1 /* bnx2.c: QLogic bnx2 network driver.
3 * Copyright (c) 2004-2014 Broadcom Corporation
4 * Copyright (c) 2014-2015 QLogic Corporation
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation.
10 * Written by: Michael Chan (mchan@broadcom.com)
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/module.h>
16 #include <linux/moduleparam.h>
18 #include <linux/stringify.h>
19 #include <linux/kernel.h>
20 #include <linux/timer.h>
21 #include <linux/errno.h>
22 #include <linux/ioport.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/interrupt.h>
26 #include <linux/pci.h>
27 #include <linux/netdevice.h>
28 #include <linux/etherdevice.h>
29 #include <linux/skbuff.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/bitops.h>
34 #include <linux/delay.h>
35 #include <asm/byteorder.h>
37 #include <linux/time.h>
38 #include <linux/ethtool.h>
39 #include <linux/mii.h>
41 #include <linux/if_vlan.h>
44 #include <net/checksum.h>
45 #include <linux/workqueue.h>
46 #include <linux/crc32.h>
47 #include <linux/prefetch.h>
48 #include <linux/cache.h>
49 #include <linux/firmware.h>
50 #include <linux/log2.h>
51 #include <linux/aer.h>
53 #if defined(CONFIG_CNIC) || defined(CONFIG_CNIC_MODULE)
60 #define DRV_MODULE_NAME "bnx2"
61 #define DRV_MODULE_VERSION "2.2.6"
62 #define DRV_MODULE_RELDATE "January 29, 2014"
63 #define FW_MIPS_FILE_06 "bnx2/bnx2-mips-06-6.2.3.fw"
64 #define FW_RV2P_FILE_06 "bnx2/bnx2-rv2p-06-6.0.15.fw"
65 #define FW_MIPS_FILE_09 "bnx2/bnx2-mips-09-6.2.1b.fw"
66 #define FW_RV2P_FILE_09_Ax "bnx2/bnx2-rv2p-09ax-6.0.17.fw"
67 #define FW_RV2P_FILE_09 "bnx2/bnx2-rv2p-09-6.0.17.fw"
69 #define RUN_AT(x) (jiffies + (x))
71 /* Time in jiffies before concluding the transmitter is hung. */
72 #define TX_TIMEOUT (5*HZ)
74 static char version
[] =
75 "QLogic " DRV_MODULE_NAME
" Gigabit Ethernet Driver v" DRV_MODULE_VERSION
" (" DRV_MODULE_RELDATE
")\n";
77 MODULE_AUTHOR("Michael Chan <mchan@broadcom.com>");
78 MODULE_DESCRIPTION("QLogic BCM5706/5708/5709/5716 Driver");
79 MODULE_LICENSE("GPL");
80 MODULE_VERSION(DRV_MODULE_VERSION
);
81 MODULE_FIRMWARE(FW_MIPS_FILE_06
);
82 MODULE_FIRMWARE(FW_RV2P_FILE_06
);
83 MODULE_FIRMWARE(FW_MIPS_FILE_09
);
84 MODULE_FIRMWARE(FW_RV2P_FILE_09
);
85 MODULE_FIRMWARE(FW_RV2P_FILE_09_Ax
);
87 static int disable_msi
= 0;
89 module_param(disable_msi
, int, S_IRUGO
);
90 MODULE_PARM_DESC(disable_msi
, "Disable Message Signaled Interrupt (MSI)");
106 /* indexed by board_t, above */
110 { "Broadcom NetXtreme II BCM5706 1000Base-T" },
111 { "HP NC370T Multifunction Gigabit Server Adapter" },
112 { "HP NC370i Multifunction Gigabit Server Adapter" },
113 { "Broadcom NetXtreme II BCM5706 1000Base-SX" },
114 { "HP NC370F Multifunction Gigabit Server Adapter" },
115 { "Broadcom NetXtreme II BCM5708 1000Base-T" },
116 { "Broadcom NetXtreme II BCM5708 1000Base-SX" },
117 { "Broadcom NetXtreme II BCM5709 1000Base-T" },
118 { "Broadcom NetXtreme II BCM5709 1000Base-SX" },
119 { "Broadcom NetXtreme II BCM5716 1000Base-T" },
120 { "Broadcom NetXtreme II BCM5716 1000Base-SX" },
123 static const struct pci_device_id bnx2_pci_tbl
[] = {
124 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706
,
125 PCI_VENDOR_ID_HP
, 0x3101, 0, 0, NC370T
},
126 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706
,
127 PCI_VENDOR_ID_HP
, 0x3106, 0, 0, NC370I
},
128 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706
,
129 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5706
},
130 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5708
,
131 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5708
},
132 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706S
,
133 PCI_VENDOR_ID_HP
, 0x3102, 0, 0, NC370F
},
134 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706S
,
135 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5706S
},
136 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5708S
,
137 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5708S
},
138 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5709
,
139 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5709
},
140 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5709S
,
141 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5709S
},
142 { PCI_VENDOR_ID_BROADCOM
, 0x163b,
143 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5716
},
144 { PCI_VENDOR_ID_BROADCOM
, 0x163c,
145 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5716S
},
149 static const struct flash_spec flash_table
[] =
151 #define BUFFERED_FLAGS (BNX2_NV_BUFFERED | BNX2_NV_TRANSLATE)
152 #define NONBUFFERED_FLAGS (BNX2_NV_WREN)
154 {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
155 BUFFERED_FLAGS
, SEEPROM_PAGE_BITS
, SEEPROM_PAGE_SIZE
,
156 SEEPROM_BYTE_ADDR_MASK
, SEEPROM_TOTAL_SIZE
,
158 /* Expansion entry 0001 */
159 {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
160 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
161 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
163 /* Saifun SA25F010 (non-buffered flash) */
164 /* strap, cfg1, & write1 need updates */
165 {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
166 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
167 SAIFUN_FLASH_BYTE_ADDR_MASK
, SAIFUN_FLASH_BASE_TOTAL_SIZE
*2,
168 "Non-buffered flash (128kB)"},
169 /* Saifun SA25F020 (non-buffered flash) */
170 /* strap, cfg1, & write1 need updates */
171 {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
172 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
173 SAIFUN_FLASH_BYTE_ADDR_MASK
, SAIFUN_FLASH_BASE_TOTAL_SIZE
*4,
174 "Non-buffered flash (256kB)"},
175 /* Expansion entry 0100 */
176 {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
177 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
178 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
180 /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
181 {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
182 NONBUFFERED_FLAGS
, ST_MICRO_FLASH_PAGE_BITS
, ST_MICRO_FLASH_PAGE_SIZE
,
183 ST_MICRO_FLASH_BYTE_ADDR_MASK
, ST_MICRO_FLASH_BASE_TOTAL_SIZE
*2,
184 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
185 /* Entry 0110: ST M45PE20 (non-buffered flash)*/
186 {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
187 NONBUFFERED_FLAGS
, ST_MICRO_FLASH_PAGE_BITS
, ST_MICRO_FLASH_PAGE_SIZE
,
188 ST_MICRO_FLASH_BYTE_ADDR_MASK
, ST_MICRO_FLASH_BASE_TOTAL_SIZE
*4,
189 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
190 /* Saifun SA25F005 (non-buffered flash) */
191 /* strap, cfg1, & write1 need updates */
192 {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
193 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
194 SAIFUN_FLASH_BYTE_ADDR_MASK
, SAIFUN_FLASH_BASE_TOTAL_SIZE
,
195 "Non-buffered flash (64kB)"},
197 {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
198 BUFFERED_FLAGS
, SEEPROM_PAGE_BITS
, SEEPROM_PAGE_SIZE
,
199 SEEPROM_BYTE_ADDR_MASK
, SEEPROM_TOTAL_SIZE
,
201 /* Expansion entry 1001 */
202 {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
203 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
204 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
206 /* Expansion entry 1010 */
207 {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
208 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
209 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
211 /* ATMEL AT45DB011B (buffered flash) */
212 {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
213 BUFFERED_FLAGS
, BUFFERED_FLASH_PAGE_BITS
, BUFFERED_FLASH_PAGE_SIZE
,
214 BUFFERED_FLASH_BYTE_ADDR_MASK
, BUFFERED_FLASH_TOTAL_SIZE
,
215 "Buffered flash (128kB)"},
216 /* Expansion entry 1100 */
217 {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
218 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
219 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
221 /* Expansion entry 1101 */
222 {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
223 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
224 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
226 /* Ateml Expansion entry 1110 */
227 {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
228 BUFFERED_FLAGS
, BUFFERED_FLASH_PAGE_BITS
, BUFFERED_FLASH_PAGE_SIZE
,
229 BUFFERED_FLASH_BYTE_ADDR_MASK
, 0,
230 "Entry 1110 (Atmel)"},
231 /* ATMEL AT45DB021B (buffered flash) */
232 {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
233 BUFFERED_FLAGS
, BUFFERED_FLASH_PAGE_BITS
, BUFFERED_FLASH_PAGE_SIZE
,
234 BUFFERED_FLASH_BYTE_ADDR_MASK
, BUFFERED_FLASH_TOTAL_SIZE
*2,
235 "Buffered flash (256kB)"},
238 static const struct flash_spec flash_5709
= {
239 .flags
= BNX2_NV_BUFFERED
,
240 .page_bits
= BCM5709_FLASH_PAGE_BITS
,
241 .page_size
= BCM5709_FLASH_PAGE_SIZE
,
242 .addr_mask
= BCM5709_FLASH_BYTE_ADDR_MASK
,
243 .total_size
= BUFFERED_FLASH_TOTAL_SIZE
*2,
244 .name
= "5709 Buffered flash (256kB)",
247 MODULE_DEVICE_TABLE(pci
, bnx2_pci_tbl
);
249 static void bnx2_init_napi(struct bnx2
*bp
);
250 static void bnx2_del_napi(struct bnx2
*bp
);
252 static inline u32
bnx2_tx_avail(struct bnx2
*bp
, struct bnx2_tx_ring_info
*txr
)
256 /* Tell compiler to fetch tx_prod and tx_cons from memory. */
259 /* The ring uses 256 indices for 255 entries, one of them
260 * needs to be skipped.
262 diff
= txr
->tx_prod
- txr
->tx_cons
;
263 if (unlikely(diff
>= BNX2_TX_DESC_CNT
)) {
265 if (diff
== BNX2_TX_DESC_CNT
)
266 diff
= BNX2_MAX_TX_DESC_CNT
;
268 return bp
->tx_ring_size
- diff
;
272 bnx2_reg_rd_ind(struct bnx2
*bp
, u32 offset
)
276 spin_lock_bh(&bp
->indirect_lock
);
277 BNX2_WR(bp
, BNX2_PCICFG_REG_WINDOW_ADDRESS
, offset
);
278 val
= BNX2_RD(bp
, BNX2_PCICFG_REG_WINDOW
);
279 spin_unlock_bh(&bp
->indirect_lock
);
284 bnx2_reg_wr_ind(struct bnx2
*bp
, u32 offset
, u32 val
)
286 spin_lock_bh(&bp
->indirect_lock
);
287 BNX2_WR(bp
, BNX2_PCICFG_REG_WINDOW_ADDRESS
, offset
);
288 BNX2_WR(bp
, BNX2_PCICFG_REG_WINDOW
, val
);
289 spin_unlock_bh(&bp
->indirect_lock
);
293 bnx2_shmem_wr(struct bnx2
*bp
, u32 offset
, u32 val
)
295 bnx2_reg_wr_ind(bp
, bp
->shmem_base
+ offset
, val
);
299 bnx2_shmem_rd(struct bnx2
*bp
, u32 offset
)
301 return bnx2_reg_rd_ind(bp
, bp
->shmem_base
+ offset
);
305 bnx2_ctx_wr(struct bnx2
*bp
, u32 cid_addr
, u32 offset
, u32 val
)
308 spin_lock_bh(&bp
->indirect_lock
);
309 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
) {
312 BNX2_WR(bp
, BNX2_CTX_CTX_DATA
, val
);
313 BNX2_WR(bp
, BNX2_CTX_CTX_CTRL
,
314 offset
| BNX2_CTX_CTX_CTRL_WRITE_REQ
);
315 for (i
= 0; i
< 5; i
++) {
316 val
= BNX2_RD(bp
, BNX2_CTX_CTX_CTRL
);
317 if ((val
& BNX2_CTX_CTX_CTRL_WRITE_REQ
) == 0)
322 BNX2_WR(bp
, BNX2_CTX_DATA_ADR
, offset
);
323 BNX2_WR(bp
, BNX2_CTX_DATA
, val
);
325 spin_unlock_bh(&bp
->indirect_lock
);
330 bnx2_drv_ctl(struct net_device
*dev
, struct drv_ctl_info
*info
)
332 struct bnx2
*bp
= netdev_priv(dev
);
333 struct drv_ctl_io
*io
= &info
->data
.io
;
336 case DRV_CTL_IO_WR_CMD
:
337 bnx2_reg_wr_ind(bp
, io
->offset
, io
->data
);
339 case DRV_CTL_IO_RD_CMD
:
340 io
->data
= bnx2_reg_rd_ind(bp
, io
->offset
);
342 case DRV_CTL_CTX_WR_CMD
:
343 bnx2_ctx_wr(bp
, io
->cid_addr
, io
->offset
, io
->data
);
351 static void bnx2_setup_cnic_irq_info(struct bnx2
*bp
)
353 struct cnic_eth_dev
*cp
= &bp
->cnic_eth_dev
;
354 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0];
357 if (bp
->flags
& BNX2_FLAG_USING_MSIX
) {
358 cp
->drv_state
|= CNIC_DRV_STATE_USING_MSIX
;
359 bnapi
->cnic_present
= 0;
360 sb_id
= bp
->irq_nvecs
;
361 cp
->irq_arr
[0].irq_flags
|= CNIC_IRQ_FL_MSIX
;
363 cp
->drv_state
&= ~CNIC_DRV_STATE_USING_MSIX
;
364 bnapi
->cnic_tag
= bnapi
->last_status_idx
;
365 bnapi
->cnic_present
= 1;
367 cp
->irq_arr
[0].irq_flags
&= ~CNIC_IRQ_FL_MSIX
;
370 cp
->irq_arr
[0].vector
= bp
->irq_tbl
[sb_id
].vector
;
371 cp
->irq_arr
[0].status_blk
= (void *)
372 ((unsigned long) bnapi
->status_blk
.msi
+
373 (BNX2_SBLK_MSIX_ALIGN_SIZE
* sb_id
));
374 cp
->irq_arr
[0].status_blk_num
= sb_id
;
378 static int bnx2_register_cnic(struct net_device
*dev
, struct cnic_ops
*ops
,
381 struct bnx2
*bp
= netdev_priv(dev
);
382 struct cnic_eth_dev
*cp
= &bp
->cnic_eth_dev
;
387 if (cp
->drv_state
& CNIC_DRV_STATE_REGD
)
390 if (!bnx2_reg_rd_ind(bp
, BNX2_FW_MAX_ISCSI_CONN
))
393 bp
->cnic_data
= data
;
394 rcu_assign_pointer(bp
->cnic_ops
, ops
);
397 cp
->drv_state
= CNIC_DRV_STATE_REGD
;
399 bnx2_setup_cnic_irq_info(bp
);
404 static int bnx2_unregister_cnic(struct net_device
*dev
)
406 struct bnx2
*bp
= netdev_priv(dev
);
407 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0];
408 struct cnic_eth_dev
*cp
= &bp
->cnic_eth_dev
;
410 mutex_lock(&bp
->cnic_lock
);
412 bnapi
->cnic_present
= 0;
413 RCU_INIT_POINTER(bp
->cnic_ops
, NULL
);
414 mutex_unlock(&bp
->cnic_lock
);
419 static struct cnic_eth_dev
*bnx2_cnic_probe(struct net_device
*dev
)
421 struct bnx2
*bp
= netdev_priv(dev
);
422 struct cnic_eth_dev
*cp
= &bp
->cnic_eth_dev
;
424 if (!cp
->max_iscsi_conn
)
427 cp
->drv_owner
= THIS_MODULE
;
428 cp
->chip_id
= bp
->chip_id
;
430 cp
->io_base
= bp
->regview
;
431 cp
->drv_ctl
= bnx2_drv_ctl
;
432 cp
->drv_register_cnic
= bnx2_register_cnic
;
433 cp
->drv_unregister_cnic
= bnx2_unregister_cnic
;
439 bnx2_cnic_stop(struct bnx2
*bp
)
441 struct cnic_ops
*c_ops
;
442 struct cnic_ctl_info info
;
444 mutex_lock(&bp
->cnic_lock
);
445 c_ops
= rcu_dereference_protected(bp
->cnic_ops
,
446 lockdep_is_held(&bp
->cnic_lock
));
448 info
.cmd
= CNIC_CTL_STOP_CMD
;
449 c_ops
->cnic_ctl(bp
->cnic_data
, &info
);
451 mutex_unlock(&bp
->cnic_lock
);
455 bnx2_cnic_start(struct bnx2
*bp
)
457 struct cnic_ops
*c_ops
;
458 struct cnic_ctl_info info
;
460 mutex_lock(&bp
->cnic_lock
);
461 c_ops
= rcu_dereference_protected(bp
->cnic_ops
,
462 lockdep_is_held(&bp
->cnic_lock
));
464 if (!(bp
->flags
& BNX2_FLAG_USING_MSIX
)) {
465 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0];
467 bnapi
->cnic_tag
= bnapi
->last_status_idx
;
469 info
.cmd
= CNIC_CTL_START_CMD
;
470 c_ops
->cnic_ctl(bp
->cnic_data
, &info
);
472 mutex_unlock(&bp
->cnic_lock
);
478 bnx2_cnic_stop(struct bnx2
*bp
)
483 bnx2_cnic_start(struct bnx2
*bp
)
490 bnx2_read_phy(struct bnx2
*bp
, u32 reg
, u32
*val
)
495 if (bp
->phy_flags
& BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING
) {
496 val1
= BNX2_RD(bp
, BNX2_EMAC_MDIO_MODE
);
497 val1
&= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL
;
499 BNX2_WR(bp
, BNX2_EMAC_MDIO_MODE
, val1
);
500 BNX2_RD(bp
, BNX2_EMAC_MDIO_MODE
);
505 val1
= (bp
->phy_addr
<< 21) | (reg
<< 16) |
506 BNX2_EMAC_MDIO_COMM_COMMAND_READ
| BNX2_EMAC_MDIO_COMM_DISEXT
|
507 BNX2_EMAC_MDIO_COMM_START_BUSY
;
508 BNX2_WR(bp
, BNX2_EMAC_MDIO_COMM
, val1
);
510 for (i
= 0; i
< 50; i
++) {
513 val1
= BNX2_RD(bp
, BNX2_EMAC_MDIO_COMM
);
514 if (!(val1
& BNX2_EMAC_MDIO_COMM_START_BUSY
)) {
517 val1
= BNX2_RD(bp
, BNX2_EMAC_MDIO_COMM
);
518 val1
&= BNX2_EMAC_MDIO_COMM_DATA
;
524 if (val1
& BNX2_EMAC_MDIO_COMM_START_BUSY
) {
533 if (bp
->phy_flags
& BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING
) {
534 val1
= BNX2_RD(bp
, BNX2_EMAC_MDIO_MODE
);
535 val1
|= BNX2_EMAC_MDIO_MODE_AUTO_POLL
;
537 BNX2_WR(bp
, BNX2_EMAC_MDIO_MODE
, val1
);
538 BNX2_RD(bp
, BNX2_EMAC_MDIO_MODE
);
547 bnx2_write_phy(struct bnx2
*bp
, u32 reg
, u32 val
)
552 if (bp
->phy_flags
& BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING
) {
553 val1
= BNX2_RD(bp
, BNX2_EMAC_MDIO_MODE
);
554 val1
&= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL
;
556 BNX2_WR(bp
, BNX2_EMAC_MDIO_MODE
, val1
);
557 BNX2_RD(bp
, BNX2_EMAC_MDIO_MODE
);
562 val1
= (bp
->phy_addr
<< 21) | (reg
<< 16) | val
|
563 BNX2_EMAC_MDIO_COMM_COMMAND_WRITE
|
564 BNX2_EMAC_MDIO_COMM_START_BUSY
| BNX2_EMAC_MDIO_COMM_DISEXT
;
565 BNX2_WR(bp
, BNX2_EMAC_MDIO_COMM
, val1
);
567 for (i
= 0; i
< 50; i
++) {
570 val1
= BNX2_RD(bp
, BNX2_EMAC_MDIO_COMM
);
571 if (!(val1
& BNX2_EMAC_MDIO_COMM_START_BUSY
)) {
577 if (val1
& BNX2_EMAC_MDIO_COMM_START_BUSY
)
582 if (bp
->phy_flags
& BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING
) {
583 val1
= BNX2_RD(bp
, BNX2_EMAC_MDIO_MODE
);
584 val1
|= BNX2_EMAC_MDIO_MODE_AUTO_POLL
;
586 BNX2_WR(bp
, BNX2_EMAC_MDIO_MODE
, val1
);
587 BNX2_RD(bp
, BNX2_EMAC_MDIO_MODE
);
596 bnx2_disable_int(struct bnx2
*bp
)
599 struct bnx2_napi
*bnapi
;
601 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
602 bnapi
= &bp
->bnx2_napi
[i
];
603 BNX2_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, bnapi
->int_num
|
604 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
);
606 BNX2_RD(bp
, BNX2_PCICFG_INT_ACK_CMD
);
610 bnx2_enable_int(struct bnx2
*bp
)
613 struct bnx2_napi
*bnapi
;
615 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
616 bnapi
= &bp
->bnx2_napi
[i
];
618 BNX2_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, bnapi
->int_num
|
619 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
620 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
|
621 bnapi
->last_status_idx
);
623 BNX2_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, bnapi
->int_num
|
624 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
625 bnapi
->last_status_idx
);
627 BNX2_WR(bp
, BNX2_HC_COMMAND
, bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW
);
631 bnx2_disable_int_sync(struct bnx2
*bp
)
635 atomic_inc(&bp
->intr_sem
);
636 if (!netif_running(bp
->dev
))
639 bnx2_disable_int(bp
);
640 for (i
= 0; i
< bp
->irq_nvecs
; i
++)
641 synchronize_irq(bp
->irq_tbl
[i
].vector
);
645 bnx2_napi_disable(struct bnx2
*bp
)
649 for (i
= 0; i
< bp
->irq_nvecs
; i
++)
650 napi_disable(&bp
->bnx2_napi
[i
].napi
);
654 bnx2_napi_enable(struct bnx2
*bp
)
658 for (i
= 0; i
< bp
->irq_nvecs
; i
++)
659 napi_enable(&bp
->bnx2_napi
[i
].napi
);
663 bnx2_netif_stop(struct bnx2
*bp
, bool stop_cnic
)
667 if (netif_running(bp
->dev
)) {
668 bnx2_napi_disable(bp
);
669 netif_tx_disable(bp
->dev
);
671 bnx2_disable_int_sync(bp
);
672 netif_carrier_off(bp
->dev
); /* prevent tx timeout */
676 bnx2_netif_start(struct bnx2
*bp
, bool start_cnic
)
678 if (atomic_dec_and_test(&bp
->intr_sem
)) {
679 if (netif_running(bp
->dev
)) {
680 netif_tx_wake_all_queues(bp
->dev
);
681 spin_lock_bh(&bp
->phy_lock
);
683 netif_carrier_on(bp
->dev
);
684 spin_unlock_bh(&bp
->phy_lock
);
685 bnx2_napi_enable(bp
);
694 bnx2_free_tx_mem(struct bnx2
*bp
)
698 for (i
= 0; i
< bp
->num_tx_rings
; i
++) {
699 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
700 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
702 if (txr
->tx_desc_ring
) {
703 dma_free_coherent(&bp
->pdev
->dev
, TXBD_RING_SIZE
,
705 txr
->tx_desc_mapping
);
706 txr
->tx_desc_ring
= NULL
;
708 kfree(txr
->tx_buf_ring
);
709 txr
->tx_buf_ring
= NULL
;
714 bnx2_free_rx_mem(struct bnx2
*bp
)
718 for (i
= 0; i
< bp
->num_rx_rings
; i
++) {
719 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
720 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
723 for (j
= 0; j
< bp
->rx_max_ring
; j
++) {
724 if (rxr
->rx_desc_ring
[j
])
725 dma_free_coherent(&bp
->pdev
->dev
, RXBD_RING_SIZE
,
726 rxr
->rx_desc_ring
[j
],
727 rxr
->rx_desc_mapping
[j
]);
728 rxr
->rx_desc_ring
[j
] = NULL
;
730 vfree(rxr
->rx_buf_ring
);
731 rxr
->rx_buf_ring
= NULL
;
733 for (j
= 0; j
< bp
->rx_max_pg_ring
; j
++) {
734 if (rxr
->rx_pg_desc_ring
[j
])
735 dma_free_coherent(&bp
->pdev
->dev
, RXBD_RING_SIZE
,
736 rxr
->rx_pg_desc_ring
[j
],
737 rxr
->rx_pg_desc_mapping
[j
]);
738 rxr
->rx_pg_desc_ring
[j
] = NULL
;
740 vfree(rxr
->rx_pg_ring
);
741 rxr
->rx_pg_ring
= NULL
;
746 bnx2_alloc_tx_mem(struct bnx2
*bp
)
750 for (i
= 0; i
< bp
->num_tx_rings
; i
++) {
751 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
752 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
754 txr
->tx_buf_ring
= kzalloc(SW_TXBD_RING_SIZE
, GFP_KERNEL
);
755 if (txr
->tx_buf_ring
== NULL
)
759 dma_alloc_coherent(&bp
->pdev
->dev
, TXBD_RING_SIZE
,
760 &txr
->tx_desc_mapping
, GFP_KERNEL
);
761 if (txr
->tx_desc_ring
== NULL
)
768 bnx2_alloc_rx_mem(struct bnx2
*bp
)
772 for (i
= 0; i
< bp
->num_rx_rings
; i
++) {
773 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
774 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
778 vzalloc(SW_RXBD_RING_SIZE
* bp
->rx_max_ring
);
779 if (rxr
->rx_buf_ring
== NULL
)
782 for (j
= 0; j
< bp
->rx_max_ring
; j
++) {
783 rxr
->rx_desc_ring
[j
] =
784 dma_alloc_coherent(&bp
->pdev
->dev
,
786 &rxr
->rx_desc_mapping
[j
],
788 if (rxr
->rx_desc_ring
[j
] == NULL
)
793 if (bp
->rx_pg_ring_size
) {
794 rxr
->rx_pg_ring
= vzalloc(SW_RXPG_RING_SIZE
*
796 if (rxr
->rx_pg_ring
== NULL
)
801 for (j
= 0; j
< bp
->rx_max_pg_ring
; j
++) {
802 rxr
->rx_pg_desc_ring
[j
] =
803 dma_alloc_coherent(&bp
->pdev
->dev
,
805 &rxr
->rx_pg_desc_mapping
[j
],
807 if (rxr
->rx_pg_desc_ring
[j
] == NULL
)
816 bnx2_free_stats_blk(struct net_device
*dev
)
818 struct bnx2
*bp
= netdev_priv(dev
);
820 if (bp
->status_blk
) {
821 dma_free_coherent(&bp
->pdev
->dev
, bp
->status_stats_size
,
823 bp
->status_blk_mapping
);
824 bp
->status_blk
= NULL
;
825 bp
->stats_blk
= NULL
;
830 bnx2_alloc_stats_blk(struct net_device
*dev
)
834 struct bnx2
*bp
= netdev_priv(dev
);
836 /* Combine status and statistics blocks into one allocation. */
837 status_blk_size
= L1_CACHE_ALIGN(sizeof(struct status_block
));
838 if (bp
->flags
& BNX2_FLAG_MSIX_CAP
)
839 status_blk_size
= L1_CACHE_ALIGN(BNX2_MAX_MSIX_HW_VEC
*
840 BNX2_SBLK_MSIX_ALIGN_SIZE
);
841 bp
->status_stats_size
= status_blk_size
+
842 sizeof(struct statistics_block
);
843 status_blk
= dma_zalloc_coherent(&bp
->pdev
->dev
, bp
->status_stats_size
,
844 &bp
->status_blk_mapping
, GFP_KERNEL
);
845 if (status_blk
== NULL
)
848 bp
->status_blk
= status_blk
;
849 bp
->stats_blk
= status_blk
+ status_blk_size
;
850 bp
->stats_blk_mapping
= bp
->status_blk_mapping
+ status_blk_size
;
856 bnx2_free_mem(struct bnx2
*bp
)
859 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0];
861 bnx2_free_tx_mem(bp
);
862 bnx2_free_rx_mem(bp
);
864 for (i
= 0; i
< bp
->ctx_pages
; i
++) {
865 if (bp
->ctx_blk
[i
]) {
866 dma_free_coherent(&bp
->pdev
->dev
, BNX2_PAGE_SIZE
,
868 bp
->ctx_blk_mapping
[i
]);
869 bp
->ctx_blk
[i
] = NULL
;
873 if (bnapi
->status_blk
.msi
)
874 bnapi
->status_blk
.msi
= NULL
;
878 bnx2_alloc_mem(struct bnx2
*bp
)
881 struct bnx2_napi
*bnapi
;
883 bnapi
= &bp
->bnx2_napi
[0];
884 bnapi
->status_blk
.msi
= bp
->status_blk
;
885 bnapi
->hw_tx_cons_ptr
=
886 &bnapi
->status_blk
.msi
->status_tx_quick_consumer_index0
;
887 bnapi
->hw_rx_cons_ptr
=
888 &bnapi
->status_blk
.msi
->status_rx_quick_consumer_index0
;
889 if (bp
->flags
& BNX2_FLAG_MSIX_CAP
) {
890 for (i
= 1; i
< bp
->irq_nvecs
; i
++) {
891 struct status_block_msix
*sblk
;
893 bnapi
= &bp
->bnx2_napi
[i
];
895 sblk
= (bp
->status_blk
+ BNX2_SBLK_MSIX_ALIGN_SIZE
* i
);
896 bnapi
->status_blk
.msix
= sblk
;
897 bnapi
->hw_tx_cons_ptr
=
898 &sblk
->status_tx_quick_consumer_index
;
899 bnapi
->hw_rx_cons_ptr
=
900 &sblk
->status_rx_quick_consumer_index
;
901 bnapi
->int_num
= i
<< 24;
905 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
) {
906 bp
->ctx_pages
= 0x2000 / BNX2_PAGE_SIZE
;
907 if (bp
->ctx_pages
== 0)
909 for (i
= 0; i
< bp
->ctx_pages
; i
++) {
910 bp
->ctx_blk
[i
] = dma_alloc_coherent(&bp
->pdev
->dev
,
912 &bp
->ctx_blk_mapping
[i
],
914 if (bp
->ctx_blk
[i
] == NULL
)
919 err
= bnx2_alloc_rx_mem(bp
);
923 err
= bnx2_alloc_tx_mem(bp
);
935 bnx2_report_fw_link(struct bnx2
*bp
)
937 u32 fw_link_status
= 0;
939 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
945 switch (bp
->line_speed
) {
947 if (bp
->duplex
== DUPLEX_HALF
)
948 fw_link_status
= BNX2_LINK_STATUS_10HALF
;
950 fw_link_status
= BNX2_LINK_STATUS_10FULL
;
953 if (bp
->duplex
== DUPLEX_HALF
)
954 fw_link_status
= BNX2_LINK_STATUS_100HALF
;
956 fw_link_status
= BNX2_LINK_STATUS_100FULL
;
959 if (bp
->duplex
== DUPLEX_HALF
)
960 fw_link_status
= BNX2_LINK_STATUS_1000HALF
;
962 fw_link_status
= BNX2_LINK_STATUS_1000FULL
;
965 if (bp
->duplex
== DUPLEX_HALF
)
966 fw_link_status
= BNX2_LINK_STATUS_2500HALF
;
968 fw_link_status
= BNX2_LINK_STATUS_2500FULL
;
972 fw_link_status
|= BNX2_LINK_STATUS_LINK_UP
;
975 fw_link_status
|= BNX2_LINK_STATUS_AN_ENABLED
;
977 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
978 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
980 if (!(bmsr
& BMSR_ANEGCOMPLETE
) ||
981 bp
->phy_flags
& BNX2_PHY_FLAG_PARALLEL_DETECT
)
982 fw_link_status
|= BNX2_LINK_STATUS_PARALLEL_DET
;
984 fw_link_status
|= BNX2_LINK_STATUS_AN_COMPLETE
;
988 fw_link_status
= BNX2_LINK_STATUS_LINK_DOWN
;
990 bnx2_shmem_wr(bp
, BNX2_LINK_STATUS
, fw_link_status
);
994 bnx2_xceiver_str(struct bnx2
*bp
)
996 return (bp
->phy_port
== PORT_FIBRE
) ? "SerDes" :
997 ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) ? "Remote Copper" :
1002 bnx2_report_link(struct bnx2
*bp
)
1005 netif_carrier_on(bp
->dev
);
1006 netdev_info(bp
->dev
, "NIC %s Link is Up, %d Mbps %s duplex",
1007 bnx2_xceiver_str(bp
),
1009 bp
->duplex
== DUPLEX_FULL
? "full" : "half");
1011 if (bp
->flow_ctrl
) {
1012 if (bp
->flow_ctrl
& FLOW_CTRL_RX
) {
1013 pr_cont(", receive ");
1014 if (bp
->flow_ctrl
& FLOW_CTRL_TX
)
1015 pr_cont("& transmit ");
1018 pr_cont(", transmit ");
1020 pr_cont("flow control ON");
1024 netif_carrier_off(bp
->dev
);
1025 netdev_err(bp
->dev
, "NIC %s Link is Down\n",
1026 bnx2_xceiver_str(bp
));
1029 bnx2_report_fw_link(bp
);
1033 bnx2_resolve_flow_ctrl(struct bnx2
*bp
)
1035 u32 local_adv
, remote_adv
;
1038 if ((bp
->autoneg
& (AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
)) !=
1039 (AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
)) {
1041 if (bp
->duplex
== DUPLEX_FULL
) {
1042 bp
->flow_ctrl
= bp
->req_flow_ctrl
;
1047 if (bp
->duplex
!= DUPLEX_FULL
) {
1051 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
1052 (BNX2_CHIP(bp
) == BNX2_CHIP_5708
)) {
1055 bnx2_read_phy(bp
, BCM5708S_1000X_STAT1
, &val
);
1056 if (val
& BCM5708S_1000X_STAT1_TX_PAUSE
)
1057 bp
->flow_ctrl
|= FLOW_CTRL_TX
;
1058 if (val
& BCM5708S_1000X_STAT1_RX_PAUSE
)
1059 bp
->flow_ctrl
|= FLOW_CTRL_RX
;
1063 bnx2_read_phy(bp
, bp
->mii_adv
, &local_adv
);
1064 bnx2_read_phy(bp
, bp
->mii_lpa
, &remote_adv
);
1066 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1067 u32 new_local_adv
= 0;
1068 u32 new_remote_adv
= 0;
1070 if (local_adv
& ADVERTISE_1000XPAUSE
)
1071 new_local_adv
|= ADVERTISE_PAUSE_CAP
;
1072 if (local_adv
& ADVERTISE_1000XPSE_ASYM
)
1073 new_local_adv
|= ADVERTISE_PAUSE_ASYM
;
1074 if (remote_adv
& ADVERTISE_1000XPAUSE
)
1075 new_remote_adv
|= ADVERTISE_PAUSE_CAP
;
1076 if (remote_adv
& ADVERTISE_1000XPSE_ASYM
)
1077 new_remote_adv
|= ADVERTISE_PAUSE_ASYM
;
1079 local_adv
= new_local_adv
;
1080 remote_adv
= new_remote_adv
;
1083 /* See Table 28B-3 of 802.3ab-1999 spec. */
1084 if (local_adv
& ADVERTISE_PAUSE_CAP
) {
1085 if(local_adv
& ADVERTISE_PAUSE_ASYM
) {
1086 if (remote_adv
& ADVERTISE_PAUSE_CAP
) {
1087 bp
->flow_ctrl
= FLOW_CTRL_TX
| FLOW_CTRL_RX
;
1089 else if (remote_adv
& ADVERTISE_PAUSE_ASYM
) {
1090 bp
->flow_ctrl
= FLOW_CTRL_RX
;
1094 if (remote_adv
& ADVERTISE_PAUSE_CAP
) {
1095 bp
->flow_ctrl
= FLOW_CTRL_TX
| FLOW_CTRL_RX
;
1099 else if (local_adv
& ADVERTISE_PAUSE_ASYM
) {
1100 if ((remote_adv
& ADVERTISE_PAUSE_CAP
) &&
1101 (remote_adv
& ADVERTISE_PAUSE_ASYM
)) {
1103 bp
->flow_ctrl
= FLOW_CTRL_TX
;
1109 bnx2_5709s_linkup(struct bnx2
*bp
)
1115 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_GP_STATUS
);
1116 bnx2_read_phy(bp
, MII_BNX2_GP_TOP_AN_STATUS1
, &val
);
1117 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1119 if ((bp
->autoneg
& AUTONEG_SPEED
) == 0) {
1120 bp
->line_speed
= bp
->req_line_speed
;
1121 bp
->duplex
= bp
->req_duplex
;
1124 speed
= val
& MII_BNX2_GP_TOP_AN_SPEED_MSK
;
1126 case MII_BNX2_GP_TOP_AN_SPEED_10
:
1127 bp
->line_speed
= SPEED_10
;
1129 case MII_BNX2_GP_TOP_AN_SPEED_100
:
1130 bp
->line_speed
= SPEED_100
;
1132 case MII_BNX2_GP_TOP_AN_SPEED_1G
:
1133 case MII_BNX2_GP_TOP_AN_SPEED_1GKV
:
1134 bp
->line_speed
= SPEED_1000
;
1136 case MII_BNX2_GP_TOP_AN_SPEED_2_5G
:
1137 bp
->line_speed
= SPEED_2500
;
1140 if (val
& MII_BNX2_GP_TOP_AN_FD
)
1141 bp
->duplex
= DUPLEX_FULL
;
1143 bp
->duplex
= DUPLEX_HALF
;
1148 bnx2_5708s_linkup(struct bnx2
*bp
)
1153 bnx2_read_phy(bp
, BCM5708S_1000X_STAT1
, &val
);
1154 switch (val
& BCM5708S_1000X_STAT1_SPEED_MASK
) {
1155 case BCM5708S_1000X_STAT1_SPEED_10
:
1156 bp
->line_speed
= SPEED_10
;
1158 case BCM5708S_1000X_STAT1_SPEED_100
:
1159 bp
->line_speed
= SPEED_100
;
1161 case BCM5708S_1000X_STAT1_SPEED_1G
:
1162 bp
->line_speed
= SPEED_1000
;
1164 case BCM5708S_1000X_STAT1_SPEED_2G5
:
1165 bp
->line_speed
= SPEED_2500
;
1168 if (val
& BCM5708S_1000X_STAT1_FD
)
1169 bp
->duplex
= DUPLEX_FULL
;
1171 bp
->duplex
= DUPLEX_HALF
;
1177 bnx2_5706s_linkup(struct bnx2
*bp
)
1179 u32 bmcr
, local_adv
, remote_adv
, common
;
1182 bp
->line_speed
= SPEED_1000
;
1184 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1185 if (bmcr
& BMCR_FULLDPLX
) {
1186 bp
->duplex
= DUPLEX_FULL
;
1189 bp
->duplex
= DUPLEX_HALF
;
1192 if (!(bmcr
& BMCR_ANENABLE
)) {
1196 bnx2_read_phy(bp
, bp
->mii_adv
, &local_adv
);
1197 bnx2_read_phy(bp
, bp
->mii_lpa
, &remote_adv
);
1199 common
= local_adv
& remote_adv
;
1200 if (common
& (ADVERTISE_1000XHALF
| ADVERTISE_1000XFULL
)) {
1202 if (common
& ADVERTISE_1000XFULL
) {
1203 bp
->duplex
= DUPLEX_FULL
;
1206 bp
->duplex
= DUPLEX_HALF
;
1214 bnx2_copper_linkup(struct bnx2
*bp
)
1218 bp
->phy_flags
&= ~BNX2_PHY_FLAG_MDIX
;
1220 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1221 if (bmcr
& BMCR_ANENABLE
) {
1222 u32 local_adv
, remote_adv
, common
;
1224 bnx2_read_phy(bp
, MII_CTRL1000
, &local_adv
);
1225 bnx2_read_phy(bp
, MII_STAT1000
, &remote_adv
);
1227 common
= local_adv
& (remote_adv
>> 2);
1228 if (common
& ADVERTISE_1000FULL
) {
1229 bp
->line_speed
= SPEED_1000
;
1230 bp
->duplex
= DUPLEX_FULL
;
1232 else if (common
& ADVERTISE_1000HALF
) {
1233 bp
->line_speed
= SPEED_1000
;
1234 bp
->duplex
= DUPLEX_HALF
;
1237 bnx2_read_phy(bp
, bp
->mii_adv
, &local_adv
);
1238 bnx2_read_phy(bp
, bp
->mii_lpa
, &remote_adv
);
1240 common
= local_adv
& remote_adv
;
1241 if (common
& ADVERTISE_100FULL
) {
1242 bp
->line_speed
= SPEED_100
;
1243 bp
->duplex
= DUPLEX_FULL
;
1245 else if (common
& ADVERTISE_100HALF
) {
1246 bp
->line_speed
= SPEED_100
;
1247 bp
->duplex
= DUPLEX_HALF
;
1249 else if (common
& ADVERTISE_10FULL
) {
1250 bp
->line_speed
= SPEED_10
;
1251 bp
->duplex
= DUPLEX_FULL
;
1253 else if (common
& ADVERTISE_10HALF
) {
1254 bp
->line_speed
= SPEED_10
;
1255 bp
->duplex
= DUPLEX_HALF
;
1264 if (bmcr
& BMCR_SPEED100
) {
1265 bp
->line_speed
= SPEED_100
;
1268 bp
->line_speed
= SPEED_10
;
1270 if (bmcr
& BMCR_FULLDPLX
) {
1271 bp
->duplex
= DUPLEX_FULL
;
1274 bp
->duplex
= DUPLEX_HALF
;
1281 bnx2_read_phy(bp
, MII_BNX2_EXT_STATUS
, &ext_status
);
1282 if (ext_status
& EXT_STATUS_MDIX
)
1283 bp
->phy_flags
|= BNX2_PHY_FLAG_MDIX
;
1290 bnx2_init_rx_context(struct bnx2
*bp
, u32 cid
)
1292 u32 val
, rx_cid_addr
= GET_CID_ADDR(cid
);
1294 val
= BNX2_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE
;
1295 val
|= BNX2_L2CTX_CTX_TYPE_SIZE_L2
;
1298 if (bp
->flow_ctrl
& FLOW_CTRL_TX
)
1299 val
|= BNX2_L2CTX_FLOW_CTRL_ENABLE
;
1301 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_CTX_TYPE
, val
);
1305 bnx2_init_all_rx_contexts(struct bnx2
*bp
)
1310 for (i
= 0, cid
= RX_CID
; i
< bp
->num_rx_rings
; i
++, cid
++) {
1313 bnx2_init_rx_context(bp
, cid
);
1318 bnx2_set_mac_link(struct bnx2
*bp
)
1322 BNX2_WR(bp
, BNX2_EMAC_TX_LENGTHS
, 0x2620);
1323 if (bp
->link_up
&& (bp
->line_speed
== SPEED_1000
) &&
1324 (bp
->duplex
== DUPLEX_HALF
)) {
1325 BNX2_WR(bp
, BNX2_EMAC_TX_LENGTHS
, 0x26ff);
1328 /* Configure the EMAC mode register. */
1329 val
= BNX2_RD(bp
, BNX2_EMAC_MODE
);
1331 val
&= ~(BNX2_EMAC_MODE_PORT
| BNX2_EMAC_MODE_HALF_DUPLEX
|
1332 BNX2_EMAC_MODE_MAC_LOOP
| BNX2_EMAC_MODE_FORCE_LINK
|
1333 BNX2_EMAC_MODE_25G_MODE
);
1336 switch (bp
->line_speed
) {
1338 if (BNX2_CHIP(bp
) != BNX2_CHIP_5706
) {
1339 val
|= BNX2_EMAC_MODE_PORT_MII_10M
;
1344 val
|= BNX2_EMAC_MODE_PORT_MII
;
1347 val
|= BNX2_EMAC_MODE_25G_MODE
;
1350 val
|= BNX2_EMAC_MODE_PORT_GMII
;
1355 val
|= BNX2_EMAC_MODE_PORT_GMII
;
1358 /* Set the MAC to operate in the appropriate duplex mode. */
1359 if (bp
->duplex
== DUPLEX_HALF
)
1360 val
|= BNX2_EMAC_MODE_HALF_DUPLEX
;
1361 BNX2_WR(bp
, BNX2_EMAC_MODE
, val
);
1363 /* Enable/disable rx PAUSE. */
1364 bp
->rx_mode
&= ~BNX2_EMAC_RX_MODE_FLOW_EN
;
1366 if (bp
->flow_ctrl
& FLOW_CTRL_RX
)
1367 bp
->rx_mode
|= BNX2_EMAC_RX_MODE_FLOW_EN
;
1368 BNX2_WR(bp
, BNX2_EMAC_RX_MODE
, bp
->rx_mode
);
1370 /* Enable/disable tx PAUSE. */
1371 val
= BNX2_RD(bp
, BNX2_EMAC_TX_MODE
);
1372 val
&= ~BNX2_EMAC_TX_MODE_FLOW_EN
;
1374 if (bp
->flow_ctrl
& FLOW_CTRL_TX
)
1375 val
|= BNX2_EMAC_TX_MODE_FLOW_EN
;
1376 BNX2_WR(bp
, BNX2_EMAC_TX_MODE
, val
);
1378 /* Acknowledge the interrupt. */
1379 BNX2_WR(bp
, BNX2_EMAC_STATUS
, BNX2_EMAC_STATUS_LINK_CHANGE
);
1381 bnx2_init_all_rx_contexts(bp
);
1385 bnx2_enable_bmsr1(struct bnx2
*bp
)
1387 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
1388 (BNX2_CHIP(bp
) == BNX2_CHIP_5709
))
1389 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1390 MII_BNX2_BLK_ADDR_GP_STATUS
);
1394 bnx2_disable_bmsr1(struct bnx2
*bp
)
1396 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
1397 (BNX2_CHIP(bp
) == BNX2_CHIP_5709
))
1398 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1399 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1403 bnx2_test_and_enable_2g5(struct bnx2
*bp
)
1408 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
1411 if (bp
->autoneg
& AUTONEG_SPEED
)
1412 bp
->advertising
|= ADVERTISED_2500baseX_Full
;
1414 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
)
1415 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_OVER1G
);
1417 bnx2_read_phy(bp
, bp
->mii_up1
, &up1
);
1418 if (!(up1
& BCM5708S_UP1_2G5
)) {
1419 up1
|= BCM5708S_UP1_2G5
;
1420 bnx2_write_phy(bp
, bp
->mii_up1
, up1
);
1424 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
)
1425 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1426 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1432 bnx2_test_and_disable_2g5(struct bnx2
*bp
)
1437 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
1440 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
)
1441 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_OVER1G
);
1443 bnx2_read_phy(bp
, bp
->mii_up1
, &up1
);
1444 if (up1
& BCM5708S_UP1_2G5
) {
1445 up1
&= ~BCM5708S_UP1_2G5
;
1446 bnx2_write_phy(bp
, bp
->mii_up1
, up1
);
1450 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
)
1451 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1452 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1458 bnx2_enable_forced_2g5(struct bnx2
*bp
)
1460 u32
uninitialized_var(bmcr
);
1463 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
1466 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
) {
1469 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1470 MII_BNX2_BLK_ADDR_SERDES_DIG
);
1471 if (!bnx2_read_phy(bp
, MII_BNX2_SERDES_DIG_MISC1
, &val
)) {
1472 val
&= ~MII_BNX2_SD_MISC1_FORCE_MSK
;
1473 val
|= MII_BNX2_SD_MISC1_FORCE
|
1474 MII_BNX2_SD_MISC1_FORCE_2_5G
;
1475 bnx2_write_phy(bp
, MII_BNX2_SERDES_DIG_MISC1
, val
);
1478 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1479 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1480 err
= bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1482 } else if (BNX2_CHIP(bp
) == BNX2_CHIP_5708
) {
1483 err
= bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1485 bmcr
|= BCM5708S_BMCR_FORCE_2500
;
1493 if (bp
->autoneg
& AUTONEG_SPEED
) {
1494 bmcr
&= ~BMCR_ANENABLE
;
1495 if (bp
->req_duplex
== DUPLEX_FULL
)
1496 bmcr
|= BMCR_FULLDPLX
;
1498 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
1502 bnx2_disable_forced_2g5(struct bnx2
*bp
)
1504 u32
uninitialized_var(bmcr
);
1507 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
1510 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
) {
1513 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1514 MII_BNX2_BLK_ADDR_SERDES_DIG
);
1515 if (!bnx2_read_phy(bp
, MII_BNX2_SERDES_DIG_MISC1
, &val
)) {
1516 val
&= ~MII_BNX2_SD_MISC1_FORCE
;
1517 bnx2_write_phy(bp
, MII_BNX2_SERDES_DIG_MISC1
, val
);
1520 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1521 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1522 err
= bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1524 } else if (BNX2_CHIP(bp
) == BNX2_CHIP_5708
) {
1525 err
= bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1527 bmcr
&= ~BCM5708S_BMCR_FORCE_2500
;
1535 if (bp
->autoneg
& AUTONEG_SPEED
)
1536 bmcr
|= BMCR_SPEED1000
| BMCR_ANENABLE
| BMCR_ANRESTART
;
1537 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
1541 bnx2_5706s_force_link_dn(struct bnx2
*bp
, int start
)
1545 bnx2_write_phy(bp
, MII_BNX2_DSP_ADDRESS
, MII_EXPAND_SERDES_CTL
);
1546 bnx2_read_phy(bp
, MII_BNX2_DSP_RW_PORT
, &val
);
1548 bnx2_write_phy(bp
, MII_BNX2_DSP_RW_PORT
, val
& 0xff0f);
1550 bnx2_write_phy(bp
, MII_BNX2_DSP_RW_PORT
, val
| 0xc0);
1554 bnx2_set_link(struct bnx2
*bp
)
1559 if (bp
->loopback
== MAC_LOOPBACK
|| bp
->loopback
== PHY_LOOPBACK
) {
1564 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
1567 link_up
= bp
->link_up
;
1569 bnx2_enable_bmsr1(bp
);
1570 bnx2_read_phy(bp
, bp
->mii_bmsr1
, &bmsr
);
1571 bnx2_read_phy(bp
, bp
->mii_bmsr1
, &bmsr
);
1572 bnx2_disable_bmsr1(bp
);
1574 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
1575 (BNX2_CHIP(bp
) == BNX2_CHIP_5706
)) {
1578 if (bp
->phy_flags
& BNX2_PHY_FLAG_FORCED_DOWN
) {
1579 bnx2_5706s_force_link_dn(bp
, 0);
1580 bp
->phy_flags
&= ~BNX2_PHY_FLAG_FORCED_DOWN
;
1582 val
= BNX2_RD(bp
, BNX2_EMAC_STATUS
);
1584 bnx2_write_phy(bp
, MII_BNX2_MISC_SHADOW
, MISC_SHDW_AN_DBG
);
1585 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &an_dbg
);
1586 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &an_dbg
);
1588 if ((val
& BNX2_EMAC_STATUS_LINK
) &&
1589 !(an_dbg
& MISC_SHDW_AN_DBG_NOSYNC
))
1590 bmsr
|= BMSR_LSTATUS
;
1592 bmsr
&= ~BMSR_LSTATUS
;
1595 if (bmsr
& BMSR_LSTATUS
) {
1598 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1599 if (BNX2_CHIP(bp
) == BNX2_CHIP_5706
)
1600 bnx2_5706s_linkup(bp
);
1601 else if (BNX2_CHIP(bp
) == BNX2_CHIP_5708
)
1602 bnx2_5708s_linkup(bp
);
1603 else if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
)
1604 bnx2_5709s_linkup(bp
);
1607 bnx2_copper_linkup(bp
);
1609 bnx2_resolve_flow_ctrl(bp
);
1612 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
1613 (bp
->autoneg
& AUTONEG_SPEED
))
1614 bnx2_disable_forced_2g5(bp
);
1616 if (bp
->phy_flags
& BNX2_PHY_FLAG_PARALLEL_DETECT
) {
1619 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1620 bmcr
|= BMCR_ANENABLE
;
1621 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
1623 bp
->phy_flags
&= ~BNX2_PHY_FLAG_PARALLEL_DETECT
;
1628 if (bp
->link_up
!= link_up
) {
1629 bnx2_report_link(bp
);
1632 bnx2_set_mac_link(bp
);
1638 bnx2_reset_phy(struct bnx2
*bp
)
1643 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_RESET
);
1645 #define PHY_RESET_MAX_WAIT 100
1646 for (i
= 0; i
< PHY_RESET_MAX_WAIT
; i
++) {
1649 bnx2_read_phy(bp
, bp
->mii_bmcr
, ®
);
1650 if (!(reg
& BMCR_RESET
)) {
1655 if (i
== PHY_RESET_MAX_WAIT
) {
1662 bnx2_phy_get_pause_adv(struct bnx2
*bp
)
1666 if ((bp
->req_flow_ctrl
& (FLOW_CTRL_RX
| FLOW_CTRL_TX
)) ==
1667 (FLOW_CTRL_RX
| FLOW_CTRL_TX
)) {
1669 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1670 adv
= ADVERTISE_1000XPAUSE
;
1673 adv
= ADVERTISE_PAUSE_CAP
;
1676 else if (bp
->req_flow_ctrl
& FLOW_CTRL_TX
) {
1677 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1678 adv
= ADVERTISE_1000XPSE_ASYM
;
1681 adv
= ADVERTISE_PAUSE_ASYM
;
1684 else if (bp
->req_flow_ctrl
& FLOW_CTRL_RX
) {
1685 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1686 adv
= ADVERTISE_1000XPAUSE
| ADVERTISE_1000XPSE_ASYM
;
1689 adv
= ADVERTISE_PAUSE_CAP
| ADVERTISE_PAUSE_ASYM
;
1695 static int bnx2_fw_sync(struct bnx2
*, u32
, int, int);
1698 bnx2_setup_remote_phy(struct bnx2
*bp
, u8 port
)
1699 __releases(&bp
->phy_lock
)
1700 __acquires(&bp
->phy_lock
)
1702 u32 speed_arg
= 0, pause_adv
;
1704 pause_adv
= bnx2_phy_get_pause_adv(bp
);
1706 if (bp
->autoneg
& AUTONEG_SPEED
) {
1707 speed_arg
|= BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG
;
1708 if (bp
->advertising
& ADVERTISED_10baseT_Half
)
1709 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_10HALF
;
1710 if (bp
->advertising
& ADVERTISED_10baseT_Full
)
1711 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_10FULL
;
1712 if (bp
->advertising
& ADVERTISED_100baseT_Half
)
1713 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_100HALF
;
1714 if (bp
->advertising
& ADVERTISED_100baseT_Full
)
1715 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_100FULL
;
1716 if (bp
->advertising
& ADVERTISED_1000baseT_Full
)
1717 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_1GFULL
;
1718 if (bp
->advertising
& ADVERTISED_2500baseX_Full
)
1719 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_2G5FULL
;
1721 if (bp
->req_line_speed
== SPEED_2500
)
1722 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_2G5FULL
;
1723 else if (bp
->req_line_speed
== SPEED_1000
)
1724 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_1GFULL
;
1725 else if (bp
->req_line_speed
== SPEED_100
) {
1726 if (bp
->req_duplex
== DUPLEX_FULL
)
1727 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_100FULL
;
1729 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_100HALF
;
1730 } else if (bp
->req_line_speed
== SPEED_10
) {
1731 if (bp
->req_duplex
== DUPLEX_FULL
)
1732 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_10FULL
;
1734 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_10HALF
;
1738 if (pause_adv
& (ADVERTISE_1000XPAUSE
| ADVERTISE_PAUSE_CAP
))
1739 speed_arg
|= BNX2_NETLINK_SET_LINK_FC_SYM_PAUSE
;
1740 if (pause_adv
& (ADVERTISE_1000XPSE_ASYM
| ADVERTISE_PAUSE_ASYM
))
1741 speed_arg
|= BNX2_NETLINK_SET_LINK_FC_ASYM_PAUSE
;
1743 if (port
== PORT_TP
)
1744 speed_arg
|= BNX2_NETLINK_SET_LINK_PHY_APP_REMOTE
|
1745 BNX2_NETLINK_SET_LINK_ETH_AT_WIRESPEED
;
1747 bnx2_shmem_wr(bp
, BNX2_DRV_MB_ARG0
, speed_arg
);
1749 spin_unlock_bh(&bp
->phy_lock
);
1750 bnx2_fw_sync(bp
, BNX2_DRV_MSG_CODE_CMD_SET_LINK
, 1, 0);
1751 spin_lock_bh(&bp
->phy_lock
);
1757 bnx2_setup_serdes_phy(struct bnx2
*bp
, u8 port
)
1758 __releases(&bp
->phy_lock
)
1759 __acquires(&bp
->phy_lock
)
1764 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
1765 return bnx2_setup_remote_phy(bp
, port
);
1767 if (!(bp
->autoneg
& AUTONEG_SPEED
)) {
1769 int force_link_down
= 0;
1771 if (bp
->req_line_speed
== SPEED_2500
) {
1772 if (!bnx2_test_and_enable_2g5(bp
))
1773 force_link_down
= 1;
1774 } else if (bp
->req_line_speed
== SPEED_1000
) {
1775 if (bnx2_test_and_disable_2g5(bp
))
1776 force_link_down
= 1;
1778 bnx2_read_phy(bp
, bp
->mii_adv
, &adv
);
1779 adv
&= ~(ADVERTISE_1000XFULL
| ADVERTISE_1000XHALF
);
1781 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1782 new_bmcr
= bmcr
& ~BMCR_ANENABLE
;
1783 new_bmcr
|= BMCR_SPEED1000
;
1785 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
) {
1786 if (bp
->req_line_speed
== SPEED_2500
)
1787 bnx2_enable_forced_2g5(bp
);
1788 else if (bp
->req_line_speed
== SPEED_1000
) {
1789 bnx2_disable_forced_2g5(bp
);
1790 new_bmcr
&= ~0x2000;
1793 } else if (BNX2_CHIP(bp
) == BNX2_CHIP_5708
) {
1794 if (bp
->req_line_speed
== SPEED_2500
)
1795 new_bmcr
|= BCM5708S_BMCR_FORCE_2500
;
1797 new_bmcr
= bmcr
& ~BCM5708S_BMCR_FORCE_2500
;
1800 if (bp
->req_duplex
== DUPLEX_FULL
) {
1801 adv
|= ADVERTISE_1000XFULL
;
1802 new_bmcr
|= BMCR_FULLDPLX
;
1805 adv
|= ADVERTISE_1000XHALF
;
1806 new_bmcr
&= ~BMCR_FULLDPLX
;
1808 if ((new_bmcr
!= bmcr
) || (force_link_down
)) {
1809 /* Force a link down visible on the other side */
1811 bnx2_write_phy(bp
, bp
->mii_adv
, adv
&
1812 ~(ADVERTISE_1000XFULL
|
1813 ADVERTISE_1000XHALF
));
1814 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
|
1815 BMCR_ANRESTART
| BMCR_ANENABLE
);
1818 netif_carrier_off(bp
->dev
);
1819 bnx2_write_phy(bp
, bp
->mii_bmcr
, new_bmcr
);
1820 bnx2_report_link(bp
);
1822 bnx2_write_phy(bp
, bp
->mii_adv
, adv
);
1823 bnx2_write_phy(bp
, bp
->mii_bmcr
, new_bmcr
);
1825 bnx2_resolve_flow_ctrl(bp
);
1826 bnx2_set_mac_link(bp
);
1831 bnx2_test_and_enable_2g5(bp
);
1833 if (bp
->advertising
& ADVERTISED_1000baseT_Full
)
1834 new_adv
|= ADVERTISE_1000XFULL
;
1836 new_adv
|= bnx2_phy_get_pause_adv(bp
);
1838 bnx2_read_phy(bp
, bp
->mii_adv
, &adv
);
1839 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1841 bp
->serdes_an_pending
= 0;
1842 if ((adv
!= new_adv
) || ((bmcr
& BMCR_ANENABLE
) == 0)) {
1843 /* Force a link down visible on the other side */
1845 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_LOOPBACK
);
1846 spin_unlock_bh(&bp
->phy_lock
);
1848 spin_lock_bh(&bp
->phy_lock
);
1851 bnx2_write_phy(bp
, bp
->mii_adv
, new_adv
);
1852 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
| BMCR_ANRESTART
|
1854 /* Speed up link-up time when the link partner
1855 * does not autonegotiate which is very common
1856 * in blade servers. Some blade servers use
1857 * IPMI for kerboard input and it's important
1858 * to minimize link disruptions. Autoneg. involves
1859 * exchanging base pages plus 3 next pages and
1860 * normally completes in about 120 msec.
1862 bp
->current_interval
= BNX2_SERDES_AN_TIMEOUT
;
1863 bp
->serdes_an_pending
= 1;
1864 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
1866 bnx2_resolve_flow_ctrl(bp
);
1867 bnx2_set_mac_link(bp
);
1873 #define ETHTOOL_ALL_FIBRE_SPEED \
1874 (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) ? \
1875 (ADVERTISED_2500baseX_Full | ADVERTISED_1000baseT_Full) :\
1876 (ADVERTISED_1000baseT_Full)
1878 #define ETHTOOL_ALL_COPPER_SPEED \
1879 (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
1880 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
1881 ADVERTISED_1000baseT_Full)
1883 #define PHY_ALL_10_100_SPEED (ADVERTISE_10HALF | ADVERTISE_10FULL | \
1884 ADVERTISE_100HALF | ADVERTISE_100FULL | ADVERTISE_CSMA)
1886 #define PHY_ALL_1000_SPEED (ADVERTISE_1000HALF | ADVERTISE_1000FULL)
1889 bnx2_set_default_remote_link(struct bnx2
*bp
)
1893 if (bp
->phy_port
== PORT_TP
)
1894 link
= bnx2_shmem_rd(bp
, BNX2_RPHY_COPPER_LINK
);
1896 link
= bnx2_shmem_rd(bp
, BNX2_RPHY_SERDES_LINK
);
1898 if (link
& BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG
) {
1899 bp
->req_line_speed
= 0;
1900 bp
->autoneg
|= AUTONEG_SPEED
;
1901 bp
->advertising
= ADVERTISED_Autoneg
;
1902 if (link
& BNX2_NETLINK_SET_LINK_SPEED_10HALF
)
1903 bp
->advertising
|= ADVERTISED_10baseT_Half
;
1904 if (link
& BNX2_NETLINK_SET_LINK_SPEED_10FULL
)
1905 bp
->advertising
|= ADVERTISED_10baseT_Full
;
1906 if (link
& BNX2_NETLINK_SET_LINK_SPEED_100HALF
)
1907 bp
->advertising
|= ADVERTISED_100baseT_Half
;
1908 if (link
& BNX2_NETLINK_SET_LINK_SPEED_100FULL
)
1909 bp
->advertising
|= ADVERTISED_100baseT_Full
;
1910 if (link
& BNX2_NETLINK_SET_LINK_SPEED_1GFULL
)
1911 bp
->advertising
|= ADVERTISED_1000baseT_Full
;
1912 if (link
& BNX2_NETLINK_SET_LINK_SPEED_2G5FULL
)
1913 bp
->advertising
|= ADVERTISED_2500baseX_Full
;
1916 bp
->advertising
= 0;
1917 bp
->req_duplex
= DUPLEX_FULL
;
1918 if (link
& BNX2_NETLINK_SET_LINK_SPEED_10
) {
1919 bp
->req_line_speed
= SPEED_10
;
1920 if (link
& BNX2_NETLINK_SET_LINK_SPEED_10HALF
)
1921 bp
->req_duplex
= DUPLEX_HALF
;
1923 if (link
& BNX2_NETLINK_SET_LINK_SPEED_100
) {
1924 bp
->req_line_speed
= SPEED_100
;
1925 if (link
& BNX2_NETLINK_SET_LINK_SPEED_100HALF
)
1926 bp
->req_duplex
= DUPLEX_HALF
;
1928 if (link
& BNX2_NETLINK_SET_LINK_SPEED_1GFULL
)
1929 bp
->req_line_speed
= SPEED_1000
;
1930 if (link
& BNX2_NETLINK_SET_LINK_SPEED_2G5FULL
)
1931 bp
->req_line_speed
= SPEED_2500
;
1936 bnx2_set_default_link(struct bnx2
*bp
)
1938 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) {
1939 bnx2_set_default_remote_link(bp
);
1943 bp
->autoneg
= AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
;
1944 bp
->req_line_speed
= 0;
1945 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1948 bp
->advertising
= ETHTOOL_ALL_FIBRE_SPEED
| ADVERTISED_Autoneg
;
1950 reg
= bnx2_shmem_rd(bp
, BNX2_PORT_HW_CFG_CONFIG
);
1951 reg
&= BNX2_PORT_HW_CFG_CFG_DFLT_LINK_MASK
;
1952 if (reg
== BNX2_PORT_HW_CFG_CFG_DFLT_LINK_1G
) {
1954 bp
->req_line_speed
= bp
->line_speed
= SPEED_1000
;
1955 bp
->req_duplex
= DUPLEX_FULL
;
1958 bp
->advertising
= ETHTOOL_ALL_COPPER_SPEED
| ADVERTISED_Autoneg
;
1962 bnx2_send_heart_beat(struct bnx2
*bp
)
1967 spin_lock(&bp
->indirect_lock
);
1968 msg
= (u32
) (++bp
->fw_drv_pulse_wr_seq
& BNX2_DRV_PULSE_SEQ_MASK
);
1969 addr
= bp
->shmem_base
+ BNX2_DRV_PULSE_MB
;
1970 BNX2_WR(bp
, BNX2_PCICFG_REG_WINDOW_ADDRESS
, addr
);
1971 BNX2_WR(bp
, BNX2_PCICFG_REG_WINDOW
, msg
);
1972 spin_unlock(&bp
->indirect_lock
);
1976 bnx2_remote_phy_event(struct bnx2
*bp
)
1979 u8 link_up
= bp
->link_up
;
1982 msg
= bnx2_shmem_rd(bp
, BNX2_LINK_STATUS
);
1984 if (msg
& BNX2_LINK_STATUS_HEART_BEAT_EXPIRED
)
1985 bnx2_send_heart_beat(bp
);
1987 msg
&= ~BNX2_LINK_STATUS_HEART_BEAT_EXPIRED
;
1989 if ((msg
& BNX2_LINK_STATUS_LINK_UP
) == BNX2_LINK_STATUS_LINK_DOWN
)
1995 speed
= msg
& BNX2_LINK_STATUS_SPEED_MASK
;
1996 bp
->duplex
= DUPLEX_FULL
;
1998 case BNX2_LINK_STATUS_10HALF
:
1999 bp
->duplex
= DUPLEX_HALF
;
2001 case BNX2_LINK_STATUS_10FULL
:
2002 bp
->line_speed
= SPEED_10
;
2004 case BNX2_LINK_STATUS_100HALF
:
2005 bp
->duplex
= DUPLEX_HALF
;
2007 case BNX2_LINK_STATUS_100BASE_T4
:
2008 case BNX2_LINK_STATUS_100FULL
:
2009 bp
->line_speed
= SPEED_100
;
2011 case BNX2_LINK_STATUS_1000HALF
:
2012 bp
->duplex
= DUPLEX_HALF
;
2014 case BNX2_LINK_STATUS_1000FULL
:
2015 bp
->line_speed
= SPEED_1000
;
2017 case BNX2_LINK_STATUS_2500HALF
:
2018 bp
->duplex
= DUPLEX_HALF
;
2020 case BNX2_LINK_STATUS_2500FULL
:
2021 bp
->line_speed
= SPEED_2500
;
2029 if ((bp
->autoneg
& (AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
)) !=
2030 (AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
)) {
2031 if (bp
->duplex
== DUPLEX_FULL
)
2032 bp
->flow_ctrl
= bp
->req_flow_ctrl
;
2034 if (msg
& BNX2_LINK_STATUS_TX_FC_ENABLED
)
2035 bp
->flow_ctrl
|= FLOW_CTRL_TX
;
2036 if (msg
& BNX2_LINK_STATUS_RX_FC_ENABLED
)
2037 bp
->flow_ctrl
|= FLOW_CTRL_RX
;
2040 old_port
= bp
->phy_port
;
2041 if (msg
& BNX2_LINK_STATUS_SERDES_LINK
)
2042 bp
->phy_port
= PORT_FIBRE
;
2044 bp
->phy_port
= PORT_TP
;
2046 if (old_port
!= bp
->phy_port
)
2047 bnx2_set_default_link(bp
);
2050 if (bp
->link_up
!= link_up
)
2051 bnx2_report_link(bp
);
2053 bnx2_set_mac_link(bp
);
2057 bnx2_set_remote_link(struct bnx2
*bp
)
2061 evt_code
= bnx2_shmem_rd(bp
, BNX2_FW_EVT_CODE_MB
);
2063 case BNX2_FW_EVT_CODE_LINK_EVENT
:
2064 bnx2_remote_phy_event(bp
);
2066 case BNX2_FW_EVT_CODE_SW_TIMER_EXPIRATION_EVENT
:
2068 bnx2_send_heart_beat(bp
);
2075 bnx2_setup_copper_phy(struct bnx2
*bp
)
2076 __releases(&bp
->phy_lock
)
2077 __acquires(&bp
->phy_lock
)
2079 u32 bmcr
, adv_reg
, new_adv
= 0;
2082 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
2084 bnx2_read_phy(bp
, bp
->mii_adv
, &adv_reg
);
2085 adv_reg
&= (PHY_ALL_10_100_SPEED
| ADVERTISE_PAUSE_CAP
|
2086 ADVERTISE_PAUSE_ASYM
);
2088 new_adv
= ADVERTISE_CSMA
| ethtool_adv_to_mii_adv_t(bp
->advertising
);
2090 if (bp
->autoneg
& AUTONEG_SPEED
) {
2092 u32 new_adv1000
= 0;
2094 new_adv
|= bnx2_phy_get_pause_adv(bp
);
2096 bnx2_read_phy(bp
, MII_CTRL1000
, &adv1000_reg
);
2097 adv1000_reg
&= PHY_ALL_1000_SPEED
;
2099 new_adv1000
|= ethtool_adv_to_mii_ctrl1000_t(bp
->advertising
);
2100 if ((adv1000_reg
!= new_adv1000
) ||
2101 (adv_reg
!= new_adv
) ||
2102 ((bmcr
& BMCR_ANENABLE
) == 0)) {
2104 bnx2_write_phy(bp
, bp
->mii_adv
, new_adv
);
2105 bnx2_write_phy(bp
, MII_CTRL1000
, new_adv1000
);
2106 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_ANRESTART
|
2109 else if (bp
->link_up
) {
2110 /* Flow ctrl may have changed from auto to forced */
2111 /* or vice-versa. */
2113 bnx2_resolve_flow_ctrl(bp
);
2114 bnx2_set_mac_link(bp
);
2119 /* advertise nothing when forcing speed */
2120 if (adv_reg
!= new_adv
)
2121 bnx2_write_phy(bp
, bp
->mii_adv
, new_adv
);
2124 if (bp
->req_line_speed
== SPEED_100
) {
2125 new_bmcr
|= BMCR_SPEED100
;
2127 if (bp
->req_duplex
== DUPLEX_FULL
) {
2128 new_bmcr
|= BMCR_FULLDPLX
;
2130 if (new_bmcr
!= bmcr
) {
2133 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
2134 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
2136 if (bmsr
& BMSR_LSTATUS
) {
2137 /* Force link down */
2138 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_LOOPBACK
);
2139 spin_unlock_bh(&bp
->phy_lock
);
2141 spin_lock_bh(&bp
->phy_lock
);
2143 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
2144 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
2147 bnx2_write_phy(bp
, bp
->mii_bmcr
, new_bmcr
);
2149 /* Normally, the new speed is setup after the link has
2150 * gone down and up again. In some cases, link will not go
2151 * down so we need to set up the new speed here.
2153 if (bmsr
& BMSR_LSTATUS
) {
2154 bp
->line_speed
= bp
->req_line_speed
;
2155 bp
->duplex
= bp
->req_duplex
;
2156 bnx2_resolve_flow_ctrl(bp
);
2157 bnx2_set_mac_link(bp
);
2160 bnx2_resolve_flow_ctrl(bp
);
2161 bnx2_set_mac_link(bp
);
2167 bnx2_setup_phy(struct bnx2
*bp
, u8 port
)
2168 __releases(&bp
->phy_lock
)
2169 __acquires(&bp
->phy_lock
)
2171 if (bp
->loopback
== MAC_LOOPBACK
)
2174 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
2175 return bnx2_setup_serdes_phy(bp
, port
);
2178 return bnx2_setup_copper_phy(bp
);
2183 bnx2_init_5709s_phy(struct bnx2
*bp
, int reset_phy
)
2187 bp
->mii_bmcr
= MII_BMCR
+ 0x10;
2188 bp
->mii_bmsr
= MII_BMSR
+ 0x10;
2189 bp
->mii_bmsr1
= MII_BNX2_GP_TOP_AN_STATUS1
;
2190 bp
->mii_adv
= MII_ADVERTISE
+ 0x10;
2191 bp
->mii_lpa
= MII_LPA
+ 0x10;
2192 bp
->mii_up1
= MII_BNX2_OVER1G_UP1
;
2194 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_AER
);
2195 bnx2_write_phy(bp
, MII_BNX2_AER_AER
, MII_BNX2_AER_AER_AN_MMD
);
2197 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
2201 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_SERDES_DIG
);
2203 bnx2_read_phy(bp
, MII_BNX2_SERDES_DIG_1000XCTL1
, &val
);
2204 val
&= ~MII_BNX2_SD_1000XCTL1_AUTODET
;
2205 val
|= MII_BNX2_SD_1000XCTL1_FIBER
;
2206 bnx2_write_phy(bp
, MII_BNX2_SERDES_DIG_1000XCTL1
, val
);
2208 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_OVER1G
);
2209 bnx2_read_phy(bp
, MII_BNX2_OVER1G_UP1
, &val
);
2210 if (bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
)
2211 val
|= BCM5708S_UP1_2G5
;
2213 val
&= ~BCM5708S_UP1_2G5
;
2214 bnx2_write_phy(bp
, MII_BNX2_OVER1G_UP1
, val
);
2216 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_BAM_NXTPG
);
2217 bnx2_read_phy(bp
, MII_BNX2_BAM_NXTPG_CTL
, &val
);
2218 val
|= MII_BNX2_NXTPG_CTL_T2
| MII_BNX2_NXTPG_CTL_BAM
;
2219 bnx2_write_phy(bp
, MII_BNX2_BAM_NXTPG_CTL
, val
);
2221 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_CL73_USERB0
);
2223 val
= MII_BNX2_CL73_BAM_EN
| MII_BNX2_CL73_BAM_STA_MGR_EN
|
2224 MII_BNX2_CL73_BAM_NP_AFT_BP_EN
;
2225 bnx2_write_phy(bp
, MII_BNX2_CL73_BAM_CTL1
, val
);
2227 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
2233 bnx2_init_5708s_phy(struct bnx2
*bp
, int reset_phy
)
2240 bp
->mii_up1
= BCM5708S_UP1
;
2242 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
, BCM5708S_BLK_ADDR_DIG3
);
2243 bnx2_write_phy(bp
, BCM5708S_DIG_3_0
, BCM5708S_DIG_3_0_USE_IEEE
);
2244 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
, BCM5708S_BLK_ADDR_DIG
);
2246 bnx2_read_phy(bp
, BCM5708S_1000X_CTL1
, &val
);
2247 val
|= BCM5708S_1000X_CTL1_FIBER_MODE
| BCM5708S_1000X_CTL1_AUTODET_EN
;
2248 bnx2_write_phy(bp
, BCM5708S_1000X_CTL1
, val
);
2250 bnx2_read_phy(bp
, BCM5708S_1000X_CTL2
, &val
);
2251 val
|= BCM5708S_1000X_CTL2_PLLEL_DET_EN
;
2252 bnx2_write_phy(bp
, BCM5708S_1000X_CTL2
, val
);
2254 if (bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
) {
2255 bnx2_read_phy(bp
, BCM5708S_UP1
, &val
);
2256 val
|= BCM5708S_UP1_2G5
;
2257 bnx2_write_phy(bp
, BCM5708S_UP1
, val
);
2260 if ((BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5708_A0
) ||
2261 (BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5708_B0
) ||
2262 (BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5708_B1
)) {
2263 /* increase tx signal amplitude */
2264 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
,
2265 BCM5708S_BLK_ADDR_TX_MISC
);
2266 bnx2_read_phy(bp
, BCM5708S_TX_ACTL1
, &val
);
2267 val
&= ~BCM5708S_TX_ACTL1_DRIVER_VCM
;
2268 bnx2_write_phy(bp
, BCM5708S_TX_ACTL1
, val
);
2269 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
, BCM5708S_BLK_ADDR_DIG
);
2272 val
= bnx2_shmem_rd(bp
, BNX2_PORT_HW_CFG_CONFIG
) &
2273 BNX2_PORT_HW_CFG_CFG_TXCTL3_MASK
;
2278 is_backplane
= bnx2_shmem_rd(bp
, BNX2_SHARED_HW_CFG_CONFIG
);
2279 if (is_backplane
& BNX2_SHARED_HW_CFG_PHY_BACKPLANE
) {
2280 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
,
2281 BCM5708S_BLK_ADDR_TX_MISC
);
2282 bnx2_write_phy(bp
, BCM5708S_TX_ACTL3
, val
);
2283 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
,
2284 BCM5708S_BLK_ADDR_DIG
);
2291 bnx2_init_5706s_phy(struct bnx2
*bp
, int reset_phy
)
2296 bp
->phy_flags
&= ~BNX2_PHY_FLAG_PARALLEL_DETECT
;
2298 if (BNX2_CHIP(bp
) == BNX2_CHIP_5706
)
2299 BNX2_WR(bp
, BNX2_MISC_GP_HW_CTL0
, 0x300);
2301 if (bp
->dev
->mtu
> 1500) {
2304 /* Set extended packet length bit */
2305 bnx2_write_phy(bp
, 0x18, 0x7);
2306 bnx2_read_phy(bp
, 0x18, &val
);
2307 bnx2_write_phy(bp
, 0x18, (val
& 0xfff8) | 0x4000);
2309 bnx2_write_phy(bp
, 0x1c, 0x6c00);
2310 bnx2_read_phy(bp
, 0x1c, &val
);
2311 bnx2_write_phy(bp
, 0x1c, (val
& 0x3ff) | 0xec02);
2316 bnx2_write_phy(bp
, 0x18, 0x7);
2317 bnx2_read_phy(bp
, 0x18, &val
);
2318 bnx2_write_phy(bp
, 0x18, val
& ~0x4007);
2320 bnx2_write_phy(bp
, 0x1c, 0x6c00);
2321 bnx2_read_phy(bp
, 0x1c, &val
);
2322 bnx2_write_phy(bp
, 0x1c, (val
& 0x3fd) | 0xec00);
2329 bnx2_init_copper_phy(struct bnx2
*bp
, int reset_phy
)
2336 if (bp
->phy_flags
& BNX2_PHY_FLAG_CRC_FIX
) {
2337 bnx2_write_phy(bp
, 0x18, 0x0c00);
2338 bnx2_write_phy(bp
, 0x17, 0x000a);
2339 bnx2_write_phy(bp
, 0x15, 0x310b);
2340 bnx2_write_phy(bp
, 0x17, 0x201f);
2341 bnx2_write_phy(bp
, 0x15, 0x9506);
2342 bnx2_write_phy(bp
, 0x17, 0x401f);
2343 bnx2_write_phy(bp
, 0x15, 0x14e2);
2344 bnx2_write_phy(bp
, 0x18, 0x0400);
2347 if (bp
->phy_flags
& BNX2_PHY_FLAG_DIS_EARLY_DAC
) {
2348 bnx2_write_phy(bp
, MII_BNX2_DSP_ADDRESS
,
2349 MII_BNX2_DSP_EXPAND_REG
| 0x8);
2350 bnx2_read_phy(bp
, MII_BNX2_DSP_RW_PORT
, &val
);
2352 bnx2_write_phy(bp
, MII_BNX2_DSP_RW_PORT
, val
);
2355 if (bp
->dev
->mtu
> 1500) {
2356 /* Set extended packet length bit */
2357 bnx2_write_phy(bp
, 0x18, 0x7);
2358 bnx2_read_phy(bp
, 0x18, &val
);
2359 bnx2_write_phy(bp
, 0x18, val
| 0x4000);
2361 bnx2_read_phy(bp
, 0x10, &val
);
2362 bnx2_write_phy(bp
, 0x10, val
| 0x1);
2365 bnx2_write_phy(bp
, 0x18, 0x7);
2366 bnx2_read_phy(bp
, 0x18, &val
);
2367 bnx2_write_phy(bp
, 0x18, val
& ~0x4007);
2369 bnx2_read_phy(bp
, 0x10, &val
);
2370 bnx2_write_phy(bp
, 0x10, val
& ~0x1);
2373 /* ethernet@wirespeed */
2374 bnx2_write_phy(bp
, MII_BNX2_AUX_CTL
, AUX_CTL_MISC_CTL
);
2375 bnx2_read_phy(bp
, MII_BNX2_AUX_CTL
, &val
);
2376 val
|= AUX_CTL_MISC_CTL_WR
| AUX_CTL_MISC_CTL_WIRESPEED
;
2379 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
)
2380 val
|= AUX_CTL_MISC_CTL_AUTOMDIX
;
2382 bnx2_write_phy(bp
, MII_BNX2_AUX_CTL
, val
);
2388 bnx2_init_phy(struct bnx2
*bp
, int reset_phy
)
2389 __releases(&bp
->phy_lock
)
2390 __acquires(&bp
->phy_lock
)
2395 bp
->phy_flags
&= ~BNX2_PHY_FLAG_INT_MODE_MASK
;
2396 bp
->phy_flags
|= BNX2_PHY_FLAG_INT_MODE_LINK_READY
;
2398 bp
->mii_bmcr
= MII_BMCR
;
2399 bp
->mii_bmsr
= MII_BMSR
;
2400 bp
->mii_bmsr1
= MII_BMSR
;
2401 bp
->mii_adv
= MII_ADVERTISE
;
2402 bp
->mii_lpa
= MII_LPA
;
2404 BNX2_WR(bp
, BNX2_EMAC_ATTENTION_ENA
, BNX2_EMAC_ATTENTION_ENA_LINK
);
2406 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
2409 bnx2_read_phy(bp
, MII_PHYSID1
, &val
);
2410 bp
->phy_id
= val
<< 16;
2411 bnx2_read_phy(bp
, MII_PHYSID2
, &val
);
2412 bp
->phy_id
|= val
& 0xffff;
2414 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
2415 if (BNX2_CHIP(bp
) == BNX2_CHIP_5706
)
2416 rc
= bnx2_init_5706s_phy(bp
, reset_phy
);
2417 else if (BNX2_CHIP(bp
) == BNX2_CHIP_5708
)
2418 rc
= bnx2_init_5708s_phy(bp
, reset_phy
);
2419 else if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
)
2420 rc
= bnx2_init_5709s_phy(bp
, reset_phy
);
2423 rc
= bnx2_init_copper_phy(bp
, reset_phy
);
2428 rc
= bnx2_setup_phy(bp
, bp
->phy_port
);
2434 bnx2_set_mac_loopback(struct bnx2
*bp
)
2438 mac_mode
= BNX2_RD(bp
, BNX2_EMAC_MODE
);
2439 mac_mode
&= ~BNX2_EMAC_MODE_PORT
;
2440 mac_mode
|= BNX2_EMAC_MODE_MAC_LOOP
| BNX2_EMAC_MODE_FORCE_LINK
;
2441 BNX2_WR(bp
, BNX2_EMAC_MODE
, mac_mode
);
2446 static int bnx2_test_link(struct bnx2
*);
2449 bnx2_set_phy_loopback(struct bnx2
*bp
)
2454 spin_lock_bh(&bp
->phy_lock
);
2455 rc
= bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_LOOPBACK
| BMCR_FULLDPLX
|
2457 spin_unlock_bh(&bp
->phy_lock
);
2461 for (i
= 0; i
< 10; i
++) {
2462 if (bnx2_test_link(bp
) == 0)
2467 mac_mode
= BNX2_RD(bp
, BNX2_EMAC_MODE
);
2468 mac_mode
&= ~(BNX2_EMAC_MODE_PORT
| BNX2_EMAC_MODE_HALF_DUPLEX
|
2469 BNX2_EMAC_MODE_MAC_LOOP
| BNX2_EMAC_MODE_FORCE_LINK
|
2470 BNX2_EMAC_MODE_25G_MODE
);
2472 mac_mode
|= BNX2_EMAC_MODE_PORT_GMII
;
2473 BNX2_WR(bp
, BNX2_EMAC_MODE
, mac_mode
);
2479 bnx2_dump_mcp_state(struct bnx2
*bp
)
2481 struct net_device
*dev
= bp
->dev
;
2484 netdev_err(dev
, "<--- start MCP states dump --->\n");
2485 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
) {
2486 mcp_p0
= BNX2_MCP_STATE_P0
;
2487 mcp_p1
= BNX2_MCP_STATE_P1
;
2489 mcp_p0
= BNX2_MCP_STATE_P0_5708
;
2490 mcp_p1
= BNX2_MCP_STATE_P1_5708
;
2492 netdev_err(dev
, "DEBUG: MCP_STATE_P0[%08x] MCP_STATE_P1[%08x]\n",
2493 bnx2_reg_rd_ind(bp
, mcp_p0
), bnx2_reg_rd_ind(bp
, mcp_p1
));
2494 netdev_err(dev
, "DEBUG: MCP mode[%08x] state[%08x] evt_mask[%08x]\n",
2495 bnx2_reg_rd_ind(bp
, BNX2_MCP_CPU_MODE
),
2496 bnx2_reg_rd_ind(bp
, BNX2_MCP_CPU_STATE
),
2497 bnx2_reg_rd_ind(bp
, BNX2_MCP_CPU_EVENT_MASK
));
2498 netdev_err(dev
, "DEBUG: pc[%08x] pc[%08x] instr[%08x]\n",
2499 bnx2_reg_rd_ind(bp
, BNX2_MCP_CPU_PROGRAM_COUNTER
),
2500 bnx2_reg_rd_ind(bp
, BNX2_MCP_CPU_PROGRAM_COUNTER
),
2501 bnx2_reg_rd_ind(bp
, BNX2_MCP_CPU_INSTRUCTION
));
2502 netdev_err(dev
, "DEBUG: shmem states:\n");
2503 netdev_err(dev
, "DEBUG: drv_mb[%08x] fw_mb[%08x] link_status[%08x]",
2504 bnx2_shmem_rd(bp
, BNX2_DRV_MB
),
2505 bnx2_shmem_rd(bp
, BNX2_FW_MB
),
2506 bnx2_shmem_rd(bp
, BNX2_LINK_STATUS
));
2507 pr_cont(" drv_pulse_mb[%08x]\n", bnx2_shmem_rd(bp
, BNX2_DRV_PULSE_MB
));
2508 netdev_err(dev
, "DEBUG: dev_info_signature[%08x] reset_type[%08x]",
2509 bnx2_shmem_rd(bp
, BNX2_DEV_INFO_SIGNATURE
),
2510 bnx2_shmem_rd(bp
, BNX2_BC_STATE_RESET_TYPE
));
2511 pr_cont(" condition[%08x]\n",
2512 bnx2_shmem_rd(bp
, BNX2_BC_STATE_CONDITION
));
2513 DP_SHMEM_LINE(bp
, BNX2_BC_RESET_TYPE
);
2514 DP_SHMEM_LINE(bp
, 0x3cc);
2515 DP_SHMEM_LINE(bp
, 0x3dc);
2516 DP_SHMEM_LINE(bp
, 0x3ec);
2517 netdev_err(dev
, "DEBUG: 0x3fc[%08x]\n", bnx2_shmem_rd(bp
, 0x3fc));
2518 netdev_err(dev
, "<--- end MCP states dump --->\n");
2522 bnx2_fw_sync(struct bnx2
*bp
, u32 msg_data
, int ack
, int silent
)
2528 msg_data
|= bp
->fw_wr_seq
;
2529 bp
->fw_last_msg
= msg_data
;
2531 bnx2_shmem_wr(bp
, BNX2_DRV_MB
, msg_data
);
2536 /* wait for an acknowledgement. */
2537 for (i
= 0; i
< (BNX2_FW_ACK_TIME_OUT_MS
/ 10); i
++) {
2540 val
= bnx2_shmem_rd(bp
, BNX2_FW_MB
);
2542 if ((val
& BNX2_FW_MSG_ACK
) == (msg_data
& BNX2_DRV_MSG_SEQ
))
2545 if ((msg_data
& BNX2_DRV_MSG_DATA
) == BNX2_DRV_MSG_DATA_WAIT0
)
2548 /* If we timed out, inform the firmware that this is the case. */
2549 if ((val
& BNX2_FW_MSG_ACK
) != (msg_data
& BNX2_DRV_MSG_SEQ
)) {
2550 msg_data
&= ~BNX2_DRV_MSG_CODE
;
2551 msg_data
|= BNX2_DRV_MSG_CODE_FW_TIMEOUT
;
2553 bnx2_shmem_wr(bp
, BNX2_DRV_MB
, msg_data
);
2555 pr_err("fw sync timeout, reset code = %x\n", msg_data
);
2556 bnx2_dump_mcp_state(bp
);
2562 if ((val
& BNX2_FW_MSG_STATUS_MASK
) != BNX2_FW_MSG_STATUS_OK
)
2569 bnx2_init_5709_context(struct bnx2
*bp
)
2574 val
= BNX2_CTX_COMMAND_ENABLED
| BNX2_CTX_COMMAND_MEM_INIT
| (1 << 12);
2575 val
|= (BNX2_PAGE_BITS
- 8) << 16;
2576 BNX2_WR(bp
, BNX2_CTX_COMMAND
, val
);
2577 for (i
= 0; i
< 10; i
++) {
2578 val
= BNX2_RD(bp
, BNX2_CTX_COMMAND
);
2579 if (!(val
& BNX2_CTX_COMMAND_MEM_INIT
))
2583 if (val
& BNX2_CTX_COMMAND_MEM_INIT
)
2586 for (i
= 0; i
< bp
->ctx_pages
; i
++) {
2590 memset(bp
->ctx_blk
[i
], 0, BNX2_PAGE_SIZE
);
2594 BNX2_WR(bp
, BNX2_CTX_HOST_PAGE_TBL_DATA0
,
2595 (bp
->ctx_blk_mapping
[i
] & 0xffffffff) |
2596 BNX2_CTX_HOST_PAGE_TBL_DATA0_VALID
);
2597 BNX2_WR(bp
, BNX2_CTX_HOST_PAGE_TBL_DATA1
,
2598 (u64
) bp
->ctx_blk_mapping
[i
] >> 32);
2599 BNX2_WR(bp
, BNX2_CTX_HOST_PAGE_TBL_CTRL
, i
|
2600 BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ
);
2601 for (j
= 0; j
< 10; j
++) {
2603 val
= BNX2_RD(bp
, BNX2_CTX_HOST_PAGE_TBL_CTRL
);
2604 if (!(val
& BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ
))
2608 if (val
& BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ
) {
2617 bnx2_init_context(struct bnx2
*bp
)
2623 u32 vcid_addr
, pcid_addr
, offset
;
2628 if (BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5706_A0
) {
2631 vcid_addr
= GET_PCID_ADDR(vcid
);
2633 new_vcid
= 0x60 + (vcid
& 0xf0) + (vcid
& 0x7);
2638 pcid_addr
= GET_PCID_ADDR(new_vcid
);
2641 vcid_addr
= GET_CID_ADDR(vcid
);
2642 pcid_addr
= vcid_addr
;
2645 for (i
= 0; i
< (CTX_SIZE
/ PHY_CTX_SIZE
); i
++) {
2646 vcid_addr
+= (i
<< PHY_CTX_SHIFT
);
2647 pcid_addr
+= (i
<< PHY_CTX_SHIFT
);
2649 BNX2_WR(bp
, BNX2_CTX_VIRT_ADDR
, vcid_addr
);
2650 BNX2_WR(bp
, BNX2_CTX_PAGE_TBL
, pcid_addr
);
2652 /* Zero out the context. */
2653 for (offset
= 0; offset
< PHY_CTX_SIZE
; offset
+= 4)
2654 bnx2_ctx_wr(bp
, vcid_addr
, offset
, 0);
2660 bnx2_alloc_bad_rbuf(struct bnx2
*bp
)
2666 good_mbuf
= kmalloc(512 * sizeof(u16
), GFP_KERNEL
);
2667 if (good_mbuf
== NULL
)
2670 BNX2_WR(bp
, BNX2_MISC_ENABLE_SET_BITS
,
2671 BNX2_MISC_ENABLE_SET_BITS_RX_MBUF_ENABLE
);
2675 /* Allocate a bunch of mbufs and save the good ones in an array. */
2676 val
= bnx2_reg_rd_ind(bp
, BNX2_RBUF_STATUS1
);
2677 while (val
& BNX2_RBUF_STATUS1_FREE_COUNT
) {
2678 bnx2_reg_wr_ind(bp
, BNX2_RBUF_COMMAND
,
2679 BNX2_RBUF_COMMAND_ALLOC_REQ
);
2681 val
= bnx2_reg_rd_ind(bp
, BNX2_RBUF_FW_BUF_ALLOC
);
2683 val
&= BNX2_RBUF_FW_BUF_ALLOC_VALUE
;
2685 /* The addresses with Bit 9 set are bad memory blocks. */
2686 if (!(val
& (1 << 9))) {
2687 good_mbuf
[good_mbuf_cnt
] = (u16
) val
;
2691 val
= bnx2_reg_rd_ind(bp
, BNX2_RBUF_STATUS1
);
2694 /* Free the good ones back to the mbuf pool thus discarding
2695 * all the bad ones. */
2696 while (good_mbuf_cnt
) {
2699 val
= good_mbuf
[good_mbuf_cnt
];
2700 val
= (val
<< 9) | val
| 1;
2702 bnx2_reg_wr_ind(bp
, BNX2_RBUF_FW_BUF_FREE
, val
);
2709 bnx2_set_mac_addr(struct bnx2
*bp
, u8
*mac_addr
, u32 pos
)
2713 val
= (mac_addr
[0] << 8) | mac_addr
[1];
2715 BNX2_WR(bp
, BNX2_EMAC_MAC_MATCH0
+ (pos
* 8), val
);
2717 val
= (mac_addr
[2] << 24) | (mac_addr
[3] << 16) |
2718 (mac_addr
[4] << 8) | mac_addr
[5];
2720 BNX2_WR(bp
, BNX2_EMAC_MAC_MATCH1
+ (pos
* 8), val
);
2724 bnx2_alloc_rx_page(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
, u16 index
, gfp_t gfp
)
2727 struct bnx2_sw_pg
*rx_pg
= &rxr
->rx_pg_ring
[index
];
2728 struct bnx2_rx_bd
*rxbd
=
2729 &rxr
->rx_pg_desc_ring
[BNX2_RX_RING(index
)][BNX2_RX_IDX(index
)];
2730 struct page
*page
= alloc_page(gfp
);
2734 mapping
= dma_map_page(&bp
->pdev
->dev
, page
, 0, PAGE_SIZE
,
2735 PCI_DMA_FROMDEVICE
);
2736 if (dma_mapping_error(&bp
->pdev
->dev
, mapping
)) {
2742 dma_unmap_addr_set(rx_pg
, mapping
, mapping
);
2743 rxbd
->rx_bd_haddr_hi
= (u64
) mapping
>> 32;
2744 rxbd
->rx_bd_haddr_lo
= (u64
) mapping
& 0xffffffff;
2749 bnx2_free_rx_page(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
, u16 index
)
2751 struct bnx2_sw_pg
*rx_pg
= &rxr
->rx_pg_ring
[index
];
2752 struct page
*page
= rx_pg
->page
;
2757 dma_unmap_page(&bp
->pdev
->dev
, dma_unmap_addr(rx_pg
, mapping
),
2758 PAGE_SIZE
, PCI_DMA_FROMDEVICE
);
2765 bnx2_alloc_rx_data(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
, u16 index
, gfp_t gfp
)
2768 struct bnx2_sw_bd
*rx_buf
= &rxr
->rx_buf_ring
[index
];
2770 struct bnx2_rx_bd
*rxbd
=
2771 &rxr
->rx_desc_ring
[BNX2_RX_RING(index
)][BNX2_RX_IDX(index
)];
2773 data
= kmalloc(bp
->rx_buf_size
, gfp
);
2777 mapping
= dma_map_single(&bp
->pdev
->dev
,
2779 bp
->rx_buf_use_size
,
2780 PCI_DMA_FROMDEVICE
);
2781 if (dma_mapping_error(&bp
->pdev
->dev
, mapping
)) {
2786 rx_buf
->data
= data
;
2787 dma_unmap_addr_set(rx_buf
, mapping
, mapping
);
2789 rxbd
->rx_bd_haddr_hi
= (u64
) mapping
>> 32;
2790 rxbd
->rx_bd_haddr_lo
= (u64
) mapping
& 0xffffffff;
2792 rxr
->rx_prod_bseq
+= bp
->rx_buf_use_size
;
2798 bnx2_phy_event_is_set(struct bnx2
*bp
, struct bnx2_napi
*bnapi
, u32 event
)
2800 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
2801 u32 new_link_state
, old_link_state
;
2804 new_link_state
= sblk
->status_attn_bits
& event
;
2805 old_link_state
= sblk
->status_attn_bits_ack
& event
;
2806 if (new_link_state
!= old_link_state
) {
2808 BNX2_WR(bp
, BNX2_PCICFG_STATUS_BIT_SET_CMD
, event
);
2810 BNX2_WR(bp
, BNX2_PCICFG_STATUS_BIT_CLEAR_CMD
, event
);
2818 bnx2_phy_int(struct bnx2
*bp
, struct bnx2_napi
*bnapi
)
2820 spin_lock(&bp
->phy_lock
);
2822 if (bnx2_phy_event_is_set(bp
, bnapi
, STATUS_ATTN_BITS_LINK_STATE
))
2824 if (bnx2_phy_event_is_set(bp
, bnapi
, STATUS_ATTN_BITS_TIMER_ABORT
))
2825 bnx2_set_remote_link(bp
);
2827 spin_unlock(&bp
->phy_lock
);
2832 bnx2_get_hw_tx_cons(struct bnx2_napi
*bnapi
)
2836 /* Tell compiler that status block fields can change. */
2838 cons
= *bnapi
->hw_tx_cons_ptr
;
2840 if (unlikely((cons
& BNX2_MAX_TX_DESC_CNT
) == BNX2_MAX_TX_DESC_CNT
))
2846 bnx2_tx_int(struct bnx2
*bp
, struct bnx2_napi
*bnapi
, int budget
)
2848 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
2849 u16 hw_cons
, sw_cons
, sw_ring_cons
;
2850 int tx_pkt
= 0, index
;
2851 unsigned int tx_bytes
= 0;
2852 struct netdev_queue
*txq
;
2854 index
= (bnapi
- bp
->bnx2_napi
);
2855 txq
= netdev_get_tx_queue(bp
->dev
, index
);
2857 hw_cons
= bnx2_get_hw_tx_cons(bnapi
);
2858 sw_cons
= txr
->tx_cons
;
2860 while (sw_cons
!= hw_cons
) {
2861 struct bnx2_sw_tx_bd
*tx_buf
;
2862 struct sk_buff
*skb
;
2865 sw_ring_cons
= BNX2_TX_RING_IDX(sw_cons
);
2867 tx_buf
= &txr
->tx_buf_ring
[sw_ring_cons
];
2870 /* prefetch skb_end_pointer() to speedup skb_shinfo(skb) */
2871 prefetch(&skb
->end
);
2873 /* partial BD completions possible with TSO packets */
2874 if (tx_buf
->is_gso
) {
2875 u16 last_idx
, last_ring_idx
;
2877 last_idx
= sw_cons
+ tx_buf
->nr_frags
+ 1;
2878 last_ring_idx
= sw_ring_cons
+ tx_buf
->nr_frags
+ 1;
2879 if (unlikely(last_ring_idx
>= BNX2_MAX_TX_DESC_CNT
)) {
2882 if (((s16
) ((s16
) last_idx
- (s16
) hw_cons
)) > 0) {
2887 dma_unmap_single(&bp
->pdev
->dev
, dma_unmap_addr(tx_buf
, mapping
),
2888 skb_headlen(skb
), PCI_DMA_TODEVICE
);
2891 last
= tx_buf
->nr_frags
;
2893 for (i
= 0; i
< last
; i
++) {
2894 struct bnx2_sw_tx_bd
*tx_buf
;
2896 sw_cons
= BNX2_NEXT_TX_BD(sw_cons
);
2898 tx_buf
= &txr
->tx_buf_ring
[BNX2_TX_RING_IDX(sw_cons
)];
2899 dma_unmap_page(&bp
->pdev
->dev
,
2900 dma_unmap_addr(tx_buf
, mapping
),
2901 skb_frag_size(&skb_shinfo(skb
)->frags
[i
]),
2905 sw_cons
= BNX2_NEXT_TX_BD(sw_cons
);
2907 tx_bytes
+= skb
->len
;
2908 dev_kfree_skb_any(skb
);
2910 if (tx_pkt
== budget
)
2913 if (hw_cons
== sw_cons
)
2914 hw_cons
= bnx2_get_hw_tx_cons(bnapi
);
2917 netdev_tx_completed_queue(txq
, tx_pkt
, tx_bytes
);
2918 txr
->hw_tx_cons
= hw_cons
;
2919 txr
->tx_cons
= sw_cons
;
2921 /* Need to make the tx_cons update visible to bnx2_start_xmit()
2922 * before checking for netif_tx_queue_stopped(). Without the
2923 * memory barrier, there is a small possibility that bnx2_start_xmit()
2924 * will miss it and cause the queue to be stopped forever.
2928 if (unlikely(netif_tx_queue_stopped(txq
)) &&
2929 (bnx2_tx_avail(bp
, txr
) > bp
->tx_wake_thresh
)) {
2930 __netif_tx_lock(txq
, smp_processor_id());
2931 if ((netif_tx_queue_stopped(txq
)) &&
2932 (bnx2_tx_avail(bp
, txr
) > bp
->tx_wake_thresh
))
2933 netif_tx_wake_queue(txq
);
2934 __netif_tx_unlock(txq
);
2941 bnx2_reuse_rx_skb_pages(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
,
2942 struct sk_buff
*skb
, int count
)
2944 struct bnx2_sw_pg
*cons_rx_pg
, *prod_rx_pg
;
2945 struct bnx2_rx_bd
*cons_bd
, *prod_bd
;
2948 u16 cons
= rxr
->rx_pg_cons
;
2950 cons_rx_pg
= &rxr
->rx_pg_ring
[cons
];
2952 /* The caller was unable to allocate a new page to replace the
2953 * last one in the frags array, so we need to recycle that page
2954 * and then free the skb.
2958 struct skb_shared_info
*shinfo
;
2960 shinfo
= skb_shinfo(skb
);
2962 page
= skb_frag_page(&shinfo
->frags
[shinfo
->nr_frags
]);
2963 __skb_frag_set_page(&shinfo
->frags
[shinfo
->nr_frags
], NULL
);
2965 cons_rx_pg
->page
= page
;
2969 hw_prod
= rxr
->rx_pg_prod
;
2971 for (i
= 0; i
< count
; i
++) {
2972 prod
= BNX2_RX_PG_RING_IDX(hw_prod
);
2974 prod_rx_pg
= &rxr
->rx_pg_ring
[prod
];
2975 cons_rx_pg
= &rxr
->rx_pg_ring
[cons
];
2976 cons_bd
= &rxr
->rx_pg_desc_ring
[BNX2_RX_RING(cons
)]
2977 [BNX2_RX_IDX(cons
)];
2978 prod_bd
= &rxr
->rx_pg_desc_ring
[BNX2_RX_RING(prod
)]
2979 [BNX2_RX_IDX(prod
)];
2982 prod_rx_pg
->page
= cons_rx_pg
->page
;
2983 cons_rx_pg
->page
= NULL
;
2984 dma_unmap_addr_set(prod_rx_pg
, mapping
,
2985 dma_unmap_addr(cons_rx_pg
, mapping
));
2987 prod_bd
->rx_bd_haddr_hi
= cons_bd
->rx_bd_haddr_hi
;
2988 prod_bd
->rx_bd_haddr_lo
= cons_bd
->rx_bd_haddr_lo
;
2991 cons
= BNX2_RX_PG_RING_IDX(BNX2_NEXT_RX_BD(cons
));
2992 hw_prod
= BNX2_NEXT_RX_BD(hw_prod
);
2994 rxr
->rx_pg_prod
= hw_prod
;
2995 rxr
->rx_pg_cons
= cons
;
2999 bnx2_reuse_rx_data(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
,
3000 u8
*data
, u16 cons
, u16 prod
)
3002 struct bnx2_sw_bd
*cons_rx_buf
, *prod_rx_buf
;
3003 struct bnx2_rx_bd
*cons_bd
, *prod_bd
;
3005 cons_rx_buf
= &rxr
->rx_buf_ring
[cons
];
3006 prod_rx_buf
= &rxr
->rx_buf_ring
[prod
];
3008 dma_sync_single_for_device(&bp
->pdev
->dev
,
3009 dma_unmap_addr(cons_rx_buf
, mapping
),
3010 BNX2_RX_OFFSET
+ BNX2_RX_COPY_THRESH
, PCI_DMA_FROMDEVICE
);
3012 rxr
->rx_prod_bseq
+= bp
->rx_buf_use_size
;
3014 prod_rx_buf
->data
= data
;
3019 dma_unmap_addr_set(prod_rx_buf
, mapping
,
3020 dma_unmap_addr(cons_rx_buf
, mapping
));
3022 cons_bd
= &rxr
->rx_desc_ring
[BNX2_RX_RING(cons
)][BNX2_RX_IDX(cons
)];
3023 prod_bd
= &rxr
->rx_desc_ring
[BNX2_RX_RING(prod
)][BNX2_RX_IDX(prod
)];
3024 prod_bd
->rx_bd_haddr_hi
= cons_bd
->rx_bd_haddr_hi
;
3025 prod_bd
->rx_bd_haddr_lo
= cons_bd
->rx_bd_haddr_lo
;
3028 static struct sk_buff
*
3029 bnx2_rx_skb(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
, u8
*data
,
3030 unsigned int len
, unsigned int hdr_len
, dma_addr_t dma_addr
,
3034 u16 prod
= ring_idx
& 0xffff;
3035 struct sk_buff
*skb
;
3037 err
= bnx2_alloc_rx_data(bp
, rxr
, prod
, GFP_ATOMIC
);
3038 if (unlikely(err
)) {
3039 bnx2_reuse_rx_data(bp
, rxr
, data
, (u16
) (ring_idx
>> 16), prod
);
3042 unsigned int raw_len
= len
+ 4;
3043 int pages
= PAGE_ALIGN(raw_len
- hdr_len
) >> PAGE_SHIFT
;
3045 bnx2_reuse_rx_skb_pages(bp
, rxr
, NULL
, pages
);
3050 dma_unmap_single(&bp
->pdev
->dev
, dma_addr
, bp
->rx_buf_use_size
,
3051 PCI_DMA_FROMDEVICE
);
3052 skb
= build_skb(data
, 0);
3057 skb_reserve(skb
, ((u8
*)get_l2_fhdr(data
) - data
) + BNX2_RX_OFFSET
);
3062 unsigned int i
, frag_len
, frag_size
, pages
;
3063 struct bnx2_sw_pg
*rx_pg
;
3064 u16 pg_cons
= rxr
->rx_pg_cons
;
3065 u16 pg_prod
= rxr
->rx_pg_prod
;
3067 frag_size
= len
+ 4 - hdr_len
;
3068 pages
= PAGE_ALIGN(frag_size
) >> PAGE_SHIFT
;
3069 skb_put(skb
, hdr_len
);
3071 for (i
= 0; i
< pages
; i
++) {
3072 dma_addr_t mapping_old
;
3074 frag_len
= min(frag_size
, (unsigned int) PAGE_SIZE
);
3075 if (unlikely(frag_len
<= 4)) {
3076 unsigned int tail
= 4 - frag_len
;
3078 rxr
->rx_pg_cons
= pg_cons
;
3079 rxr
->rx_pg_prod
= pg_prod
;
3080 bnx2_reuse_rx_skb_pages(bp
, rxr
, NULL
,
3087 &skb_shinfo(skb
)->frags
[i
- 1];
3088 skb_frag_size_sub(frag
, tail
);
3089 skb
->data_len
-= tail
;
3093 rx_pg
= &rxr
->rx_pg_ring
[pg_cons
];
3095 /* Don't unmap yet. If we're unable to allocate a new
3096 * page, we need to recycle the page and the DMA addr.
3098 mapping_old
= dma_unmap_addr(rx_pg
, mapping
);
3102 skb_fill_page_desc(skb
, i
, rx_pg
->page
, 0, frag_len
);
3105 err
= bnx2_alloc_rx_page(bp
, rxr
,
3106 BNX2_RX_PG_RING_IDX(pg_prod
),
3108 if (unlikely(err
)) {
3109 rxr
->rx_pg_cons
= pg_cons
;
3110 rxr
->rx_pg_prod
= pg_prod
;
3111 bnx2_reuse_rx_skb_pages(bp
, rxr
, skb
,
3116 dma_unmap_page(&bp
->pdev
->dev
, mapping_old
,
3117 PAGE_SIZE
, PCI_DMA_FROMDEVICE
);
3119 frag_size
-= frag_len
;
3120 skb
->data_len
+= frag_len
;
3121 skb
->truesize
+= PAGE_SIZE
;
3122 skb
->len
+= frag_len
;
3124 pg_prod
= BNX2_NEXT_RX_BD(pg_prod
);
3125 pg_cons
= BNX2_RX_PG_RING_IDX(BNX2_NEXT_RX_BD(pg_cons
));
3127 rxr
->rx_pg_prod
= pg_prod
;
3128 rxr
->rx_pg_cons
= pg_cons
;
3134 bnx2_get_hw_rx_cons(struct bnx2_napi
*bnapi
)
3138 /* Tell compiler that status block fields can change. */
3140 cons
= *bnapi
->hw_rx_cons_ptr
;
3142 if (unlikely((cons
& BNX2_MAX_RX_DESC_CNT
) == BNX2_MAX_RX_DESC_CNT
))
3148 bnx2_rx_int(struct bnx2
*bp
, struct bnx2_napi
*bnapi
, int budget
)
3150 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
3151 u16 hw_cons
, sw_cons
, sw_ring_cons
, sw_prod
, sw_ring_prod
;
3152 struct l2_fhdr
*rx_hdr
;
3153 int rx_pkt
= 0, pg_ring_used
= 0;
3158 hw_cons
= bnx2_get_hw_rx_cons(bnapi
);
3159 sw_cons
= rxr
->rx_cons
;
3160 sw_prod
= rxr
->rx_prod
;
3162 /* Memory barrier necessary as speculative reads of the rx
3163 * buffer can be ahead of the index in the status block
3166 while (sw_cons
!= hw_cons
) {
3167 unsigned int len
, hdr_len
;
3169 struct bnx2_sw_bd
*rx_buf
, *next_rx_buf
;
3170 struct sk_buff
*skb
;
3171 dma_addr_t dma_addr
;
3175 sw_ring_cons
= BNX2_RX_RING_IDX(sw_cons
);
3176 sw_ring_prod
= BNX2_RX_RING_IDX(sw_prod
);
3178 rx_buf
= &rxr
->rx_buf_ring
[sw_ring_cons
];
3179 data
= rx_buf
->data
;
3180 rx_buf
->data
= NULL
;
3182 rx_hdr
= get_l2_fhdr(data
);
3185 dma_addr
= dma_unmap_addr(rx_buf
, mapping
);
3187 dma_sync_single_for_cpu(&bp
->pdev
->dev
, dma_addr
,
3188 BNX2_RX_OFFSET
+ BNX2_RX_COPY_THRESH
,
3189 PCI_DMA_FROMDEVICE
);
3191 next_ring_idx
= BNX2_RX_RING_IDX(BNX2_NEXT_RX_BD(sw_cons
));
3192 next_rx_buf
= &rxr
->rx_buf_ring
[next_ring_idx
];
3193 prefetch(get_l2_fhdr(next_rx_buf
->data
));
3195 len
= rx_hdr
->l2_fhdr_pkt_len
;
3196 status
= rx_hdr
->l2_fhdr_status
;
3199 if (status
& L2_FHDR_STATUS_SPLIT
) {
3200 hdr_len
= rx_hdr
->l2_fhdr_ip_xsum
;
3202 } else if (len
> bp
->rx_jumbo_thresh
) {
3203 hdr_len
= bp
->rx_jumbo_thresh
;
3207 if (unlikely(status
& (L2_FHDR_ERRORS_BAD_CRC
|
3208 L2_FHDR_ERRORS_PHY_DECODE
|
3209 L2_FHDR_ERRORS_ALIGNMENT
|
3210 L2_FHDR_ERRORS_TOO_SHORT
|
3211 L2_FHDR_ERRORS_GIANT_FRAME
))) {
3213 bnx2_reuse_rx_data(bp
, rxr
, data
, sw_ring_cons
,
3218 pages
= PAGE_ALIGN(len
- hdr_len
) >> PAGE_SHIFT
;
3220 bnx2_reuse_rx_skb_pages(bp
, rxr
, NULL
, pages
);
3227 if (len
<= bp
->rx_copy_thresh
) {
3228 skb
= netdev_alloc_skb(bp
->dev
, len
+ 6);
3230 bnx2_reuse_rx_data(bp
, rxr
, data
, sw_ring_cons
,
3237 (u8
*)rx_hdr
+ BNX2_RX_OFFSET
- 6,
3239 skb_reserve(skb
, 6);
3242 bnx2_reuse_rx_data(bp
, rxr
, data
,
3243 sw_ring_cons
, sw_ring_prod
);
3246 skb
= bnx2_rx_skb(bp
, rxr
, data
, len
, hdr_len
, dma_addr
,
3247 (sw_ring_cons
<< 16) | sw_ring_prod
);
3251 if ((status
& L2_FHDR_STATUS_L2_VLAN_TAG
) &&
3252 !(bp
->rx_mode
& BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG
))
3253 __vlan_hwaccel_put_tag(skb
, htons(ETH_P_8021Q
), rx_hdr
->l2_fhdr_vlan_tag
);
3255 skb
->protocol
= eth_type_trans(skb
, bp
->dev
);
3257 if (len
> (bp
->dev
->mtu
+ ETH_HLEN
) &&
3258 skb
->protocol
!= htons(0x8100) &&
3259 skb
->protocol
!= htons(ETH_P_8021AD
)) {
3266 skb_checksum_none_assert(skb
);
3267 if ((bp
->dev
->features
& NETIF_F_RXCSUM
) &&
3268 (status
& (L2_FHDR_STATUS_TCP_SEGMENT
|
3269 L2_FHDR_STATUS_UDP_DATAGRAM
))) {
3271 if (likely((status
& (L2_FHDR_ERRORS_TCP_XSUM
|
3272 L2_FHDR_ERRORS_UDP_XSUM
)) == 0))
3273 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
3275 if ((bp
->dev
->features
& NETIF_F_RXHASH
) &&
3276 ((status
& L2_FHDR_STATUS_USE_RXHASH
) ==
3277 L2_FHDR_STATUS_USE_RXHASH
))
3278 skb_set_hash(skb
, rx_hdr
->l2_fhdr_hash
,
3281 skb_record_rx_queue(skb
, bnapi
- &bp
->bnx2_napi
[0]);
3282 napi_gro_receive(&bnapi
->napi
, skb
);
3286 sw_cons
= BNX2_NEXT_RX_BD(sw_cons
);
3287 sw_prod
= BNX2_NEXT_RX_BD(sw_prod
);
3289 if ((rx_pkt
== budget
))
3292 /* Refresh hw_cons to see if there is new work */
3293 if (sw_cons
== hw_cons
) {
3294 hw_cons
= bnx2_get_hw_rx_cons(bnapi
);
3298 rxr
->rx_cons
= sw_cons
;
3299 rxr
->rx_prod
= sw_prod
;
3302 BNX2_WR16(bp
, rxr
->rx_pg_bidx_addr
, rxr
->rx_pg_prod
);
3304 BNX2_WR16(bp
, rxr
->rx_bidx_addr
, sw_prod
);
3306 BNX2_WR(bp
, rxr
->rx_bseq_addr
, rxr
->rx_prod_bseq
);
3314 /* MSI ISR - The only difference between this and the INTx ISR
3315 * is that the MSI interrupt is always serviced.
3318 bnx2_msi(int irq
, void *dev_instance
)
3320 struct bnx2_napi
*bnapi
= dev_instance
;
3321 struct bnx2
*bp
= bnapi
->bp
;
3323 prefetch(bnapi
->status_blk
.msi
);
3324 BNX2_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3325 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM
|
3326 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
);
3328 /* Return here if interrupt is disabled. */
3329 if (unlikely(atomic_read(&bp
->intr_sem
) != 0))
3332 napi_schedule(&bnapi
->napi
);
3338 bnx2_msi_1shot(int irq
, void *dev_instance
)
3340 struct bnx2_napi
*bnapi
= dev_instance
;
3341 struct bnx2
*bp
= bnapi
->bp
;
3343 prefetch(bnapi
->status_blk
.msi
);
3345 /* Return here if interrupt is disabled. */
3346 if (unlikely(atomic_read(&bp
->intr_sem
) != 0))
3349 napi_schedule(&bnapi
->napi
);
3355 bnx2_interrupt(int irq
, void *dev_instance
)
3357 struct bnx2_napi
*bnapi
= dev_instance
;
3358 struct bnx2
*bp
= bnapi
->bp
;
3359 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
3361 /* When using INTx, it is possible for the interrupt to arrive
3362 * at the CPU before the status block posted prior to the
3363 * interrupt. Reading a register will flush the status block.
3364 * When using MSI, the MSI message will always complete after
3365 * the status block write.
3367 if ((sblk
->status_idx
== bnapi
->last_status_idx
) &&
3368 (BNX2_RD(bp
, BNX2_PCICFG_MISC_STATUS
) &
3369 BNX2_PCICFG_MISC_STATUS_INTA_VALUE
))
3372 BNX2_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3373 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM
|
3374 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
);
3376 /* Read back to deassert IRQ immediately to avoid too many
3377 * spurious interrupts.
3379 BNX2_RD(bp
, BNX2_PCICFG_INT_ACK_CMD
);
3381 /* Return here if interrupt is shared and is disabled. */
3382 if (unlikely(atomic_read(&bp
->intr_sem
) != 0))
3385 if (napi_schedule_prep(&bnapi
->napi
)) {
3386 bnapi
->last_status_idx
= sblk
->status_idx
;
3387 __napi_schedule(&bnapi
->napi
);
3394 bnx2_has_fast_work(struct bnx2_napi
*bnapi
)
3396 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
3397 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
3399 if ((bnx2_get_hw_rx_cons(bnapi
) != rxr
->rx_cons
) ||
3400 (bnx2_get_hw_tx_cons(bnapi
) != txr
->hw_tx_cons
))
3405 #define STATUS_ATTN_EVENTS (STATUS_ATTN_BITS_LINK_STATE | \
3406 STATUS_ATTN_BITS_TIMER_ABORT)
3409 bnx2_has_work(struct bnx2_napi
*bnapi
)
3411 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
3413 if (bnx2_has_fast_work(bnapi
))
3417 if (bnapi
->cnic_present
&& (bnapi
->cnic_tag
!= sblk
->status_idx
))
3421 if ((sblk
->status_attn_bits
& STATUS_ATTN_EVENTS
) !=
3422 (sblk
->status_attn_bits_ack
& STATUS_ATTN_EVENTS
))
3429 bnx2_chk_missed_msi(struct bnx2
*bp
)
3431 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0];
3434 if (bnx2_has_work(bnapi
)) {
3435 msi_ctrl
= BNX2_RD(bp
, BNX2_PCICFG_MSI_CONTROL
);
3436 if (!(msi_ctrl
& BNX2_PCICFG_MSI_CONTROL_ENABLE
))
3439 if (bnapi
->last_status_idx
== bp
->idle_chk_status_idx
) {
3440 BNX2_WR(bp
, BNX2_PCICFG_MSI_CONTROL
, msi_ctrl
&
3441 ~BNX2_PCICFG_MSI_CONTROL_ENABLE
);
3442 BNX2_WR(bp
, BNX2_PCICFG_MSI_CONTROL
, msi_ctrl
);
3443 bnx2_msi(bp
->irq_tbl
[0].vector
, bnapi
);
3447 bp
->idle_chk_status_idx
= bnapi
->last_status_idx
;
3451 static void bnx2_poll_cnic(struct bnx2
*bp
, struct bnx2_napi
*bnapi
)
3453 struct cnic_ops
*c_ops
;
3455 if (!bnapi
->cnic_present
)
3459 c_ops
= rcu_dereference(bp
->cnic_ops
);
3461 bnapi
->cnic_tag
= c_ops
->cnic_handler(bp
->cnic_data
,
3462 bnapi
->status_blk
.msi
);
3467 static void bnx2_poll_link(struct bnx2
*bp
, struct bnx2_napi
*bnapi
)
3469 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
3470 u32 status_attn_bits
= sblk
->status_attn_bits
;
3471 u32 status_attn_bits_ack
= sblk
->status_attn_bits_ack
;
3473 if ((status_attn_bits
& STATUS_ATTN_EVENTS
) !=
3474 (status_attn_bits_ack
& STATUS_ATTN_EVENTS
)) {
3476 bnx2_phy_int(bp
, bnapi
);
3478 /* This is needed to take care of transient status
3479 * during link changes.
3481 BNX2_WR(bp
, BNX2_HC_COMMAND
,
3482 bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW_WO_INT
);
3483 BNX2_RD(bp
, BNX2_HC_COMMAND
);
3487 static int bnx2_poll_work(struct bnx2
*bp
, struct bnx2_napi
*bnapi
,
3488 int work_done
, int budget
)
3490 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
3491 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
3493 if (bnx2_get_hw_tx_cons(bnapi
) != txr
->hw_tx_cons
)
3494 bnx2_tx_int(bp
, bnapi
, 0);
3496 if (bnx2_get_hw_rx_cons(bnapi
) != rxr
->rx_cons
)
3497 work_done
+= bnx2_rx_int(bp
, bnapi
, budget
- work_done
);
3502 static int bnx2_poll_msix(struct napi_struct
*napi
, int budget
)
3504 struct bnx2_napi
*bnapi
= container_of(napi
, struct bnx2_napi
, napi
);
3505 struct bnx2
*bp
= bnapi
->bp
;
3507 struct status_block_msix
*sblk
= bnapi
->status_blk
.msix
;
3510 work_done
= bnx2_poll_work(bp
, bnapi
, work_done
, budget
);
3511 if (unlikely(work_done
>= budget
))
3514 bnapi
->last_status_idx
= sblk
->status_idx
;
3515 /* status idx must be read before checking for more work. */
3517 if (likely(!bnx2_has_fast_work(bnapi
))) {
3519 napi_complete(napi
);
3520 BNX2_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, bnapi
->int_num
|
3521 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
3522 bnapi
->last_status_idx
);
3529 static int bnx2_poll(struct napi_struct
*napi
, int budget
)
3531 struct bnx2_napi
*bnapi
= container_of(napi
, struct bnx2_napi
, napi
);
3532 struct bnx2
*bp
= bnapi
->bp
;
3534 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
3537 bnx2_poll_link(bp
, bnapi
);
3539 work_done
= bnx2_poll_work(bp
, bnapi
, work_done
, budget
);
3542 bnx2_poll_cnic(bp
, bnapi
);
3545 /* bnapi->last_status_idx is used below to tell the hw how
3546 * much work has been processed, so we must read it before
3547 * checking for more work.
3549 bnapi
->last_status_idx
= sblk
->status_idx
;
3551 if (unlikely(work_done
>= budget
))
3555 if (likely(!bnx2_has_work(bnapi
))) {
3556 napi_complete(napi
);
3557 if (likely(bp
->flags
& BNX2_FLAG_USING_MSI_OR_MSIX
)) {
3558 BNX2_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3559 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
3560 bnapi
->last_status_idx
);
3563 BNX2_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3564 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
3565 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
|
3566 bnapi
->last_status_idx
);
3568 BNX2_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3569 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
3570 bnapi
->last_status_idx
);
3578 /* Called with rtnl_lock from vlan functions and also netif_tx_lock
3579 * from set_multicast.
3582 bnx2_set_rx_mode(struct net_device
*dev
)
3584 struct bnx2
*bp
= netdev_priv(dev
);
3585 u32 rx_mode
, sort_mode
;
3586 struct netdev_hw_addr
*ha
;
3589 if (!netif_running(dev
))
3592 spin_lock_bh(&bp
->phy_lock
);
3594 rx_mode
= bp
->rx_mode
& ~(BNX2_EMAC_RX_MODE_PROMISCUOUS
|
3595 BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG
);
3596 sort_mode
= 1 | BNX2_RPM_SORT_USER0_BC_EN
;
3597 if (!(dev
->features
& NETIF_F_HW_VLAN_CTAG_RX
) &&
3598 (bp
->flags
& BNX2_FLAG_CAN_KEEP_VLAN
))
3599 rx_mode
|= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG
;
3600 if (dev
->flags
& IFF_PROMISC
) {
3601 /* Promiscuous mode. */
3602 rx_mode
|= BNX2_EMAC_RX_MODE_PROMISCUOUS
;
3603 sort_mode
|= BNX2_RPM_SORT_USER0_PROM_EN
|
3604 BNX2_RPM_SORT_USER0_PROM_VLAN
;
3606 else if (dev
->flags
& IFF_ALLMULTI
) {
3607 for (i
= 0; i
< NUM_MC_HASH_REGISTERS
; i
++) {
3608 BNX2_WR(bp
, BNX2_EMAC_MULTICAST_HASH0
+ (i
* 4),
3611 sort_mode
|= BNX2_RPM_SORT_USER0_MC_EN
;
3614 /* Accept one or more multicast(s). */
3615 u32 mc_filter
[NUM_MC_HASH_REGISTERS
];
3620 memset(mc_filter
, 0, 4 * NUM_MC_HASH_REGISTERS
);
3622 netdev_for_each_mc_addr(ha
, dev
) {
3623 crc
= ether_crc_le(ETH_ALEN
, ha
->addr
);
3625 regidx
= (bit
& 0xe0) >> 5;
3627 mc_filter
[regidx
] |= (1 << bit
);
3630 for (i
= 0; i
< NUM_MC_HASH_REGISTERS
; i
++) {
3631 BNX2_WR(bp
, BNX2_EMAC_MULTICAST_HASH0
+ (i
* 4),
3635 sort_mode
|= BNX2_RPM_SORT_USER0_MC_HSH_EN
;
3638 if (netdev_uc_count(dev
) > BNX2_MAX_UNICAST_ADDRESSES
) {
3639 rx_mode
|= BNX2_EMAC_RX_MODE_PROMISCUOUS
;
3640 sort_mode
|= BNX2_RPM_SORT_USER0_PROM_EN
|
3641 BNX2_RPM_SORT_USER0_PROM_VLAN
;
3642 } else if (!(dev
->flags
& IFF_PROMISC
)) {
3643 /* Add all entries into to the match filter list */
3645 netdev_for_each_uc_addr(ha
, dev
) {
3646 bnx2_set_mac_addr(bp
, ha
->addr
,
3647 i
+ BNX2_START_UNICAST_ADDRESS_INDEX
);
3649 (i
+ BNX2_START_UNICAST_ADDRESS_INDEX
));
3655 if (rx_mode
!= bp
->rx_mode
) {
3656 bp
->rx_mode
= rx_mode
;
3657 BNX2_WR(bp
, BNX2_EMAC_RX_MODE
, rx_mode
);
3660 BNX2_WR(bp
, BNX2_RPM_SORT_USER0
, 0x0);
3661 BNX2_WR(bp
, BNX2_RPM_SORT_USER0
, sort_mode
);
3662 BNX2_WR(bp
, BNX2_RPM_SORT_USER0
, sort_mode
| BNX2_RPM_SORT_USER0_ENA
);
3664 spin_unlock_bh(&bp
->phy_lock
);
3668 check_fw_section(const struct firmware
*fw
,
3669 const struct bnx2_fw_file_section
*section
,
3670 u32 alignment
, bool non_empty
)
3672 u32 offset
= be32_to_cpu(section
->offset
);
3673 u32 len
= be32_to_cpu(section
->len
);
3675 if ((offset
== 0 && len
!= 0) || offset
>= fw
->size
|| offset
& 3)
3677 if ((non_empty
&& len
== 0) || len
> fw
->size
- offset
||
3678 len
& (alignment
- 1))
3684 check_mips_fw_entry(const struct firmware
*fw
,
3685 const struct bnx2_mips_fw_file_entry
*entry
)
3687 if (check_fw_section(fw
, &entry
->text
, 4, true) ||
3688 check_fw_section(fw
, &entry
->data
, 4, false) ||
3689 check_fw_section(fw
, &entry
->rodata
, 4, false))
3694 static void bnx2_release_firmware(struct bnx2
*bp
)
3696 if (bp
->rv2p_firmware
) {
3697 release_firmware(bp
->mips_firmware
);
3698 release_firmware(bp
->rv2p_firmware
);
3699 bp
->rv2p_firmware
= NULL
;
3703 static int bnx2_request_uncached_firmware(struct bnx2
*bp
)
3705 const char *mips_fw_file
, *rv2p_fw_file
;
3706 const struct bnx2_mips_fw_file
*mips_fw
;
3707 const struct bnx2_rv2p_fw_file
*rv2p_fw
;
3710 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
) {
3711 mips_fw_file
= FW_MIPS_FILE_09
;
3712 if ((BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5709_A0
) ||
3713 (BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5709_A1
))
3714 rv2p_fw_file
= FW_RV2P_FILE_09_Ax
;
3716 rv2p_fw_file
= FW_RV2P_FILE_09
;
3718 mips_fw_file
= FW_MIPS_FILE_06
;
3719 rv2p_fw_file
= FW_RV2P_FILE_06
;
3722 rc
= request_firmware(&bp
->mips_firmware
, mips_fw_file
, &bp
->pdev
->dev
);
3724 pr_err("Can't load firmware file \"%s\"\n", mips_fw_file
);
3728 rc
= request_firmware(&bp
->rv2p_firmware
, rv2p_fw_file
, &bp
->pdev
->dev
);
3730 pr_err("Can't load firmware file \"%s\"\n", rv2p_fw_file
);
3731 goto err_release_mips_firmware
;
3733 mips_fw
= (const struct bnx2_mips_fw_file
*) bp
->mips_firmware
->data
;
3734 rv2p_fw
= (const struct bnx2_rv2p_fw_file
*) bp
->rv2p_firmware
->data
;
3735 if (bp
->mips_firmware
->size
< sizeof(*mips_fw
) ||
3736 check_mips_fw_entry(bp
->mips_firmware
, &mips_fw
->com
) ||
3737 check_mips_fw_entry(bp
->mips_firmware
, &mips_fw
->cp
) ||
3738 check_mips_fw_entry(bp
->mips_firmware
, &mips_fw
->rxp
) ||
3739 check_mips_fw_entry(bp
->mips_firmware
, &mips_fw
->tpat
) ||
3740 check_mips_fw_entry(bp
->mips_firmware
, &mips_fw
->txp
)) {
3741 pr_err("Firmware file \"%s\" is invalid\n", mips_fw_file
);
3743 goto err_release_firmware
;
3745 if (bp
->rv2p_firmware
->size
< sizeof(*rv2p_fw
) ||
3746 check_fw_section(bp
->rv2p_firmware
, &rv2p_fw
->proc1
.rv2p
, 8, true) ||
3747 check_fw_section(bp
->rv2p_firmware
, &rv2p_fw
->proc2
.rv2p
, 8, true)) {
3748 pr_err("Firmware file \"%s\" is invalid\n", rv2p_fw_file
);
3750 goto err_release_firmware
;
3755 err_release_firmware
:
3756 release_firmware(bp
->rv2p_firmware
);
3757 bp
->rv2p_firmware
= NULL
;
3758 err_release_mips_firmware
:
3759 release_firmware(bp
->mips_firmware
);
3763 static int bnx2_request_firmware(struct bnx2
*bp
)
3765 return bp
->rv2p_firmware
? 0 : bnx2_request_uncached_firmware(bp
);
3769 rv2p_fw_fixup(u32 rv2p_proc
, int idx
, u32 loc
, u32 rv2p_code
)
3772 case RV2P_P1_FIXUP_PAGE_SIZE_IDX
:
3773 rv2p_code
&= ~RV2P_BD_PAGE_SIZE_MSK
;
3774 rv2p_code
|= RV2P_BD_PAGE_SIZE
;
3781 load_rv2p_fw(struct bnx2
*bp
, u32 rv2p_proc
,
3782 const struct bnx2_rv2p_fw_file_entry
*fw_entry
)
3784 u32 rv2p_code_len
, file_offset
;
3789 rv2p_code_len
= be32_to_cpu(fw_entry
->rv2p
.len
);
3790 file_offset
= be32_to_cpu(fw_entry
->rv2p
.offset
);
3792 rv2p_code
= (__be32
*)(bp
->rv2p_firmware
->data
+ file_offset
);
3794 if (rv2p_proc
== RV2P_PROC1
) {
3795 cmd
= BNX2_RV2P_PROC1_ADDR_CMD_RDWR
;
3796 addr
= BNX2_RV2P_PROC1_ADDR_CMD
;
3798 cmd
= BNX2_RV2P_PROC2_ADDR_CMD_RDWR
;
3799 addr
= BNX2_RV2P_PROC2_ADDR_CMD
;
3802 for (i
= 0; i
< rv2p_code_len
; i
+= 8) {
3803 BNX2_WR(bp
, BNX2_RV2P_INSTR_HIGH
, be32_to_cpu(*rv2p_code
));
3805 BNX2_WR(bp
, BNX2_RV2P_INSTR_LOW
, be32_to_cpu(*rv2p_code
));
3808 val
= (i
/ 8) | cmd
;
3809 BNX2_WR(bp
, addr
, val
);
3812 rv2p_code
= (__be32
*)(bp
->rv2p_firmware
->data
+ file_offset
);
3813 for (i
= 0; i
< 8; i
++) {
3816 loc
= be32_to_cpu(fw_entry
->fixup
[i
]);
3817 if (loc
&& ((loc
* 4) < rv2p_code_len
)) {
3818 code
= be32_to_cpu(*(rv2p_code
+ loc
- 1));
3819 BNX2_WR(bp
, BNX2_RV2P_INSTR_HIGH
, code
);
3820 code
= be32_to_cpu(*(rv2p_code
+ loc
));
3821 code
= rv2p_fw_fixup(rv2p_proc
, i
, loc
, code
);
3822 BNX2_WR(bp
, BNX2_RV2P_INSTR_LOW
, code
);
3824 val
= (loc
/ 2) | cmd
;
3825 BNX2_WR(bp
, addr
, val
);
3829 /* Reset the processor, un-stall is done later. */
3830 if (rv2p_proc
== RV2P_PROC1
) {
3831 BNX2_WR(bp
, BNX2_RV2P_COMMAND
, BNX2_RV2P_COMMAND_PROC1_RESET
);
3834 BNX2_WR(bp
, BNX2_RV2P_COMMAND
, BNX2_RV2P_COMMAND_PROC2_RESET
);
3841 load_cpu_fw(struct bnx2
*bp
, const struct cpu_reg
*cpu_reg
,
3842 const struct bnx2_mips_fw_file_entry
*fw_entry
)
3844 u32 addr
, len
, file_offset
;
3850 val
= bnx2_reg_rd_ind(bp
, cpu_reg
->mode
);
3851 val
|= cpu_reg
->mode_value_halt
;
3852 bnx2_reg_wr_ind(bp
, cpu_reg
->mode
, val
);
3853 bnx2_reg_wr_ind(bp
, cpu_reg
->state
, cpu_reg
->state_value_clear
);
3855 /* Load the Text area. */
3856 addr
= be32_to_cpu(fw_entry
->text
.addr
);
3857 len
= be32_to_cpu(fw_entry
->text
.len
);
3858 file_offset
= be32_to_cpu(fw_entry
->text
.offset
);
3859 data
= (__be32
*)(bp
->mips_firmware
->data
+ file_offset
);
3861 offset
= cpu_reg
->spad_base
+ (addr
- cpu_reg
->mips_view_base
);
3865 for (j
= 0; j
< (len
/ 4); j
++, offset
+= 4)
3866 bnx2_reg_wr_ind(bp
, offset
, be32_to_cpu(data
[j
]));
3869 /* Load the Data area. */
3870 addr
= be32_to_cpu(fw_entry
->data
.addr
);
3871 len
= be32_to_cpu(fw_entry
->data
.len
);
3872 file_offset
= be32_to_cpu(fw_entry
->data
.offset
);
3873 data
= (__be32
*)(bp
->mips_firmware
->data
+ file_offset
);
3875 offset
= cpu_reg
->spad_base
+ (addr
- cpu_reg
->mips_view_base
);
3879 for (j
= 0; j
< (len
/ 4); j
++, offset
+= 4)
3880 bnx2_reg_wr_ind(bp
, offset
, be32_to_cpu(data
[j
]));
3883 /* Load the Read-Only area. */
3884 addr
= be32_to_cpu(fw_entry
->rodata
.addr
);
3885 len
= be32_to_cpu(fw_entry
->rodata
.len
);
3886 file_offset
= be32_to_cpu(fw_entry
->rodata
.offset
);
3887 data
= (__be32
*)(bp
->mips_firmware
->data
+ file_offset
);
3889 offset
= cpu_reg
->spad_base
+ (addr
- cpu_reg
->mips_view_base
);
3893 for (j
= 0; j
< (len
/ 4); j
++, offset
+= 4)
3894 bnx2_reg_wr_ind(bp
, offset
, be32_to_cpu(data
[j
]));
3897 /* Clear the pre-fetch instruction. */
3898 bnx2_reg_wr_ind(bp
, cpu_reg
->inst
, 0);
3900 val
= be32_to_cpu(fw_entry
->start_addr
);
3901 bnx2_reg_wr_ind(bp
, cpu_reg
->pc
, val
);
3903 /* Start the CPU. */
3904 val
= bnx2_reg_rd_ind(bp
, cpu_reg
->mode
);
3905 val
&= ~cpu_reg
->mode_value_halt
;
3906 bnx2_reg_wr_ind(bp
, cpu_reg
->state
, cpu_reg
->state_value_clear
);
3907 bnx2_reg_wr_ind(bp
, cpu_reg
->mode
, val
);
3913 bnx2_init_cpus(struct bnx2
*bp
)
3915 const struct bnx2_mips_fw_file
*mips_fw
=
3916 (const struct bnx2_mips_fw_file
*) bp
->mips_firmware
->data
;
3917 const struct bnx2_rv2p_fw_file
*rv2p_fw
=
3918 (const struct bnx2_rv2p_fw_file
*) bp
->rv2p_firmware
->data
;
3921 /* Initialize the RV2P processor. */
3922 load_rv2p_fw(bp
, RV2P_PROC1
, &rv2p_fw
->proc1
);
3923 load_rv2p_fw(bp
, RV2P_PROC2
, &rv2p_fw
->proc2
);
3925 /* Initialize the RX Processor. */
3926 rc
= load_cpu_fw(bp
, &cpu_reg_rxp
, &mips_fw
->rxp
);
3930 /* Initialize the TX Processor. */
3931 rc
= load_cpu_fw(bp
, &cpu_reg_txp
, &mips_fw
->txp
);
3935 /* Initialize the TX Patch-up Processor. */
3936 rc
= load_cpu_fw(bp
, &cpu_reg_tpat
, &mips_fw
->tpat
);
3940 /* Initialize the Completion Processor. */
3941 rc
= load_cpu_fw(bp
, &cpu_reg_com
, &mips_fw
->com
);
3945 /* Initialize the Command Processor. */
3946 rc
= load_cpu_fw(bp
, &cpu_reg_cp
, &mips_fw
->cp
);
3953 bnx2_setup_wol(struct bnx2
*bp
)
3962 autoneg
= bp
->autoneg
;
3963 advertising
= bp
->advertising
;
3965 if (bp
->phy_port
== PORT_TP
) {
3966 bp
->autoneg
= AUTONEG_SPEED
;
3967 bp
->advertising
= ADVERTISED_10baseT_Half
|
3968 ADVERTISED_10baseT_Full
|
3969 ADVERTISED_100baseT_Half
|
3970 ADVERTISED_100baseT_Full
|
3974 spin_lock_bh(&bp
->phy_lock
);
3975 bnx2_setup_phy(bp
, bp
->phy_port
);
3976 spin_unlock_bh(&bp
->phy_lock
);
3978 bp
->autoneg
= autoneg
;
3979 bp
->advertising
= advertising
;
3981 bnx2_set_mac_addr(bp
, bp
->dev
->dev_addr
, 0);
3983 val
= BNX2_RD(bp
, BNX2_EMAC_MODE
);
3985 /* Enable port mode. */
3986 val
&= ~BNX2_EMAC_MODE_PORT
;
3987 val
|= BNX2_EMAC_MODE_MPKT_RCVD
|
3988 BNX2_EMAC_MODE_ACPI_RCVD
|
3989 BNX2_EMAC_MODE_MPKT
;
3990 if (bp
->phy_port
== PORT_TP
) {
3991 val
|= BNX2_EMAC_MODE_PORT_MII
;
3993 val
|= BNX2_EMAC_MODE_PORT_GMII
;
3994 if (bp
->line_speed
== SPEED_2500
)
3995 val
|= BNX2_EMAC_MODE_25G_MODE
;
3998 BNX2_WR(bp
, BNX2_EMAC_MODE
, val
);
4000 /* receive all multicast */
4001 for (i
= 0; i
< NUM_MC_HASH_REGISTERS
; i
++) {
4002 BNX2_WR(bp
, BNX2_EMAC_MULTICAST_HASH0
+ (i
* 4),
4005 BNX2_WR(bp
, BNX2_EMAC_RX_MODE
, BNX2_EMAC_RX_MODE_SORT_MODE
);
4007 val
= 1 | BNX2_RPM_SORT_USER0_BC_EN
| BNX2_RPM_SORT_USER0_MC_EN
;
4008 BNX2_WR(bp
, BNX2_RPM_SORT_USER0
, 0x0);
4009 BNX2_WR(bp
, BNX2_RPM_SORT_USER0
, val
);
4010 BNX2_WR(bp
, BNX2_RPM_SORT_USER0
, val
| BNX2_RPM_SORT_USER0_ENA
);
4012 /* Need to enable EMAC and RPM for WOL. */
4013 BNX2_WR(bp
, BNX2_MISC_ENABLE_SET_BITS
,
4014 BNX2_MISC_ENABLE_SET_BITS_RX_PARSER_MAC_ENABLE
|
4015 BNX2_MISC_ENABLE_SET_BITS_TX_HEADER_Q_ENABLE
|
4016 BNX2_MISC_ENABLE_SET_BITS_EMAC_ENABLE
);
4018 val
= BNX2_RD(bp
, BNX2_RPM_CONFIG
);
4019 val
&= ~BNX2_RPM_CONFIG_ACPI_ENA
;
4020 BNX2_WR(bp
, BNX2_RPM_CONFIG
, val
);
4022 wol_msg
= BNX2_DRV_MSG_CODE_SUSPEND_WOL
;
4024 wol_msg
= BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL
;
4027 if (!(bp
->flags
& BNX2_FLAG_NO_WOL
)) {
4030 wol_msg
|= BNX2_DRV_MSG_DATA_WAIT3
;
4031 if (bp
->fw_last_msg
|| BNX2_CHIP(bp
) != BNX2_CHIP_5709
) {
4032 bnx2_fw_sync(bp
, wol_msg
, 1, 0);
4035 /* Tell firmware not to power down the PHY yet, otherwise
4036 * the chip will take a long time to respond to MMIO reads.
4038 val
= bnx2_shmem_rd(bp
, BNX2_PORT_FEATURE
);
4039 bnx2_shmem_wr(bp
, BNX2_PORT_FEATURE
,
4040 val
| BNX2_PORT_FEATURE_ASF_ENABLED
);
4041 bnx2_fw_sync(bp
, wol_msg
, 1, 0);
4042 bnx2_shmem_wr(bp
, BNX2_PORT_FEATURE
, val
);
4048 bnx2_set_power_state(struct bnx2
*bp
, pci_power_t state
)
4054 pci_enable_wake(bp
->pdev
, PCI_D0
, false);
4055 pci_set_power_state(bp
->pdev
, PCI_D0
);
4057 val
= BNX2_RD(bp
, BNX2_EMAC_MODE
);
4058 val
|= BNX2_EMAC_MODE_MPKT_RCVD
| BNX2_EMAC_MODE_ACPI_RCVD
;
4059 val
&= ~BNX2_EMAC_MODE_MPKT
;
4060 BNX2_WR(bp
, BNX2_EMAC_MODE
, val
);
4062 val
= BNX2_RD(bp
, BNX2_RPM_CONFIG
);
4063 val
&= ~BNX2_RPM_CONFIG_ACPI_ENA
;
4064 BNX2_WR(bp
, BNX2_RPM_CONFIG
, val
);
4069 pci_wake_from_d3(bp
->pdev
, bp
->wol
);
4070 if ((BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5706_A0
) ||
4071 (BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5706_A1
)) {
4074 pci_set_power_state(bp
->pdev
, PCI_D3hot
);
4078 if (!bp
->fw_last_msg
&& BNX2_CHIP(bp
) == BNX2_CHIP_5709
) {
4081 /* Tell firmware not to power down the PHY yet,
4082 * otherwise the other port may not respond to
4085 val
= bnx2_shmem_rd(bp
, BNX2_BC_STATE_CONDITION
);
4086 val
&= ~BNX2_CONDITION_PM_STATE_MASK
;
4087 val
|= BNX2_CONDITION_PM_STATE_UNPREP
;
4088 bnx2_shmem_wr(bp
, BNX2_BC_STATE_CONDITION
, val
);
4090 pci_set_power_state(bp
->pdev
, PCI_D3hot
);
4092 /* No more memory access after this point until
4093 * device is brought back to D0.
4104 bnx2_acquire_nvram_lock(struct bnx2
*bp
)
4109 /* Request access to the flash interface. */
4110 BNX2_WR(bp
, BNX2_NVM_SW_ARB
, BNX2_NVM_SW_ARB_ARB_REQ_SET2
);
4111 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
4112 val
= BNX2_RD(bp
, BNX2_NVM_SW_ARB
);
4113 if (val
& BNX2_NVM_SW_ARB_ARB_ARB2
)
4119 if (j
>= NVRAM_TIMEOUT_COUNT
)
4126 bnx2_release_nvram_lock(struct bnx2
*bp
)
4131 /* Relinquish nvram interface. */
4132 BNX2_WR(bp
, BNX2_NVM_SW_ARB
, BNX2_NVM_SW_ARB_ARB_REQ_CLR2
);
4134 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
4135 val
= BNX2_RD(bp
, BNX2_NVM_SW_ARB
);
4136 if (!(val
& BNX2_NVM_SW_ARB_ARB_ARB2
))
4142 if (j
>= NVRAM_TIMEOUT_COUNT
)
4150 bnx2_enable_nvram_write(struct bnx2
*bp
)
4154 val
= BNX2_RD(bp
, BNX2_MISC_CFG
);
4155 BNX2_WR(bp
, BNX2_MISC_CFG
, val
| BNX2_MISC_CFG_NVM_WR_EN_PCI
);
4157 if (bp
->flash_info
->flags
& BNX2_NV_WREN
) {
4160 BNX2_WR(bp
, BNX2_NVM_COMMAND
, BNX2_NVM_COMMAND_DONE
);
4161 BNX2_WR(bp
, BNX2_NVM_COMMAND
,
4162 BNX2_NVM_COMMAND_WREN
| BNX2_NVM_COMMAND_DOIT
);
4164 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
4167 val
= BNX2_RD(bp
, BNX2_NVM_COMMAND
);
4168 if (val
& BNX2_NVM_COMMAND_DONE
)
4172 if (j
>= NVRAM_TIMEOUT_COUNT
)
4179 bnx2_disable_nvram_write(struct bnx2
*bp
)
4183 val
= BNX2_RD(bp
, BNX2_MISC_CFG
);
4184 BNX2_WR(bp
, BNX2_MISC_CFG
, val
& ~BNX2_MISC_CFG_NVM_WR_EN
);
4189 bnx2_enable_nvram_access(struct bnx2
*bp
)
4193 val
= BNX2_RD(bp
, BNX2_NVM_ACCESS_ENABLE
);
4194 /* Enable both bits, even on read. */
4195 BNX2_WR(bp
, BNX2_NVM_ACCESS_ENABLE
,
4196 val
| BNX2_NVM_ACCESS_ENABLE_EN
| BNX2_NVM_ACCESS_ENABLE_WR_EN
);
4200 bnx2_disable_nvram_access(struct bnx2
*bp
)
4204 val
= BNX2_RD(bp
, BNX2_NVM_ACCESS_ENABLE
);
4205 /* Disable both bits, even after read. */
4206 BNX2_WR(bp
, BNX2_NVM_ACCESS_ENABLE
,
4207 val
& ~(BNX2_NVM_ACCESS_ENABLE_EN
|
4208 BNX2_NVM_ACCESS_ENABLE_WR_EN
));
4212 bnx2_nvram_erase_page(struct bnx2
*bp
, u32 offset
)
4217 if (bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)
4218 /* Buffered flash, no erase needed */
4221 /* Build an erase command */
4222 cmd
= BNX2_NVM_COMMAND_ERASE
| BNX2_NVM_COMMAND_WR
|
4223 BNX2_NVM_COMMAND_DOIT
;
4225 /* Need to clear DONE bit separately. */
4226 BNX2_WR(bp
, BNX2_NVM_COMMAND
, BNX2_NVM_COMMAND_DONE
);
4228 /* Address of the NVRAM to read from. */
4229 BNX2_WR(bp
, BNX2_NVM_ADDR
, offset
& BNX2_NVM_ADDR_NVM_ADDR_VALUE
);
4231 /* Issue an erase command. */
4232 BNX2_WR(bp
, BNX2_NVM_COMMAND
, cmd
);
4234 /* Wait for completion. */
4235 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
4240 val
= BNX2_RD(bp
, BNX2_NVM_COMMAND
);
4241 if (val
& BNX2_NVM_COMMAND_DONE
)
4245 if (j
>= NVRAM_TIMEOUT_COUNT
)
4252 bnx2_nvram_read_dword(struct bnx2
*bp
, u32 offset
, u8
*ret_val
, u32 cmd_flags
)
4257 /* Build the command word. */
4258 cmd
= BNX2_NVM_COMMAND_DOIT
| cmd_flags
;
4260 /* Calculate an offset of a buffered flash, not needed for 5709. */
4261 if (bp
->flash_info
->flags
& BNX2_NV_TRANSLATE
) {
4262 offset
= ((offset
/ bp
->flash_info
->page_size
) <<
4263 bp
->flash_info
->page_bits
) +
4264 (offset
% bp
->flash_info
->page_size
);
4267 /* Need to clear DONE bit separately. */
4268 BNX2_WR(bp
, BNX2_NVM_COMMAND
, BNX2_NVM_COMMAND_DONE
);
4270 /* Address of the NVRAM to read from. */
4271 BNX2_WR(bp
, BNX2_NVM_ADDR
, offset
& BNX2_NVM_ADDR_NVM_ADDR_VALUE
);
4273 /* Issue a read command. */
4274 BNX2_WR(bp
, BNX2_NVM_COMMAND
, cmd
);
4276 /* Wait for completion. */
4277 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
4282 val
= BNX2_RD(bp
, BNX2_NVM_COMMAND
);
4283 if (val
& BNX2_NVM_COMMAND_DONE
) {
4284 __be32 v
= cpu_to_be32(BNX2_RD(bp
, BNX2_NVM_READ
));
4285 memcpy(ret_val
, &v
, 4);
4289 if (j
>= NVRAM_TIMEOUT_COUNT
)
4297 bnx2_nvram_write_dword(struct bnx2
*bp
, u32 offset
, u8
*val
, u32 cmd_flags
)
4303 /* Build the command word. */
4304 cmd
= BNX2_NVM_COMMAND_DOIT
| BNX2_NVM_COMMAND_WR
| cmd_flags
;
4306 /* Calculate an offset of a buffered flash, not needed for 5709. */
4307 if (bp
->flash_info
->flags
& BNX2_NV_TRANSLATE
) {
4308 offset
= ((offset
/ bp
->flash_info
->page_size
) <<
4309 bp
->flash_info
->page_bits
) +
4310 (offset
% bp
->flash_info
->page_size
);
4313 /* Need to clear DONE bit separately. */
4314 BNX2_WR(bp
, BNX2_NVM_COMMAND
, BNX2_NVM_COMMAND_DONE
);
4316 memcpy(&val32
, val
, 4);
4318 /* Write the data. */
4319 BNX2_WR(bp
, BNX2_NVM_WRITE
, be32_to_cpu(val32
));
4321 /* Address of the NVRAM to write to. */
4322 BNX2_WR(bp
, BNX2_NVM_ADDR
, offset
& BNX2_NVM_ADDR_NVM_ADDR_VALUE
);
4324 /* Issue the write command. */
4325 BNX2_WR(bp
, BNX2_NVM_COMMAND
, cmd
);
4327 /* Wait for completion. */
4328 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
4331 if (BNX2_RD(bp
, BNX2_NVM_COMMAND
) & BNX2_NVM_COMMAND_DONE
)
4334 if (j
>= NVRAM_TIMEOUT_COUNT
)
4341 bnx2_init_nvram(struct bnx2
*bp
)
4344 int j
, entry_count
, rc
= 0;
4345 const struct flash_spec
*flash
;
4347 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
) {
4348 bp
->flash_info
= &flash_5709
;
4349 goto get_flash_size
;
4352 /* Determine the selected interface. */
4353 val
= BNX2_RD(bp
, BNX2_NVM_CFG1
);
4355 entry_count
= ARRAY_SIZE(flash_table
);
4357 if (val
& 0x40000000) {
4359 /* Flash interface has been reconfigured */
4360 for (j
= 0, flash
= &flash_table
[0]; j
< entry_count
;
4362 if ((val
& FLASH_BACKUP_STRAP_MASK
) ==
4363 (flash
->config1
& FLASH_BACKUP_STRAP_MASK
)) {
4364 bp
->flash_info
= flash
;
4371 /* Not yet been reconfigured */
4373 if (val
& (1 << 23))
4374 mask
= FLASH_BACKUP_STRAP_MASK
;
4376 mask
= FLASH_STRAP_MASK
;
4378 for (j
= 0, flash
= &flash_table
[0]; j
< entry_count
;
4381 if ((val
& mask
) == (flash
->strapping
& mask
)) {
4382 bp
->flash_info
= flash
;
4384 /* Request access to the flash interface. */
4385 if ((rc
= bnx2_acquire_nvram_lock(bp
)) != 0)
4388 /* Enable access to flash interface */
4389 bnx2_enable_nvram_access(bp
);
4391 /* Reconfigure the flash interface */
4392 BNX2_WR(bp
, BNX2_NVM_CFG1
, flash
->config1
);
4393 BNX2_WR(bp
, BNX2_NVM_CFG2
, flash
->config2
);
4394 BNX2_WR(bp
, BNX2_NVM_CFG3
, flash
->config3
);
4395 BNX2_WR(bp
, BNX2_NVM_WRITE1
, flash
->write1
);
4397 /* Disable access to flash interface */
4398 bnx2_disable_nvram_access(bp
);
4399 bnx2_release_nvram_lock(bp
);
4404 } /* if (val & 0x40000000) */
4406 if (j
== entry_count
) {
4407 bp
->flash_info
= NULL
;
4408 pr_alert("Unknown flash/EEPROM type\n");
4413 val
= bnx2_shmem_rd(bp
, BNX2_SHARED_HW_CFG_CONFIG2
);
4414 val
&= BNX2_SHARED_HW_CFG2_NVM_SIZE_MASK
;
4416 bp
->flash_size
= val
;
4418 bp
->flash_size
= bp
->flash_info
->total_size
;
4424 bnx2_nvram_read(struct bnx2
*bp
, u32 offset
, u8
*ret_buf
,
4428 u32 cmd_flags
, offset32
, len32
, extra
;
4433 /* Request access to the flash interface. */
4434 if ((rc
= bnx2_acquire_nvram_lock(bp
)) != 0)
4437 /* Enable access to flash interface */
4438 bnx2_enable_nvram_access(bp
);
4451 pre_len
= 4 - (offset
& 3);
4453 if (pre_len
>= len32
) {
4455 cmd_flags
= BNX2_NVM_COMMAND_FIRST
|
4456 BNX2_NVM_COMMAND_LAST
;
4459 cmd_flags
= BNX2_NVM_COMMAND_FIRST
;
4462 rc
= bnx2_nvram_read_dword(bp
, offset32
, buf
, cmd_flags
);
4467 memcpy(ret_buf
, buf
+ (offset
& 3), pre_len
);
4474 extra
= 4 - (len32
& 3);
4475 len32
= (len32
+ 4) & ~3;
4482 cmd_flags
= BNX2_NVM_COMMAND_LAST
;
4484 cmd_flags
= BNX2_NVM_COMMAND_FIRST
|
4485 BNX2_NVM_COMMAND_LAST
;
4487 rc
= bnx2_nvram_read_dword(bp
, offset32
, buf
, cmd_flags
);
4489 memcpy(ret_buf
, buf
, 4 - extra
);
4491 else if (len32
> 0) {
4494 /* Read the first word. */
4498 cmd_flags
= BNX2_NVM_COMMAND_FIRST
;
4500 rc
= bnx2_nvram_read_dword(bp
, offset32
, ret_buf
, cmd_flags
);
4502 /* Advance to the next dword. */
4507 while (len32
> 4 && rc
== 0) {
4508 rc
= bnx2_nvram_read_dword(bp
, offset32
, ret_buf
, 0);
4510 /* Advance to the next dword. */
4519 cmd_flags
= BNX2_NVM_COMMAND_LAST
;
4520 rc
= bnx2_nvram_read_dword(bp
, offset32
, buf
, cmd_flags
);
4522 memcpy(ret_buf
, buf
, 4 - extra
);
4525 /* Disable access to flash interface */
4526 bnx2_disable_nvram_access(bp
);
4528 bnx2_release_nvram_lock(bp
);
4534 bnx2_nvram_write(struct bnx2
*bp
, u32 offset
, u8
*data_buf
,
4537 u32 written
, offset32
, len32
;
4538 u8
*buf
, start
[4], end
[4], *align_buf
= NULL
, *flash_buffer
= NULL
;
4540 int align_start
, align_end
;
4545 align_start
= align_end
= 0;
4547 if ((align_start
= (offset32
& 3))) {
4549 len32
+= align_start
;
4552 if ((rc
= bnx2_nvram_read(bp
, offset32
, start
, 4)))
4557 align_end
= 4 - (len32
& 3);
4559 if ((rc
= bnx2_nvram_read(bp
, offset32
+ len32
- 4, end
, 4)))
4563 if (align_start
|| align_end
) {
4564 align_buf
= kmalloc(len32
, GFP_KERNEL
);
4565 if (align_buf
== NULL
)
4568 memcpy(align_buf
, start
, 4);
4571 memcpy(align_buf
+ len32
- 4, end
, 4);
4573 memcpy(align_buf
+ align_start
, data_buf
, buf_size
);
4577 if (!(bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)) {
4578 flash_buffer
= kmalloc(264, GFP_KERNEL
);
4579 if (flash_buffer
== NULL
) {
4581 goto nvram_write_end
;
4586 while ((written
< len32
) && (rc
== 0)) {
4587 u32 page_start
, page_end
, data_start
, data_end
;
4588 u32 addr
, cmd_flags
;
4591 /* Find the page_start addr */
4592 page_start
= offset32
+ written
;
4593 page_start
-= (page_start
% bp
->flash_info
->page_size
);
4594 /* Find the page_end addr */
4595 page_end
= page_start
+ bp
->flash_info
->page_size
;
4596 /* Find the data_start addr */
4597 data_start
= (written
== 0) ? offset32
: page_start
;
4598 /* Find the data_end addr */
4599 data_end
= (page_end
> offset32
+ len32
) ?
4600 (offset32
+ len32
) : page_end
;
4602 /* Request access to the flash interface. */
4603 if ((rc
= bnx2_acquire_nvram_lock(bp
)) != 0)
4604 goto nvram_write_end
;
4606 /* Enable access to flash interface */
4607 bnx2_enable_nvram_access(bp
);
4609 cmd_flags
= BNX2_NVM_COMMAND_FIRST
;
4610 if (!(bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)) {
4613 /* Read the whole page into the buffer
4614 * (non-buffer flash only) */
4615 for (j
= 0; j
< bp
->flash_info
->page_size
; j
+= 4) {
4616 if (j
== (bp
->flash_info
->page_size
- 4)) {
4617 cmd_flags
|= BNX2_NVM_COMMAND_LAST
;
4619 rc
= bnx2_nvram_read_dword(bp
,
4625 goto nvram_write_end
;
4631 /* Enable writes to flash interface (unlock write-protect) */
4632 if ((rc
= bnx2_enable_nvram_write(bp
)) != 0)
4633 goto nvram_write_end
;
4635 /* Loop to write back the buffer data from page_start to
4638 if (!(bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)) {
4639 /* Erase the page */
4640 if ((rc
= bnx2_nvram_erase_page(bp
, page_start
)) != 0)
4641 goto nvram_write_end
;
4643 /* Re-enable the write again for the actual write */
4644 bnx2_enable_nvram_write(bp
);
4646 for (addr
= page_start
; addr
< data_start
;
4647 addr
+= 4, i
+= 4) {
4649 rc
= bnx2_nvram_write_dword(bp
, addr
,
4650 &flash_buffer
[i
], cmd_flags
);
4653 goto nvram_write_end
;
4659 /* Loop to write the new data from data_start to data_end */
4660 for (addr
= data_start
; addr
< data_end
; addr
+= 4, i
+= 4) {
4661 if ((addr
== page_end
- 4) ||
4662 ((bp
->flash_info
->flags
& BNX2_NV_BUFFERED
) &&
4663 (addr
== data_end
- 4))) {
4665 cmd_flags
|= BNX2_NVM_COMMAND_LAST
;
4667 rc
= bnx2_nvram_write_dword(bp
, addr
, buf
,
4671 goto nvram_write_end
;
4677 /* Loop to write back the buffer data from data_end
4679 if (!(bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)) {
4680 for (addr
= data_end
; addr
< page_end
;
4681 addr
+= 4, i
+= 4) {
4683 if (addr
== page_end
-4) {
4684 cmd_flags
= BNX2_NVM_COMMAND_LAST
;
4686 rc
= bnx2_nvram_write_dword(bp
, addr
,
4687 &flash_buffer
[i
], cmd_flags
);
4690 goto nvram_write_end
;
4696 /* Disable writes to flash interface (lock write-protect) */
4697 bnx2_disable_nvram_write(bp
);
4699 /* Disable access to flash interface */
4700 bnx2_disable_nvram_access(bp
);
4701 bnx2_release_nvram_lock(bp
);
4703 /* Increment written */
4704 written
+= data_end
- data_start
;
4708 kfree(flash_buffer
);
4714 bnx2_init_fw_cap(struct bnx2
*bp
)
4718 bp
->phy_flags
&= ~BNX2_PHY_FLAG_REMOTE_PHY_CAP
;
4719 bp
->flags
&= ~BNX2_FLAG_CAN_KEEP_VLAN
;
4721 if (!(bp
->flags
& BNX2_FLAG_ASF_ENABLE
))
4722 bp
->flags
|= BNX2_FLAG_CAN_KEEP_VLAN
;
4724 val
= bnx2_shmem_rd(bp
, BNX2_FW_CAP_MB
);
4725 if ((val
& BNX2_FW_CAP_SIGNATURE_MASK
) != BNX2_FW_CAP_SIGNATURE
)
4728 if ((val
& BNX2_FW_CAP_CAN_KEEP_VLAN
) == BNX2_FW_CAP_CAN_KEEP_VLAN
) {
4729 bp
->flags
|= BNX2_FLAG_CAN_KEEP_VLAN
;
4730 sig
|= BNX2_DRV_ACK_CAP_SIGNATURE
| BNX2_FW_CAP_CAN_KEEP_VLAN
;
4733 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
4734 (val
& BNX2_FW_CAP_REMOTE_PHY_CAPABLE
)) {
4737 bp
->phy_flags
|= BNX2_PHY_FLAG_REMOTE_PHY_CAP
;
4739 link
= bnx2_shmem_rd(bp
, BNX2_LINK_STATUS
);
4740 if (link
& BNX2_LINK_STATUS_SERDES_LINK
)
4741 bp
->phy_port
= PORT_FIBRE
;
4743 bp
->phy_port
= PORT_TP
;
4745 sig
|= BNX2_DRV_ACK_CAP_SIGNATURE
|
4746 BNX2_FW_CAP_REMOTE_PHY_CAPABLE
;
4749 if (netif_running(bp
->dev
) && sig
)
4750 bnx2_shmem_wr(bp
, BNX2_DRV_ACK_CAP_MB
, sig
);
4754 bnx2_setup_msix_tbl(struct bnx2
*bp
)
4756 BNX2_WR(bp
, BNX2_PCI_GRC_WINDOW_ADDR
, BNX2_PCI_GRC_WINDOW_ADDR_SEP_WIN
);
4758 BNX2_WR(bp
, BNX2_PCI_GRC_WINDOW2_ADDR
, BNX2_MSIX_TABLE_ADDR
);
4759 BNX2_WR(bp
, BNX2_PCI_GRC_WINDOW3_ADDR
, BNX2_MSIX_PBA_ADDR
);
4763 bnx2_reset_chip(struct bnx2
*bp
, u32 reset_code
)
4769 /* Wait for the current PCI transaction to complete before
4770 * issuing a reset. */
4771 if ((BNX2_CHIP(bp
) == BNX2_CHIP_5706
) ||
4772 (BNX2_CHIP(bp
) == BNX2_CHIP_5708
)) {
4773 BNX2_WR(bp
, BNX2_MISC_ENABLE_CLR_BITS
,
4774 BNX2_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE
|
4775 BNX2_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE
|
4776 BNX2_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE
|
4777 BNX2_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE
);
4778 val
= BNX2_RD(bp
, BNX2_MISC_ENABLE_CLR_BITS
);
4781 val
= BNX2_RD(bp
, BNX2_MISC_NEW_CORE_CTL
);
4782 val
&= ~BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE
;
4783 BNX2_WR(bp
, BNX2_MISC_NEW_CORE_CTL
, val
);
4784 val
= BNX2_RD(bp
, BNX2_MISC_NEW_CORE_CTL
);
4786 for (i
= 0; i
< 100; i
++) {
4788 val
= BNX2_RD(bp
, BNX2_PCICFG_DEVICE_CONTROL
);
4789 if (!(val
& BNX2_PCICFG_DEVICE_STATUS_NO_PEND
))
4794 /* Wait for the firmware to tell us it is ok to issue a reset. */
4795 bnx2_fw_sync(bp
, BNX2_DRV_MSG_DATA_WAIT0
| reset_code
, 1, 1);
4797 /* Deposit a driver reset signature so the firmware knows that
4798 * this is a soft reset. */
4799 bnx2_shmem_wr(bp
, BNX2_DRV_RESET_SIGNATURE
,
4800 BNX2_DRV_RESET_SIGNATURE_MAGIC
);
4802 /* Do a dummy read to force the chip to complete all current transaction
4803 * before we issue a reset. */
4804 val
= BNX2_RD(bp
, BNX2_MISC_ID
);
4806 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
) {
4807 BNX2_WR(bp
, BNX2_MISC_COMMAND
, BNX2_MISC_COMMAND_SW_RESET
);
4808 BNX2_RD(bp
, BNX2_MISC_COMMAND
);
4811 val
= BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA
|
4812 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP
;
4814 BNX2_WR(bp
, BNX2_PCICFG_MISC_CONFIG
, val
);
4817 val
= BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ
|
4818 BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA
|
4819 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP
;
4822 BNX2_WR(bp
, BNX2_PCICFG_MISC_CONFIG
, val
);
4824 /* Reading back any register after chip reset will hang the
4825 * bus on 5706 A0 and A1. The msleep below provides plenty
4826 * of margin for write posting.
4828 if ((BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5706_A0
) ||
4829 (BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5706_A1
))
4832 /* Reset takes approximate 30 usec */
4833 for (i
= 0; i
< 10; i
++) {
4834 val
= BNX2_RD(bp
, BNX2_PCICFG_MISC_CONFIG
);
4835 if ((val
& (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ
|
4836 BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY
)) == 0)
4841 if (val
& (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ
|
4842 BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY
)) {
4843 pr_err("Chip reset did not complete\n");
4848 /* Make sure byte swapping is properly configured. */
4849 val
= BNX2_RD(bp
, BNX2_PCI_SWAP_DIAG0
);
4850 if (val
!= 0x01020304) {
4851 pr_err("Chip not in correct endian mode\n");
4855 /* Wait for the firmware to finish its initialization. */
4856 rc
= bnx2_fw_sync(bp
, BNX2_DRV_MSG_DATA_WAIT1
| reset_code
, 1, 0);
4860 spin_lock_bh(&bp
->phy_lock
);
4861 old_port
= bp
->phy_port
;
4862 bnx2_init_fw_cap(bp
);
4863 if ((bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) &&
4864 old_port
!= bp
->phy_port
)
4865 bnx2_set_default_remote_link(bp
);
4866 spin_unlock_bh(&bp
->phy_lock
);
4868 if (BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5706_A0
) {
4869 /* Adjust the voltage regular to two steps lower. The default
4870 * of this register is 0x0000000e. */
4871 BNX2_WR(bp
, BNX2_MISC_VREG_CONTROL
, 0x000000fa);
4873 /* Remove bad rbuf memory from the free pool. */
4874 rc
= bnx2_alloc_bad_rbuf(bp
);
4877 if (bp
->flags
& BNX2_FLAG_USING_MSIX
) {
4878 bnx2_setup_msix_tbl(bp
);
4879 /* Prevent MSIX table reads and write from timing out */
4880 BNX2_WR(bp
, BNX2_MISC_ECO_HW_CTL
,
4881 BNX2_MISC_ECO_HW_CTL_LARGE_GRC_TMOUT_EN
);
4888 bnx2_init_chip(struct bnx2
*bp
)
4893 /* Make sure the interrupt is not active. */
4894 BNX2_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, BNX2_PCICFG_INT_ACK_CMD_MASK_INT
);
4896 val
= BNX2_DMA_CONFIG_DATA_BYTE_SWAP
|
4897 BNX2_DMA_CONFIG_DATA_WORD_SWAP
|
4899 BNX2_DMA_CONFIG_CNTL_BYTE_SWAP
|
4901 BNX2_DMA_CONFIG_CNTL_WORD_SWAP
|
4902 DMA_READ_CHANS
<< 12 |
4903 DMA_WRITE_CHANS
<< 16;
4905 val
|= (0x2 << 20) | (1 << 11);
4907 if ((bp
->flags
& BNX2_FLAG_PCIX
) && (bp
->bus_speed_mhz
== 133))
4910 if ((BNX2_CHIP(bp
) == BNX2_CHIP_5706
) &&
4911 (BNX2_CHIP_ID(bp
) != BNX2_CHIP_ID_5706_A0
) &&
4912 !(bp
->flags
& BNX2_FLAG_PCIX
))
4913 val
|= BNX2_DMA_CONFIG_CNTL_PING_PONG_DMA
;
4915 BNX2_WR(bp
, BNX2_DMA_CONFIG
, val
);
4917 if (BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5706_A0
) {
4918 val
= BNX2_RD(bp
, BNX2_TDMA_CONFIG
);
4919 val
|= BNX2_TDMA_CONFIG_ONE_DMA
;
4920 BNX2_WR(bp
, BNX2_TDMA_CONFIG
, val
);
4923 if (bp
->flags
& BNX2_FLAG_PCIX
) {
4926 pci_read_config_word(bp
->pdev
, bp
->pcix_cap
+ PCI_X_CMD
,
4928 pci_write_config_word(bp
->pdev
, bp
->pcix_cap
+ PCI_X_CMD
,
4929 val16
& ~PCI_X_CMD_ERO
);
4932 BNX2_WR(bp
, BNX2_MISC_ENABLE_SET_BITS
,
4933 BNX2_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE
|
4934 BNX2_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE
|
4935 BNX2_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE
);
4937 /* Initialize context mapping and zero out the quick contexts. The
4938 * context block must have already been enabled. */
4939 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
) {
4940 rc
= bnx2_init_5709_context(bp
);
4944 bnx2_init_context(bp
);
4946 if ((rc
= bnx2_init_cpus(bp
)) != 0)
4949 bnx2_init_nvram(bp
);
4951 bnx2_set_mac_addr(bp
, bp
->dev
->dev_addr
, 0);
4953 val
= BNX2_RD(bp
, BNX2_MQ_CONFIG
);
4954 val
&= ~BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE
;
4955 val
|= BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE_256
;
4956 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
) {
4957 val
|= BNX2_MQ_CONFIG_BIN_MQ_MODE
;
4958 if (BNX2_CHIP_REV(bp
) == BNX2_CHIP_REV_Ax
)
4959 val
|= BNX2_MQ_CONFIG_HALT_DIS
;
4962 BNX2_WR(bp
, BNX2_MQ_CONFIG
, val
);
4964 val
= 0x10000 + (MAX_CID_CNT
* MB_KERNEL_CTX_SIZE
);
4965 BNX2_WR(bp
, BNX2_MQ_KNL_BYP_WIND_START
, val
);
4966 BNX2_WR(bp
, BNX2_MQ_KNL_WIND_END
, val
);
4968 val
= (BNX2_PAGE_BITS
- 8) << 24;
4969 BNX2_WR(bp
, BNX2_RV2P_CONFIG
, val
);
4971 /* Configure page size. */
4972 val
= BNX2_RD(bp
, BNX2_TBDR_CONFIG
);
4973 val
&= ~BNX2_TBDR_CONFIG_PAGE_SIZE
;
4974 val
|= (BNX2_PAGE_BITS
- 8) << 24 | 0x40;
4975 BNX2_WR(bp
, BNX2_TBDR_CONFIG
, val
);
4977 val
= bp
->mac_addr
[0] +
4978 (bp
->mac_addr
[1] << 8) +
4979 (bp
->mac_addr
[2] << 16) +
4981 (bp
->mac_addr
[4] << 8) +
4982 (bp
->mac_addr
[5] << 16);
4983 BNX2_WR(bp
, BNX2_EMAC_BACKOFF_SEED
, val
);
4985 /* Program the MTU. Also include 4 bytes for CRC32. */
4987 val
= mtu
+ ETH_HLEN
+ ETH_FCS_LEN
;
4988 if (val
> (MAX_ETHERNET_PACKET_SIZE
+ 4))
4989 val
|= BNX2_EMAC_RX_MTU_SIZE_JUMBO_ENA
;
4990 BNX2_WR(bp
, BNX2_EMAC_RX_MTU_SIZE
, val
);
4995 bnx2_reg_wr_ind(bp
, BNX2_RBUF_CONFIG
, BNX2_RBUF_CONFIG_VAL(mtu
));
4996 bnx2_reg_wr_ind(bp
, BNX2_RBUF_CONFIG2
, BNX2_RBUF_CONFIG2_VAL(mtu
));
4997 bnx2_reg_wr_ind(bp
, BNX2_RBUF_CONFIG3
, BNX2_RBUF_CONFIG3_VAL(mtu
));
4999 memset(bp
->bnx2_napi
[0].status_blk
.msi
, 0, bp
->status_stats_size
);
5000 for (i
= 0; i
< BNX2_MAX_MSIX_VEC
; i
++)
5001 bp
->bnx2_napi
[i
].last_status_idx
= 0;
5003 bp
->idle_chk_status_idx
= 0xffff;
5005 /* Set up how to generate a link change interrupt. */
5006 BNX2_WR(bp
, BNX2_EMAC_ATTENTION_ENA
, BNX2_EMAC_ATTENTION_ENA_LINK
);
5008 BNX2_WR(bp
, BNX2_HC_STATUS_ADDR_L
,
5009 (u64
) bp
->status_blk_mapping
& 0xffffffff);
5010 BNX2_WR(bp
, BNX2_HC_STATUS_ADDR_H
, (u64
) bp
->status_blk_mapping
>> 32);
5012 BNX2_WR(bp
, BNX2_HC_STATISTICS_ADDR_L
,
5013 (u64
) bp
->stats_blk_mapping
& 0xffffffff);
5014 BNX2_WR(bp
, BNX2_HC_STATISTICS_ADDR_H
,
5015 (u64
) bp
->stats_blk_mapping
>> 32);
5017 BNX2_WR(bp
, BNX2_HC_TX_QUICK_CONS_TRIP
,
5018 (bp
->tx_quick_cons_trip_int
<< 16) | bp
->tx_quick_cons_trip
);
5020 BNX2_WR(bp
, BNX2_HC_RX_QUICK_CONS_TRIP
,
5021 (bp
->rx_quick_cons_trip_int
<< 16) | bp
->rx_quick_cons_trip
);
5023 BNX2_WR(bp
, BNX2_HC_COMP_PROD_TRIP
,
5024 (bp
->comp_prod_trip_int
<< 16) | bp
->comp_prod_trip
);
5026 BNX2_WR(bp
, BNX2_HC_TX_TICKS
, (bp
->tx_ticks_int
<< 16) | bp
->tx_ticks
);
5028 BNX2_WR(bp
, BNX2_HC_RX_TICKS
, (bp
->rx_ticks_int
<< 16) | bp
->rx_ticks
);
5030 BNX2_WR(bp
, BNX2_HC_COM_TICKS
,
5031 (bp
->com_ticks_int
<< 16) | bp
->com_ticks
);
5033 BNX2_WR(bp
, BNX2_HC_CMD_TICKS
,
5034 (bp
->cmd_ticks_int
<< 16) | bp
->cmd_ticks
);
5036 if (bp
->flags
& BNX2_FLAG_BROKEN_STATS
)
5037 BNX2_WR(bp
, BNX2_HC_STATS_TICKS
, 0);
5039 BNX2_WR(bp
, BNX2_HC_STATS_TICKS
, bp
->stats_ticks
);
5040 BNX2_WR(bp
, BNX2_HC_STAT_COLLECT_TICKS
, 0xbb8); /* 3ms */
5042 if (BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5706_A1
)
5043 val
= BNX2_HC_CONFIG_COLLECT_STATS
;
5045 val
= BNX2_HC_CONFIG_RX_TMR_MODE
| BNX2_HC_CONFIG_TX_TMR_MODE
|
5046 BNX2_HC_CONFIG_COLLECT_STATS
;
5049 if (bp
->flags
& BNX2_FLAG_USING_MSIX
) {
5050 BNX2_WR(bp
, BNX2_HC_MSIX_BIT_VECTOR
,
5051 BNX2_HC_MSIX_BIT_VECTOR_VAL
);
5053 val
|= BNX2_HC_CONFIG_SB_ADDR_INC_128B
;
5056 if (bp
->flags
& BNX2_FLAG_ONE_SHOT_MSI
)
5057 val
|= BNX2_HC_CONFIG_ONE_SHOT
| BNX2_HC_CONFIG_USE_INT_PARAM
;
5059 BNX2_WR(bp
, BNX2_HC_CONFIG
, val
);
5061 if (bp
->rx_ticks
< 25)
5062 bnx2_reg_wr_ind(bp
, BNX2_FW_RX_LOW_LATENCY
, 1);
5064 bnx2_reg_wr_ind(bp
, BNX2_FW_RX_LOW_LATENCY
, 0);
5066 for (i
= 1; i
< bp
->irq_nvecs
; i
++) {
5067 u32 base
= ((i
- 1) * BNX2_HC_SB_CONFIG_SIZE
) +
5068 BNX2_HC_SB_CONFIG_1
;
5071 BNX2_HC_SB_CONFIG_1_TX_TMR_MODE
|
5072 BNX2_HC_SB_CONFIG_1_RX_TMR_MODE
|
5073 BNX2_HC_SB_CONFIG_1_ONE_SHOT
);
5075 BNX2_WR(bp
, base
+ BNX2_HC_TX_QUICK_CONS_TRIP_OFF
,
5076 (bp
->tx_quick_cons_trip_int
<< 16) |
5077 bp
->tx_quick_cons_trip
);
5079 BNX2_WR(bp
, base
+ BNX2_HC_TX_TICKS_OFF
,
5080 (bp
->tx_ticks_int
<< 16) | bp
->tx_ticks
);
5082 BNX2_WR(bp
, base
+ BNX2_HC_RX_QUICK_CONS_TRIP_OFF
,
5083 (bp
->rx_quick_cons_trip_int
<< 16) |
5084 bp
->rx_quick_cons_trip
);
5086 BNX2_WR(bp
, base
+ BNX2_HC_RX_TICKS_OFF
,
5087 (bp
->rx_ticks_int
<< 16) | bp
->rx_ticks
);
5090 /* Clear internal stats counters. */
5091 BNX2_WR(bp
, BNX2_HC_COMMAND
, BNX2_HC_COMMAND_CLR_STAT_NOW
);
5093 BNX2_WR(bp
, BNX2_HC_ATTN_BITS_ENABLE
, STATUS_ATTN_EVENTS
);
5095 /* Initialize the receive filter. */
5096 bnx2_set_rx_mode(bp
->dev
);
5098 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
) {
5099 val
= BNX2_RD(bp
, BNX2_MISC_NEW_CORE_CTL
);
5100 val
|= BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE
;
5101 BNX2_WR(bp
, BNX2_MISC_NEW_CORE_CTL
, val
);
5103 rc
= bnx2_fw_sync(bp
, BNX2_DRV_MSG_DATA_WAIT2
| BNX2_DRV_MSG_CODE_RESET
,
5106 BNX2_WR(bp
, BNX2_MISC_ENABLE_SET_BITS
, BNX2_MISC_ENABLE_DEFAULT
);
5107 BNX2_RD(bp
, BNX2_MISC_ENABLE_SET_BITS
);
5111 bp
->hc_cmd
= BNX2_RD(bp
, BNX2_HC_COMMAND
);
5117 bnx2_clear_ring_states(struct bnx2
*bp
)
5119 struct bnx2_napi
*bnapi
;
5120 struct bnx2_tx_ring_info
*txr
;
5121 struct bnx2_rx_ring_info
*rxr
;
5124 for (i
= 0; i
< BNX2_MAX_MSIX_VEC
; i
++) {
5125 bnapi
= &bp
->bnx2_napi
[i
];
5126 txr
= &bnapi
->tx_ring
;
5127 rxr
= &bnapi
->rx_ring
;
5130 txr
->hw_tx_cons
= 0;
5131 rxr
->rx_prod_bseq
= 0;
5134 rxr
->rx_pg_prod
= 0;
5135 rxr
->rx_pg_cons
= 0;
5140 bnx2_init_tx_context(struct bnx2
*bp
, u32 cid
, struct bnx2_tx_ring_info
*txr
)
5142 u32 val
, offset0
, offset1
, offset2
, offset3
;
5143 u32 cid_addr
= GET_CID_ADDR(cid
);
5145 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
) {
5146 offset0
= BNX2_L2CTX_TYPE_XI
;
5147 offset1
= BNX2_L2CTX_CMD_TYPE_XI
;
5148 offset2
= BNX2_L2CTX_TBDR_BHADDR_HI_XI
;
5149 offset3
= BNX2_L2CTX_TBDR_BHADDR_LO_XI
;
5151 offset0
= BNX2_L2CTX_TYPE
;
5152 offset1
= BNX2_L2CTX_CMD_TYPE
;
5153 offset2
= BNX2_L2CTX_TBDR_BHADDR_HI
;
5154 offset3
= BNX2_L2CTX_TBDR_BHADDR_LO
;
5156 val
= BNX2_L2CTX_TYPE_TYPE_L2
| BNX2_L2CTX_TYPE_SIZE_L2
;
5157 bnx2_ctx_wr(bp
, cid_addr
, offset0
, val
);
5159 val
= BNX2_L2CTX_CMD_TYPE_TYPE_L2
| (8 << 16);
5160 bnx2_ctx_wr(bp
, cid_addr
, offset1
, val
);
5162 val
= (u64
) txr
->tx_desc_mapping
>> 32;
5163 bnx2_ctx_wr(bp
, cid_addr
, offset2
, val
);
5165 val
= (u64
) txr
->tx_desc_mapping
& 0xffffffff;
5166 bnx2_ctx_wr(bp
, cid_addr
, offset3
, val
);
5170 bnx2_init_tx_ring(struct bnx2
*bp
, int ring_num
)
5172 struct bnx2_tx_bd
*txbd
;
5174 struct bnx2_napi
*bnapi
;
5175 struct bnx2_tx_ring_info
*txr
;
5177 bnapi
= &bp
->bnx2_napi
[ring_num
];
5178 txr
= &bnapi
->tx_ring
;
5183 cid
= TX_TSS_CID
+ ring_num
- 1;
5185 bp
->tx_wake_thresh
= bp
->tx_ring_size
/ 2;
5187 txbd
= &txr
->tx_desc_ring
[BNX2_MAX_TX_DESC_CNT
];
5189 txbd
->tx_bd_haddr_hi
= (u64
) txr
->tx_desc_mapping
>> 32;
5190 txbd
->tx_bd_haddr_lo
= (u64
) txr
->tx_desc_mapping
& 0xffffffff;
5193 txr
->tx_prod_bseq
= 0;
5195 txr
->tx_bidx_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_TX_HOST_BIDX
;
5196 txr
->tx_bseq_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_TX_HOST_BSEQ
;
5198 bnx2_init_tx_context(bp
, cid
, txr
);
5202 bnx2_init_rxbd_rings(struct bnx2_rx_bd
*rx_ring
[], dma_addr_t dma
[],
5203 u32 buf_size
, int num_rings
)
5206 struct bnx2_rx_bd
*rxbd
;
5208 for (i
= 0; i
< num_rings
; i
++) {
5211 rxbd
= &rx_ring
[i
][0];
5212 for (j
= 0; j
< BNX2_MAX_RX_DESC_CNT
; j
++, rxbd
++) {
5213 rxbd
->rx_bd_len
= buf_size
;
5214 rxbd
->rx_bd_flags
= RX_BD_FLAGS_START
| RX_BD_FLAGS_END
;
5216 if (i
== (num_rings
- 1))
5220 rxbd
->rx_bd_haddr_hi
= (u64
) dma
[j
] >> 32;
5221 rxbd
->rx_bd_haddr_lo
= (u64
) dma
[j
] & 0xffffffff;
5226 bnx2_init_rx_ring(struct bnx2
*bp
, int ring_num
)
5229 u16 prod
, ring_prod
;
5230 u32 cid
, rx_cid_addr
, val
;
5231 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[ring_num
];
5232 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
5237 cid
= RX_RSS_CID
+ ring_num
- 1;
5239 rx_cid_addr
= GET_CID_ADDR(cid
);
5241 bnx2_init_rxbd_rings(rxr
->rx_desc_ring
, rxr
->rx_desc_mapping
,
5242 bp
->rx_buf_use_size
, bp
->rx_max_ring
);
5244 bnx2_init_rx_context(bp
, cid
);
5246 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
) {
5247 val
= BNX2_RD(bp
, BNX2_MQ_MAP_L2_5
);
5248 BNX2_WR(bp
, BNX2_MQ_MAP_L2_5
, val
| BNX2_MQ_MAP_L2_5_ARM
);
5251 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_PG_BUF_SIZE
, 0);
5252 if (bp
->rx_pg_ring_size
) {
5253 bnx2_init_rxbd_rings(rxr
->rx_pg_desc_ring
,
5254 rxr
->rx_pg_desc_mapping
,
5255 PAGE_SIZE
, bp
->rx_max_pg_ring
);
5256 val
= (bp
->rx_buf_use_size
<< 16) | PAGE_SIZE
;
5257 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_PG_BUF_SIZE
, val
);
5258 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_RBDC_KEY
,
5259 BNX2_L2CTX_RBDC_JUMBO_KEY
- ring_num
);
5261 val
= (u64
) rxr
->rx_pg_desc_mapping
[0] >> 32;
5262 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_NX_PG_BDHADDR_HI
, val
);
5264 val
= (u64
) rxr
->rx_pg_desc_mapping
[0] & 0xffffffff;
5265 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_NX_PG_BDHADDR_LO
, val
);
5267 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
)
5268 BNX2_WR(bp
, BNX2_MQ_MAP_L2_3
, BNX2_MQ_MAP_L2_3_DEFAULT
);
5271 val
= (u64
) rxr
->rx_desc_mapping
[0] >> 32;
5272 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_NX_BDHADDR_HI
, val
);
5274 val
= (u64
) rxr
->rx_desc_mapping
[0] & 0xffffffff;
5275 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_NX_BDHADDR_LO
, val
);
5277 ring_prod
= prod
= rxr
->rx_pg_prod
;
5278 for (i
= 0; i
< bp
->rx_pg_ring_size
; i
++) {
5279 if (bnx2_alloc_rx_page(bp
, rxr
, ring_prod
, GFP_KERNEL
) < 0) {
5280 netdev_warn(bp
->dev
, "init'ed rx page ring %d with %d/%d pages only\n",
5281 ring_num
, i
, bp
->rx_pg_ring_size
);
5284 prod
= BNX2_NEXT_RX_BD(prod
);
5285 ring_prod
= BNX2_RX_PG_RING_IDX(prod
);
5287 rxr
->rx_pg_prod
= prod
;
5289 ring_prod
= prod
= rxr
->rx_prod
;
5290 for (i
= 0; i
< bp
->rx_ring_size
; i
++) {
5291 if (bnx2_alloc_rx_data(bp
, rxr
, ring_prod
, GFP_KERNEL
) < 0) {
5292 netdev_warn(bp
->dev
, "init'ed rx ring %d with %d/%d skbs only\n",
5293 ring_num
, i
, bp
->rx_ring_size
);
5296 prod
= BNX2_NEXT_RX_BD(prod
);
5297 ring_prod
= BNX2_RX_RING_IDX(prod
);
5299 rxr
->rx_prod
= prod
;
5301 rxr
->rx_bidx_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_HOST_BDIDX
;
5302 rxr
->rx_bseq_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_HOST_BSEQ
;
5303 rxr
->rx_pg_bidx_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_HOST_PG_BDIDX
;
5305 BNX2_WR16(bp
, rxr
->rx_pg_bidx_addr
, rxr
->rx_pg_prod
);
5306 BNX2_WR16(bp
, rxr
->rx_bidx_addr
, prod
);
5308 BNX2_WR(bp
, rxr
->rx_bseq_addr
, rxr
->rx_prod_bseq
);
5312 bnx2_init_all_rings(struct bnx2
*bp
)
5317 bnx2_clear_ring_states(bp
);
5319 BNX2_WR(bp
, BNX2_TSCH_TSS_CFG
, 0);
5320 for (i
= 0; i
< bp
->num_tx_rings
; i
++)
5321 bnx2_init_tx_ring(bp
, i
);
5323 if (bp
->num_tx_rings
> 1)
5324 BNX2_WR(bp
, BNX2_TSCH_TSS_CFG
, ((bp
->num_tx_rings
- 1) << 24) |
5327 BNX2_WR(bp
, BNX2_RLUP_RSS_CONFIG
, 0);
5328 bnx2_reg_wr_ind(bp
, BNX2_RXP_SCRATCH_RSS_TBL_SZ
, 0);
5330 for (i
= 0; i
< bp
->num_rx_rings
; i
++)
5331 bnx2_init_rx_ring(bp
, i
);
5333 if (bp
->num_rx_rings
> 1) {
5336 for (i
= 0; i
< BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES
; i
++) {
5337 int shift
= (i
% 8) << 2;
5339 tbl_32
|= (i
% (bp
->num_rx_rings
- 1)) << shift
;
5341 BNX2_WR(bp
, BNX2_RLUP_RSS_DATA
, tbl_32
);
5342 BNX2_WR(bp
, BNX2_RLUP_RSS_COMMAND
, (i
>> 3) |
5343 BNX2_RLUP_RSS_COMMAND_RSS_WRITE_MASK
|
5344 BNX2_RLUP_RSS_COMMAND_WRITE
|
5345 BNX2_RLUP_RSS_COMMAND_HASH_MASK
);
5350 val
= BNX2_RLUP_RSS_CONFIG_IPV4_RSS_TYPE_ALL_XI
|
5351 BNX2_RLUP_RSS_CONFIG_IPV6_RSS_TYPE_ALL_XI
;
5353 BNX2_WR(bp
, BNX2_RLUP_RSS_CONFIG
, val
);
5358 static u32
bnx2_find_max_ring(u32 ring_size
, u32 max_size
)
5360 u32 max
, num_rings
= 1;
5362 while (ring_size
> BNX2_MAX_RX_DESC_CNT
) {
5363 ring_size
-= BNX2_MAX_RX_DESC_CNT
;
5366 /* round to next power of 2 */
5368 while ((max
& num_rings
) == 0)
5371 if (num_rings
!= max
)
5378 bnx2_set_rx_ring_size(struct bnx2
*bp
, u32 size
)
5380 u32 rx_size
, rx_space
, jumbo_size
;
5382 /* 8 for CRC and VLAN */
5383 rx_size
= bp
->dev
->mtu
+ ETH_HLEN
+ BNX2_RX_OFFSET
+ 8;
5385 rx_space
= SKB_DATA_ALIGN(rx_size
+ BNX2_RX_ALIGN
) + NET_SKB_PAD
+
5386 SKB_DATA_ALIGN(sizeof(struct skb_shared_info
));
5388 bp
->rx_copy_thresh
= BNX2_RX_COPY_THRESH
;
5389 bp
->rx_pg_ring_size
= 0;
5390 bp
->rx_max_pg_ring
= 0;
5391 bp
->rx_max_pg_ring_idx
= 0;
5392 if ((rx_space
> PAGE_SIZE
) && !(bp
->flags
& BNX2_FLAG_JUMBO_BROKEN
)) {
5393 int pages
= PAGE_ALIGN(bp
->dev
->mtu
- 40) >> PAGE_SHIFT
;
5395 jumbo_size
= size
* pages
;
5396 if (jumbo_size
> BNX2_MAX_TOTAL_RX_PG_DESC_CNT
)
5397 jumbo_size
= BNX2_MAX_TOTAL_RX_PG_DESC_CNT
;
5399 bp
->rx_pg_ring_size
= jumbo_size
;
5400 bp
->rx_max_pg_ring
= bnx2_find_max_ring(jumbo_size
,
5401 BNX2_MAX_RX_PG_RINGS
);
5402 bp
->rx_max_pg_ring_idx
=
5403 (bp
->rx_max_pg_ring
* BNX2_RX_DESC_CNT
) - 1;
5404 rx_size
= BNX2_RX_COPY_THRESH
+ BNX2_RX_OFFSET
;
5405 bp
->rx_copy_thresh
= 0;
5408 bp
->rx_buf_use_size
= rx_size
;
5409 /* hw alignment + build_skb() overhead*/
5410 bp
->rx_buf_size
= SKB_DATA_ALIGN(bp
->rx_buf_use_size
+ BNX2_RX_ALIGN
) +
5411 NET_SKB_PAD
+ SKB_DATA_ALIGN(sizeof(struct skb_shared_info
));
5412 bp
->rx_jumbo_thresh
= rx_size
- BNX2_RX_OFFSET
;
5413 bp
->rx_ring_size
= size
;
5414 bp
->rx_max_ring
= bnx2_find_max_ring(size
, BNX2_MAX_RX_RINGS
);
5415 bp
->rx_max_ring_idx
= (bp
->rx_max_ring
* BNX2_RX_DESC_CNT
) - 1;
5419 bnx2_free_tx_skbs(struct bnx2
*bp
)
5423 for (i
= 0; i
< bp
->num_tx_rings
; i
++) {
5424 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
5425 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
5428 if (txr
->tx_buf_ring
== NULL
)
5431 for (j
= 0; j
< BNX2_TX_DESC_CNT
; ) {
5432 struct bnx2_sw_tx_bd
*tx_buf
= &txr
->tx_buf_ring
[j
];
5433 struct sk_buff
*skb
= tx_buf
->skb
;
5437 j
= BNX2_NEXT_TX_BD(j
);
5441 dma_unmap_single(&bp
->pdev
->dev
,
5442 dma_unmap_addr(tx_buf
, mapping
),
5448 last
= tx_buf
->nr_frags
;
5449 j
= BNX2_NEXT_TX_BD(j
);
5450 for (k
= 0; k
< last
; k
++, j
= BNX2_NEXT_TX_BD(j
)) {
5451 tx_buf
= &txr
->tx_buf_ring
[BNX2_TX_RING_IDX(j
)];
5452 dma_unmap_page(&bp
->pdev
->dev
,
5453 dma_unmap_addr(tx_buf
, mapping
),
5454 skb_frag_size(&skb_shinfo(skb
)->frags
[k
]),
5459 netdev_tx_reset_queue(netdev_get_tx_queue(bp
->dev
, i
));
5464 bnx2_free_rx_skbs(struct bnx2
*bp
)
5468 for (i
= 0; i
< bp
->num_rx_rings
; i
++) {
5469 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
5470 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
5473 if (rxr
->rx_buf_ring
== NULL
)
5476 for (j
= 0; j
< bp
->rx_max_ring_idx
; j
++) {
5477 struct bnx2_sw_bd
*rx_buf
= &rxr
->rx_buf_ring
[j
];
5478 u8
*data
= rx_buf
->data
;
5483 dma_unmap_single(&bp
->pdev
->dev
,
5484 dma_unmap_addr(rx_buf
, mapping
),
5485 bp
->rx_buf_use_size
,
5486 PCI_DMA_FROMDEVICE
);
5488 rx_buf
->data
= NULL
;
5492 for (j
= 0; j
< bp
->rx_max_pg_ring_idx
; j
++)
5493 bnx2_free_rx_page(bp
, rxr
, j
);
5498 bnx2_free_skbs(struct bnx2
*bp
)
5500 bnx2_free_tx_skbs(bp
);
5501 bnx2_free_rx_skbs(bp
);
5505 bnx2_reset_nic(struct bnx2
*bp
, u32 reset_code
)
5509 rc
= bnx2_reset_chip(bp
, reset_code
);
5514 if ((rc
= bnx2_init_chip(bp
)) != 0)
5517 bnx2_init_all_rings(bp
);
5522 bnx2_init_nic(struct bnx2
*bp
, int reset_phy
)
5526 if ((rc
= bnx2_reset_nic(bp
, BNX2_DRV_MSG_CODE_RESET
)) != 0)
5529 spin_lock_bh(&bp
->phy_lock
);
5530 bnx2_init_phy(bp
, reset_phy
);
5532 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
5533 bnx2_remote_phy_event(bp
);
5534 spin_unlock_bh(&bp
->phy_lock
);
5539 bnx2_shutdown_chip(struct bnx2
*bp
)
5543 if (bp
->flags
& BNX2_FLAG_NO_WOL
)
5544 reset_code
= BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN
;
5546 reset_code
= BNX2_DRV_MSG_CODE_SUSPEND_WOL
;
5548 reset_code
= BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL
;
5550 return bnx2_reset_chip(bp
, reset_code
);
5554 bnx2_test_registers(struct bnx2
*bp
)
5558 static const struct {
5561 #define BNX2_FL_NOT_5709 1
5565 { 0x006c, 0, 0x00000000, 0x0000003f },
5566 { 0x0090, 0, 0xffffffff, 0x00000000 },
5567 { 0x0094, 0, 0x00000000, 0x00000000 },
5569 { 0x0404, BNX2_FL_NOT_5709
, 0x00003f00, 0x00000000 },
5570 { 0x0418, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5571 { 0x041c, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5572 { 0x0420, BNX2_FL_NOT_5709
, 0x00000000, 0x80ffffff },
5573 { 0x0424, BNX2_FL_NOT_5709
, 0x00000000, 0x00000000 },
5574 { 0x0428, BNX2_FL_NOT_5709
, 0x00000000, 0x00000001 },
5575 { 0x0450, BNX2_FL_NOT_5709
, 0x00000000, 0x0000ffff },
5576 { 0x0454, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5577 { 0x0458, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5579 { 0x0808, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5580 { 0x0854, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5581 { 0x0868, BNX2_FL_NOT_5709
, 0x00000000, 0x77777777 },
5582 { 0x086c, BNX2_FL_NOT_5709
, 0x00000000, 0x77777777 },
5583 { 0x0870, BNX2_FL_NOT_5709
, 0x00000000, 0x77777777 },
5584 { 0x0874, BNX2_FL_NOT_5709
, 0x00000000, 0x77777777 },
5586 { 0x0c00, BNX2_FL_NOT_5709
, 0x00000000, 0x00000001 },
5587 { 0x0c04, BNX2_FL_NOT_5709
, 0x00000000, 0x03ff0001 },
5588 { 0x0c08, BNX2_FL_NOT_5709
, 0x0f0ff073, 0x00000000 },
5590 { 0x1000, 0, 0x00000000, 0x00000001 },
5591 { 0x1004, BNX2_FL_NOT_5709
, 0x00000000, 0x000f0001 },
5593 { 0x1408, 0, 0x01c00800, 0x00000000 },
5594 { 0x149c, 0, 0x8000ffff, 0x00000000 },
5595 { 0x14a8, 0, 0x00000000, 0x000001ff },
5596 { 0x14ac, 0, 0x0fffffff, 0x10000000 },
5597 { 0x14b0, 0, 0x00000002, 0x00000001 },
5598 { 0x14b8, 0, 0x00000000, 0x00000000 },
5599 { 0x14c0, 0, 0x00000000, 0x00000009 },
5600 { 0x14c4, 0, 0x00003fff, 0x00000000 },
5601 { 0x14cc, 0, 0x00000000, 0x00000001 },
5602 { 0x14d0, 0, 0xffffffff, 0x00000000 },
5604 { 0x1800, 0, 0x00000000, 0x00000001 },
5605 { 0x1804, 0, 0x00000000, 0x00000003 },
5607 { 0x2800, 0, 0x00000000, 0x00000001 },
5608 { 0x2804, 0, 0x00000000, 0x00003f01 },
5609 { 0x2808, 0, 0x0f3f3f03, 0x00000000 },
5610 { 0x2810, 0, 0xffff0000, 0x00000000 },
5611 { 0x2814, 0, 0xffff0000, 0x00000000 },
5612 { 0x2818, 0, 0xffff0000, 0x00000000 },
5613 { 0x281c, 0, 0xffff0000, 0x00000000 },
5614 { 0x2834, 0, 0xffffffff, 0x00000000 },
5615 { 0x2840, 0, 0x00000000, 0xffffffff },
5616 { 0x2844, 0, 0x00000000, 0xffffffff },
5617 { 0x2848, 0, 0xffffffff, 0x00000000 },
5618 { 0x284c, 0, 0xf800f800, 0x07ff07ff },
5620 { 0x2c00, 0, 0x00000000, 0x00000011 },
5621 { 0x2c04, 0, 0x00000000, 0x00030007 },
5623 { 0x3c00, 0, 0x00000000, 0x00000001 },
5624 { 0x3c04, 0, 0x00000000, 0x00070000 },
5625 { 0x3c08, 0, 0x00007f71, 0x07f00000 },
5626 { 0x3c0c, 0, 0x1f3ffffc, 0x00000000 },
5627 { 0x3c10, 0, 0xffffffff, 0x00000000 },
5628 { 0x3c14, 0, 0x00000000, 0xffffffff },
5629 { 0x3c18, 0, 0x00000000, 0xffffffff },
5630 { 0x3c1c, 0, 0xfffff000, 0x00000000 },
5631 { 0x3c20, 0, 0xffffff00, 0x00000000 },
5633 { 0x5004, 0, 0x00000000, 0x0000007f },
5634 { 0x5008, 0, 0x0f0007ff, 0x00000000 },
5636 { 0x5c00, 0, 0x00000000, 0x00000001 },
5637 { 0x5c04, 0, 0x00000000, 0x0003000f },
5638 { 0x5c08, 0, 0x00000003, 0x00000000 },
5639 { 0x5c0c, 0, 0x0000fff8, 0x00000000 },
5640 { 0x5c10, 0, 0x00000000, 0xffffffff },
5641 { 0x5c80, 0, 0x00000000, 0x0f7113f1 },
5642 { 0x5c84, 0, 0x00000000, 0x0000f333 },
5643 { 0x5c88, 0, 0x00000000, 0x00077373 },
5644 { 0x5c8c, 0, 0x00000000, 0x0007f737 },
5646 { 0x6808, 0, 0x0000ff7f, 0x00000000 },
5647 { 0x680c, 0, 0xffffffff, 0x00000000 },
5648 { 0x6810, 0, 0xffffffff, 0x00000000 },
5649 { 0x6814, 0, 0xffffffff, 0x00000000 },
5650 { 0x6818, 0, 0xffffffff, 0x00000000 },
5651 { 0x681c, 0, 0xffffffff, 0x00000000 },
5652 { 0x6820, 0, 0x00ff00ff, 0x00000000 },
5653 { 0x6824, 0, 0x00ff00ff, 0x00000000 },
5654 { 0x6828, 0, 0x00ff00ff, 0x00000000 },
5655 { 0x682c, 0, 0x03ff03ff, 0x00000000 },
5656 { 0x6830, 0, 0x03ff03ff, 0x00000000 },
5657 { 0x6834, 0, 0x03ff03ff, 0x00000000 },
5658 { 0x6838, 0, 0x03ff03ff, 0x00000000 },
5659 { 0x683c, 0, 0x0000ffff, 0x00000000 },
5660 { 0x6840, 0, 0x00000ff0, 0x00000000 },
5661 { 0x6844, 0, 0x00ffff00, 0x00000000 },
5662 { 0x684c, 0, 0xffffffff, 0x00000000 },
5663 { 0x6850, 0, 0x7f7f7f7f, 0x00000000 },
5664 { 0x6854, 0, 0x7f7f7f7f, 0x00000000 },
5665 { 0x6858, 0, 0x7f7f7f7f, 0x00000000 },
5666 { 0x685c, 0, 0x7f7f7f7f, 0x00000000 },
5667 { 0x6908, 0, 0x00000000, 0x0001ff0f },
5668 { 0x690c, 0, 0x00000000, 0x0ffe00f0 },
5670 { 0xffff, 0, 0x00000000, 0x00000000 },
5675 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
)
5678 for (i
= 0; reg_tbl
[i
].offset
!= 0xffff; i
++) {
5679 u32 offset
, rw_mask
, ro_mask
, save_val
, val
;
5680 u16 flags
= reg_tbl
[i
].flags
;
5682 if (is_5709
&& (flags
& BNX2_FL_NOT_5709
))
5685 offset
= (u32
) reg_tbl
[i
].offset
;
5686 rw_mask
= reg_tbl
[i
].rw_mask
;
5687 ro_mask
= reg_tbl
[i
].ro_mask
;
5689 save_val
= readl(bp
->regview
+ offset
);
5691 writel(0, bp
->regview
+ offset
);
5693 val
= readl(bp
->regview
+ offset
);
5694 if ((val
& rw_mask
) != 0) {
5698 if ((val
& ro_mask
) != (save_val
& ro_mask
)) {
5702 writel(0xffffffff, bp
->regview
+ offset
);
5704 val
= readl(bp
->regview
+ offset
);
5705 if ((val
& rw_mask
) != rw_mask
) {
5709 if ((val
& ro_mask
) != (save_val
& ro_mask
)) {
5713 writel(save_val
, bp
->regview
+ offset
);
5717 writel(save_val
, bp
->regview
+ offset
);
5725 bnx2_do_mem_test(struct bnx2
*bp
, u32 start
, u32 size
)
5727 static const u32 test_pattern
[] = { 0x00000000, 0xffffffff, 0x55555555,
5728 0xaaaaaaaa , 0xaa55aa55, 0x55aa55aa };
5731 for (i
= 0; i
< sizeof(test_pattern
) / 4; i
++) {
5734 for (offset
= 0; offset
< size
; offset
+= 4) {
5736 bnx2_reg_wr_ind(bp
, start
+ offset
, test_pattern
[i
]);
5738 if (bnx2_reg_rd_ind(bp
, start
+ offset
) !=
5748 bnx2_test_memory(struct bnx2
*bp
)
5752 static struct mem_entry
{
5755 } mem_tbl_5706
[] = {
5756 { 0x60000, 0x4000 },
5757 { 0xa0000, 0x3000 },
5758 { 0xe0000, 0x4000 },
5759 { 0x120000, 0x4000 },
5760 { 0x1a0000, 0x4000 },
5761 { 0x160000, 0x4000 },
5765 { 0x60000, 0x4000 },
5766 { 0xa0000, 0x3000 },
5767 { 0xe0000, 0x4000 },
5768 { 0x120000, 0x4000 },
5769 { 0x1a0000, 0x4000 },
5772 struct mem_entry
*mem_tbl
;
5774 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
)
5775 mem_tbl
= mem_tbl_5709
;
5777 mem_tbl
= mem_tbl_5706
;
5779 for (i
= 0; mem_tbl
[i
].offset
!= 0xffffffff; i
++) {
5780 if ((ret
= bnx2_do_mem_test(bp
, mem_tbl
[i
].offset
,
5781 mem_tbl
[i
].len
)) != 0) {
5789 #define BNX2_MAC_LOOPBACK 0
5790 #define BNX2_PHY_LOOPBACK 1
5793 bnx2_run_loopback(struct bnx2
*bp
, int loopback_mode
)
5795 unsigned int pkt_size
, num_pkts
, i
;
5796 struct sk_buff
*skb
;
5798 unsigned char *packet
;
5799 u16 rx_start_idx
, rx_idx
;
5801 struct bnx2_tx_bd
*txbd
;
5802 struct bnx2_sw_bd
*rx_buf
;
5803 struct l2_fhdr
*rx_hdr
;
5805 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0], *tx_napi
;
5806 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
5807 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
5811 txr
= &tx_napi
->tx_ring
;
5812 rxr
= &bnapi
->rx_ring
;
5813 if (loopback_mode
== BNX2_MAC_LOOPBACK
) {
5814 bp
->loopback
= MAC_LOOPBACK
;
5815 bnx2_set_mac_loopback(bp
);
5817 else if (loopback_mode
== BNX2_PHY_LOOPBACK
) {
5818 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
5821 bp
->loopback
= PHY_LOOPBACK
;
5822 bnx2_set_phy_loopback(bp
);
5827 pkt_size
= min(bp
->dev
->mtu
+ ETH_HLEN
, bp
->rx_jumbo_thresh
- 4);
5828 skb
= netdev_alloc_skb(bp
->dev
, pkt_size
);
5831 packet
= skb_put(skb
, pkt_size
);
5832 memcpy(packet
, bp
->dev
->dev_addr
, ETH_ALEN
);
5833 memset(packet
+ ETH_ALEN
, 0x0, 8);
5834 for (i
= 14; i
< pkt_size
; i
++)
5835 packet
[i
] = (unsigned char) (i
& 0xff);
5837 map
= dma_map_single(&bp
->pdev
->dev
, skb
->data
, pkt_size
,
5839 if (dma_mapping_error(&bp
->pdev
->dev
, map
)) {
5844 BNX2_WR(bp
, BNX2_HC_COMMAND
,
5845 bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW_WO_INT
);
5847 BNX2_RD(bp
, BNX2_HC_COMMAND
);
5850 rx_start_idx
= bnx2_get_hw_rx_cons(bnapi
);
5854 txbd
= &txr
->tx_desc_ring
[BNX2_TX_RING_IDX(txr
->tx_prod
)];
5856 txbd
->tx_bd_haddr_hi
= (u64
) map
>> 32;
5857 txbd
->tx_bd_haddr_lo
= (u64
) map
& 0xffffffff;
5858 txbd
->tx_bd_mss_nbytes
= pkt_size
;
5859 txbd
->tx_bd_vlan_tag_flags
= TX_BD_FLAGS_START
| TX_BD_FLAGS_END
;
5862 txr
->tx_prod
= BNX2_NEXT_TX_BD(txr
->tx_prod
);
5863 txr
->tx_prod_bseq
+= pkt_size
;
5865 BNX2_WR16(bp
, txr
->tx_bidx_addr
, txr
->tx_prod
);
5866 BNX2_WR(bp
, txr
->tx_bseq_addr
, txr
->tx_prod_bseq
);
5870 BNX2_WR(bp
, BNX2_HC_COMMAND
,
5871 bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW_WO_INT
);
5873 BNX2_RD(bp
, BNX2_HC_COMMAND
);
5877 dma_unmap_single(&bp
->pdev
->dev
, map
, pkt_size
, PCI_DMA_TODEVICE
);
5880 if (bnx2_get_hw_tx_cons(tx_napi
) != txr
->tx_prod
)
5881 goto loopback_test_done
;
5883 rx_idx
= bnx2_get_hw_rx_cons(bnapi
);
5884 if (rx_idx
!= rx_start_idx
+ num_pkts
) {
5885 goto loopback_test_done
;
5888 rx_buf
= &rxr
->rx_buf_ring
[rx_start_idx
];
5889 data
= rx_buf
->data
;
5891 rx_hdr
= get_l2_fhdr(data
);
5892 data
= (u8
*)rx_hdr
+ BNX2_RX_OFFSET
;
5894 dma_sync_single_for_cpu(&bp
->pdev
->dev
,
5895 dma_unmap_addr(rx_buf
, mapping
),
5896 bp
->rx_buf_use_size
, PCI_DMA_FROMDEVICE
);
5898 if (rx_hdr
->l2_fhdr_status
&
5899 (L2_FHDR_ERRORS_BAD_CRC
|
5900 L2_FHDR_ERRORS_PHY_DECODE
|
5901 L2_FHDR_ERRORS_ALIGNMENT
|
5902 L2_FHDR_ERRORS_TOO_SHORT
|
5903 L2_FHDR_ERRORS_GIANT_FRAME
)) {
5905 goto loopback_test_done
;
5908 if ((rx_hdr
->l2_fhdr_pkt_len
- 4) != pkt_size
) {
5909 goto loopback_test_done
;
5912 for (i
= 14; i
< pkt_size
; i
++) {
5913 if (*(data
+ i
) != (unsigned char) (i
& 0xff)) {
5914 goto loopback_test_done
;
5925 #define BNX2_MAC_LOOPBACK_FAILED 1
5926 #define BNX2_PHY_LOOPBACK_FAILED 2
5927 #define BNX2_LOOPBACK_FAILED (BNX2_MAC_LOOPBACK_FAILED | \
5928 BNX2_PHY_LOOPBACK_FAILED)
5931 bnx2_test_loopback(struct bnx2
*bp
)
5935 if (!netif_running(bp
->dev
))
5936 return BNX2_LOOPBACK_FAILED
;
5938 bnx2_reset_nic(bp
, BNX2_DRV_MSG_CODE_RESET
);
5939 spin_lock_bh(&bp
->phy_lock
);
5940 bnx2_init_phy(bp
, 1);
5941 spin_unlock_bh(&bp
->phy_lock
);
5942 if (bnx2_run_loopback(bp
, BNX2_MAC_LOOPBACK
))
5943 rc
|= BNX2_MAC_LOOPBACK_FAILED
;
5944 if (bnx2_run_loopback(bp
, BNX2_PHY_LOOPBACK
))
5945 rc
|= BNX2_PHY_LOOPBACK_FAILED
;
5949 #define NVRAM_SIZE 0x200
5950 #define CRC32_RESIDUAL 0xdebb20e3
5953 bnx2_test_nvram(struct bnx2
*bp
)
5955 __be32 buf
[NVRAM_SIZE
/ 4];
5956 u8
*data
= (u8
*) buf
;
5960 if ((rc
= bnx2_nvram_read(bp
, 0, data
, 4)) != 0)
5961 goto test_nvram_done
;
5963 magic
= be32_to_cpu(buf
[0]);
5964 if (magic
!= 0x669955aa) {
5966 goto test_nvram_done
;
5969 if ((rc
= bnx2_nvram_read(bp
, 0x100, data
, NVRAM_SIZE
)) != 0)
5970 goto test_nvram_done
;
5972 csum
= ether_crc_le(0x100, data
);
5973 if (csum
!= CRC32_RESIDUAL
) {
5975 goto test_nvram_done
;
5978 csum
= ether_crc_le(0x100, data
+ 0x100);
5979 if (csum
!= CRC32_RESIDUAL
) {
5988 bnx2_test_link(struct bnx2
*bp
)
5992 if (!netif_running(bp
->dev
))
5995 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) {
6000 spin_lock_bh(&bp
->phy_lock
);
6001 bnx2_enable_bmsr1(bp
);
6002 bnx2_read_phy(bp
, bp
->mii_bmsr1
, &bmsr
);
6003 bnx2_read_phy(bp
, bp
->mii_bmsr1
, &bmsr
);
6004 bnx2_disable_bmsr1(bp
);
6005 spin_unlock_bh(&bp
->phy_lock
);
6007 if (bmsr
& BMSR_LSTATUS
) {
6014 bnx2_test_intr(struct bnx2
*bp
)
6019 if (!netif_running(bp
->dev
))
6022 status_idx
= BNX2_RD(bp
, BNX2_PCICFG_INT_ACK_CMD
) & 0xffff;
6024 /* This register is not touched during run-time. */
6025 BNX2_WR(bp
, BNX2_HC_COMMAND
, bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW
);
6026 BNX2_RD(bp
, BNX2_HC_COMMAND
);
6028 for (i
= 0; i
< 10; i
++) {
6029 if ((BNX2_RD(bp
, BNX2_PCICFG_INT_ACK_CMD
) & 0xffff) !=
6035 msleep_interruptible(10);
6043 /* Determining link for parallel detection. */
6045 bnx2_5706_serdes_has_link(struct bnx2
*bp
)
6047 u32 mode_ctl
, an_dbg
, exp
;
6049 if (bp
->phy_flags
& BNX2_PHY_FLAG_NO_PARALLEL
)
6052 bnx2_write_phy(bp
, MII_BNX2_MISC_SHADOW
, MISC_SHDW_MODE_CTL
);
6053 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &mode_ctl
);
6055 if (!(mode_ctl
& MISC_SHDW_MODE_CTL_SIG_DET
))
6058 bnx2_write_phy(bp
, MII_BNX2_MISC_SHADOW
, MISC_SHDW_AN_DBG
);
6059 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &an_dbg
);
6060 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &an_dbg
);
6062 if (an_dbg
& (MISC_SHDW_AN_DBG_NOSYNC
| MISC_SHDW_AN_DBG_RUDI_INVALID
))
6065 bnx2_write_phy(bp
, MII_BNX2_DSP_ADDRESS
, MII_EXPAND_REG1
);
6066 bnx2_read_phy(bp
, MII_BNX2_DSP_RW_PORT
, &exp
);
6067 bnx2_read_phy(bp
, MII_BNX2_DSP_RW_PORT
, &exp
);
6069 if (exp
& MII_EXPAND_REG1_RUDI_C
) /* receiving CONFIG */
6076 bnx2_5706_serdes_timer(struct bnx2
*bp
)
6080 spin_lock(&bp
->phy_lock
);
6081 if (bp
->serdes_an_pending
) {
6082 bp
->serdes_an_pending
--;
6084 } else if ((bp
->link_up
== 0) && (bp
->autoneg
& AUTONEG_SPEED
)) {
6087 bp
->current_interval
= BNX2_TIMER_INTERVAL
;
6089 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
6091 if (bmcr
& BMCR_ANENABLE
) {
6092 if (bnx2_5706_serdes_has_link(bp
)) {
6093 bmcr
&= ~BMCR_ANENABLE
;
6094 bmcr
|= BMCR_SPEED1000
| BMCR_FULLDPLX
;
6095 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
6096 bp
->phy_flags
|= BNX2_PHY_FLAG_PARALLEL_DETECT
;
6100 else if ((bp
->link_up
) && (bp
->autoneg
& AUTONEG_SPEED
) &&
6101 (bp
->phy_flags
& BNX2_PHY_FLAG_PARALLEL_DETECT
)) {
6104 bnx2_write_phy(bp
, 0x17, 0x0f01);
6105 bnx2_read_phy(bp
, 0x15, &phy2
);
6109 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
6110 bmcr
|= BMCR_ANENABLE
;
6111 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
6113 bp
->phy_flags
&= ~BNX2_PHY_FLAG_PARALLEL_DETECT
;
6116 bp
->current_interval
= BNX2_TIMER_INTERVAL
;
6121 bnx2_write_phy(bp
, MII_BNX2_MISC_SHADOW
, MISC_SHDW_AN_DBG
);
6122 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &val
);
6123 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &val
);
6125 if (bp
->link_up
&& (val
& MISC_SHDW_AN_DBG_NOSYNC
)) {
6126 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_FORCED_DOWN
)) {
6127 bnx2_5706s_force_link_dn(bp
, 1);
6128 bp
->phy_flags
|= BNX2_PHY_FLAG_FORCED_DOWN
;
6131 } else if (!bp
->link_up
&& !(val
& MISC_SHDW_AN_DBG_NOSYNC
))
6134 spin_unlock(&bp
->phy_lock
);
6138 bnx2_5708_serdes_timer(struct bnx2
*bp
)
6140 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
6143 if ((bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
) == 0) {
6144 bp
->serdes_an_pending
= 0;
6148 spin_lock(&bp
->phy_lock
);
6149 if (bp
->serdes_an_pending
)
6150 bp
->serdes_an_pending
--;
6151 else if ((bp
->link_up
== 0) && (bp
->autoneg
& AUTONEG_SPEED
)) {
6154 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
6155 if (bmcr
& BMCR_ANENABLE
) {
6156 bnx2_enable_forced_2g5(bp
);
6157 bp
->current_interval
= BNX2_SERDES_FORCED_TIMEOUT
;
6159 bnx2_disable_forced_2g5(bp
);
6160 bp
->serdes_an_pending
= 2;
6161 bp
->current_interval
= BNX2_TIMER_INTERVAL
;
6165 bp
->current_interval
= BNX2_TIMER_INTERVAL
;
6167 spin_unlock(&bp
->phy_lock
);
6171 bnx2_timer(unsigned long data
)
6173 struct bnx2
*bp
= (struct bnx2
*) data
;
6175 if (!netif_running(bp
->dev
))
6178 if (atomic_read(&bp
->intr_sem
) != 0)
6179 goto bnx2_restart_timer
;
6181 if ((bp
->flags
& (BNX2_FLAG_USING_MSI
| BNX2_FLAG_ONE_SHOT_MSI
)) ==
6182 BNX2_FLAG_USING_MSI
)
6183 bnx2_chk_missed_msi(bp
);
6185 bnx2_send_heart_beat(bp
);
6187 bp
->stats_blk
->stat_FwRxDrop
=
6188 bnx2_reg_rd_ind(bp
, BNX2_FW_RX_DROP_COUNT
);
6190 /* workaround occasional corrupted counters */
6191 if ((bp
->flags
& BNX2_FLAG_BROKEN_STATS
) && bp
->stats_ticks
)
6192 BNX2_WR(bp
, BNX2_HC_COMMAND
, bp
->hc_cmd
|
6193 BNX2_HC_COMMAND_STATS_NOW
);
6195 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
6196 if (BNX2_CHIP(bp
) == BNX2_CHIP_5706
)
6197 bnx2_5706_serdes_timer(bp
);
6199 bnx2_5708_serdes_timer(bp
);
6203 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
6207 bnx2_request_irq(struct bnx2
*bp
)
6209 unsigned long flags
;
6210 struct bnx2_irq
*irq
;
6213 if (bp
->flags
& BNX2_FLAG_USING_MSI_OR_MSIX
)
6216 flags
= IRQF_SHARED
;
6218 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
6219 irq
= &bp
->irq_tbl
[i
];
6220 rc
= request_irq(irq
->vector
, irq
->handler
, flags
, irq
->name
,
6230 __bnx2_free_irq(struct bnx2
*bp
)
6232 struct bnx2_irq
*irq
;
6235 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
6236 irq
= &bp
->irq_tbl
[i
];
6238 free_irq(irq
->vector
, &bp
->bnx2_napi
[i
]);
6244 bnx2_free_irq(struct bnx2
*bp
)
6247 __bnx2_free_irq(bp
);
6248 if (bp
->flags
& BNX2_FLAG_USING_MSI
)
6249 pci_disable_msi(bp
->pdev
);
6250 else if (bp
->flags
& BNX2_FLAG_USING_MSIX
)
6251 pci_disable_msix(bp
->pdev
);
6253 bp
->flags
&= ~(BNX2_FLAG_USING_MSI_OR_MSIX
| BNX2_FLAG_ONE_SHOT_MSI
);
6257 bnx2_enable_msix(struct bnx2
*bp
, int msix_vecs
)
6260 struct msix_entry msix_ent
[BNX2_MAX_MSIX_VEC
];
6261 struct net_device
*dev
= bp
->dev
;
6262 const int len
= sizeof(bp
->irq_tbl
[0].name
);
6264 bnx2_setup_msix_tbl(bp
);
6265 BNX2_WR(bp
, BNX2_PCI_MSIX_CONTROL
, BNX2_MAX_MSIX_HW_VEC
- 1);
6266 BNX2_WR(bp
, BNX2_PCI_MSIX_TBL_OFF_BIR
, BNX2_PCI_GRC_WINDOW2_BASE
);
6267 BNX2_WR(bp
, BNX2_PCI_MSIX_PBA_OFF_BIT
, BNX2_PCI_GRC_WINDOW3_BASE
);
6269 /* Need to flush the previous three writes to ensure MSI-X
6270 * is setup properly */
6271 BNX2_RD(bp
, BNX2_PCI_MSIX_CONTROL
);
6273 for (i
= 0; i
< BNX2_MAX_MSIX_VEC
; i
++) {
6274 msix_ent
[i
].entry
= i
;
6275 msix_ent
[i
].vector
= 0;
6278 total_vecs
= msix_vecs
;
6282 total_vecs
= pci_enable_msix_range(bp
->pdev
, msix_ent
,
6283 BNX2_MIN_MSIX_VEC
, total_vecs
);
6287 msix_vecs
= total_vecs
;
6291 bp
->irq_nvecs
= msix_vecs
;
6292 bp
->flags
|= BNX2_FLAG_USING_MSIX
| BNX2_FLAG_ONE_SHOT_MSI
;
6293 for (i
= 0; i
< total_vecs
; i
++) {
6294 bp
->irq_tbl
[i
].vector
= msix_ent
[i
].vector
;
6295 snprintf(bp
->irq_tbl
[i
].name
, len
, "%s-%d", dev
->name
, i
);
6296 bp
->irq_tbl
[i
].handler
= bnx2_msi_1shot
;
6301 bnx2_setup_int_mode(struct bnx2
*bp
, int dis_msi
)
6303 int cpus
= netif_get_num_default_rss_queues();
6306 if (!bp
->num_req_rx_rings
)
6307 msix_vecs
= max(cpus
+ 1, bp
->num_req_tx_rings
);
6308 else if (!bp
->num_req_tx_rings
)
6309 msix_vecs
= max(cpus
, bp
->num_req_rx_rings
);
6311 msix_vecs
= max(bp
->num_req_rx_rings
, bp
->num_req_tx_rings
);
6313 msix_vecs
= min(msix_vecs
, RX_MAX_RINGS
);
6315 bp
->irq_tbl
[0].handler
= bnx2_interrupt
;
6316 strcpy(bp
->irq_tbl
[0].name
, bp
->dev
->name
);
6318 bp
->irq_tbl
[0].vector
= bp
->pdev
->irq
;
6320 if ((bp
->flags
& BNX2_FLAG_MSIX_CAP
) && !dis_msi
)
6321 bnx2_enable_msix(bp
, msix_vecs
);
6323 if ((bp
->flags
& BNX2_FLAG_MSI_CAP
) && !dis_msi
&&
6324 !(bp
->flags
& BNX2_FLAG_USING_MSIX
)) {
6325 if (pci_enable_msi(bp
->pdev
) == 0) {
6326 bp
->flags
|= BNX2_FLAG_USING_MSI
;
6327 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
) {
6328 bp
->flags
|= BNX2_FLAG_ONE_SHOT_MSI
;
6329 bp
->irq_tbl
[0].handler
= bnx2_msi_1shot
;
6331 bp
->irq_tbl
[0].handler
= bnx2_msi
;
6333 bp
->irq_tbl
[0].vector
= bp
->pdev
->irq
;
6337 if (!bp
->num_req_tx_rings
)
6338 bp
->num_tx_rings
= rounddown_pow_of_two(bp
->irq_nvecs
);
6340 bp
->num_tx_rings
= min(bp
->irq_nvecs
, bp
->num_req_tx_rings
);
6342 if (!bp
->num_req_rx_rings
)
6343 bp
->num_rx_rings
= bp
->irq_nvecs
;
6345 bp
->num_rx_rings
= min(bp
->irq_nvecs
, bp
->num_req_rx_rings
);
6347 netif_set_real_num_tx_queues(bp
->dev
, bp
->num_tx_rings
);
6349 return netif_set_real_num_rx_queues(bp
->dev
, bp
->num_rx_rings
);
6352 /* Called with rtnl_lock */
6354 bnx2_open(struct net_device
*dev
)
6356 struct bnx2
*bp
= netdev_priv(dev
);
6359 rc
= bnx2_request_firmware(bp
);
6363 netif_carrier_off(dev
);
6365 bnx2_disable_int(bp
);
6367 rc
= bnx2_setup_int_mode(bp
, disable_msi
);
6371 bnx2_napi_enable(bp
);
6372 rc
= bnx2_alloc_mem(bp
);
6376 rc
= bnx2_request_irq(bp
);
6380 rc
= bnx2_init_nic(bp
, 1);
6384 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
6386 atomic_set(&bp
->intr_sem
, 0);
6388 memset(bp
->temp_stats_blk
, 0, sizeof(struct statistics_block
));
6390 bnx2_enable_int(bp
);
6392 if (bp
->flags
& BNX2_FLAG_USING_MSI
) {
6393 /* Test MSI to make sure it is working
6394 * If MSI test fails, go back to INTx mode
6396 if (bnx2_test_intr(bp
) != 0) {
6397 netdev_warn(bp
->dev
, "No interrupt was generated using MSI, switching to INTx mode. Please report this failure to the PCI maintainer and include system chipset information.\n");
6399 bnx2_disable_int(bp
);
6402 bnx2_setup_int_mode(bp
, 1);
6404 rc
= bnx2_init_nic(bp
, 0);
6407 rc
= bnx2_request_irq(bp
);
6410 del_timer_sync(&bp
->timer
);
6413 bnx2_enable_int(bp
);
6416 if (bp
->flags
& BNX2_FLAG_USING_MSI
)
6417 netdev_info(dev
, "using MSI\n");
6418 else if (bp
->flags
& BNX2_FLAG_USING_MSIX
)
6419 netdev_info(dev
, "using MSIX\n");
6421 netif_tx_start_all_queues(dev
);
6426 bnx2_napi_disable(bp
);
6431 bnx2_release_firmware(bp
);
6436 bnx2_reset_task(struct work_struct
*work
)
6438 struct bnx2
*bp
= container_of(work
, struct bnx2
, reset_task
);
6443 if (!netif_running(bp
->dev
)) {
6448 bnx2_netif_stop(bp
, true);
6450 pci_read_config_word(bp
->pdev
, PCI_COMMAND
, &pcicmd
);
6451 if (!(pcicmd
& PCI_COMMAND_MEMORY
)) {
6452 /* in case PCI block has reset */
6453 pci_restore_state(bp
->pdev
);
6454 pci_save_state(bp
->pdev
);
6456 rc
= bnx2_init_nic(bp
, 1);
6458 netdev_err(bp
->dev
, "failed to reset NIC, closing\n");
6459 bnx2_napi_enable(bp
);
6465 atomic_set(&bp
->intr_sem
, 1);
6466 bnx2_netif_start(bp
, true);
6470 #define BNX2_FTQ_ENTRY(ftq) { __stringify(ftq##FTQ_CTL), BNX2_##ftq##FTQ_CTL }
6473 bnx2_dump_ftq(struct bnx2
*bp
)
6476 u32 reg
, bdidx
, cid
, valid
;
6477 struct net_device
*dev
= bp
->dev
;
6478 static const struct ftq_reg
{
6482 BNX2_FTQ_ENTRY(RV2P_P
),
6483 BNX2_FTQ_ENTRY(RV2P_T
),
6484 BNX2_FTQ_ENTRY(RV2P_M
),
6485 BNX2_FTQ_ENTRY(TBDR_
),
6486 BNX2_FTQ_ENTRY(TDMA_
),
6487 BNX2_FTQ_ENTRY(TXP_
),
6488 BNX2_FTQ_ENTRY(TXP_
),
6489 BNX2_FTQ_ENTRY(TPAT_
),
6490 BNX2_FTQ_ENTRY(RXP_C
),
6491 BNX2_FTQ_ENTRY(RXP_
),
6492 BNX2_FTQ_ENTRY(COM_COMXQ_
),
6493 BNX2_FTQ_ENTRY(COM_COMTQ_
),
6494 BNX2_FTQ_ENTRY(COM_COMQ_
),
6495 BNX2_FTQ_ENTRY(CP_CPQ_
),
6498 netdev_err(dev
, "<--- start FTQ dump --->\n");
6499 for (i
= 0; i
< ARRAY_SIZE(ftq_arr
); i
++)
6500 netdev_err(dev
, "%s %08x\n", ftq_arr
[i
].name
,
6501 bnx2_reg_rd_ind(bp
, ftq_arr
[i
].off
));
6503 netdev_err(dev
, "CPU states:\n");
6504 for (reg
= BNX2_TXP_CPU_MODE
; reg
<= BNX2_CP_CPU_MODE
; reg
+= 0x40000)
6505 netdev_err(dev
, "%06x mode %x state %x evt_mask %x pc %x pc %x instr %x\n",
6506 reg
, bnx2_reg_rd_ind(bp
, reg
),
6507 bnx2_reg_rd_ind(bp
, reg
+ 4),
6508 bnx2_reg_rd_ind(bp
, reg
+ 8),
6509 bnx2_reg_rd_ind(bp
, reg
+ 0x1c),
6510 bnx2_reg_rd_ind(bp
, reg
+ 0x1c),
6511 bnx2_reg_rd_ind(bp
, reg
+ 0x20));
6513 netdev_err(dev
, "<--- end FTQ dump --->\n");
6514 netdev_err(dev
, "<--- start TBDC dump --->\n");
6515 netdev_err(dev
, "TBDC free cnt: %ld\n",
6516 BNX2_RD(bp
, BNX2_TBDC_STATUS
) & BNX2_TBDC_STATUS_FREE_CNT
);
6517 netdev_err(dev
, "LINE CID BIDX CMD VALIDS\n");
6518 for (i
= 0; i
< 0x20; i
++) {
6521 BNX2_WR(bp
, BNX2_TBDC_BD_ADDR
, i
);
6522 BNX2_WR(bp
, BNX2_TBDC_CAM_OPCODE
,
6523 BNX2_TBDC_CAM_OPCODE_OPCODE_CAM_READ
);
6524 BNX2_WR(bp
, BNX2_TBDC_COMMAND
, BNX2_TBDC_COMMAND_CMD_REG_ARB
);
6525 while ((BNX2_RD(bp
, BNX2_TBDC_COMMAND
) &
6526 BNX2_TBDC_COMMAND_CMD_REG_ARB
) && j
< 100)
6529 cid
= BNX2_RD(bp
, BNX2_TBDC_CID
);
6530 bdidx
= BNX2_RD(bp
, BNX2_TBDC_BIDX
);
6531 valid
= BNX2_RD(bp
, BNX2_TBDC_CAM_OPCODE
);
6532 netdev_err(dev
, "%02x %06x %04lx %02x [%x]\n",
6533 i
, cid
, bdidx
& BNX2_TBDC_BDIDX_BDIDX
,
6534 bdidx
>> 24, (valid
>> 8) & 0x0ff);
6536 netdev_err(dev
, "<--- end TBDC dump --->\n");
6540 bnx2_dump_state(struct bnx2
*bp
)
6542 struct net_device
*dev
= bp
->dev
;
6545 pci_read_config_dword(bp
->pdev
, PCI_COMMAND
, &val1
);
6546 netdev_err(dev
, "DEBUG: intr_sem[%x] PCI_CMD[%08x]\n",
6547 atomic_read(&bp
->intr_sem
), val1
);
6548 pci_read_config_dword(bp
->pdev
, bp
->pm_cap
+ PCI_PM_CTRL
, &val1
);
6549 pci_read_config_dword(bp
->pdev
, BNX2_PCICFG_MISC_CONFIG
, &val2
);
6550 netdev_err(dev
, "DEBUG: PCI_PM[%08x] PCI_MISC_CFG[%08x]\n", val1
, val2
);
6551 netdev_err(dev
, "DEBUG: EMAC_TX_STATUS[%08x] EMAC_RX_STATUS[%08x]\n",
6552 BNX2_RD(bp
, BNX2_EMAC_TX_STATUS
),
6553 BNX2_RD(bp
, BNX2_EMAC_RX_STATUS
));
6554 netdev_err(dev
, "DEBUG: RPM_MGMT_PKT_CTRL[%08x]\n",
6555 BNX2_RD(bp
, BNX2_RPM_MGMT_PKT_CTRL
));
6556 netdev_err(dev
, "DEBUG: HC_STATS_INTERRUPT_STATUS[%08x]\n",
6557 BNX2_RD(bp
, BNX2_HC_STATS_INTERRUPT_STATUS
));
6558 if (bp
->flags
& BNX2_FLAG_USING_MSIX
)
6559 netdev_err(dev
, "DEBUG: PBA[%08x]\n",
6560 BNX2_RD(bp
, BNX2_PCI_GRC_WINDOW3_BASE
));
6564 bnx2_tx_timeout(struct net_device
*dev
)
6566 struct bnx2
*bp
= netdev_priv(dev
);
6569 bnx2_dump_state(bp
);
6570 bnx2_dump_mcp_state(bp
);
6572 /* This allows the netif to be shutdown gracefully before resetting */
6573 schedule_work(&bp
->reset_task
);
6576 /* Called with netif_tx_lock.
6577 * bnx2_tx_int() runs without netif_tx_lock unless it needs to call
6578 * netif_wake_queue().
6581 bnx2_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
6583 struct bnx2
*bp
= netdev_priv(dev
);
6585 struct bnx2_tx_bd
*txbd
;
6586 struct bnx2_sw_tx_bd
*tx_buf
;
6587 u32 len
, vlan_tag_flags
, last_frag
, mss
;
6588 u16 prod
, ring_prod
;
6590 struct bnx2_napi
*bnapi
;
6591 struct bnx2_tx_ring_info
*txr
;
6592 struct netdev_queue
*txq
;
6594 /* Determine which tx ring we will be placed on */
6595 i
= skb_get_queue_mapping(skb
);
6596 bnapi
= &bp
->bnx2_napi
[i
];
6597 txr
= &bnapi
->tx_ring
;
6598 txq
= netdev_get_tx_queue(dev
, i
);
6600 if (unlikely(bnx2_tx_avail(bp
, txr
) <
6601 (skb_shinfo(skb
)->nr_frags
+ 1))) {
6602 netif_tx_stop_queue(txq
);
6603 netdev_err(dev
, "BUG! Tx ring full when queue awake!\n");
6605 return NETDEV_TX_BUSY
;
6607 len
= skb_headlen(skb
);
6608 prod
= txr
->tx_prod
;
6609 ring_prod
= BNX2_TX_RING_IDX(prod
);
6612 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
6613 vlan_tag_flags
|= TX_BD_FLAGS_TCP_UDP_CKSUM
;
6616 if (skb_vlan_tag_present(skb
)) {
6618 (TX_BD_FLAGS_VLAN_TAG
| (skb_vlan_tag_get(skb
) << 16));
6621 if ((mss
= skb_shinfo(skb
)->gso_size
)) {
6625 vlan_tag_flags
|= TX_BD_FLAGS_SW_LSO
;
6627 tcp_opt_len
= tcp_optlen(skb
);
6629 if (skb_shinfo(skb
)->gso_type
& SKB_GSO_TCPV6
) {
6630 u32 tcp_off
= skb_transport_offset(skb
) -
6631 sizeof(struct ipv6hdr
) - ETH_HLEN
;
6633 vlan_tag_flags
|= ((tcp_opt_len
>> 2) << 8) |
6634 TX_BD_FLAGS_SW_FLAGS
;
6635 if (likely(tcp_off
== 0))
6636 vlan_tag_flags
&= ~TX_BD_FLAGS_TCP6_OFF0_MSK
;
6639 vlan_tag_flags
|= ((tcp_off
& 0x3) <<
6640 TX_BD_FLAGS_TCP6_OFF0_SHL
) |
6641 ((tcp_off
& 0x10) <<
6642 TX_BD_FLAGS_TCP6_OFF4_SHL
);
6643 mss
|= (tcp_off
& 0xc) << TX_BD_TCP6_OFF2_SHL
;
6647 if (tcp_opt_len
|| (iph
->ihl
> 5)) {
6648 vlan_tag_flags
|= ((iph
->ihl
- 5) +
6649 (tcp_opt_len
>> 2)) << 8;
6655 mapping
= dma_map_single(&bp
->pdev
->dev
, skb
->data
, len
, PCI_DMA_TODEVICE
);
6656 if (dma_mapping_error(&bp
->pdev
->dev
, mapping
)) {
6657 dev_kfree_skb_any(skb
);
6658 return NETDEV_TX_OK
;
6661 tx_buf
= &txr
->tx_buf_ring
[ring_prod
];
6663 dma_unmap_addr_set(tx_buf
, mapping
, mapping
);
6665 txbd
= &txr
->tx_desc_ring
[ring_prod
];
6667 txbd
->tx_bd_haddr_hi
= (u64
) mapping
>> 32;
6668 txbd
->tx_bd_haddr_lo
= (u64
) mapping
& 0xffffffff;
6669 txbd
->tx_bd_mss_nbytes
= len
| (mss
<< 16);
6670 txbd
->tx_bd_vlan_tag_flags
= vlan_tag_flags
| TX_BD_FLAGS_START
;
6672 last_frag
= skb_shinfo(skb
)->nr_frags
;
6673 tx_buf
->nr_frags
= last_frag
;
6674 tx_buf
->is_gso
= skb_is_gso(skb
);
6676 for (i
= 0; i
< last_frag
; i
++) {
6677 const skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
6679 prod
= BNX2_NEXT_TX_BD(prod
);
6680 ring_prod
= BNX2_TX_RING_IDX(prod
);
6681 txbd
= &txr
->tx_desc_ring
[ring_prod
];
6683 len
= skb_frag_size(frag
);
6684 mapping
= skb_frag_dma_map(&bp
->pdev
->dev
, frag
, 0, len
,
6686 if (dma_mapping_error(&bp
->pdev
->dev
, mapping
))
6688 dma_unmap_addr_set(&txr
->tx_buf_ring
[ring_prod
], mapping
,
6691 txbd
->tx_bd_haddr_hi
= (u64
) mapping
>> 32;
6692 txbd
->tx_bd_haddr_lo
= (u64
) mapping
& 0xffffffff;
6693 txbd
->tx_bd_mss_nbytes
= len
| (mss
<< 16);
6694 txbd
->tx_bd_vlan_tag_flags
= vlan_tag_flags
;
6697 txbd
->tx_bd_vlan_tag_flags
|= TX_BD_FLAGS_END
;
6699 /* Sync BD data before updating TX mailbox */
6702 netdev_tx_sent_queue(txq
, skb
->len
);
6704 prod
= BNX2_NEXT_TX_BD(prod
);
6705 txr
->tx_prod_bseq
+= skb
->len
;
6707 BNX2_WR16(bp
, txr
->tx_bidx_addr
, prod
);
6708 BNX2_WR(bp
, txr
->tx_bseq_addr
, txr
->tx_prod_bseq
);
6712 txr
->tx_prod
= prod
;
6714 if (unlikely(bnx2_tx_avail(bp
, txr
) <= MAX_SKB_FRAGS
)) {
6715 netif_tx_stop_queue(txq
);
6717 /* netif_tx_stop_queue() must be done before checking
6718 * tx index in bnx2_tx_avail() below, because in
6719 * bnx2_tx_int(), we update tx index before checking for
6720 * netif_tx_queue_stopped().
6723 if (bnx2_tx_avail(bp
, txr
) > bp
->tx_wake_thresh
)
6724 netif_tx_wake_queue(txq
);
6727 return NETDEV_TX_OK
;
6729 /* save value of frag that failed */
6732 /* start back at beginning and unmap skb */
6733 prod
= txr
->tx_prod
;
6734 ring_prod
= BNX2_TX_RING_IDX(prod
);
6735 tx_buf
= &txr
->tx_buf_ring
[ring_prod
];
6737 dma_unmap_single(&bp
->pdev
->dev
, dma_unmap_addr(tx_buf
, mapping
),
6738 skb_headlen(skb
), PCI_DMA_TODEVICE
);
6740 /* unmap remaining mapped pages */
6741 for (i
= 0; i
< last_frag
; i
++) {
6742 prod
= BNX2_NEXT_TX_BD(prod
);
6743 ring_prod
= BNX2_TX_RING_IDX(prod
);
6744 tx_buf
= &txr
->tx_buf_ring
[ring_prod
];
6745 dma_unmap_page(&bp
->pdev
->dev
, dma_unmap_addr(tx_buf
, mapping
),
6746 skb_frag_size(&skb_shinfo(skb
)->frags
[i
]),
6750 dev_kfree_skb_any(skb
);
6751 return NETDEV_TX_OK
;
6754 /* Called with rtnl_lock */
6756 bnx2_close(struct net_device
*dev
)
6758 struct bnx2
*bp
= netdev_priv(dev
);
6760 bnx2_disable_int_sync(bp
);
6761 bnx2_napi_disable(bp
);
6762 netif_tx_disable(dev
);
6763 del_timer_sync(&bp
->timer
);
6764 bnx2_shutdown_chip(bp
);
6770 netif_carrier_off(bp
->dev
);
6775 bnx2_save_stats(struct bnx2
*bp
)
6777 u32
*hw_stats
= (u32
*) bp
->stats_blk
;
6778 u32
*temp_stats
= (u32
*) bp
->temp_stats_blk
;
6781 /* The 1st 10 counters are 64-bit counters */
6782 for (i
= 0; i
< 20; i
+= 2) {
6786 hi
= temp_stats
[i
] + hw_stats
[i
];
6787 lo
= (u64
) temp_stats
[i
+ 1] + (u64
) hw_stats
[i
+ 1];
6788 if (lo
> 0xffffffff)
6791 temp_stats
[i
+ 1] = lo
& 0xffffffff;
6794 for ( ; i
< sizeof(struct statistics_block
) / 4; i
++)
6795 temp_stats
[i
] += hw_stats
[i
];
6798 #define GET_64BIT_NET_STATS64(ctr) \
6799 (((u64) (ctr##_hi) << 32) + (u64) (ctr##_lo))
6801 #define GET_64BIT_NET_STATS(ctr) \
6802 GET_64BIT_NET_STATS64(bp->stats_blk->ctr) + \
6803 GET_64BIT_NET_STATS64(bp->temp_stats_blk->ctr)
6805 #define GET_32BIT_NET_STATS(ctr) \
6806 (unsigned long) (bp->stats_blk->ctr + \
6807 bp->temp_stats_blk->ctr)
6809 static struct rtnl_link_stats64
*
6810 bnx2_get_stats64(struct net_device
*dev
, struct rtnl_link_stats64
*net_stats
)
6812 struct bnx2
*bp
= netdev_priv(dev
);
6814 if (bp
->stats_blk
== NULL
)
6817 net_stats
->rx_packets
=
6818 GET_64BIT_NET_STATS(stat_IfHCInUcastPkts
) +
6819 GET_64BIT_NET_STATS(stat_IfHCInMulticastPkts
) +
6820 GET_64BIT_NET_STATS(stat_IfHCInBroadcastPkts
);
6822 net_stats
->tx_packets
=
6823 GET_64BIT_NET_STATS(stat_IfHCOutUcastPkts
) +
6824 GET_64BIT_NET_STATS(stat_IfHCOutMulticastPkts
) +
6825 GET_64BIT_NET_STATS(stat_IfHCOutBroadcastPkts
);
6827 net_stats
->rx_bytes
=
6828 GET_64BIT_NET_STATS(stat_IfHCInOctets
);
6830 net_stats
->tx_bytes
=
6831 GET_64BIT_NET_STATS(stat_IfHCOutOctets
);
6833 net_stats
->multicast
=
6834 GET_64BIT_NET_STATS(stat_IfHCInMulticastPkts
);
6836 net_stats
->collisions
=
6837 GET_32BIT_NET_STATS(stat_EtherStatsCollisions
);
6839 net_stats
->rx_length_errors
=
6840 GET_32BIT_NET_STATS(stat_EtherStatsUndersizePkts
) +
6841 GET_32BIT_NET_STATS(stat_EtherStatsOverrsizePkts
);
6843 net_stats
->rx_over_errors
=
6844 GET_32BIT_NET_STATS(stat_IfInFTQDiscards
) +
6845 GET_32BIT_NET_STATS(stat_IfInMBUFDiscards
);
6847 net_stats
->rx_frame_errors
=
6848 GET_32BIT_NET_STATS(stat_Dot3StatsAlignmentErrors
);
6850 net_stats
->rx_crc_errors
=
6851 GET_32BIT_NET_STATS(stat_Dot3StatsFCSErrors
);
6853 net_stats
->rx_errors
= net_stats
->rx_length_errors
+
6854 net_stats
->rx_over_errors
+ net_stats
->rx_frame_errors
+
6855 net_stats
->rx_crc_errors
;
6857 net_stats
->tx_aborted_errors
=
6858 GET_32BIT_NET_STATS(stat_Dot3StatsExcessiveCollisions
) +
6859 GET_32BIT_NET_STATS(stat_Dot3StatsLateCollisions
);
6861 if ((BNX2_CHIP(bp
) == BNX2_CHIP_5706
) ||
6862 (BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5708_A0
))
6863 net_stats
->tx_carrier_errors
= 0;
6865 net_stats
->tx_carrier_errors
=
6866 GET_32BIT_NET_STATS(stat_Dot3StatsCarrierSenseErrors
);
6869 net_stats
->tx_errors
=
6870 GET_32BIT_NET_STATS(stat_emac_tx_stat_dot3statsinternalmactransmiterrors
) +
6871 net_stats
->tx_aborted_errors
+
6872 net_stats
->tx_carrier_errors
;
6874 net_stats
->rx_missed_errors
=
6875 GET_32BIT_NET_STATS(stat_IfInFTQDiscards
) +
6876 GET_32BIT_NET_STATS(stat_IfInMBUFDiscards
) +
6877 GET_32BIT_NET_STATS(stat_FwRxDrop
);
6882 /* All ethtool functions called with rtnl_lock */
6885 bnx2_get_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
6887 struct bnx2
*bp
= netdev_priv(dev
);
6888 int support_serdes
= 0, support_copper
= 0;
6890 cmd
->supported
= SUPPORTED_Autoneg
;
6891 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) {
6894 } else if (bp
->phy_port
== PORT_FIBRE
)
6899 if (support_serdes
) {
6900 cmd
->supported
|= SUPPORTED_1000baseT_Full
|
6902 if (bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
)
6903 cmd
->supported
|= SUPPORTED_2500baseX_Full
;
6906 if (support_copper
) {
6907 cmd
->supported
|= SUPPORTED_10baseT_Half
|
6908 SUPPORTED_10baseT_Full
|
6909 SUPPORTED_100baseT_Half
|
6910 SUPPORTED_100baseT_Full
|
6911 SUPPORTED_1000baseT_Full
|
6916 spin_lock_bh(&bp
->phy_lock
);
6917 cmd
->port
= bp
->phy_port
;
6918 cmd
->advertising
= bp
->advertising
;
6920 if (bp
->autoneg
& AUTONEG_SPEED
) {
6921 cmd
->autoneg
= AUTONEG_ENABLE
;
6923 cmd
->autoneg
= AUTONEG_DISABLE
;
6926 if (netif_carrier_ok(dev
)) {
6927 ethtool_cmd_speed_set(cmd
, bp
->line_speed
);
6928 cmd
->duplex
= bp
->duplex
;
6929 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
)) {
6930 if (bp
->phy_flags
& BNX2_PHY_FLAG_MDIX
)
6931 cmd
->eth_tp_mdix
= ETH_TP_MDI_X
;
6933 cmd
->eth_tp_mdix
= ETH_TP_MDI
;
6937 ethtool_cmd_speed_set(cmd
, SPEED_UNKNOWN
);
6938 cmd
->duplex
= DUPLEX_UNKNOWN
;
6940 spin_unlock_bh(&bp
->phy_lock
);
6942 cmd
->transceiver
= XCVR_INTERNAL
;
6943 cmd
->phy_address
= bp
->phy_addr
;
6949 bnx2_set_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
6951 struct bnx2
*bp
= netdev_priv(dev
);
6952 u8 autoneg
= bp
->autoneg
;
6953 u8 req_duplex
= bp
->req_duplex
;
6954 u16 req_line_speed
= bp
->req_line_speed
;
6955 u32 advertising
= bp
->advertising
;
6958 spin_lock_bh(&bp
->phy_lock
);
6960 if (cmd
->port
!= PORT_TP
&& cmd
->port
!= PORT_FIBRE
)
6961 goto err_out_unlock
;
6963 if (cmd
->port
!= bp
->phy_port
&&
6964 !(bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
))
6965 goto err_out_unlock
;
6967 /* If device is down, we can store the settings only if the user
6968 * is setting the currently active port.
6970 if (!netif_running(dev
) && cmd
->port
!= bp
->phy_port
)
6971 goto err_out_unlock
;
6973 if (cmd
->autoneg
== AUTONEG_ENABLE
) {
6974 autoneg
|= AUTONEG_SPEED
;
6976 advertising
= cmd
->advertising
;
6977 if (cmd
->port
== PORT_TP
) {
6978 advertising
&= ETHTOOL_ALL_COPPER_SPEED
;
6980 advertising
= ETHTOOL_ALL_COPPER_SPEED
;
6982 advertising
&= ETHTOOL_ALL_FIBRE_SPEED
;
6984 advertising
= ETHTOOL_ALL_FIBRE_SPEED
;
6986 advertising
|= ADVERTISED_Autoneg
;
6989 u32 speed
= ethtool_cmd_speed(cmd
);
6990 if (cmd
->port
== PORT_FIBRE
) {
6991 if ((speed
!= SPEED_1000
&&
6992 speed
!= SPEED_2500
) ||
6993 (cmd
->duplex
!= DUPLEX_FULL
))
6994 goto err_out_unlock
;
6996 if (speed
== SPEED_2500
&&
6997 !(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
6998 goto err_out_unlock
;
6999 } else if (speed
== SPEED_1000
|| speed
== SPEED_2500
)
7000 goto err_out_unlock
;
7002 autoneg
&= ~AUTONEG_SPEED
;
7003 req_line_speed
= speed
;
7004 req_duplex
= cmd
->duplex
;
7008 bp
->autoneg
= autoneg
;
7009 bp
->advertising
= advertising
;
7010 bp
->req_line_speed
= req_line_speed
;
7011 bp
->req_duplex
= req_duplex
;
7014 /* If device is down, the new settings will be picked up when it is
7017 if (netif_running(dev
))
7018 err
= bnx2_setup_phy(bp
, cmd
->port
);
7021 spin_unlock_bh(&bp
->phy_lock
);
7027 bnx2_get_drvinfo(struct net_device
*dev
, struct ethtool_drvinfo
*info
)
7029 struct bnx2
*bp
= netdev_priv(dev
);
7031 strlcpy(info
->driver
, DRV_MODULE_NAME
, sizeof(info
->driver
));
7032 strlcpy(info
->version
, DRV_MODULE_VERSION
, sizeof(info
->version
));
7033 strlcpy(info
->bus_info
, pci_name(bp
->pdev
), sizeof(info
->bus_info
));
7034 strlcpy(info
->fw_version
, bp
->fw_version
, sizeof(info
->fw_version
));
7037 #define BNX2_REGDUMP_LEN (32 * 1024)
7040 bnx2_get_regs_len(struct net_device
*dev
)
7042 return BNX2_REGDUMP_LEN
;
7046 bnx2_get_regs(struct net_device
*dev
, struct ethtool_regs
*regs
, void *_p
)
7048 u32
*p
= _p
, i
, offset
;
7050 struct bnx2
*bp
= netdev_priv(dev
);
7051 static const u32 reg_boundaries
[] = {
7052 0x0000, 0x0098, 0x0400, 0x045c,
7053 0x0800, 0x0880, 0x0c00, 0x0c10,
7054 0x0c30, 0x0d08, 0x1000, 0x101c,
7055 0x1040, 0x1048, 0x1080, 0x10a4,
7056 0x1400, 0x1490, 0x1498, 0x14f0,
7057 0x1500, 0x155c, 0x1580, 0x15dc,
7058 0x1600, 0x1658, 0x1680, 0x16d8,
7059 0x1800, 0x1820, 0x1840, 0x1854,
7060 0x1880, 0x1894, 0x1900, 0x1984,
7061 0x1c00, 0x1c0c, 0x1c40, 0x1c54,
7062 0x1c80, 0x1c94, 0x1d00, 0x1d84,
7063 0x2000, 0x2030, 0x23c0, 0x2400,
7064 0x2800, 0x2820, 0x2830, 0x2850,
7065 0x2b40, 0x2c10, 0x2fc0, 0x3058,
7066 0x3c00, 0x3c94, 0x4000, 0x4010,
7067 0x4080, 0x4090, 0x43c0, 0x4458,
7068 0x4c00, 0x4c18, 0x4c40, 0x4c54,
7069 0x4fc0, 0x5010, 0x53c0, 0x5444,
7070 0x5c00, 0x5c18, 0x5c80, 0x5c90,
7071 0x5fc0, 0x6000, 0x6400, 0x6428,
7072 0x6800, 0x6848, 0x684c, 0x6860,
7073 0x6888, 0x6910, 0x8000
7078 memset(p
, 0, BNX2_REGDUMP_LEN
);
7080 if (!netif_running(bp
->dev
))
7084 offset
= reg_boundaries
[0];
7086 while (offset
< BNX2_REGDUMP_LEN
) {
7087 *p
++ = BNX2_RD(bp
, offset
);
7089 if (offset
== reg_boundaries
[i
+ 1]) {
7090 offset
= reg_boundaries
[i
+ 2];
7091 p
= (u32
*) (orig_p
+ offset
);
7098 bnx2_get_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
7100 struct bnx2
*bp
= netdev_priv(dev
);
7102 if (bp
->flags
& BNX2_FLAG_NO_WOL
) {
7107 wol
->supported
= WAKE_MAGIC
;
7109 wol
->wolopts
= WAKE_MAGIC
;
7113 memset(&wol
->sopass
, 0, sizeof(wol
->sopass
));
7117 bnx2_set_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
7119 struct bnx2
*bp
= netdev_priv(dev
);
7121 if (wol
->wolopts
& ~WAKE_MAGIC
)
7124 if (wol
->wolopts
& WAKE_MAGIC
) {
7125 if (bp
->flags
& BNX2_FLAG_NO_WOL
)
7134 device_set_wakeup_enable(&bp
->pdev
->dev
, bp
->wol
);
7140 bnx2_nway_reset(struct net_device
*dev
)
7142 struct bnx2
*bp
= netdev_priv(dev
);
7145 if (!netif_running(dev
))
7148 if (!(bp
->autoneg
& AUTONEG_SPEED
)) {
7152 spin_lock_bh(&bp
->phy_lock
);
7154 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) {
7157 rc
= bnx2_setup_remote_phy(bp
, bp
->phy_port
);
7158 spin_unlock_bh(&bp
->phy_lock
);
7162 /* Force a link down visible on the other side */
7163 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
7164 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_LOOPBACK
);
7165 spin_unlock_bh(&bp
->phy_lock
);
7169 spin_lock_bh(&bp
->phy_lock
);
7171 bp
->current_interval
= BNX2_SERDES_AN_TIMEOUT
;
7172 bp
->serdes_an_pending
= 1;
7173 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
7176 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
7177 bmcr
&= ~BMCR_LOOPBACK
;
7178 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
| BMCR_ANRESTART
| BMCR_ANENABLE
);
7180 spin_unlock_bh(&bp
->phy_lock
);
7186 bnx2_get_link(struct net_device
*dev
)
7188 struct bnx2
*bp
= netdev_priv(dev
);
7194 bnx2_get_eeprom_len(struct net_device
*dev
)
7196 struct bnx2
*bp
= netdev_priv(dev
);
7198 if (bp
->flash_info
== NULL
)
7201 return (int) bp
->flash_size
;
7205 bnx2_get_eeprom(struct net_device
*dev
, struct ethtool_eeprom
*eeprom
,
7208 struct bnx2
*bp
= netdev_priv(dev
);
7211 /* parameters already validated in ethtool_get_eeprom */
7213 rc
= bnx2_nvram_read(bp
, eeprom
->offset
, eebuf
, eeprom
->len
);
7219 bnx2_set_eeprom(struct net_device
*dev
, struct ethtool_eeprom
*eeprom
,
7222 struct bnx2
*bp
= netdev_priv(dev
);
7225 /* parameters already validated in ethtool_set_eeprom */
7227 rc
= bnx2_nvram_write(bp
, eeprom
->offset
, eebuf
, eeprom
->len
);
7233 bnx2_get_coalesce(struct net_device
*dev
, struct ethtool_coalesce
*coal
)
7235 struct bnx2
*bp
= netdev_priv(dev
);
7237 memset(coal
, 0, sizeof(struct ethtool_coalesce
));
7239 coal
->rx_coalesce_usecs
= bp
->rx_ticks
;
7240 coal
->rx_max_coalesced_frames
= bp
->rx_quick_cons_trip
;
7241 coal
->rx_coalesce_usecs_irq
= bp
->rx_ticks_int
;
7242 coal
->rx_max_coalesced_frames_irq
= bp
->rx_quick_cons_trip_int
;
7244 coal
->tx_coalesce_usecs
= bp
->tx_ticks
;
7245 coal
->tx_max_coalesced_frames
= bp
->tx_quick_cons_trip
;
7246 coal
->tx_coalesce_usecs_irq
= bp
->tx_ticks_int
;
7247 coal
->tx_max_coalesced_frames_irq
= bp
->tx_quick_cons_trip_int
;
7249 coal
->stats_block_coalesce_usecs
= bp
->stats_ticks
;
7255 bnx2_set_coalesce(struct net_device
*dev
, struct ethtool_coalesce
*coal
)
7257 struct bnx2
*bp
= netdev_priv(dev
);
7259 bp
->rx_ticks
= (u16
) coal
->rx_coalesce_usecs
;
7260 if (bp
->rx_ticks
> 0x3ff) bp
->rx_ticks
= 0x3ff;
7262 bp
->rx_quick_cons_trip
= (u16
) coal
->rx_max_coalesced_frames
;
7263 if (bp
->rx_quick_cons_trip
> 0xff) bp
->rx_quick_cons_trip
= 0xff;
7265 bp
->rx_ticks_int
= (u16
) coal
->rx_coalesce_usecs_irq
;
7266 if (bp
->rx_ticks_int
> 0x3ff) bp
->rx_ticks_int
= 0x3ff;
7268 bp
->rx_quick_cons_trip_int
= (u16
) coal
->rx_max_coalesced_frames_irq
;
7269 if (bp
->rx_quick_cons_trip_int
> 0xff)
7270 bp
->rx_quick_cons_trip_int
= 0xff;
7272 bp
->tx_ticks
= (u16
) coal
->tx_coalesce_usecs
;
7273 if (bp
->tx_ticks
> 0x3ff) bp
->tx_ticks
= 0x3ff;
7275 bp
->tx_quick_cons_trip
= (u16
) coal
->tx_max_coalesced_frames
;
7276 if (bp
->tx_quick_cons_trip
> 0xff) bp
->tx_quick_cons_trip
= 0xff;
7278 bp
->tx_ticks_int
= (u16
) coal
->tx_coalesce_usecs_irq
;
7279 if (bp
->tx_ticks_int
> 0x3ff) bp
->tx_ticks_int
= 0x3ff;
7281 bp
->tx_quick_cons_trip_int
= (u16
) coal
->tx_max_coalesced_frames_irq
;
7282 if (bp
->tx_quick_cons_trip_int
> 0xff) bp
->tx_quick_cons_trip_int
=
7285 bp
->stats_ticks
= coal
->stats_block_coalesce_usecs
;
7286 if (bp
->flags
& BNX2_FLAG_BROKEN_STATS
) {
7287 if (bp
->stats_ticks
!= 0 && bp
->stats_ticks
!= USEC_PER_SEC
)
7288 bp
->stats_ticks
= USEC_PER_SEC
;
7290 if (bp
->stats_ticks
> BNX2_HC_STATS_TICKS_HC_STAT_TICKS
)
7291 bp
->stats_ticks
= BNX2_HC_STATS_TICKS_HC_STAT_TICKS
;
7292 bp
->stats_ticks
&= BNX2_HC_STATS_TICKS_HC_STAT_TICKS
;
7294 if (netif_running(bp
->dev
)) {
7295 bnx2_netif_stop(bp
, true);
7296 bnx2_init_nic(bp
, 0);
7297 bnx2_netif_start(bp
, true);
7304 bnx2_get_ringparam(struct net_device
*dev
, struct ethtool_ringparam
*ering
)
7306 struct bnx2
*bp
= netdev_priv(dev
);
7308 ering
->rx_max_pending
= BNX2_MAX_TOTAL_RX_DESC_CNT
;
7309 ering
->rx_jumbo_max_pending
= BNX2_MAX_TOTAL_RX_PG_DESC_CNT
;
7311 ering
->rx_pending
= bp
->rx_ring_size
;
7312 ering
->rx_jumbo_pending
= bp
->rx_pg_ring_size
;
7314 ering
->tx_max_pending
= BNX2_MAX_TX_DESC_CNT
;
7315 ering
->tx_pending
= bp
->tx_ring_size
;
7319 bnx2_change_ring_size(struct bnx2
*bp
, u32 rx
, u32 tx
, bool reset_irq
)
7321 if (netif_running(bp
->dev
)) {
7322 /* Reset will erase chipset stats; save them */
7323 bnx2_save_stats(bp
);
7325 bnx2_netif_stop(bp
, true);
7326 bnx2_reset_chip(bp
, BNX2_DRV_MSG_CODE_RESET
);
7331 __bnx2_free_irq(bp
);
7337 bnx2_set_rx_ring_size(bp
, rx
);
7338 bp
->tx_ring_size
= tx
;
7340 if (netif_running(bp
->dev
)) {
7344 rc
= bnx2_setup_int_mode(bp
, disable_msi
);
7349 rc
= bnx2_alloc_mem(bp
);
7352 rc
= bnx2_request_irq(bp
);
7355 rc
= bnx2_init_nic(bp
, 0);
7358 bnx2_napi_enable(bp
);
7363 mutex_lock(&bp
->cnic_lock
);
7364 /* Let cnic know about the new status block. */
7365 if (bp
->cnic_eth_dev
.drv_state
& CNIC_DRV_STATE_REGD
)
7366 bnx2_setup_cnic_irq_info(bp
);
7367 mutex_unlock(&bp
->cnic_lock
);
7369 bnx2_netif_start(bp
, true);
7375 bnx2_set_ringparam(struct net_device
*dev
, struct ethtool_ringparam
*ering
)
7377 struct bnx2
*bp
= netdev_priv(dev
);
7380 if ((ering
->rx_pending
> BNX2_MAX_TOTAL_RX_DESC_CNT
) ||
7381 (ering
->tx_pending
> BNX2_MAX_TX_DESC_CNT
) ||
7382 (ering
->tx_pending
<= MAX_SKB_FRAGS
)) {
7386 rc
= bnx2_change_ring_size(bp
, ering
->rx_pending
, ering
->tx_pending
,
7392 bnx2_get_pauseparam(struct net_device
*dev
, struct ethtool_pauseparam
*epause
)
7394 struct bnx2
*bp
= netdev_priv(dev
);
7396 epause
->autoneg
= ((bp
->autoneg
& AUTONEG_FLOW_CTRL
) != 0);
7397 epause
->rx_pause
= ((bp
->flow_ctrl
& FLOW_CTRL_RX
) != 0);
7398 epause
->tx_pause
= ((bp
->flow_ctrl
& FLOW_CTRL_TX
) != 0);
7402 bnx2_set_pauseparam(struct net_device
*dev
, struct ethtool_pauseparam
*epause
)
7404 struct bnx2
*bp
= netdev_priv(dev
);
7406 bp
->req_flow_ctrl
= 0;
7407 if (epause
->rx_pause
)
7408 bp
->req_flow_ctrl
|= FLOW_CTRL_RX
;
7409 if (epause
->tx_pause
)
7410 bp
->req_flow_ctrl
|= FLOW_CTRL_TX
;
7412 if (epause
->autoneg
) {
7413 bp
->autoneg
|= AUTONEG_FLOW_CTRL
;
7416 bp
->autoneg
&= ~AUTONEG_FLOW_CTRL
;
7419 if (netif_running(dev
)) {
7420 spin_lock_bh(&bp
->phy_lock
);
7421 bnx2_setup_phy(bp
, bp
->phy_port
);
7422 spin_unlock_bh(&bp
->phy_lock
);
7429 char string
[ETH_GSTRING_LEN
];
7430 } bnx2_stats_str_arr
[] = {
7432 { "rx_error_bytes" },
7434 { "tx_error_bytes" },
7435 { "rx_ucast_packets" },
7436 { "rx_mcast_packets" },
7437 { "rx_bcast_packets" },
7438 { "tx_ucast_packets" },
7439 { "tx_mcast_packets" },
7440 { "tx_bcast_packets" },
7441 { "tx_mac_errors" },
7442 { "tx_carrier_errors" },
7443 { "rx_crc_errors" },
7444 { "rx_align_errors" },
7445 { "tx_single_collisions" },
7446 { "tx_multi_collisions" },
7448 { "tx_excess_collisions" },
7449 { "tx_late_collisions" },
7450 { "tx_total_collisions" },
7453 { "rx_undersize_packets" },
7454 { "rx_oversize_packets" },
7455 { "rx_64_byte_packets" },
7456 { "rx_65_to_127_byte_packets" },
7457 { "rx_128_to_255_byte_packets" },
7458 { "rx_256_to_511_byte_packets" },
7459 { "rx_512_to_1023_byte_packets" },
7460 { "rx_1024_to_1522_byte_packets" },
7461 { "rx_1523_to_9022_byte_packets" },
7462 { "tx_64_byte_packets" },
7463 { "tx_65_to_127_byte_packets" },
7464 { "tx_128_to_255_byte_packets" },
7465 { "tx_256_to_511_byte_packets" },
7466 { "tx_512_to_1023_byte_packets" },
7467 { "tx_1024_to_1522_byte_packets" },
7468 { "tx_1523_to_9022_byte_packets" },
7469 { "rx_xon_frames" },
7470 { "rx_xoff_frames" },
7471 { "tx_xon_frames" },
7472 { "tx_xoff_frames" },
7473 { "rx_mac_ctrl_frames" },
7474 { "rx_filtered_packets" },
7475 { "rx_ftq_discards" },
7477 { "rx_fw_discards" },
7480 #define BNX2_NUM_STATS ARRAY_SIZE(bnx2_stats_str_arr)
7482 #define STATS_OFFSET32(offset_name) (offsetof(struct statistics_block, offset_name) / 4)
7484 static const unsigned long bnx2_stats_offset_arr
[BNX2_NUM_STATS
] = {
7485 STATS_OFFSET32(stat_IfHCInOctets_hi
),
7486 STATS_OFFSET32(stat_IfHCInBadOctets_hi
),
7487 STATS_OFFSET32(stat_IfHCOutOctets_hi
),
7488 STATS_OFFSET32(stat_IfHCOutBadOctets_hi
),
7489 STATS_OFFSET32(stat_IfHCInUcastPkts_hi
),
7490 STATS_OFFSET32(stat_IfHCInMulticastPkts_hi
),
7491 STATS_OFFSET32(stat_IfHCInBroadcastPkts_hi
),
7492 STATS_OFFSET32(stat_IfHCOutUcastPkts_hi
),
7493 STATS_OFFSET32(stat_IfHCOutMulticastPkts_hi
),
7494 STATS_OFFSET32(stat_IfHCOutBroadcastPkts_hi
),
7495 STATS_OFFSET32(stat_emac_tx_stat_dot3statsinternalmactransmiterrors
),
7496 STATS_OFFSET32(stat_Dot3StatsCarrierSenseErrors
),
7497 STATS_OFFSET32(stat_Dot3StatsFCSErrors
),
7498 STATS_OFFSET32(stat_Dot3StatsAlignmentErrors
),
7499 STATS_OFFSET32(stat_Dot3StatsSingleCollisionFrames
),
7500 STATS_OFFSET32(stat_Dot3StatsMultipleCollisionFrames
),
7501 STATS_OFFSET32(stat_Dot3StatsDeferredTransmissions
),
7502 STATS_OFFSET32(stat_Dot3StatsExcessiveCollisions
),
7503 STATS_OFFSET32(stat_Dot3StatsLateCollisions
),
7504 STATS_OFFSET32(stat_EtherStatsCollisions
),
7505 STATS_OFFSET32(stat_EtherStatsFragments
),
7506 STATS_OFFSET32(stat_EtherStatsJabbers
),
7507 STATS_OFFSET32(stat_EtherStatsUndersizePkts
),
7508 STATS_OFFSET32(stat_EtherStatsOverrsizePkts
),
7509 STATS_OFFSET32(stat_EtherStatsPktsRx64Octets
),
7510 STATS_OFFSET32(stat_EtherStatsPktsRx65Octetsto127Octets
),
7511 STATS_OFFSET32(stat_EtherStatsPktsRx128Octetsto255Octets
),
7512 STATS_OFFSET32(stat_EtherStatsPktsRx256Octetsto511Octets
),
7513 STATS_OFFSET32(stat_EtherStatsPktsRx512Octetsto1023Octets
),
7514 STATS_OFFSET32(stat_EtherStatsPktsRx1024Octetsto1522Octets
),
7515 STATS_OFFSET32(stat_EtherStatsPktsRx1523Octetsto9022Octets
),
7516 STATS_OFFSET32(stat_EtherStatsPktsTx64Octets
),
7517 STATS_OFFSET32(stat_EtherStatsPktsTx65Octetsto127Octets
),
7518 STATS_OFFSET32(stat_EtherStatsPktsTx128Octetsto255Octets
),
7519 STATS_OFFSET32(stat_EtherStatsPktsTx256Octetsto511Octets
),
7520 STATS_OFFSET32(stat_EtherStatsPktsTx512Octetsto1023Octets
),
7521 STATS_OFFSET32(stat_EtherStatsPktsTx1024Octetsto1522Octets
),
7522 STATS_OFFSET32(stat_EtherStatsPktsTx1523Octetsto9022Octets
),
7523 STATS_OFFSET32(stat_XonPauseFramesReceived
),
7524 STATS_OFFSET32(stat_XoffPauseFramesReceived
),
7525 STATS_OFFSET32(stat_OutXonSent
),
7526 STATS_OFFSET32(stat_OutXoffSent
),
7527 STATS_OFFSET32(stat_MacControlFramesReceived
),
7528 STATS_OFFSET32(stat_IfInFramesL2FilterDiscards
),
7529 STATS_OFFSET32(stat_IfInFTQDiscards
),
7530 STATS_OFFSET32(stat_IfInMBUFDiscards
),
7531 STATS_OFFSET32(stat_FwRxDrop
),
7534 /* stat_IfHCInBadOctets and stat_Dot3StatsCarrierSenseErrors are
7535 * skipped because of errata.
7537 static u8 bnx2_5706_stats_len_arr
[BNX2_NUM_STATS
] = {
7538 8,0,8,8,8,8,8,8,8,8,
7539 4,0,4,4,4,4,4,4,4,4,
7540 4,4,4,4,4,4,4,4,4,4,
7541 4,4,4,4,4,4,4,4,4,4,
7545 static u8 bnx2_5708_stats_len_arr
[BNX2_NUM_STATS
] = {
7546 8,0,8,8,8,8,8,8,8,8,
7547 4,4,4,4,4,4,4,4,4,4,
7548 4,4,4,4,4,4,4,4,4,4,
7549 4,4,4,4,4,4,4,4,4,4,
7553 #define BNX2_NUM_TESTS 6
7556 char string
[ETH_GSTRING_LEN
];
7557 } bnx2_tests_str_arr
[BNX2_NUM_TESTS
] = {
7558 { "register_test (offline)" },
7559 { "memory_test (offline)" },
7560 { "loopback_test (offline)" },
7561 { "nvram_test (online)" },
7562 { "interrupt_test (online)" },
7563 { "link_test (online)" },
7567 bnx2_get_sset_count(struct net_device
*dev
, int sset
)
7571 return BNX2_NUM_TESTS
;
7573 return BNX2_NUM_STATS
;
7580 bnx2_self_test(struct net_device
*dev
, struct ethtool_test
*etest
, u64
*buf
)
7582 struct bnx2
*bp
= netdev_priv(dev
);
7584 memset(buf
, 0, sizeof(u64
) * BNX2_NUM_TESTS
);
7585 if (etest
->flags
& ETH_TEST_FL_OFFLINE
) {
7588 bnx2_netif_stop(bp
, true);
7589 bnx2_reset_chip(bp
, BNX2_DRV_MSG_CODE_DIAG
);
7592 if (bnx2_test_registers(bp
) != 0) {
7594 etest
->flags
|= ETH_TEST_FL_FAILED
;
7596 if (bnx2_test_memory(bp
) != 0) {
7598 etest
->flags
|= ETH_TEST_FL_FAILED
;
7600 if ((buf
[2] = bnx2_test_loopback(bp
)) != 0)
7601 etest
->flags
|= ETH_TEST_FL_FAILED
;
7603 if (!netif_running(bp
->dev
))
7604 bnx2_shutdown_chip(bp
);
7606 bnx2_init_nic(bp
, 1);
7607 bnx2_netif_start(bp
, true);
7610 /* wait for link up */
7611 for (i
= 0; i
< 7; i
++) {
7614 msleep_interruptible(1000);
7618 if (bnx2_test_nvram(bp
) != 0) {
7620 etest
->flags
|= ETH_TEST_FL_FAILED
;
7622 if (bnx2_test_intr(bp
) != 0) {
7624 etest
->flags
|= ETH_TEST_FL_FAILED
;
7627 if (bnx2_test_link(bp
) != 0) {
7629 etest
->flags
|= ETH_TEST_FL_FAILED
;
7635 bnx2_get_strings(struct net_device
*dev
, u32 stringset
, u8
*buf
)
7637 switch (stringset
) {
7639 memcpy(buf
, bnx2_stats_str_arr
,
7640 sizeof(bnx2_stats_str_arr
));
7643 memcpy(buf
, bnx2_tests_str_arr
,
7644 sizeof(bnx2_tests_str_arr
));
7650 bnx2_get_ethtool_stats(struct net_device
*dev
,
7651 struct ethtool_stats
*stats
, u64
*buf
)
7653 struct bnx2
*bp
= netdev_priv(dev
);
7655 u32
*hw_stats
= (u32
*) bp
->stats_blk
;
7656 u32
*temp_stats
= (u32
*) bp
->temp_stats_blk
;
7657 u8
*stats_len_arr
= NULL
;
7659 if (hw_stats
== NULL
) {
7660 memset(buf
, 0, sizeof(u64
) * BNX2_NUM_STATS
);
7664 if ((BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5706_A0
) ||
7665 (BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5706_A1
) ||
7666 (BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5706_A2
) ||
7667 (BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5708_A0
))
7668 stats_len_arr
= bnx2_5706_stats_len_arr
;
7670 stats_len_arr
= bnx2_5708_stats_len_arr
;
7672 for (i
= 0; i
< BNX2_NUM_STATS
; i
++) {
7673 unsigned long offset
;
7675 if (stats_len_arr
[i
] == 0) {
7676 /* skip this counter */
7681 offset
= bnx2_stats_offset_arr
[i
];
7682 if (stats_len_arr
[i
] == 4) {
7683 /* 4-byte counter */
7684 buf
[i
] = (u64
) *(hw_stats
+ offset
) +
7685 *(temp_stats
+ offset
);
7688 /* 8-byte counter */
7689 buf
[i
] = (((u64
) *(hw_stats
+ offset
)) << 32) +
7690 *(hw_stats
+ offset
+ 1) +
7691 (((u64
) *(temp_stats
+ offset
)) << 32) +
7692 *(temp_stats
+ offset
+ 1);
7697 bnx2_set_phys_id(struct net_device
*dev
, enum ethtool_phys_id_state state
)
7699 struct bnx2
*bp
= netdev_priv(dev
);
7702 case ETHTOOL_ID_ACTIVE
:
7703 bp
->leds_save
= BNX2_RD(bp
, BNX2_MISC_CFG
);
7704 BNX2_WR(bp
, BNX2_MISC_CFG
, BNX2_MISC_CFG_LEDMODE_MAC
);
7705 return 1; /* cycle on/off once per second */
7708 BNX2_WR(bp
, BNX2_EMAC_LED
, BNX2_EMAC_LED_OVERRIDE
|
7709 BNX2_EMAC_LED_1000MB_OVERRIDE
|
7710 BNX2_EMAC_LED_100MB_OVERRIDE
|
7711 BNX2_EMAC_LED_10MB_OVERRIDE
|
7712 BNX2_EMAC_LED_TRAFFIC_OVERRIDE
|
7713 BNX2_EMAC_LED_TRAFFIC
);
7716 case ETHTOOL_ID_OFF
:
7717 BNX2_WR(bp
, BNX2_EMAC_LED
, BNX2_EMAC_LED_OVERRIDE
);
7720 case ETHTOOL_ID_INACTIVE
:
7721 BNX2_WR(bp
, BNX2_EMAC_LED
, 0);
7722 BNX2_WR(bp
, BNX2_MISC_CFG
, bp
->leds_save
);
7730 bnx2_set_features(struct net_device
*dev
, netdev_features_t features
)
7732 struct bnx2
*bp
= netdev_priv(dev
);
7734 /* TSO with VLAN tag won't work with current firmware */
7735 if (features
& NETIF_F_HW_VLAN_CTAG_TX
)
7736 dev
->vlan_features
|= (dev
->hw_features
& NETIF_F_ALL_TSO
);
7738 dev
->vlan_features
&= ~NETIF_F_ALL_TSO
;
7740 if ((!!(features
& NETIF_F_HW_VLAN_CTAG_RX
) !=
7741 !!(bp
->rx_mode
& BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG
)) &&
7742 netif_running(dev
)) {
7743 bnx2_netif_stop(bp
, false);
7744 dev
->features
= features
;
7745 bnx2_set_rx_mode(dev
);
7746 bnx2_fw_sync(bp
, BNX2_DRV_MSG_CODE_KEEP_VLAN_UPDATE
, 0, 1);
7747 bnx2_netif_start(bp
, false);
7754 static void bnx2_get_channels(struct net_device
*dev
,
7755 struct ethtool_channels
*channels
)
7757 struct bnx2
*bp
= netdev_priv(dev
);
7758 u32 max_rx_rings
= 1;
7759 u32 max_tx_rings
= 1;
7761 if ((bp
->flags
& BNX2_FLAG_MSIX_CAP
) && !disable_msi
) {
7762 max_rx_rings
= RX_MAX_RINGS
;
7763 max_tx_rings
= TX_MAX_RINGS
;
7766 channels
->max_rx
= max_rx_rings
;
7767 channels
->max_tx
= max_tx_rings
;
7768 channels
->max_other
= 0;
7769 channels
->max_combined
= 0;
7770 channels
->rx_count
= bp
->num_rx_rings
;
7771 channels
->tx_count
= bp
->num_tx_rings
;
7772 channels
->other_count
= 0;
7773 channels
->combined_count
= 0;
7776 static int bnx2_set_channels(struct net_device
*dev
,
7777 struct ethtool_channels
*channels
)
7779 struct bnx2
*bp
= netdev_priv(dev
);
7780 u32 max_rx_rings
= 1;
7781 u32 max_tx_rings
= 1;
7784 if ((bp
->flags
& BNX2_FLAG_MSIX_CAP
) && !disable_msi
) {
7785 max_rx_rings
= RX_MAX_RINGS
;
7786 max_tx_rings
= TX_MAX_RINGS
;
7788 if (channels
->rx_count
> max_rx_rings
||
7789 channels
->tx_count
> max_tx_rings
)
7792 bp
->num_req_rx_rings
= channels
->rx_count
;
7793 bp
->num_req_tx_rings
= channels
->tx_count
;
7795 if (netif_running(dev
))
7796 rc
= bnx2_change_ring_size(bp
, bp
->rx_ring_size
,
7797 bp
->tx_ring_size
, true);
7802 static const struct ethtool_ops bnx2_ethtool_ops
= {
7803 .get_settings
= bnx2_get_settings
,
7804 .set_settings
= bnx2_set_settings
,
7805 .get_drvinfo
= bnx2_get_drvinfo
,
7806 .get_regs_len
= bnx2_get_regs_len
,
7807 .get_regs
= bnx2_get_regs
,
7808 .get_wol
= bnx2_get_wol
,
7809 .set_wol
= bnx2_set_wol
,
7810 .nway_reset
= bnx2_nway_reset
,
7811 .get_link
= bnx2_get_link
,
7812 .get_eeprom_len
= bnx2_get_eeprom_len
,
7813 .get_eeprom
= bnx2_get_eeprom
,
7814 .set_eeprom
= bnx2_set_eeprom
,
7815 .get_coalesce
= bnx2_get_coalesce
,
7816 .set_coalesce
= bnx2_set_coalesce
,
7817 .get_ringparam
= bnx2_get_ringparam
,
7818 .set_ringparam
= bnx2_set_ringparam
,
7819 .get_pauseparam
= bnx2_get_pauseparam
,
7820 .set_pauseparam
= bnx2_set_pauseparam
,
7821 .self_test
= bnx2_self_test
,
7822 .get_strings
= bnx2_get_strings
,
7823 .set_phys_id
= bnx2_set_phys_id
,
7824 .get_ethtool_stats
= bnx2_get_ethtool_stats
,
7825 .get_sset_count
= bnx2_get_sset_count
,
7826 .get_channels
= bnx2_get_channels
,
7827 .set_channels
= bnx2_set_channels
,
7830 /* Called with rtnl_lock */
7832 bnx2_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
)
7834 struct mii_ioctl_data
*data
= if_mii(ifr
);
7835 struct bnx2
*bp
= netdev_priv(dev
);
7840 data
->phy_id
= bp
->phy_addr
;
7846 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
7849 if (!netif_running(dev
))
7852 spin_lock_bh(&bp
->phy_lock
);
7853 err
= bnx2_read_phy(bp
, data
->reg_num
& 0x1f, &mii_regval
);
7854 spin_unlock_bh(&bp
->phy_lock
);
7856 data
->val_out
= mii_regval
;
7862 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
7865 if (!netif_running(dev
))
7868 spin_lock_bh(&bp
->phy_lock
);
7869 err
= bnx2_write_phy(bp
, data
->reg_num
& 0x1f, data
->val_in
);
7870 spin_unlock_bh(&bp
->phy_lock
);
7881 /* Called with rtnl_lock */
7883 bnx2_change_mac_addr(struct net_device
*dev
, void *p
)
7885 struct sockaddr
*addr
= p
;
7886 struct bnx2
*bp
= netdev_priv(dev
);
7888 if (!is_valid_ether_addr(addr
->sa_data
))
7889 return -EADDRNOTAVAIL
;
7891 memcpy(dev
->dev_addr
, addr
->sa_data
, dev
->addr_len
);
7892 if (netif_running(dev
))
7893 bnx2_set_mac_addr(bp
, bp
->dev
->dev_addr
, 0);
7898 /* Called with rtnl_lock */
7900 bnx2_change_mtu(struct net_device
*dev
, int new_mtu
)
7902 struct bnx2
*bp
= netdev_priv(dev
);
7904 if (((new_mtu
+ ETH_HLEN
) > MAX_ETHERNET_JUMBO_PACKET_SIZE
) ||
7905 ((new_mtu
+ ETH_HLEN
) < MIN_ETHERNET_PACKET_SIZE
))
7909 return bnx2_change_ring_size(bp
, bp
->rx_ring_size
, bp
->tx_ring_size
,
7913 #ifdef CONFIG_NET_POLL_CONTROLLER
7915 poll_bnx2(struct net_device
*dev
)
7917 struct bnx2
*bp
= netdev_priv(dev
);
7920 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
7921 struct bnx2_irq
*irq
= &bp
->irq_tbl
[i
];
7923 disable_irq(irq
->vector
);
7924 irq
->handler(irq
->vector
, &bp
->bnx2_napi
[i
]);
7925 enable_irq(irq
->vector
);
7931 bnx2_get_5709_media(struct bnx2
*bp
)
7933 u32 val
= BNX2_RD(bp
, BNX2_MISC_DUAL_MEDIA_CTRL
);
7934 u32 bond_id
= val
& BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID
;
7937 if (bond_id
== BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_C
)
7939 else if (bond_id
== BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_S
) {
7940 bp
->phy_flags
|= BNX2_PHY_FLAG_SERDES
;
7944 if (val
& BNX2_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE
)
7945 strap
= (val
& BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL
) >> 21;
7947 strap
= (val
& BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP
) >> 8;
7949 if (bp
->func
== 0) {
7954 bp
->phy_flags
|= BNX2_PHY_FLAG_SERDES
;
7962 bp
->phy_flags
|= BNX2_PHY_FLAG_SERDES
;
7969 bnx2_get_pci_speed(struct bnx2
*bp
)
7973 reg
= BNX2_RD(bp
, BNX2_PCICFG_MISC_STATUS
);
7974 if (reg
& BNX2_PCICFG_MISC_STATUS_PCIX_DET
) {
7977 bp
->flags
|= BNX2_FLAG_PCIX
;
7979 clkreg
= BNX2_RD(bp
, BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS
);
7981 clkreg
&= BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET
;
7983 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ
:
7984 bp
->bus_speed_mhz
= 133;
7987 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ
:
7988 bp
->bus_speed_mhz
= 100;
7991 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ
:
7992 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ
:
7993 bp
->bus_speed_mhz
= 66;
7996 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ
:
7997 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ
:
7998 bp
->bus_speed_mhz
= 50;
8001 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW
:
8002 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ
:
8003 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ
:
8004 bp
->bus_speed_mhz
= 33;
8009 if (reg
& BNX2_PCICFG_MISC_STATUS_M66EN
)
8010 bp
->bus_speed_mhz
= 66;
8012 bp
->bus_speed_mhz
= 33;
8015 if (reg
& BNX2_PCICFG_MISC_STATUS_32BIT_DET
)
8016 bp
->flags
|= BNX2_FLAG_PCI_32BIT
;
8021 bnx2_read_vpd_fw_ver(struct bnx2
*bp
)
8025 unsigned int block_end
, rosize
, len
;
8027 #define BNX2_VPD_NVRAM_OFFSET 0x300
8028 #define BNX2_VPD_LEN 128
8029 #define BNX2_MAX_VER_SLEN 30
8031 data
= kmalloc(256, GFP_KERNEL
);
8035 rc
= bnx2_nvram_read(bp
, BNX2_VPD_NVRAM_OFFSET
, data
+ BNX2_VPD_LEN
,
8040 for (i
= 0; i
< BNX2_VPD_LEN
; i
+= 4) {
8041 data
[i
] = data
[i
+ BNX2_VPD_LEN
+ 3];
8042 data
[i
+ 1] = data
[i
+ BNX2_VPD_LEN
+ 2];
8043 data
[i
+ 2] = data
[i
+ BNX2_VPD_LEN
+ 1];
8044 data
[i
+ 3] = data
[i
+ BNX2_VPD_LEN
];
8047 i
= pci_vpd_find_tag(data
, 0, BNX2_VPD_LEN
, PCI_VPD_LRDT_RO_DATA
);
8051 rosize
= pci_vpd_lrdt_size(&data
[i
]);
8052 i
+= PCI_VPD_LRDT_TAG_SIZE
;
8053 block_end
= i
+ rosize
;
8055 if (block_end
> BNX2_VPD_LEN
)
8058 j
= pci_vpd_find_info_keyword(data
, i
, rosize
,
8059 PCI_VPD_RO_KEYWORD_MFR_ID
);
8063 len
= pci_vpd_info_field_size(&data
[j
]);
8065 j
+= PCI_VPD_INFO_FLD_HDR_SIZE
;
8066 if (j
+ len
> block_end
|| len
!= 4 ||
8067 memcmp(&data
[j
], "1028", 4))
8070 j
= pci_vpd_find_info_keyword(data
, i
, rosize
,
8071 PCI_VPD_RO_KEYWORD_VENDOR0
);
8075 len
= pci_vpd_info_field_size(&data
[j
]);
8077 j
+= PCI_VPD_INFO_FLD_HDR_SIZE
;
8078 if (j
+ len
> block_end
|| len
> BNX2_MAX_VER_SLEN
)
8081 memcpy(bp
->fw_version
, &data
[j
], len
);
8082 bp
->fw_version
[len
] = ' ';
8089 bnx2_init_board(struct pci_dev
*pdev
, struct net_device
*dev
)
8094 u64 dma_mask
, persist_dma_mask
;
8097 SET_NETDEV_DEV(dev
, &pdev
->dev
);
8098 bp
= netdev_priv(dev
);
8103 bp
->temp_stats_blk
=
8104 kzalloc(sizeof(struct statistics_block
), GFP_KERNEL
);
8106 if (bp
->temp_stats_blk
== NULL
) {
8111 /* enable device (incl. PCI PM wakeup), and bus-mastering */
8112 rc
= pci_enable_device(pdev
);
8114 dev_err(&pdev
->dev
, "Cannot enable PCI device, aborting\n");
8118 if (!(pci_resource_flags(pdev
, 0) & IORESOURCE_MEM
)) {
8120 "Cannot find PCI device base address, aborting\n");
8122 goto err_out_disable
;
8125 rc
= pci_request_regions(pdev
, DRV_MODULE_NAME
);
8127 dev_err(&pdev
->dev
, "Cannot obtain PCI resources, aborting\n");
8128 goto err_out_disable
;
8131 pci_set_master(pdev
);
8133 bp
->pm_cap
= pdev
->pm_cap
;
8134 if (bp
->pm_cap
== 0) {
8136 "Cannot find power management capability, aborting\n");
8138 goto err_out_release
;
8144 spin_lock_init(&bp
->phy_lock
);
8145 spin_lock_init(&bp
->indirect_lock
);
8147 mutex_init(&bp
->cnic_lock
);
8149 INIT_WORK(&bp
->reset_task
, bnx2_reset_task
);
8151 bp
->regview
= pci_iomap(pdev
, 0, MB_GET_CID_ADDR(TX_TSS_CID
+
8152 TX_MAX_TSS_RINGS
+ 1));
8154 dev_err(&pdev
->dev
, "Cannot map register space, aborting\n");
8156 goto err_out_release
;
8159 /* Configure byte swap and enable write to the reg_window registers.
8160 * Rely on CPU to do target byte swapping on big endian systems
8161 * The chip's target access swapping will not swap all accesses
8163 BNX2_WR(bp
, BNX2_PCICFG_MISC_CONFIG
,
8164 BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA
|
8165 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP
);
8167 bp
->chip_id
= BNX2_RD(bp
, BNX2_MISC_ID
);
8169 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
) {
8170 if (!pci_is_pcie(pdev
)) {
8171 dev_err(&pdev
->dev
, "Not PCIE, aborting\n");
8175 bp
->flags
|= BNX2_FLAG_PCIE
;
8176 if (BNX2_CHIP_REV(bp
) == BNX2_CHIP_REV_Ax
)
8177 bp
->flags
|= BNX2_FLAG_JUMBO_BROKEN
;
8179 /* AER (Advanced Error Reporting) hooks */
8180 err
= pci_enable_pcie_error_reporting(pdev
);
8182 bp
->flags
|= BNX2_FLAG_AER_ENABLED
;
8185 bp
->pcix_cap
= pci_find_capability(pdev
, PCI_CAP_ID_PCIX
);
8186 if (bp
->pcix_cap
== 0) {
8188 "Cannot find PCIX capability, aborting\n");
8192 bp
->flags
|= BNX2_FLAG_BROKEN_STATS
;
8195 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
&&
8196 BNX2_CHIP_REV(bp
) != BNX2_CHIP_REV_Ax
) {
8198 bp
->flags
|= BNX2_FLAG_MSIX_CAP
;
8201 if (BNX2_CHIP_ID(bp
) != BNX2_CHIP_ID_5706_A0
&&
8202 BNX2_CHIP_ID(bp
) != BNX2_CHIP_ID_5706_A1
) {
8204 bp
->flags
|= BNX2_FLAG_MSI_CAP
;
8207 /* 5708 cannot support DMA addresses > 40-bit. */
8208 if (BNX2_CHIP(bp
) == BNX2_CHIP_5708
)
8209 persist_dma_mask
= dma_mask
= DMA_BIT_MASK(40);
8211 persist_dma_mask
= dma_mask
= DMA_BIT_MASK(64);
8213 /* Configure DMA attributes. */
8214 if (pci_set_dma_mask(pdev
, dma_mask
) == 0) {
8215 dev
->features
|= NETIF_F_HIGHDMA
;
8216 rc
= pci_set_consistent_dma_mask(pdev
, persist_dma_mask
);
8219 "pci_set_consistent_dma_mask failed, aborting\n");
8222 } else if ((rc
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32))) != 0) {
8223 dev_err(&pdev
->dev
, "System does not support DMA, aborting\n");
8227 if (!(bp
->flags
& BNX2_FLAG_PCIE
))
8228 bnx2_get_pci_speed(bp
);
8230 /* 5706A0 may falsely detect SERR and PERR. */
8231 if (BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5706_A0
) {
8232 reg
= BNX2_RD(bp
, PCI_COMMAND
);
8233 reg
&= ~(PCI_COMMAND_SERR
| PCI_COMMAND_PARITY
);
8234 BNX2_WR(bp
, PCI_COMMAND
, reg
);
8235 } else if ((BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5706_A1
) &&
8236 !(bp
->flags
& BNX2_FLAG_PCIX
)) {
8239 "5706 A1 can only be used in a PCIX bus, aborting\n");
8243 bnx2_init_nvram(bp
);
8245 reg
= bnx2_reg_rd_ind(bp
, BNX2_SHM_HDR_SIGNATURE
);
8247 if (bnx2_reg_rd_ind(bp
, BNX2_MCP_TOE_ID
) & BNX2_MCP_TOE_ID_FUNCTION_ID
)
8250 if ((reg
& BNX2_SHM_HDR_SIGNATURE_SIG_MASK
) ==
8251 BNX2_SHM_HDR_SIGNATURE_SIG
) {
8252 u32 off
= bp
->func
<< 2;
8254 bp
->shmem_base
= bnx2_reg_rd_ind(bp
, BNX2_SHM_HDR_ADDR_0
+ off
);
8256 bp
->shmem_base
= HOST_VIEW_SHMEM_BASE
;
8258 /* Get the permanent MAC address. First we need to make sure the
8259 * firmware is actually running.
8261 reg
= bnx2_shmem_rd(bp
, BNX2_DEV_INFO_SIGNATURE
);
8263 if ((reg
& BNX2_DEV_INFO_SIGNATURE_MAGIC_MASK
) !=
8264 BNX2_DEV_INFO_SIGNATURE_MAGIC
) {
8265 dev_err(&pdev
->dev
, "Firmware not running, aborting\n");
8270 bnx2_read_vpd_fw_ver(bp
);
8272 j
= strlen(bp
->fw_version
);
8273 reg
= bnx2_shmem_rd(bp
, BNX2_DEV_INFO_BC_REV
);
8274 for (i
= 0; i
< 3 && j
< 24; i
++) {
8278 bp
->fw_version
[j
++] = 'b';
8279 bp
->fw_version
[j
++] = 'c';
8280 bp
->fw_version
[j
++] = ' ';
8282 num
= (u8
) (reg
>> (24 - (i
* 8)));
8283 for (k
= 100, skip0
= 1; k
>= 1; num
%= k
, k
/= 10) {
8284 if (num
>= k
|| !skip0
|| k
== 1) {
8285 bp
->fw_version
[j
++] = (num
/ k
) + '0';
8290 bp
->fw_version
[j
++] = '.';
8292 reg
= bnx2_shmem_rd(bp
, BNX2_PORT_FEATURE
);
8293 if (reg
& BNX2_PORT_FEATURE_WOL_ENABLED
)
8296 if (reg
& BNX2_PORT_FEATURE_ASF_ENABLED
) {
8297 bp
->flags
|= BNX2_FLAG_ASF_ENABLE
;
8299 for (i
= 0; i
< 30; i
++) {
8300 reg
= bnx2_shmem_rd(bp
, BNX2_BC_STATE_CONDITION
);
8301 if (reg
& BNX2_CONDITION_MFW_RUN_MASK
)
8306 reg
= bnx2_shmem_rd(bp
, BNX2_BC_STATE_CONDITION
);
8307 reg
&= BNX2_CONDITION_MFW_RUN_MASK
;
8308 if (reg
!= BNX2_CONDITION_MFW_RUN_UNKNOWN
&&
8309 reg
!= BNX2_CONDITION_MFW_RUN_NONE
) {
8310 u32 addr
= bnx2_shmem_rd(bp
, BNX2_MFW_VER_PTR
);
8313 bp
->fw_version
[j
++] = ' ';
8314 for (i
= 0; i
< 3 && j
< 28; i
++) {
8315 reg
= bnx2_reg_rd_ind(bp
, addr
+ i
* 4);
8316 reg
= be32_to_cpu(reg
);
8317 memcpy(&bp
->fw_version
[j
], ®
, 4);
8322 reg
= bnx2_shmem_rd(bp
, BNX2_PORT_HW_CFG_MAC_UPPER
);
8323 bp
->mac_addr
[0] = (u8
) (reg
>> 8);
8324 bp
->mac_addr
[1] = (u8
) reg
;
8326 reg
= bnx2_shmem_rd(bp
, BNX2_PORT_HW_CFG_MAC_LOWER
);
8327 bp
->mac_addr
[2] = (u8
) (reg
>> 24);
8328 bp
->mac_addr
[3] = (u8
) (reg
>> 16);
8329 bp
->mac_addr
[4] = (u8
) (reg
>> 8);
8330 bp
->mac_addr
[5] = (u8
) reg
;
8332 bp
->tx_ring_size
= BNX2_MAX_TX_DESC_CNT
;
8333 bnx2_set_rx_ring_size(bp
, 255);
8335 bp
->tx_quick_cons_trip_int
= 2;
8336 bp
->tx_quick_cons_trip
= 20;
8337 bp
->tx_ticks_int
= 18;
8340 bp
->rx_quick_cons_trip_int
= 2;
8341 bp
->rx_quick_cons_trip
= 12;
8342 bp
->rx_ticks_int
= 18;
8345 bp
->stats_ticks
= USEC_PER_SEC
& BNX2_HC_STATS_TICKS_HC_STAT_TICKS
;
8347 bp
->current_interval
= BNX2_TIMER_INTERVAL
;
8351 /* allocate stats_blk */
8352 rc
= bnx2_alloc_stats_blk(dev
);
8356 /* Disable WOL support if we are running on a SERDES chip. */
8357 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
)
8358 bnx2_get_5709_media(bp
);
8359 else if (BNX2_CHIP_BOND(bp
) & BNX2_CHIP_BOND_SERDES_BIT
)
8360 bp
->phy_flags
|= BNX2_PHY_FLAG_SERDES
;
8362 bp
->phy_port
= PORT_TP
;
8363 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
8364 bp
->phy_port
= PORT_FIBRE
;
8365 reg
= bnx2_shmem_rd(bp
, BNX2_SHARED_HW_CFG_CONFIG
);
8366 if (!(reg
& BNX2_SHARED_HW_CFG_GIG_LINK_ON_VAUX
)) {
8367 bp
->flags
|= BNX2_FLAG_NO_WOL
;
8370 if (BNX2_CHIP(bp
) == BNX2_CHIP_5706
) {
8371 /* Don't do parallel detect on this board because of
8372 * some board problems. The link will not go down
8373 * if we do parallel detect.
8375 if (pdev
->subsystem_vendor
== PCI_VENDOR_ID_HP
&&
8376 pdev
->subsystem_device
== 0x310c)
8377 bp
->phy_flags
|= BNX2_PHY_FLAG_NO_PARALLEL
;
8380 if (reg
& BNX2_SHARED_HW_CFG_PHY_2_5G
)
8381 bp
->phy_flags
|= BNX2_PHY_FLAG_2_5G_CAPABLE
;
8383 } else if (BNX2_CHIP(bp
) == BNX2_CHIP_5706
||
8384 BNX2_CHIP(bp
) == BNX2_CHIP_5708
)
8385 bp
->phy_flags
|= BNX2_PHY_FLAG_CRC_FIX
;
8386 else if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
&&
8387 (BNX2_CHIP_REV(bp
) == BNX2_CHIP_REV_Ax
||
8388 BNX2_CHIP_REV(bp
) == BNX2_CHIP_REV_Bx
))
8389 bp
->phy_flags
|= BNX2_PHY_FLAG_DIS_EARLY_DAC
;
8391 bnx2_init_fw_cap(bp
);
8393 if ((BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5708_A0
) ||
8394 (BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5708_B0
) ||
8395 (BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5708_B1
) ||
8396 !(BNX2_RD(bp
, BNX2_PCI_CONFIG_3
) & BNX2_PCI_CONFIG_3_VAUX_PRESET
)) {
8397 bp
->flags
|= BNX2_FLAG_NO_WOL
;
8401 if (bp
->flags
& BNX2_FLAG_NO_WOL
)
8402 device_set_wakeup_capable(&bp
->pdev
->dev
, false);
8404 device_set_wakeup_enable(&bp
->pdev
->dev
, bp
->wol
);
8406 if (BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5706_A0
) {
8407 bp
->tx_quick_cons_trip_int
=
8408 bp
->tx_quick_cons_trip
;
8409 bp
->tx_ticks_int
= bp
->tx_ticks
;
8410 bp
->rx_quick_cons_trip_int
=
8411 bp
->rx_quick_cons_trip
;
8412 bp
->rx_ticks_int
= bp
->rx_ticks
;
8413 bp
->comp_prod_trip_int
= bp
->comp_prod_trip
;
8414 bp
->com_ticks_int
= bp
->com_ticks
;
8415 bp
->cmd_ticks_int
= bp
->cmd_ticks
;
8418 /* Disable MSI on 5706 if AMD 8132 bridge is found.
8420 * MSI is defined to be 32-bit write. The 5706 does 64-bit MSI writes
8421 * with byte enables disabled on the unused 32-bit word. This is legal
8422 * but causes problems on the AMD 8132 which will eventually stop
8423 * responding after a while.
8425 * AMD believes this incompatibility is unique to the 5706, and
8426 * prefers to locally disable MSI rather than globally disabling it.
8428 if (BNX2_CHIP(bp
) == BNX2_CHIP_5706
&& disable_msi
== 0) {
8429 struct pci_dev
*amd_8132
= NULL
;
8431 while ((amd_8132
= pci_get_device(PCI_VENDOR_ID_AMD
,
8432 PCI_DEVICE_ID_AMD_8132_BRIDGE
,
8435 if (amd_8132
->revision
>= 0x10 &&
8436 amd_8132
->revision
<= 0x13) {
8438 pci_dev_put(amd_8132
);
8444 bnx2_set_default_link(bp
);
8445 bp
->req_flow_ctrl
= FLOW_CTRL_RX
| FLOW_CTRL_TX
;
8447 init_timer(&bp
->timer
);
8448 bp
->timer
.expires
= RUN_AT(BNX2_TIMER_INTERVAL
);
8449 bp
->timer
.data
= (unsigned long) bp
;
8450 bp
->timer
.function
= bnx2_timer
;
8453 if (bnx2_shmem_rd(bp
, BNX2_ISCSI_INITIATOR
) & BNX2_ISCSI_INITIATOR_EN
)
8454 bp
->cnic_eth_dev
.max_iscsi_conn
=
8455 (bnx2_shmem_rd(bp
, BNX2_ISCSI_MAX_CONN
) &
8456 BNX2_ISCSI_MAX_CONN_MASK
) >> BNX2_ISCSI_MAX_CONN_SHIFT
;
8457 bp
->cnic_probe
= bnx2_cnic_probe
;
8459 pci_save_state(pdev
);
8464 if (bp
->flags
& BNX2_FLAG_AER_ENABLED
) {
8465 pci_disable_pcie_error_reporting(pdev
);
8466 bp
->flags
&= ~BNX2_FLAG_AER_ENABLED
;
8469 pci_iounmap(pdev
, bp
->regview
);
8473 pci_release_regions(pdev
);
8476 pci_disable_device(pdev
);
8479 kfree(bp
->temp_stats_blk
);
8485 bnx2_bus_string(struct bnx2
*bp
, char *str
)
8489 if (bp
->flags
& BNX2_FLAG_PCIE
) {
8490 s
+= sprintf(s
, "PCI Express");
8492 s
+= sprintf(s
, "PCI");
8493 if (bp
->flags
& BNX2_FLAG_PCIX
)
8494 s
+= sprintf(s
, "-X");
8495 if (bp
->flags
& BNX2_FLAG_PCI_32BIT
)
8496 s
+= sprintf(s
, " 32-bit");
8498 s
+= sprintf(s
, " 64-bit");
8499 s
+= sprintf(s
, " %dMHz", bp
->bus_speed_mhz
);
8505 bnx2_del_napi(struct bnx2
*bp
)
8509 for (i
= 0; i
< bp
->irq_nvecs
; i
++)
8510 netif_napi_del(&bp
->bnx2_napi
[i
].napi
);
8514 bnx2_init_napi(struct bnx2
*bp
)
8518 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
8519 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
8520 int (*poll
)(struct napi_struct
*, int);
8525 poll
= bnx2_poll_msix
;
8527 netif_napi_add(bp
->dev
, &bp
->bnx2_napi
[i
].napi
, poll
, 64);
8532 static const struct net_device_ops bnx2_netdev_ops
= {
8533 .ndo_open
= bnx2_open
,
8534 .ndo_start_xmit
= bnx2_start_xmit
,
8535 .ndo_stop
= bnx2_close
,
8536 .ndo_get_stats64
= bnx2_get_stats64
,
8537 .ndo_set_rx_mode
= bnx2_set_rx_mode
,
8538 .ndo_do_ioctl
= bnx2_ioctl
,
8539 .ndo_validate_addr
= eth_validate_addr
,
8540 .ndo_set_mac_address
= bnx2_change_mac_addr
,
8541 .ndo_change_mtu
= bnx2_change_mtu
,
8542 .ndo_set_features
= bnx2_set_features
,
8543 .ndo_tx_timeout
= bnx2_tx_timeout
,
8544 #ifdef CONFIG_NET_POLL_CONTROLLER
8545 .ndo_poll_controller
= poll_bnx2
,
8550 bnx2_init_one(struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
8552 static int version_printed
= 0;
8553 struct net_device
*dev
;
8558 if (version_printed
++ == 0)
8559 pr_info("%s", version
);
8561 /* dev zeroed in init_etherdev */
8562 dev
= alloc_etherdev_mq(sizeof(*bp
), TX_MAX_RINGS
);
8566 rc
= bnx2_init_board(pdev
, dev
);
8570 dev
->netdev_ops
= &bnx2_netdev_ops
;
8571 dev
->watchdog_timeo
= TX_TIMEOUT
;
8572 dev
->ethtool_ops
= &bnx2_ethtool_ops
;
8574 bp
= netdev_priv(dev
);
8576 pci_set_drvdata(pdev
, dev
);
8578 memcpy(dev
->dev_addr
, bp
->mac_addr
, ETH_ALEN
);
8580 dev
->hw_features
= NETIF_F_IP_CSUM
| NETIF_F_SG
|
8581 NETIF_F_TSO
| NETIF_F_TSO_ECN
|
8582 NETIF_F_RXHASH
| NETIF_F_RXCSUM
;
8584 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
)
8585 dev
->hw_features
|= NETIF_F_IPV6_CSUM
| NETIF_F_TSO6
;
8587 dev
->vlan_features
= dev
->hw_features
;
8588 dev
->hw_features
|= NETIF_F_HW_VLAN_CTAG_TX
| NETIF_F_HW_VLAN_CTAG_RX
;
8589 dev
->features
|= dev
->hw_features
;
8590 dev
->priv_flags
|= IFF_UNICAST_FLT
;
8592 if (!(bp
->flags
& BNX2_FLAG_CAN_KEEP_VLAN
))
8593 dev
->hw_features
&= ~NETIF_F_HW_VLAN_CTAG_RX
;
8595 if ((rc
= register_netdev(dev
))) {
8596 dev_err(&pdev
->dev
, "Cannot register net device\n");
8600 netdev_info(dev
, "%s (%c%d) %s found at mem %lx, IRQ %d, "
8601 "node addr %pM\n", board_info
[ent
->driver_data
].name
,
8602 ((BNX2_CHIP_ID(bp
) & 0xf000) >> 12) + 'A',
8603 ((BNX2_CHIP_ID(bp
) & 0x0ff0) >> 4),
8604 bnx2_bus_string(bp
, str
), (long)pci_resource_start(pdev
, 0),
8605 pdev
->irq
, dev
->dev_addr
);
8610 pci_iounmap(pdev
, bp
->regview
);
8611 pci_release_regions(pdev
);
8612 pci_disable_device(pdev
);
8614 bnx2_free_stats_blk(dev
);
8620 bnx2_remove_one(struct pci_dev
*pdev
)
8622 struct net_device
*dev
= pci_get_drvdata(pdev
);
8623 struct bnx2
*bp
= netdev_priv(dev
);
8625 unregister_netdev(dev
);
8627 del_timer_sync(&bp
->timer
);
8628 cancel_work_sync(&bp
->reset_task
);
8630 pci_iounmap(bp
->pdev
, bp
->regview
);
8632 bnx2_free_stats_blk(dev
);
8633 kfree(bp
->temp_stats_blk
);
8635 if (bp
->flags
& BNX2_FLAG_AER_ENABLED
) {
8636 pci_disable_pcie_error_reporting(pdev
);
8637 bp
->flags
&= ~BNX2_FLAG_AER_ENABLED
;
8640 bnx2_release_firmware(bp
);
8644 pci_release_regions(pdev
);
8645 pci_disable_device(pdev
);
8648 #ifdef CONFIG_PM_SLEEP
8650 bnx2_suspend(struct device
*device
)
8652 struct pci_dev
*pdev
= to_pci_dev(device
);
8653 struct net_device
*dev
= pci_get_drvdata(pdev
);
8654 struct bnx2
*bp
= netdev_priv(dev
);
8656 if (netif_running(dev
)) {
8657 cancel_work_sync(&bp
->reset_task
);
8658 bnx2_netif_stop(bp
, true);
8659 netif_device_detach(dev
);
8660 del_timer_sync(&bp
->timer
);
8661 bnx2_shutdown_chip(bp
);
8662 __bnx2_free_irq(bp
);
8670 bnx2_resume(struct device
*device
)
8672 struct pci_dev
*pdev
= to_pci_dev(device
);
8673 struct net_device
*dev
= pci_get_drvdata(pdev
);
8674 struct bnx2
*bp
= netdev_priv(dev
);
8676 if (!netif_running(dev
))
8679 bnx2_set_power_state(bp
, PCI_D0
);
8680 netif_device_attach(dev
);
8681 bnx2_request_irq(bp
);
8682 bnx2_init_nic(bp
, 1);
8683 bnx2_netif_start(bp
, true);
8687 static SIMPLE_DEV_PM_OPS(bnx2_pm_ops
, bnx2_suspend
, bnx2_resume
);
8688 #define BNX2_PM_OPS (&bnx2_pm_ops)
8692 #define BNX2_PM_OPS NULL
8694 #endif /* CONFIG_PM_SLEEP */
8696 * bnx2_io_error_detected - called when PCI error is detected
8697 * @pdev: Pointer to PCI device
8698 * @state: The current pci connection state
8700 * This function is called after a PCI bus error affecting
8701 * this device has been detected.
8703 static pci_ers_result_t
bnx2_io_error_detected(struct pci_dev
*pdev
,
8704 pci_channel_state_t state
)
8706 struct net_device
*dev
= pci_get_drvdata(pdev
);
8707 struct bnx2
*bp
= netdev_priv(dev
);
8710 netif_device_detach(dev
);
8712 if (state
== pci_channel_io_perm_failure
) {
8714 return PCI_ERS_RESULT_DISCONNECT
;
8717 if (netif_running(dev
)) {
8718 bnx2_netif_stop(bp
, true);
8719 del_timer_sync(&bp
->timer
);
8720 bnx2_reset_nic(bp
, BNX2_DRV_MSG_CODE_RESET
);
8723 pci_disable_device(pdev
);
8726 /* Request a slot slot reset. */
8727 return PCI_ERS_RESULT_NEED_RESET
;
8731 * bnx2_io_slot_reset - called after the pci bus has been reset.
8732 * @pdev: Pointer to PCI device
8734 * Restart the card from scratch, as if from a cold-boot.
8736 static pci_ers_result_t
bnx2_io_slot_reset(struct pci_dev
*pdev
)
8738 struct net_device
*dev
= pci_get_drvdata(pdev
);
8739 struct bnx2
*bp
= netdev_priv(dev
);
8740 pci_ers_result_t result
= PCI_ERS_RESULT_DISCONNECT
;
8744 if (pci_enable_device(pdev
)) {
8746 "Cannot re-enable PCI device after reset\n");
8748 pci_set_master(pdev
);
8749 pci_restore_state(pdev
);
8750 pci_save_state(pdev
);
8752 if (netif_running(dev
))
8753 err
= bnx2_init_nic(bp
, 1);
8756 result
= PCI_ERS_RESULT_RECOVERED
;
8759 if (result
!= PCI_ERS_RESULT_RECOVERED
&& netif_running(dev
)) {
8760 bnx2_napi_enable(bp
);
8765 if (!(bp
->flags
& BNX2_FLAG_AER_ENABLED
))
8768 err
= pci_cleanup_aer_uncorrect_error_status(pdev
);
8771 "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
8772 err
); /* non-fatal, continue */
8779 * bnx2_io_resume - called when traffic can start flowing again.
8780 * @pdev: Pointer to PCI device
8782 * This callback is called when the error recovery driver tells us that
8783 * its OK to resume normal operation.
8785 static void bnx2_io_resume(struct pci_dev
*pdev
)
8787 struct net_device
*dev
= pci_get_drvdata(pdev
);
8788 struct bnx2
*bp
= netdev_priv(dev
);
8791 if (netif_running(dev
))
8792 bnx2_netif_start(bp
, true);
8794 netif_device_attach(dev
);
8798 static void bnx2_shutdown(struct pci_dev
*pdev
)
8800 struct net_device
*dev
= pci_get_drvdata(pdev
);
8806 bp
= netdev_priv(dev
);
8811 if (netif_running(dev
))
8814 if (system_state
== SYSTEM_POWER_OFF
)
8815 bnx2_set_power_state(bp
, PCI_D3hot
);
8820 static const struct pci_error_handlers bnx2_err_handler
= {
8821 .error_detected
= bnx2_io_error_detected
,
8822 .slot_reset
= bnx2_io_slot_reset
,
8823 .resume
= bnx2_io_resume
,
8826 static struct pci_driver bnx2_pci_driver
= {
8827 .name
= DRV_MODULE_NAME
,
8828 .id_table
= bnx2_pci_tbl
,
8829 .probe
= bnx2_init_one
,
8830 .remove
= bnx2_remove_one
,
8831 .driver
.pm
= BNX2_PM_OPS
,
8832 .err_handler
= &bnx2_err_handler
,
8833 .shutdown
= bnx2_shutdown
,
8836 module_pci_driver(bnx2_pci_driver
);