1 /* bnx2x_sriov.c: QLogic Everest network driver.
3 * Copyright 2009-2013 Broadcom Corporation
4 * Copyright 2014 QLogic Corporation
7 * Unless you and QLogic execute a separate written software license
8 * agreement governing use of this software, this software is licensed to you
9 * under the terms of the GNU General Public License version 2, available
10 * at http://www.gnu.org/licenses/old-licenses/gpl-2.0.html (the "GPL").
12 * Notwithstanding the above, under no circumstances may you combine this
13 * software in any way with any other QLogic software provided under a
14 * license other than the GPL, without QLogic's express prior written
17 * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
18 * Written by: Shmulik Ravid
19 * Ariel Elior <ariel.elior@qlogic.com>
23 #include "bnx2x_init.h"
24 #include "bnx2x_cmn.h"
26 #include <linux/crc32.h>
27 #include <linux/if_vlan.h>
29 static int bnx2x_vf_op_prep(struct bnx2x
*bp
, int vfidx
,
30 struct bnx2x_virtf
**vf
,
31 struct pf_vf_bulletin_content
**bulletin
,
34 /* General service functions */
35 static void storm_memset_vf_to_pf(struct bnx2x
*bp
, u16 abs_fid
,
38 REG_WR8(bp
, BAR_XSTRORM_INTMEM
+ XSTORM_VF_TO_PF_OFFSET(abs_fid
),
40 REG_WR8(bp
, BAR_CSTRORM_INTMEM
+ CSTORM_VF_TO_PF_OFFSET(abs_fid
),
42 REG_WR8(bp
, BAR_TSTRORM_INTMEM
+ TSTORM_VF_TO_PF_OFFSET(abs_fid
),
44 REG_WR8(bp
, BAR_USTRORM_INTMEM
+ USTORM_VF_TO_PF_OFFSET(abs_fid
),
48 static void storm_memset_func_en(struct bnx2x
*bp
, u16 abs_fid
,
51 REG_WR8(bp
, BAR_XSTRORM_INTMEM
+ XSTORM_FUNC_EN_OFFSET(abs_fid
),
53 REG_WR8(bp
, BAR_CSTRORM_INTMEM
+ CSTORM_FUNC_EN_OFFSET(abs_fid
),
55 REG_WR8(bp
, BAR_TSTRORM_INTMEM
+ TSTORM_FUNC_EN_OFFSET(abs_fid
),
57 REG_WR8(bp
, BAR_USTRORM_INTMEM
+ USTORM_FUNC_EN_OFFSET(abs_fid
),
61 int bnx2x_vf_idx_by_abs_fid(struct bnx2x
*bp
, u16 abs_vfid
)
66 if (bnx2x_vf(bp
, idx
, abs_vfid
) == abs_vfid
)
72 struct bnx2x_virtf
*bnx2x_vf_by_abs_fid(struct bnx2x
*bp
, u16 abs_vfid
)
74 u16 idx
= (u16
)bnx2x_vf_idx_by_abs_fid(bp
, abs_vfid
);
75 return (idx
< BNX2X_NR_VIRTFN(bp
)) ? BP_VF(bp
, idx
) : NULL
;
78 static void bnx2x_vf_igu_ack_sb(struct bnx2x
*bp
, struct bnx2x_virtf
*vf
,
79 u8 igu_sb_id
, u8 segment
, u16 index
, u8 op
,
82 /* acking a VF sb through the PF - use the GRC */
84 u32 igu_addr_data
= IGU_REG_COMMAND_REG_32LSB_DATA
;
85 u32 igu_addr_ctl
= IGU_REG_COMMAND_REG_CTRL
;
86 u32 func_encode
= vf
->abs_vfid
;
87 u32 addr_encode
= IGU_CMD_E2_PROD_UPD_BASE
+ igu_sb_id
;
88 struct igu_regular cmd_data
= {0};
90 cmd_data
.sb_id_and_flags
=
91 ((index
<< IGU_REGULAR_SB_INDEX_SHIFT
) |
92 (segment
<< IGU_REGULAR_SEGMENT_ACCESS_SHIFT
) |
93 (update
<< IGU_REGULAR_BUPDATE_SHIFT
) |
94 (op
<< IGU_REGULAR_ENABLE_INT_SHIFT
));
96 ctl
= addr_encode
<< IGU_CTRL_REG_ADDRESS_SHIFT
|
97 func_encode
<< IGU_CTRL_REG_FID_SHIFT
|
98 IGU_CTRL_CMD_TYPE_WR
<< IGU_CTRL_REG_TYPE_SHIFT
;
100 DP(NETIF_MSG_HW
, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
101 cmd_data
.sb_id_and_flags
, igu_addr_data
);
102 REG_WR(bp
, igu_addr_data
, cmd_data
.sb_id_and_flags
);
106 DP(NETIF_MSG_HW
, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
108 REG_WR(bp
, igu_addr_ctl
, ctl
);
113 static bool bnx2x_validate_vf_sp_objs(struct bnx2x
*bp
,
114 struct bnx2x_virtf
*vf
,
117 if (!bnx2x_leading_vfq(vf
, sp_initialized
)) {
119 BNX2X_ERR("Slowpath objects not yet initialized!\n");
121 DP(BNX2X_MSG_IOV
, "Slowpath objects not yet initialized!\n");
127 /* VFOP operations states */
128 void bnx2x_vfop_qctor_dump_tx(struct bnx2x
*bp
, struct bnx2x_virtf
*vf
,
129 struct bnx2x_queue_init_params
*init_params
,
130 struct bnx2x_queue_setup_params
*setup_params
,
131 u16 q_idx
, u16 sb_idx
)
134 "VF[%d] Q_SETUP: txq[%d]-- vfsb=%d, sb-index=%d, hc-rate=%d, flags=0x%lx, traffic-type=%d",
138 init_params
->tx
.sb_cq_index
,
139 init_params
->tx
.hc_rate
,
141 setup_params
->txq_params
.traffic_type
);
144 void bnx2x_vfop_qctor_dump_rx(struct bnx2x
*bp
, struct bnx2x_virtf
*vf
,
145 struct bnx2x_queue_init_params
*init_params
,
146 struct bnx2x_queue_setup_params
*setup_params
,
147 u16 q_idx
, u16 sb_idx
)
149 struct bnx2x_rxq_setup_params
*rxq_params
= &setup_params
->rxq_params
;
151 DP(BNX2X_MSG_IOV
, "VF[%d] Q_SETUP: rxq[%d]-- vfsb=%d, sb-index=%d, hc-rate=%d, mtu=%d, buf-size=%d\n"
152 "sge-size=%d, max_sge_pkt=%d, tpa-agg-size=%d, flags=0x%lx, drop-flags=0x%x, cache-log=%d\n",
156 init_params
->rx
.sb_cq_index
,
157 init_params
->rx
.hc_rate
,
158 setup_params
->gen_params
.mtu
,
160 rxq_params
->sge_buf_sz
,
161 rxq_params
->max_sges_pkt
,
162 rxq_params
->tpa_agg_sz
,
164 rxq_params
->drop_flags
,
165 rxq_params
->cache_line_log
);
168 void bnx2x_vfop_qctor_prep(struct bnx2x
*bp
,
169 struct bnx2x_virtf
*vf
,
170 struct bnx2x_vf_queue
*q
,
171 struct bnx2x_vf_queue_construct_params
*p
,
172 unsigned long q_type
)
174 struct bnx2x_queue_init_params
*init_p
= &p
->qstate
.params
.init
;
175 struct bnx2x_queue_setup_params
*setup_p
= &p
->prep_qsetup
;
179 /* Enable host coalescing in the transition to INIT state */
180 if (test_bit(BNX2X_Q_FLG_HC
, &init_p
->rx
.flags
))
181 __set_bit(BNX2X_Q_FLG_HC_EN
, &init_p
->rx
.flags
);
183 if (test_bit(BNX2X_Q_FLG_HC
, &init_p
->tx
.flags
))
184 __set_bit(BNX2X_Q_FLG_HC_EN
, &init_p
->tx
.flags
);
187 init_p
->rx
.fw_sb_id
= vf_igu_sb(vf
, q
->sb_idx
);
188 init_p
->tx
.fw_sb_id
= vf_igu_sb(vf
, q
->sb_idx
);
191 init_p
->cxts
[0] = q
->cxt
;
195 /* Setup-op general parameters */
196 setup_p
->gen_params
.spcl_id
= vf
->sp_cl_id
;
197 setup_p
->gen_params
.stat_id
= vfq_stat_id(vf
, q
);
198 setup_p
->gen_params
.fp_hsi
= vf
->fp_hsi
;
201 * collect statistics, zero statistics, local-switching, security,
202 * OV for Flex10, RSS and MCAST for leading
204 if (test_bit(BNX2X_Q_FLG_STATS
, &setup_p
->flags
))
205 __set_bit(BNX2X_Q_FLG_ZERO_STATS
, &setup_p
->flags
);
207 /* for VFs, enable tx switching, bd coherency, and mac address
210 __set_bit(BNX2X_Q_FLG_TX_SWITCH
, &setup_p
->flags
);
211 __set_bit(BNX2X_Q_FLG_TX_SEC
, &setup_p
->flags
);
212 __set_bit(BNX2X_Q_FLG_ANTI_SPOOF
, &setup_p
->flags
);
214 /* Setup-op rx parameters */
215 if (test_bit(BNX2X_Q_TYPE_HAS_RX
, &q_type
)) {
216 struct bnx2x_rxq_setup_params
*rxq_p
= &setup_p
->rxq_params
;
218 rxq_p
->cl_qzone_id
= vfq_qzone_id(vf
, q
);
219 rxq_p
->fw_sb_id
= vf_igu_sb(vf
, q
->sb_idx
);
220 rxq_p
->rss_engine_id
= FW_VF_HANDLE(vf
->abs_vfid
);
222 if (test_bit(BNX2X_Q_FLG_TPA
, &setup_p
->flags
))
223 rxq_p
->max_tpa_queues
= BNX2X_VF_MAX_TPA_AGG_QUEUES
;
226 /* Setup-op tx parameters */
227 if (test_bit(BNX2X_Q_TYPE_HAS_TX
, &q_type
)) {
228 setup_p
->txq_params
.tss_leading_cl_id
= vf
->leading_rss
;
229 setup_p
->txq_params
.fw_sb_id
= vf_igu_sb(vf
, q
->sb_idx
);
233 static int bnx2x_vf_queue_create(struct bnx2x
*bp
,
234 struct bnx2x_virtf
*vf
, int qid
,
235 struct bnx2x_vf_queue_construct_params
*qctor
)
237 struct bnx2x_queue_state_params
*q_params
;
240 DP(BNX2X_MSG_IOV
, "vf[%d:%d]\n", vf
->abs_vfid
, qid
);
242 /* Prepare ramrod information */
243 q_params
= &qctor
->qstate
;
244 q_params
->q_obj
= &bnx2x_vfq(vf
, qid
, sp_obj
);
245 set_bit(RAMROD_COMP_WAIT
, &q_params
->ramrod_flags
);
247 if (bnx2x_get_q_logical_state(bp
, q_params
->q_obj
) ==
248 BNX2X_Q_LOGICAL_STATE_ACTIVE
) {
249 DP(BNX2X_MSG_IOV
, "queue was already up. Aborting gracefully\n");
253 /* Run Queue 'construction' ramrods */
254 q_params
->cmd
= BNX2X_Q_CMD_INIT
;
255 rc
= bnx2x_queue_state_change(bp
, q_params
);
259 memcpy(&q_params
->params
.setup
, &qctor
->prep_qsetup
,
260 sizeof(struct bnx2x_queue_setup_params
));
261 q_params
->cmd
= BNX2X_Q_CMD_SETUP
;
262 rc
= bnx2x_queue_state_change(bp
, q_params
);
266 /* enable interrupts */
267 bnx2x_vf_igu_ack_sb(bp
, vf
, vf_igu_sb(vf
, bnx2x_vfq(vf
, qid
, sb_idx
)),
268 USTORM_ID
, 0, IGU_INT_ENABLE
, 0);
273 static int bnx2x_vf_queue_destroy(struct bnx2x
*bp
, struct bnx2x_virtf
*vf
,
276 enum bnx2x_queue_cmd cmds
[] = {BNX2X_Q_CMD_HALT
,
277 BNX2X_Q_CMD_TERMINATE
,
278 BNX2X_Q_CMD_CFC_DEL
};
279 struct bnx2x_queue_state_params q_params
;
282 DP(BNX2X_MSG_IOV
, "vf[%d]\n", vf
->abs_vfid
);
284 /* Prepare ramrod information */
285 memset(&q_params
, 0, sizeof(struct bnx2x_queue_state_params
));
286 q_params
.q_obj
= &bnx2x_vfq(vf
, qid
, sp_obj
);
287 set_bit(RAMROD_COMP_WAIT
, &q_params
.ramrod_flags
);
289 if (bnx2x_get_q_logical_state(bp
, q_params
.q_obj
) ==
290 BNX2X_Q_LOGICAL_STATE_STOPPED
) {
291 DP(BNX2X_MSG_IOV
, "queue was already stopped. Aborting gracefully\n");
295 /* Run Queue 'destruction' ramrods */
296 for (i
= 0; i
< ARRAY_SIZE(cmds
); i
++) {
297 q_params
.cmd
= cmds
[i
];
298 rc
= bnx2x_queue_state_change(bp
, &q_params
);
300 BNX2X_ERR("Failed to run Queue command %d\n", cmds
[i
]);
306 if (bnx2x_vfq(vf
, qid
, cxt
)) {
307 bnx2x_vfq(vf
, qid
, cxt
)->ustorm_ag_context
.cdu_usage
= 0;
308 bnx2x_vfq(vf
, qid
, cxt
)->xstorm_ag_context
.cdu_reserved
= 0;
315 bnx2x_vf_set_igu_info(struct bnx2x
*bp
, u8 igu_sb_id
, u8 abs_vfid
)
317 struct bnx2x_virtf
*vf
= bnx2x_vf_by_abs_fid(bp
, abs_vfid
);
319 /* the first igu entry belonging to VFs of this PF */
320 if (!BP_VFDB(bp
)->first_vf_igu_entry
)
321 BP_VFDB(bp
)->first_vf_igu_entry
= igu_sb_id
;
323 /* the first igu entry belonging to this VF */
324 if (!vf_sb_count(vf
))
325 vf
->igu_base_id
= igu_sb_id
;
330 BP_VFDB(bp
)->vf_sbs_pool
++;
333 static inline void bnx2x_vf_vlan_credit(struct bnx2x
*bp
,
334 struct bnx2x_vlan_mac_obj
*obj
,
337 struct list_head
*pos
;
341 read_lock
= bnx2x_vlan_mac_h_read_lock(bp
, obj
);
343 DP(BNX2X_MSG_SP
, "Failed to take vlan mac read head; continuing anyway\n");
345 list_for_each(pos
, &obj
->head
)
349 bnx2x_vlan_mac_h_read_unlock(bp
, obj
);
351 atomic_set(counter
, cnt
);
354 static int bnx2x_vf_vlan_mac_clear(struct bnx2x
*bp
, struct bnx2x_virtf
*vf
,
355 int qid
, bool drv_only
, int type
)
357 struct bnx2x_vlan_mac_ramrod_params ramrod
;
360 DP(BNX2X_MSG_IOV
, "vf[%d] - deleting all %s\n", vf
->abs_vfid
,
361 (type
== BNX2X_VF_FILTER_VLAN_MAC
) ? "VLAN-MACs" :
362 (type
== BNX2X_VF_FILTER_MAC
) ? "MACs" : "VLANs");
364 /* Prepare ramrod params */
365 memset(&ramrod
, 0, sizeof(struct bnx2x_vlan_mac_ramrod_params
));
366 if (type
== BNX2X_VF_FILTER_VLAN_MAC
) {
367 set_bit(BNX2X_ETH_MAC
, &ramrod
.user_req
.vlan_mac_flags
);
368 ramrod
.vlan_mac_obj
= &bnx2x_vfq(vf
, qid
, vlan_mac_obj
);
369 } else if (type
== BNX2X_VF_FILTER_MAC
) {
370 set_bit(BNX2X_ETH_MAC
, &ramrod
.user_req
.vlan_mac_flags
);
371 ramrod
.vlan_mac_obj
= &bnx2x_vfq(vf
, qid
, mac_obj
);
373 ramrod
.vlan_mac_obj
= &bnx2x_vfq(vf
, qid
, vlan_obj
);
375 ramrod
.user_req
.cmd
= BNX2X_VLAN_MAC_DEL
;
377 set_bit(RAMROD_EXEC
, &ramrod
.ramrod_flags
);
379 set_bit(RAMROD_DRV_CLR_ONLY
, &ramrod
.ramrod_flags
);
381 set_bit(RAMROD_COMP_WAIT
, &ramrod
.ramrod_flags
);
384 rc
= ramrod
.vlan_mac_obj
->delete_all(bp
,
386 &ramrod
.user_req
.vlan_mac_flags
,
387 &ramrod
.ramrod_flags
);
389 BNX2X_ERR("Failed to delete all %s\n",
390 (type
== BNX2X_VF_FILTER_VLAN_MAC
) ? "VLAN-MACs" :
391 (type
== BNX2X_VF_FILTER_MAC
) ? "MACs" : "VLANs");
398 static int bnx2x_vf_mac_vlan_config(struct bnx2x
*bp
,
399 struct bnx2x_virtf
*vf
, int qid
,
400 struct bnx2x_vf_mac_vlan_filter
*filter
,
403 struct bnx2x_vlan_mac_ramrod_params ramrod
;
406 DP(BNX2X_MSG_IOV
, "vf[%d] - %s a %s filter\n",
407 vf
->abs_vfid
, filter
->add
? "Adding" : "Deleting",
408 (filter
->type
== BNX2X_VF_FILTER_VLAN_MAC
) ? "VLAN-MAC" :
409 (filter
->type
== BNX2X_VF_FILTER_MAC
) ? "MAC" : "VLAN");
411 /* Prepare ramrod params */
412 memset(&ramrod
, 0, sizeof(struct bnx2x_vlan_mac_ramrod_params
));
413 if (filter
->type
== BNX2X_VF_FILTER_VLAN_MAC
) {
414 ramrod
.vlan_mac_obj
= &bnx2x_vfq(vf
, qid
, vlan_mac_obj
);
415 ramrod
.user_req
.u
.vlan
.vlan
= filter
->vid
;
416 memcpy(&ramrod
.user_req
.u
.mac
.mac
, filter
->mac
, ETH_ALEN
);
417 set_bit(BNX2X_ETH_MAC
, &ramrod
.user_req
.vlan_mac_flags
);
418 } else if (filter
->type
== BNX2X_VF_FILTER_VLAN
) {
419 ramrod
.vlan_mac_obj
= &bnx2x_vfq(vf
, qid
, vlan_obj
);
420 ramrod
.user_req
.u
.vlan
.vlan
= filter
->vid
;
422 set_bit(BNX2X_ETH_MAC
, &ramrod
.user_req
.vlan_mac_flags
);
423 ramrod
.vlan_mac_obj
= &bnx2x_vfq(vf
, qid
, mac_obj
);
424 memcpy(&ramrod
.user_req
.u
.mac
.mac
, filter
->mac
, ETH_ALEN
);
426 ramrod
.user_req
.cmd
= filter
->add
? BNX2X_VLAN_MAC_ADD
:
429 set_bit(RAMROD_EXEC
, &ramrod
.ramrod_flags
);
431 set_bit(RAMROD_DRV_CLR_ONLY
, &ramrod
.ramrod_flags
);
433 set_bit(RAMROD_COMP_WAIT
, &ramrod
.ramrod_flags
);
435 /* Add/Remove the filter */
436 rc
= bnx2x_config_vlan_mac(bp
, &ramrod
);
437 if (rc
&& rc
!= -EEXIST
) {
438 BNX2X_ERR("Failed to %s %s\n",
439 filter
->add
? "add" : "delete",
440 (filter
->type
== BNX2X_VF_FILTER_VLAN_MAC
) ?
442 (filter
->type
== BNX2X_VF_FILTER_MAC
) ?
450 int bnx2x_vf_mac_vlan_config_list(struct bnx2x
*bp
, struct bnx2x_virtf
*vf
,
451 struct bnx2x_vf_mac_vlan_filters
*filters
,
452 int qid
, bool drv_only
)
456 DP(BNX2X_MSG_IOV
, "vf[%d]\n", vf
->abs_vfid
);
458 if (!bnx2x_validate_vf_sp_objs(bp
, vf
, true))
461 /* Prepare ramrod params */
462 for (i
= 0; i
< filters
->count
; i
++) {
463 rc
= bnx2x_vf_mac_vlan_config(bp
, vf
, qid
,
464 &filters
->filters
[i
], drv_only
);
469 /* Rollback if needed */
470 if (i
!= filters
->count
) {
471 BNX2X_ERR("Managed only %d/%d filters - rolling back\n",
472 i
, filters
->count
+ 1);
474 filters
->filters
[i
].add
= !filters
->filters
[i
].add
;
475 bnx2x_vf_mac_vlan_config(bp
, vf
, qid
,
476 &filters
->filters
[i
],
481 /* It's our responsibility to free the filters */
487 int bnx2x_vf_queue_setup(struct bnx2x
*bp
, struct bnx2x_virtf
*vf
, int qid
,
488 struct bnx2x_vf_queue_construct_params
*qctor
)
492 DP(BNX2X_MSG_IOV
, "vf[%d:%d]\n", vf
->abs_vfid
, qid
);
494 rc
= bnx2x_vf_queue_create(bp
, vf
, qid
, qctor
);
498 /* Schedule the configuration of any pending vlan filters */
499 bnx2x_schedule_sp_rtnl(bp
, BNX2X_SP_RTNL_HYPERVISOR_VLAN
,
503 BNX2X_ERR("QSETUP[%d:%d] error: rc %d\n", vf
->abs_vfid
, qid
, rc
);
507 static int bnx2x_vf_queue_flr(struct bnx2x
*bp
, struct bnx2x_virtf
*vf
,
512 DP(BNX2X_MSG_IOV
, "vf[%d:%d]\n", vf
->abs_vfid
, qid
);
514 /* If needed, clean the filtering data base */
515 if ((qid
== LEADING_IDX
) &&
516 bnx2x_validate_vf_sp_objs(bp
, vf
, false)) {
517 rc
= bnx2x_vf_vlan_mac_clear(bp
, vf
, qid
, true,
518 BNX2X_VF_FILTER_VLAN_MAC
);
521 rc
= bnx2x_vf_vlan_mac_clear(bp
, vf
, qid
, true,
522 BNX2X_VF_FILTER_VLAN
);
525 rc
= bnx2x_vf_vlan_mac_clear(bp
, vf
, qid
, true,
526 BNX2X_VF_FILTER_MAC
);
531 /* Terminate queue */
532 if (bnx2x_vfq(vf
, qid
, sp_obj
).state
!= BNX2X_Q_STATE_RESET
) {
533 struct bnx2x_queue_state_params qstate
;
535 memset(&qstate
, 0, sizeof(struct bnx2x_queue_state_params
));
536 qstate
.q_obj
= &bnx2x_vfq(vf
, qid
, sp_obj
);
537 qstate
.q_obj
->state
= BNX2X_Q_STATE_STOPPED
;
538 qstate
.cmd
= BNX2X_Q_CMD_TERMINATE
;
539 set_bit(RAMROD_COMP_WAIT
, &qstate
.ramrod_flags
);
540 rc
= bnx2x_queue_state_change(bp
, &qstate
);
547 BNX2X_ERR("vf[%d:%d] error: rc %d\n", vf
->abs_vfid
, qid
, rc
);
551 int bnx2x_vf_mcast(struct bnx2x
*bp
, struct bnx2x_virtf
*vf
,
552 bnx2x_mac_addr_t
*mcasts
, int mc_num
, bool drv_only
)
554 struct bnx2x_mcast_list_elem
*mc
= NULL
;
555 struct bnx2x_mcast_ramrod_params mcast
;
558 DP(BNX2X_MSG_IOV
, "vf[%d]\n", vf
->abs_vfid
);
560 /* Prepare Multicast command */
561 memset(&mcast
, 0, sizeof(struct bnx2x_mcast_ramrod_params
));
562 mcast
.mcast_obj
= &vf
->mcast_obj
;
564 set_bit(RAMROD_DRV_CLR_ONLY
, &mcast
.ramrod_flags
);
566 set_bit(RAMROD_COMP_WAIT
, &mcast
.ramrod_flags
);
568 mc
= kzalloc(mc_num
* sizeof(struct bnx2x_mcast_list_elem
),
571 BNX2X_ERR("Cannot Configure multicasts due to lack of memory\n");
576 /* clear existing mcasts */
577 mcast
.mcast_list_len
= vf
->mcast_list_len
;
578 vf
->mcast_list_len
= mc_num
;
579 rc
= bnx2x_config_mcast(bp
, &mcast
, BNX2X_MCAST_CMD_DEL
);
581 BNX2X_ERR("Failed to remove multicasts\n");
586 /* update mcast list on the ramrod params */
588 INIT_LIST_HEAD(&mcast
.mcast_list
);
589 for (i
= 0; i
< mc_num
; i
++) {
590 mc
[i
].mac
= mcasts
[i
];
591 list_add_tail(&mc
[i
].link
,
596 mcast
.mcast_list_len
= mc_num
;
597 rc
= bnx2x_config_mcast(bp
, &mcast
, BNX2X_MCAST_CMD_ADD
);
599 BNX2X_ERR("Faled to add multicasts\n");
606 static void bnx2x_vf_prep_rx_mode(struct bnx2x
*bp
, u8 qid
,
607 struct bnx2x_rx_mode_ramrod_params
*ramrod
,
608 struct bnx2x_virtf
*vf
,
609 unsigned long accept_flags
)
611 struct bnx2x_vf_queue
*vfq
= vfq_get(vf
, qid
);
613 memset(ramrod
, 0, sizeof(*ramrod
));
614 ramrod
->cid
= vfq
->cid
;
615 ramrod
->cl_id
= vfq_cl_id(vf
, vfq
);
616 ramrod
->rx_mode_obj
= &bp
->rx_mode_obj
;
617 ramrod
->func_id
= FW_VF_HANDLE(vf
->abs_vfid
);
618 ramrod
->rx_accept_flags
= accept_flags
;
619 ramrod
->tx_accept_flags
= accept_flags
;
620 ramrod
->pstate
= &vf
->filter_state
;
621 ramrod
->state
= BNX2X_FILTER_RX_MODE_PENDING
;
623 set_bit(BNX2X_FILTER_RX_MODE_PENDING
, &vf
->filter_state
);
624 set_bit(RAMROD_RX
, &ramrod
->ramrod_flags
);
625 set_bit(RAMROD_TX
, &ramrod
->ramrod_flags
);
627 ramrod
->rdata
= bnx2x_vf_sp(bp
, vf
, rx_mode_rdata
.e2
);
628 ramrod
->rdata_mapping
= bnx2x_vf_sp_map(bp
, vf
, rx_mode_rdata
.e2
);
631 int bnx2x_vf_rxmode(struct bnx2x
*bp
, struct bnx2x_virtf
*vf
,
632 int qid
, unsigned long accept_flags
)
634 struct bnx2x_rx_mode_ramrod_params ramrod
;
636 DP(BNX2X_MSG_IOV
, "vf[%d]\n", vf
->abs_vfid
);
638 bnx2x_vf_prep_rx_mode(bp
, qid
, &ramrod
, vf
, accept_flags
);
639 set_bit(RAMROD_COMP_WAIT
, &ramrod
.ramrod_flags
);
640 vfq_get(vf
, qid
)->accept_flags
= ramrod
.rx_accept_flags
;
641 return bnx2x_config_rx_mode(bp
, &ramrod
);
644 int bnx2x_vf_queue_teardown(struct bnx2x
*bp
, struct bnx2x_virtf
*vf
, int qid
)
648 DP(BNX2X_MSG_IOV
, "vf[%d:%d]\n", vf
->abs_vfid
, qid
);
650 /* Remove all classification configuration for leading queue */
651 if (qid
== LEADING_IDX
) {
652 rc
= bnx2x_vf_rxmode(bp
, vf
, qid
, 0);
656 /* Remove filtering if feasible */
657 if (bnx2x_validate_vf_sp_objs(bp
, vf
, true)) {
658 rc
= bnx2x_vf_vlan_mac_clear(bp
, vf
, qid
,
660 BNX2X_VF_FILTER_VLAN_MAC
);
663 rc
= bnx2x_vf_vlan_mac_clear(bp
, vf
, qid
,
665 BNX2X_VF_FILTER_VLAN
);
668 rc
= bnx2x_vf_vlan_mac_clear(bp
, vf
, qid
,
670 BNX2X_VF_FILTER_MAC
);
673 rc
= bnx2x_vf_mcast(bp
, vf
, NULL
, 0, false);
680 rc
= bnx2x_vf_queue_destroy(bp
, vf
, qid
);
685 BNX2X_ERR("vf[%d:%d] error: rc %d\n",
686 vf
->abs_vfid
, qid
, rc
);
690 /* VF enable primitives
691 * when pretend is required the caller is responsible
692 * for calling pretend prior to calling these routines
695 /* internal vf enable - until vf is enabled internally all transactions
696 * are blocked. This routine should always be called last with pretend.
698 static void bnx2x_vf_enable_internal(struct bnx2x
*bp
, u8 enable
)
700 REG_WR(bp
, PGLUE_B_REG_INTERNAL_VFID_ENABLE
, enable
? 1 : 0);
703 /* clears vf error in all semi blocks */
704 static void bnx2x_vf_semi_clear_err(struct bnx2x
*bp
, u8 abs_vfid
)
706 REG_WR(bp
, TSEM_REG_VFPF_ERR_NUM
, abs_vfid
);
707 REG_WR(bp
, USEM_REG_VFPF_ERR_NUM
, abs_vfid
);
708 REG_WR(bp
, CSEM_REG_VFPF_ERR_NUM
, abs_vfid
);
709 REG_WR(bp
, XSEM_REG_VFPF_ERR_NUM
, abs_vfid
);
712 static void bnx2x_vf_pglue_clear_err(struct bnx2x
*bp
, u8 abs_vfid
)
714 u32 was_err_group
= (2 * BP_PATH(bp
) + abs_vfid
) >> 5;
717 switch (was_err_group
) {
719 was_err_reg
= PGLUE_B_REG_WAS_ERROR_VF_31_0_CLR
;
722 was_err_reg
= PGLUE_B_REG_WAS_ERROR_VF_63_32_CLR
;
725 was_err_reg
= PGLUE_B_REG_WAS_ERROR_VF_95_64_CLR
;
728 was_err_reg
= PGLUE_B_REG_WAS_ERROR_VF_127_96_CLR
;
731 REG_WR(bp
, was_err_reg
, 1 << (abs_vfid
& 0x1f));
734 static void bnx2x_vf_igu_reset(struct bnx2x
*bp
, struct bnx2x_virtf
*vf
)
739 /* Set VF masks and configuration - pretend */
740 bnx2x_pretend_func(bp
, HW_VF_HANDLE(bp
, vf
->abs_vfid
));
742 REG_WR(bp
, IGU_REG_SB_INT_BEFORE_MASK_LSB
, 0);
743 REG_WR(bp
, IGU_REG_SB_INT_BEFORE_MASK_MSB
, 0);
744 REG_WR(bp
, IGU_REG_SB_MASK_LSB
, 0);
745 REG_WR(bp
, IGU_REG_SB_MASK_MSB
, 0);
746 REG_WR(bp
, IGU_REG_PBA_STATUS_LSB
, 0);
747 REG_WR(bp
, IGU_REG_PBA_STATUS_MSB
, 0);
749 val
= REG_RD(bp
, IGU_REG_VF_CONFIGURATION
);
750 val
|= (IGU_VF_CONF_FUNC_EN
| IGU_VF_CONF_MSI_MSIX_EN
);
751 val
&= ~IGU_VF_CONF_PARENT_MASK
;
752 val
|= (BP_ABS_FUNC(bp
) >> 1) << IGU_VF_CONF_PARENT_SHIFT
;
753 REG_WR(bp
, IGU_REG_VF_CONFIGURATION
, val
);
756 "value in IGU_REG_VF_CONFIGURATION of vf %d after write is 0x%08x\n",
759 bnx2x_pretend_func(bp
, BP_ABS_FUNC(bp
));
761 /* iterate over all queues, clear sb consumer */
762 for (i
= 0; i
< vf_sb_count(vf
); i
++) {
763 u8 igu_sb_id
= vf_igu_sb(vf
, i
);
765 /* zero prod memory */
766 REG_WR(bp
, IGU_REG_PROD_CONS_MEMORY
+ igu_sb_id
* 4, 0);
768 /* clear sb state machine */
769 bnx2x_igu_clear_sb_gen(bp
, vf
->abs_vfid
, igu_sb_id
,
772 /* disable + update */
773 bnx2x_vf_igu_ack_sb(bp
, vf
, igu_sb_id
, USTORM_ID
, 0,
778 void bnx2x_vf_enable_access(struct bnx2x
*bp
, u8 abs_vfid
)
780 /* set the VF-PF association in the FW */
781 storm_memset_vf_to_pf(bp
, FW_VF_HANDLE(abs_vfid
), BP_FUNC(bp
));
782 storm_memset_func_en(bp
, FW_VF_HANDLE(abs_vfid
), 1);
785 bnx2x_vf_semi_clear_err(bp
, abs_vfid
);
786 bnx2x_vf_pglue_clear_err(bp
, abs_vfid
);
788 /* internal vf-enable - pretend */
789 bnx2x_pretend_func(bp
, HW_VF_HANDLE(bp
, abs_vfid
));
790 DP(BNX2X_MSG_IOV
, "enabling internal access for vf %x\n", abs_vfid
);
791 bnx2x_vf_enable_internal(bp
, true);
792 bnx2x_pretend_func(bp
, BP_ABS_FUNC(bp
));
795 static void bnx2x_vf_enable_traffic(struct bnx2x
*bp
, struct bnx2x_virtf
*vf
)
797 /* Reset vf in IGU interrupts are still disabled */
798 bnx2x_vf_igu_reset(bp
, vf
);
800 /* pretend to enable the vf with the PBF */
801 bnx2x_pretend_func(bp
, HW_VF_HANDLE(bp
, vf
->abs_vfid
));
802 REG_WR(bp
, PBF_REG_DISABLE_VF
, 0);
803 bnx2x_pretend_func(bp
, BP_ABS_FUNC(bp
));
806 static u8
bnx2x_vf_is_pcie_pending(struct bnx2x
*bp
, u8 abs_vfid
)
809 struct bnx2x_virtf
*vf
= bnx2x_vf_by_abs_fid(bp
, abs_vfid
);
814 dev
= pci_get_bus_and_slot(vf
->bus
, vf
->devfn
);
816 return bnx2x_is_pcie_pending(dev
);
820 int bnx2x_vf_flr_clnup_epilog(struct bnx2x
*bp
, u8 abs_vfid
)
822 /* Verify no pending pci transactions */
823 if (bnx2x_vf_is_pcie_pending(bp
, abs_vfid
))
824 BNX2X_ERR("PCIE Transactions still pending\n");
829 /* must be called after the number of PF queues and the number of VFs are
833 bnx2x_iov_static_resc(struct bnx2x
*bp
, struct bnx2x_virtf
*vf
)
835 struct vf_pf_resc_request
*resc
= &vf
->alloc_resc
;
837 /* will be set only during VF-ACQUIRE */
841 resc
->num_mac_filters
= VF_MAC_CREDIT_CNT
;
842 resc
->num_vlan_filters
= VF_VLAN_CREDIT_CNT
;
844 /* no real limitation */
845 resc
->num_mc_filters
= 0;
847 /* num_sbs already set */
848 resc
->num_sbs
= vf
->sb_count
;
852 static void bnx2x_vf_free_resc(struct bnx2x
*bp
, struct bnx2x_virtf
*vf
)
854 /* reset the state variables */
855 bnx2x_iov_static_resc(bp
, vf
);
859 static void bnx2x_vf_flr_clnup_hw(struct bnx2x
*bp
, struct bnx2x_virtf
*vf
)
861 u32 poll_cnt
= bnx2x_flr_clnup_poll_count(bp
);
863 /* DQ usage counter */
864 bnx2x_pretend_func(bp
, HW_VF_HANDLE(bp
, vf
->abs_vfid
));
865 bnx2x_flr_clnup_poll_hw_counter(bp
, DORQ_REG_VF_USAGE_CNT
,
866 "DQ VF usage counter timed out",
868 bnx2x_pretend_func(bp
, BP_ABS_FUNC(bp
));
870 /* FW cleanup command - poll for the results */
871 if (bnx2x_send_final_clnup(bp
, (u8
)FW_VF_HANDLE(vf
->abs_vfid
),
873 BNX2X_ERR("VF[%d] Final cleanup timed-out\n", vf
->abs_vfid
);
875 /* verify TX hw is flushed */
876 bnx2x_tx_hw_flushed(bp
, poll_cnt
);
879 static void bnx2x_vf_flr(struct bnx2x
*bp
, struct bnx2x_virtf
*vf
)
883 DP(BNX2X_MSG_IOV
, "vf[%d]\n", vf
->abs_vfid
);
885 /* the cleanup operations are valid if and only if the VF
886 * was first acquired.
888 for (i
= 0; i
< vf_rxq_count(vf
); i
++) {
889 rc
= bnx2x_vf_queue_flr(bp
, vf
, i
);
894 /* remove multicasts */
895 bnx2x_vf_mcast(bp
, vf
, NULL
, 0, true);
897 /* dispatch final cleanup and wait for HW queues to flush */
898 bnx2x_vf_flr_clnup_hw(bp
, vf
);
900 /* release VF resources */
901 bnx2x_vf_free_resc(bp
, vf
);
903 /* re-open the mailbox */
904 bnx2x_vf_enable_mbx(bp
, vf
->abs_vfid
);
907 BNX2X_ERR("vf[%d:%d] failed flr: rc %d\n",
908 vf
->abs_vfid
, i
, rc
);
911 static void bnx2x_vf_flr_clnup(struct bnx2x
*bp
)
913 struct bnx2x_virtf
*vf
;
916 for (i
= 0; i
< BNX2X_NR_VIRTFN(bp
); i
++) {
917 /* VF should be RESET & in FLR cleanup states */
918 if (bnx2x_vf(bp
, i
, state
) != VF_RESET
||
919 !bnx2x_vf(bp
, i
, flr_clnup_stage
))
922 DP(BNX2X_MSG_IOV
, "next vf to cleanup: %d. Num of vfs: %d\n",
923 i
, BNX2X_NR_VIRTFN(bp
));
927 /* lock the vf pf channel */
928 bnx2x_lock_vf_pf_channel(bp
, vf
, CHANNEL_TLV_FLR
);
930 /* invoke the VF FLR SM */
931 bnx2x_vf_flr(bp
, vf
);
933 /* mark the VF to be ACKED and continue */
934 vf
->flr_clnup_stage
= false;
935 bnx2x_unlock_vf_pf_channel(bp
, vf
, CHANNEL_TLV_FLR
);
938 /* Acknowledge the handled VFs.
939 * we are acknowledge all the vfs which an flr was requested for, even
940 * if amongst them there are such that we never opened, since the mcp
941 * will interrupt us immediately again if we only ack some of the bits,
942 * resulting in an endless loop. This can happen for example in KVM
943 * where an 'all ones' flr request is sometimes given by hyper visor
945 DP(BNX2X_MSG_MCP
, "DRV_STATUS_VF_DISABLED ACK for vfs 0x%x 0x%x\n",
946 bp
->vfdb
->flrd_vfs
[0], bp
->vfdb
->flrd_vfs
[1]);
947 for (i
= 0; i
< FLRD_VFS_DWORDS
; i
++)
948 SHMEM2_WR(bp
, drv_ack_vf_disabled
[BP_FW_MB_IDX(bp
)][i
],
949 bp
->vfdb
->flrd_vfs
[i
]);
951 bnx2x_fw_command(bp
, DRV_MSG_CODE_VF_DISABLED_DONE
, 0);
953 /* clear the acked bits - better yet if the MCP implemented
954 * write to clear semantics
956 for (i
= 0; i
< FLRD_VFS_DWORDS
; i
++)
957 SHMEM2_WR(bp
, drv_ack_vf_disabled
[BP_FW_MB_IDX(bp
)][i
], 0);
960 void bnx2x_vf_handle_flr_event(struct bnx2x
*bp
)
965 for (i
= 0; i
< FLRD_VFS_DWORDS
; i
++)
966 bp
->vfdb
->flrd_vfs
[i
] = SHMEM2_RD(bp
, mcp_vf_disabled
[i
]);
969 "DRV_STATUS_VF_DISABLED received for vfs 0x%x 0x%x\n",
970 bp
->vfdb
->flrd_vfs
[0], bp
->vfdb
->flrd_vfs
[1]);
973 struct bnx2x_virtf
*vf
= BP_VF(bp
, i
);
976 if (vf
->abs_vfid
< 32)
977 reset
= bp
->vfdb
->flrd_vfs
[0] & (1 << vf
->abs_vfid
);
979 reset
= bp
->vfdb
->flrd_vfs
[1] &
980 (1 << (vf
->abs_vfid
- 32));
983 /* set as reset and ready for cleanup */
984 vf
->state
= VF_RESET
;
985 vf
->flr_clnup_stage
= true;
988 "Initiating Final cleanup for VF %d\n",
993 /* do the FLR cleanup for all marked VFs*/
994 bnx2x_vf_flr_clnup(bp
);
997 /* IOV global initialization routines */
998 void bnx2x_iov_init_dq(struct bnx2x
*bp
)
1003 /* Set the DQ such that the CID reflect the abs_vfid */
1004 REG_WR(bp
, DORQ_REG_VF_NORM_VF_BASE
, 0);
1005 REG_WR(bp
, DORQ_REG_MAX_RVFID_SIZE
, ilog2(BNX2X_MAX_NUM_OF_VFS
));
1007 /* Set VFs starting CID. If its > 0 the preceding CIDs are belong to
1010 REG_WR(bp
, DORQ_REG_VF_NORM_CID_BASE
, BNX2X_FIRST_VF_CID
);
1012 /* The VF window size is the log2 of the max number of CIDs per VF */
1013 REG_WR(bp
, DORQ_REG_VF_NORM_CID_WND_SIZE
, BNX2X_VF_CID_WND
);
1015 /* The VF doorbell size 0 - *B, 4 - 128B. We set it here to match
1016 * the Pf doorbell size although the 2 are independent.
1018 REG_WR(bp
, DORQ_REG_VF_NORM_CID_OFST
, 3);
1020 /* No security checks for now -
1021 * configure single rule (out of 16) mask = 0x1, value = 0x0,
1022 * CID range 0 - 0x1ffff
1024 REG_WR(bp
, DORQ_REG_VF_TYPE_MASK_0
, 1);
1025 REG_WR(bp
, DORQ_REG_VF_TYPE_VALUE_0
, 0);
1026 REG_WR(bp
, DORQ_REG_VF_TYPE_MIN_MCID_0
, 0);
1027 REG_WR(bp
, DORQ_REG_VF_TYPE_MAX_MCID_0
, 0x1ffff);
1029 /* set the VF doorbell threshold. This threshold represents the amount
1030 * of doorbells allowed in the main DORQ fifo for a specific VF.
1032 REG_WR(bp
, DORQ_REG_VF_USAGE_CT_LIMIT
, 64);
1035 void bnx2x_iov_init_dmae(struct bnx2x
*bp
)
1037 if (pci_find_ext_capability(bp
->pdev
, PCI_EXT_CAP_ID_SRIOV
))
1038 REG_WR(bp
, DMAE_REG_BACKWARD_COMP_EN
, 0);
1041 static int bnx2x_vf_bus(struct bnx2x
*bp
, int vfid
)
1043 struct pci_dev
*dev
= bp
->pdev
;
1044 struct bnx2x_sriov
*iov
= &bp
->vfdb
->sriov
;
1046 return dev
->bus
->number
+ ((dev
->devfn
+ iov
->offset
+
1047 iov
->stride
* vfid
) >> 8);
1050 static int bnx2x_vf_devfn(struct bnx2x
*bp
, int vfid
)
1052 struct pci_dev
*dev
= bp
->pdev
;
1053 struct bnx2x_sriov
*iov
= &bp
->vfdb
->sriov
;
1055 return (dev
->devfn
+ iov
->offset
+ iov
->stride
* vfid
) & 0xff;
1058 static void bnx2x_vf_set_bars(struct bnx2x
*bp
, struct bnx2x_virtf
*vf
)
1061 struct pci_dev
*dev
= bp
->pdev
;
1062 struct bnx2x_sriov
*iov
= &bp
->vfdb
->sriov
;
1064 for (i
= 0, n
= 0; i
< PCI_SRIOV_NUM_BARS
; i
+= 2, n
++) {
1065 u64 start
= pci_resource_start(dev
, PCI_IOV_RESOURCES
+ i
);
1066 u32 size
= pci_resource_len(dev
, PCI_IOV_RESOURCES
+ i
);
1069 vf
->bars
[n
].bar
= start
+ size
* vf
->abs_vfid
;
1070 vf
->bars
[n
].size
= size
;
1074 static int bnx2x_ari_enabled(struct pci_dev
*dev
)
1076 return dev
->bus
->self
&& dev
->bus
->self
->ari_enabled
;
1080 bnx2x_get_vf_igu_cam_info(struct bnx2x
*bp
)
1084 u8 fid
, current_pf
= 0;
1086 /* IGU in normal mode - read CAM */
1087 for (sb_id
= 0; sb_id
< IGU_REG_MAPPING_MEMORY_SIZE
; sb_id
++) {
1088 val
= REG_RD(bp
, IGU_REG_MAPPING_MEMORY
+ sb_id
* 4);
1089 if (!(val
& IGU_REG_MAPPING_MEMORY_VALID
))
1091 fid
= GET_FIELD((val
), IGU_REG_MAPPING_MEMORY_FID
);
1092 if (fid
& IGU_FID_ENCODE_IS_PF
)
1093 current_pf
= fid
& IGU_FID_PF_NUM_MASK
;
1094 else if (current_pf
== BP_FUNC(bp
))
1095 bnx2x_vf_set_igu_info(bp
, sb_id
,
1096 (fid
& IGU_FID_VF_NUM_MASK
));
1097 DP(BNX2X_MSG_IOV
, "%s[%d], igu_sb_id=%d, msix=%d\n",
1098 ((fid
& IGU_FID_ENCODE_IS_PF
) ? "PF" : "VF"),
1099 ((fid
& IGU_FID_ENCODE_IS_PF
) ? (fid
& IGU_FID_PF_NUM_MASK
) :
1100 (fid
& IGU_FID_VF_NUM_MASK
)), sb_id
,
1101 GET_FIELD((val
), IGU_REG_MAPPING_MEMORY_VECTOR
));
1103 DP(BNX2X_MSG_IOV
, "vf_sbs_pool is %d\n", BP_VFDB(bp
)->vf_sbs_pool
);
1104 return BP_VFDB(bp
)->vf_sbs_pool
;
1107 static void __bnx2x_iov_free_vfdb(struct bnx2x
*bp
)
1110 kfree(bp
->vfdb
->vfqs
);
1111 kfree(bp
->vfdb
->vfs
);
1117 static int bnx2x_sriov_pci_cfg_info(struct bnx2x
*bp
, struct bnx2x_sriov
*iov
)
1120 struct pci_dev
*dev
= bp
->pdev
;
1122 pos
= pci_find_ext_capability(dev
, PCI_EXT_CAP_ID_SRIOV
);
1124 BNX2X_ERR("failed to find SRIOV capability in device\n");
1129 DP(BNX2X_MSG_IOV
, "sriov ext pos %d\n", pos
);
1130 pci_read_config_word(dev
, pos
+ PCI_SRIOV_CTRL
, &iov
->ctrl
);
1131 pci_read_config_word(dev
, pos
+ PCI_SRIOV_TOTAL_VF
, &iov
->total
);
1132 pci_read_config_word(dev
, pos
+ PCI_SRIOV_INITIAL_VF
, &iov
->initial
);
1133 pci_read_config_word(dev
, pos
+ PCI_SRIOV_VF_OFFSET
, &iov
->offset
);
1134 pci_read_config_word(dev
, pos
+ PCI_SRIOV_VF_STRIDE
, &iov
->stride
);
1135 pci_read_config_dword(dev
, pos
+ PCI_SRIOV_SUP_PGSIZE
, &iov
->pgsz
);
1136 pci_read_config_dword(dev
, pos
+ PCI_SRIOV_CAP
, &iov
->cap
);
1137 pci_read_config_byte(dev
, pos
+ PCI_SRIOV_FUNC_LINK
, &iov
->link
);
1142 static int bnx2x_sriov_info(struct bnx2x
*bp
, struct bnx2x_sriov
*iov
)
1146 /* read the SRIOV capability structure
1147 * The fields can be read via configuration read or
1148 * directly from the device (starting at offset PCICFG_OFFSET)
1150 if (bnx2x_sriov_pci_cfg_info(bp
, iov
))
1153 /* get the number of SRIOV bars */
1156 /* read the first_vfid */
1157 val
= REG_RD(bp
, PCICFG_OFFSET
+ GRC_CONFIG_REG_PF_INIT_VF
);
1158 iov
->first_vf_in_pf
= ((val
& GRC_CR_PF_INIT_VF_PF_FIRST_VF_NUM_MASK
)
1159 * 8) - (BNX2X_MAX_NUM_OF_VFS
* BP_PATH(bp
));
1162 "IOV info[%d]: first vf %d, nres %d, cap 0x%x, ctrl 0x%x, total %d, initial %d, num vfs %d, offset %d, stride %d, page size 0x%x\n",
1164 iov
->first_vf_in_pf
, iov
->nres
, iov
->cap
, iov
->ctrl
, iov
->total
,
1165 iov
->initial
, iov
->nr_virtfn
, iov
->offset
, iov
->stride
, iov
->pgsz
);
1170 /* must be called after PF bars are mapped */
1171 int bnx2x_iov_init_one(struct bnx2x
*bp
, int int_mode_param
,
1175 struct bnx2x_sriov
*iov
;
1176 struct pci_dev
*dev
= bp
->pdev
;
1184 /* verify sriov capability is present in configuration space */
1185 if (!pci_find_ext_capability(dev
, PCI_EXT_CAP_ID_SRIOV
))
1188 /* verify chip revision */
1189 if (CHIP_IS_E1x(bp
))
1192 /* check if SRIOV support is turned off */
1196 /* SRIOV assumes that num of PF CIDs < BNX2X_FIRST_VF_CID */
1197 if (BNX2X_L2_MAX_CID(bp
) >= BNX2X_FIRST_VF_CID
) {
1198 BNX2X_ERR("PF cids %d are overspilling into vf space (starts at %d). Abort SRIOV\n",
1199 BNX2X_L2_MAX_CID(bp
), BNX2X_FIRST_VF_CID
);
1203 /* SRIOV can be enabled only with MSIX */
1204 if (int_mode_param
== BNX2X_INT_MODE_MSI
||
1205 int_mode_param
== BNX2X_INT_MODE_INTX
) {
1206 BNX2X_ERR("Forced MSI/INTx mode is incompatible with SRIOV\n");
1211 /* verify ari is enabled */
1212 if (!bnx2x_ari_enabled(bp
->pdev
)) {
1213 BNX2X_ERR("ARI not supported (check pci bridge ARI forwarding), SRIOV can not be enabled\n");
1217 /* verify igu is in normal mode */
1218 if (CHIP_INT_MODE_IS_BC(bp
)) {
1219 BNX2X_ERR("IGU not normal mode, SRIOV can not be enabled\n");
1223 /* allocate the vfs database */
1224 bp
->vfdb
= kzalloc(sizeof(*(bp
->vfdb
)), GFP_KERNEL
);
1226 BNX2X_ERR("failed to allocate vf database\n");
1231 /* get the sriov info - Linux already collected all the pertinent
1232 * information, however the sriov structure is for the private use
1233 * of the pci module. Also we want this information regardless
1234 * of the hyper-visor.
1236 iov
= &(bp
->vfdb
->sriov
);
1237 err
= bnx2x_sriov_info(bp
, iov
);
1241 /* SR-IOV capability was enabled but there are no VFs*/
1242 if (iov
->total
== 0)
1245 iov
->nr_virtfn
= min_t(u16
, iov
->total
, num_vfs_param
);
1247 DP(BNX2X_MSG_IOV
, "num_vfs_param was %d, nr_virtfn was %d\n",
1248 num_vfs_param
, iov
->nr_virtfn
);
1250 /* allocate the vf array */
1251 bp
->vfdb
->vfs
= kzalloc(sizeof(struct bnx2x_virtf
) *
1252 BNX2X_NR_VIRTFN(bp
), GFP_KERNEL
);
1253 if (!bp
->vfdb
->vfs
) {
1254 BNX2X_ERR("failed to allocate vf array\n");
1259 /* Initial VF init - index and abs_vfid - nr_virtfn must be set */
1260 for_each_vf(bp
, i
) {
1261 bnx2x_vf(bp
, i
, index
) = i
;
1262 bnx2x_vf(bp
, i
, abs_vfid
) = iov
->first_vf_in_pf
+ i
;
1263 bnx2x_vf(bp
, i
, state
) = VF_FREE
;
1264 mutex_init(&bnx2x_vf(bp
, i
, op_mutex
));
1265 bnx2x_vf(bp
, i
, op_current
) = CHANNEL_TLV_NONE
;
1268 /* re-read the IGU CAM for VFs - index and abs_vfid must be set */
1269 if (!bnx2x_get_vf_igu_cam_info(bp
)) {
1270 BNX2X_ERR("No entries in IGU CAM for vfs\n");
1275 /* allocate the queue arrays for all VFs */
1276 bp
->vfdb
->vfqs
= kzalloc(
1277 BNX2X_MAX_NUM_VF_QUEUES
* sizeof(struct bnx2x_vf_queue
),
1280 if (!bp
->vfdb
->vfqs
) {
1281 BNX2X_ERR("failed to allocate vf queue array\n");
1286 /* Prepare the VFs event synchronization mechanism */
1287 mutex_init(&bp
->vfdb
->event_mutex
);
1289 mutex_init(&bp
->vfdb
->bulletin_mutex
);
1291 if (SHMEM2_HAS(bp
, sriov_switch_mode
))
1292 SHMEM2_WR(bp
, sriov_switch_mode
, SRIOV_SWITCH_MODE_VEB
);
1296 DP(BNX2X_MSG_IOV
, "Failed err=%d\n", err
);
1297 __bnx2x_iov_free_vfdb(bp
);
1301 void bnx2x_iov_remove_one(struct bnx2x
*bp
)
1305 /* if SRIOV is not enabled there's nothing to do */
1309 bnx2x_disable_sriov(bp
);
1311 /* disable access to all VFs */
1312 for (vf_idx
= 0; vf_idx
< bp
->vfdb
->sriov
.total
; vf_idx
++) {
1313 bnx2x_pretend_func(bp
,
1315 bp
->vfdb
->sriov
.first_vf_in_pf
+
1317 DP(BNX2X_MSG_IOV
, "disabling internal access for vf %d\n",
1318 bp
->vfdb
->sriov
.first_vf_in_pf
+ vf_idx
);
1319 bnx2x_vf_enable_internal(bp
, 0);
1320 bnx2x_pretend_func(bp
, BP_ABS_FUNC(bp
));
1323 /* free vf database */
1324 __bnx2x_iov_free_vfdb(bp
);
1327 void bnx2x_iov_free_mem(struct bnx2x
*bp
)
1334 /* free vfs hw contexts */
1335 for (i
= 0; i
< BNX2X_VF_CIDS
/ILT_PAGE_CIDS
; i
++) {
1336 struct hw_dma
*cxt
= &bp
->vfdb
->context
[i
];
1337 BNX2X_PCI_FREE(cxt
->addr
, cxt
->mapping
, cxt
->size
);
1340 BNX2X_PCI_FREE(BP_VFDB(bp
)->sp_dma
.addr
,
1341 BP_VFDB(bp
)->sp_dma
.mapping
,
1342 BP_VFDB(bp
)->sp_dma
.size
);
1344 BNX2X_PCI_FREE(BP_VF_MBX_DMA(bp
)->addr
,
1345 BP_VF_MBX_DMA(bp
)->mapping
,
1346 BP_VF_MBX_DMA(bp
)->size
);
1348 BNX2X_PCI_FREE(BP_VF_BULLETIN_DMA(bp
)->addr
,
1349 BP_VF_BULLETIN_DMA(bp
)->mapping
,
1350 BP_VF_BULLETIN_DMA(bp
)->size
);
1353 int bnx2x_iov_alloc_mem(struct bnx2x
*bp
)
1361 /* allocate vfs hw contexts */
1362 tot_size
= (BP_VFDB(bp
)->sriov
.first_vf_in_pf
+ BNX2X_NR_VIRTFN(bp
)) *
1363 BNX2X_CIDS_PER_VF
* sizeof(union cdu_context
);
1365 for (i
= 0; i
< BNX2X_VF_CIDS
/ILT_PAGE_CIDS
; i
++) {
1366 struct hw_dma
*cxt
= BP_VF_CXT_PAGE(bp
, i
);
1367 cxt
->size
= min_t(size_t, tot_size
, CDU_ILT_PAGE_SZ
);
1370 cxt
->addr
= BNX2X_PCI_ALLOC(&cxt
->mapping
, cxt
->size
);
1377 tot_size
-= cxt
->size
;
1380 /* allocate vfs ramrods dma memory - client_init and set_mac */
1381 tot_size
= BNX2X_NR_VIRTFN(bp
) * sizeof(struct bnx2x_vf_sp
);
1382 BP_VFDB(bp
)->sp_dma
.addr
= BNX2X_PCI_ALLOC(&BP_VFDB(bp
)->sp_dma
.mapping
,
1384 if (!BP_VFDB(bp
)->sp_dma
.addr
)
1386 BP_VFDB(bp
)->sp_dma
.size
= tot_size
;
1388 /* allocate mailboxes */
1389 tot_size
= BNX2X_NR_VIRTFN(bp
) * MBX_MSG_ALIGNED_SIZE
;
1390 BP_VF_MBX_DMA(bp
)->addr
= BNX2X_PCI_ALLOC(&BP_VF_MBX_DMA(bp
)->mapping
,
1392 if (!BP_VF_MBX_DMA(bp
)->addr
)
1395 BP_VF_MBX_DMA(bp
)->size
= tot_size
;
1397 /* allocate local bulletin boards */
1398 tot_size
= BNX2X_NR_VIRTFN(bp
) * BULLETIN_CONTENT_SIZE
;
1399 BP_VF_BULLETIN_DMA(bp
)->addr
= BNX2X_PCI_ALLOC(&BP_VF_BULLETIN_DMA(bp
)->mapping
,
1401 if (!BP_VF_BULLETIN_DMA(bp
)->addr
)
1404 BP_VF_BULLETIN_DMA(bp
)->size
= tot_size
;
1412 static void bnx2x_vfq_init(struct bnx2x
*bp
, struct bnx2x_virtf
*vf
,
1413 struct bnx2x_vf_queue
*q
)
1415 u8 cl_id
= vfq_cl_id(vf
, q
);
1416 u8 func_id
= FW_VF_HANDLE(vf
->abs_vfid
);
1417 unsigned long q_type
= 0;
1419 set_bit(BNX2X_Q_TYPE_HAS_TX
, &q_type
);
1420 set_bit(BNX2X_Q_TYPE_HAS_RX
, &q_type
);
1422 /* Queue State object */
1423 bnx2x_init_queue_obj(bp
, &q
->sp_obj
,
1424 cl_id
, &q
->cid
, 1, func_id
,
1425 bnx2x_vf_sp(bp
, vf
, q_data
),
1426 bnx2x_vf_sp_map(bp
, vf
, q_data
),
1429 /* sp indication is set only when vlan/mac/etc. are initialized */
1430 q
->sp_initialized
= false;
1433 "initialized vf %d's queue object. func id set to %d. cid set to 0x%x\n",
1434 vf
->abs_vfid
, q
->sp_obj
.func_id
, q
->cid
);
1437 static int bnx2x_max_speed_cap(struct bnx2x
*bp
)
1439 u32 supported
= bp
->port
.supported
[bnx2x_get_link_cfg_idx(bp
)];
1442 (SUPPORTED_20000baseMLD2_Full
| SUPPORTED_20000baseKR2_Full
))
1445 return 10000; /* assume lowest supported speed is 10G */
1448 int bnx2x_iov_link_update_vf(struct bnx2x
*bp
, int idx
)
1450 struct bnx2x_link_report_data
*state
= &bp
->last_reported_link
;
1451 struct pf_vf_bulletin_content
*bulletin
;
1452 struct bnx2x_virtf
*vf
;
1456 /* sanity and init */
1457 rc
= bnx2x_vf_op_prep(bp
, idx
, &vf
, &bulletin
, false);
1461 mutex_lock(&bp
->vfdb
->bulletin_mutex
);
1463 if (vf
->link_cfg
== IFLA_VF_LINK_STATE_AUTO
) {
1464 bulletin
->valid_bitmap
|= 1 << LINK_VALID
;
1466 bulletin
->link_speed
= state
->line_speed
;
1467 bulletin
->link_flags
= 0;
1468 if (test_bit(BNX2X_LINK_REPORT_LINK_DOWN
,
1469 &state
->link_report_flags
))
1470 bulletin
->link_flags
|= VFPF_LINK_REPORT_LINK_DOWN
;
1471 if (test_bit(BNX2X_LINK_REPORT_FD
,
1472 &state
->link_report_flags
))
1473 bulletin
->link_flags
|= VFPF_LINK_REPORT_FULL_DUPLEX
;
1474 if (test_bit(BNX2X_LINK_REPORT_RX_FC_ON
,
1475 &state
->link_report_flags
))
1476 bulletin
->link_flags
|= VFPF_LINK_REPORT_RX_FC_ON
;
1477 if (test_bit(BNX2X_LINK_REPORT_TX_FC_ON
,
1478 &state
->link_report_flags
))
1479 bulletin
->link_flags
|= VFPF_LINK_REPORT_TX_FC_ON
;
1480 } else if (vf
->link_cfg
== IFLA_VF_LINK_STATE_DISABLE
&&
1481 !(bulletin
->link_flags
& VFPF_LINK_REPORT_LINK_DOWN
)) {
1482 bulletin
->valid_bitmap
|= 1 << LINK_VALID
;
1483 bulletin
->link_flags
|= VFPF_LINK_REPORT_LINK_DOWN
;
1484 } else if (vf
->link_cfg
== IFLA_VF_LINK_STATE_ENABLE
&&
1485 (bulletin
->link_flags
& VFPF_LINK_REPORT_LINK_DOWN
)) {
1486 bulletin
->valid_bitmap
|= 1 << LINK_VALID
;
1487 bulletin
->link_speed
= bnx2x_max_speed_cap(bp
);
1488 bulletin
->link_flags
&= ~VFPF_LINK_REPORT_LINK_DOWN
;
1494 DP(NETIF_MSG_LINK
| BNX2X_MSG_IOV
,
1495 "vf %d mode %u speed %d flags %x\n", idx
,
1496 vf
->link_cfg
, bulletin
->link_speed
, bulletin
->link_flags
);
1498 /* Post update on VF's bulletin board */
1499 rc
= bnx2x_post_vf_bulletin(bp
, idx
);
1501 BNX2X_ERR("failed to update VF[%d] bulletin\n", idx
);
1507 mutex_unlock(&bp
->vfdb
->bulletin_mutex
);
1511 int bnx2x_set_vf_link_state(struct net_device
*dev
, int idx
, int link_state
)
1513 struct bnx2x
*bp
= netdev_priv(dev
);
1514 struct bnx2x_virtf
*vf
= BP_VF(bp
, idx
);
1519 if (vf
->link_cfg
== link_state
)
1520 return 0; /* nothing todo */
1522 vf
->link_cfg
= link_state
;
1524 return bnx2x_iov_link_update_vf(bp
, idx
);
1527 void bnx2x_iov_link_update(struct bnx2x
*bp
)
1534 for_each_vf(bp
, vfid
)
1535 bnx2x_iov_link_update_vf(bp
, vfid
);
1538 /* called by bnx2x_nic_load */
1539 int bnx2x_iov_nic_init(struct bnx2x
*bp
)
1543 if (!IS_SRIOV(bp
)) {
1544 DP(BNX2X_MSG_IOV
, "vfdb was not allocated\n");
1548 DP(BNX2X_MSG_IOV
, "num of vfs: %d\n", (bp
)->vfdb
->sriov
.nr_virtfn
);
1550 /* let FLR complete ... */
1553 /* initialize vf database */
1554 for_each_vf(bp
, vfid
) {
1555 struct bnx2x_virtf
*vf
= BP_VF(bp
, vfid
);
1557 int base_vf_cid
= (BP_VFDB(bp
)->sriov
.first_vf_in_pf
+ vfid
) *
1560 union cdu_context
*base_cxt
= (union cdu_context
*)
1561 BP_VF_CXT_PAGE(bp
, base_vf_cid
/ILT_PAGE_CIDS
)->addr
+
1562 (base_vf_cid
& (ILT_PAGE_CIDS
-1));
1565 "VF[%d] Max IGU SBs: %d, base vf cid 0x%x, base cid 0x%x, base cxt %p\n",
1566 vf
->abs_vfid
, vf_sb_count(vf
), base_vf_cid
,
1567 BNX2X_FIRST_VF_CID
+ base_vf_cid
, base_cxt
);
1569 /* init statically provisioned resources */
1570 bnx2x_iov_static_resc(bp
, vf
);
1572 /* queues are initialized during VF-ACQUIRE */
1573 vf
->filter_state
= 0;
1574 vf
->sp_cl_id
= bnx2x_fp(bp
, 0, cl_id
);
1576 bnx2x_init_credit_pool(&vf
->vf_vlans_pool
, 0,
1577 vf_vlan_rules_cnt(vf
));
1578 bnx2x_init_credit_pool(&vf
->vf_macs_pool
, 0,
1579 vf_mac_rules_cnt(vf
));
1581 /* init mcast object - This object will be re-initialized
1582 * during VF-ACQUIRE with the proper cl_id and cid.
1583 * It needs to be initialized here so that it can be safely
1584 * handled by a subsequent FLR flow.
1586 vf
->mcast_list_len
= 0;
1587 bnx2x_init_mcast_obj(bp
, &vf
->mcast_obj
, 0xFF,
1589 bnx2x_vf_sp(bp
, vf
, mcast_rdata
),
1590 bnx2x_vf_sp_map(bp
, vf
, mcast_rdata
),
1591 BNX2X_FILTER_MCAST_PENDING
,
1593 BNX2X_OBJ_TYPE_RX_TX
);
1595 /* set the mailbox message addresses */
1596 BP_VF_MBX(bp
, vfid
)->msg
= (struct bnx2x_vf_mbx_msg
*)
1597 (((u8
*)BP_VF_MBX_DMA(bp
)->addr
) + vfid
*
1598 MBX_MSG_ALIGNED_SIZE
);
1600 BP_VF_MBX(bp
, vfid
)->msg_mapping
= BP_VF_MBX_DMA(bp
)->mapping
+
1601 vfid
* MBX_MSG_ALIGNED_SIZE
;
1603 /* Enable vf mailbox */
1604 bnx2x_vf_enable_mbx(bp
, vf
->abs_vfid
);
1608 for_each_vf(bp
, vfid
) {
1609 struct bnx2x_virtf
*vf
= BP_VF(bp
, vfid
);
1611 /* fill in the BDF and bars */
1612 vf
->bus
= bnx2x_vf_bus(bp
, vfid
);
1613 vf
->devfn
= bnx2x_vf_devfn(bp
, vfid
);
1614 bnx2x_vf_set_bars(bp
, vf
);
1617 "VF info[%d]: bus 0x%x, devfn 0x%x, bar0 [0x%x, %d], bar1 [0x%x, %d], bar2 [0x%x, %d]\n",
1618 vf
->abs_vfid
, vf
->bus
, vf
->devfn
,
1619 (unsigned)vf
->bars
[0].bar
, vf
->bars
[0].size
,
1620 (unsigned)vf
->bars
[1].bar
, vf
->bars
[1].size
,
1621 (unsigned)vf
->bars
[2].bar
, vf
->bars
[2].size
);
1627 /* called by bnx2x_chip_cleanup */
1628 int bnx2x_iov_chip_cleanup(struct bnx2x
*bp
)
1635 /* release all the VFs */
1637 bnx2x_vf_release(bp
, BP_VF(bp
, i
));
1642 /* called by bnx2x_init_hw_func, returns the next ilt line */
1643 int bnx2x_iov_init_ilt(struct bnx2x
*bp
, u16 line
)
1646 struct bnx2x_ilt
*ilt
= BP_ILT(bp
);
1651 /* set vfs ilt lines */
1652 for (i
= 0; i
< BNX2X_VF_CIDS
/ILT_PAGE_CIDS
; i
++) {
1653 struct hw_dma
*hw_cxt
= BP_VF_CXT_PAGE(bp
, i
);
1655 ilt
->lines
[line
+i
].page
= hw_cxt
->addr
;
1656 ilt
->lines
[line
+i
].page_mapping
= hw_cxt
->mapping
;
1657 ilt
->lines
[line
+i
].size
= hw_cxt
->size
; /* doesn't matter */
1662 static u8
bnx2x_iov_is_vf_cid(struct bnx2x
*bp
, u16 cid
)
1664 return ((cid
>= BNX2X_FIRST_VF_CID
) &&
1665 ((cid
- BNX2X_FIRST_VF_CID
) < BNX2X_VF_CIDS
));
1669 void bnx2x_vf_handle_classification_eqe(struct bnx2x
*bp
,
1670 struct bnx2x_vf_queue
*vfq
,
1671 union event_ring_elem
*elem
)
1673 unsigned long ramrod_flags
= 0;
1675 u32 echo
= le32_to_cpu(elem
->message
.data
.eth_event
.echo
);
1677 /* Always push next commands out, don't wait here */
1678 set_bit(RAMROD_CONT
, &ramrod_flags
);
1680 switch (echo
>> BNX2X_SWCID_SHIFT
) {
1681 case BNX2X_FILTER_MAC_PENDING
:
1682 rc
= vfq
->mac_obj
.complete(bp
, &vfq
->mac_obj
, elem
,
1685 case BNX2X_FILTER_VLAN_PENDING
:
1686 rc
= vfq
->vlan_obj
.complete(bp
, &vfq
->vlan_obj
, elem
,
1690 BNX2X_ERR("Unsupported classification command: 0x%x\n", echo
);
1694 BNX2X_ERR("Failed to schedule new commands: %d\n", rc
);
1696 DP(BNX2X_MSG_IOV
, "Scheduled next pending commands...\n");
1700 void bnx2x_vf_handle_mcast_eqe(struct bnx2x
*bp
,
1701 struct bnx2x_virtf
*vf
)
1703 struct bnx2x_mcast_ramrod_params rparam
= {NULL
};
1706 rparam
.mcast_obj
= &vf
->mcast_obj
;
1707 vf
->mcast_obj
.raw
.clear_pending(&vf
->mcast_obj
.raw
);
1709 /* If there are pending mcast commands - send them */
1710 if (vf
->mcast_obj
.check_pending(&vf
->mcast_obj
)) {
1711 rc
= bnx2x_config_mcast(bp
, &rparam
, BNX2X_MCAST_CMD_CONT
);
1713 BNX2X_ERR("Failed to send pending mcast commands: %d\n",
1719 void bnx2x_vf_handle_filters_eqe(struct bnx2x
*bp
,
1720 struct bnx2x_virtf
*vf
)
1722 smp_mb__before_atomic();
1723 clear_bit(BNX2X_FILTER_RX_MODE_PENDING
, &vf
->filter_state
);
1724 smp_mb__after_atomic();
1727 static void bnx2x_vf_handle_rss_update_eqe(struct bnx2x
*bp
,
1728 struct bnx2x_virtf
*vf
)
1730 vf
->rss_conf_obj
.raw
.clear_pending(&vf
->rss_conf_obj
.raw
);
1733 int bnx2x_iov_eq_sp_event(struct bnx2x
*bp
, union event_ring_elem
*elem
)
1735 struct bnx2x_virtf
*vf
;
1736 int qidx
= 0, abs_vfid
;
1743 /* first get the cid - the only events we handle here are cfc-delete
1744 * and set-mac completion
1746 opcode
= elem
->message
.opcode
;
1749 case EVENT_RING_OPCODE_CFC_DEL
:
1750 cid
= SW_CID(elem
->message
.data
.cfc_del_event
.cid
);
1751 DP(BNX2X_MSG_IOV
, "checking cfc-del comp cid=%d\n", cid
);
1753 case EVENT_RING_OPCODE_CLASSIFICATION_RULES
:
1754 case EVENT_RING_OPCODE_MULTICAST_RULES
:
1755 case EVENT_RING_OPCODE_FILTERS_RULES
:
1756 case EVENT_RING_OPCODE_RSS_UPDATE_RULES
:
1757 cid
= SW_CID(elem
->message
.data
.eth_event
.echo
);
1758 DP(BNX2X_MSG_IOV
, "checking filtering comp cid=%d\n", cid
);
1760 case EVENT_RING_OPCODE_VF_FLR
:
1761 abs_vfid
= elem
->message
.data
.vf_flr_event
.vf_id
;
1762 DP(BNX2X_MSG_IOV
, "Got VF FLR notification abs_vfid=%d\n",
1765 case EVENT_RING_OPCODE_MALICIOUS_VF
:
1766 abs_vfid
= elem
->message
.data
.malicious_vf_event
.vf_id
;
1767 BNX2X_ERR("Got VF MALICIOUS notification abs_vfid=%d err_id=0x%x\n",
1769 elem
->message
.data
.malicious_vf_event
.err_id
);
1775 /* check if the cid is the VF range */
1776 if (!bnx2x_iov_is_vf_cid(bp
, cid
)) {
1777 DP(BNX2X_MSG_IOV
, "cid is outside vf range: %d\n", cid
);
1781 /* extract vf and rxq index from vf_cid - relies on the following:
1782 * 1. vfid on cid reflects the true abs_vfid
1783 * 2. The max number of VFs (per path) is 64
1785 qidx
= cid
& ((1 << BNX2X_VF_CID_WND
)-1);
1786 abs_vfid
= (cid
>> BNX2X_VF_CID_WND
) & (BNX2X_MAX_NUM_OF_VFS
-1);
1788 vf
= bnx2x_vf_by_abs_fid(bp
, abs_vfid
);
1791 BNX2X_ERR("EQ completion for unknown VF, cid %d, abs_vfid %d\n",
1797 case EVENT_RING_OPCODE_CFC_DEL
:
1798 DP(BNX2X_MSG_IOV
, "got VF [%d:%d] cfc delete ramrod\n",
1799 vf
->abs_vfid
, qidx
);
1800 vfq_get(vf
, qidx
)->sp_obj
.complete_cmd(bp
,
1803 BNX2X_Q_CMD_CFC_DEL
);
1805 case EVENT_RING_OPCODE_CLASSIFICATION_RULES
:
1806 DP(BNX2X_MSG_IOV
, "got VF [%d:%d] set mac/vlan ramrod\n",
1807 vf
->abs_vfid
, qidx
);
1808 bnx2x_vf_handle_classification_eqe(bp
, vfq_get(vf
, qidx
), elem
);
1810 case EVENT_RING_OPCODE_MULTICAST_RULES
:
1811 DP(BNX2X_MSG_IOV
, "got VF [%d:%d] set mcast ramrod\n",
1812 vf
->abs_vfid
, qidx
);
1813 bnx2x_vf_handle_mcast_eqe(bp
, vf
);
1815 case EVENT_RING_OPCODE_FILTERS_RULES
:
1816 DP(BNX2X_MSG_IOV
, "got VF [%d:%d] set rx-mode ramrod\n",
1817 vf
->abs_vfid
, qidx
);
1818 bnx2x_vf_handle_filters_eqe(bp
, vf
);
1820 case EVENT_RING_OPCODE_RSS_UPDATE_RULES
:
1821 DP(BNX2X_MSG_IOV
, "got VF [%d:%d] RSS update ramrod\n",
1822 vf
->abs_vfid
, qidx
);
1823 bnx2x_vf_handle_rss_update_eqe(bp
, vf
);
1824 case EVENT_RING_OPCODE_VF_FLR
:
1825 case EVENT_RING_OPCODE_MALICIOUS_VF
:
1826 /* Do nothing for now */
1833 static struct bnx2x_virtf
*bnx2x_vf_by_cid(struct bnx2x
*bp
, int vf_cid
)
1835 /* extract the vf from vf_cid - relies on the following:
1836 * 1. vfid on cid reflects the true abs_vfid
1837 * 2. The max number of VFs (per path) is 64
1839 int abs_vfid
= (vf_cid
>> BNX2X_VF_CID_WND
) & (BNX2X_MAX_NUM_OF_VFS
-1);
1840 return bnx2x_vf_by_abs_fid(bp
, abs_vfid
);
1843 void bnx2x_iov_set_queue_sp_obj(struct bnx2x
*bp
, int vf_cid
,
1844 struct bnx2x_queue_sp_obj
**q_obj
)
1846 struct bnx2x_virtf
*vf
;
1851 vf
= bnx2x_vf_by_cid(bp
, vf_cid
);
1854 /* extract queue index from vf_cid - relies on the following:
1855 * 1. vfid on cid reflects the true abs_vfid
1856 * 2. The max number of VFs (per path) is 64
1858 int q_index
= vf_cid
& ((1 << BNX2X_VF_CID_WND
)-1);
1859 *q_obj
= &bnx2x_vfq(vf
, q_index
, sp_obj
);
1861 BNX2X_ERR("No vf matching cid %d\n", vf_cid
);
1865 void bnx2x_iov_adjust_stats_req(struct bnx2x
*bp
)
1868 int first_queue_query_index
, num_queues_req
;
1869 dma_addr_t cur_data_offset
;
1870 struct stats_query_entry
*cur_query_entry
;
1872 bool is_fcoe
= false;
1880 /* fcoe adds one global request and one queue request */
1881 num_queues_req
= BNX2X_NUM_ETH_QUEUES(bp
) + is_fcoe
;
1882 first_queue_query_index
= BNX2X_FIRST_QUEUE_QUERY_IDX
-
1885 DP_AND((BNX2X_MSG_IOV
| BNX2X_MSG_STATS
),
1886 "BNX2X_NUM_ETH_QUEUES %d, is_fcoe %d, first_queue_query_index %d => determined the last non virtual statistics query index is %d. Will add queries on top of that\n",
1887 BNX2X_NUM_ETH_QUEUES(bp
), is_fcoe
, first_queue_query_index
,
1888 first_queue_query_index
+ num_queues_req
);
1890 cur_data_offset
= bp
->fw_stats_data_mapping
+
1891 offsetof(struct bnx2x_fw_stats_data
, queue_stats
) +
1892 num_queues_req
* sizeof(struct per_queue_stats
);
1894 cur_query_entry
= &bp
->fw_stats_req
->
1895 query
[first_queue_query_index
+ num_queues_req
];
1897 for_each_vf(bp
, i
) {
1899 struct bnx2x_virtf
*vf
= BP_VF(bp
, i
);
1901 if (vf
->state
!= VF_ENABLED
) {
1902 DP_AND((BNX2X_MSG_IOV
| BNX2X_MSG_STATS
),
1903 "vf %d not enabled so no stats for it\n",
1908 DP(BNX2X_MSG_IOV
, "add addresses for vf %d\n", vf
->abs_vfid
);
1909 for_each_vfq(vf
, j
) {
1910 struct bnx2x_vf_queue
*rxq
= vfq_get(vf
, j
);
1912 dma_addr_t q_stats_addr
=
1913 vf
->fw_stat_map
+ j
* vf
->stats_stride
;
1915 /* collect stats fro active queues only */
1916 if (bnx2x_get_q_logical_state(bp
, &rxq
->sp_obj
) ==
1917 BNX2X_Q_LOGICAL_STATE_STOPPED
)
1920 /* create stats query entry for this queue */
1921 cur_query_entry
->kind
= STATS_TYPE_QUEUE
;
1922 cur_query_entry
->index
= vfq_stat_id(vf
, rxq
);
1923 cur_query_entry
->funcID
=
1924 cpu_to_le16(FW_VF_HANDLE(vf
->abs_vfid
));
1925 cur_query_entry
->address
.hi
=
1926 cpu_to_le32(U64_HI(q_stats_addr
));
1927 cur_query_entry
->address
.lo
=
1928 cpu_to_le32(U64_LO(q_stats_addr
));
1930 "added address %x %x for vf %d queue %d client %d\n",
1931 cur_query_entry
->address
.hi
,
1932 cur_query_entry
->address
.lo
, cur_query_entry
->funcID
,
1933 j
, cur_query_entry
->index
);
1935 cur_data_offset
+= sizeof(struct per_queue_stats
);
1938 /* all stats are coalesced to the leading queue */
1939 if (vf
->cfg_flags
& VF_CFG_STATS_COALESCE
)
1943 bp
->fw_stats_req
->hdr
.cmd_num
= bp
->fw_stats_num
+ stats_count
;
1946 /* VF API helpers */
1947 static void bnx2x_vf_qtbl_set_q(struct bnx2x
*bp
, u8 abs_vfid
, u8 qid
,
1950 u32 reg
= PXP_REG_HST_ZONE_PERMISSION_TABLE
+ qid
* 4;
1951 u32 val
= enable
? (abs_vfid
| (1 << 6)) : 0;
1953 REG_WR(bp
, reg
, val
);
1956 static void bnx2x_vf_clr_qtbl(struct bnx2x
*bp
, struct bnx2x_virtf
*vf
)
1961 bnx2x_vf_qtbl_set_q(bp
, vf
->abs_vfid
,
1962 vfq_qzone_id(vf
, vfq_get(vf
, i
)), false);
1965 static void bnx2x_vf_igu_disable(struct bnx2x
*bp
, struct bnx2x_virtf
*vf
)
1969 /* clear the VF configuration - pretend */
1970 bnx2x_pretend_func(bp
, HW_VF_HANDLE(bp
, vf
->abs_vfid
));
1971 val
= REG_RD(bp
, IGU_REG_VF_CONFIGURATION
);
1972 val
&= ~(IGU_VF_CONF_MSI_MSIX_EN
| IGU_VF_CONF_SINGLE_ISR_EN
|
1973 IGU_VF_CONF_FUNC_EN
| IGU_VF_CONF_PARENT_MASK
);
1974 REG_WR(bp
, IGU_REG_VF_CONFIGURATION
, val
);
1975 bnx2x_pretend_func(bp
, BP_ABS_FUNC(bp
));
1978 u8
bnx2x_vf_max_queue_cnt(struct bnx2x
*bp
, struct bnx2x_virtf
*vf
)
1980 return min_t(u8
, min_t(u8
, vf_sb_count(vf
), BNX2X_CIDS_PER_VF
),
1981 BNX2X_VF_MAX_QUEUES
);
1985 int bnx2x_vf_chk_avail_resc(struct bnx2x
*bp
, struct bnx2x_virtf
*vf
,
1986 struct vf_pf_resc_request
*req_resc
)
1988 u8 rxq_cnt
= vf_rxq_count(vf
) ? : bnx2x_vf_max_queue_cnt(bp
, vf
);
1989 u8 txq_cnt
= vf_txq_count(vf
) ? : bnx2x_vf_max_queue_cnt(bp
, vf
);
1991 return ((req_resc
->num_rxqs
<= rxq_cnt
) &&
1992 (req_resc
->num_txqs
<= txq_cnt
) &&
1993 (req_resc
->num_sbs
<= vf_sb_count(vf
)) &&
1994 (req_resc
->num_mac_filters
<= vf_mac_rules_cnt(vf
)) &&
1995 (req_resc
->num_vlan_filters
<= vf_vlan_rules_cnt(vf
)));
1999 int bnx2x_vf_acquire(struct bnx2x
*bp
, struct bnx2x_virtf
*vf
,
2000 struct vf_pf_resc_request
*resc
)
2002 int base_vf_cid
= (BP_VFDB(bp
)->sriov
.first_vf_in_pf
+ vf
->index
) *
2005 union cdu_context
*base_cxt
= (union cdu_context
*)
2006 BP_VF_CXT_PAGE(bp
, base_vf_cid
/ILT_PAGE_CIDS
)->addr
+
2007 (base_vf_cid
& (ILT_PAGE_CIDS
-1));
2010 /* if state is 'acquired' the VF was not released or FLR'd, in
2011 * this case the returned resources match the acquired already
2012 * acquired resources. Verify that the requested numbers do
2013 * not exceed the already acquired numbers.
2015 if (vf
->state
== VF_ACQUIRED
) {
2016 DP(BNX2X_MSG_IOV
, "VF[%d] Trying to re-acquire resources (VF was not released or FLR'd)\n",
2019 if (!bnx2x_vf_chk_avail_resc(bp
, vf
, resc
)) {
2020 BNX2X_ERR("VF[%d] When re-acquiring resources, requested numbers must be <= then previously acquired numbers\n",
2027 /* Otherwise vf state must be 'free' or 'reset' */
2028 if (vf
->state
!= VF_FREE
&& vf
->state
!= VF_RESET
) {
2029 BNX2X_ERR("VF[%d] Can not acquire a VF with state %d\n",
2030 vf
->abs_vfid
, vf
->state
);
2034 /* static allocation:
2035 * the global maximum number are fixed per VF. Fail the request if
2036 * requested number exceed these globals
2038 if (!bnx2x_vf_chk_avail_resc(bp
, vf
, resc
)) {
2040 "cannot fulfill vf resource request. Placing maximal available values in response\n");
2041 /* set the max resource in the vf */
2045 /* Set resources counters - 0 request means max available */
2046 vf_sb_count(vf
) = resc
->num_sbs
;
2047 vf_rxq_count(vf
) = resc
->num_rxqs
? : bnx2x_vf_max_queue_cnt(bp
, vf
);
2048 vf_txq_count(vf
) = resc
->num_txqs
? : bnx2x_vf_max_queue_cnt(bp
, vf
);
2051 "Fulfilling vf request: sb count %d, tx_count %d, rx_count %d, mac_rules_count %d, vlan_rules_count %d\n",
2052 vf_sb_count(vf
), vf_rxq_count(vf
),
2053 vf_txq_count(vf
), vf_mac_rules_cnt(vf
),
2054 vf_vlan_rules_cnt(vf
));
2056 /* Initialize the queues */
2058 DP(BNX2X_MSG_IOV
, "vf->vfqs was not allocated\n");
2062 for_each_vfq(vf
, i
) {
2063 struct bnx2x_vf_queue
*q
= vfq_get(vf
, i
);
2066 BNX2X_ERR("q number %d was not allocated\n", i
);
2071 q
->cxt
= &((base_cxt
+ i
)->eth
);
2072 q
->cid
= BNX2X_FIRST_VF_CID
+ base_vf_cid
+ i
;
2074 DP(BNX2X_MSG_IOV
, "VFQ[%d:%d]: index %d, cid 0x%x, cxt %p\n",
2075 vf
->abs_vfid
, i
, q
->index
, q
->cid
, q
->cxt
);
2077 /* init SP objects */
2078 bnx2x_vfq_init(bp
, vf
, q
);
2080 vf
->state
= VF_ACQUIRED
;
2084 int bnx2x_vf_init(struct bnx2x
*bp
, struct bnx2x_virtf
*vf
, dma_addr_t
*sb_map
)
2086 struct bnx2x_func_init_params func_init
= {0};
2089 /* the sb resources are initialized at this point, do the
2090 * FW/HW initializations
2092 for_each_vf_sb(vf
, i
)
2093 bnx2x_init_sb(bp
, (dma_addr_t
)sb_map
[i
], vf
->abs_vfid
, true,
2094 vf_igu_sb(vf
, i
), vf_igu_sb(vf
, i
));
2097 if (vf
->state
!= VF_ACQUIRED
) {
2098 DP(BNX2X_MSG_IOV
, "VF[%d] is not in VF_ACQUIRED, but %d\n",
2099 vf
->abs_vfid
, vf
->state
);
2103 /* let FLR complete ... */
2106 /* FLR cleanup epilogue */
2107 if (bnx2x_vf_flr_clnup_epilog(bp
, vf
->abs_vfid
))
2110 /* reset IGU VF statistics: MSIX */
2111 REG_WR(bp
, IGU_REG_STATISTIC_NUM_MESSAGE_SENT
+ vf
->abs_vfid
* 4 , 0);
2113 /* function setup */
2114 func_init
.pf_id
= BP_FUNC(bp
);
2115 func_init
.func_id
= FW_VF_HANDLE(vf
->abs_vfid
);
2116 bnx2x_func_init(bp
, &func_init
);
2119 bnx2x_vf_enable_access(bp
, vf
->abs_vfid
);
2120 bnx2x_vf_enable_traffic(bp
, vf
);
2122 /* queue protection table */
2124 bnx2x_vf_qtbl_set_q(bp
, vf
->abs_vfid
,
2125 vfq_qzone_id(vf
, vfq_get(vf
, i
)), true);
2127 vf
->state
= VF_ENABLED
;
2129 /* update vf bulletin board */
2130 bnx2x_post_vf_bulletin(bp
, vf
->index
);
2135 struct set_vf_state_cookie
{
2136 struct bnx2x_virtf
*vf
;
2140 static void bnx2x_set_vf_state(void *cookie
)
2142 struct set_vf_state_cookie
*p
= (struct set_vf_state_cookie
*)cookie
;
2144 p
->vf
->state
= p
->state
;
2147 int bnx2x_vf_close(struct bnx2x
*bp
, struct bnx2x_virtf
*vf
)
2151 DP(BNX2X_MSG_IOV
, "vf[%d]\n", vf
->abs_vfid
);
2153 /* Close all queues */
2154 for (i
= 0; i
< vf_rxq_count(vf
); i
++) {
2155 rc
= bnx2x_vf_queue_teardown(bp
, vf
, i
);
2160 /* disable the interrupts */
2161 DP(BNX2X_MSG_IOV
, "disabling igu\n");
2162 bnx2x_vf_igu_disable(bp
, vf
);
2164 /* disable the VF */
2165 DP(BNX2X_MSG_IOV
, "clearing qtbl\n");
2166 bnx2x_vf_clr_qtbl(bp
, vf
);
2168 /* need to make sure there are no outstanding stats ramrods which may
2169 * cause the device to access the VF's stats buffer which it will free
2170 * as soon as we return from the close flow.
2173 struct set_vf_state_cookie cookie
;
2176 cookie
.state
= VF_ACQUIRED
;
2177 rc
= bnx2x_stats_safe_exec(bp
, bnx2x_set_vf_state
, &cookie
);
2182 DP(BNX2X_MSG_IOV
, "set state to acquired\n");
2186 BNX2X_ERR("vf[%d] CLOSE error: rc %d\n", vf
->abs_vfid
, rc
);
2190 /* VF release can be called either: 1. The VF was acquired but
2191 * not enabled 2. the vf was enabled or in the process of being
2194 int bnx2x_vf_free(struct bnx2x
*bp
, struct bnx2x_virtf
*vf
)
2198 DP(BNX2X_MSG_IOV
, "VF[%d] STATE: %s\n", vf
->abs_vfid
,
2199 vf
->state
== VF_FREE
? "Free" :
2200 vf
->state
== VF_ACQUIRED
? "Acquired" :
2201 vf
->state
== VF_ENABLED
? "Enabled" :
2202 vf
->state
== VF_RESET
? "Reset" :
2205 switch (vf
->state
) {
2207 rc
= bnx2x_vf_close(bp
, vf
);
2210 /* Fallthrough to release resources */
2212 DP(BNX2X_MSG_IOV
, "about to free resources\n");
2213 bnx2x_vf_free_resc(bp
, vf
);
2223 BNX2X_ERR("VF[%d] RELEASE error: rc %d\n", vf
->abs_vfid
, rc
);
2227 int bnx2x_vf_rss_update(struct bnx2x
*bp
, struct bnx2x_virtf
*vf
,
2228 struct bnx2x_config_rss_params
*rss
)
2230 DP(BNX2X_MSG_IOV
, "vf[%d]\n", vf
->abs_vfid
);
2231 set_bit(RAMROD_COMP_WAIT
, &rss
->ramrod_flags
);
2232 return bnx2x_config_rss(bp
, rss
);
2235 int bnx2x_vf_tpa_update(struct bnx2x
*bp
, struct bnx2x_virtf
*vf
,
2236 struct vfpf_tpa_tlv
*tlv
,
2237 struct bnx2x_queue_update_tpa_params
*params
)
2239 aligned_u64
*sge_addr
= tlv
->tpa_client_info
.sge_addr
;
2240 struct bnx2x_queue_state_params qstate
;
2243 DP(BNX2X_MSG_IOV
, "vf[%d]\n", vf
->abs_vfid
);
2245 /* Set ramrod params */
2246 memset(&qstate
, 0, sizeof(struct bnx2x_queue_state_params
));
2247 memcpy(&qstate
.params
.update_tpa
, params
,
2248 sizeof(struct bnx2x_queue_update_tpa_params
));
2249 qstate
.cmd
= BNX2X_Q_CMD_UPDATE_TPA
;
2250 set_bit(RAMROD_COMP_WAIT
, &qstate
.ramrod_flags
);
2252 for (qid
= 0; qid
< vf_rxq_count(vf
); qid
++) {
2253 qstate
.q_obj
= &bnx2x_vfq(vf
, qid
, sp_obj
);
2254 qstate
.params
.update_tpa
.sge_map
= sge_addr
[qid
];
2255 DP(BNX2X_MSG_IOV
, "sge_addr[%d:%d] %08x:%08x\n",
2256 vf
->abs_vfid
, qid
, U64_HI(sge_addr
[qid
]),
2257 U64_LO(sge_addr
[qid
]));
2258 rc
= bnx2x_queue_state_change(bp
, &qstate
);
2260 BNX2X_ERR("Failed to configure sge_addr %08x:%08x for [%d:%d]\n",
2261 U64_HI(sge_addr
[qid
]), U64_LO(sge_addr
[qid
]),
2270 /* VF release ~ VF close + VF release-resources
2271 * Release is the ultimate SW shutdown and is called whenever an
2272 * irrecoverable error is encountered.
2274 int bnx2x_vf_release(struct bnx2x
*bp
, struct bnx2x_virtf
*vf
)
2278 DP(BNX2X_MSG_IOV
, "PF releasing vf %d\n", vf
->abs_vfid
);
2279 bnx2x_lock_vf_pf_channel(bp
, vf
, CHANNEL_TLV_PF_RELEASE_VF
);
2281 rc
= bnx2x_vf_free(bp
, vf
);
2284 "VF[%d] Failed to allocate resources for release op- rc=%d\n",
2286 bnx2x_unlock_vf_pf_channel(bp
, vf
, CHANNEL_TLV_PF_RELEASE_VF
);
2290 void bnx2x_lock_vf_pf_channel(struct bnx2x
*bp
, struct bnx2x_virtf
*vf
,
2291 enum channel_tlvs tlv
)
2293 /* we don't lock the channel for unsupported tlvs */
2294 if (!bnx2x_tlv_supported(tlv
)) {
2295 BNX2X_ERR("attempting to lock with unsupported tlv. Aborting\n");
2299 /* lock the channel */
2300 mutex_lock(&vf
->op_mutex
);
2302 /* record the locking op */
2303 vf
->op_current
= tlv
;
2306 DP(BNX2X_MSG_IOV
, "VF[%d]: vf pf channel locked by %d\n",
2310 void bnx2x_unlock_vf_pf_channel(struct bnx2x
*bp
, struct bnx2x_virtf
*vf
,
2311 enum channel_tlvs expected_tlv
)
2313 enum channel_tlvs current_tlv
;
2316 BNX2X_ERR("VF was %p\n", vf
);
2320 current_tlv
= vf
->op_current
;
2322 /* we don't unlock the channel for unsupported tlvs */
2323 if (!bnx2x_tlv_supported(expected_tlv
))
2326 WARN(expected_tlv
!= vf
->op_current
,
2327 "lock mismatch: expected %d found %d", expected_tlv
,
2330 /* record the locking op */
2331 vf
->op_current
= CHANNEL_TLV_NONE
;
2333 /* lock the channel */
2334 mutex_unlock(&vf
->op_mutex
);
2336 /* log the unlock */
2337 DP(BNX2X_MSG_IOV
, "VF[%d]: vf pf channel unlocked by %d\n",
2338 vf
->abs_vfid
, current_tlv
);
2341 static int bnx2x_set_pf_tx_switching(struct bnx2x
*bp
, bool enable
)
2343 struct bnx2x_queue_state_params q_params
;
2347 /* Verify changes are needed and record current Tx switching state */
2348 prev_flags
= bp
->flags
;
2350 bp
->flags
|= TX_SWITCHING
;
2352 bp
->flags
&= ~TX_SWITCHING
;
2353 if (prev_flags
== bp
->flags
)
2356 /* Verify state enables the sending of queue ramrods */
2357 if ((bp
->state
!= BNX2X_STATE_OPEN
) ||
2358 (bnx2x_get_q_logical_state(bp
,
2359 &bnx2x_sp_obj(bp
, &bp
->fp
[0]).q_obj
) !=
2360 BNX2X_Q_LOGICAL_STATE_ACTIVE
))
2363 /* send q. update ramrod to configure Tx switching */
2364 memset(&q_params
, 0, sizeof(q_params
));
2365 __set_bit(RAMROD_COMP_WAIT
, &q_params
.ramrod_flags
);
2366 q_params
.cmd
= BNX2X_Q_CMD_UPDATE
;
2367 __set_bit(BNX2X_Q_UPDATE_TX_SWITCHING_CHNG
,
2368 &q_params
.params
.update
.update_flags
);
2370 __set_bit(BNX2X_Q_UPDATE_TX_SWITCHING
,
2371 &q_params
.params
.update
.update_flags
);
2373 __clear_bit(BNX2X_Q_UPDATE_TX_SWITCHING
,
2374 &q_params
.params
.update
.update_flags
);
2376 /* send the ramrod on all the queues of the PF */
2377 for_each_eth_queue(bp
, i
) {
2378 struct bnx2x_fastpath
*fp
= &bp
->fp
[i
];
2380 /* Set the appropriate Queue object */
2381 q_params
.q_obj
= &bnx2x_sp_obj(bp
, fp
).q_obj
;
2383 /* Update the Queue state */
2384 rc
= bnx2x_queue_state_change(bp
, &q_params
);
2386 BNX2X_ERR("Failed to configure Tx switching\n");
2391 DP(BNX2X_MSG_IOV
, "%s Tx Switching\n", enable
? "Enabled" : "Disabled");
2395 int bnx2x_sriov_configure(struct pci_dev
*dev
, int num_vfs_param
)
2397 struct bnx2x
*bp
= netdev_priv(pci_get_drvdata(dev
));
2399 if (!IS_SRIOV(bp
)) {
2400 BNX2X_ERR("failed to configure SR-IOV since vfdb was not allocated. Check dmesg for errors in probe stage\n");
2404 DP(BNX2X_MSG_IOV
, "bnx2x_sriov_configure called with %d, BNX2X_NR_VIRTFN(bp) was %d\n",
2405 num_vfs_param
, BNX2X_NR_VIRTFN(bp
));
2407 /* HW channel is only operational when PF is up */
2408 if (bp
->state
!= BNX2X_STATE_OPEN
) {
2409 BNX2X_ERR("VF num configuration via sysfs not supported while PF is down\n");
2413 /* we are always bound by the total_vfs in the configuration space */
2414 if (num_vfs_param
> BNX2X_NR_VIRTFN(bp
)) {
2415 BNX2X_ERR("truncating requested number of VFs (%d) down to maximum allowed (%d)\n",
2416 num_vfs_param
, BNX2X_NR_VIRTFN(bp
));
2417 num_vfs_param
= BNX2X_NR_VIRTFN(bp
);
2420 bp
->requested_nr_virtfn
= num_vfs_param
;
2421 if (num_vfs_param
== 0) {
2422 bnx2x_set_pf_tx_switching(bp
, false);
2423 bnx2x_disable_sriov(bp
);
2426 return bnx2x_enable_sriov(bp
);
2430 #define IGU_ENTRY_SIZE 4
2432 int bnx2x_enable_sriov(struct bnx2x
*bp
)
2434 int rc
= 0, req_vfs
= bp
->requested_nr_virtfn
;
2435 int vf_idx
, sb_idx
, vfq_idx
, qcount
, first_vf
;
2436 u32 igu_entry
, address
;
2442 first_vf
= bp
->vfdb
->sriov
.first_vf_in_pf
;
2444 /* statically distribute vf sb pool between VFs */
2445 num_vf_queues
= min_t(u16
, BNX2X_VF_MAX_QUEUES
,
2446 BP_VFDB(bp
)->vf_sbs_pool
/ req_vfs
);
2448 /* zero previous values learned from igu cam */
2449 for (vf_idx
= 0; vf_idx
< req_vfs
; vf_idx
++) {
2450 struct bnx2x_virtf
*vf
= BP_VF(bp
, vf_idx
);
2453 vf_sb_count(BP_VF(bp
, vf_idx
)) = 0;
2455 bp
->vfdb
->vf_sbs_pool
= 0;
2457 /* prepare IGU cam */
2458 sb_idx
= BP_VFDB(bp
)->first_vf_igu_entry
;
2459 address
= IGU_REG_MAPPING_MEMORY
+ sb_idx
* IGU_ENTRY_SIZE
;
2460 for (vf_idx
= first_vf
; vf_idx
< first_vf
+ req_vfs
; vf_idx
++) {
2461 for (vfq_idx
= 0; vfq_idx
< num_vf_queues
; vfq_idx
++) {
2462 igu_entry
= vf_idx
<< IGU_REG_MAPPING_MEMORY_FID_SHIFT
|
2463 vfq_idx
<< IGU_REG_MAPPING_MEMORY_VECTOR_SHIFT
|
2464 IGU_REG_MAPPING_MEMORY_VALID
;
2465 DP(BNX2X_MSG_IOV
, "assigning sb %d to vf %d\n",
2467 REG_WR(bp
, address
, igu_entry
);
2469 address
+= IGU_ENTRY_SIZE
;
2473 /* Reinitialize vf database according to igu cam */
2474 bnx2x_get_vf_igu_cam_info(bp
);
2476 DP(BNX2X_MSG_IOV
, "vf_sbs_pool %d, num_vf_queues %d\n",
2477 BP_VFDB(bp
)->vf_sbs_pool
, num_vf_queues
);
2480 for_each_vf(bp
, vf_idx
) {
2481 struct bnx2x_virtf
*vf
= BP_VF(bp
, vf_idx
);
2483 /* set local queue arrays */
2484 vf
->vfqs
= &bp
->vfdb
->vfqs
[qcount
];
2485 qcount
+= vf_sb_count(vf
);
2486 bnx2x_iov_static_resc(bp
, vf
);
2489 /* prepare msix vectors in VF configuration space - the value in the
2490 * PCI configuration space should be the index of the last entry,
2491 * namely one less than the actual size of the table
2493 for (vf_idx
= first_vf
; vf_idx
< first_vf
+ req_vfs
; vf_idx
++) {
2494 bnx2x_pretend_func(bp
, HW_VF_HANDLE(bp
, vf_idx
));
2495 REG_WR(bp
, PCICFG_OFFSET
+ GRC_CONFIG_REG_VF_MSIX_CONTROL
,
2497 DP(BNX2X_MSG_IOV
, "set msix vec num in VF %d cfg space to %d\n",
2498 vf_idx
, num_vf_queues
- 1);
2500 bnx2x_pretend_func(bp
, BP_ABS_FUNC(bp
));
2502 /* enable sriov. This will probe all the VFs, and consequentially cause
2503 * the "acquire" messages to appear on the VF PF channel.
2505 DP(BNX2X_MSG_IOV
, "about to call enable sriov\n");
2506 bnx2x_disable_sriov(bp
);
2508 rc
= bnx2x_set_pf_tx_switching(bp
, true);
2512 rc
= pci_enable_sriov(bp
->pdev
, req_vfs
);
2514 BNX2X_ERR("pci_enable_sriov failed with %d\n", rc
);
2517 DP(BNX2X_MSG_IOV
, "sriov enabled (%d vfs)\n", req_vfs
);
2521 void bnx2x_pf_set_vfs_vlan(struct bnx2x
*bp
)
2524 struct pf_vf_bulletin_content
*bulletin
;
2526 DP(BNX2X_MSG_IOV
, "configuring vlan for VFs from sp-task\n");
2527 for_each_vf(bp
, vfidx
) {
2528 bulletin
= BP_VF_BULLETIN(bp
, vfidx
);
2529 if (bulletin
->valid_bitmap
& (1 << VLAN_VALID
))
2530 bnx2x_set_vf_vlan(bp
->dev
, vfidx
, bulletin
->vlan
, 0);
2534 void bnx2x_disable_sriov(struct bnx2x
*bp
)
2536 if (pci_vfs_assigned(bp
->pdev
)) {
2538 "Unloading driver while VFs are assigned - VFs will not be deallocated\n");
2542 pci_disable_sriov(bp
->pdev
);
2545 static int bnx2x_vf_op_prep(struct bnx2x
*bp
, int vfidx
,
2546 struct bnx2x_virtf
**vf
,
2547 struct pf_vf_bulletin_content
**bulletin
,
2550 if (bp
->state
!= BNX2X_STATE_OPEN
) {
2551 BNX2X_ERR("PF is down - can't utilize iov-related functionality\n");
2555 if (!IS_SRIOV(bp
)) {
2556 BNX2X_ERR("sriov is disabled - can't utilize iov-related functionality\n");
2560 if (vfidx
>= BNX2X_NR_VIRTFN(bp
)) {
2561 BNX2X_ERR("VF is uninitialized - can't utilize iov-related functionality. vfidx was %d BNX2X_NR_VIRTFN was %d\n",
2562 vfidx
, BNX2X_NR_VIRTFN(bp
));
2567 *vf
= BP_VF(bp
, vfidx
);
2568 *bulletin
= BP_VF_BULLETIN(bp
, vfidx
);
2571 BNX2X_ERR("Unable to get VF structure for vfidx %d\n", vfidx
);
2575 if (test_queue
&& !(*vf
)->vfqs
) {
2576 BNX2X_ERR("vfqs struct is null. Was this invoked before dynamically enabling SR-IOV? vfidx was %d\n",
2582 BNX2X_ERR("Bulletin Board struct is null for vfidx %d\n",
2590 int bnx2x_get_vf_config(struct net_device
*dev
, int vfidx
,
2591 struct ifla_vf_info
*ivi
)
2593 struct bnx2x
*bp
= netdev_priv(dev
);
2594 struct bnx2x_virtf
*vf
= NULL
;
2595 struct pf_vf_bulletin_content
*bulletin
= NULL
;
2596 struct bnx2x_vlan_mac_obj
*mac_obj
;
2597 struct bnx2x_vlan_mac_obj
*vlan_obj
;
2600 /* sanity and init */
2601 rc
= bnx2x_vf_op_prep(bp
, vfidx
, &vf
, &bulletin
, true);
2605 mac_obj
= &bnx2x_leading_vfq(vf
, mac_obj
);
2606 vlan_obj
= &bnx2x_leading_vfq(vf
, vlan_obj
);
2607 if (!mac_obj
|| !vlan_obj
) {
2608 BNX2X_ERR("VF partially initialized\n");
2614 ivi
->max_tx_rate
= 10000; /* always 10G. TBA take from link struct */
2615 ivi
->min_tx_rate
= 0;
2616 ivi
->spoofchk
= 1; /*always enabled */
2617 if (vf
->state
== VF_ENABLED
) {
2618 /* mac and vlan are in vlan_mac objects */
2619 if (bnx2x_validate_vf_sp_objs(bp
, vf
, false)) {
2620 mac_obj
->get_n_elements(bp
, mac_obj
, 1, (u8
*)&ivi
->mac
,
2622 vlan_obj
->get_n_elements(bp
, vlan_obj
, 1,
2623 (u8
*)&ivi
->vlan
, 0,
2627 mutex_lock(&bp
->vfdb
->bulletin_mutex
);
2629 if (bulletin
->valid_bitmap
& (1 << MAC_ADDR_VALID
))
2630 /* mac configured by ndo so its in bulletin board */
2631 memcpy(&ivi
->mac
, bulletin
->mac
, ETH_ALEN
);
2633 /* function has not been loaded yet. Show mac as 0s */
2634 eth_zero_addr(ivi
->mac
);
2637 if (bulletin
->valid_bitmap
& (1 << VLAN_VALID
))
2638 /* vlan configured by ndo so its in bulletin board */
2639 memcpy(&ivi
->vlan
, &bulletin
->vlan
, VLAN_HLEN
);
2641 /* function has not been loaded yet. Show vlans as 0s */
2642 memset(&ivi
->vlan
, 0, VLAN_HLEN
);
2644 mutex_unlock(&bp
->vfdb
->bulletin_mutex
);
2650 /* New mac for VF. Consider these cases:
2651 * 1. VF hasn't been acquired yet - save the mac in local bulletin board and
2652 * supply at acquire.
2653 * 2. VF has already been acquired but has not yet initialized - store in local
2654 * bulletin board. mac will be posted on VF bulletin board after VF init. VF
2655 * will configure this mac when it is ready.
2656 * 3. VF has already initialized but has not yet setup a queue - post the new
2657 * mac on VF's bulletin board right now. VF will configure this mac when it
2659 * 4. VF has already set a queue - delete any macs already configured for this
2660 * queue and manually config the new mac.
2661 * In any event, once this function has been called refuse any attempts by the
2662 * VF to configure any mac for itself except for this mac. In case of a race
2663 * where the VF fails to see the new post on its bulletin board before sending a
2664 * mac configuration request, the PF will simply fail the request and VF can try
2665 * again after consulting its bulletin board.
2667 int bnx2x_set_vf_mac(struct net_device
*dev
, int vfidx
, u8
*mac
)
2669 struct bnx2x
*bp
= netdev_priv(dev
);
2670 int rc
, q_logical_state
;
2671 struct bnx2x_virtf
*vf
= NULL
;
2672 struct pf_vf_bulletin_content
*bulletin
= NULL
;
2674 if (!is_valid_ether_addr(mac
)) {
2675 BNX2X_ERR("mac address invalid\n");
2679 /* sanity and init */
2680 rc
= bnx2x_vf_op_prep(bp
, vfidx
, &vf
, &bulletin
, true);
2684 mutex_lock(&bp
->vfdb
->bulletin_mutex
);
2686 /* update PF's copy of the VF's bulletin. Will no longer accept mac
2687 * configuration requests from vf unless match this mac
2689 bulletin
->valid_bitmap
|= 1 << MAC_ADDR_VALID
;
2690 memcpy(bulletin
->mac
, mac
, ETH_ALEN
);
2692 /* Post update on VF's bulletin board */
2693 rc
= bnx2x_post_vf_bulletin(bp
, vfidx
);
2695 /* release lock before checking return code */
2696 mutex_unlock(&bp
->vfdb
->bulletin_mutex
);
2699 BNX2X_ERR("failed to update VF[%d] bulletin\n", vfidx
);
2704 bnx2x_get_q_logical_state(bp
, &bnx2x_leading_vfq(vf
, sp_obj
));
2705 if (vf
->state
== VF_ENABLED
&&
2706 q_logical_state
== BNX2X_Q_LOGICAL_STATE_ACTIVE
) {
2707 /* configure the mac in device on this vf's queue */
2708 unsigned long ramrod_flags
= 0;
2709 struct bnx2x_vlan_mac_obj
*mac_obj
;
2711 /* User should be able to see failure reason in system logs */
2712 if (!bnx2x_validate_vf_sp_objs(bp
, vf
, true))
2715 /* must lock vfpf channel to protect against vf flows */
2716 bnx2x_lock_vf_pf_channel(bp
, vf
, CHANNEL_TLV_PF_SET_MAC
);
2718 /* remove existing eth macs */
2719 mac_obj
= &bnx2x_leading_vfq(vf
, mac_obj
);
2720 rc
= bnx2x_del_all_macs(bp
, mac_obj
, BNX2X_ETH_MAC
, true);
2722 BNX2X_ERR("failed to delete eth macs\n");
2727 /* remove existing uc list macs */
2728 rc
= bnx2x_del_all_macs(bp
, mac_obj
, BNX2X_UC_LIST_MAC
, true);
2730 BNX2X_ERR("failed to delete uc_list macs\n");
2735 /* configure the new mac to device */
2736 __set_bit(RAMROD_COMP_WAIT
, &ramrod_flags
);
2737 bnx2x_set_mac_one(bp
, (u8
*)&bulletin
->mac
, mac_obj
, true,
2738 BNX2X_ETH_MAC
, &ramrod_flags
);
2741 bnx2x_unlock_vf_pf_channel(bp
, vf
, CHANNEL_TLV_PF_SET_MAC
);
2747 static void bnx2x_set_vf_vlan_acceptance(struct bnx2x
*bp
,
2748 struct bnx2x_virtf
*vf
, bool accept
)
2750 struct bnx2x_rx_mode_ramrod_params rx_ramrod
;
2751 unsigned long accept_flags
;
2753 /* need to remove/add the VF's accept_any_vlan bit */
2754 accept_flags
= bnx2x_leading_vfq(vf
, accept_flags
);
2756 set_bit(BNX2X_ACCEPT_ANY_VLAN
, &accept_flags
);
2758 clear_bit(BNX2X_ACCEPT_ANY_VLAN
, &accept_flags
);
2760 bnx2x_vf_prep_rx_mode(bp
, LEADING_IDX
, &rx_ramrod
, vf
,
2762 bnx2x_leading_vfq(vf
, accept_flags
) = accept_flags
;
2763 bnx2x_config_rx_mode(bp
, &rx_ramrod
);
2766 static int bnx2x_set_vf_vlan_filter(struct bnx2x
*bp
, struct bnx2x_virtf
*vf
,
2769 struct bnx2x_vlan_mac_ramrod_params ramrod_param
;
2770 unsigned long ramrod_flags
= 0;
2773 /* configure the new vlan to device */
2774 memset(&ramrod_param
, 0, sizeof(ramrod_param
));
2775 __set_bit(RAMROD_COMP_WAIT
, &ramrod_flags
);
2776 ramrod_param
.vlan_mac_obj
= &bnx2x_leading_vfq(vf
, vlan_obj
);
2777 ramrod_param
.ramrod_flags
= ramrod_flags
;
2778 ramrod_param
.user_req
.u
.vlan
.vlan
= vlan
;
2779 ramrod_param
.user_req
.cmd
= add
? BNX2X_VLAN_MAC_ADD
2780 : BNX2X_VLAN_MAC_DEL
;
2781 rc
= bnx2x_config_vlan_mac(bp
, &ramrod_param
);
2783 BNX2X_ERR("failed to configure vlan\n");
2790 int bnx2x_set_vf_vlan(struct net_device
*dev
, int vfidx
, u16 vlan
, u8 qos
)
2792 struct pf_vf_bulletin_content
*bulletin
= NULL
;
2793 struct bnx2x
*bp
= netdev_priv(dev
);
2794 struct bnx2x_vlan_mac_obj
*vlan_obj
;
2795 unsigned long vlan_mac_flags
= 0;
2796 unsigned long ramrod_flags
= 0;
2797 struct bnx2x_virtf
*vf
= NULL
;
2801 BNX2X_ERR("illegal vlan value %d\n", vlan
);
2805 DP(BNX2X_MSG_IOV
, "configuring VF %d with VLAN %d qos %d\n",
2808 /* sanity and init */
2809 rc
= bnx2x_vf_op_prep(bp
, vfidx
, &vf
, &bulletin
, true);
2813 /* update PF's copy of the VF's bulletin. No point in posting the vlan
2814 * to the VF since it doesn't have anything to do with it. But it useful
2815 * to store it here in case the VF is not up yet and we can only
2816 * configure the vlan later when it does. Treat vlan id 0 as remove the
2819 mutex_lock(&bp
->vfdb
->bulletin_mutex
);
2822 bulletin
->valid_bitmap
|= 1 << VLAN_VALID
;
2824 bulletin
->valid_bitmap
&= ~(1 << VLAN_VALID
);
2825 bulletin
->vlan
= vlan
;
2827 /* Post update on VF's bulletin board */
2828 rc
= bnx2x_post_vf_bulletin(bp
, vfidx
);
2830 BNX2X_ERR("failed to update VF[%d] bulletin\n", vfidx
);
2831 mutex_unlock(&bp
->vfdb
->bulletin_mutex
);
2833 /* is vf initialized and queue set up? */
2834 if (vf
->state
!= VF_ENABLED
||
2835 bnx2x_get_q_logical_state(bp
, &bnx2x_leading_vfq(vf
, sp_obj
)) !=
2836 BNX2X_Q_LOGICAL_STATE_ACTIVE
)
2839 /* User should be able to see error in system logs */
2840 if (!bnx2x_validate_vf_sp_objs(bp
, vf
, true))
2843 /* must lock vfpf channel to protect against vf flows */
2844 bnx2x_lock_vf_pf_channel(bp
, vf
, CHANNEL_TLV_PF_SET_VLAN
);
2846 /* remove existing vlans */
2847 __set_bit(RAMROD_COMP_WAIT
, &ramrod_flags
);
2848 vlan_obj
= &bnx2x_leading_vfq(vf
, vlan_obj
);
2849 rc
= vlan_obj
->delete_all(bp
, vlan_obj
, &vlan_mac_flags
,
2852 BNX2X_ERR("failed to delete vlans\n");
2857 /* clear accept_any_vlan when HV forces vlan, otherwise
2858 * according to VF capabilities
2860 if (vlan
|| !(vf
->cfg_flags
& VF_CFG_VLAN_FILTER
))
2861 bnx2x_set_vf_vlan_acceptance(bp
, vf
, !vlan
);
2863 rc
= bnx2x_set_vf_vlan_filter(bp
, vf
, vlan
, true);
2867 /* send queue update ramrods to configure default vlan and
2868 * silent vlan removal
2870 for_each_vfq(vf
, i
) {
2871 struct bnx2x_queue_state_params q_params
= {NULL
};
2872 struct bnx2x_queue_update_params
*update_params
;
2874 q_params
.q_obj
= &bnx2x_vfq(vf
, i
, sp_obj
);
2876 /* validate the Q is UP */
2877 if (bnx2x_get_q_logical_state(bp
, q_params
.q_obj
) !=
2878 BNX2X_Q_LOGICAL_STATE_ACTIVE
)
2881 __set_bit(RAMROD_COMP_WAIT
, &q_params
.ramrod_flags
);
2882 q_params
.cmd
= BNX2X_Q_CMD_UPDATE
;
2883 update_params
= &q_params
.params
.update
;
2884 __set_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN_CHNG
,
2885 &update_params
->update_flags
);
2886 __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG
,
2887 &update_params
->update_flags
);
2889 /* if vlan is 0 then we want to leave the VF traffic
2890 * untagged, and leave the incoming traffic untouched
2891 * (i.e. do not remove any vlan tags).
2893 __clear_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN
,
2894 &update_params
->update_flags
);
2895 __clear_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM
,
2896 &update_params
->update_flags
);
2898 /* configure default vlan to vf queue and set silent
2899 * vlan removal (the vf remains unaware of this vlan).
2901 __set_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN
,
2902 &update_params
->update_flags
);
2903 __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM
,
2904 &update_params
->update_flags
);
2905 update_params
->def_vlan
= vlan
;
2906 update_params
->silent_removal_value
=
2907 vlan
& VLAN_VID_MASK
;
2908 update_params
->silent_removal_mask
= VLAN_VID_MASK
;
2911 /* Update the Queue state */
2912 rc
= bnx2x_queue_state_change(bp
, &q_params
);
2914 BNX2X_ERR("Failed to configure default VLAN queue %d\n",
2920 bnx2x_unlock_vf_pf_channel(bp
, vf
, CHANNEL_TLV_PF_SET_VLAN
);
2924 "updated VF[%d] vlan configuration (vlan = %d)\n",
2930 /* crc is the first field in the bulletin board. Compute the crc over the
2931 * entire bulletin board excluding the crc field itself. Use the length field
2932 * as the Bulletin Board was posted by a PF with possibly a different version
2933 * from the vf which will sample it. Therefore, the length is computed by the
2934 * PF and then used blindly by the VF.
2936 u32
bnx2x_crc_vf_bulletin(struct pf_vf_bulletin_content
*bulletin
)
2938 return crc32(BULLETIN_CRC_SEED
,
2939 ((u8
*)bulletin
) + sizeof(bulletin
->crc
),
2940 bulletin
->length
- sizeof(bulletin
->crc
));
2943 /* Check for new posts on the bulletin board */
2944 enum sample_bulletin_result
bnx2x_sample_bulletin(struct bnx2x
*bp
)
2946 struct pf_vf_bulletin_content
*bulletin
;
2949 /* sampling structure in mid post may result with corrupted data
2950 * validate crc to ensure coherency.
2952 for (attempts
= 0; attempts
< BULLETIN_ATTEMPTS
; attempts
++) {
2955 /* sample the bulletin board */
2956 memcpy(&bp
->shadow_bulletin
, bp
->pf2vf_bulletin
,
2957 sizeof(union pf_vf_bulletin
));
2959 crc
= bnx2x_crc_vf_bulletin(&bp
->shadow_bulletin
.content
);
2961 if (bp
->shadow_bulletin
.content
.crc
== crc
)
2964 BNX2X_ERR("bad crc on bulletin board. Contained %x computed %x\n",
2965 bp
->shadow_bulletin
.content
.crc
, crc
);
2968 if (attempts
>= BULLETIN_ATTEMPTS
) {
2969 BNX2X_ERR("pf to vf bulletin board crc was wrong %d consecutive times. Aborting\n",
2971 return PFVF_BULLETIN_CRC_ERR
;
2973 bulletin
= &bp
->shadow_bulletin
.content
;
2975 /* bulletin board hasn't changed since last sample */
2976 if (bp
->old_bulletin
.version
== bulletin
->version
)
2977 return PFVF_BULLETIN_UNCHANGED
;
2979 /* the mac address in bulletin board is valid and is new */
2980 if (bulletin
->valid_bitmap
& 1 << MAC_ADDR_VALID
&&
2981 !ether_addr_equal(bulletin
->mac
, bp
->old_bulletin
.mac
)) {
2982 /* update new mac to net device */
2983 memcpy(bp
->dev
->dev_addr
, bulletin
->mac
, ETH_ALEN
);
2986 if (bulletin
->valid_bitmap
& (1 << LINK_VALID
)) {
2987 DP(BNX2X_MSG_IOV
, "link update speed %d flags %x\n",
2988 bulletin
->link_speed
, bulletin
->link_flags
);
2990 bp
->vf_link_vars
.line_speed
= bulletin
->link_speed
;
2991 bp
->vf_link_vars
.link_report_flags
= 0;
2993 if (bulletin
->link_flags
& VFPF_LINK_REPORT_LINK_DOWN
)
2994 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN
,
2995 &bp
->vf_link_vars
.link_report_flags
);
2997 if (bulletin
->link_flags
& VFPF_LINK_REPORT_FULL_DUPLEX
)
2998 __set_bit(BNX2X_LINK_REPORT_FD
,
2999 &bp
->vf_link_vars
.link_report_flags
);
3000 /* Rx Flow Control is ON */
3001 if (bulletin
->link_flags
& VFPF_LINK_REPORT_RX_FC_ON
)
3002 __set_bit(BNX2X_LINK_REPORT_RX_FC_ON
,
3003 &bp
->vf_link_vars
.link_report_flags
);
3004 /* Tx Flow Control is ON */
3005 if (bulletin
->link_flags
& VFPF_LINK_REPORT_TX_FC_ON
)
3006 __set_bit(BNX2X_LINK_REPORT_TX_FC_ON
,
3007 &bp
->vf_link_vars
.link_report_flags
);
3008 __bnx2x_link_report(bp
);
3011 /* copy new bulletin board to bp */
3012 memcpy(&bp
->old_bulletin
, bulletin
,
3013 sizeof(struct pf_vf_bulletin_content
));
3015 return PFVF_BULLETIN_UPDATED
;
3018 void bnx2x_timer_sriov(struct bnx2x
*bp
)
3020 bnx2x_sample_bulletin(bp
);
3022 /* if channel is down we need to self destruct */
3023 if (bp
->old_bulletin
.valid_bitmap
& 1 << CHANNEL_DOWN
)
3024 bnx2x_schedule_sp_rtnl(bp
, BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN
,
3028 void __iomem
*bnx2x_vf_doorbells(struct bnx2x
*bp
)
3030 /* vf doorbells are embedded within the regview */
3031 return bp
->regview
+ PXP_VF_ADDR_DB_START
;
3034 void bnx2x_vf_pci_dealloc(struct bnx2x
*bp
)
3036 BNX2X_PCI_FREE(bp
->vf2pf_mbox
, bp
->vf2pf_mbox_mapping
,
3037 sizeof(struct bnx2x_vf_mbx_msg
));
3038 BNX2X_PCI_FREE(bp
->vf2pf_mbox
, bp
->pf2vf_bulletin_mapping
,
3039 sizeof(union pf_vf_bulletin
));
3042 int bnx2x_vf_pci_alloc(struct bnx2x
*bp
)
3044 mutex_init(&bp
->vf2pf_mutex
);
3046 /* allocate vf2pf mailbox for vf to pf channel */
3047 bp
->vf2pf_mbox
= BNX2X_PCI_ALLOC(&bp
->vf2pf_mbox_mapping
,
3048 sizeof(struct bnx2x_vf_mbx_msg
));
3049 if (!bp
->vf2pf_mbox
)
3052 /* allocate pf 2 vf bulletin board */
3053 bp
->pf2vf_bulletin
= BNX2X_PCI_ALLOC(&bp
->pf2vf_bulletin_mapping
,
3054 sizeof(union pf_vf_bulletin
));
3055 if (!bp
->pf2vf_bulletin
)
3058 bnx2x_vf_bulletin_finalize(&bp
->pf2vf_bulletin
->content
, true);
3063 bnx2x_vf_pci_dealloc(bp
);
3067 void bnx2x_iov_channel_down(struct bnx2x
*bp
)
3070 struct pf_vf_bulletin_content
*bulletin
;
3075 for_each_vf(bp
, vf_idx
) {
3076 /* locate this VFs bulletin board and update the channel down
3079 bulletin
= BP_VF_BULLETIN(bp
, vf_idx
);
3080 bulletin
->valid_bitmap
|= 1 << CHANNEL_DOWN
;
3082 /* update vf bulletin board */
3083 bnx2x_post_vf_bulletin(bp
, vf_idx
);
3087 void bnx2x_iov_task(struct work_struct
*work
)
3089 struct bnx2x
*bp
= container_of(work
, struct bnx2x
, iov_task
.work
);
3091 if (!netif_running(bp
->dev
))
3094 if (test_and_clear_bit(BNX2X_IOV_HANDLE_FLR
,
3095 &bp
->iov_task_state
))
3096 bnx2x_vf_handle_flr_event(bp
);
3098 if (test_and_clear_bit(BNX2X_IOV_HANDLE_VF_MSG
,
3099 &bp
->iov_task_state
))
3103 void bnx2x_schedule_iov_task(struct bnx2x
*bp
, enum bnx2x_iov_flag flag
)
3105 smp_mb__before_atomic();
3106 set_bit(flag
, &bp
->iov_task_state
);
3107 smp_mb__after_atomic();
3108 DP(BNX2X_MSG_IOV
, "Scheduling iov task [Flag: %d]\n", flag
);
3109 queue_delayed_work(bnx2x_iov_wq
, &bp
->iov_task
, 0);