATUS1);
698 int v2 = tw_readb(TW68_MVSN);
700 if (0 != (v1 & (1 << 7)))
701 i->status |= V4L2_IN_ST_NO_SYNC;
702 if (0 != (v1 & (1 << 6)))
703 i->status |= V4L2_IN_ST_NO_H_LOCK;
704 if (0 != (v1 & (1 << 2)))
705 i->status |= V4L2_IN_ST_NO_SIGNAL;
706 if (0 != (v1 & 1 << 1))
707 i->status |= V4L2_IN_ST_NO_COLOR;
708 if (0 != (v2 & (1 << 2)))
709 i->status |= V4L2_IN_ST_MACROVISION;
711 i->std = video_devdata(file)->tvnorms;
712 return 0;
715 static int tw68_g_input(struct file *file, void *priv, unsigned int *i)
717 struct tw68_dev *dev = video_drvdata(file);
719 *i = dev->input;
720 return 0;
723 static int tw68_s_input(struct file *file, void *priv, unsigned int i)
725 struct tw68_dev *dev = video_drvdata(file);
727 if (i >= TW68_INPUT_MAX)
728 return -EINVAL;
729 dev->input = i;
730 tw_andorb(TW68_INFORM, 0x03 << 2, dev->input << 2);
731 return 0;
734 static int tw68_querycap(struct file *file, void *priv,
735 struct v4l2_capability *cap)
737 struct tw68_dev *dev = video_drvdata(file);
739 strcpy(cap->driver, "tw68");
740 strlcpy(cap->card, "Techwell Capture Card",
741 sizeof(cap->card));
742 sprintf(cap->bus_info, "PCI:%s", pci_name(dev->pci));
743 cap->device_caps =
744 V4L2_CAP_VIDEO_CAPTURE |
745 V4L2_CAP_READWRITE |
746 V4L2_CAP_STREAMING;
748 cap->capabilities = cap->device_caps | V4L2_CAP_DEVICE_CAPS;
749 return 0;
752 static int tw68_s_std(struct file *file, void *priv, v4l2_std_id id)
754 struct tw68_dev *dev = video_drvdata(file);
755 unsigned int i;
757 if (vb2_is_busy(&dev->vidq))
758 return -EBUSY;
760 /* Look for match on complete norm id (may have mult bits) */
761 for (i = 0; i < TVNORMS; i++) {
762 if (id == tvnorms[i].id)
763 break;
766 /* If no exact match, look for norm which contains this one */
767 if (i == TVNORMS) {
768 for (i = 0; i < TVNORMS; i++)
769 if (id & tvnorms[i].id)
770 break;
772 /* If still not matched, give up */
773 if (i == TVNORMS)
774 return -EINVAL;
776 set_tvnorm(dev, &tvnorms[i]); /* do the actual setting */
777 return 0;
780 static int tw68_g_std(struct file *file, void *priv, v4l2_std_id *id)
782 struct tw68_dev *dev = video_drvdata(file);
784 *id = dev->tvnorm->id;
785 return 0;
788 static int tw68_enum_fmt_vid_cap(struct file *file, void *priv,
789 struct v4l2_fmtdesc *f)
791 if (f->index >= FORMATS)
792 return -EINVAL;
794 strlcpy(f->description, formats[f->index].name,
795 sizeof(f->description));
797 f->pixelformat = formats[f->index].fourcc;
799 return 0;
803 * Used strictly for internal development and debugging, this routine
804 * prints out the current register contents for the tw68xx device.
806 static void tw68_dump_regs(struct tw68_dev *dev)
808 unsigned char line[80];
809 int i, j, k;
810 unsigned char *cptr;
812 pr_info("Full dump of TW68 registers:\n");
813 /* First we do the PCI regs, 8 4-byte regs per line */
814 for (i = 0; i < 0x100; i += 32) {
815 cptr = line;
816 cptr += sprintf(cptr, "%03x ", i);
817 /* j steps through the next 4 words */
818 for (j = i; j < i + 16; j += 4)
819 cptr += sprintf(cptr, "%08x ", tw_readl(j));
820 *cptr++ = ' ';
821 for (; j < i + 32; j += 4)
822 cptr += sprintf(cptr, "%08x ", tw_readl(j));
823 *cptr++ = '\n';
824 *cptr = 0;
825 pr_info("%s", line);
827 /* Next the control regs, which are single-byte, address mod 4 */
828 while (i < 0x400) {
829 cptr = line;
830 cptr += sprintf(cptr, "%03x ", i);
831 /* Print out 4 groups of 4 bytes */
832 for (j = 0; j < 4; j++) {
833 for (k = 0; k < 4; k++) {
834 cptr += sprintf(cptr, "%02x ",
835 tw_readb(i));
836 i += 4;
838 *cptr++ = ' ';
840 *cptr++ = '\n';
841 *cptr = 0;
842 pr_info("%s", line);
846 static int vidioc_log_status(struct file *file, void *priv)
848 struct tw68_dev *dev = video_drvdata(file);
850 tw68_dump_regs(dev);
851 return v4l2_ctrl_log_status(file, priv);
854 #ifdef CONFIG_VIDEO_ADV_DEBUG
855 static int vidioc_g_register(struct file *file, void *priv,
856 struct v4l2_dbg_register *reg)
858 struct tw68_dev *dev = video_drvdata(file);
860 if (reg->size == 1)
861 reg->val = tw_readb(reg->reg);
862 else
863 reg->val = tw_readl(reg->reg);
864 return 0;
867 static int vidioc_s_register(struct file *file, void *priv,
868 const struct v4l2_dbg_register *reg)
870 struct tw68_dev *dev = video_drvdata(file);
872 if (reg->size == 1)
873 tw_writeb(reg->reg, reg->val);
874 else
875 tw_writel(reg->reg & 0xffff, reg->val);
876 return 0;
878 #endif
880 static const struct v4l2_ctrl_ops tw68_ctrl_ops = {
881 .s_ctrl = tw68_s_ctrl,
884 static const struct v4l2_file_operations video_fops = {
885 .owner = THIS_MODULE,
886 .open = v4l2_fh_open,
887 .release = vb2_fop_release,
888 .read = vb2_fop_read,
889 .poll = vb2_fop_poll,
890 .mmap = vb2_fop_mmap,
891 .unlocked_ioctl = video_ioctl2,
894 static const struct v4l2_ioctl_ops video_ioctl_ops = {
895 .vidioc_querycap = tw68_querycap,
896 .vidioc_enum_fmt_vid_cap = tw68_enum_fmt_vid_cap,
897 .vidioc_reqbufs = vb2_ioctl_reqbufs,
898 .vidioc_create_bufs = vb2_ioctl_create_bufs,
899 .vidioc_querybuf = vb2_ioctl_querybuf,
900 .vidioc_qbuf = vb2_ioctl_qbuf,
901 .vidioc_dqbuf = vb2_ioctl_dqbuf,
902 .vidioc_s_std = tw68_s_std,
903 .vidioc_g_std = tw68_g_std,
904 .vidioc_enum_input = tw68_enum_input,
905 .vidioc_g_input = tw68_g_input,
906 .vidioc_s_input = tw68_s_input,
907 .vidioc_streamon = vb2_ioctl_streamon,
908 .vidioc_streamoff = vb2_ioctl_streamoff,
909 .vidioc_g_fmt_vid_cap = tw68_g_fmt_vid_cap,
910 .vidioc_try_fmt_vid_cap = tw68_try_fmt_vid_cap,
911 .vidioc_s_fmt_vid_cap = tw68_s_fmt_vid_cap,
912 .vidioc_log_status = vidioc_log_status,
913 .vidioc_subscribe_event = v4l2_ctrl_subscribe_event,
914 .vidioc_unsubscribe_event = v4l2_event_unsubscribe,
915 #ifdef CONFIG_VIDEO_ADV_DEBUG
916 .vidioc_g_register = vidioc_g_register,
917 .vidioc_s_register = vidioc_s_register,
918 #endif
921 static struct video_device tw68_video_template = {
922 .name = "tw68_video",
923 .fops = &video_fops,
924 .ioctl_ops = &video_ioctl_ops,
925 .release = video_device_release_empty,
926 .tvnorms = TW68_NORMS,
929 /* ------------------------------------------------------------------ */
930 /* exported stuff */
931 void tw68_set_tvnorm_hw(struct tw68_dev *dev)
933 tw_andorb(TW68_SDT, 0x07, dev->tvnorm->format);
936 int tw68_video_init1(struct tw68_dev *dev)
938 struct v4l2_ctrl_handler *hdl = &dev->hdl;
940 v4l2_ctrl_handler_init(hdl, 6);
941 v4l2_ctrl_new_std(hdl, &tw68_ctrl_ops,
942 V4L2_CID_BRIGHTNESS, -128, 127, 1, 20);
943 v4l2_ctrl_new_std(hdl, &tw68_ctrl_ops,
944 V4L2_CID_CONTRAST, 0, 255, 1, 100);
945 v4l2_ctrl_new_std(hdl, &tw68_ctrl_ops,
946 V4L2_CID_SATURATION, 0, 255, 1, 128);
947 /* NTSC only */
948 v4l2_ctrl_new_std(hdl, &tw68_ctrl_ops,
949 V4L2_CID_HUE, -128, 127, 1, 0);
950 v4l2_ctrl_new_std(hdl, &tw68_ctrl_ops,
951 V4L2_CID_COLOR_KILLER, 0, 1, 1, 0);
952 v4l2_ctrl_new_std(hdl, &tw68_ctrl_ops,
953 V4L2_CID_CHROMA_AGC, 0, 1, 1, 1);
954 if (hdl->error) {
955 v4l2_ctrl_handler_free(hdl);
956 return hdl->error;
958 dev->v4l2_dev.ctrl_handler = hdl;
959 v4l2_ctrl_handler_setup(hdl);
960 return 0;
963 int tw68_video_init2(struct tw68_dev *dev, int video_nr)
965 int ret;
967 set_tvnorm(dev, &tvnorms[0]);
969 dev->fmt = format_by_fourcc(V4L2_PIX_FMT_BGR24);
970 dev->width = 720;
971 dev->height = 576;
972 dev->field = V4L2_FIELD_INTERLACED;
974 INIT_LIST_HEAD(&dev->active);
975 dev->vidq.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
976 dev->vidq.timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_MONOTONIC;
977 dev->vidq.io_modes = VB2_MMAP | VB2_USERPTR | VB2_READ | VB2_DMABUF;
978 dev->vidq.ops = &tw68_video_qops;
979 dev->vidq.mem_ops = &vb2_dma_sg_memops;
980 dev->vidq.drv_priv = dev;
981 dev->vidq.gfp_flags = __GFP_DMA32 | __GFP_KSWAPD_RECLAIM;
982 dev->vidq.buf_struct_size = sizeof(struct tw68_buf);
983 dev->vidq.lock = &dev->lock;
984 dev->vidq.min_buffers_needed = 2;
985 dev->vidq.dev = &dev->pci->dev;
986 ret = vb2_queue_init(&dev->vidq);
987 if (ret)
988 return ret;
989 dev->vdev = tw68_video_template;
990 dev->vdev.v4l2_dev = &dev->v4l2_dev;
991 dev->vdev.lock = &dev->lock;
992 dev->vdev.queue = &dev->vidq;
993 video_set_drvdata(&dev->vdev, dev);
994 return video_register_device(&dev->vdev, VFL_TYPE_GRABBER, video_nr);
998 * tw68_irq_video_done
1000 void tw68_irq_video_done(struct tw68_dev *dev, unsigned long status)
1002 __u32 reg;
1004 /* reset interrupts handled by this routine */
1005 tw_writel(TW68_INTSTAT, status);
1007 * Check most likely first
1009 * DMAPI shows we have reached the end of the risc code
1010 * for the current buffer.
1012 if (status & TW68_DMAPI) {
1013 struct tw68_buf *buf;
1015 spin_lock(&dev->slock);
1016 buf = list_entry(dev->active.next, struct tw68_buf, list);
1017 list_del(&buf->list);
1018 spin_unlock(&dev->slock);
1019 buf->vb.vb2_buf.timestamp = ktime_get_ns();
1020 buf->vb.field = dev->field;
1021 buf->vb.sequence = dev->seqnr++;
1022 vb2_buffer_done(&buf->vb.vb2_buf, VB2_BUF_STATE_DONE);
1023 status &= ~(TW68_DMAPI);
1024 if (0 == status)
1025 return;
1027 if (status & (TW68_VLOCK | TW68_HLOCK))
1028 dev_dbg(&dev->pci->dev, "Lost sync\n");
1029 if (status & TW68_PABORT)
1030 dev_err(&dev->pci->dev, "PABORT interrupt\n");
1031 if (status & TW68_DMAPERR)
1032 dev_err(&dev->pci->dev, "DMAPERR interrupt\n");
1034 * On TW6800, FDMIS is apparently generated if video input is switched
1035 * during operation. Therefore, it is not enabled for that chip.
1037 if (status & TW68_FDMIS)
1038 dev_dbg(&dev->pci->dev, "FDMIS interrupt\n");
1039 if (status & TW68_FFOF) {
1040 /* probably a logic error */
1041 reg = tw_readl(TW68_DMAC) & TW68_FIFO_EN;
1042 tw_clearl(TW68_DMAC, TW68_FIFO_EN);
1043 dev_dbg(&dev->pci->dev, "FFOF interrupt\n");
1044 tw_setl(TW68_DMAC, reg);
1046 if (status & TW68_FFERR)
1047 dev_dbg(&dev->pci->dev, "FFERR interrupt\n");