2 * CAN bus driver for Microchip 251x CAN Controller with SPI Interface
4 * MCP2510 support and bug fixes by Christian Pellegrin
5 * <chripell@evolware.org>
7 * Copyright 2009 Christian Pellegrin EVOL S.r.l.
9 * Copyright 2007 Raymarine UK, Ltd. All Rights Reserved.
10 * Written under contract by:
11 * Chris Elston, Katalix Systems, Ltd.
13 * Based on Microchip MCP251x CAN controller driver written by
14 * David Vrabel, Copyright 2006 Arcom Control Systems Ltd.
16 * Based on CAN bus driver for the CCAN controller written by
17 * - Sascha Hauer, Marc Kleine-Budde, Pengutronix
18 * - Simon Kallweit, intefo AG
21 * This program is free software; you can redistribute it and/or modify
22 * it under the terms of the version 2 of the GNU General Public License
23 * as published by the Free Software Foundation
25 * This program is distributed in the hope that it will be useful,
26 * but WITHOUT ANY WARRANTY; without even the implied warranty of
27 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
28 * GNU General Public License for more details.
30 * You should have received a copy of the GNU General Public License
31 * along with this program; if not, see <http://www.gnu.org/licenses/>.
35 * Your platform definition file should specify something like:
37 * static struct mcp251x_platform_data mcp251x_info = {
38 * .oscillator_frequency = 8000000,
41 * static struct spi_board_info spi_board_info[] = {
43 * .modalias = "mcp2510",
44 * // or "mcp2515" depending on your controller
45 * .platform_data = &mcp251x_info,
47 * .max_speed_hz = 2*1000*1000,
52 * Please see mcp251x.h for a description of the fields in
53 * struct mcp251x_platform_data.
57 #include <linux/can/core.h>
58 #include <linux/can/dev.h>
59 #include <linux/can/led.h>
60 #include <linux/can/platform/mcp251x.h>
61 #include <linux/clk.h>
62 #include <linux/completion.h>
63 #include <linux/delay.h>
64 #include <linux/device.h>
65 #include <linux/dma-mapping.h>
66 #include <linux/freezer.h>
67 #include <linux/interrupt.h>
69 #include <linux/kernel.h>
70 #include <linux/module.h>
71 #include <linux/netdevice.h>
73 #include <linux/of_device.h>
74 #include <linux/platform_device.h>
75 #include <linux/slab.h>
76 #include <linux/spi/spi.h>
77 #include <linux/uaccess.h>
78 #include <linux/regulator/consumer.h>
80 /* SPI interface instruction set */
81 #define INSTRUCTION_WRITE 0x02
82 #define INSTRUCTION_READ 0x03
83 #define INSTRUCTION_BIT_MODIFY 0x05
84 #define INSTRUCTION_LOAD_TXB(n) (0x40 + 2 * (n))
85 #define INSTRUCTION_READ_RXB(n) (((n) == 0) ? 0x90 : 0x94)
86 #define INSTRUCTION_RESET 0xC0
90 #define INSTRUCTION_RTS(n) (0x80 | ((n) & 0x07))
93 /* MPC251x registers */
96 # define CANCTRL_REQOP_MASK 0xe0
97 # define CANCTRL_REQOP_CONF 0x80
98 # define CANCTRL_REQOP_LISTEN_ONLY 0x60
99 # define CANCTRL_REQOP_LOOPBACK 0x40
100 # define CANCTRL_REQOP_SLEEP 0x20
101 # define CANCTRL_REQOP_NORMAL 0x00
102 # define CANCTRL_OSM 0x08
103 # define CANCTRL_ABAT 0x10
107 # define CNF1_SJW_SHIFT 6
109 # define CNF2_BTLMODE 0x80
110 # define CNF2_SAM 0x40
111 # define CNF2_PS1_SHIFT 3
113 # define CNF3_SOF 0x08
114 # define CNF3_WAKFIL 0x04
115 # define CNF3_PHSEG2_MASK 0x07
117 # define CANINTE_MERRE 0x80
118 # define CANINTE_WAKIE 0x40
119 # define CANINTE_ERRIE 0x20
120 # define CANINTE_TX2IE 0x10
121 # define CANINTE_TX1IE 0x08
122 # define CANINTE_TX0IE 0x04
123 # define CANINTE_RX1IE 0x02
124 # define CANINTE_RX0IE 0x01
126 # define CANINTF_MERRF 0x80
127 # define CANINTF_WAKIF 0x40
128 # define CANINTF_ERRIF 0x20
129 # define CANINTF_TX2IF 0x10
130 # define CANINTF_TX1IF 0x08
131 # define CANINTF_TX0IF 0x04
132 # define CANINTF_RX1IF 0x02
133 # define CANINTF_RX0IF 0x01
134 # define CANINTF_RX (CANINTF_RX0IF | CANINTF_RX1IF)
135 # define CANINTF_TX (CANINTF_TX2IF | CANINTF_TX1IF | CANINTF_TX0IF)
136 # define CANINTF_ERR (CANINTF_ERRIF)
138 # define EFLG_EWARN 0x01
139 # define EFLG_RXWAR 0x02
140 # define EFLG_TXWAR 0x04
141 # define EFLG_RXEP 0x08
142 # define EFLG_TXEP 0x10
143 # define EFLG_TXBO 0x20
144 # define EFLG_RX0OVR 0x40
145 # define EFLG_RX1OVR 0x80
146 #define TXBCTRL(n) (((n) * 0x10) + 0x30 + TXBCTRL_OFF)
147 # define TXBCTRL_ABTF 0x40
148 # define TXBCTRL_MLOA 0x20
149 # define TXBCTRL_TXERR 0x10
150 # define TXBCTRL_TXREQ 0x08
151 #define TXBSIDH(n) (((n) * 0x10) + 0x30 + TXBSIDH_OFF)
152 # define SIDH_SHIFT 3
153 #define TXBSIDL(n) (((n) * 0x10) + 0x30 + TXBSIDL_OFF)
154 # define SIDL_SID_MASK 7
155 # define SIDL_SID_SHIFT 5
156 # define SIDL_EXIDE_SHIFT 3
157 # define SIDL_EID_SHIFT 16
158 # define SIDL_EID_MASK 3
159 #define TXBEID8(n) (((n) * 0x10) + 0x30 + TXBEID8_OFF)
160 #define TXBEID0(n) (((n) * 0x10) + 0x30 + TXBEID0_OFF)
161 #define TXBDLC(n) (((n) * 0x10) + 0x30 + TXBDLC_OFF)
162 # define DLC_RTR_SHIFT 6
163 #define TXBCTRL_OFF 0
164 #define TXBSIDH_OFF 1
165 #define TXBSIDL_OFF 2
166 #define TXBEID8_OFF 3
167 #define TXBEID0_OFF 4
170 #define RXBCTRL(n) (((n) * 0x10) + 0x60 + RXBCTRL_OFF)
171 # define RXBCTRL_BUKT 0x04
172 # define RXBCTRL_RXM0 0x20
173 # define RXBCTRL_RXM1 0x40
174 #define RXBSIDH(n) (((n) * 0x10) + 0x60 + RXBSIDH_OFF)
175 # define RXBSIDH_SHIFT 3
176 #define RXBSIDL(n) (((n) * 0x10) + 0x60 + RXBSIDL_OFF)
177 # define RXBSIDL_IDE 0x08
178 # define RXBSIDL_SRR 0x10
179 # define RXBSIDL_EID 3
180 # define RXBSIDL_SHIFT 5
181 #define RXBEID8(n) (((n) * 0x10) + 0x60 + RXBEID8_OFF)
182 #define RXBEID0(n) (((n) * 0x10) + 0x60 + RXBEID0_OFF)
183 #define RXBDLC(n) (((n) * 0x10) + 0x60 + RXBDLC_OFF)
184 # define RXBDLC_LEN_MASK 0x0f
185 # define RXBDLC_RTR 0x40
186 #define RXBCTRL_OFF 0
187 #define RXBSIDH_OFF 1
188 #define RXBSIDL_OFF 2
189 #define RXBEID8_OFF 3
190 #define RXBEID0_OFF 4
193 #define RXFSID(n) ((n < 3) ? 0 : 4)
194 #define RXFSIDH(n) ((n) * 4 + RXFSID(n))
195 #define RXFSIDL(n) ((n) * 4 + 1 + RXFSID(n))
196 #define RXFEID8(n) ((n) * 4 + 2 + RXFSID(n))
197 #define RXFEID0(n) ((n) * 4 + 3 + RXFSID(n))
198 #define RXMSIDH(n) ((n) * 4 + 0x20)
199 #define RXMSIDL(n) ((n) * 4 + 0x21)
200 #define RXMEID8(n) ((n) * 4 + 0x22)
201 #define RXMEID0(n) ((n) * 4 + 0x23)
203 #define GET_BYTE(val, byte) \
204 (((val) >> ((byte) * 8)) & 0xff)
205 #define SET_BYTE(val, byte) \
206 (((val) & 0xff) << ((byte) * 8))
209 * Buffer size required for the largest SPI transfer (i.e., reading a
212 #define CAN_FRAME_MAX_DATA_LEN 8
213 #define SPI_TRANSFER_BUF_LEN (6 + CAN_FRAME_MAX_DATA_LEN)
214 #define CAN_FRAME_MAX_BITS 128
216 #define TX_ECHO_SKB_MAX 1
218 #define MCP251X_OST_DELAY_MS (5)
220 #define DEVICE_NAME "mcp251x"
222 static int mcp251x_enable_dma
; /* Enable SPI DMA. Default: 0 (Off) */
223 module_param(mcp251x_enable_dma
, int, S_IRUGO
);
224 MODULE_PARM_DESC(mcp251x_enable_dma
, "Enable SPI DMA. Default: 0 (Off)");
226 static const struct can_bittiming_const mcp251x_bittiming_const
= {
239 CAN_MCP251X_MCP2510
= 0x2510,
240 CAN_MCP251X_MCP2515
= 0x2515,
243 struct mcp251x_priv
{
245 struct net_device
*net
;
246 struct spi_device
*spi
;
247 enum mcp251x_model model
;
249 struct mutex mcp_lock
; /* SPI device lock */
253 dma_addr_t spi_tx_dma
;
254 dma_addr_t spi_rx_dma
;
256 struct sk_buff
*tx_skb
;
259 struct workqueue_struct
*wq
;
260 struct work_struct tx_work
;
261 struct work_struct restart_work
;
265 #define AFTER_SUSPEND_UP 1
266 #define AFTER_SUSPEND_DOWN 2
267 #define AFTER_SUSPEND_POWER 4
268 #define AFTER_SUSPEND_RESTART 8
270 struct regulator
*power
;
271 struct regulator
*transceiver
;
275 #define MCP251X_IS(_model) \
276 static inline int mcp251x_is_##_model(struct spi_device *spi) \
278 struct mcp251x_priv *priv = spi_get_drvdata(spi); \
279 return priv->model == CAN_MCP251X_MCP##_model; \
285 static void mcp251x_clean(struct net_device
*net
)
287 struct mcp251x_priv
*priv
= netdev_priv(net
);
289 if (priv
->tx_skb
|| priv
->tx_len
)
290 net
->stats
.tx_errors
++;
292 dev_kfree_skb(priv
->tx_skb
);
294 can_free_echo_skb(priv
->net
, 0);
300 * Note about handling of error return of mcp251x_spi_trans: accessing
301 * registers via SPI is not really different conceptually than using
302 * normal I/O assembler instructions, although it's much more
303 * complicated from a practical POV. So it's not advisable to always
304 * check the return value of this function. Imagine that every
305 * read{b,l}, write{b,l} and friends would be bracketed in "if ( < 0)
306 * error();", it would be a great mess (well there are some situation
307 * when exception handling C++ like could be useful after all). So we
308 * just check that transfers are OK at the beginning of our
309 * conversation with the chip and to avoid doing really nasty things
310 * (like injecting bogus packets in the network stack).
312 static int mcp251x_spi_trans(struct spi_device
*spi
, int len
)
314 struct mcp251x_priv
*priv
= spi_get_drvdata(spi
);
315 struct spi_transfer t
= {
316 .tx_buf
= priv
->spi_tx_buf
,
317 .rx_buf
= priv
->spi_rx_buf
,
321 struct spi_message m
;
324 spi_message_init(&m
);
326 if (mcp251x_enable_dma
) {
327 t
.tx_dma
= priv
->spi_tx_dma
;
328 t
.rx_dma
= priv
->spi_rx_dma
;
332 spi_message_add_tail(&t
, &m
);
334 ret
= spi_sync(spi
, &m
);
336 dev_err(&spi
->dev
, "spi transfer failed: ret = %d\n", ret
);
340 static u8
mcp251x_read_reg(struct spi_device
*spi
, uint8_t reg
)
342 struct mcp251x_priv
*priv
= spi_get_drvdata(spi
);
345 priv
->spi_tx_buf
[0] = INSTRUCTION_READ
;
346 priv
->spi_tx_buf
[1] = reg
;
348 mcp251x_spi_trans(spi
, 3);
349 val
= priv
->spi_rx_buf
[2];
354 static void mcp251x_read_2regs(struct spi_device
*spi
, uint8_t reg
,
355 uint8_t *v1
, uint8_t *v2
)
357 struct mcp251x_priv
*priv
= spi_get_drvdata(spi
);
359 priv
->spi_tx_buf
[0] = INSTRUCTION_READ
;
360 priv
->spi_tx_buf
[1] = reg
;
362 mcp251x_spi_trans(spi
, 4);
364 *v1
= priv
->spi_rx_buf
[2];
365 *v2
= priv
->spi_rx_buf
[3];
368 static void mcp251x_write_reg(struct spi_device
*spi
, u8 reg
, uint8_t val
)
370 struct mcp251x_priv
*priv
= spi_get_drvdata(spi
);
372 priv
->spi_tx_buf
[0] = INSTRUCTION_WRITE
;
373 priv
->spi_tx_buf
[1] = reg
;
374 priv
->spi_tx_buf
[2] = val
;
376 mcp251x_spi_trans(spi
, 3);
379 static void mcp251x_write_bits(struct spi_device
*spi
, u8 reg
,
380 u8 mask
, uint8_t val
)
382 struct mcp251x_priv
*priv
= spi_get_drvdata(spi
);
384 priv
->spi_tx_buf
[0] = INSTRUCTION_BIT_MODIFY
;
385 priv
->spi_tx_buf
[1] = reg
;
386 priv
->spi_tx_buf
[2] = mask
;
387 priv
->spi_tx_buf
[3] = val
;
389 mcp251x_spi_trans(spi
, 4);
392 static void mcp251x_hw_tx_frame(struct spi_device
*spi
, u8
*buf
,
393 int len
, int tx_buf_idx
)
395 struct mcp251x_priv
*priv
= spi_get_drvdata(spi
);
397 if (mcp251x_is_2510(spi
)) {
400 for (i
= 1; i
< TXBDAT_OFF
+ len
; i
++)
401 mcp251x_write_reg(spi
, TXBCTRL(tx_buf_idx
) + i
,
404 memcpy(priv
->spi_tx_buf
, buf
, TXBDAT_OFF
+ len
);
405 mcp251x_spi_trans(spi
, TXBDAT_OFF
+ len
);
409 static void mcp251x_hw_tx(struct spi_device
*spi
, struct can_frame
*frame
,
412 struct mcp251x_priv
*priv
= spi_get_drvdata(spi
);
413 u32 sid
, eid
, exide
, rtr
;
414 u8 buf
[SPI_TRANSFER_BUF_LEN
];
416 exide
= (frame
->can_id
& CAN_EFF_FLAG
) ? 1 : 0; /* Extended ID Enable */
418 sid
= (frame
->can_id
& CAN_EFF_MASK
) >> 18;
420 sid
= frame
->can_id
& CAN_SFF_MASK
; /* Standard ID */
421 eid
= frame
->can_id
& CAN_EFF_MASK
; /* Extended ID */
422 rtr
= (frame
->can_id
& CAN_RTR_FLAG
) ? 1 : 0; /* Remote transmission */
424 buf
[TXBCTRL_OFF
] = INSTRUCTION_LOAD_TXB(tx_buf_idx
);
425 buf
[TXBSIDH_OFF
] = sid
>> SIDH_SHIFT
;
426 buf
[TXBSIDL_OFF
] = ((sid
& SIDL_SID_MASK
) << SIDL_SID_SHIFT
) |
427 (exide
<< SIDL_EXIDE_SHIFT
) |
428 ((eid
>> SIDL_EID_SHIFT
) & SIDL_EID_MASK
);
429 buf
[TXBEID8_OFF
] = GET_BYTE(eid
, 1);
430 buf
[TXBEID0_OFF
] = GET_BYTE(eid
, 0);
431 buf
[TXBDLC_OFF
] = (rtr
<< DLC_RTR_SHIFT
) | frame
->can_dlc
;
432 memcpy(buf
+ TXBDAT_OFF
, frame
->data
, frame
->can_dlc
);
433 mcp251x_hw_tx_frame(spi
, buf
, frame
->can_dlc
, tx_buf_idx
);
435 /* use INSTRUCTION_RTS, to avoid "repeated frame problem" */
436 priv
->spi_tx_buf
[0] = INSTRUCTION_RTS(1 << tx_buf_idx
);
437 mcp251x_spi_trans(priv
->spi
, 1);
440 static void mcp251x_hw_rx_frame(struct spi_device
*spi
, u8
*buf
,
443 struct mcp251x_priv
*priv
= spi_get_drvdata(spi
);
445 if (mcp251x_is_2510(spi
)) {
448 for (i
= 1; i
< RXBDAT_OFF
; i
++)
449 buf
[i
] = mcp251x_read_reg(spi
, RXBCTRL(buf_idx
) + i
);
451 len
= get_can_dlc(buf
[RXBDLC_OFF
] & RXBDLC_LEN_MASK
);
452 for (; i
< (RXBDAT_OFF
+ len
); i
++)
453 buf
[i
] = mcp251x_read_reg(spi
, RXBCTRL(buf_idx
) + i
);
455 priv
->spi_tx_buf
[RXBCTRL_OFF
] = INSTRUCTION_READ_RXB(buf_idx
);
456 mcp251x_spi_trans(spi
, SPI_TRANSFER_BUF_LEN
);
457 memcpy(buf
, priv
->spi_rx_buf
, SPI_TRANSFER_BUF_LEN
);
461 static void mcp251x_hw_rx(struct spi_device
*spi
, int buf_idx
)
463 struct mcp251x_priv
*priv
= spi_get_drvdata(spi
);
465 struct can_frame
*frame
;
466 u8 buf
[SPI_TRANSFER_BUF_LEN
];
468 skb
= alloc_can_skb(priv
->net
, &frame
);
470 dev_err(&spi
->dev
, "cannot allocate RX skb\n");
471 priv
->net
->stats
.rx_dropped
++;
475 mcp251x_hw_rx_frame(spi
, buf
, buf_idx
);
476 if (buf
[RXBSIDL_OFF
] & RXBSIDL_IDE
) {
477 /* Extended ID format */
478 frame
->can_id
= CAN_EFF_FLAG
;
480 /* Extended ID part */
481 SET_BYTE(buf
[RXBSIDL_OFF
] & RXBSIDL_EID
, 2) |
482 SET_BYTE(buf
[RXBEID8_OFF
], 1) |
483 SET_BYTE(buf
[RXBEID0_OFF
], 0) |
484 /* Standard ID part */
485 (((buf
[RXBSIDH_OFF
] << RXBSIDH_SHIFT
) |
486 (buf
[RXBSIDL_OFF
] >> RXBSIDL_SHIFT
)) << 18);
487 /* Remote transmission request */
488 if (buf
[RXBDLC_OFF
] & RXBDLC_RTR
)
489 frame
->can_id
|= CAN_RTR_FLAG
;
491 /* Standard ID format */
493 (buf
[RXBSIDH_OFF
] << RXBSIDH_SHIFT
) |
494 (buf
[RXBSIDL_OFF
] >> RXBSIDL_SHIFT
);
495 if (buf
[RXBSIDL_OFF
] & RXBSIDL_SRR
)
496 frame
->can_id
|= CAN_RTR_FLAG
;
499 frame
->can_dlc
= get_can_dlc(buf
[RXBDLC_OFF
] & RXBDLC_LEN_MASK
);
500 memcpy(frame
->data
, buf
+ RXBDAT_OFF
, frame
->can_dlc
);
502 priv
->net
->stats
.rx_packets
++;
503 priv
->net
->stats
.rx_bytes
+= frame
->can_dlc
;
505 can_led_event(priv
->net
, CAN_LED_EVENT_RX
);
510 static void mcp251x_hw_sleep(struct spi_device
*spi
)
512 mcp251x_write_reg(spi
, CANCTRL
, CANCTRL_REQOP_SLEEP
);
515 static netdev_tx_t
mcp251x_hard_start_xmit(struct sk_buff
*skb
,
516 struct net_device
*net
)
518 struct mcp251x_priv
*priv
= netdev_priv(net
);
519 struct spi_device
*spi
= priv
->spi
;
521 if (priv
->tx_skb
|| priv
->tx_len
) {
522 dev_warn(&spi
->dev
, "hard_xmit called while tx busy\n");
523 return NETDEV_TX_BUSY
;
526 if (can_dropped_invalid_skb(net
, skb
))
529 netif_stop_queue(net
);
531 queue_work(priv
->wq
, &priv
->tx_work
);
536 static int mcp251x_do_set_mode(struct net_device
*net
, enum can_mode mode
)
538 struct mcp251x_priv
*priv
= netdev_priv(net
);
543 /* We have to delay work since SPI I/O may sleep */
544 priv
->can
.state
= CAN_STATE_ERROR_ACTIVE
;
545 priv
->restart_tx
= 1;
546 if (priv
->can
.restart_ms
== 0)
547 priv
->after_suspend
= AFTER_SUSPEND_RESTART
;
548 queue_work(priv
->wq
, &priv
->restart_work
);
557 static int mcp251x_set_normal_mode(struct spi_device
*spi
)
559 struct mcp251x_priv
*priv
= spi_get_drvdata(spi
);
560 unsigned long timeout
;
562 /* Enable interrupts */
563 mcp251x_write_reg(spi
, CANINTE
,
564 CANINTE_ERRIE
| CANINTE_TX2IE
| CANINTE_TX1IE
|
565 CANINTE_TX0IE
| CANINTE_RX1IE
| CANINTE_RX0IE
);
567 if (priv
->can
.ctrlmode
& CAN_CTRLMODE_LOOPBACK
) {
568 /* Put device into loopback mode */
569 mcp251x_write_reg(spi
, CANCTRL
, CANCTRL_REQOP_LOOPBACK
);
570 } else if (priv
->can
.ctrlmode
& CAN_CTRLMODE_LISTENONLY
) {
571 /* Put device into listen-only mode */
572 mcp251x_write_reg(spi
, CANCTRL
, CANCTRL_REQOP_LISTEN_ONLY
);
574 /* Put device into normal mode */
575 mcp251x_write_reg(spi
, CANCTRL
, CANCTRL_REQOP_NORMAL
);
577 /* Wait for the device to enter normal mode */
578 timeout
= jiffies
+ HZ
;
579 while (mcp251x_read_reg(spi
, CANSTAT
) & CANCTRL_REQOP_MASK
) {
581 if (time_after(jiffies
, timeout
)) {
582 dev_err(&spi
->dev
, "MCP251x didn't"
583 " enter in normal mode\n");
588 priv
->can
.state
= CAN_STATE_ERROR_ACTIVE
;
592 static int mcp251x_do_set_bittiming(struct net_device
*net
)
594 struct mcp251x_priv
*priv
= netdev_priv(net
);
595 struct can_bittiming
*bt
= &priv
->can
.bittiming
;
596 struct spi_device
*spi
= priv
->spi
;
598 mcp251x_write_reg(spi
, CNF1
, ((bt
->sjw
- 1) << CNF1_SJW_SHIFT
) |
600 mcp251x_write_reg(spi
, CNF2
, CNF2_BTLMODE
|
601 (priv
->can
.ctrlmode
& CAN_CTRLMODE_3_SAMPLES
?
603 ((bt
->phase_seg1
- 1) << CNF2_PS1_SHIFT
) |
605 mcp251x_write_bits(spi
, CNF3
, CNF3_PHSEG2_MASK
,
606 (bt
->phase_seg2
- 1));
607 dev_dbg(&spi
->dev
, "CNF: 0x%02x 0x%02x 0x%02x\n",
608 mcp251x_read_reg(spi
, CNF1
),
609 mcp251x_read_reg(spi
, CNF2
),
610 mcp251x_read_reg(spi
, CNF3
));
615 static int mcp251x_setup(struct net_device
*net
, struct mcp251x_priv
*priv
,
616 struct spi_device
*spi
)
618 mcp251x_do_set_bittiming(net
);
620 mcp251x_write_reg(spi
, RXBCTRL(0),
621 RXBCTRL_BUKT
| RXBCTRL_RXM0
| RXBCTRL_RXM1
);
622 mcp251x_write_reg(spi
, RXBCTRL(1),
623 RXBCTRL_RXM0
| RXBCTRL_RXM1
);
627 static int mcp251x_hw_reset(struct spi_device
*spi
)
629 struct mcp251x_priv
*priv
= spi_get_drvdata(spi
);
633 /* Wait for oscillator startup timer after power up */
634 mdelay(MCP251X_OST_DELAY_MS
);
636 priv
->spi_tx_buf
[0] = INSTRUCTION_RESET
;
637 ret
= mcp251x_spi_trans(spi
, 1);
641 /* Wait for oscillator startup timer after reset */
642 mdelay(MCP251X_OST_DELAY_MS
);
644 reg
= mcp251x_read_reg(spi
, CANSTAT
);
645 if ((reg
& CANCTRL_REQOP_MASK
) != CANCTRL_REQOP_CONF
)
651 static int mcp251x_hw_probe(struct spi_device
*spi
)
656 ret
= mcp251x_hw_reset(spi
);
660 ctrl
= mcp251x_read_reg(spi
, CANCTRL
);
662 dev_dbg(&spi
->dev
, "CANCTRL 0x%02x\n", ctrl
);
664 /* Check for power up default value */
665 if ((ctrl
& 0x17) != 0x07)
671 static int mcp251x_power_enable(struct regulator
*reg
, int enable
)
673 if (IS_ERR_OR_NULL(reg
))
677 return regulator_enable(reg
);
679 return regulator_disable(reg
);
682 static void mcp251x_open_clean(struct net_device
*net
)
684 struct mcp251x_priv
*priv
= netdev_priv(net
);
685 struct spi_device
*spi
= priv
->spi
;
687 free_irq(spi
->irq
, priv
);
688 mcp251x_hw_sleep(spi
);
689 mcp251x_power_enable(priv
->transceiver
, 0);
693 static int mcp251x_stop(struct net_device
*net
)
695 struct mcp251x_priv
*priv
= netdev_priv(net
);
696 struct spi_device
*spi
= priv
->spi
;
700 priv
->force_quit
= 1;
701 free_irq(spi
->irq
, priv
);
702 destroy_workqueue(priv
->wq
);
705 mutex_lock(&priv
->mcp_lock
);
707 /* Disable and clear pending interrupts */
708 mcp251x_write_reg(spi
, CANINTE
, 0x00);
709 mcp251x_write_reg(spi
, CANINTF
, 0x00);
711 mcp251x_write_reg(spi
, TXBCTRL(0), 0);
714 mcp251x_hw_sleep(spi
);
716 mcp251x_power_enable(priv
->transceiver
, 0);
718 priv
->can
.state
= CAN_STATE_STOPPED
;
720 mutex_unlock(&priv
->mcp_lock
);
722 can_led_event(net
, CAN_LED_EVENT_STOP
);
727 static void mcp251x_error_skb(struct net_device
*net
, int can_id
, int data1
)
730 struct can_frame
*frame
;
732 skb
= alloc_can_err_skb(net
, &frame
);
734 frame
->can_id
|= can_id
;
735 frame
->data
[1] = data1
;
738 netdev_err(net
, "cannot allocate error skb\n");
742 static void mcp251x_tx_work_handler(struct work_struct
*ws
)
744 struct mcp251x_priv
*priv
= container_of(ws
, struct mcp251x_priv
,
746 struct spi_device
*spi
= priv
->spi
;
747 struct net_device
*net
= priv
->net
;
748 struct can_frame
*frame
;
750 mutex_lock(&priv
->mcp_lock
);
752 if (priv
->can
.state
== CAN_STATE_BUS_OFF
) {
755 frame
= (struct can_frame
*)priv
->tx_skb
->data
;
757 if (frame
->can_dlc
> CAN_FRAME_MAX_DATA_LEN
)
758 frame
->can_dlc
= CAN_FRAME_MAX_DATA_LEN
;
759 mcp251x_hw_tx(spi
, frame
, 0);
760 priv
->tx_len
= 1 + frame
->can_dlc
;
761 can_put_echo_skb(priv
->tx_skb
, net
, 0);
765 mutex_unlock(&priv
->mcp_lock
);
768 static void mcp251x_restart_work_handler(struct work_struct
*ws
)
770 struct mcp251x_priv
*priv
= container_of(ws
, struct mcp251x_priv
,
772 struct spi_device
*spi
= priv
->spi
;
773 struct net_device
*net
= priv
->net
;
775 mutex_lock(&priv
->mcp_lock
);
776 if (priv
->after_suspend
) {
777 mcp251x_hw_reset(spi
);
778 mcp251x_setup(net
, priv
, spi
);
779 if (priv
->after_suspend
& AFTER_SUSPEND_RESTART
) {
780 mcp251x_set_normal_mode(spi
);
781 } else if (priv
->after_suspend
& AFTER_SUSPEND_UP
) {
782 netif_device_attach(net
);
784 mcp251x_set_normal_mode(spi
);
785 netif_wake_queue(net
);
787 mcp251x_hw_sleep(spi
);
789 priv
->after_suspend
= 0;
790 priv
->force_quit
= 0;
793 if (priv
->restart_tx
) {
794 priv
->restart_tx
= 0;
795 mcp251x_write_reg(spi
, TXBCTRL(0), 0);
797 netif_wake_queue(net
);
798 mcp251x_error_skb(net
, CAN_ERR_RESTARTED
, 0);
800 mutex_unlock(&priv
->mcp_lock
);
803 static irqreturn_t
mcp251x_can_ist(int irq
, void *dev_id
)
805 struct mcp251x_priv
*priv
= dev_id
;
806 struct spi_device
*spi
= priv
->spi
;
807 struct net_device
*net
= priv
->net
;
809 mutex_lock(&priv
->mcp_lock
);
810 while (!priv
->force_quit
) {
811 enum can_state new_state
;
814 int can_id
= 0, data1
= 0;
816 mcp251x_read_2regs(spi
, CANINTF
, &intf
, &eflag
);
818 /* mask out flags we don't care about */
819 intf
&= CANINTF_RX
| CANINTF_TX
| CANINTF_ERR
;
821 /* receive buffer 0 */
822 if (intf
& CANINTF_RX0IF
) {
823 mcp251x_hw_rx(spi
, 0);
825 * Free one buffer ASAP
826 * (The MCP2515 does this automatically.)
828 if (mcp251x_is_2510(spi
))
829 mcp251x_write_bits(spi
, CANINTF
, CANINTF_RX0IF
, 0x00);
832 /* receive buffer 1 */
833 if (intf
& CANINTF_RX1IF
) {
834 mcp251x_hw_rx(spi
, 1);
835 /* the MCP2515 does this automatically */
836 if (mcp251x_is_2510(spi
))
837 clear_intf
|= CANINTF_RX1IF
;
840 /* any error or tx interrupt we need to clear? */
841 if (intf
& (CANINTF_ERR
| CANINTF_TX
))
842 clear_intf
|= intf
& (CANINTF_ERR
| CANINTF_TX
);
844 mcp251x_write_bits(spi
, CANINTF
, clear_intf
, 0x00);
846 if (eflag
& (EFLG_RX0OVR
| EFLG_RX1OVR
))
847 mcp251x_write_bits(spi
, EFLG
, eflag
, 0x00);
849 /* Update can state */
850 if (eflag
& EFLG_TXBO
) {
851 new_state
= CAN_STATE_BUS_OFF
;
852 can_id
|= CAN_ERR_BUSOFF
;
853 } else if (eflag
& EFLG_TXEP
) {
854 new_state
= CAN_STATE_ERROR_PASSIVE
;
855 can_id
|= CAN_ERR_CRTL
;
856 data1
|= CAN_ERR_CRTL_TX_PASSIVE
;
857 } else if (eflag
& EFLG_RXEP
) {
858 new_state
= CAN_STATE_ERROR_PASSIVE
;
859 can_id
|= CAN_ERR_CRTL
;
860 data1
|= CAN_ERR_CRTL_RX_PASSIVE
;
861 } else if (eflag
& EFLG_TXWAR
) {
862 new_state
= CAN_STATE_ERROR_WARNING
;
863 can_id
|= CAN_ERR_CRTL
;
864 data1
|= CAN_ERR_CRTL_TX_WARNING
;
865 } else if (eflag
& EFLG_RXWAR
) {
866 new_state
= CAN_STATE_ERROR_WARNING
;
867 can_id
|= CAN_ERR_CRTL
;
868 data1
|= CAN_ERR_CRTL_RX_WARNING
;
870 new_state
= CAN_STATE_ERROR_ACTIVE
;
873 /* Update can state statistics */
874 switch (priv
->can
.state
) {
875 case CAN_STATE_ERROR_ACTIVE
:
876 if (new_state
>= CAN_STATE_ERROR_WARNING
&&
877 new_state
<= CAN_STATE_BUS_OFF
)
878 priv
->can
.can_stats
.error_warning
++;
879 case CAN_STATE_ERROR_WARNING
: /* fallthrough */
880 if (new_state
>= CAN_STATE_ERROR_PASSIVE
&&
881 new_state
<= CAN_STATE_BUS_OFF
)
882 priv
->can
.can_stats
.error_passive
++;
887 priv
->can
.state
= new_state
;
889 if (intf
& CANINTF_ERRIF
) {
890 /* Handle overflow counters */
891 if (eflag
& (EFLG_RX0OVR
| EFLG_RX1OVR
)) {
892 if (eflag
& EFLG_RX0OVR
) {
893 net
->stats
.rx_over_errors
++;
894 net
->stats
.rx_errors
++;
896 if (eflag
& EFLG_RX1OVR
) {
897 net
->stats
.rx_over_errors
++;
898 net
->stats
.rx_errors
++;
900 can_id
|= CAN_ERR_CRTL
;
901 data1
|= CAN_ERR_CRTL_RX_OVERFLOW
;
903 mcp251x_error_skb(net
, can_id
, data1
);
906 if (priv
->can
.state
== CAN_STATE_BUS_OFF
) {
907 if (priv
->can
.restart_ms
== 0) {
908 priv
->force_quit
= 1;
909 priv
->can
.can_stats
.bus_off
++;
911 mcp251x_hw_sleep(spi
);
919 if (intf
& CANINTF_TX
) {
920 net
->stats
.tx_packets
++;
921 net
->stats
.tx_bytes
+= priv
->tx_len
- 1;
922 can_led_event(net
, CAN_LED_EVENT_TX
);
924 can_get_echo_skb(net
, 0);
927 netif_wake_queue(net
);
931 mutex_unlock(&priv
->mcp_lock
);
935 static int mcp251x_open(struct net_device
*net
)
937 struct mcp251x_priv
*priv
= netdev_priv(net
);
938 struct spi_device
*spi
= priv
->spi
;
939 unsigned long flags
= IRQF_ONESHOT
| IRQF_TRIGGER_FALLING
;
942 ret
= open_candev(net
);
944 dev_err(&spi
->dev
, "unable to set initial baudrate!\n");
948 mutex_lock(&priv
->mcp_lock
);
949 mcp251x_power_enable(priv
->transceiver
, 1);
951 priv
->force_quit
= 0;
955 ret
= request_threaded_irq(spi
->irq
, NULL
, mcp251x_can_ist
,
956 flags
| IRQF_ONESHOT
, DEVICE_NAME
, priv
);
958 dev_err(&spi
->dev
, "failed to acquire irq %d\n", spi
->irq
);
959 mcp251x_power_enable(priv
->transceiver
, 0);
964 priv
->wq
= alloc_workqueue("mcp251x_wq", WQ_FREEZABLE
| WQ_MEM_RECLAIM
,
966 INIT_WORK(&priv
->tx_work
, mcp251x_tx_work_handler
);
967 INIT_WORK(&priv
->restart_work
, mcp251x_restart_work_handler
);
969 ret
= mcp251x_hw_reset(spi
);
971 mcp251x_open_clean(net
);
974 ret
= mcp251x_setup(net
, priv
, spi
);
976 mcp251x_open_clean(net
);
979 ret
= mcp251x_set_normal_mode(spi
);
981 mcp251x_open_clean(net
);
985 can_led_event(net
, CAN_LED_EVENT_OPEN
);
987 netif_wake_queue(net
);
990 mutex_unlock(&priv
->mcp_lock
);
994 static const struct net_device_ops mcp251x_netdev_ops
= {
995 .ndo_open
= mcp251x_open
,
996 .ndo_stop
= mcp251x_stop
,
997 .ndo_start_xmit
= mcp251x_hard_start_xmit
,
998 .ndo_change_mtu
= can_change_mtu
,
1001 static const struct of_device_id mcp251x_of_match
[] = {
1003 .compatible
= "microchip,mcp2510",
1004 .data
= (void *)CAN_MCP251X_MCP2510
,
1007 .compatible
= "microchip,mcp2515",
1008 .data
= (void *)CAN_MCP251X_MCP2515
,
1012 MODULE_DEVICE_TABLE(of
, mcp251x_of_match
);
1014 static const struct spi_device_id mcp251x_id_table
[] = {
1017 .driver_data
= (kernel_ulong_t
)CAN_MCP251X_MCP2510
,
1021 .driver_data
= (kernel_ulong_t
)CAN_MCP251X_MCP2515
,
1025 MODULE_DEVICE_TABLE(spi
, mcp251x_id_table
);
1027 static int mcp251x_can_probe(struct spi_device
*spi
)
1029 const struct of_device_id
*of_id
= of_match_device(mcp251x_of_match
,
1031 struct mcp251x_platform_data
*pdata
= dev_get_platdata(&spi
->dev
);
1032 struct net_device
*net
;
1033 struct mcp251x_priv
*priv
;
1037 clk
= devm_clk_get(&spi
->dev
, NULL
);
1040 freq
= pdata
->oscillator_frequency
;
1042 return PTR_ERR(clk
);
1044 freq
= clk_get_rate(clk
);
1048 if (freq
< 1000000 || freq
> 25000000)
1051 /* Allocate can/net device */
1052 net
= alloc_candev(sizeof(struct mcp251x_priv
), TX_ECHO_SKB_MAX
);
1057 ret
= clk_prepare_enable(clk
);
1062 net
->netdev_ops
= &mcp251x_netdev_ops
;
1063 net
->flags
|= IFF_ECHO
;
1065 priv
= netdev_priv(net
);
1066 priv
->can
.bittiming_const
= &mcp251x_bittiming_const
;
1067 priv
->can
.do_set_mode
= mcp251x_do_set_mode
;
1068 priv
->can
.clock
.freq
= freq
/ 2;
1069 priv
->can
.ctrlmode_supported
= CAN_CTRLMODE_3_SAMPLES
|
1070 CAN_CTRLMODE_LOOPBACK
| CAN_CTRLMODE_LISTENONLY
;
1072 priv
->model
= (enum mcp251x_model
)of_id
->data
;
1074 priv
->model
= spi_get_device_id(spi
)->driver_data
;
1078 spi_set_drvdata(spi
, priv
);
1080 /* Configure the SPI bus */
1081 spi
->bits_per_word
= 8;
1082 if (mcp251x_is_2510(spi
))
1083 spi
->max_speed_hz
= spi
->max_speed_hz
? : 5 * 1000 * 1000;
1085 spi
->max_speed_hz
= spi
->max_speed_hz
? : 10 * 1000 * 1000;
1086 ret
= spi_setup(spi
);
1090 priv
->power
= devm_regulator_get_optional(&spi
->dev
, "vdd");
1091 priv
->transceiver
= devm_regulator_get_optional(&spi
->dev
, "xceiver");
1092 if ((PTR_ERR(priv
->power
) == -EPROBE_DEFER
) ||
1093 (PTR_ERR(priv
->transceiver
) == -EPROBE_DEFER
)) {
1094 ret
= -EPROBE_DEFER
;
1098 ret
= mcp251x_power_enable(priv
->power
, 1);
1103 mutex_init(&priv
->mcp_lock
);
1105 /* If requested, allocate DMA buffers */
1106 if (mcp251x_enable_dma
) {
1107 spi
->dev
.coherent_dma_mask
= ~0;
1110 * Minimum coherent DMA allocation is PAGE_SIZE, so allocate
1111 * that much and share it between Tx and Rx DMA buffers.
1113 priv
->spi_tx_buf
= dmam_alloc_coherent(&spi
->dev
,
1118 if (priv
->spi_tx_buf
) {
1119 priv
->spi_rx_buf
= (priv
->spi_tx_buf
+ (PAGE_SIZE
/ 2));
1120 priv
->spi_rx_dma
= (dma_addr_t
)(priv
->spi_tx_dma
+
1123 /* Fall back to non-DMA */
1124 mcp251x_enable_dma
= 0;
1128 /* Allocate non-DMA buffers */
1129 if (!mcp251x_enable_dma
) {
1130 priv
->spi_tx_buf
= devm_kzalloc(&spi
->dev
, SPI_TRANSFER_BUF_LEN
,
1132 if (!priv
->spi_tx_buf
) {
1136 priv
->spi_rx_buf
= devm_kzalloc(&spi
->dev
, SPI_TRANSFER_BUF_LEN
,
1138 if (!priv
->spi_rx_buf
) {
1144 SET_NETDEV_DEV(net
, &spi
->dev
);
1146 /* Here is OK to not lock the MCP, no one knows about it yet */
1147 ret
= mcp251x_hw_probe(spi
);
1150 dev_err(&spi
->dev
, "Cannot initialize MCP%x. Wrong wiring?\n", priv
->model
);
1154 mcp251x_hw_sleep(spi
);
1156 ret
= register_candev(net
);
1160 devm_can_led_init(net
);
1162 netdev_info(net
, "MCP%x successfully initialized.\n", priv
->model
);
1166 mcp251x_power_enable(priv
->power
, 0);
1170 clk_disable_unprepare(clk
);
1175 dev_err(&spi
->dev
, "Probe failed, err=%d\n", -ret
);
1179 static int mcp251x_can_remove(struct spi_device
*spi
)
1181 struct mcp251x_priv
*priv
= spi_get_drvdata(spi
);
1182 struct net_device
*net
= priv
->net
;
1184 unregister_candev(net
);
1186 mcp251x_power_enable(priv
->power
, 0);
1188 if (!IS_ERR(priv
->clk
))
1189 clk_disable_unprepare(priv
->clk
);
1196 static int __maybe_unused
mcp251x_can_suspend(struct device
*dev
)
1198 struct spi_device
*spi
= to_spi_device(dev
);
1199 struct mcp251x_priv
*priv
= spi_get_drvdata(spi
);
1200 struct net_device
*net
= priv
->net
;
1202 priv
->force_quit
= 1;
1203 disable_irq(spi
->irq
);
1205 * Note: at this point neither IST nor workqueues are running.
1206 * open/stop cannot be called anyway so locking is not needed
1208 if (netif_running(net
)) {
1209 netif_device_detach(net
);
1211 mcp251x_hw_sleep(spi
);
1212 mcp251x_power_enable(priv
->transceiver
, 0);
1213 priv
->after_suspend
= AFTER_SUSPEND_UP
;
1215 priv
->after_suspend
= AFTER_SUSPEND_DOWN
;
1218 if (!IS_ERR_OR_NULL(priv
->power
)) {
1219 regulator_disable(priv
->power
);
1220 priv
->after_suspend
|= AFTER_SUSPEND_POWER
;
1226 static int __maybe_unused
mcp251x_can_resume(struct device
*dev
)
1228 struct spi_device
*spi
= to_spi_device(dev
);
1229 struct mcp251x_priv
*priv
= spi_get_drvdata(spi
);
1231 if (priv
->after_suspend
& AFTER_SUSPEND_POWER
)
1232 mcp251x_power_enable(priv
->power
, 1);
1234 if (priv
->after_suspend
& AFTER_SUSPEND_UP
) {
1235 mcp251x_power_enable(priv
->transceiver
, 1);
1236 queue_work(priv
->wq
, &priv
->restart_work
);
1238 priv
->after_suspend
= 0;
1241 priv
->force_quit
= 0;
1242 enable_irq(spi
->irq
);
1246 static SIMPLE_DEV_PM_OPS(mcp251x_can_pm_ops
, mcp251x_can_suspend
,
1247 mcp251x_can_resume
);
1249 static struct spi_driver mcp251x_can_driver
= {
1251 .name
= DEVICE_NAME
,
1252 .of_match_table
= mcp251x_of_match
,
1253 .pm
= &mcp251x_can_pm_ops
,
1255 .id_table
= mcp251x_id_table
,
1256 .probe
= mcp251x_can_probe
,
1257 .remove
= mcp251x_can_remove
,
1259 module_spi_driver(mcp251x_can_driver
);
1261 MODULE_AUTHOR("Chris Elston <celston@katalix.com>, "
1262 "Christian Pellegrin <chripell@evolware.org>");
1263 MODULE_DESCRIPTION("Microchip 251x CAN driver");
1264 MODULE_LICENSE("GPL v2");