2 * CAN bus driver for Bosch C_CAN controller
4 * Copyright (C) 2010 ST Microelectronics
5 * Bhupesh Sharma <bhupesh.sharma@st.com>
7 * Borrowed heavily from the C_CAN driver originally written by:
9 * - Sascha Hauer, Marc Kleine-Budde, Pengutronix <s.hauer@pengutronix.de>
10 * - Simon Kallweit, intefo AG <simon.kallweit@intefo.ch>
12 * TX and RX NAPI implementation has been borrowed from at91 CAN driver
15 * (C) 2007 by Hans J. Koch <hjk@hansjkoch.de>
16 * (C) 2008, 2009 by Marc Kleine-Budde <kernel@pengutronix.de>
18 * Bosch C_CAN controller is compliant to CAN protocol version 2.0 part A and B.
19 * Bosch C_CAN user manual can be obtained from:
20 * http://www.semiconductors.bosch.de/media/en/pdf/ipmodules_1/c_can/
21 * users_manual_c_can.pdf
23 * This file is licensed under the terms of the GNU General Public
24 * License version 2. This program is licensed "as is" without any
25 * warranty of any kind, whether express or implied.
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/interrupt.h>
31 #include <linux/delay.h>
32 #include <linux/netdevice.h>
33 #include <linux/if_arp.h>
34 #include <linux/if_ether.h>
35 #include <linux/list.h>
37 #include <linux/pm_runtime.h>
38 #include <linux/pinctrl/consumer.h>
40 #include <linux/can.h>
41 #include <linux/can/dev.h>
42 #include <linux/can/error.h>
43 #include <linux/can/led.h>
47 /* Number of interface registers */
48 #define IF_ENUM_REG_LEN 11
49 #define C_CAN_IFACE(reg, iface) (C_CAN_IF1_##reg + (iface) * IF_ENUM_REG_LEN)
51 /* control extension register D_CAN specific */
52 #define CONTROL_EX_PDR BIT(8)
54 /* control register */
55 #define CONTROL_TEST BIT(7)
56 #define CONTROL_CCE BIT(6)
57 #define CONTROL_DISABLE_AR BIT(5)
58 #define CONTROL_ENABLE_AR (0 << 5)
59 #define CONTROL_EIE BIT(3)
60 #define CONTROL_SIE BIT(2)
61 #define CONTROL_IE BIT(1)
62 #define CONTROL_INIT BIT(0)
64 #define CONTROL_IRQMSK (CONTROL_EIE | CONTROL_IE | CONTROL_SIE)
67 #define TEST_RX BIT(7)
68 #define TEST_TX1 BIT(6)
69 #define TEST_TX2 BIT(5)
70 #define TEST_LBACK BIT(4)
71 #define TEST_SILENT BIT(3)
72 #define TEST_BASIC BIT(2)
75 #define STATUS_PDA BIT(10)
76 #define STATUS_BOFF BIT(7)
77 #define STATUS_EWARN BIT(6)
78 #define STATUS_EPASS BIT(5)
79 #define STATUS_RXOK BIT(4)
80 #define STATUS_TXOK BIT(3)
82 /* error counter register */
83 #define ERR_CNT_TEC_MASK 0xff
84 #define ERR_CNT_TEC_SHIFT 0
85 #define ERR_CNT_REC_SHIFT 8
86 #define ERR_CNT_REC_MASK (0x7f << ERR_CNT_REC_SHIFT)
87 #define ERR_CNT_RP_SHIFT 15
88 #define ERR_CNT_RP_MASK (0x1 << ERR_CNT_RP_SHIFT)
90 /* bit-timing register */
91 #define BTR_BRP_MASK 0x3f
92 #define BTR_BRP_SHIFT 0
93 #define BTR_SJW_SHIFT 6
94 #define BTR_SJW_MASK (0x3 << BTR_SJW_SHIFT)
95 #define BTR_TSEG1_SHIFT 8
96 #define BTR_TSEG1_MASK (0xf << BTR_TSEG1_SHIFT)
97 #define BTR_TSEG2_SHIFT 12
98 #define BTR_TSEG2_MASK (0x7 << BTR_TSEG2_SHIFT)
100 /* brp extension register */
101 #define BRP_EXT_BRPE_MASK 0x0f
102 #define BRP_EXT_BRPE_SHIFT 0
104 /* IFx command request */
105 #define IF_COMR_BUSY BIT(15)
107 /* IFx command mask */
108 #define IF_COMM_WR BIT(7)
109 #define IF_COMM_MASK BIT(6)
110 #define IF_COMM_ARB BIT(5)
111 #define IF_COMM_CONTROL BIT(4)
112 #define IF_COMM_CLR_INT_PND BIT(3)
113 #define IF_COMM_TXRQST BIT(2)
114 #define IF_COMM_CLR_NEWDAT IF_COMM_TXRQST
115 #define IF_COMM_DATAA BIT(1)
116 #define IF_COMM_DATAB BIT(0)
118 /* TX buffer setup */
119 #define IF_COMM_TX (IF_COMM_ARB | IF_COMM_CONTROL | \
121 IF_COMM_DATAA | IF_COMM_DATAB)
123 /* For the low buffers we clear the interrupt bit, but keep newdat */
124 #define IF_COMM_RCV_LOW (IF_COMM_MASK | IF_COMM_ARB | \
125 IF_COMM_CONTROL | IF_COMM_CLR_INT_PND | \
126 IF_COMM_DATAA | IF_COMM_DATAB)
128 /* For the high buffers we clear the interrupt bit and newdat */
129 #define IF_COMM_RCV_HIGH (IF_COMM_RCV_LOW | IF_COMM_CLR_NEWDAT)
132 /* Receive setup of message objects */
133 #define IF_COMM_RCV_SETUP (IF_COMM_MASK | IF_COMM_ARB | IF_COMM_CONTROL)
135 /* Invalidation of message objects */
136 #define IF_COMM_INVAL (IF_COMM_ARB | IF_COMM_CONTROL)
138 /* IFx arbitration */
139 #define IF_ARB_MSGVAL BIT(31)
140 #define IF_ARB_MSGXTD BIT(30)
141 #define IF_ARB_TRANSMIT BIT(29)
143 /* IFx message control */
144 #define IF_MCONT_NEWDAT BIT(15)
145 #define IF_MCONT_MSGLST BIT(14)
146 #define IF_MCONT_INTPND BIT(13)
147 #define IF_MCONT_UMASK BIT(12)
148 #define IF_MCONT_TXIE BIT(11)
149 #define IF_MCONT_RXIE BIT(10)
150 #define IF_MCONT_RMTEN BIT(9)
151 #define IF_MCONT_TXRQST BIT(8)
152 #define IF_MCONT_EOB BIT(7)
153 #define IF_MCONT_DLC_MASK 0xf
155 #define IF_MCONT_RCV (IF_MCONT_RXIE | IF_MCONT_UMASK)
156 #define IF_MCONT_RCV_EOB (IF_MCONT_RCV | IF_MCONT_EOB)
158 #define IF_MCONT_TX (IF_MCONT_TXIE | IF_MCONT_EOB)
161 * Use IF1 for RX and IF2 for TX
166 /* minimum timeout for checking BUSY status */
167 #define MIN_TIMEOUT_VALUE 6
169 /* Wait for ~1 sec for INIT bit */
170 #define INIT_WAIT_MS 1000
173 #define C_CAN_NAPI_WEIGHT C_CAN_MSG_OBJ_RX_NUM
175 /* c_can lec values */
176 enum c_can_lec_type
{
185 LEC_MASK
= LEC_UNUSED
,
190 * Bus errors (BUS_OFF, ERROR_WARNING, ERROR_PASSIVE) are supported
192 enum c_can_bus_error_types
{
199 static const struct can_bittiming_const c_can_bittiming_const
= {
200 .name
= KBUILD_MODNAME
,
201 .tseg1_min
= 2, /* Time segment 1 = prop_seg + phase_seg1 */
203 .tseg2_min
= 1, /* Time segment 2 = phase_seg2 */
207 .brp_max
= 1024, /* 6-bit BRP field + 4-bit BRPE field*/
211 static inline void c_can_pm_runtime_enable(const struct c_can_priv
*priv
)
214 pm_runtime_enable(priv
->device
);
217 static inline void c_can_pm_runtime_disable(const struct c_can_priv
*priv
)
220 pm_runtime_disable(priv
->device
);
223 static inline void c_can_pm_runtime_get_sync(const struct c_can_priv
*priv
)
226 pm_runtime_get_sync(priv
->device
);
229 static inline void c_can_pm_runtime_put_sync(const struct c_can_priv
*priv
)
232 pm_runtime_put_sync(priv
->device
);
235 static inline void c_can_reset_ram(const struct c_can_priv
*priv
, bool enable
)
238 priv
->raminit(priv
, enable
);
241 static void c_can_irq_control(struct c_can_priv
*priv
, bool enable
)
243 u32 ctrl
= priv
->read_reg(priv
, C_CAN_CTRL_REG
) & ~CONTROL_IRQMSK
;
246 ctrl
|= CONTROL_IRQMSK
;
248 priv
->write_reg(priv
, C_CAN_CTRL_REG
, ctrl
);
251 static void c_can_obj_update(struct net_device
*dev
, int iface
, u32 cmd
, u32 obj
)
253 struct c_can_priv
*priv
= netdev_priv(dev
);
254 int cnt
, reg
= C_CAN_IFACE(COMREQ_REG
, iface
);
256 priv
->write_reg32(priv
, reg
, (cmd
<< 16) | obj
);
258 for (cnt
= MIN_TIMEOUT_VALUE
; cnt
; cnt
--) {
259 if (!(priv
->read_reg(priv
, reg
) & IF_COMR_BUSY
))
263 netdev_err(dev
, "Updating object timed out\n");
267 static inline void c_can_object_get(struct net_device
*dev
, int iface
,
270 c_can_obj_update(dev
, iface
, cmd
, obj
);
273 static inline void c_can_object_put(struct net_device
*dev
, int iface
,
276 c_can_obj_update(dev
, iface
, cmd
| IF_COMM_WR
, obj
);
280 * Note: According to documentation clearing TXIE while MSGVAL is set
281 * is not allowed, but works nicely on C/DCAN. And that lowers the I/O
282 * load significantly.
284 static void c_can_inval_tx_object(struct net_device
*dev
, int iface
, int obj
)
286 struct c_can_priv
*priv
= netdev_priv(dev
);
288 priv
->write_reg(priv
, C_CAN_IFACE(MSGCTRL_REG
, iface
), 0);
289 c_can_object_put(dev
, iface
, obj
, IF_COMM_INVAL
);
292 static void c_can_inval_msg_object(struct net_device
*dev
, int iface
, int obj
)
294 struct c_can_priv
*priv
= netdev_priv(dev
);
296 priv
->write_reg(priv
, C_CAN_IFACE(ARB1_REG
, iface
), 0);
297 priv
->write_reg(priv
, C_CAN_IFACE(ARB2_REG
, iface
), 0);
298 c_can_inval_tx_object(dev
, iface
, obj
);
301 static void c_can_setup_tx_object(struct net_device
*dev
, int iface
,
302 struct can_frame
*frame
, int idx
)
304 struct c_can_priv
*priv
= netdev_priv(dev
);
305 u16 ctrl
= IF_MCONT_TX
| frame
->can_dlc
;
306 bool rtr
= frame
->can_id
& CAN_RTR_FLAG
;
307 u32 arb
= IF_ARB_MSGVAL
;
310 if (frame
->can_id
& CAN_EFF_FLAG
) {
311 arb
|= frame
->can_id
& CAN_EFF_MASK
;
312 arb
|= IF_ARB_MSGXTD
;
314 arb
|= (frame
->can_id
& CAN_SFF_MASK
) << 18;
318 arb
|= IF_ARB_TRANSMIT
;
321 * If we change the DIR bit, we need to invalidate the buffer
322 * first, i.e. clear the MSGVAL flag in the arbiter.
324 if (rtr
!= (bool)test_bit(idx
, &priv
->tx_dir
)) {
325 u32 obj
= idx
+ C_CAN_MSG_OBJ_TX_FIRST
;
327 c_can_inval_msg_object(dev
, iface
, obj
);
328 change_bit(idx
, &priv
->tx_dir
);
331 priv
->write_reg32(priv
, C_CAN_IFACE(ARB1_REG
, iface
), arb
);
333 priv
->write_reg(priv
, C_CAN_IFACE(MSGCTRL_REG
, iface
), ctrl
);
335 if (priv
->type
== BOSCH_D_CAN
) {
336 u32 data
= 0, dreg
= C_CAN_IFACE(DATA1_REG
, iface
);
338 for (i
= 0; i
< frame
->can_dlc
; i
+= 4, dreg
+= 2) {
339 data
= (u32
)frame
->data
[i
];
340 data
|= (u32
)frame
->data
[i
+ 1] << 8;
341 data
|= (u32
)frame
->data
[i
+ 2] << 16;
342 data
|= (u32
)frame
->data
[i
+ 3] << 24;
343 priv
->write_reg32(priv
, dreg
, data
);
346 for (i
= 0; i
< frame
->can_dlc
; i
+= 2) {
347 priv
->write_reg(priv
,
348 C_CAN_IFACE(DATA1_REG
, iface
) + i
/ 2,
350 (frame
->data
[i
+ 1] << 8));
355 static inline void c_can_activate_all_lower_rx_msg_obj(struct net_device
*dev
,
360 for (i
= C_CAN_MSG_OBJ_RX_FIRST
; i
<= C_CAN_MSG_RX_LOW_LAST
; i
++)
361 c_can_object_get(dev
, iface
, i
, IF_COMM_CLR_NEWDAT
);
364 static int c_can_handle_lost_msg_obj(struct net_device
*dev
,
365 int iface
, int objno
, u32 ctrl
)
367 struct net_device_stats
*stats
= &dev
->stats
;
368 struct c_can_priv
*priv
= netdev_priv(dev
);
369 struct can_frame
*frame
;
372 ctrl
&= ~(IF_MCONT_MSGLST
| IF_MCONT_INTPND
| IF_MCONT_NEWDAT
);
373 priv
->write_reg(priv
, C_CAN_IFACE(MSGCTRL_REG
, iface
), ctrl
);
374 c_can_object_put(dev
, iface
, objno
, IF_COMM_CONTROL
);
377 stats
->rx_over_errors
++;
379 /* create an error msg */
380 skb
= alloc_can_err_skb(dev
, &frame
);
384 frame
->can_id
|= CAN_ERR_CRTL
;
385 frame
->data
[1] = CAN_ERR_CRTL_RX_OVERFLOW
;
387 netif_receive_skb(skb
);
391 static int c_can_read_msg_object(struct net_device
*dev
, int iface
, u32 ctrl
)
393 struct net_device_stats
*stats
= &dev
->stats
;
394 struct c_can_priv
*priv
= netdev_priv(dev
);
395 struct can_frame
*frame
;
399 skb
= alloc_can_skb(dev
, &frame
);
405 frame
->can_dlc
= get_can_dlc(ctrl
& 0x0F);
407 arb
= priv
->read_reg32(priv
, C_CAN_IFACE(ARB1_REG
, iface
));
409 if (arb
& IF_ARB_MSGXTD
)
410 frame
->can_id
= (arb
& CAN_EFF_MASK
) | CAN_EFF_FLAG
;
412 frame
->can_id
= (arb
>> 18) & CAN_SFF_MASK
;
414 if (arb
& IF_ARB_TRANSMIT
) {
415 frame
->can_id
|= CAN_RTR_FLAG
;
417 int i
, dreg
= C_CAN_IFACE(DATA1_REG
, iface
);
419 if (priv
->type
== BOSCH_D_CAN
) {
420 for (i
= 0; i
< frame
->can_dlc
; i
+= 4, dreg
+= 2) {
421 data
= priv
->read_reg32(priv
, dreg
);
422 frame
->data
[i
] = data
;
423 frame
->data
[i
+ 1] = data
>> 8;
424 frame
->data
[i
+ 2] = data
>> 16;
425 frame
->data
[i
+ 3] = data
>> 24;
428 for (i
= 0; i
< frame
->can_dlc
; i
+= 2, dreg
++) {
429 data
= priv
->read_reg(priv
, dreg
);
430 frame
->data
[i
] = data
;
431 frame
->data
[i
+ 1] = data
>> 8;
437 stats
->rx_bytes
+= frame
->can_dlc
;
439 netif_receive_skb(skb
);
443 static void c_can_setup_receive_object(struct net_device
*dev
, int iface
,
444 u32 obj
, u32 mask
, u32 id
, u32 mcont
)
446 struct c_can_priv
*priv
= netdev_priv(dev
);
449 priv
->write_reg32(priv
, C_CAN_IFACE(MASK1_REG
, iface
), mask
);
452 priv
->write_reg32(priv
, C_CAN_IFACE(ARB1_REG
, iface
), id
);
454 priv
->write_reg(priv
, C_CAN_IFACE(MSGCTRL_REG
, iface
), mcont
);
455 c_can_object_put(dev
, iface
, obj
, IF_COMM_RCV_SETUP
);
458 static netdev_tx_t
c_can_start_xmit(struct sk_buff
*skb
,
459 struct net_device
*dev
)
461 struct can_frame
*frame
= (struct can_frame
*)skb
->data
;
462 struct c_can_priv
*priv
= netdev_priv(dev
);
465 if (can_dropped_invalid_skb(dev
, skb
))
468 * This is not a FIFO. C/D_CAN sends out the buffers
469 * prioritized. The lowest buffer number wins.
471 idx
= fls(atomic_read(&priv
->tx_active
));
472 obj
= idx
+ C_CAN_MSG_OBJ_TX_FIRST
;
474 /* If this is the last buffer, stop the xmit queue */
475 if (idx
== C_CAN_MSG_OBJ_TX_NUM
- 1)
476 netif_stop_queue(dev
);
478 * Store the message in the interface so we can call
479 * can_put_echo_skb(). We must do this before we enable
480 * transmit as we might race against do_tx().
482 c_can_setup_tx_object(dev
, IF_TX
, frame
, idx
);
483 priv
->dlc
[idx
] = frame
->can_dlc
;
484 can_put_echo_skb(skb
, dev
, idx
);
486 /* Update the active bits */
487 atomic_add((1 << idx
), &priv
->tx_active
);
488 /* Start transmission */
489 c_can_object_put(dev
, IF_TX
, obj
, IF_COMM_TX
);
494 static int c_can_wait_for_ctrl_init(struct net_device
*dev
,
495 struct c_can_priv
*priv
, u32 init
)
499 while (init
!= (priv
->read_reg(priv
, C_CAN_CTRL_REG
) & CONTROL_INIT
)) {
501 if (retry
++ > 1000) {
502 netdev_err(dev
, "CCTRL: set CONTROL_INIT failed\n");
509 static int c_can_set_bittiming(struct net_device
*dev
)
511 unsigned int reg_btr
, reg_brpe
, ctrl_save
;
512 u8 brp
, brpe
, sjw
, tseg1
, tseg2
;
514 struct c_can_priv
*priv
= netdev_priv(dev
);
515 const struct can_bittiming
*bt
= &priv
->can
.bittiming
;
518 /* c_can provides a 6-bit brp and 4-bit brpe fields */
519 ten_bit_brp
= bt
->brp
- 1;
520 brp
= ten_bit_brp
& BTR_BRP_MASK
;
521 brpe
= ten_bit_brp
>> 6;
524 tseg1
= bt
->prop_seg
+ bt
->phase_seg1
- 1;
525 tseg2
= bt
->phase_seg2
- 1;
526 reg_btr
= brp
| (sjw
<< BTR_SJW_SHIFT
) | (tseg1
<< BTR_TSEG1_SHIFT
) |
527 (tseg2
<< BTR_TSEG2_SHIFT
);
528 reg_brpe
= brpe
& BRP_EXT_BRPE_MASK
;
531 "setting BTR=%04x BRPE=%04x\n", reg_btr
, reg_brpe
);
533 ctrl_save
= priv
->read_reg(priv
, C_CAN_CTRL_REG
);
534 ctrl_save
&= ~CONTROL_INIT
;
535 priv
->write_reg(priv
, C_CAN_CTRL_REG
, CONTROL_CCE
| CONTROL_INIT
);
536 res
= c_can_wait_for_ctrl_init(dev
, priv
, CONTROL_INIT
);
540 priv
->write_reg(priv
, C_CAN_BTR_REG
, reg_btr
);
541 priv
->write_reg(priv
, C_CAN_BRPEXT_REG
, reg_brpe
);
542 priv
->write_reg(priv
, C_CAN_CTRL_REG
, ctrl_save
);
544 return c_can_wait_for_ctrl_init(dev
, priv
, 0);
548 * Configure C_CAN message objects for Tx and Rx purposes:
549 * C_CAN provides a total of 32 message objects that can be configured
550 * either for Tx or Rx purposes. Here the first 16 message objects are used as
551 * a reception FIFO. The end of reception FIFO is signified by the EoB bit
552 * being SET. The remaining 16 message objects are kept aside for Tx purposes.
553 * See user guide document for further details on configuring message
556 static void c_can_configure_msg_objects(struct net_device
*dev
)
560 /* first invalidate all message objects */
561 for (i
= C_CAN_MSG_OBJ_RX_FIRST
; i
<= C_CAN_NO_OF_OBJECTS
; i
++)
562 c_can_inval_msg_object(dev
, IF_RX
, i
);
564 /* setup receive message objects */
565 for (i
= C_CAN_MSG_OBJ_RX_FIRST
; i
< C_CAN_MSG_OBJ_RX_LAST
; i
++)
566 c_can_setup_receive_object(dev
, IF_RX
, i
, 0, 0, IF_MCONT_RCV
);
568 c_can_setup_receive_object(dev
, IF_RX
, C_CAN_MSG_OBJ_RX_LAST
, 0, 0,
573 * Configure C_CAN chip:
574 * - enable/disable auto-retransmission
575 * - set operating mode
576 * - configure message objects
578 static int c_can_chip_config(struct net_device
*dev
)
580 struct c_can_priv
*priv
= netdev_priv(dev
);
582 /* enable automatic retransmission */
583 priv
->write_reg(priv
, C_CAN_CTRL_REG
, CONTROL_ENABLE_AR
);
585 if ((priv
->can
.ctrlmode
& CAN_CTRLMODE_LISTENONLY
) &&
586 (priv
->can
.ctrlmode
& CAN_CTRLMODE_LOOPBACK
)) {
587 /* loopback + silent mode : useful for hot self-test */
588 priv
->write_reg(priv
, C_CAN_CTRL_REG
, CONTROL_TEST
);
589 priv
->write_reg(priv
, C_CAN_TEST_REG
, TEST_LBACK
| TEST_SILENT
);
590 } else if (priv
->can
.ctrlmode
& CAN_CTRLMODE_LOOPBACK
) {
591 /* loopback mode : useful for self-test function */
592 priv
->write_reg(priv
, C_CAN_CTRL_REG
, CONTROL_TEST
);
593 priv
->write_reg(priv
, C_CAN_TEST_REG
, TEST_LBACK
);
594 } else if (priv
->can
.ctrlmode
& CAN_CTRLMODE_LISTENONLY
) {
595 /* silent mode : bus-monitoring mode */
596 priv
->write_reg(priv
, C_CAN_CTRL_REG
, CONTROL_TEST
);
597 priv
->write_reg(priv
, C_CAN_TEST_REG
, TEST_SILENT
);
600 /* configure message objects */
601 c_can_configure_msg_objects(dev
);
603 /* set a `lec` value so that we can check for updates later */
604 priv
->write_reg(priv
, C_CAN_STS_REG
, LEC_UNUSED
);
606 /* Clear all internal status */
607 atomic_set(&priv
->tx_active
, 0);
611 /* set bittiming params */
612 return c_can_set_bittiming(dev
);
615 static int c_can_start(struct net_device
*dev
)
617 struct c_can_priv
*priv
= netdev_priv(dev
);
621 /* basic c_can configuration */
622 err
= c_can_chip_config(dev
);
626 /* Setup the command for new messages */
627 priv
->comm_rcv_high
= priv
->type
!= BOSCH_D_CAN
?
628 IF_COMM_RCV_LOW
: IF_COMM_RCV_HIGH
;
630 priv
->can
.state
= CAN_STATE_ERROR_ACTIVE
;
632 /* Attempt to use "active" if available else use "default" */
633 p
= pinctrl_get_select(priv
->device
, "active");
637 pinctrl_pm_select_default_state(priv
->device
);
642 static void c_can_stop(struct net_device
*dev
)
644 struct c_can_priv
*priv
= netdev_priv(dev
);
646 c_can_irq_control(priv
, false);
648 /* put ctrl to init on stop to end ongoing transmission */
649 priv
->write_reg(priv
, C_CAN_CTRL_REG
, CONTROL_INIT
);
651 /* deactivate pins */
652 pinctrl_pm_select_sleep_state(dev
->dev
.parent
);
653 priv
->can
.state
= CAN_STATE_STOPPED
;
656 static int c_can_set_mode(struct net_device
*dev
, enum can_mode mode
)
658 struct c_can_priv
*priv
= netdev_priv(dev
);
663 err
= c_can_start(dev
);
666 netif_wake_queue(dev
);
667 c_can_irq_control(priv
, true);
676 static int __c_can_get_berr_counter(const struct net_device
*dev
,
677 struct can_berr_counter
*bec
)
679 unsigned int reg_err_counter
;
680 struct c_can_priv
*priv
= netdev_priv(dev
);
682 reg_err_counter
= priv
->read_reg(priv
, C_CAN_ERR_CNT_REG
);
683 bec
->rxerr
= (reg_err_counter
& ERR_CNT_REC_MASK
) >>
685 bec
->txerr
= reg_err_counter
& ERR_CNT_TEC_MASK
;
690 static int c_can_get_berr_counter(const struct net_device
*dev
,
691 struct can_berr_counter
*bec
)
693 struct c_can_priv
*priv
= netdev_priv(dev
);
696 c_can_pm_runtime_get_sync(priv
);
697 err
= __c_can_get_berr_counter(dev
, bec
);
698 c_can_pm_runtime_put_sync(priv
);
703 static void c_can_do_tx(struct net_device
*dev
)
705 struct c_can_priv
*priv
= netdev_priv(dev
);
706 struct net_device_stats
*stats
= &dev
->stats
;
707 u32 idx
, obj
, pkts
= 0, bytes
= 0, pend
, clr
;
709 clr
= pend
= priv
->read_reg(priv
, C_CAN_INTPND2_REG
);
711 while ((idx
= ffs(pend
))) {
714 obj
= idx
+ C_CAN_MSG_OBJ_TX_FIRST
;
715 c_can_inval_tx_object(dev
, IF_RX
, obj
);
716 can_get_echo_skb(dev
, idx
);
717 bytes
+= priv
->dlc
[idx
];
721 /* Clear the bits in the tx_active mask */
722 atomic_sub(clr
, &priv
->tx_active
);
724 if (clr
& (1 << (C_CAN_MSG_OBJ_TX_NUM
- 1)))
725 netif_wake_queue(dev
);
728 stats
->tx_bytes
+= bytes
;
729 stats
->tx_packets
+= pkts
;
730 can_led_event(dev
, CAN_LED_EVENT_TX
);
735 * If we have a gap in the pending bits, that means we either
736 * raced with the hardware or failed to readout all upper
737 * objects in the last run due to quota limit.
739 static u32
c_can_adjust_pending(u32 pend
)
743 if (pend
== RECEIVE_OBJECT_BITS
)
747 * If the last set bit is larger than the number of pending
748 * bits we have a gap.
750 weight
= hweight32(pend
);
753 /* If the bits are linear, nothing to do */
758 * Find the first set bit after the gap. We walk backwards
759 * from the last set bit.
761 for (lasts
--; pend
& (1 << (lasts
- 1)); lasts
--);
763 return pend
& ~((1 << lasts
) - 1);
766 static inline void c_can_rx_object_get(struct net_device
*dev
,
767 struct c_can_priv
*priv
, u32 obj
)
769 c_can_object_get(dev
, IF_RX
, obj
, priv
->comm_rcv_high
);
772 static inline void c_can_rx_finalize(struct net_device
*dev
,
773 struct c_can_priv
*priv
, u32 obj
)
775 if (priv
->type
!= BOSCH_D_CAN
)
776 c_can_object_get(dev
, IF_RX
, obj
, IF_COMM_CLR_NEWDAT
);
779 static int c_can_read_objects(struct net_device
*dev
, struct c_can_priv
*priv
,
782 u32 pkts
= 0, ctrl
, obj
;
784 while ((obj
= ffs(pend
)) && quota
> 0) {
785 pend
&= ~BIT(obj
- 1);
787 c_can_rx_object_get(dev
, priv
, obj
);
788 ctrl
= priv
->read_reg(priv
, C_CAN_IFACE(MSGCTRL_REG
, IF_RX
));
790 if (ctrl
& IF_MCONT_MSGLST
) {
791 int n
= c_can_handle_lost_msg_obj(dev
, IF_RX
, obj
, ctrl
);
799 * This really should not happen, but this covers some
800 * odd HW behaviour. Do not remove that unless you
801 * want to brick your machine.
803 if (!(ctrl
& IF_MCONT_NEWDAT
))
806 /* read the data from the message object */
807 c_can_read_msg_object(dev
, IF_RX
, ctrl
);
809 c_can_rx_finalize(dev
, priv
, obj
);
818 static inline u32
c_can_get_pending(struct c_can_priv
*priv
)
820 u32 pend
= priv
->read_reg(priv
, C_CAN_NEWDAT1_REG
);
826 * theory of operation:
828 * c_can core saves a received CAN message into the first free message
829 * object it finds free (starting with the lowest). Bits NEWDAT and
830 * INTPND are set for this message object indicating that a new message
831 * has arrived. To work-around this issue, we keep two groups of message
832 * objects whose partitioning is defined by C_CAN_MSG_OBJ_RX_SPLIT.
834 * We clear the newdat bit right away.
836 * This can result in packet reordering when the readout is slow.
838 static int c_can_do_rx_poll(struct net_device
*dev
, int quota
)
840 struct c_can_priv
*priv
= netdev_priv(dev
);
841 u32 pkts
= 0, pend
= 0, toread
, n
;
844 * It is faster to read only one 16bit register. This is only possible
845 * for a maximum number of 16 objects.
847 BUILD_BUG_ON_MSG(C_CAN_MSG_OBJ_RX_LAST
> 16,
848 "Implementation does not support more message objects than 16");
852 pend
= c_can_get_pending(priv
);
856 * If the pending field has a gap, handle the
857 * bits above the gap first.
859 toread
= c_can_adjust_pending(pend
);
863 /* Remove the bits from pend */
865 /* Read the objects */
866 n
= c_can_read_objects(dev
, priv
, toread
, quota
);
872 can_led_event(dev
, CAN_LED_EVENT_RX
);
877 static int c_can_handle_state_change(struct net_device
*dev
,
878 enum c_can_bus_error_types error_type
)
880 unsigned int reg_err_counter
;
881 unsigned int rx_err_passive
;
882 struct c_can_priv
*priv
= netdev_priv(dev
);
883 struct net_device_stats
*stats
= &dev
->stats
;
884 struct can_frame
*cf
;
886 struct can_berr_counter bec
;
888 switch (error_type
) {
889 case C_CAN_ERROR_WARNING
:
890 /* error warning state */
891 priv
->can
.can_stats
.error_warning
++;
892 priv
->can
.state
= CAN_STATE_ERROR_WARNING
;
894 case C_CAN_ERROR_PASSIVE
:
895 /* error passive state */
896 priv
->can
.can_stats
.error_passive
++;
897 priv
->can
.state
= CAN_STATE_ERROR_PASSIVE
;
901 priv
->can
.state
= CAN_STATE_BUS_OFF
;
902 priv
->can
.can_stats
.bus_off
++;
908 /* propagate the error condition to the CAN stack */
909 skb
= alloc_can_err_skb(dev
, &cf
);
913 __c_can_get_berr_counter(dev
, &bec
);
914 reg_err_counter
= priv
->read_reg(priv
, C_CAN_ERR_CNT_REG
);
915 rx_err_passive
= (reg_err_counter
& ERR_CNT_RP_MASK
) >>
918 switch (error_type
) {
919 case C_CAN_ERROR_WARNING
:
920 /* error warning state */
921 cf
->can_id
|= CAN_ERR_CRTL
;
922 cf
->data
[1] = (bec
.txerr
> bec
.rxerr
) ?
923 CAN_ERR_CRTL_TX_WARNING
:
924 CAN_ERR_CRTL_RX_WARNING
;
925 cf
->data
[6] = bec
.txerr
;
926 cf
->data
[7] = bec
.rxerr
;
929 case C_CAN_ERROR_PASSIVE
:
930 /* error passive state */
931 cf
->can_id
|= CAN_ERR_CRTL
;
933 cf
->data
[1] |= CAN_ERR_CRTL_RX_PASSIVE
;
935 cf
->data
[1] |= CAN_ERR_CRTL_TX_PASSIVE
;
937 cf
->data
[6] = bec
.txerr
;
938 cf
->data
[7] = bec
.rxerr
;
942 cf
->can_id
|= CAN_ERR_BUSOFF
;
950 stats
->rx_bytes
+= cf
->can_dlc
;
951 netif_receive_skb(skb
);
956 static int c_can_handle_bus_err(struct net_device
*dev
,
957 enum c_can_lec_type lec_type
)
959 struct c_can_priv
*priv
= netdev_priv(dev
);
960 struct net_device_stats
*stats
= &dev
->stats
;
961 struct can_frame
*cf
;
965 * early exit if no lec update or no error.
966 * no lec update means that no CAN bus event has been detected
967 * since CPU wrote 0x7 value to status reg.
969 if (lec_type
== LEC_UNUSED
|| lec_type
== LEC_NO_ERROR
)
972 if (!(priv
->can
.ctrlmode
& CAN_CTRLMODE_BERR_REPORTING
))
975 /* common for all type of bus errors */
976 priv
->can
.can_stats
.bus_error
++;
979 /* propagate the error condition to the CAN stack */
980 skb
= alloc_can_err_skb(dev
, &cf
);
985 * check for 'last error code' which tells us the
986 * type of the last error to occur on the CAN bus
988 cf
->can_id
|= CAN_ERR_PROT
| CAN_ERR_BUSERROR
;
991 case LEC_STUFF_ERROR
:
992 netdev_dbg(dev
, "stuff error\n");
993 cf
->data
[2] |= CAN_ERR_PROT_STUFF
;
996 netdev_dbg(dev
, "form error\n");
997 cf
->data
[2] |= CAN_ERR_PROT_FORM
;
1000 netdev_dbg(dev
, "ack error\n");
1001 cf
->data
[3] = CAN_ERR_PROT_LOC_ACK
;
1003 case LEC_BIT1_ERROR
:
1004 netdev_dbg(dev
, "bit1 error\n");
1005 cf
->data
[2] |= CAN_ERR_PROT_BIT1
;
1007 case LEC_BIT0_ERROR
:
1008 netdev_dbg(dev
, "bit0 error\n");
1009 cf
->data
[2] |= CAN_ERR_PROT_BIT0
;
1012 netdev_dbg(dev
, "CRC error\n");
1013 cf
->data
[3] = CAN_ERR_PROT_LOC_CRC_SEQ
;
1019 stats
->rx_packets
++;
1020 stats
->rx_bytes
+= cf
->can_dlc
;
1021 netif_receive_skb(skb
);
1025 static int c_can_poll(struct napi_struct
*napi
, int quota
)
1027 struct net_device
*dev
= napi
->dev
;
1028 struct c_can_priv
*priv
= netdev_priv(dev
);
1029 u16 curr
, last
= priv
->last_status
;
1032 priv
->last_status
= curr
= priv
->read_reg(priv
, C_CAN_STS_REG
);
1033 /* Ack status on C_CAN. D_CAN is self clearing */
1034 if (priv
->type
!= BOSCH_D_CAN
)
1035 priv
->write_reg(priv
, C_CAN_STS_REG
, LEC_UNUSED
);
1037 /* handle state changes */
1038 if ((curr
& STATUS_EWARN
) && (!(last
& STATUS_EWARN
))) {
1039 netdev_dbg(dev
, "entered error warning state\n");
1040 work_done
+= c_can_handle_state_change(dev
, C_CAN_ERROR_WARNING
);
1043 if ((curr
& STATUS_EPASS
) && (!(last
& STATUS_EPASS
))) {
1044 netdev_dbg(dev
, "entered error passive state\n");
1045 work_done
+= c_can_handle_state_change(dev
, C_CAN_ERROR_PASSIVE
);
1048 if ((curr
& STATUS_BOFF
) && (!(last
& STATUS_BOFF
))) {
1049 netdev_dbg(dev
, "entered bus off state\n");
1050 work_done
+= c_can_handle_state_change(dev
, C_CAN_BUS_OFF
);
1054 /* handle bus recovery events */
1055 if ((!(curr
& STATUS_BOFF
)) && (last
& STATUS_BOFF
)) {
1056 netdev_dbg(dev
, "left bus off state\n");
1057 priv
->can
.state
= CAN_STATE_ERROR_ACTIVE
;
1059 if ((!(curr
& STATUS_EPASS
)) && (last
& STATUS_EPASS
)) {
1060 netdev_dbg(dev
, "left error passive state\n");
1061 priv
->can
.state
= CAN_STATE_ERROR_ACTIVE
;
1064 /* handle lec errors on the bus */
1065 work_done
+= c_can_handle_bus_err(dev
, curr
& LEC_MASK
);
1067 /* Handle Tx/Rx events. We do this unconditionally */
1068 work_done
+= c_can_do_rx_poll(dev
, (quota
- work_done
));
1072 if (work_done
< quota
) {
1073 napi_complete(napi
);
1074 /* enable all IRQs if we are not in bus off state */
1075 if (priv
->can
.state
!= CAN_STATE_BUS_OFF
)
1076 c_can_irq_control(priv
, true);
1082 static irqreturn_t
c_can_isr(int irq
, void *dev_id
)
1084 struct net_device
*dev
= (struct net_device
*)dev_id
;
1085 struct c_can_priv
*priv
= netdev_priv(dev
);
1087 if (!priv
->read_reg(priv
, C_CAN_INT_REG
))
1090 /* disable all interrupts and schedule the NAPI */
1091 c_can_irq_control(priv
, false);
1092 napi_schedule(&priv
->napi
);
1097 static int c_can_open(struct net_device
*dev
)
1100 struct c_can_priv
*priv
= netdev_priv(dev
);
1102 c_can_pm_runtime_get_sync(priv
);
1103 c_can_reset_ram(priv
, true);
1105 /* open the can device */
1106 err
= open_candev(dev
);
1108 netdev_err(dev
, "failed to open can device\n");
1109 goto exit_open_fail
;
1112 /* register interrupt handler */
1113 err
= request_irq(dev
->irq
, &c_can_isr
, IRQF_SHARED
, dev
->name
,
1116 netdev_err(dev
, "failed to request interrupt\n");
1120 /* start the c_can controller */
1121 err
= c_can_start(dev
);
1123 goto exit_start_fail
;
1125 can_led_event(dev
, CAN_LED_EVENT_OPEN
);
1127 napi_enable(&priv
->napi
);
1128 /* enable status change, error and module interrupts */
1129 c_can_irq_control(priv
, true);
1130 netif_start_queue(dev
);
1135 free_irq(dev
->irq
, dev
);
1139 c_can_reset_ram(priv
, false);
1140 c_can_pm_runtime_put_sync(priv
);
1144 static int c_can_close(struct net_device
*dev
)
1146 struct c_can_priv
*priv
= netdev_priv(dev
);
1148 netif_stop_queue(dev
);
1149 napi_disable(&priv
->napi
);
1151 free_irq(dev
->irq
, dev
);
1154 c_can_reset_ram(priv
, false);
1155 c_can_pm_runtime_put_sync(priv
);
1157 can_led_event(dev
, CAN_LED_EVENT_STOP
);
1162 struct net_device
*alloc_c_can_dev(void)
1164 struct net_device
*dev
;
1165 struct c_can_priv
*priv
;
1167 dev
= alloc_candev(sizeof(struct c_can_priv
), C_CAN_MSG_OBJ_TX_NUM
);
1171 priv
= netdev_priv(dev
);
1172 netif_napi_add(dev
, &priv
->napi
, c_can_poll
, C_CAN_NAPI_WEIGHT
);
1175 priv
->can
.bittiming_const
= &c_can_bittiming_const
;
1176 priv
->can
.do_set_mode
= c_can_set_mode
;
1177 priv
->can
.do_get_berr_counter
= c_can_get_berr_counter
;
1178 priv
->can
.ctrlmode_supported
= CAN_CTRLMODE_LOOPBACK
|
1179 CAN_CTRLMODE_LISTENONLY
|
1180 CAN_CTRLMODE_BERR_REPORTING
;
1184 EXPORT_SYMBOL_GPL(alloc_c_can_dev
);
1187 int c_can_power_down(struct net_device
*dev
)
1190 unsigned long time_out
;
1191 struct c_can_priv
*priv
= netdev_priv(dev
);
1193 if (!(dev
->flags
& IFF_UP
))
1196 WARN_ON(priv
->type
!= BOSCH_D_CAN
);
1198 /* set PDR value so the device goes to power down mode */
1199 val
= priv
->read_reg(priv
, C_CAN_CTRL_EX_REG
);
1200 val
|= CONTROL_EX_PDR
;
1201 priv
->write_reg(priv
, C_CAN_CTRL_EX_REG
, val
);
1203 /* Wait for the PDA bit to get set */
1204 time_out
= jiffies
+ msecs_to_jiffies(INIT_WAIT_MS
);
1205 while (!(priv
->read_reg(priv
, C_CAN_STS_REG
) & STATUS_PDA
) &&
1206 time_after(time_out
, jiffies
))
1209 if (time_after(jiffies
, time_out
))
1214 c_can_reset_ram(priv
, false);
1215 c_can_pm_runtime_put_sync(priv
);
1219 EXPORT_SYMBOL_GPL(c_can_power_down
);
1221 int c_can_power_up(struct net_device
*dev
)
1224 unsigned long time_out
;
1225 struct c_can_priv
*priv
= netdev_priv(dev
);
1228 if (!(dev
->flags
& IFF_UP
))
1231 WARN_ON(priv
->type
!= BOSCH_D_CAN
);
1233 c_can_pm_runtime_get_sync(priv
);
1234 c_can_reset_ram(priv
, true);
1236 /* Clear PDR and INIT bits */
1237 val
= priv
->read_reg(priv
, C_CAN_CTRL_EX_REG
);
1238 val
&= ~CONTROL_EX_PDR
;
1239 priv
->write_reg(priv
, C_CAN_CTRL_EX_REG
, val
);
1240 val
= priv
->read_reg(priv
, C_CAN_CTRL_REG
);
1241 val
&= ~CONTROL_INIT
;
1242 priv
->write_reg(priv
, C_CAN_CTRL_REG
, val
);
1244 /* Wait for the PDA bit to get clear */
1245 time_out
= jiffies
+ msecs_to_jiffies(INIT_WAIT_MS
);
1246 while ((priv
->read_reg(priv
, C_CAN_STS_REG
) & STATUS_PDA
) &&
1247 time_after(time_out
, jiffies
))
1250 if (time_after(jiffies
, time_out
))
1253 ret
= c_can_start(dev
);
1255 c_can_irq_control(priv
, true);
1259 EXPORT_SYMBOL_GPL(c_can_power_up
);
1262 void free_c_can_dev(struct net_device
*dev
)
1264 struct c_can_priv
*priv
= netdev_priv(dev
);
1266 netif_napi_del(&priv
->napi
);
1269 EXPORT_SYMBOL_GPL(free_c_can_dev
);
1271 static const struct net_device_ops c_can_netdev_ops
= {
1272 .ndo_open
= c_can_open
,
1273 .ndo_stop
= c_can_close
,
1274 .ndo_start_xmit
= c_can_start_xmit
,
1275 .ndo_change_mtu
= can_change_mtu
,
1278 int register_c_can_dev(struct net_device
*dev
)
1280 struct c_can_priv
*priv
= netdev_priv(dev
);
1283 /* Deactivate pins to prevent DRA7 DCAN IP from being
1284 * stuck in transition when module is disabled.
1285 * Pins are activated in c_can_start() and deactivated
1288 pinctrl_pm_select_sleep_state(dev
->dev
.parent
);
1290 c_can_pm_runtime_enable(priv
);
1292 dev
->flags
|= IFF_ECHO
; /* we support local echo */
1293 dev
->netdev_ops
= &c_can_netdev_ops
;
1295 err
= register_candev(dev
);
1297 c_can_pm_runtime_disable(priv
);
1299 devm_can_led_init(dev
);
1303 EXPORT_SYMBOL_GPL(register_c_can_dev
);
1305 void unregister_c_can_dev(struct net_device
*dev
)
1307 struct c_can_priv
*priv
= netdev_priv(dev
);
1309 unregister_candev(dev
);
1311 c_can_pm_runtime_disable(priv
);
1313 EXPORT_SYMBOL_GPL(unregister_c_can_dev
);
1315 MODULE_AUTHOR("Bhupesh Sharma <bhupesh.sharma@st.com>");
1316 MODULE_LICENSE("GPL v2");
1317 MODULE_DESCRIPTION("CAN bus driver for Bosch C_CAN controller");