2 * linux/drivers/mmc/core/core.c
4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
6 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/completion.h>
17 #include <linux/device.h>
18 #include <linux/delay.h>
19 #include <linux/pagemap.h>
20 #include <linux/err.h>
21 #include <linux/leds.h>
22 #include <linux/scatterlist.h>
23 #include <linux/log2.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/suspend.h>
28 #include <linux/fault-inject.h>
29 #include <linux/random.h>
30 #include <linux/slab.h>
33 #include <linux/mmc/card.h>
34 #include <linux/mmc/host.h>
35 #include <linux/mmc/mmc.h>
36 #include <linux/mmc/sd.h>
37 #include <linux/mmc/slot-gpio.h>
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/mmc.h>
52 /* If the device is not responding */
53 #define MMC_CORE_TIMEOUT_MS (10 * 60 * 1000) /* 10 minute timeout */
56 * Background operations can take a long time, depending on the housekeeping
57 * operations the card has to perform.
59 #define MMC_BKOPS_MAX_TIMEOUT (4 * 60 * 1000) /* max time to wait in ms */
61 static const unsigned freqs
[] = { 400000, 300000, 200000, 100000 };
64 * Enabling software CRCs on the data blocks can be a significant (30%)
65 * performance cost, and for other reasons may not always be desired.
66 * So we allow it it to be disabled.
69 module_param(use_spi_crc
, bool, 0);
71 static int mmc_schedule_delayed_work(struct delayed_work
*work
,
75 * We use the system_freezable_wq, because of two reasons.
76 * First, it allows several works (not the same work item) to be
77 * executed simultaneously. Second, the queue becomes frozen when
78 * userspace becomes frozen during system PM.
80 return queue_delayed_work(system_freezable_wq
, work
, delay
);
83 #ifdef CONFIG_FAIL_MMC_REQUEST
86 * Internal function. Inject random data errors.
87 * If mmc_data is NULL no errors are injected.
89 static void mmc_should_fail_request(struct mmc_host
*host
,
90 struct mmc_request
*mrq
)
92 struct mmc_command
*cmd
= mrq
->cmd
;
93 struct mmc_data
*data
= mrq
->data
;
94 static const int data_errors
[] = {
103 if (cmd
->error
|| data
->error
||
104 !should_fail(&host
->fail_mmc_request
, data
->blksz
* data
->blocks
))
107 data
->error
= data_errors
[prandom_u32() % ARRAY_SIZE(data_errors
)];
108 data
->bytes_xfered
= (prandom_u32() % (data
->bytes_xfered
>> 9)) << 9;
111 #else /* CONFIG_FAIL_MMC_REQUEST */
113 static inline void mmc_should_fail_request(struct mmc_host
*host
,
114 struct mmc_request
*mrq
)
118 #endif /* CONFIG_FAIL_MMC_REQUEST */
121 * mmc_request_done - finish processing an MMC request
122 * @host: MMC host which completed request
123 * @mrq: MMC request which request
125 * MMC drivers should call this function when they have completed
126 * their processing of a request.
128 void mmc_request_done(struct mmc_host
*host
, struct mmc_request
*mrq
)
130 struct mmc_command
*cmd
= mrq
->cmd
;
131 int err
= cmd
->error
;
133 /* Flag re-tuning needed on CRC errors */
134 if ((cmd
->opcode
!= MMC_SEND_TUNING_BLOCK
&&
135 cmd
->opcode
!= MMC_SEND_TUNING_BLOCK_HS200
) &&
136 (err
== -EILSEQ
|| (mrq
->sbc
&& mrq
->sbc
->error
== -EILSEQ
) ||
137 (mrq
->data
&& mrq
->data
->error
== -EILSEQ
) ||
138 (mrq
->stop
&& mrq
->stop
->error
== -EILSEQ
)))
139 mmc_retune_needed(host
);
141 if (err
&& cmd
->retries
&& mmc_host_is_spi(host
)) {
142 if (cmd
->resp
[0] & R1_SPI_ILLEGAL_COMMAND
)
146 trace_mmc_request_done(host
, mrq
);
148 if (err
&& cmd
->retries
&& !mmc_card_removed(host
->card
)) {
150 * Request starter must handle retries - see
151 * mmc_wait_for_req_done().
156 mmc_should_fail_request(host
, mrq
);
158 led_trigger_event(host
->led
, LED_OFF
);
161 pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
162 mmc_hostname(host
), mrq
->sbc
->opcode
,
164 mrq
->sbc
->resp
[0], mrq
->sbc
->resp
[1],
165 mrq
->sbc
->resp
[2], mrq
->sbc
->resp
[3]);
168 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
169 mmc_hostname(host
), cmd
->opcode
, err
,
170 cmd
->resp
[0], cmd
->resp
[1],
171 cmd
->resp
[2], cmd
->resp
[3]);
174 pr_debug("%s: %d bytes transferred: %d\n",
176 mrq
->data
->bytes_xfered
, mrq
->data
->error
);
180 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
181 mmc_hostname(host
), mrq
->stop
->opcode
,
183 mrq
->stop
->resp
[0], mrq
->stop
->resp
[1],
184 mrq
->stop
->resp
[2], mrq
->stop
->resp
[3]);
192 EXPORT_SYMBOL(mmc_request_done
);
194 static void __mmc_start_request(struct mmc_host
*host
, struct mmc_request
*mrq
)
198 /* Assumes host controller has been runtime resumed by mmc_claim_host */
199 err
= mmc_retune(host
);
201 mrq
->cmd
->error
= err
;
202 mmc_request_done(host
, mrq
);
207 * For sdio rw commands we must wait for card busy otherwise some
208 * sdio devices won't work properly.
210 if (mmc_is_io_op(mrq
->cmd
->opcode
) && host
->ops
->card_busy
) {
211 int tries
= 500; /* Wait aprox 500ms at maximum */
213 while (host
->ops
->card_busy(host
) && --tries
)
217 mrq
->cmd
->error
= -EBUSY
;
218 mmc_request_done(host
, mrq
);
223 trace_mmc_request_start(host
, mrq
);
225 host
->ops
->request(host
, mrq
);
228 static int mmc_start_request(struct mmc_host
*host
, struct mmc_request
*mrq
)
230 #ifdef CONFIG_MMC_DEBUG
232 struct scatterlist
*sg
;
234 mmc_retune_hold(host
);
236 if (mmc_card_removed(host
->card
))
240 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
241 mmc_hostname(host
), mrq
->sbc
->opcode
,
242 mrq
->sbc
->arg
, mrq
->sbc
->flags
);
245 pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
246 mmc_hostname(host
), mrq
->cmd
->opcode
,
247 mrq
->cmd
->arg
, mrq
->cmd
->flags
);
250 pr_debug("%s: blksz %d blocks %d flags %08x "
251 "tsac %d ms nsac %d\n",
252 mmc_hostname(host
), mrq
->data
->blksz
,
253 mrq
->data
->blocks
, mrq
->data
->flags
,
254 mrq
->data
->timeout_ns
/ 1000000,
255 mrq
->data
->timeout_clks
);
259 pr_debug("%s: CMD%u arg %08x flags %08x\n",
260 mmc_hostname(host
), mrq
->stop
->opcode
,
261 mrq
->stop
->arg
, mrq
->stop
->flags
);
264 WARN_ON(!host
->claimed
);
273 BUG_ON(mrq
->data
->blksz
> host
->max_blk_size
);
274 BUG_ON(mrq
->data
->blocks
> host
->max_blk_count
);
275 BUG_ON(mrq
->data
->blocks
* mrq
->data
->blksz
>
278 #ifdef CONFIG_MMC_DEBUG
280 for_each_sg(mrq
->data
->sg
, sg
, mrq
->data
->sg_len
, i
)
282 BUG_ON(sz
!= mrq
->data
->blocks
* mrq
->data
->blksz
);
285 mrq
->cmd
->data
= mrq
->data
;
286 mrq
->data
->error
= 0;
287 mrq
->data
->mrq
= mrq
;
289 mrq
->data
->stop
= mrq
->stop
;
290 mrq
->stop
->error
= 0;
291 mrq
->stop
->mrq
= mrq
;
294 led_trigger_event(host
->led
, LED_FULL
);
295 __mmc_start_request(host
, mrq
);
301 * mmc_start_bkops - start BKOPS for supported cards
302 * @card: MMC card to start BKOPS
303 * @form_exception: A flag to indicate if this function was
304 * called due to an exception raised by the card
306 * Start background operations whenever requested.
307 * When the urgent BKOPS bit is set in a R1 command response
308 * then background operations should be started immediately.
310 void mmc_start_bkops(struct mmc_card
*card
, bool from_exception
)
314 bool use_busy_signal
;
318 if (!card
->ext_csd
.man_bkops_en
|| mmc_card_doing_bkops(card
))
321 err
= mmc_read_bkops_status(card
);
323 pr_err("%s: Failed to read bkops status: %d\n",
324 mmc_hostname(card
->host
), err
);
328 if (!card
->ext_csd
.raw_bkops_status
)
331 if (card
->ext_csd
.raw_bkops_status
< EXT_CSD_BKOPS_LEVEL_2
&&
335 mmc_claim_host(card
->host
);
336 if (card
->ext_csd
.raw_bkops_status
>= EXT_CSD_BKOPS_LEVEL_2
) {
337 timeout
= MMC_BKOPS_MAX_TIMEOUT
;
338 use_busy_signal
= true;
341 use_busy_signal
= false;
344 mmc_retune_hold(card
->host
);
346 err
= __mmc_switch(card
, EXT_CSD_CMD_SET_NORMAL
,
347 EXT_CSD_BKOPS_START
, 1, timeout
,
348 use_busy_signal
, true, false);
350 pr_warn("%s: Error %d starting bkops\n",
351 mmc_hostname(card
->host
), err
);
352 mmc_retune_release(card
->host
);
357 * For urgent bkops status (LEVEL_2 and more)
358 * bkops executed synchronously, otherwise
359 * the operation is in progress
361 if (!use_busy_signal
)
362 mmc_card_set_doing_bkops(card
);
364 mmc_retune_release(card
->host
);
366 mmc_release_host(card
->host
);
368 EXPORT_SYMBOL(mmc_start_bkops
);
371 * mmc_wait_data_done() - done callback for data request
372 * @mrq: done data request
374 * Wakes up mmc context, passed as a callback to host controller driver
376 static void mmc_wait_data_done(struct mmc_request
*mrq
)
378 struct mmc_context_info
*context_info
= &mrq
->host
->context_info
;
380 context_info
->is_done_rcv
= true;
381 wake_up_interruptible(&context_info
->wait
);
384 static void mmc_wait_done(struct mmc_request
*mrq
)
386 complete(&mrq
->completion
);
390 *__mmc_start_data_req() - starts data request
391 * @host: MMC host to start the request
392 * @mrq: data request to start
394 * Sets the done callback to be called when request is completed by the card.
395 * Starts data mmc request execution
397 static int __mmc_start_data_req(struct mmc_host
*host
, struct mmc_request
*mrq
)
401 mrq
->done
= mmc_wait_data_done
;
404 err
= mmc_start_request(host
, mrq
);
406 mrq
->cmd
->error
= err
;
407 mmc_wait_data_done(mrq
);
413 static int __mmc_start_req(struct mmc_host
*host
, struct mmc_request
*mrq
)
417 init_completion(&mrq
->completion
);
418 mrq
->done
= mmc_wait_done
;
420 err
= mmc_start_request(host
, mrq
);
422 mrq
->cmd
->error
= err
;
423 complete(&mrq
->completion
);
430 * mmc_wait_for_data_req_done() - wait for request completed
431 * @host: MMC host to prepare the command.
432 * @mrq: MMC request to wait for
434 * Blocks MMC context till host controller will ack end of data request
435 * execution or new request notification arrives from the block layer.
436 * Handles command retries.
438 * Returns enum mmc_blk_status after checking errors.
440 static int mmc_wait_for_data_req_done(struct mmc_host
*host
,
441 struct mmc_request
*mrq
,
442 struct mmc_async_req
*next_req
)
444 struct mmc_command
*cmd
;
445 struct mmc_context_info
*context_info
= &host
->context_info
;
450 wait_event_interruptible(context_info
->wait
,
451 (context_info
->is_done_rcv
||
452 context_info
->is_new_req
));
453 spin_lock_irqsave(&context_info
->lock
, flags
);
454 context_info
->is_waiting_last_req
= false;
455 spin_unlock_irqrestore(&context_info
->lock
, flags
);
456 if (context_info
->is_done_rcv
) {
457 context_info
->is_done_rcv
= false;
458 context_info
->is_new_req
= false;
461 if (!cmd
->error
|| !cmd
->retries
||
462 mmc_card_removed(host
->card
)) {
463 err
= host
->areq
->err_check(host
->card
,
465 break; /* return err */
467 mmc_retune_recheck(host
);
468 pr_info("%s: req failed (CMD%u): %d, retrying...\n",
470 cmd
->opcode
, cmd
->error
);
473 __mmc_start_request(host
, mrq
);
474 continue; /* wait for done/new event again */
476 } else if (context_info
->is_new_req
) {
477 context_info
->is_new_req
= false;
479 return MMC_BLK_NEW_REQUEST
;
482 mmc_retune_release(host
);
486 static void mmc_wait_for_req_done(struct mmc_host
*host
,
487 struct mmc_request
*mrq
)
489 struct mmc_command
*cmd
;
492 wait_for_completion(&mrq
->completion
);
497 * If host has timed out waiting for the sanitize
498 * to complete, card might be still in programming state
499 * so let's try to bring the card out of programming
502 if (cmd
->sanitize_busy
&& cmd
->error
== -ETIMEDOUT
) {
503 if (!mmc_interrupt_hpi(host
->card
)) {
504 pr_warn("%s: %s: Interrupted sanitize\n",
505 mmc_hostname(host
), __func__
);
509 pr_err("%s: %s: Failed to interrupt sanitize\n",
510 mmc_hostname(host
), __func__
);
513 if (!cmd
->error
|| !cmd
->retries
||
514 mmc_card_removed(host
->card
))
517 mmc_retune_recheck(host
);
519 pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
520 mmc_hostname(host
), cmd
->opcode
, cmd
->error
);
523 __mmc_start_request(host
, mrq
);
526 mmc_retune_release(host
);
530 * mmc_pre_req - Prepare for a new request
531 * @host: MMC host to prepare command
532 * @mrq: MMC request to prepare for
533 * @is_first_req: true if there is no previous started request
534 * that may run in parellel to this call, otherwise false
536 * mmc_pre_req() is called in prior to mmc_start_req() to let
537 * host prepare for the new request. Preparation of a request may be
538 * performed while another request is running on the host.
540 static void mmc_pre_req(struct mmc_host
*host
, struct mmc_request
*mrq
,
543 if (host
->ops
->pre_req
)
544 host
->ops
->pre_req(host
, mrq
, is_first_req
);
548 * mmc_post_req - Post process a completed request
549 * @host: MMC host to post process command
550 * @mrq: MMC request to post process for
551 * @err: Error, if non zero, clean up any resources made in pre_req
553 * Let the host post process a completed request. Post processing of
554 * a request may be performed while another reuqest is running.
556 static void mmc_post_req(struct mmc_host
*host
, struct mmc_request
*mrq
,
559 if (host
->ops
->post_req
)
560 host
->ops
->post_req(host
, mrq
, err
);
564 * mmc_start_req - start a non-blocking request
565 * @host: MMC host to start command
566 * @areq: async request to start
567 * @error: out parameter returns 0 for success, otherwise non zero
569 * Start a new MMC custom command request for a host.
570 * If there is on ongoing async request wait for completion
571 * of that request and start the new one and return.
572 * Does not wait for the new request to complete.
574 * Returns the completed request, NULL in case of none completed.
575 * Wait for the an ongoing request (previoulsy started) to complete and
576 * return the completed request. If there is no ongoing request, NULL
577 * is returned without waiting. NULL is not an error condition.
579 struct mmc_async_req
*mmc_start_req(struct mmc_host
*host
,
580 struct mmc_async_req
*areq
, int *error
)
584 struct mmc_async_req
*data
= host
->areq
;
586 /* Prepare a new request */
588 mmc_pre_req(host
, areq
->mrq
, !host
->areq
);
591 err
= mmc_wait_for_data_req_done(host
, host
->areq
->mrq
, areq
);
592 if (err
== MMC_BLK_NEW_REQUEST
) {
596 * The previous request was not completed,
602 * Check BKOPS urgency for each R1 response
604 if (host
->card
&& mmc_card_mmc(host
->card
) &&
605 ((mmc_resp_type(host
->areq
->mrq
->cmd
) == MMC_RSP_R1
) ||
606 (mmc_resp_type(host
->areq
->mrq
->cmd
) == MMC_RSP_R1B
)) &&
607 (host
->areq
->mrq
->cmd
->resp
[0] & R1_EXCEPTION_EVENT
)) {
609 /* Cancel the prepared request */
611 mmc_post_req(host
, areq
->mrq
, -EINVAL
);
613 mmc_start_bkops(host
->card
, true);
615 /* prepare the request again */
617 mmc_pre_req(host
, areq
->mrq
, !host
->areq
);
622 start_err
= __mmc_start_data_req(host
, areq
->mrq
);
625 mmc_post_req(host
, host
->areq
->mrq
, 0);
627 /* Cancel a prepared request if it was not started. */
628 if ((err
|| start_err
) && areq
)
629 mmc_post_req(host
, areq
->mrq
, -EINVAL
);
640 EXPORT_SYMBOL(mmc_start_req
);
643 * mmc_wait_for_req - start a request and wait for completion
644 * @host: MMC host to start command
645 * @mrq: MMC request to start
647 * Start a new MMC custom command request for a host, and wait
648 * for the command to complete. Does not attempt to parse the
651 void mmc_wait_for_req(struct mmc_host
*host
, struct mmc_request
*mrq
)
653 __mmc_start_req(host
, mrq
);
654 mmc_wait_for_req_done(host
, mrq
);
656 EXPORT_SYMBOL(mmc_wait_for_req
);
659 * mmc_interrupt_hpi - Issue for High priority Interrupt
660 * @card: the MMC card associated with the HPI transfer
662 * Issued High Priority Interrupt, and check for card status
663 * until out-of prg-state.
665 int mmc_interrupt_hpi(struct mmc_card
*card
)
669 unsigned long prg_wait
;
673 if (!card
->ext_csd
.hpi_en
) {
674 pr_info("%s: HPI enable bit unset\n", mmc_hostname(card
->host
));
678 mmc_claim_host(card
->host
);
679 err
= mmc_send_status(card
, &status
);
681 pr_err("%s: Get card status fail\n", mmc_hostname(card
->host
));
685 switch (R1_CURRENT_STATE(status
)) {
691 * In idle and transfer states, HPI is not needed and the caller
692 * can issue the next intended command immediately
698 /* In all other states, it's illegal to issue HPI */
699 pr_debug("%s: HPI cannot be sent. Card state=%d\n",
700 mmc_hostname(card
->host
), R1_CURRENT_STATE(status
));
705 err
= mmc_send_hpi_cmd(card
, &status
);
709 prg_wait
= jiffies
+ msecs_to_jiffies(card
->ext_csd
.out_of_int_time
);
711 err
= mmc_send_status(card
, &status
);
713 if (!err
&& R1_CURRENT_STATE(status
) == R1_STATE_TRAN
)
715 if (time_after(jiffies
, prg_wait
))
720 mmc_release_host(card
->host
);
723 EXPORT_SYMBOL(mmc_interrupt_hpi
);
726 * mmc_wait_for_cmd - start a command and wait for completion
727 * @host: MMC host to start command
728 * @cmd: MMC command to start
729 * @retries: maximum number of retries
731 * Start a new MMC command for a host, and wait for the command
732 * to complete. Return any error that occurred while the command
733 * was executing. Do not attempt to parse the response.
735 int mmc_wait_for_cmd(struct mmc_host
*host
, struct mmc_command
*cmd
, int retries
)
737 struct mmc_request mrq
= {NULL
};
739 WARN_ON(!host
->claimed
);
741 memset(cmd
->resp
, 0, sizeof(cmd
->resp
));
742 cmd
->retries
= retries
;
747 mmc_wait_for_req(host
, &mrq
);
752 EXPORT_SYMBOL(mmc_wait_for_cmd
);
755 * mmc_stop_bkops - stop ongoing BKOPS
756 * @card: MMC card to check BKOPS
758 * Send HPI command to stop ongoing background operations to
759 * allow rapid servicing of foreground operations, e.g. read/
760 * writes. Wait until the card comes out of the programming state
761 * to avoid errors in servicing read/write requests.
763 int mmc_stop_bkops(struct mmc_card
*card
)
768 err
= mmc_interrupt_hpi(card
);
771 * If err is EINVAL, we can't issue an HPI.
772 * It should complete the BKOPS.
774 if (!err
|| (err
== -EINVAL
)) {
775 mmc_card_clr_doing_bkops(card
);
776 mmc_retune_release(card
->host
);
782 EXPORT_SYMBOL(mmc_stop_bkops
);
784 int mmc_read_bkops_status(struct mmc_card
*card
)
789 mmc_claim_host(card
->host
);
790 err
= mmc_get_ext_csd(card
, &ext_csd
);
791 mmc_release_host(card
->host
);
795 card
->ext_csd
.raw_bkops_status
= ext_csd
[EXT_CSD_BKOPS_STATUS
];
796 card
->ext_csd
.raw_exception_status
= ext_csd
[EXT_CSD_EXP_EVENTS_STATUS
];
800 EXPORT_SYMBOL(mmc_read_bkops_status
);
803 * mmc_set_data_timeout - set the timeout for a data command
804 * @data: data phase for command
805 * @card: the MMC card associated with the data transfer
807 * Computes the data timeout parameters according to the
808 * correct algorithm given the card type.
810 void mmc_set_data_timeout(struct mmc_data
*data
, const struct mmc_card
*card
)
815 * SDIO cards only define an upper 1 s limit on access.
817 if (mmc_card_sdio(card
)) {
818 data
->timeout_ns
= 1000000000;
819 data
->timeout_clks
= 0;
824 * SD cards use a 100 multiplier rather than 10
826 mult
= mmc_card_sd(card
) ? 100 : 10;
829 * Scale up the multiplier (and therefore the timeout) by
830 * the r2w factor for writes.
832 if (data
->flags
& MMC_DATA_WRITE
)
833 mult
<<= card
->csd
.r2w_factor
;
835 data
->timeout_ns
= card
->csd
.tacc_ns
* mult
;
836 data
->timeout_clks
= card
->csd
.tacc_clks
* mult
;
839 * SD cards also have an upper limit on the timeout.
841 if (mmc_card_sd(card
)) {
842 unsigned int timeout_us
, limit_us
;
844 timeout_us
= data
->timeout_ns
/ 1000;
845 if (card
->host
->ios
.clock
)
846 timeout_us
+= data
->timeout_clks
* 1000 /
847 (card
->host
->ios
.clock
/ 1000);
849 if (data
->flags
& MMC_DATA_WRITE
)
851 * The MMC spec "It is strongly recommended
852 * for hosts to implement more than 500ms
853 * timeout value even if the card indicates
854 * the 250ms maximum busy length." Even the
855 * previous value of 300ms is known to be
856 * insufficient for some cards.
863 * SDHC cards always use these fixed values.
865 if (timeout_us
> limit_us
|| mmc_card_blockaddr(card
)) {
866 data
->timeout_ns
= limit_us
* 1000;
867 data
->timeout_clks
= 0;
870 /* assign limit value if invalid */
872 data
->timeout_ns
= limit_us
* 1000;
876 * Some cards require longer data read timeout than indicated in CSD.
877 * Address this by setting the read timeout to a "reasonably high"
878 * value. For the cards tested, 600ms has proven enough. If necessary,
879 * this value can be increased if other problematic cards require this.
881 if (mmc_card_long_read_time(card
) && data
->flags
& MMC_DATA_READ
) {
882 data
->timeout_ns
= 600000000;
883 data
->timeout_clks
= 0;
887 * Some cards need very high timeouts if driven in SPI mode.
888 * The worst observed timeout was 900ms after writing a
889 * continuous stream of data until the internal logic
892 if (mmc_host_is_spi(card
->host
)) {
893 if (data
->flags
& MMC_DATA_WRITE
) {
894 if (data
->timeout_ns
< 1000000000)
895 data
->timeout_ns
= 1000000000; /* 1s */
897 if (data
->timeout_ns
< 100000000)
898 data
->timeout_ns
= 100000000; /* 100ms */
902 EXPORT_SYMBOL(mmc_set_data_timeout
);
905 * mmc_align_data_size - pads a transfer size to a more optimal value
906 * @card: the MMC card associated with the data transfer
907 * @sz: original transfer size
909 * Pads the original data size with a number of extra bytes in
910 * order to avoid controller bugs and/or performance hits
911 * (e.g. some controllers revert to PIO for certain sizes).
913 * Returns the improved size, which might be unmodified.
915 * Note that this function is only relevant when issuing a
916 * single scatter gather entry.
918 unsigned int mmc_align_data_size(struct mmc_card
*card
, unsigned int sz
)
921 * FIXME: We don't have a system for the controller to tell
922 * the core about its problems yet, so for now we just 32-bit
925 sz
= ((sz
+ 3) / 4) * 4;
929 EXPORT_SYMBOL(mmc_align_data_size
);
932 * __mmc_claim_host - exclusively claim a host
933 * @host: mmc host to claim
934 * @abort: whether or not the operation should be aborted
936 * Claim a host for a set of operations. If @abort is non null and
937 * dereference a non-zero value then this will return prematurely with
938 * that non-zero value without acquiring the lock. Returns zero
939 * with the lock held otherwise.
941 int __mmc_claim_host(struct mmc_host
*host
, atomic_t
*abort
)
943 DECLARE_WAITQUEUE(wait
, current
);
950 add_wait_queue(&host
->wq
, &wait
);
951 spin_lock_irqsave(&host
->lock
, flags
);
953 set_current_state(TASK_UNINTERRUPTIBLE
);
954 stop
= abort
? atomic_read(abort
) : 0;
955 if (stop
|| !host
->claimed
|| host
->claimer
== current
)
957 spin_unlock_irqrestore(&host
->lock
, flags
);
959 spin_lock_irqsave(&host
->lock
, flags
);
961 set_current_state(TASK_RUNNING
);
964 host
->claimer
= current
;
965 host
->claim_cnt
+= 1;
966 if (host
->claim_cnt
== 1)
970 spin_unlock_irqrestore(&host
->lock
, flags
);
971 remove_wait_queue(&host
->wq
, &wait
);
974 pm_runtime_get_sync(mmc_dev(host
));
978 EXPORT_SYMBOL(__mmc_claim_host
);
981 * mmc_release_host - release a host
982 * @host: mmc host to release
984 * Release a MMC host, allowing others to claim the host
985 * for their operations.
987 void mmc_release_host(struct mmc_host
*host
)
991 WARN_ON(!host
->claimed
);
993 spin_lock_irqsave(&host
->lock
, flags
);
994 if (--host
->claim_cnt
) {
995 /* Release for nested claim */
996 spin_unlock_irqrestore(&host
->lock
, flags
);
999 host
->claimer
= NULL
;
1000 spin_unlock_irqrestore(&host
->lock
, flags
);
1002 pm_runtime_mark_last_busy(mmc_dev(host
));
1003 pm_runtime_put_autosuspend(mmc_dev(host
));
1006 EXPORT_SYMBOL(mmc_release_host
);
1009 * This is a helper function, which fetches a runtime pm reference for the
1010 * card device and also claims the host.
1012 void mmc_get_card(struct mmc_card
*card
)
1014 pm_runtime_get_sync(&card
->dev
);
1015 mmc_claim_host(card
->host
);
1017 EXPORT_SYMBOL(mmc_get_card
);
1020 * This is a helper function, which releases the host and drops the runtime
1021 * pm reference for the card device.
1023 void mmc_put_card(struct mmc_card
*card
)
1025 mmc_release_host(card
->host
);
1026 pm_runtime_mark_last_busy(&card
->dev
);
1027 pm_runtime_put_autosuspend(&card
->dev
);
1029 EXPORT_SYMBOL(mmc_put_card
);
1032 * Internal function that does the actual ios call to the host driver,
1033 * optionally printing some debug output.
1035 static inline void mmc_set_ios(struct mmc_host
*host
)
1037 struct mmc_ios
*ios
= &host
->ios
;
1039 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
1040 "width %u timing %u\n",
1041 mmc_hostname(host
), ios
->clock
, ios
->bus_mode
,
1042 ios
->power_mode
, ios
->chip_select
, ios
->vdd
,
1043 1 << ios
->bus_width
, ios
->timing
);
1045 host
->ops
->set_ios(host
, ios
);
1049 * Control chip select pin on a host.
1051 void mmc_set_chip_select(struct mmc_host
*host
, int mode
)
1053 host
->ios
.chip_select
= mode
;
1058 * Sets the host clock to the highest possible frequency that
1061 void mmc_set_clock(struct mmc_host
*host
, unsigned int hz
)
1063 WARN_ON(hz
&& hz
< host
->f_min
);
1065 if (hz
> host
->f_max
)
1068 host
->ios
.clock
= hz
;
1072 int mmc_execute_tuning(struct mmc_card
*card
)
1074 struct mmc_host
*host
= card
->host
;
1078 if (!host
->ops
->execute_tuning
)
1081 if (mmc_card_mmc(card
))
1082 opcode
= MMC_SEND_TUNING_BLOCK_HS200
;
1084 opcode
= MMC_SEND_TUNING_BLOCK
;
1086 err
= host
->ops
->execute_tuning(host
, opcode
);
1089 pr_err("%s: tuning execution failed: %d\n",
1090 mmc_hostname(host
), err
);
1092 mmc_retune_enable(host
);
1098 * Change the bus mode (open drain/push-pull) of a host.
1100 void mmc_set_bus_mode(struct mmc_host
*host
, unsigned int mode
)
1102 host
->ios
.bus_mode
= mode
;
1107 * Change data bus width of a host.
1109 void mmc_set_bus_width(struct mmc_host
*host
, unsigned int width
)
1111 host
->ios
.bus_width
= width
;
1116 * Set initial state after a power cycle or a hw_reset.
1118 void mmc_set_initial_state(struct mmc_host
*host
)
1120 mmc_retune_disable(host
);
1122 if (mmc_host_is_spi(host
))
1123 host
->ios
.chip_select
= MMC_CS_HIGH
;
1125 host
->ios
.chip_select
= MMC_CS_DONTCARE
;
1126 host
->ios
.bus_mode
= MMC_BUSMODE_PUSHPULL
;
1127 host
->ios
.bus_width
= MMC_BUS_WIDTH_1
;
1128 host
->ios
.timing
= MMC_TIMING_LEGACY
;
1129 host
->ios
.drv_type
= 0;
1130 host
->ios
.enhanced_strobe
= false;
1133 * Make sure we are in non-enhanced strobe mode before we
1134 * actually enable it in ext_csd.
1136 if ((host
->caps2
& MMC_CAP2_HS400_ES
) &&
1137 host
->ops
->hs400_enhanced_strobe
)
1138 host
->ops
->hs400_enhanced_strobe(host
, &host
->ios
);
1144 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1145 * @vdd: voltage (mV)
1146 * @low_bits: prefer low bits in boundary cases
1148 * This function returns the OCR bit number according to the provided @vdd
1149 * value. If conversion is not possible a negative errno value returned.
1151 * Depending on the @low_bits flag the function prefers low or high OCR bits
1152 * on boundary voltages. For example,
1153 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1154 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1156 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1158 static int mmc_vdd_to_ocrbitnum(int vdd
, bool low_bits
)
1160 const int max_bit
= ilog2(MMC_VDD_35_36
);
1163 if (vdd
< 1650 || vdd
> 3600)
1166 if (vdd
>= 1650 && vdd
<= 1950)
1167 return ilog2(MMC_VDD_165_195
);
1172 /* Base 2000 mV, step 100 mV, bit's base 8. */
1173 bit
= (vdd
- 2000) / 100 + 8;
1180 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1181 * @vdd_min: minimum voltage value (mV)
1182 * @vdd_max: maximum voltage value (mV)
1184 * This function returns the OCR mask bits according to the provided @vdd_min
1185 * and @vdd_max values. If conversion is not possible the function returns 0.
1187 * Notes wrt boundary cases:
1188 * This function sets the OCR bits for all boundary voltages, for example
1189 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1190 * MMC_VDD_34_35 mask.
1192 u32
mmc_vddrange_to_ocrmask(int vdd_min
, int vdd_max
)
1196 if (vdd_max
< vdd_min
)
1199 /* Prefer high bits for the boundary vdd_max values. */
1200 vdd_max
= mmc_vdd_to_ocrbitnum(vdd_max
, false);
1204 /* Prefer low bits for the boundary vdd_min values. */
1205 vdd_min
= mmc_vdd_to_ocrbitnum(vdd_min
, true);
1209 /* Fill the mask, from max bit to min bit. */
1210 while (vdd_max
>= vdd_min
)
1211 mask
|= 1 << vdd_max
--;
1215 EXPORT_SYMBOL(mmc_vddrange_to_ocrmask
);
1220 * mmc_of_parse_voltage - return mask of supported voltages
1221 * @np: The device node need to be parsed.
1222 * @mask: mask of voltages available for MMC/SD/SDIO
1224 * Parse the "voltage-ranges" DT property, returning zero if it is not
1225 * found, negative errno if the voltage-range specification is invalid,
1226 * or one if the voltage-range is specified and successfully parsed.
1228 int mmc_of_parse_voltage(struct device_node
*np
, u32
*mask
)
1230 const u32
*voltage_ranges
;
1233 voltage_ranges
= of_get_property(np
, "voltage-ranges", &num_ranges
);
1234 num_ranges
= num_ranges
/ sizeof(*voltage_ranges
) / 2;
1235 if (!voltage_ranges
) {
1236 pr_debug("%s: voltage-ranges unspecified\n", np
->full_name
);
1240 pr_err("%s: voltage-ranges empty\n", np
->full_name
);
1244 for (i
= 0; i
< num_ranges
; i
++) {
1245 const int j
= i
* 2;
1248 ocr_mask
= mmc_vddrange_to_ocrmask(
1249 be32_to_cpu(voltage_ranges
[j
]),
1250 be32_to_cpu(voltage_ranges
[j
+ 1]));
1252 pr_err("%s: voltage-range #%d is invalid\n",
1261 EXPORT_SYMBOL(mmc_of_parse_voltage
);
1263 #endif /* CONFIG_OF */
1265 static int mmc_of_get_func_num(struct device_node
*node
)
1270 ret
= of_property_read_u32(node
, "reg", ®
);
1277 struct device_node
*mmc_of_find_child_device(struct mmc_host
*host
,
1280 struct device_node
*node
;
1282 if (!host
->parent
|| !host
->parent
->of_node
)
1285 for_each_child_of_node(host
->parent
->of_node
, node
) {
1286 if (mmc_of_get_func_num(node
) == func_num
)
1293 #ifdef CONFIG_REGULATOR
1296 * mmc_ocrbitnum_to_vdd - Convert a OCR bit number to its voltage
1297 * @vdd_bit: OCR bit number
1298 * @min_uV: minimum voltage value (mV)
1299 * @max_uV: maximum voltage value (mV)
1301 * This function returns the voltage range according to the provided OCR
1302 * bit number. If conversion is not possible a negative errno value returned.
1304 static int mmc_ocrbitnum_to_vdd(int vdd_bit
, int *min_uV
, int *max_uV
)
1312 * REVISIT mmc_vddrange_to_ocrmask() may have set some
1313 * bits this regulator doesn't quite support ... don't
1314 * be too picky, most cards and regulators are OK with
1315 * a 0.1V range goof (it's a small error percentage).
1317 tmp
= vdd_bit
- ilog2(MMC_VDD_165_195
);
1319 *min_uV
= 1650 * 1000;
1320 *max_uV
= 1950 * 1000;
1322 *min_uV
= 1900 * 1000 + tmp
* 100 * 1000;
1323 *max_uV
= *min_uV
+ 100 * 1000;
1330 * mmc_regulator_get_ocrmask - return mask of supported voltages
1331 * @supply: regulator to use
1333 * This returns either a negative errno, or a mask of voltages that
1334 * can be provided to MMC/SD/SDIO devices using the specified voltage
1335 * regulator. This would normally be called before registering the
1338 int mmc_regulator_get_ocrmask(struct regulator
*supply
)
1346 count
= regulator_count_voltages(supply
);
1350 for (i
= 0; i
< count
; i
++) {
1351 vdd_uV
= regulator_list_voltage(supply
, i
);
1355 vdd_mV
= vdd_uV
/ 1000;
1356 result
|= mmc_vddrange_to_ocrmask(vdd_mV
, vdd_mV
);
1360 vdd_uV
= regulator_get_voltage(supply
);
1364 vdd_mV
= vdd_uV
/ 1000;
1365 result
= mmc_vddrange_to_ocrmask(vdd_mV
, vdd_mV
);
1370 EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask
);
1373 * mmc_regulator_set_ocr - set regulator to match host->ios voltage
1374 * @mmc: the host to regulate
1375 * @supply: regulator to use
1376 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
1378 * Returns zero on success, else negative errno.
1380 * MMC host drivers may use this to enable or disable a regulator using
1381 * a particular supply voltage. This would normally be called from the
1384 int mmc_regulator_set_ocr(struct mmc_host
*mmc
,
1385 struct regulator
*supply
,
1386 unsigned short vdd_bit
)
1392 mmc_ocrbitnum_to_vdd(vdd_bit
, &min_uV
, &max_uV
);
1394 result
= regulator_set_voltage(supply
, min_uV
, max_uV
);
1395 if (result
== 0 && !mmc
->regulator_enabled
) {
1396 result
= regulator_enable(supply
);
1398 mmc
->regulator_enabled
= true;
1400 } else if (mmc
->regulator_enabled
) {
1401 result
= regulator_disable(supply
);
1403 mmc
->regulator_enabled
= false;
1407 dev_err(mmc_dev(mmc
),
1408 "could not set regulator OCR (%d)\n", result
);
1411 EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr
);
1413 static int mmc_regulator_set_voltage_if_supported(struct regulator
*regulator
,
1414 int min_uV
, int target_uV
,
1418 * Check if supported first to avoid errors since we may try several
1419 * signal levels during power up and don't want to show errors.
1421 if (!regulator_is_supported_voltage(regulator
, min_uV
, max_uV
))
1424 return regulator_set_voltage_triplet(regulator
, min_uV
, target_uV
,
1429 * mmc_regulator_set_vqmmc - Set VQMMC as per the ios
1431 * For 3.3V signaling, we try to match VQMMC to VMMC as closely as possible.
1432 * That will match the behavior of old boards where VQMMC and VMMC were supplied
1433 * by the same supply. The Bus Operating conditions for 3.3V signaling in the
1434 * SD card spec also define VQMMC in terms of VMMC.
1435 * If this is not possible we'll try the full 2.7-3.6V of the spec.
1437 * For 1.2V and 1.8V signaling we'll try to get as close as possible to the
1438 * requested voltage. This is definitely a good idea for UHS where there's a
1439 * separate regulator on the card that's trying to make 1.8V and it's best if
1442 * This function is expected to be used by a controller's
1443 * start_signal_voltage_switch() function.
1445 int mmc_regulator_set_vqmmc(struct mmc_host
*mmc
, struct mmc_ios
*ios
)
1447 struct device
*dev
= mmc_dev(mmc
);
1448 int ret
, volt
, min_uV
, max_uV
;
1450 /* If no vqmmc supply then we can't change the voltage */
1451 if (IS_ERR(mmc
->supply
.vqmmc
))
1454 switch (ios
->signal_voltage
) {
1455 case MMC_SIGNAL_VOLTAGE_120
:
1456 return mmc_regulator_set_voltage_if_supported(mmc
->supply
.vqmmc
,
1457 1100000, 1200000, 1300000);
1458 case MMC_SIGNAL_VOLTAGE_180
:
1459 return mmc_regulator_set_voltage_if_supported(mmc
->supply
.vqmmc
,
1460 1700000, 1800000, 1950000);
1461 case MMC_SIGNAL_VOLTAGE_330
:
1462 ret
= mmc_ocrbitnum_to_vdd(mmc
->ios
.vdd
, &volt
, &max_uV
);
1466 dev_dbg(dev
, "%s: found vmmc voltage range of %d-%duV\n",
1467 __func__
, volt
, max_uV
);
1469 min_uV
= max(volt
- 300000, 2700000);
1470 max_uV
= min(max_uV
+ 200000, 3600000);
1473 * Due to a limitation in the current implementation of
1474 * regulator_set_voltage_triplet() which is taking the lowest
1475 * voltage possible if below the target, search for a suitable
1476 * voltage in two steps and try to stay close to vmmc
1477 * with a 0.3V tolerance at first.
1479 if (!mmc_regulator_set_voltage_if_supported(mmc
->supply
.vqmmc
,
1480 min_uV
, volt
, max_uV
))
1483 return mmc_regulator_set_voltage_if_supported(mmc
->supply
.vqmmc
,
1484 2700000, volt
, 3600000);
1489 EXPORT_SYMBOL_GPL(mmc_regulator_set_vqmmc
);
1491 #endif /* CONFIG_REGULATOR */
1493 int mmc_regulator_get_supply(struct mmc_host
*mmc
)
1495 struct device
*dev
= mmc_dev(mmc
);
1498 mmc
->supply
.vmmc
= devm_regulator_get_optional(dev
, "vmmc");
1499 mmc
->supply
.vqmmc
= devm_regulator_get_optional(dev
, "vqmmc");
1501 if (IS_ERR(mmc
->supply
.vmmc
)) {
1502 if (PTR_ERR(mmc
->supply
.vmmc
) == -EPROBE_DEFER
)
1503 return -EPROBE_DEFER
;
1504 dev_dbg(dev
, "No vmmc regulator found\n");
1506 ret
= mmc_regulator_get_ocrmask(mmc
->supply
.vmmc
);
1508 mmc
->ocr_avail
= ret
;
1510 dev_warn(dev
, "Failed getting OCR mask: %d\n", ret
);
1513 if (IS_ERR(mmc
->supply
.vqmmc
)) {
1514 if (PTR_ERR(mmc
->supply
.vqmmc
) == -EPROBE_DEFER
)
1515 return -EPROBE_DEFER
;
1516 dev_dbg(dev
, "No vqmmc regulator found\n");
1521 EXPORT_SYMBOL_GPL(mmc_regulator_get_supply
);
1524 * Mask off any voltages we don't support and select
1525 * the lowest voltage
1527 u32
mmc_select_voltage(struct mmc_host
*host
, u32 ocr
)
1532 * Sanity check the voltages that the card claims to
1536 dev_warn(mmc_dev(host
),
1537 "card claims to support voltages below defined range\n");
1541 ocr
&= host
->ocr_avail
;
1543 dev_warn(mmc_dev(host
), "no support for card's volts\n");
1547 if (host
->caps2
& MMC_CAP2_FULL_PWR_CYCLE
) {
1550 mmc_power_cycle(host
, ocr
);
1554 if (bit
!= host
->ios
.vdd
)
1555 dev_warn(mmc_dev(host
), "exceeding card's volts\n");
1561 int __mmc_set_signal_voltage(struct mmc_host
*host
, int signal_voltage
)
1564 int old_signal_voltage
= host
->ios
.signal_voltage
;
1566 host
->ios
.signal_voltage
= signal_voltage
;
1567 if (host
->ops
->start_signal_voltage_switch
)
1568 err
= host
->ops
->start_signal_voltage_switch(host
, &host
->ios
);
1571 host
->ios
.signal_voltage
= old_signal_voltage
;
1577 int mmc_set_signal_voltage(struct mmc_host
*host
, int signal_voltage
, u32 ocr
)
1579 struct mmc_command cmd
= {0};
1586 * Send CMD11 only if the request is to switch the card to
1589 if (signal_voltage
== MMC_SIGNAL_VOLTAGE_330
)
1590 return __mmc_set_signal_voltage(host
, signal_voltage
);
1593 * If we cannot switch voltages, return failure so the caller
1594 * can continue without UHS mode
1596 if (!host
->ops
->start_signal_voltage_switch
)
1598 if (!host
->ops
->card_busy
)
1599 pr_warn("%s: cannot verify signal voltage switch\n",
1600 mmc_hostname(host
));
1602 cmd
.opcode
= SD_SWITCH_VOLTAGE
;
1604 cmd
.flags
= MMC_RSP_R1
| MMC_CMD_AC
;
1606 err
= mmc_wait_for_cmd(host
, &cmd
, 0);
1610 if (!mmc_host_is_spi(host
) && (cmd
.resp
[0] & R1_ERROR
))
1614 * The card should drive cmd and dat[0:3] low immediately
1615 * after the response of cmd11, but wait 1 ms to be sure
1618 if (host
->ops
->card_busy
&& !host
->ops
->card_busy(host
)) {
1623 * During a signal voltage level switch, the clock must be gated
1624 * for 5 ms according to the SD spec
1626 clock
= host
->ios
.clock
;
1627 host
->ios
.clock
= 0;
1630 if (__mmc_set_signal_voltage(host
, signal_voltage
)) {
1632 * Voltages may not have been switched, but we've already
1633 * sent CMD11, so a power cycle is required anyway
1639 /* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1641 host
->ios
.clock
= clock
;
1644 /* Wait for at least 1 ms according to spec */
1648 * Failure to switch is indicated by the card holding
1651 if (host
->ops
->card_busy
&& host
->ops
->card_busy(host
))
1656 pr_debug("%s: Signal voltage switch failed, "
1657 "power cycling card\n", mmc_hostname(host
));
1658 mmc_power_cycle(host
, ocr
);
1665 * Select timing parameters for host.
1667 void mmc_set_timing(struct mmc_host
*host
, unsigned int timing
)
1669 host
->ios
.timing
= timing
;
1674 * Select appropriate driver type for host.
1676 void mmc_set_driver_type(struct mmc_host
*host
, unsigned int drv_type
)
1678 host
->ios
.drv_type
= drv_type
;
1682 int mmc_select_drive_strength(struct mmc_card
*card
, unsigned int max_dtr
,
1683 int card_drv_type
, int *drv_type
)
1685 struct mmc_host
*host
= card
->host
;
1686 int host_drv_type
= SD_DRIVER_TYPE_B
;
1690 if (!host
->ops
->select_drive_strength
)
1693 /* Use SD definition of driver strength for hosts */
1694 if (host
->caps
& MMC_CAP_DRIVER_TYPE_A
)
1695 host_drv_type
|= SD_DRIVER_TYPE_A
;
1697 if (host
->caps
& MMC_CAP_DRIVER_TYPE_C
)
1698 host_drv_type
|= SD_DRIVER_TYPE_C
;
1700 if (host
->caps
& MMC_CAP_DRIVER_TYPE_D
)
1701 host_drv_type
|= SD_DRIVER_TYPE_D
;
1704 * The drive strength that the hardware can support
1705 * depends on the board design. Pass the appropriate
1706 * information and let the hardware specific code
1707 * return what is possible given the options
1709 return host
->ops
->select_drive_strength(card
, max_dtr
,
1716 * Apply power to the MMC stack. This is a two-stage process.
1717 * First, we enable power to the card without the clock running.
1718 * We then wait a bit for the power to stabilise. Finally,
1719 * enable the bus drivers and clock to the card.
1721 * We must _NOT_ enable the clock prior to power stablising.
1723 * If a host does all the power sequencing itself, ignore the
1724 * initial MMC_POWER_UP stage.
1726 void mmc_power_up(struct mmc_host
*host
, u32 ocr
)
1728 if (host
->ios
.power_mode
== MMC_POWER_ON
)
1731 mmc_pwrseq_pre_power_on(host
);
1733 host
->ios
.vdd
= fls(ocr
) - 1;
1734 host
->ios
.power_mode
= MMC_POWER_UP
;
1735 /* Set initial state and call mmc_set_ios */
1736 mmc_set_initial_state(host
);
1738 /* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1739 if (__mmc_set_signal_voltage(host
, MMC_SIGNAL_VOLTAGE_330
) == 0)
1740 dev_dbg(mmc_dev(host
), "Initial signal voltage of 3.3v\n");
1741 else if (__mmc_set_signal_voltage(host
, MMC_SIGNAL_VOLTAGE_180
) == 0)
1742 dev_dbg(mmc_dev(host
), "Initial signal voltage of 1.8v\n");
1743 else if (__mmc_set_signal_voltage(host
, MMC_SIGNAL_VOLTAGE_120
) == 0)
1744 dev_dbg(mmc_dev(host
), "Initial signal voltage of 1.2v\n");
1747 * This delay should be sufficient to allow the power supply
1748 * to reach the minimum voltage.
1752 mmc_pwrseq_post_power_on(host
);
1754 host
->ios
.clock
= host
->f_init
;
1756 host
->ios
.power_mode
= MMC_POWER_ON
;
1760 * This delay must be at least 74 clock sizes, or 1 ms, or the
1761 * time required to reach a stable voltage.
1766 void mmc_power_off(struct mmc_host
*host
)
1768 if (host
->ios
.power_mode
== MMC_POWER_OFF
)
1771 mmc_pwrseq_power_off(host
);
1773 host
->ios
.clock
= 0;
1776 host
->ios
.power_mode
= MMC_POWER_OFF
;
1777 /* Set initial state and call mmc_set_ios */
1778 mmc_set_initial_state(host
);
1781 * Some configurations, such as the 802.11 SDIO card in the OLPC
1782 * XO-1.5, require a short delay after poweroff before the card
1783 * can be successfully turned on again.
1788 void mmc_power_cycle(struct mmc_host
*host
, u32 ocr
)
1790 mmc_power_off(host
);
1791 /* Wait at least 1 ms according to SD spec */
1793 mmc_power_up(host
, ocr
);
1797 * Cleanup when the last reference to the bus operator is dropped.
1799 static void __mmc_release_bus(struct mmc_host
*host
)
1802 BUG_ON(host
->bus_refs
);
1803 BUG_ON(!host
->bus_dead
);
1805 host
->bus_ops
= NULL
;
1809 * Increase reference count of bus operator
1811 static inline void mmc_bus_get(struct mmc_host
*host
)
1813 unsigned long flags
;
1815 spin_lock_irqsave(&host
->lock
, flags
);
1817 spin_unlock_irqrestore(&host
->lock
, flags
);
1821 * Decrease reference count of bus operator and free it if
1822 * it is the last reference.
1824 static inline void mmc_bus_put(struct mmc_host
*host
)
1826 unsigned long flags
;
1828 spin_lock_irqsave(&host
->lock
, flags
);
1830 if ((host
->bus_refs
== 0) && host
->bus_ops
)
1831 __mmc_release_bus(host
);
1832 spin_unlock_irqrestore(&host
->lock
, flags
);
1836 * Assign a mmc bus handler to a host. Only one bus handler may control a
1837 * host at any given time.
1839 void mmc_attach_bus(struct mmc_host
*host
, const struct mmc_bus_ops
*ops
)
1841 unsigned long flags
;
1846 WARN_ON(!host
->claimed
);
1848 spin_lock_irqsave(&host
->lock
, flags
);
1850 BUG_ON(host
->bus_ops
);
1851 BUG_ON(host
->bus_refs
);
1853 host
->bus_ops
= ops
;
1857 spin_unlock_irqrestore(&host
->lock
, flags
);
1861 * Remove the current bus handler from a host.
1863 void mmc_detach_bus(struct mmc_host
*host
)
1865 unsigned long flags
;
1869 WARN_ON(!host
->claimed
);
1870 WARN_ON(!host
->bus_ops
);
1872 spin_lock_irqsave(&host
->lock
, flags
);
1876 spin_unlock_irqrestore(&host
->lock
, flags
);
1881 static void _mmc_detect_change(struct mmc_host
*host
, unsigned long delay
,
1884 #ifdef CONFIG_MMC_DEBUG
1885 unsigned long flags
;
1886 spin_lock_irqsave(&host
->lock
, flags
);
1887 WARN_ON(host
->removed
);
1888 spin_unlock_irqrestore(&host
->lock
, flags
);
1892 * If the device is configured as wakeup, we prevent a new sleep for
1893 * 5 s to give provision for user space to consume the event.
1895 if (cd_irq
&& !(host
->caps
& MMC_CAP_NEEDS_POLL
) &&
1896 device_can_wakeup(mmc_dev(host
)))
1897 pm_wakeup_event(mmc_dev(host
), 5000);
1899 host
->detect_change
= 1;
1900 mmc_schedule_delayed_work(&host
->detect
, delay
);
1904 * mmc_detect_change - process change of state on a MMC socket
1905 * @host: host which changed state.
1906 * @delay: optional delay to wait before detection (jiffies)
1908 * MMC drivers should call this when they detect a card has been
1909 * inserted or removed. The MMC layer will confirm that any
1910 * present card is still functional, and initialize any newly
1913 void mmc_detect_change(struct mmc_host
*host
, unsigned long delay
)
1915 _mmc_detect_change(host
, delay
, true);
1917 EXPORT_SYMBOL(mmc_detect_change
);
1919 void mmc_init_erase(struct mmc_card
*card
)
1923 if (is_power_of_2(card
->erase_size
))
1924 card
->erase_shift
= ffs(card
->erase_size
) - 1;
1926 card
->erase_shift
= 0;
1929 * It is possible to erase an arbitrarily large area of an SD or MMC
1930 * card. That is not desirable because it can take a long time
1931 * (minutes) potentially delaying more important I/O, and also the
1932 * timeout calculations become increasingly hugely over-estimated.
1933 * Consequently, 'pref_erase' is defined as a guide to limit erases
1934 * to that size and alignment.
1936 * For SD cards that define Allocation Unit size, limit erases to one
1937 * Allocation Unit at a time.
1938 * For MMC, have a stab at ai good value and for modern cards it will
1939 * end up being 4MiB. Note that if the value is too small, it can end
1940 * up taking longer to erase. Also note, erase_size is already set to
1941 * High Capacity Erase Size if available when this function is called.
1943 if (mmc_card_sd(card
) && card
->ssr
.au
) {
1944 card
->pref_erase
= card
->ssr
.au
;
1945 card
->erase_shift
= ffs(card
->ssr
.au
) - 1;
1946 } else if (card
->erase_size
) {
1947 sz
= (card
->csd
.capacity
<< (card
->csd
.read_blkbits
- 9)) >> 11;
1949 card
->pref_erase
= 512 * 1024 / 512;
1951 card
->pref_erase
= 1024 * 1024 / 512;
1953 card
->pref_erase
= 2 * 1024 * 1024 / 512;
1955 card
->pref_erase
= 4 * 1024 * 1024 / 512;
1956 if (card
->pref_erase
< card
->erase_size
)
1957 card
->pref_erase
= card
->erase_size
;
1959 sz
= card
->pref_erase
% card
->erase_size
;
1961 card
->pref_erase
+= card
->erase_size
- sz
;
1964 card
->pref_erase
= 0;
1967 static unsigned int mmc_mmc_erase_timeout(struct mmc_card
*card
,
1968 unsigned int arg
, unsigned int qty
)
1970 unsigned int erase_timeout
;
1972 if (arg
== MMC_DISCARD_ARG
||
1973 (arg
== MMC_TRIM_ARG
&& card
->ext_csd
.rev
>= 6)) {
1974 erase_timeout
= card
->ext_csd
.trim_timeout
;
1975 } else if (card
->ext_csd
.erase_group_def
& 1) {
1976 /* High Capacity Erase Group Size uses HC timeouts */
1977 if (arg
== MMC_TRIM_ARG
)
1978 erase_timeout
= card
->ext_csd
.trim_timeout
;
1980 erase_timeout
= card
->ext_csd
.hc_erase_timeout
;
1982 /* CSD Erase Group Size uses write timeout */
1983 unsigned int mult
= (10 << card
->csd
.r2w_factor
);
1984 unsigned int timeout_clks
= card
->csd
.tacc_clks
* mult
;
1985 unsigned int timeout_us
;
1987 /* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
1988 if (card
->csd
.tacc_ns
< 1000000)
1989 timeout_us
= (card
->csd
.tacc_ns
* mult
) / 1000;
1991 timeout_us
= (card
->csd
.tacc_ns
/ 1000) * mult
;
1994 * ios.clock is only a target. The real clock rate might be
1995 * less but not that much less, so fudge it by multiplying by 2.
1998 timeout_us
+= (timeout_clks
* 1000) /
1999 (card
->host
->ios
.clock
/ 1000);
2001 erase_timeout
= timeout_us
/ 1000;
2004 * Theoretically, the calculation could underflow so round up
2005 * to 1ms in that case.
2011 /* Multiplier for secure operations */
2012 if (arg
& MMC_SECURE_ARGS
) {
2013 if (arg
== MMC_SECURE_ERASE_ARG
)
2014 erase_timeout
*= card
->ext_csd
.sec_erase_mult
;
2016 erase_timeout
*= card
->ext_csd
.sec_trim_mult
;
2019 erase_timeout
*= qty
;
2022 * Ensure at least a 1 second timeout for SPI as per
2023 * 'mmc_set_data_timeout()'
2025 if (mmc_host_is_spi(card
->host
) && erase_timeout
< 1000)
2026 erase_timeout
= 1000;
2028 return erase_timeout
;
2031 static unsigned int mmc_sd_erase_timeout(struct mmc_card
*card
,
2035 unsigned int erase_timeout
;
2037 if (card
->ssr
.erase_timeout
) {
2038 /* Erase timeout specified in SD Status Register (SSR) */
2039 erase_timeout
= card
->ssr
.erase_timeout
* qty
+
2040 card
->ssr
.erase_offset
;
2043 * Erase timeout not specified in SD Status Register (SSR) so
2044 * use 250ms per write block.
2046 erase_timeout
= 250 * qty
;
2049 /* Must not be less than 1 second */
2050 if (erase_timeout
< 1000)
2051 erase_timeout
= 1000;
2053 return erase_timeout
;
2056 static unsigned int mmc_erase_timeout(struct mmc_card
*card
,
2060 if (mmc_card_sd(card
))
2061 return mmc_sd_erase_timeout(card
, arg
, qty
);
2063 return mmc_mmc_erase_timeout(card
, arg
, qty
);
2066 static int mmc_do_erase(struct mmc_card
*card
, unsigned int from
,
2067 unsigned int to
, unsigned int arg
)
2069 struct mmc_command cmd
= {0};
2070 unsigned int qty
= 0, busy_timeout
= 0;
2071 bool use_r1b_resp
= false;
2072 unsigned long timeout
;
2075 mmc_retune_hold(card
->host
);
2078 * qty is used to calculate the erase timeout which depends on how many
2079 * erase groups (or allocation units in SD terminology) are affected.
2080 * We count erasing part of an erase group as one erase group.
2081 * For SD, the allocation units are always a power of 2. For MMC, the
2082 * erase group size is almost certainly also power of 2, but it does not
2083 * seem to insist on that in the JEDEC standard, so we fall back to
2084 * division in that case. SD may not specify an allocation unit size,
2085 * in which case the timeout is based on the number of write blocks.
2087 * Note that the timeout for secure trim 2 will only be correct if the
2088 * number of erase groups specified is the same as the total of all
2089 * preceding secure trim 1 commands. Since the power may have been
2090 * lost since the secure trim 1 commands occurred, it is generally
2091 * impossible to calculate the secure trim 2 timeout correctly.
2093 if (card
->erase_shift
)
2094 qty
+= ((to
>> card
->erase_shift
) -
2095 (from
>> card
->erase_shift
)) + 1;
2096 else if (mmc_card_sd(card
))
2097 qty
+= to
- from
+ 1;
2099 qty
+= ((to
/ card
->erase_size
) -
2100 (from
/ card
->erase_size
)) + 1;
2102 if (!mmc_card_blockaddr(card
)) {
2107 if (mmc_card_sd(card
))
2108 cmd
.opcode
= SD_ERASE_WR_BLK_START
;
2110 cmd
.opcode
= MMC_ERASE_GROUP_START
;
2112 cmd
.flags
= MMC_RSP_SPI_R1
| MMC_RSP_R1
| MMC_CMD_AC
;
2113 err
= mmc_wait_for_cmd(card
->host
, &cmd
, 0);
2115 pr_err("mmc_erase: group start error %d, "
2116 "status %#x\n", err
, cmd
.resp
[0]);
2121 memset(&cmd
, 0, sizeof(struct mmc_command
));
2122 if (mmc_card_sd(card
))
2123 cmd
.opcode
= SD_ERASE_WR_BLK_END
;
2125 cmd
.opcode
= MMC_ERASE_GROUP_END
;
2127 cmd
.flags
= MMC_RSP_SPI_R1
| MMC_RSP_R1
| MMC_CMD_AC
;
2128 err
= mmc_wait_for_cmd(card
->host
, &cmd
, 0);
2130 pr_err("mmc_erase: group end error %d, status %#x\n",
2136 memset(&cmd
, 0, sizeof(struct mmc_command
));
2137 cmd
.opcode
= MMC_ERASE
;
2139 busy_timeout
= mmc_erase_timeout(card
, arg
, qty
);
2141 * If the host controller supports busy signalling and the timeout for
2142 * the erase operation does not exceed the max_busy_timeout, we should
2143 * use R1B response. Or we need to prevent the host from doing hw busy
2144 * detection, which is done by converting to a R1 response instead.
2146 if (card
->host
->max_busy_timeout
&&
2147 busy_timeout
> card
->host
->max_busy_timeout
) {
2148 cmd
.flags
= MMC_RSP_SPI_R1
| MMC_RSP_R1
| MMC_CMD_AC
;
2150 cmd
.flags
= MMC_RSP_SPI_R1B
| MMC_RSP_R1B
| MMC_CMD_AC
;
2151 cmd
.busy_timeout
= busy_timeout
;
2152 use_r1b_resp
= true;
2155 err
= mmc_wait_for_cmd(card
->host
, &cmd
, 0);
2157 pr_err("mmc_erase: erase error %d, status %#x\n",
2163 if (mmc_host_is_spi(card
->host
))
2167 * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling
2170 if ((card
->host
->caps
& MMC_CAP_WAIT_WHILE_BUSY
) && use_r1b_resp
)
2173 timeout
= jiffies
+ msecs_to_jiffies(busy_timeout
);
2175 memset(&cmd
, 0, sizeof(struct mmc_command
));
2176 cmd
.opcode
= MMC_SEND_STATUS
;
2177 cmd
.arg
= card
->rca
<< 16;
2178 cmd
.flags
= MMC_RSP_R1
| MMC_CMD_AC
;
2179 /* Do not retry else we can't see errors */
2180 err
= mmc_wait_for_cmd(card
->host
, &cmd
, 0);
2181 if (err
|| (cmd
.resp
[0] & 0xFDF92000)) {
2182 pr_err("error %d requesting status %#x\n",
2188 /* Timeout if the device never becomes ready for data and
2189 * never leaves the program state.
2191 if (time_after(jiffies
, timeout
)) {
2192 pr_err("%s: Card stuck in programming state! %s\n",
2193 mmc_hostname(card
->host
), __func__
);
2198 } while (!(cmd
.resp
[0] & R1_READY_FOR_DATA
) ||
2199 (R1_CURRENT_STATE(cmd
.resp
[0]) == R1_STATE_PRG
));
2201 mmc_retune_release(card
->host
);
2206 * mmc_erase - erase sectors.
2207 * @card: card to erase
2208 * @from: first sector to erase
2209 * @nr: number of sectors to erase
2210 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
2212 * Caller must claim host before calling this function.
2214 int mmc_erase(struct mmc_card
*card
, unsigned int from
, unsigned int nr
,
2217 unsigned int rem
, to
= from
+ nr
;
2220 if (!(card
->host
->caps
& MMC_CAP_ERASE
) ||
2221 !(card
->csd
.cmdclass
& CCC_ERASE
))
2224 if (!card
->erase_size
)
2227 if (mmc_card_sd(card
) && arg
!= MMC_ERASE_ARG
)
2230 if ((arg
& MMC_SECURE_ARGS
) &&
2231 !(card
->ext_csd
.sec_feature_support
& EXT_CSD_SEC_ER_EN
))
2234 if ((arg
& MMC_TRIM_ARGS
) &&
2235 !(card
->ext_csd
.sec_feature_support
& EXT_CSD_SEC_GB_CL_EN
))
2238 if (arg
== MMC_SECURE_ERASE_ARG
) {
2239 if (from
% card
->erase_size
|| nr
% card
->erase_size
)
2243 if (arg
== MMC_ERASE_ARG
) {
2244 rem
= from
% card
->erase_size
;
2246 rem
= card
->erase_size
- rem
;
2253 rem
= nr
% card
->erase_size
;
2266 /* 'from' and 'to' are inclusive */
2270 * Special case where only one erase-group fits in the timeout budget:
2271 * If the region crosses an erase-group boundary on this particular
2272 * case, we will be trimming more than one erase-group which, does not
2273 * fit in the timeout budget of the controller, so we need to split it
2274 * and call mmc_do_erase() twice if necessary. This special case is
2275 * identified by the card->eg_boundary flag.
2277 rem
= card
->erase_size
- (from
% card
->erase_size
);
2278 if ((arg
& MMC_TRIM_ARGS
) && (card
->eg_boundary
) && (nr
> rem
)) {
2279 err
= mmc_do_erase(card
, from
, from
+ rem
- 1, arg
);
2281 if ((err
) || (to
<= from
))
2285 return mmc_do_erase(card
, from
, to
, arg
);
2287 EXPORT_SYMBOL(mmc_erase
);
2289 int mmc_can_erase(struct mmc_card
*card
)
2291 if ((card
->host
->caps
& MMC_CAP_ERASE
) &&
2292 (card
->csd
.cmdclass
& CCC_ERASE
) && card
->erase_size
)
2296 EXPORT_SYMBOL(mmc_can_erase
);
2298 int mmc_can_trim(struct mmc_card
*card
)
2300 if ((card
->ext_csd
.sec_feature_support
& EXT_CSD_SEC_GB_CL_EN
) &&
2301 (!(card
->quirks
& MMC_QUIRK_TRIM_BROKEN
)))
2305 EXPORT_SYMBOL(mmc_can_trim
);
2307 int mmc_can_discard(struct mmc_card
*card
)
2310 * As there's no way to detect the discard support bit at v4.5
2311 * use the s/w feature support filed.
2313 if (card
->ext_csd
.feature_support
& MMC_DISCARD_FEATURE
)
2317 EXPORT_SYMBOL(mmc_can_discard
);
2319 int mmc_can_sanitize(struct mmc_card
*card
)
2321 if (!mmc_can_trim(card
) && !mmc_can_erase(card
))
2323 if (card
->ext_csd
.sec_feature_support
& EXT_CSD_SEC_SANITIZE
)
2327 EXPORT_SYMBOL(mmc_can_sanitize
);
2329 int mmc_can_secure_erase_trim(struct mmc_card
*card
)
2331 if ((card
->ext_csd
.sec_feature_support
& EXT_CSD_SEC_ER_EN
) &&
2332 !(card
->quirks
& MMC_QUIRK_SEC_ERASE_TRIM_BROKEN
))
2336 EXPORT_SYMBOL(mmc_can_secure_erase_trim
);
2338 int mmc_erase_group_aligned(struct mmc_card
*card
, unsigned int from
,
2341 if (!card
->erase_size
)
2343 if (from
% card
->erase_size
|| nr
% card
->erase_size
)
2347 EXPORT_SYMBOL(mmc_erase_group_aligned
);
2349 static unsigned int mmc_do_calc_max_discard(struct mmc_card
*card
,
2352 struct mmc_host
*host
= card
->host
;
2353 unsigned int max_discard
, x
, y
, qty
= 0, max_qty
, min_qty
, timeout
;
2354 unsigned int last_timeout
= 0;
2356 if (card
->erase_shift
) {
2357 max_qty
= UINT_MAX
>> card
->erase_shift
;
2358 min_qty
= card
->pref_erase
>> card
->erase_shift
;
2359 } else if (mmc_card_sd(card
)) {
2361 min_qty
= card
->pref_erase
;
2363 max_qty
= UINT_MAX
/ card
->erase_size
;
2364 min_qty
= card
->pref_erase
/ card
->erase_size
;
2368 * We should not only use 'host->max_busy_timeout' as the limitation
2369 * when deciding the max discard sectors. We should set a balance value
2370 * to improve the erase speed, and it can not get too long timeout at
2373 * Here we set 'card->pref_erase' as the minimal discard sectors no
2374 * matter what size of 'host->max_busy_timeout', but if the
2375 * 'host->max_busy_timeout' is large enough for more discard sectors,
2376 * then we can continue to increase the max discard sectors until we
2377 * get a balance value.
2381 for (x
= 1; x
&& x
<= max_qty
&& max_qty
- x
>= qty
; x
<<= 1) {
2382 timeout
= mmc_erase_timeout(card
, arg
, qty
+ x
);
2384 if (qty
+ x
> min_qty
&&
2385 timeout
> host
->max_busy_timeout
)
2388 if (timeout
< last_timeout
)
2390 last_timeout
= timeout
;
2400 * When specifying a sector range to trim, chances are we might cross
2401 * an erase-group boundary even if the amount of sectors is less than
2403 * If we can only fit one erase-group in the controller timeout budget,
2404 * we have to care that erase-group boundaries are not crossed by a
2405 * single trim operation. We flag that special case with "eg_boundary".
2406 * In all other cases we can just decrement qty and pretend that we
2407 * always touch (qty + 1) erase-groups as a simple optimization.
2410 card
->eg_boundary
= 1;
2414 /* Convert qty to sectors */
2415 if (card
->erase_shift
)
2416 max_discard
= qty
<< card
->erase_shift
;
2417 else if (mmc_card_sd(card
))
2418 max_discard
= qty
+ 1;
2420 max_discard
= qty
* card
->erase_size
;
2425 unsigned int mmc_calc_max_discard(struct mmc_card
*card
)
2427 struct mmc_host
*host
= card
->host
;
2428 unsigned int max_discard
, max_trim
;
2430 if (!host
->max_busy_timeout
)
2434 * Without erase_group_def set, MMC erase timeout depends on clock
2435 * frequence which can change. In that case, the best choice is
2436 * just the preferred erase size.
2438 if (mmc_card_mmc(card
) && !(card
->ext_csd
.erase_group_def
& 1))
2439 return card
->pref_erase
;
2441 max_discard
= mmc_do_calc_max_discard(card
, MMC_ERASE_ARG
);
2442 if (mmc_can_trim(card
)) {
2443 max_trim
= mmc_do_calc_max_discard(card
, MMC_TRIM_ARG
);
2444 if (max_trim
< max_discard
)
2445 max_discard
= max_trim
;
2446 } else if (max_discard
< card
->erase_size
) {
2449 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2450 mmc_hostname(host
), max_discard
, host
->max_busy_timeout
);
2453 EXPORT_SYMBOL(mmc_calc_max_discard
);
2455 int mmc_set_blocklen(struct mmc_card
*card
, unsigned int blocklen
)
2457 struct mmc_command cmd
= {0};
2459 if (mmc_card_blockaddr(card
) || mmc_card_ddr52(card
))
2462 cmd
.opcode
= MMC_SET_BLOCKLEN
;
2464 cmd
.flags
= MMC_RSP_SPI_R1
| MMC_RSP_R1
| MMC_CMD_AC
;
2465 return mmc_wait_for_cmd(card
->host
, &cmd
, 5);
2467 EXPORT_SYMBOL(mmc_set_blocklen
);
2469 int mmc_set_blockcount(struct mmc_card
*card
, unsigned int blockcount
,
2472 struct mmc_command cmd
= {0};
2474 cmd
.opcode
= MMC_SET_BLOCK_COUNT
;
2475 cmd
.arg
= blockcount
& 0x0000FFFF;
2478 cmd
.flags
= MMC_RSP_SPI_R1
| MMC_RSP_R1
| MMC_CMD_AC
;
2479 return mmc_wait_for_cmd(card
->host
, &cmd
, 5);
2481 EXPORT_SYMBOL(mmc_set_blockcount
);
2483 static void mmc_hw_reset_for_init(struct mmc_host
*host
)
2485 if (!(host
->caps
& MMC_CAP_HW_RESET
) || !host
->ops
->hw_reset
)
2487 host
->ops
->hw_reset(host
);
2490 int mmc_hw_reset(struct mmc_host
*host
)
2498 if (!host
->bus_ops
|| host
->bus_dead
|| !host
->bus_ops
->reset
) {
2503 ret
= host
->bus_ops
->reset(host
);
2507 pr_warn("%s: tried to reset card, got error %d\n",
2508 mmc_hostname(host
), ret
);
2512 EXPORT_SYMBOL(mmc_hw_reset
);
2514 static int mmc_rescan_try_freq(struct mmc_host
*host
, unsigned freq
)
2516 host
->f_init
= freq
;
2518 #ifdef CONFIG_MMC_DEBUG
2519 pr_info("%s: %s: trying to init card at %u Hz\n",
2520 mmc_hostname(host
), __func__
, host
->f_init
);
2522 mmc_power_up(host
, host
->ocr_avail
);
2525 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2526 * do a hardware reset if possible.
2528 mmc_hw_reset_for_init(host
);
2531 * sdio_reset sends CMD52 to reset card. Since we do not know
2532 * if the card is being re-initialized, just send it. CMD52
2533 * should be ignored by SD/eMMC cards.
2534 * Skip it if we already know that we do not support SDIO commands
2536 if (!(host
->caps2
& MMC_CAP2_NO_SDIO
))
2541 if (!(host
->caps2
& MMC_CAP2_NO_SD
))
2542 mmc_send_if_cond(host
, host
->ocr_avail
);
2544 /* Order's important: probe SDIO, then SD, then MMC */
2545 if (!(host
->caps2
& MMC_CAP2_NO_SDIO
))
2546 if (!mmc_attach_sdio(host
))
2549 if (!(host
->caps2
& MMC_CAP2_NO_SD
))
2550 if (!mmc_attach_sd(host
))
2553 if (!(host
->caps2
& MMC_CAP2_NO_MMC
))
2554 if (!mmc_attach_mmc(host
))
2557 mmc_power_off(host
);
2561 int _mmc_detect_card_removed(struct mmc_host
*host
)
2565 if (!host
->card
|| mmc_card_removed(host
->card
))
2568 ret
= host
->bus_ops
->alive(host
);
2571 * Card detect status and alive check may be out of sync if card is
2572 * removed slowly, when card detect switch changes while card/slot
2573 * pads are still contacted in hardware (refer to "SD Card Mechanical
2574 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2575 * detect work 200ms later for this case.
2577 if (!ret
&& host
->ops
->get_cd
&& !host
->ops
->get_cd(host
)) {
2578 mmc_detect_change(host
, msecs_to_jiffies(200));
2579 pr_debug("%s: card removed too slowly\n", mmc_hostname(host
));
2583 mmc_card_set_removed(host
->card
);
2584 pr_debug("%s: card remove detected\n", mmc_hostname(host
));
2590 int mmc_detect_card_removed(struct mmc_host
*host
)
2592 struct mmc_card
*card
= host
->card
;
2595 WARN_ON(!host
->claimed
);
2600 if (!mmc_card_is_removable(host
))
2603 ret
= mmc_card_removed(card
);
2605 * The card will be considered unchanged unless we have been asked to
2606 * detect a change or host requires polling to provide card detection.
2608 if (!host
->detect_change
&& !(host
->caps
& MMC_CAP_NEEDS_POLL
))
2611 host
->detect_change
= 0;
2613 ret
= _mmc_detect_card_removed(host
);
2614 if (ret
&& (host
->caps
& MMC_CAP_NEEDS_POLL
)) {
2616 * Schedule a detect work as soon as possible to let a
2617 * rescan handle the card removal.
2619 cancel_delayed_work(&host
->detect
);
2620 _mmc_detect_change(host
, 0, false);
2626 EXPORT_SYMBOL(mmc_detect_card_removed
);
2628 void mmc_rescan(struct work_struct
*work
)
2630 struct mmc_host
*host
=
2631 container_of(work
, struct mmc_host
, detect
.work
);
2634 if (host
->rescan_disable
)
2637 /* If there is a non-removable card registered, only scan once */
2638 if (!mmc_card_is_removable(host
) && host
->rescan_entered
)
2640 host
->rescan_entered
= 1;
2642 if (host
->trigger_card_event
&& host
->ops
->card_event
) {
2643 mmc_claim_host(host
);
2644 host
->ops
->card_event(host
);
2645 mmc_release_host(host
);
2646 host
->trigger_card_event
= false;
2652 * if there is a _removable_ card registered, check whether it is
2655 if (host
->bus_ops
&& !host
->bus_dead
&& mmc_card_is_removable(host
))
2656 host
->bus_ops
->detect(host
);
2658 host
->detect_change
= 0;
2661 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2662 * the card is no longer present.
2667 /* if there still is a card present, stop here */
2668 if (host
->bus_ops
!= NULL
) {
2674 * Only we can add a new handler, so it's safe to
2675 * release the lock here.
2679 mmc_claim_host(host
);
2680 if (mmc_card_is_removable(host
) && host
->ops
->get_cd
&&
2681 host
->ops
->get_cd(host
) == 0) {
2682 mmc_power_off(host
);
2683 mmc_release_host(host
);
2687 for (i
= 0; i
< ARRAY_SIZE(freqs
); i
++) {
2688 if (!mmc_rescan_try_freq(host
, max(freqs
[i
], host
->f_min
)))
2690 if (freqs
[i
] <= host
->f_min
)
2693 mmc_release_host(host
);
2696 if (host
->caps
& MMC_CAP_NEEDS_POLL
)
2697 mmc_schedule_delayed_work(&host
->detect
, HZ
);
2700 void mmc_start_host(struct mmc_host
*host
)
2702 host
->f_init
= max(freqs
[0], host
->f_min
);
2703 host
->rescan_disable
= 0;
2704 host
->ios
.power_mode
= MMC_POWER_UNDEFINED
;
2706 mmc_claim_host(host
);
2707 if (host
->caps2
& MMC_CAP2_NO_PRESCAN_POWERUP
)
2708 mmc_power_off(host
);
2710 mmc_power_up(host
, host
->ocr_avail
);
2711 mmc_release_host(host
);
2713 mmc_gpiod_request_cd_irq(host
);
2714 _mmc_detect_change(host
, 0, false);
2717 void mmc_stop_host(struct mmc_host
*host
)
2719 #ifdef CONFIG_MMC_DEBUG
2720 unsigned long flags
;
2721 spin_lock_irqsave(&host
->lock
, flags
);
2723 spin_unlock_irqrestore(&host
->lock
, flags
);
2725 if (host
->slot
.cd_irq
>= 0)
2726 disable_irq(host
->slot
.cd_irq
);
2728 host
->rescan_disable
= 1;
2729 cancel_delayed_work_sync(&host
->detect
);
2731 /* clear pm flags now and let card drivers set them as needed */
2735 if (host
->bus_ops
&& !host
->bus_dead
) {
2736 /* Calling bus_ops->remove() with a claimed host can deadlock */
2737 host
->bus_ops
->remove(host
);
2738 mmc_claim_host(host
);
2739 mmc_detach_bus(host
);
2740 mmc_power_off(host
);
2741 mmc_release_host(host
);
2749 mmc_claim_host(host
);
2750 mmc_power_off(host
);
2751 mmc_release_host(host
);
2754 int mmc_power_save_host(struct mmc_host
*host
)
2758 #ifdef CONFIG_MMC_DEBUG
2759 pr_info("%s: %s: powering down\n", mmc_hostname(host
), __func__
);
2764 if (!host
->bus_ops
|| host
->bus_dead
) {
2769 if (host
->bus_ops
->power_save
)
2770 ret
= host
->bus_ops
->power_save(host
);
2774 mmc_power_off(host
);
2778 EXPORT_SYMBOL(mmc_power_save_host
);
2780 int mmc_power_restore_host(struct mmc_host
*host
)
2784 #ifdef CONFIG_MMC_DEBUG
2785 pr_info("%s: %s: powering up\n", mmc_hostname(host
), __func__
);
2790 if (!host
->bus_ops
|| host
->bus_dead
) {
2795 mmc_power_up(host
, host
->card
->ocr
);
2796 ret
= host
->bus_ops
->power_restore(host
);
2802 EXPORT_SYMBOL(mmc_power_restore_host
);
2805 * Flush the cache to the non-volatile storage.
2807 int mmc_flush_cache(struct mmc_card
*card
)
2811 if (mmc_card_mmc(card
) &&
2812 (card
->ext_csd
.cache_size
> 0) &&
2813 (card
->ext_csd
.cache_ctrl
& 1)) {
2814 err
= mmc_switch(card
, EXT_CSD_CMD_SET_NORMAL
,
2815 EXT_CSD_FLUSH_CACHE
, 1, 0);
2817 pr_err("%s: cache flush error %d\n",
2818 mmc_hostname(card
->host
), err
);
2823 EXPORT_SYMBOL(mmc_flush_cache
);
2825 #ifdef CONFIG_PM_SLEEP
2826 /* Do the card removal on suspend if card is assumed removeable
2827 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2830 static int mmc_pm_notify(struct notifier_block
*notify_block
,
2831 unsigned long mode
, void *unused
)
2833 struct mmc_host
*host
= container_of(
2834 notify_block
, struct mmc_host
, pm_notify
);
2835 unsigned long flags
;
2839 case PM_HIBERNATION_PREPARE
:
2840 case PM_SUSPEND_PREPARE
:
2841 case PM_RESTORE_PREPARE
:
2842 spin_lock_irqsave(&host
->lock
, flags
);
2843 host
->rescan_disable
= 1;
2844 spin_unlock_irqrestore(&host
->lock
, flags
);
2845 cancel_delayed_work_sync(&host
->detect
);
2850 /* Validate prerequisites for suspend */
2851 if (host
->bus_ops
->pre_suspend
)
2852 err
= host
->bus_ops
->pre_suspend(host
);
2856 /* Calling bus_ops->remove() with a claimed host can deadlock */
2857 host
->bus_ops
->remove(host
);
2858 mmc_claim_host(host
);
2859 mmc_detach_bus(host
);
2860 mmc_power_off(host
);
2861 mmc_release_host(host
);
2865 case PM_POST_SUSPEND
:
2866 case PM_POST_HIBERNATION
:
2867 case PM_POST_RESTORE
:
2869 spin_lock_irqsave(&host
->lock
, flags
);
2870 host
->rescan_disable
= 0;
2871 spin_unlock_irqrestore(&host
->lock
, flags
);
2872 _mmc_detect_change(host
, 0, false);
2879 void mmc_register_pm_notifier(struct mmc_host
*host
)
2881 host
->pm_notify
.notifier_call
= mmc_pm_notify
;
2882 register_pm_notifier(&host
->pm_notify
);
2885 void mmc_unregister_pm_notifier(struct mmc_host
*host
)
2887 unregister_pm_notifier(&host
->pm_notify
);
2892 * mmc_init_context_info() - init synchronization context
2895 * Init struct context_info needed to implement asynchronous
2896 * request mechanism, used by mmc core, host driver and mmc requests
2899 void mmc_init_context_info(struct mmc_host
*host
)
2901 spin_lock_init(&host
->context_info
.lock
);
2902 host
->context_info
.is_new_req
= false;
2903 host
->context_info
.is_done_rcv
= false;
2904 host
->context_info
.is_waiting_last_req
= false;
2905 init_waitqueue_head(&host
->context_info
.wait
);
2908 static int __init
mmc_init(void)
2912 ret
= mmc_register_bus();
2916 ret
= mmc_register_host_class();
2918 goto unregister_bus
;
2920 ret
= sdio_register_bus();
2922 goto unregister_host_class
;
2926 unregister_host_class
:
2927 mmc_unregister_host_class();
2929 mmc_unregister_bus();
2933 static void __exit
mmc_exit(void)
2935 sdio_unregister_bus();
2936 mmc_unregister_host_class();
2937 mmc_unregister_bus();
2940 subsys_initcall(mmc_init
);
2941 module_exit(mmc_exit
);
2943 MODULE_LICENSE("GPL");