2 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5 * Right now, I am very wasteful with the buffers. I allocate memory
6 * pages and then divide them into 2K frame buffers. This way I know I
7 * have buffers large enough to hold one frame within one buffer descriptor.
8 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
9 * will be much more memory efficient and will easily handle lots of
12 * Much better multiple PHY support by Magnus Damm.
13 * Copyright (c) 2000 Ericsson Radio Systems AB.
15 * Support for FEC controller of ColdFire processors.
16 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
18 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
19 * Copyright (c) 2004-2006 Macq Electronique SA.
21 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/string.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/ptrace.h>
29 #include <linux/errno.h>
30 #include <linux/ioport.h>
31 #include <linux/slab.h>
32 #include <linux/interrupt.h>
33 #include <linux/delay.h>
34 #include <linux/netdevice.h>
35 #include <linux/etherdevice.h>
36 #include <linux/skbuff.h>
41 #include <linux/tcp.h>
42 #include <linux/udp.h>
43 #include <linux/icmp.h>
44 #include <linux/spinlock.h>
45 #include <linux/workqueue.h>
46 #include <linux/bitops.h>
48 #include <linux/irq.h>
49 #include <linux/clk.h>
50 #include <linux/platform_device.h>
51 #include <linux/mdio.h>
52 #include <linux/phy.h>
53 #include <linux/fec.h>
55 #include <linux/of_device.h>
56 #include <linux/of_gpio.h>
57 #include <linux/of_mdio.h>
58 #include <linux/of_net.h>
59 #include <linux/regulator/consumer.h>
60 #include <linux/if_vlan.h>
61 #include <linux/pinctrl/consumer.h>
62 #include <linux/prefetch.h>
63 #include <soc/imx/cpuidle.h>
65 #include <asm/cacheflush.h>
69 static void set_multicast_list(struct net_device
*ndev
);
70 static void fec_enet_itr_coal_init(struct net_device
*ndev
);
72 #define DRIVER_NAME "fec"
74 #define FEC_ENET_GET_QUQUE(_x) ((_x == 0) ? 1 : ((_x == 1) ? 2 : 0))
76 /* Pause frame feild and FIFO threshold */
77 #define FEC_ENET_FCE (1 << 5)
78 #define FEC_ENET_RSEM_V 0x84
79 #define FEC_ENET_RSFL_V 16
80 #define FEC_ENET_RAEM_V 0x8
81 #define FEC_ENET_RAFL_V 0x8
82 #define FEC_ENET_OPD_V 0xFFF0
83 #define FEC_MDIO_PM_TIMEOUT 100 /* ms */
85 static struct platform_device_id fec_devtype
[] = {
87 /* keep it for coldfire */
92 .driver_data
= FEC_QUIRK_USE_GASKET
| FEC_QUIRK_HAS_RACC
,
95 .driver_data
= FEC_QUIRK_HAS_RACC
,
98 .driver_data
= FEC_QUIRK_ENET_MAC
| FEC_QUIRK_SWAP_FRAME
|
99 FEC_QUIRK_SINGLE_MDIO
| FEC_QUIRK_HAS_RACC
,
102 .driver_data
= FEC_QUIRK_ENET_MAC
| FEC_QUIRK_HAS_GBIT
|
103 FEC_QUIRK_HAS_BUFDESC_EX
| FEC_QUIRK_HAS_CSUM
|
104 FEC_QUIRK_HAS_VLAN
| FEC_QUIRK_ERR006358
|
107 .name
= "mvf600-fec",
108 .driver_data
= FEC_QUIRK_ENET_MAC
| FEC_QUIRK_HAS_RACC
,
110 .name
= "imx6sx-fec",
111 .driver_data
= FEC_QUIRK_ENET_MAC
| FEC_QUIRK_HAS_GBIT
|
112 FEC_QUIRK_HAS_BUFDESC_EX
| FEC_QUIRK_HAS_CSUM
|
113 FEC_QUIRK_HAS_VLAN
| FEC_QUIRK_HAS_AVB
|
114 FEC_QUIRK_ERR007885
| FEC_QUIRK_BUG_CAPTURE
|
115 FEC_QUIRK_HAS_RACC
| FEC_QUIRK_HAS_COALESCE
,
117 .name
= "imx6ul-fec",
118 .driver_data
= FEC_QUIRK_ENET_MAC
| FEC_QUIRK_HAS_GBIT
|
119 FEC_QUIRK_HAS_BUFDESC_EX
| FEC_QUIRK_HAS_CSUM
|
120 FEC_QUIRK_HAS_VLAN
| FEC_QUIRK_BUG_CAPTURE
|
121 FEC_QUIRK_HAS_RACC
| FEC_QUIRK_HAS_COALESCE
,
126 MODULE_DEVICE_TABLE(platform
, fec_devtype
);
129 IMX25_FEC
= 1, /* runs on i.mx25/50/53 */
130 IMX27_FEC
, /* runs on i.mx27/35/51 */
138 static const struct of_device_id fec_dt_ids
[] = {
139 { .compatible
= "fsl,imx25-fec", .data
= &fec_devtype
[IMX25_FEC
], },
140 { .compatible
= "fsl,imx27-fec", .data
= &fec_devtype
[IMX27_FEC
], },
141 { .compatible
= "fsl,imx28-fec", .data
= &fec_devtype
[IMX28_FEC
], },
142 { .compatible
= "fsl,imx6q-fec", .data
= &fec_devtype
[IMX6Q_FEC
], },
143 { .compatible
= "fsl,mvf600-fec", .data
= &fec_devtype
[MVF600_FEC
], },
144 { .compatible
= "fsl,imx6sx-fec", .data
= &fec_devtype
[IMX6SX_FEC
], },
145 { .compatible
= "fsl,imx6ul-fec", .data
= &fec_devtype
[IMX6UL_FEC
], },
148 MODULE_DEVICE_TABLE(of
, fec_dt_ids
);
150 static unsigned char macaddr
[ETH_ALEN
];
151 module_param_array(macaddr
, byte
, NULL
, 0);
152 MODULE_PARM_DESC(macaddr
, "FEC Ethernet MAC address");
154 #if defined(CONFIG_M5272)
156 * Some hardware gets it MAC address out of local flash memory.
157 * if this is non-zero then assume it is the address to get MAC from.
159 #if defined(CONFIG_NETtel)
160 #define FEC_FLASHMAC 0xf0006006
161 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
162 #define FEC_FLASHMAC 0xf0006000
163 #elif defined(CONFIG_CANCam)
164 #define FEC_FLASHMAC 0xf0020000
165 #elif defined (CONFIG_M5272C3)
166 #define FEC_FLASHMAC (0xffe04000 + 4)
167 #elif defined(CONFIG_MOD5272)
168 #define FEC_FLASHMAC 0xffc0406b
170 #define FEC_FLASHMAC 0
172 #endif /* CONFIG_M5272 */
174 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
176 #define PKT_MAXBUF_SIZE 1522
177 #define PKT_MINBUF_SIZE 64
178 #define PKT_MAXBLR_SIZE 1536
180 /* FEC receive acceleration */
181 #define FEC_RACC_IPDIS (1 << 1)
182 #define FEC_RACC_PRODIS (1 << 2)
183 #define FEC_RACC_OPTIONS (FEC_RACC_IPDIS | FEC_RACC_PRODIS)
186 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
187 * size bits. Other FEC hardware does not, so we need to take that into
188 * account when setting it.
190 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
191 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
192 #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
194 #define OPT_FRAME_SIZE 0
197 /* FEC MII MMFR bits definition */
198 #define FEC_MMFR_ST (1 << 30)
199 #define FEC_MMFR_OP_READ (2 << 28)
200 #define FEC_MMFR_OP_WRITE (1 << 28)
201 #define FEC_MMFR_PA(v) ((v & 0x1f) << 23)
202 #define FEC_MMFR_RA(v) ((v & 0x1f) << 18)
203 #define FEC_MMFR_TA (2 << 16)
204 #define FEC_MMFR_DATA(v) (v & 0xffff)
205 /* FEC ECR bits definition */
206 #define FEC_ECR_MAGICEN (1 << 2)
207 #define FEC_ECR_SLEEP (1 << 3)
209 #define FEC_MII_TIMEOUT 30000 /* us */
211 /* Transmitter timeout */
212 #define TX_TIMEOUT (2 * HZ)
214 #define FEC_PAUSE_FLAG_AUTONEG 0x1
215 #define FEC_PAUSE_FLAG_ENABLE 0x2
216 #define FEC_WOL_HAS_MAGIC_PACKET (0x1 << 0)
217 #define FEC_WOL_FLAG_ENABLE (0x1 << 1)
218 #define FEC_WOL_FLAG_SLEEP_ON (0x1 << 2)
220 #define COPYBREAK_DEFAULT 256
222 #define TSO_HEADER_SIZE 128
223 /* Max number of allowed TCP segments for software TSO */
224 #define FEC_MAX_TSO_SEGS 100
225 #define FEC_MAX_SKB_DESCS (FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
227 #define IS_TSO_HEADER(txq, addr) \
228 ((addr >= txq->tso_hdrs_dma) && \
229 (addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
233 static struct bufdesc
*fec_enet_get_nextdesc(struct bufdesc
*bdp
,
234 struct bufdesc_prop
*bd
)
236 return (bdp
>= bd
->last
) ? bd
->base
237 : (struct bufdesc
*)(((unsigned)bdp
) + bd
->dsize
);
240 static struct bufdesc
*fec_enet_get_prevdesc(struct bufdesc
*bdp
,
241 struct bufdesc_prop
*bd
)
243 return (bdp
<= bd
->base
) ? bd
->last
244 : (struct bufdesc
*)(((unsigned)bdp
) - bd
->dsize
);
247 static int fec_enet_get_bd_index(struct bufdesc
*bdp
,
248 struct bufdesc_prop
*bd
)
250 return ((const char *)bdp
- (const char *)bd
->base
) >> bd
->dsize_log2
;
253 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q
*txq
)
257 entries
= (((const char *)txq
->dirty_tx
-
258 (const char *)txq
->bd
.cur
) >> txq
->bd
.dsize_log2
) - 1;
260 return entries
>= 0 ? entries
: entries
+ txq
->bd
.ring_size
;
263 static void swap_buffer(void *bufaddr
, int len
)
266 unsigned int *buf
= bufaddr
;
268 for (i
= 0; i
< len
; i
+= 4, buf
++)
272 static void swap_buffer2(void *dst_buf
, void *src_buf
, int len
)
275 unsigned int *src
= src_buf
;
276 unsigned int *dst
= dst_buf
;
278 for (i
= 0; i
< len
; i
+= 4, src
++, dst
++)
282 static void fec_dump(struct net_device
*ndev
)
284 struct fec_enet_private
*fep
= netdev_priv(ndev
);
286 struct fec_enet_priv_tx_q
*txq
;
289 netdev_info(ndev
, "TX ring dump\n");
290 pr_info("Nr SC addr len SKB\n");
292 txq
= fep
->tx_queue
[0];
296 pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
298 bdp
== txq
->bd
.cur
? 'S' : ' ',
299 bdp
== txq
->dirty_tx
? 'H' : ' ',
300 fec16_to_cpu(bdp
->cbd_sc
),
301 fec32_to_cpu(bdp
->cbd_bufaddr
),
302 fec16_to_cpu(bdp
->cbd_datlen
),
303 txq
->tx_skbuff
[index
]);
304 bdp
= fec_enet_get_nextdesc(bdp
, &txq
->bd
);
306 } while (bdp
!= txq
->bd
.base
);
309 static inline bool is_ipv4_pkt(struct sk_buff
*skb
)
311 return skb
->protocol
== htons(ETH_P_IP
) && ip_hdr(skb
)->version
== 4;
315 fec_enet_clear_csum(struct sk_buff
*skb
, struct net_device
*ndev
)
317 /* Only run for packets requiring a checksum. */
318 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
)
321 if (unlikely(skb_cow_head(skb
, 0)))
324 if (is_ipv4_pkt(skb
))
325 ip_hdr(skb
)->check
= 0;
326 *(__sum16
*)(skb
->head
+ skb
->csum_start
+ skb
->csum_offset
) = 0;
331 static struct bufdesc
*
332 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q
*txq
,
334 struct net_device
*ndev
)
336 struct fec_enet_private
*fep
= netdev_priv(ndev
);
337 struct bufdesc
*bdp
= txq
->bd
.cur
;
338 struct bufdesc_ex
*ebdp
;
339 int nr_frags
= skb_shinfo(skb
)->nr_frags
;
341 unsigned short status
;
342 unsigned int estatus
= 0;
343 skb_frag_t
*this_frag
;
349 for (frag
= 0; frag
< nr_frags
; frag
++) {
350 this_frag
= &skb_shinfo(skb
)->frags
[frag
];
351 bdp
= fec_enet_get_nextdesc(bdp
, &txq
->bd
);
352 ebdp
= (struct bufdesc_ex
*)bdp
;
354 status
= fec16_to_cpu(bdp
->cbd_sc
);
355 status
&= ~BD_ENET_TX_STATS
;
356 status
|= (BD_ENET_TX_TC
| BD_ENET_TX_READY
);
357 frag_len
= skb_shinfo(skb
)->frags
[frag
].size
;
359 /* Handle the last BD specially */
360 if (frag
== nr_frags
- 1) {
361 status
|= (BD_ENET_TX_INTR
| BD_ENET_TX_LAST
);
362 if (fep
->bufdesc_ex
) {
363 estatus
|= BD_ENET_TX_INT
;
364 if (unlikely(skb_shinfo(skb
)->tx_flags
&
365 SKBTX_HW_TSTAMP
&& fep
->hwts_tx_en
))
366 estatus
|= BD_ENET_TX_TS
;
370 if (fep
->bufdesc_ex
) {
371 if (fep
->quirks
& FEC_QUIRK_HAS_AVB
)
372 estatus
|= FEC_TX_BD_FTYPE(txq
->bd
.qid
);
373 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
374 estatus
|= BD_ENET_TX_PINS
| BD_ENET_TX_IINS
;
376 ebdp
->cbd_esc
= cpu_to_fec32(estatus
);
379 bufaddr
= page_address(this_frag
->page
.p
) + this_frag
->page_offset
;
381 index
= fec_enet_get_bd_index(bdp
, &txq
->bd
);
382 if (((unsigned long) bufaddr
) & fep
->tx_align
||
383 fep
->quirks
& FEC_QUIRK_SWAP_FRAME
) {
384 memcpy(txq
->tx_bounce
[index
], bufaddr
, frag_len
);
385 bufaddr
= txq
->tx_bounce
[index
];
387 if (fep
->quirks
& FEC_QUIRK_SWAP_FRAME
)
388 swap_buffer(bufaddr
, frag_len
);
391 addr
= dma_map_single(&fep
->pdev
->dev
, bufaddr
, frag_len
,
393 if (dma_mapping_error(&fep
->pdev
->dev
, addr
)) {
395 netdev_err(ndev
, "Tx DMA memory map failed\n");
396 goto dma_mapping_error
;
399 bdp
->cbd_bufaddr
= cpu_to_fec32(addr
);
400 bdp
->cbd_datlen
= cpu_to_fec16(frag_len
);
401 /* Make sure the updates to rest of the descriptor are
402 * performed before transferring ownership.
405 bdp
->cbd_sc
= cpu_to_fec16(status
);
411 for (i
= 0; i
< frag
; i
++) {
412 bdp
= fec_enet_get_nextdesc(bdp
, &txq
->bd
);
413 dma_unmap_single(&fep
->pdev
->dev
, fec32_to_cpu(bdp
->cbd_bufaddr
),
414 fec16_to_cpu(bdp
->cbd_datlen
), DMA_TO_DEVICE
);
416 return ERR_PTR(-ENOMEM
);
419 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q
*txq
,
420 struct sk_buff
*skb
, struct net_device
*ndev
)
422 struct fec_enet_private
*fep
= netdev_priv(ndev
);
423 int nr_frags
= skb_shinfo(skb
)->nr_frags
;
424 struct bufdesc
*bdp
, *last_bdp
;
427 unsigned short status
;
428 unsigned short buflen
;
429 unsigned int estatus
= 0;
433 entries_free
= fec_enet_get_free_txdesc_num(txq
);
434 if (entries_free
< MAX_SKB_FRAGS
+ 1) {
435 dev_kfree_skb_any(skb
);
437 netdev_err(ndev
, "NOT enough BD for SG!\n");
441 /* Protocol checksum off-load for TCP and UDP. */
442 if (fec_enet_clear_csum(skb
, ndev
)) {
443 dev_kfree_skb_any(skb
);
447 /* Fill in a Tx ring entry */
450 status
= fec16_to_cpu(bdp
->cbd_sc
);
451 status
&= ~BD_ENET_TX_STATS
;
453 /* Set buffer length and buffer pointer */
455 buflen
= skb_headlen(skb
);
457 index
= fec_enet_get_bd_index(bdp
, &txq
->bd
);
458 if (((unsigned long) bufaddr
) & fep
->tx_align
||
459 fep
->quirks
& FEC_QUIRK_SWAP_FRAME
) {
460 memcpy(txq
->tx_bounce
[index
], skb
->data
, buflen
);
461 bufaddr
= txq
->tx_bounce
[index
];
463 if (fep
->quirks
& FEC_QUIRK_SWAP_FRAME
)
464 swap_buffer(bufaddr
, buflen
);
467 /* Push the data cache so the CPM does not get stale memory data. */
468 addr
= dma_map_single(&fep
->pdev
->dev
, bufaddr
, buflen
, DMA_TO_DEVICE
);
469 if (dma_mapping_error(&fep
->pdev
->dev
, addr
)) {
470 dev_kfree_skb_any(skb
);
472 netdev_err(ndev
, "Tx DMA memory map failed\n");
477 last_bdp
= fec_enet_txq_submit_frag_skb(txq
, skb
, ndev
);
478 if (IS_ERR(last_bdp
)) {
479 dma_unmap_single(&fep
->pdev
->dev
, addr
,
480 buflen
, DMA_TO_DEVICE
);
481 dev_kfree_skb_any(skb
);
485 status
|= (BD_ENET_TX_INTR
| BD_ENET_TX_LAST
);
486 if (fep
->bufdesc_ex
) {
487 estatus
= BD_ENET_TX_INT
;
488 if (unlikely(skb_shinfo(skb
)->tx_flags
&
489 SKBTX_HW_TSTAMP
&& fep
->hwts_tx_en
))
490 estatus
|= BD_ENET_TX_TS
;
493 bdp
->cbd_bufaddr
= cpu_to_fec32(addr
);
494 bdp
->cbd_datlen
= cpu_to_fec16(buflen
);
496 if (fep
->bufdesc_ex
) {
498 struct bufdesc_ex
*ebdp
= (struct bufdesc_ex
*)bdp
;
500 if (unlikely(skb_shinfo(skb
)->tx_flags
& SKBTX_HW_TSTAMP
&&
502 skb_shinfo(skb
)->tx_flags
|= SKBTX_IN_PROGRESS
;
504 if (fep
->quirks
& FEC_QUIRK_HAS_AVB
)
505 estatus
|= FEC_TX_BD_FTYPE(txq
->bd
.qid
);
507 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
508 estatus
|= BD_ENET_TX_PINS
| BD_ENET_TX_IINS
;
511 ebdp
->cbd_esc
= cpu_to_fec32(estatus
);
514 index
= fec_enet_get_bd_index(last_bdp
, &txq
->bd
);
515 /* Save skb pointer */
516 txq
->tx_skbuff
[index
] = skb
;
518 /* Make sure the updates to rest of the descriptor are performed before
519 * transferring ownership.
523 /* Send it on its way. Tell FEC it's ready, interrupt when done,
524 * it's the last BD of the frame, and to put the CRC on the end.
526 status
|= (BD_ENET_TX_READY
| BD_ENET_TX_TC
);
527 bdp
->cbd_sc
= cpu_to_fec16(status
);
529 /* If this was the last BD in the ring, start at the beginning again. */
530 bdp
= fec_enet_get_nextdesc(last_bdp
, &txq
->bd
);
532 skb_tx_timestamp(skb
);
534 /* Make sure the update to bdp and tx_skbuff are performed before
540 /* Trigger transmission start */
541 writel(0, txq
->bd
.reg_desc_active
);
547 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q
*txq
, struct sk_buff
*skb
,
548 struct net_device
*ndev
,
549 struct bufdesc
*bdp
, int index
, char *data
,
550 int size
, bool last_tcp
, bool is_last
)
552 struct fec_enet_private
*fep
= netdev_priv(ndev
);
553 struct bufdesc_ex
*ebdp
= container_of(bdp
, struct bufdesc_ex
, desc
);
554 unsigned short status
;
555 unsigned int estatus
= 0;
558 status
= fec16_to_cpu(bdp
->cbd_sc
);
559 status
&= ~BD_ENET_TX_STATS
;
561 status
|= (BD_ENET_TX_TC
| BD_ENET_TX_READY
);
563 if (((unsigned long) data
) & fep
->tx_align
||
564 fep
->quirks
& FEC_QUIRK_SWAP_FRAME
) {
565 memcpy(txq
->tx_bounce
[index
], data
, size
);
566 data
= txq
->tx_bounce
[index
];
568 if (fep
->quirks
& FEC_QUIRK_SWAP_FRAME
)
569 swap_buffer(data
, size
);
572 addr
= dma_map_single(&fep
->pdev
->dev
, data
, size
, DMA_TO_DEVICE
);
573 if (dma_mapping_error(&fep
->pdev
->dev
, addr
)) {
574 dev_kfree_skb_any(skb
);
576 netdev_err(ndev
, "Tx DMA memory map failed\n");
577 return NETDEV_TX_BUSY
;
580 bdp
->cbd_datlen
= cpu_to_fec16(size
);
581 bdp
->cbd_bufaddr
= cpu_to_fec32(addr
);
583 if (fep
->bufdesc_ex
) {
584 if (fep
->quirks
& FEC_QUIRK_HAS_AVB
)
585 estatus
|= FEC_TX_BD_FTYPE(txq
->bd
.qid
);
586 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
587 estatus
|= BD_ENET_TX_PINS
| BD_ENET_TX_IINS
;
589 ebdp
->cbd_esc
= cpu_to_fec32(estatus
);
592 /* Handle the last BD specially */
594 status
|= (BD_ENET_TX_LAST
| BD_ENET_TX_TC
);
596 status
|= BD_ENET_TX_INTR
;
598 ebdp
->cbd_esc
|= cpu_to_fec32(BD_ENET_TX_INT
);
601 bdp
->cbd_sc
= cpu_to_fec16(status
);
607 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q
*txq
,
608 struct sk_buff
*skb
, struct net_device
*ndev
,
609 struct bufdesc
*bdp
, int index
)
611 struct fec_enet_private
*fep
= netdev_priv(ndev
);
612 int hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
613 struct bufdesc_ex
*ebdp
= container_of(bdp
, struct bufdesc_ex
, desc
);
615 unsigned long dmabuf
;
616 unsigned short status
;
617 unsigned int estatus
= 0;
619 status
= fec16_to_cpu(bdp
->cbd_sc
);
620 status
&= ~BD_ENET_TX_STATS
;
621 status
|= (BD_ENET_TX_TC
| BD_ENET_TX_READY
);
623 bufaddr
= txq
->tso_hdrs
+ index
* TSO_HEADER_SIZE
;
624 dmabuf
= txq
->tso_hdrs_dma
+ index
* TSO_HEADER_SIZE
;
625 if (((unsigned long)bufaddr
) & fep
->tx_align
||
626 fep
->quirks
& FEC_QUIRK_SWAP_FRAME
) {
627 memcpy(txq
->tx_bounce
[index
], skb
->data
, hdr_len
);
628 bufaddr
= txq
->tx_bounce
[index
];
630 if (fep
->quirks
& FEC_QUIRK_SWAP_FRAME
)
631 swap_buffer(bufaddr
, hdr_len
);
633 dmabuf
= dma_map_single(&fep
->pdev
->dev
, bufaddr
,
634 hdr_len
, DMA_TO_DEVICE
);
635 if (dma_mapping_error(&fep
->pdev
->dev
, dmabuf
)) {
636 dev_kfree_skb_any(skb
);
638 netdev_err(ndev
, "Tx DMA memory map failed\n");
639 return NETDEV_TX_BUSY
;
643 bdp
->cbd_bufaddr
= cpu_to_fec32(dmabuf
);
644 bdp
->cbd_datlen
= cpu_to_fec16(hdr_len
);
646 if (fep
->bufdesc_ex
) {
647 if (fep
->quirks
& FEC_QUIRK_HAS_AVB
)
648 estatus
|= FEC_TX_BD_FTYPE(txq
->bd
.qid
);
649 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
650 estatus
|= BD_ENET_TX_PINS
| BD_ENET_TX_IINS
;
652 ebdp
->cbd_esc
= cpu_to_fec32(estatus
);
655 bdp
->cbd_sc
= cpu_to_fec16(status
);
660 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q
*txq
,
662 struct net_device
*ndev
)
664 struct fec_enet_private
*fep
= netdev_priv(ndev
);
665 int hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
666 int total_len
, data_left
;
667 struct bufdesc
*bdp
= txq
->bd
.cur
;
669 unsigned int index
= 0;
672 if (tso_count_descs(skb
) >= fec_enet_get_free_txdesc_num(txq
)) {
673 dev_kfree_skb_any(skb
);
675 netdev_err(ndev
, "NOT enough BD for TSO!\n");
679 /* Protocol checksum off-load for TCP and UDP. */
680 if (fec_enet_clear_csum(skb
, ndev
)) {
681 dev_kfree_skb_any(skb
);
685 /* Initialize the TSO handler, and prepare the first payload */
686 tso_start(skb
, &tso
);
688 total_len
= skb
->len
- hdr_len
;
689 while (total_len
> 0) {
692 index
= fec_enet_get_bd_index(bdp
, &txq
->bd
);
693 data_left
= min_t(int, skb_shinfo(skb
)->gso_size
, total_len
);
694 total_len
-= data_left
;
696 /* prepare packet headers: MAC + IP + TCP */
697 hdr
= txq
->tso_hdrs
+ index
* TSO_HEADER_SIZE
;
698 tso_build_hdr(skb
, hdr
, &tso
, data_left
, total_len
== 0);
699 ret
= fec_enet_txq_put_hdr_tso(txq
, skb
, ndev
, bdp
, index
);
703 while (data_left
> 0) {
706 size
= min_t(int, tso
.size
, data_left
);
707 bdp
= fec_enet_get_nextdesc(bdp
, &txq
->bd
);
708 index
= fec_enet_get_bd_index(bdp
, &txq
->bd
);
709 ret
= fec_enet_txq_put_data_tso(txq
, skb
, ndev
,
718 tso_build_data(skb
, &tso
, size
);
721 bdp
= fec_enet_get_nextdesc(bdp
, &txq
->bd
);
724 /* Save skb pointer */
725 txq
->tx_skbuff
[index
] = skb
;
727 skb_tx_timestamp(skb
);
730 /* Trigger transmission start */
731 if (!(fep
->quirks
& FEC_QUIRK_ERR007885
) ||
732 !readl(txq
->bd
.reg_desc_active
) ||
733 !readl(txq
->bd
.reg_desc_active
) ||
734 !readl(txq
->bd
.reg_desc_active
) ||
735 !readl(txq
->bd
.reg_desc_active
))
736 writel(0, txq
->bd
.reg_desc_active
);
741 /* TODO: Release all used data descriptors for TSO */
746 fec_enet_start_xmit(struct sk_buff
*skb
, struct net_device
*ndev
)
748 struct fec_enet_private
*fep
= netdev_priv(ndev
);
750 unsigned short queue
;
751 struct fec_enet_priv_tx_q
*txq
;
752 struct netdev_queue
*nq
;
755 queue
= skb_get_queue_mapping(skb
);
756 txq
= fep
->tx_queue
[queue
];
757 nq
= netdev_get_tx_queue(ndev
, queue
);
760 ret
= fec_enet_txq_submit_tso(txq
, skb
, ndev
);
762 ret
= fec_enet_txq_submit_skb(txq
, skb
, ndev
);
766 entries_free
= fec_enet_get_free_txdesc_num(txq
);
767 if (entries_free
<= txq
->tx_stop_threshold
)
768 netif_tx_stop_queue(nq
);
773 /* Init RX & TX buffer descriptors
775 static void fec_enet_bd_init(struct net_device
*dev
)
777 struct fec_enet_private
*fep
= netdev_priv(dev
);
778 struct fec_enet_priv_tx_q
*txq
;
779 struct fec_enet_priv_rx_q
*rxq
;
784 for (q
= 0; q
< fep
->num_rx_queues
; q
++) {
785 /* Initialize the receive buffer descriptors. */
786 rxq
= fep
->rx_queue
[q
];
789 for (i
= 0; i
< rxq
->bd
.ring_size
; i
++) {
791 /* Initialize the BD for every fragment in the page. */
792 if (bdp
->cbd_bufaddr
)
793 bdp
->cbd_sc
= cpu_to_fec16(BD_ENET_RX_EMPTY
);
795 bdp
->cbd_sc
= cpu_to_fec16(0);
796 bdp
= fec_enet_get_nextdesc(bdp
, &rxq
->bd
);
799 /* Set the last buffer to wrap */
800 bdp
= fec_enet_get_prevdesc(bdp
, &rxq
->bd
);
801 bdp
->cbd_sc
|= cpu_to_fec16(BD_SC_WRAP
);
803 rxq
->bd
.cur
= rxq
->bd
.base
;
806 for (q
= 0; q
< fep
->num_tx_queues
; q
++) {
807 /* ...and the same for transmit */
808 txq
= fep
->tx_queue
[q
];
812 for (i
= 0; i
< txq
->bd
.ring_size
; i
++) {
813 /* Initialize the BD for every fragment in the page. */
814 bdp
->cbd_sc
= cpu_to_fec16(0);
815 if (txq
->tx_skbuff
[i
]) {
816 dev_kfree_skb_any(txq
->tx_skbuff
[i
]);
817 txq
->tx_skbuff
[i
] = NULL
;
819 bdp
->cbd_bufaddr
= cpu_to_fec32(0);
820 bdp
= fec_enet_get_nextdesc(bdp
, &txq
->bd
);
823 /* Set the last buffer to wrap */
824 bdp
= fec_enet_get_prevdesc(bdp
, &txq
->bd
);
825 bdp
->cbd_sc
|= cpu_to_fec16(BD_SC_WRAP
);
830 static void fec_enet_active_rxring(struct net_device
*ndev
)
832 struct fec_enet_private
*fep
= netdev_priv(ndev
);
835 for (i
= 0; i
< fep
->num_rx_queues
; i
++)
836 writel(0, fep
->rx_queue
[i
]->bd
.reg_desc_active
);
839 static void fec_enet_enable_ring(struct net_device
*ndev
)
841 struct fec_enet_private
*fep
= netdev_priv(ndev
);
842 struct fec_enet_priv_tx_q
*txq
;
843 struct fec_enet_priv_rx_q
*rxq
;
846 for (i
= 0; i
< fep
->num_rx_queues
; i
++) {
847 rxq
= fep
->rx_queue
[i
];
848 writel(rxq
->bd
.dma
, fep
->hwp
+ FEC_R_DES_START(i
));
849 writel(PKT_MAXBLR_SIZE
, fep
->hwp
+ FEC_R_BUFF_SIZE(i
));
853 writel(RCMR_MATCHEN
| RCMR_CMP(i
),
854 fep
->hwp
+ FEC_RCMR(i
));
857 for (i
= 0; i
< fep
->num_tx_queues
; i
++) {
858 txq
= fep
->tx_queue
[i
];
859 writel(txq
->bd
.dma
, fep
->hwp
+ FEC_X_DES_START(i
));
863 writel(DMA_CLASS_EN
| IDLE_SLOPE(i
),
864 fep
->hwp
+ FEC_DMA_CFG(i
));
868 static void fec_enet_reset_skb(struct net_device
*ndev
)
870 struct fec_enet_private
*fep
= netdev_priv(ndev
);
871 struct fec_enet_priv_tx_q
*txq
;
874 for (i
= 0; i
< fep
->num_tx_queues
; i
++) {
875 txq
= fep
->tx_queue
[i
];
877 for (j
= 0; j
< txq
->bd
.ring_size
; j
++) {
878 if (txq
->tx_skbuff
[j
]) {
879 dev_kfree_skb_any(txq
->tx_skbuff
[j
]);
880 txq
->tx_skbuff
[j
] = NULL
;
887 * This function is called to start or restart the FEC during a link
888 * change, transmit timeout, or to reconfigure the FEC. The network
889 * packet processing for this device must be stopped before this call.
892 fec_restart(struct net_device
*ndev
)
894 struct fec_enet_private
*fep
= netdev_priv(ndev
);
897 u32 rcntl
= OPT_FRAME_SIZE
| 0x04;
898 u32 ecntl
= 0x2; /* ETHEREN */
900 /* Whack a reset. We should wait for this.
901 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
902 * instead of reset MAC itself.
904 if (fep
->quirks
& FEC_QUIRK_HAS_AVB
) {
905 writel(0, fep
->hwp
+ FEC_ECNTRL
);
907 writel(1, fep
->hwp
+ FEC_ECNTRL
);
912 * enet-mac reset will reset mac address registers too,
913 * so need to reconfigure it.
915 if (fep
->quirks
& FEC_QUIRK_ENET_MAC
) {
916 memcpy(&temp_mac
, ndev
->dev_addr
, ETH_ALEN
);
917 writel((__force u32
)cpu_to_be32(temp_mac
[0]),
918 fep
->hwp
+ FEC_ADDR_LOW
);
919 writel((__force u32
)cpu_to_be32(temp_mac
[1]),
920 fep
->hwp
+ FEC_ADDR_HIGH
);
923 /* Clear any outstanding interrupt. */
924 writel(0xffffffff, fep
->hwp
+ FEC_IEVENT
);
926 fec_enet_bd_init(ndev
);
928 fec_enet_enable_ring(ndev
);
930 /* Reset tx SKB buffers. */
931 fec_enet_reset_skb(ndev
);
933 /* Enable MII mode */
934 if (fep
->full_duplex
== DUPLEX_FULL
) {
936 writel(0x04, fep
->hwp
+ FEC_X_CNTRL
);
940 writel(0x0, fep
->hwp
+ FEC_X_CNTRL
);
944 writel(fep
->phy_speed
, fep
->hwp
+ FEC_MII_SPEED
);
946 #if !defined(CONFIG_M5272)
947 if (fep
->quirks
& FEC_QUIRK_HAS_RACC
) {
948 /* set RX checksum */
949 val
= readl(fep
->hwp
+ FEC_RACC
);
950 if (fep
->csum_flags
& FLAG_RX_CSUM_ENABLED
)
951 val
|= FEC_RACC_OPTIONS
;
953 val
&= ~FEC_RACC_OPTIONS
;
954 writel(val
, fep
->hwp
+ FEC_RACC
);
955 writel(PKT_MAXBUF_SIZE
, fep
->hwp
+ FEC_FTRL
);
960 * The phy interface and speed need to get configured
961 * differently on enet-mac.
963 if (fep
->quirks
& FEC_QUIRK_ENET_MAC
) {
964 /* Enable flow control and length check */
965 rcntl
|= 0x40000000 | 0x00000020;
967 /* RGMII, RMII or MII */
968 if (fep
->phy_interface
== PHY_INTERFACE_MODE_RGMII
||
969 fep
->phy_interface
== PHY_INTERFACE_MODE_RGMII_ID
||
970 fep
->phy_interface
== PHY_INTERFACE_MODE_RGMII_RXID
||
971 fep
->phy_interface
== PHY_INTERFACE_MODE_RGMII_TXID
)
973 else if (fep
->phy_interface
== PHY_INTERFACE_MODE_RMII
)
978 /* 1G, 100M or 10M */
980 if (ndev
->phydev
->speed
== SPEED_1000
)
982 else if (ndev
->phydev
->speed
== SPEED_100
)
988 #ifdef FEC_MIIGSK_ENR
989 if (fep
->quirks
& FEC_QUIRK_USE_GASKET
) {
991 /* disable the gasket and wait */
992 writel(0, fep
->hwp
+ FEC_MIIGSK_ENR
);
993 while (readl(fep
->hwp
+ FEC_MIIGSK_ENR
) & 4)
997 * configure the gasket:
998 * RMII, 50 MHz, no loopback, no echo
999 * MII, 25 MHz, no loopback, no echo
1001 cfgr
= (fep
->phy_interface
== PHY_INTERFACE_MODE_RMII
)
1002 ? BM_MIIGSK_CFGR_RMII
: BM_MIIGSK_CFGR_MII
;
1003 if (ndev
->phydev
&& ndev
->phydev
->speed
== SPEED_10
)
1004 cfgr
|= BM_MIIGSK_CFGR_FRCONT_10M
;
1005 writel(cfgr
, fep
->hwp
+ FEC_MIIGSK_CFGR
);
1007 /* re-enable the gasket */
1008 writel(2, fep
->hwp
+ FEC_MIIGSK_ENR
);
1013 #if !defined(CONFIG_M5272)
1014 /* enable pause frame*/
1015 if ((fep
->pause_flag
& FEC_PAUSE_FLAG_ENABLE
) ||
1016 ((fep
->pause_flag
& FEC_PAUSE_FLAG_AUTONEG
) &&
1017 ndev
->phydev
&& ndev
->phydev
->pause
)) {
1018 rcntl
|= FEC_ENET_FCE
;
1020 /* set FIFO threshold parameter to reduce overrun */
1021 writel(FEC_ENET_RSEM_V
, fep
->hwp
+ FEC_R_FIFO_RSEM
);
1022 writel(FEC_ENET_RSFL_V
, fep
->hwp
+ FEC_R_FIFO_RSFL
);
1023 writel(FEC_ENET_RAEM_V
, fep
->hwp
+ FEC_R_FIFO_RAEM
);
1024 writel(FEC_ENET_RAFL_V
, fep
->hwp
+ FEC_R_FIFO_RAFL
);
1027 writel(FEC_ENET_OPD_V
, fep
->hwp
+ FEC_OPD
);
1029 rcntl
&= ~FEC_ENET_FCE
;
1031 #endif /* !defined(CONFIG_M5272) */
1033 writel(rcntl
, fep
->hwp
+ FEC_R_CNTRL
);
1035 /* Setup multicast filter. */
1036 set_multicast_list(ndev
);
1037 #ifndef CONFIG_M5272
1038 writel(0, fep
->hwp
+ FEC_HASH_TABLE_HIGH
);
1039 writel(0, fep
->hwp
+ FEC_HASH_TABLE_LOW
);
1042 if (fep
->quirks
& FEC_QUIRK_ENET_MAC
) {
1043 /* enable ENET endian swap */
1045 /* enable ENET store and forward mode */
1046 writel(1 << 8, fep
->hwp
+ FEC_X_WMRK
);
1049 if (fep
->bufdesc_ex
)
1052 #ifndef CONFIG_M5272
1053 /* Enable the MIB statistic event counters */
1054 writel(0 << 31, fep
->hwp
+ FEC_MIB_CTRLSTAT
);
1057 /* And last, enable the transmit and receive processing */
1058 writel(ecntl
, fep
->hwp
+ FEC_ECNTRL
);
1059 fec_enet_active_rxring(ndev
);
1061 if (fep
->bufdesc_ex
)
1062 fec_ptp_start_cyclecounter(ndev
);
1064 /* Enable interrupts we wish to service */
1066 writel(FEC_DEFAULT_IMASK
, fep
->hwp
+ FEC_IMASK
);
1068 writel(FEC_ENET_MII
, fep
->hwp
+ FEC_IMASK
);
1070 /* Init the interrupt coalescing */
1071 fec_enet_itr_coal_init(ndev
);
1076 fec_stop(struct net_device
*ndev
)
1078 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1079 struct fec_platform_data
*pdata
= fep
->pdev
->dev
.platform_data
;
1080 u32 rmii_mode
= readl(fep
->hwp
+ FEC_R_CNTRL
) & (1 << 8);
1083 /* We cannot expect a graceful transmit stop without link !!! */
1085 writel(1, fep
->hwp
+ FEC_X_CNTRL
); /* Graceful transmit stop */
1087 if (!(readl(fep
->hwp
+ FEC_IEVENT
) & FEC_ENET_GRA
))
1088 netdev_err(ndev
, "Graceful transmit stop did not complete!\n");
1091 /* Whack a reset. We should wait for this.
1092 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1093 * instead of reset MAC itself.
1095 if (!(fep
->wol_flag
& FEC_WOL_FLAG_SLEEP_ON
)) {
1096 if (fep
->quirks
& FEC_QUIRK_HAS_AVB
) {
1097 writel(0, fep
->hwp
+ FEC_ECNTRL
);
1099 writel(1, fep
->hwp
+ FEC_ECNTRL
);
1102 writel(FEC_DEFAULT_IMASK
, fep
->hwp
+ FEC_IMASK
);
1104 writel(FEC_DEFAULT_IMASK
| FEC_ENET_WAKEUP
, fep
->hwp
+ FEC_IMASK
);
1105 val
= readl(fep
->hwp
+ FEC_ECNTRL
);
1106 val
|= (FEC_ECR_MAGICEN
| FEC_ECR_SLEEP
);
1107 writel(val
, fep
->hwp
+ FEC_ECNTRL
);
1109 if (pdata
&& pdata
->sleep_mode_enable
)
1110 pdata
->sleep_mode_enable(true);
1112 writel(fep
->phy_speed
, fep
->hwp
+ FEC_MII_SPEED
);
1114 /* We have to keep ENET enabled to have MII interrupt stay working */
1115 if (fep
->quirks
& FEC_QUIRK_ENET_MAC
&&
1116 !(fep
->wol_flag
& FEC_WOL_FLAG_SLEEP_ON
)) {
1117 writel(2, fep
->hwp
+ FEC_ECNTRL
);
1118 writel(rmii_mode
, fep
->hwp
+ FEC_R_CNTRL
);
1124 fec_timeout(struct net_device
*ndev
)
1126 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1130 ndev
->stats
.tx_errors
++;
1132 schedule_work(&fep
->tx_timeout_work
);
1135 static void fec_enet_timeout_work(struct work_struct
*work
)
1137 struct fec_enet_private
*fep
=
1138 container_of(work
, struct fec_enet_private
, tx_timeout_work
);
1139 struct net_device
*ndev
= fep
->netdev
;
1142 if (netif_device_present(ndev
) || netif_running(ndev
)) {
1143 napi_disable(&fep
->napi
);
1144 netif_tx_lock_bh(ndev
);
1146 netif_wake_queue(ndev
);
1147 netif_tx_unlock_bh(ndev
);
1148 napi_enable(&fep
->napi
);
1154 fec_enet_hwtstamp(struct fec_enet_private
*fep
, unsigned ts
,
1155 struct skb_shared_hwtstamps
*hwtstamps
)
1157 unsigned long flags
;
1160 spin_lock_irqsave(&fep
->tmreg_lock
, flags
);
1161 ns
= timecounter_cyc2time(&fep
->tc
, ts
);
1162 spin_unlock_irqrestore(&fep
->tmreg_lock
, flags
);
1164 memset(hwtstamps
, 0, sizeof(*hwtstamps
));
1165 hwtstamps
->hwtstamp
= ns_to_ktime(ns
);
1169 fec_enet_tx_queue(struct net_device
*ndev
, u16 queue_id
)
1171 struct fec_enet_private
*fep
;
1172 struct bufdesc
*bdp
;
1173 unsigned short status
;
1174 struct sk_buff
*skb
;
1175 struct fec_enet_priv_tx_q
*txq
;
1176 struct netdev_queue
*nq
;
1180 fep
= netdev_priv(ndev
);
1182 queue_id
= FEC_ENET_GET_QUQUE(queue_id
);
1184 txq
= fep
->tx_queue
[queue_id
];
1185 /* get next bdp of dirty_tx */
1186 nq
= netdev_get_tx_queue(ndev
, queue_id
);
1187 bdp
= txq
->dirty_tx
;
1189 /* get next bdp of dirty_tx */
1190 bdp
= fec_enet_get_nextdesc(bdp
, &txq
->bd
);
1192 while (bdp
!= READ_ONCE(txq
->bd
.cur
)) {
1193 /* Order the load of bd.cur and cbd_sc */
1195 status
= fec16_to_cpu(READ_ONCE(bdp
->cbd_sc
));
1196 if (status
& BD_ENET_TX_READY
)
1199 index
= fec_enet_get_bd_index(bdp
, &txq
->bd
);
1201 skb
= txq
->tx_skbuff
[index
];
1202 txq
->tx_skbuff
[index
] = NULL
;
1203 if (!IS_TSO_HEADER(txq
, fec32_to_cpu(bdp
->cbd_bufaddr
)))
1204 dma_unmap_single(&fep
->pdev
->dev
,
1205 fec32_to_cpu(bdp
->cbd_bufaddr
),
1206 fec16_to_cpu(bdp
->cbd_datlen
),
1208 bdp
->cbd_bufaddr
= cpu_to_fec32(0);
1212 /* Check for errors. */
1213 if (status
& (BD_ENET_TX_HB
| BD_ENET_TX_LC
|
1214 BD_ENET_TX_RL
| BD_ENET_TX_UN
|
1216 ndev
->stats
.tx_errors
++;
1217 if (status
& BD_ENET_TX_HB
) /* No heartbeat */
1218 ndev
->stats
.tx_heartbeat_errors
++;
1219 if (status
& BD_ENET_TX_LC
) /* Late collision */
1220 ndev
->stats
.tx_window_errors
++;
1221 if (status
& BD_ENET_TX_RL
) /* Retrans limit */
1222 ndev
->stats
.tx_aborted_errors
++;
1223 if (status
& BD_ENET_TX_UN
) /* Underrun */
1224 ndev
->stats
.tx_fifo_errors
++;
1225 if (status
& BD_ENET_TX_CSL
) /* Carrier lost */
1226 ndev
->stats
.tx_carrier_errors
++;
1228 ndev
->stats
.tx_packets
++;
1229 ndev
->stats
.tx_bytes
+= skb
->len
;
1232 if (unlikely(skb_shinfo(skb
)->tx_flags
& SKBTX_IN_PROGRESS
) &&
1234 struct skb_shared_hwtstamps shhwtstamps
;
1235 struct bufdesc_ex
*ebdp
= (struct bufdesc_ex
*)bdp
;
1237 fec_enet_hwtstamp(fep
, fec32_to_cpu(ebdp
->ts
), &shhwtstamps
);
1238 skb_tstamp_tx(skb
, &shhwtstamps
);
1241 /* Deferred means some collisions occurred during transmit,
1242 * but we eventually sent the packet OK.
1244 if (status
& BD_ENET_TX_DEF
)
1245 ndev
->stats
.collisions
++;
1247 /* Free the sk buffer associated with this last transmit */
1248 dev_kfree_skb_any(skb
);
1250 /* Make sure the update to bdp and tx_skbuff are performed
1254 txq
->dirty_tx
= bdp
;
1256 /* Update pointer to next buffer descriptor to be transmitted */
1257 bdp
= fec_enet_get_nextdesc(bdp
, &txq
->bd
);
1259 /* Since we have freed up a buffer, the ring is no longer full
1261 if (netif_queue_stopped(ndev
)) {
1262 entries_free
= fec_enet_get_free_txdesc_num(txq
);
1263 if (entries_free
>= txq
->tx_wake_threshold
)
1264 netif_tx_wake_queue(nq
);
1268 /* ERR006538: Keep the transmitter going */
1269 if (bdp
!= txq
->bd
.cur
&&
1270 readl(txq
->bd
.reg_desc_active
) == 0)
1271 writel(0, txq
->bd
.reg_desc_active
);
1275 fec_enet_tx(struct net_device
*ndev
)
1277 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1279 /* First process class A queue, then Class B and Best Effort queue */
1280 for_each_set_bit(queue_id
, &fep
->work_tx
, FEC_ENET_MAX_TX_QS
) {
1281 clear_bit(queue_id
, &fep
->work_tx
);
1282 fec_enet_tx_queue(ndev
, queue_id
);
1288 fec_enet_new_rxbdp(struct net_device
*ndev
, struct bufdesc
*bdp
, struct sk_buff
*skb
)
1290 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1293 off
= ((unsigned long)skb
->data
) & fep
->rx_align
;
1295 skb_reserve(skb
, fep
->rx_align
+ 1 - off
);
1297 bdp
->cbd_bufaddr
= cpu_to_fec32(dma_map_single(&fep
->pdev
->dev
, skb
->data
, FEC_ENET_RX_FRSIZE
- fep
->rx_align
, DMA_FROM_DEVICE
));
1298 if (dma_mapping_error(&fep
->pdev
->dev
, fec32_to_cpu(bdp
->cbd_bufaddr
))) {
1299 if (net_ratelimit())
1300 netdev_err(ndev
, "Rx DMA memory map failed\n");
1307 static bool fec_enet_copybreak(struct net_device
*ndev
, struct sk_buff
**skb
,
1308 struct bufdesc
*bdp
, u32 length
, bool swap
)
1310 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1311 struct sk_buff
*new_skb
;
1313 if (length
> fep
->rx_copybreak
)
1316 new_skb
= netdev_alloc_skb(ndev
, length
);
1320 dma_sync_single_for_cpu(&fep
->pdev
->dev
,
1321 fec32_to_cpu(bdp
->cbd_bufaddr
),
1322 FEC_ENET_RX_FRSIZE
- fep
->rx_align
,
1325 memcpy(new_skb
->data
, (*skb
)->data
, length
);
1327 swap_buffer2(new_skb
->data
, (*skb
)->data
, length
);
1333 /* During a receive, the bd_rx.cur points to the current incoming buffer.
1334 * When we update through the ring, if the next incoming buffer has
1335 * not been given to the system, we just set the empty indicator,
1336 * effectively tossing the packet.
1339 fec_enet_rx_queue(struct net_device
*ndev
, int budget
, u16 queue_id
)
1341 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1342 struct fec_enet_priv_rx_q
*rxq
;
1343 struct bufdesc
*bdp
;
1344 unsigned short status
;
1345 struct sk_buff
*skb_new
= NULL
;
1346 struct sk_buff
*skb
;
1349 int pkt_received
= 0;
1350 struct bufdesc_ex
*ebdp
= NULL
;
1351 bool vlan_packet_rcvd
= false;
1355 bool need_swap
= fep
->quirks
& FEC_QUIRK_SWAP_FRAME
;
1360 queue_id
= FEC_ENET_GET_QUQUE(queue_id
);
1361 rxq
= fep
->rx_queue
[queue_id
];
1363 /* First, grab all of the stats for the incoming packet.
1364 * These get messed up if we get called due to a busy condition.
1368 while (!((status
= fec16_to_cpu(bdp
->cbd_sc
)) & BD_ENET_RX_EMPTY
)) {
1370 if (pkt_received
>= budget
)
1374 writel(FEC_ENET_RXF
, fep
->hwp
+ FEC_IEVENT
);
1376 /* Check for errors. */
1377 status
^= BD_ENET_RX_LAST
;
1378 if (status
& (BD_ENET_RX_LG
| BD_ENET_RX_SH
| BD_ENET_RX_NO
|
1379 BD_ENET_RX_CR
| BD_ENET_RX_OV
| BD_ENET_RX_LAST
|
1381 ndev
->stats
.rx_errors
++;
1382 if (status
& BD_ENET_RX_OV
) {
1384 ndev
->stats
.rx_fifo_errors
++;
1385 goto rx_processing_done
;
1387 if (status
& (BD_ENET_RX_LG
| BD_ENET_RX_SH
1388 | BD_ENET_RX_LAST
)) {
1389 /* Frame too long or too short. */
1390 ndev
->stats
.rx_length_errors
++;
1391 if (status
& BD_ENET_RX_LAST
)
1392 netdev_err(ndev
, "rcv is not +last\n");
1394 if (status
& BD_ENET_RX_CR
) /* CRC Error */
1395 ndev
->stats
.rx_crc_errors
++;
1396 /* Report late collisions as a frame error. */
1397 if (status
& (BD_ENET_RX_NO
| BD_ENET_RX_CL
))
1398 ndev
->stats
.rx_frame_errors
++;
1399 goto rx_processing_done
;
1402 /* Process the incoming frame. */
1403 ndev
->stats
.rx_packets
++;
1404 pkt_len
= fec16_to_cpu(bdp
->cbd_datlen
);
1405 ndev
->stats
.rx_bytes
+= pkt_len
;
1407 index
= fec_enet_get_bd_index(bdp
, &rxq
->bd
);
1408 skb
= rxq
->rx_skbuff
[index
];
1410 /* The packet length includes FCS, but we don't want to
1411 * include that when passing upstream as it messes up
1412 * bridging applications.
1414 is_copybreak
= fec_enet_copybreak(ndev
, &skb
, bdp
, pkt_len
- 4,
1416 if (!is_copybreak
) {
1417 skb_new
= netdev_alloc_skb(ndev
, FEC_ENET_RX_FRSIZE
);
1418 if (unlikely(!skb_new
)) {
1419 ndev
->stats
.rx_dropped
++;
1420 goto rx_processing_done
;
1422 dma_unmap_single(&fep
->pdev
->dev
,
1423 fec32_to_cpu(bdp
->cbd_bufaddr
),
1424 FEC_ENET_RX_FRSIZE
- fep
->rx_align
,
1428 prefetch(skb
->data
- NET_IP_ALIGN
);
1429 skb_put(skb
, pkt_len
- 4);
1431 if (!is_copybreak
&& need_swap
)
1432 swap_buffer(data
, pkt_len
);
1434 /* Extract the enhanced buffer descriptor */
1436 if (fep
->bufdesc_ex
)
1437 ebdp
= (struct bufdesc_ex
*)bdp
;
1439 /* If this is a VLAN packet remove the VLAN Tag */
1440 vlan_packet_rcvd
= false;
1441 if ((ndev
->features
& NETIF_F_HW_VLAN_CTAG_RX
) &&
1443 (ebdp
->cbd_esc
& cpu_to_fec32(BD_ENET_RX_VLAN
))) {
1444 /* Push and remove the vlan tag */
1445 struct vlan_hdr
*vlan_header
=
1446 (struct vlan_hdr
*) (data
+ ETH_HLEN
);
1447 vlan_tag
= ntohs(vlan_header
->h_vlan_TCI
);
1449 vlan_packet_rcvd
= true;
1451 memmove(skb
->data
+ VLAN_HLEN
, data
, ETH_ALEN
* 2);
1452 skb_pull(skb
, VLAN_HLEN
);
1455 skb
->protocol
= eth_type_trans(skb
, ndev
);
1457 /* Get receive timestamp from the skb */
1458 if (fep
->hwts_rx_en
&& fep
->bufdesc_ex
)
1459 fec_enet_hwtstamp(fep
, fec32_to_cpu(ebdp
->ts
),
1460 skb_hwtstamps(skb
));
1462 if (fep
->bufdesc_ex
&&
1463 (fep
->csum_flags
& FLAG_RX_CSUM_ENABLED
)) {
1464 if (!(ebdp
->cbd_esc
& cpu_to_fec32(FLAG_RX_CSUM_ERROR
))) {
1465 /* don't check it */
1466 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
1468 skb_checksum_none_assert(skb
);
1472 /* Handle received VLAN packets */
1473 if (vlan_packet_rcvd
)
1474 __vlan_hwaccel_put_tag(skb
,
1478 napi_gro_receive(&fep
->napi
, skb
);
1481 dma_sync_single_for_device(&fep
->pdev
->dev
,
1482 fec32_to_cpu(bdp
->cbd_bufaddr
),
1483 FEC_ENET_RX_FRSIZE
- fep
->rx_align
,
1486 rxq
->rx_skbuff
[index
] = skb_new
;
1487 fec_enet_new_rxbdp(ndev
, bdp
, skb_new
);
1491 /* Clear the status flags for this buffer */
1492 status
&= ~BD_ENET_RX_STATS
;
1494 /* Mark the buffer empty */
1495 status
|= BD_ENET_RX_EMPTY
;
1497 if (fep
->bufdesc_ex
) {
1498 struct bufdesc_ex
*ebdp
= (struct bufdesc_ex
*)bdp
;
1500 ebdp
->cbd_esc
= cpu_to_fec32(BD_ENET_RX_INT
);
1504 /* Make sure the updates to rest of the descriptor are
1505 * performed before transferring ownership.
1508 bdp
->cbd_sc
= cpu_to_fec16(status
);
1510 /* Update BD pointer to next entry */
1511 bdp
= fec_enet_get_nextdesc(bdp
, &rxq
->bd
);
1513 /* Doing this here will keep the FEC running while we process
1514 * incoming frames. On a heavily loaded network, we should be
1515 * able to keep up at the expense of system resources.
1517 writel(0, rxq
->bd
.reg_desc_active
);
1520 return pkt_received
;
1524 fec_enet_rx(struct net_device
*ndev
, int budget
)
1526 int pkt_received
= 0;
1528 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1530 for_each_set_bit(queue_id
, &fep
->work_rx
, FEC_ENET_MAX_RX_QS
) {
1533 ret
= fec_enet_rx_queue(ndev
,
1534 budget
- pkt_received
, queue_id
);
1536 if (ret
< budget
- pkt_received
)
1537 clear_bit(queue_id
, &fep
->work_rx
);
1539 pkt_received
+= ret
;
1541 return pkt_received
;
1545 fec_enet_collect_events(struct fec_enet_private
*fep
, uint int_events
)
1547 if (int_events
== 0)
1550 if (int_events
& FEC_ENET_RXF
)
1551 fep
->work_rx
|= (1 << 2);
1552 if (int_events
& FEC_ENET_RXF_1
)
1553 fep
->work_rx
|= (1 << 0);
1554 if (int_events
& FEC_ENET_RXF_2
)
1555 fep
->work_rx
|= (1 << 1);
1557 if (int_events
& FEC_ENET_TXF
)
1558 fep
->work_tx
|= (1 << 2);
1559 if (int_events
& FEC_ENET_TXF_1
)
1560 fep
->work_tx
|= (1 << 0);
1561 if (int_events
& FEC_ENET_TXF_2
)
1562 fep
->work_tx
|= (1 << 1);
1568 fec_enet_interrupt(int irq
, void *dev_id
)
1570 struct net_device
*ndev
= dev_id
;
1571 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1573 irqreturn_t ret
= IRQ_NONE
;
1575 int_events
= readl(fep
->hwp
+ FEC_IEVENT
);
1576 writel(int_events
, fep
->hwp
+ FEC_IEVENT
);
1577 fec_enet_collect_events(fep
, int_events
);
1579 if ((fep
->work_tx
|| fep
->work_rx
) && fep
->link
) {
1582 if (napi_schedule_prep(&fep
->napi
)) {
1583 /* Disable the NAPI interrupts */
1584 writel(FEC_NAPI_IMASK
, fep
->hwp
+ FEC_IMASK
);
1585 __napi_schedule(&fep
->napi
);
1589 if (int_events
& FEC_ENET_MII
) {
1591 complete(&fep
->mdio_done
);
1595 fec_ptp_check_pps_event(fep
);
1600 static int fec_enet_rx_napi(struct napi_struct
*napi
, int budget
)
1602 struct net_device
*ndev
= napi
->dev
;
1603 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1606 pkts
= fec_enet_rx(ndev
, budget
);
1610 if (pkts
< budget
) {
1611 napi_complete(napi
);
1612 writel(FEC_DEFAULT_IMASK
, fep
->hwp
+ FEC_IMASK
);
1617 /* ------------------------------------------------------------------------- */
1618 static void fec_get_mac(struct net_device
*ndev
)
1620 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1621 struct fec_platform_data
*pdata
= dev_get_platdata(&fep
->pdev
->dev
);
1622 unsigned char *iap
, tmpaddr
[ETH_ALEN
];
1625 * try to get mac address in following order:
1627 * 1) module parameter via kernel command line in form
1628 * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1633 * 2) from device tree data
1635 if (!is_valid_ether_addr(iap
)) {
1636 struct device_node
*np
= fep
->pdev
->dev
.of_node
;
1638 const char *mac
= of_get_mac_address(np
);
1640 iap
= (unsigned char *) mac
;
1645 * 3) from flash or fuse (via platform data)
1647 if (!is_valid_ether_addr(iap
)) {
1650 iap
= (unsigned char *)FEC_FLASHMAC
;
1653 iap
= (unsigned char *)&pdata
->mac
;
1658 * 4) FEC mac registers set by bootloader
1660 if (!is_valid_ether_addr(iap
)) {
1661 *((__be32
*) &tmpaddr
[0]) =
1662 cpu_to_be32(readl(fep
->hwp
+ FEC_ADDR_LOW
));
1663 *((__be16
*) &tmpaddr
[4]) =
1664 cpu_to_be16(readl(fep
->hwp
+ FEC_ADDR_HIGH
) >> 16);
1669 * 5) random mac address
1671 if (!is_valid_ether_addr(iap
)) {
1672 /* Report it and use a random ethernet address instead */
1673 netdev_err(ndev
, "Invalid MAC address: %pM\n", iap
);
1674 eth_hw_addr_random(ndev
);
1675 netdev_info(ndev
, "Using random MAC address: %pM\n",
1680 memcpy(ndev
->dev_addr
, iap
, ETH_ALEN
);
1682 /* Adjust MAC if using macaddr */
1684 ndev
->dev_addr
[ETH_ALEN
-1] = macaddr
[ETH_ALEN
-1] + fep
->dev_id
;
1687 /* ------------------------------------------------------------------------- */
1692 static void fec_enet_adjust_link(struct net_device
*ndev
)
1694 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1695 struct phy_device
*phy_dev
= ndev
->phydev
;
1696 int status_change
= 0;
1698 /* Prevent a state halted on mii error */
1699 if (fep
->mii_timeout
&& phy_dev
->state
== PHY_HALTED
) {
1700 phy_dev
->state
= PHY_RESUMING
;
1705 * If the netdev is down, or is going down, we're not interested
1706 * in link state events, so just mark our idea of the link as down
1707 * and ignore the event.
1709 if (!netif_running(ndev
) || !netif_device_present(ndev
)) {
1711 } else if (phy_dev
->link
) {
1713 fep
->link
= phy_dev
->link
;
1717 if (fep
->full_duplex
!= phy_dev
->duplex
) {
1718 fep
->full_duplex
= phy_dev
->duplex
;
1722 if (phy_dev
->speed
!= fep
->speed
) {
1723 fep
->speed
= phy_dev
->speed
;
1727 /* if any of the above changed restart the FEC */
1728 if (status_change
) {
1729 napi_disable(&fep
->napi
);
1730 netif_tx_lock_bh(ndev
);
1732 netif_wake_queue(ndev
);
1733 netif_tx_unlock_bh(ndev
);
1734 napi_enable(&fep
->napi
);
1738 napi_disable(&fep
->napi
);
1739 netif_tx_lock_bh(ndev
);
1741 netif_tx_unlock_bh(ndev
);
1742 napi_enable(&fep
->napi
);
1743 fep
->link
= phy_dev
->link
;
1749 phy_print_status(phy_dev
);
1752 static int fec_enet_mdio_read(struct mii_bus
*bus
, int mii_id
, int regnum
)
1754 struct fec_enet_private
*fep
= bus
->priv
;
1755 struct device
*dev
= &fep
->pdev
->dev
;
1756 unsigned long time_left
;
1759 ret
= pm_runtime_get_sync(dev
);
1763 fep
->mii_timeout
= 0;
1764 reinit_completion(&fep
->mdio_done
);
1766 /* start a read op */
1767 writel(FEC_MMFR_ST
| FEC_MMFR_OP_READ
|
1768 FEC_MMFR_PA(mii_id
) | FEC_MMFR_RA(regnum
) |
1769 FEC_MMFR_TA
, fep
->hwp
+ FEC_MII_DATA
);
1771 /* wait for end of transfer */
1772 time_left
= wait_for_completion_timeout(&fep
->mdio_done
,
1773 usecs_to_jiffies(FEC_MII_TIMEOUT
));
1774 if (time_left
== 0) {
1775 fep
->mii_timeout
= 1;
1776 netdev_err(fep
->netdev
, "MDIO read timeout\n");
1781 ret
= FEC_MMFR_DATA(readl(fep
->hwp
+ FEC_MII_DATA
));
1784 pm_runtime_mark_last_busy(dev
);
1785 pm_runtime_put_autosuspend(dev
);
1790 static int fec_enet_mdio_write(struct mii_bus
*bus
, int mii_id
, int regnum
,
1793 struct fec_enet_private
*fep
= bus
->priv
;
1794 struct device
*dev
= &fep
->pdev
->dev
;
1795 unsigned long time_left
;
1798 ret
= pm_runtime_get_sync(dev
);
1804 fep
->mii_timeout
= 0;
1805 reinit_completion(&fep
->mdio_done
);
1807 /* start a write op */
1808 writel(FEC_MMFR_ST
| FEC_MMFR_OP_WRITE
|
1809 FEC_MMFR_PA(mii_id
) | FEC_MMFR_RA(regnum
) |
1810 FEC_MMFR_TA
| FEC_MMFR_DATA(value
),
1811 fep
->hwp
+ FEC_MII_DATA
);
1813 /* wait for end of transfer */
1814 time_left
= wait_for_completion_timeout(&fep
->mdio_done
,
1815 usecs_to_jiffies(FEC_MII_TIMEOUT
));
1816 if (time_left
== 0) {
1817 fep
->mii_timeout
= 1;
1818 netdev_err(fep
->netdev
, "MDIO write timeout\n");
1822 pm_runtime_mark_last_busy(dev
);
1823 pm_runtime_put_autosuspend(dev
);
1828 static int fec_enet_clk_enable(struct net_device
*ndev
, bool enable
)
1830 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1834 ret
= clk_prepare_enable(fep
->clk_ahb
);
1837 if (fep
->clk_enet_out
) {
1838 ret
= clk_prepare_enable(fep
->clk_enet_out
);
1840 goto failed_clk_enet_out
;
1843 mutex_lock(&fep
->ptp_clk_mutex
);
1844 ret
= clk_prepare_enable(fep
->clk_ptp
);
1846 mutex_unlock(&fep
->ptp_clk_mutex
);
1847 goto failed_clk_ptp
;
1849 fep
->ptp_clk_on
= true;
1851 mutex_unlock(&fep
->ptp_clk_mutex
);
1854 ret
= clk_prepare_enable(fep
->clk_ref
);
1856 goto failed_clk_ref
;
1859 clk_disable_unprepare(fep
->clk_ahb
);
1860 if (fep
->clk_enet_out
)
1861 clk_disable_unprepare(fep
->clk_enet_out
);
1863 mutex_lock(&fep
->ptp_clk_mutex
);
1864 clk_disable_unprepare(fep
->clk_ptp
);
1865 fep
->ptp_clk_on
= false;
1866 mutex_unlock(&fep
->ptp_clk_mutex
);
1869 clk_disable_unprepare(fep
->clk_ref
);
1876 clk_disable_unprepare(fep
->clk_ref
);
1878 if (fep
->clk_enet_out
)
1879 clk_disable_unprepare(fep
->clk_enet_out
);
1880 failed_clk_enet_out
:
1881 clk_disable_unprepare(fep
->clk_ahb
);
1886 static int fec_enet_mii_probe(struct net_device
*ndev
)
1888 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1889 struct phy_device
*phy_dev
= NULL
;
1890 char mdio_bus_id
[MII_BUS_ID_SIZE
];
1891 char phy_name
[MII_BUS_ID_SIZE
+ 3];
1893 int dev_id
= fep
->dev_id
;
1895 if (fep
->phy_node
) {
1896 phy_dev
= of_phy_connect(ndev
, fep
->phy_node
,
1897 &fec_enet_adjust_link
, 0,
1898 fep
->phy_interface
);
1902 /* check for attached phy */
1903 for (phy_id
= 0; (phy_id
< PHY_MAX_ADDR
); phy_id
++) {
1904 if (!mdiobus_is_registered_device(fep
->mii_bus
, phy_id
))
1908 strlcpy(mdio_bus_id
, fep
->mii_bus
->id
, MII_BUS_ID_SIZE
);
1912 if (phy_id
>= PHY_MAX_ADDR
) {
1913 netdev_info(ndev
, "no PHY, assuming direct connection to switch\n");
1914 strlcpy(mdio_bus_id
, "fixed-0", MII_BUS_ID_SIZE
);
1918 snprintf(phy_name
, sizeof(phy_name
),
1919 PHY_ID_FMT
, mdio_bus_id
, phy_id
);
1920 phy_dev
= phy_connect(ndev
, phy_name
, &fec_enet_adjust_link
,
1921 fep
->phy_interface
);
1924 if (IS_ERR(phy_dev
)) {
1925 netdev_err(ndev
, "could not attach to PHY\n");
1926 return PTR_ERR(phy_dev
);
1929 /* mask with MAC supported features */
1930 if (fep
->quirks
& FEC_QUIRK_HAS_GBIT
) {
1931 phy_dev
->supported
&= PHY_GBIT_FEATURES
;
1932 phy_dev
->supported
&= ~SUPPORTED_1000baseT_Half
;
1933 #if !defined(CONFIG_M5272)
1934 phy_dev
->supported
|= SUPPORTED_Pause
;
1938 phy_dev
->supported
&= PHY_BASIC_FEATURES
;
1940 phy_dev
->advertising
= phy_dev
->supported
;
1943 fep
->full_duplex
= 0;
1945 phy_attached_info(phy_dev
);
1950 static int fec_enet_mii_init(struct platform_device
*pdev
)
1952 static struct mii_bus
*fec0_mii_bus
;
1953 struct net_device
*ndev
= platform_get_drvdata(pdev
);
1954 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1955 struct device_node
*node
;
1957 u32 mii_speed
, holdtime
;
1960 * The i.MX28 dual fec interfaces are not equal.
1961 * Here are the differences:
1963 * - fec0 supports MII & RMII modes while fec1 only supports RMII
1964 * - fec0 acts as the 1588 time master while fec1 is slave
1965 * - external phys can only be configured by fec0
1967 * That is to say fec1 can not work independently. It only works
1968 * when fec0 is working. The reason behind this design is that the
1969 * second interface is added primarily for Switch mode.
1971 * Because of the last point above, both phys are attached on fec0
1972 * mdio interface in board design, and need to be configured by
1975 if ((fep
->quirks
& FEC_QUIRK_SINGLE_MDIO
) && fep
->dev_id
> 0) {
1976 /* fec1 uses fec0 mii_bus */
1977 if (mii_cnt
&& fec0_mii_bus
) {
1978 fep
->mii_bus
= fec0_mii_bus
;
1985 fep
->mii_timeout
= 0;
1988 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
1990 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
1991 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'. The i.MX28
1992 * Reference Manual has an error on this, and gets fixed on i.MX6Q
1995 mii_speed
= DIV_ROUND_UP(clk_get_rate(fep
->clk_ipg
), 5000000);
1996 if (fep
->quirks
& FEC_QUIRK_ENET_MAC
)
1998 if (mii_speed
> 63) {
2000 "fec clock (%lu) to fast to get right mii speed\n",
2001 clk_get_rate(fep
->clk_ipg
));
2007 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2008 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2009 * versions are RAZ there, so just ignore the difference and write the
2011 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2012 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2014 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2015 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2016 * holdtime cannot result in a value greater than 3.
2018 holdtime
= DIV_ROUND_UP(clk_get_rate(fep
->clk_ipg
), 100000000) - 1;
2020 fep
->phy_speed
= mii_speed
<< 1 | holdtime
<< 8;
2022 writel(fep
->phy_speed
, fep
->hwp
+ FEC_MII_SPEED
);
2024 fep
->mii_bus
= mdiobus_alloc();
2025 if (fep
->mii_bus
== NULL
) {
2030 fep
->mii_bus
->name
= "fec_enet_mii_bus";
2031 fep
->mii_bus
->read
= fec_enet_mdio_read
;
2032 fep
->mii_bus
->write
= fec_enet_mdio_write
;
2033 snprintf(fep
->mii_bus
->id
, MII_BUS_ID_SIZE
, "%s-%x",
2034 pdev
->name
, fep
->dev_id
+ 1);
2035 fep
->mii_bus
->priv
= fep
;
2036 fep
->mii_bus
->parent
= &pdev
->dev
;
2038 node
= of_get_child_by_name(pdev
->dev
.of_node
, "mdio");
2040 err
= of_mdiobus_register(fep
->mii_bus
, node
);
2043 err
= mdiobus_register(fep
->mii_bus
);
2047 goto err_out_free_mdiobus
;
2051 /* save fec0 mii_bus */
2052 if (fep
->quirks
& FEC_QUIRK_SINGLE_MDIO
)
2053 fec0_mii_bus
= fep
->mii_bus
;
2057 err_out_free_mdiobus
:
2058 mdiobus_free(fep
->mii_bus
);
2063 static void fec_enet_mii_remove(struct fec_enet_private
*fep
)
2065 if (--mii_cnt
== 0) {
2066 mdiobus_unregister(fep
->mii_bus
);
2067 mdiobus_free(fep
->mii_bus
);
2071 static void fec_enet_get_drvinfo(struct net_device
*ndev
,
2072 struct ethtool_drvinfo
*info
)
2074 struct fec_enet_private
*fep
= netdev_priv(ndev
);
2076 strlcpy(info
->driver
, fep
->pdev
->dev
.driver
->name
,
2077 sizeof(info
->driver
));
2078 strlcpy(info
->version
, "Revision: 1.0", sizeof(info
->version
));
2079 strlcpy(info
->bus_info
, dev_name(&ndev
->dev
), sizeof(info
->bus_info
));
2082 static int fec_enet_get_regs_len(struct net_device
*ndev
)
2084 struct fec_enet_private
*fep
= netdev_priv(ndev
);
2088 r
= platform_get_resource(fep
->pdev
, IORESOURCE_MEM
, 0);
2090 s
= resource_size(r
);
2095 /* List of registers that can be safety be read to dump them with ethtool */
2096 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2097 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
2098 static u32 fec_enet_register_offset
[] = {
2099 FEC_IEVENT
, FEC_IMASK
, FEC_R_DES_ACTIVE_0
, FEC_X_DES_ACTIVE_0
,
2100 FEC_ECNTRL
, FEC_MII_DATA
, FEC_MII_SPEED
, FEC_MIB_CTRLSTAT
, FEC_R_CNTRL
,
2101 FEC_X_CNTRL
, FEC_ADDR_LOW
, FEC_ADDR_HIGH
, FEC_OPD
, FEC_TXIC0
, FEC_TXIC1
,
2102 FEC_TXIC2
, FEC_RXIC0
, FEC_RXIC1
, FEC_RXIC2
, FEC_HASH_TABLE_HIGH
,
2103 FEC_HASH_TABLE_LOW
, FEC_GRP_HASH_TABLE_HIGH
, FEC_GRP_HASH_TABLE_LOW
,
2104 FEC_X_WMRK
, FEC_R_BOUND
, FEC_R_FSTART
, FEC_R_DES_START_1
,
2105 FEC_X_DES_START_1
, FEC_R_BUFF_SIZE_1
, FEC_R_DES_START_2
,
2106 FEC_X_DES_START_2
, FEC_R_BUFF_SIZE_2
, FEC_R_DES_START_0
,
2107 FEC_X_DES_START_0
, FEC_R_BUFF_SIZE_0
, FEC_R_FIFO_RSFL
, FEC_R_FIFO_RSEM
,
2108 FEC_R_FIFO_RAEM
, FEC_R_FIFO_RAFL
, FEC_RACC
, FEC_RCMR_1
, FEC_RCMR_2
,
2109 FEC_DMA_CFG_1
, FEC_DMA_CFG_2
, FEC_R_DES_ACTIVE_1
, FEC_X_DES_ACTIVE_1
,
2110 FEC_R_DES_ACTIVE_2
, FEC_X_DES_ACTIVE_2
, FEC_QOS_SCHEME
,
2111 RMON_T_DROP
, RMON_T_PACKETS
, RMON_T_BC_PKT
, RMON_T_MC_PKT
,
2112 RMON_T_CRC_ALIGN
, RMON_T_UNDERSIZE
, RMON_T_OVERSIZE
, RMON_T_FRAG
,
2113 RMON_T_JAB
, RMON_T_COL
, RMON_T_P64
, RMON_T_P65TO127
, RMON_T_P128TO255
,
2114 RMON_T_P256TO511
, RMON_T_P512TO1023
, RMON_T_P1024TO2047
,
2115 RMON_T_P_GTE2048
, RMON_T_OCTETS
,
2116 IEEE_T_DROP
, IEEE_T_FRAME_OK
, IEEE_T_1COL
, IEEE_T_MCOL
, IEEE_T_DEF
,
2117 IEEE_T_LCOL
, IEEE_T_EXCOL
, IEEE_T_MACERR
, IEEE_T_CSERR
, IEEE_T_SQE
,
2118 IEEE_T_FDXFC
, IEEE_T_OCTETS_OK
,
2119 RMON_R_PACKETS
, RMON_R_BC_PKT
, RMON_R_MC_PKT
, RMON_R_CRC_ALIGN
,
2120 RMON_R_UNDERSIZE
, RMON_R_OVERSIZE
, RMON_R_FRAG
, RMON_R_JAB
,
2121 RMON_R_RESVD_O
, RMON_R_P64
, RMON_R_P65TO127
, RMON_R_P128TO255
,
2122 RMON_R_P256TO511
, RMON_R_P512TO1023
, RMON_R_P1024TO2047
,
2123 RMON_R_P_GTE2048
, RMON_R_OCTETS
,
2124 IEEE_R_DROP
, IEEE_R_FRAME_OK
, IEEE_R_CRC
, IEEE_R_ALIGN
, IEEE_R_MACERR
,
2125 IEEE_R_FDXFC
, IEEE_R_OCTETS_OK
2128 static u32 fec_enet_register_offset
[] = {
2129 FEC_ECNTRL
, FEC_IEVENT
, FEC_IMASK
, FEC_IVEC
, FEC_R_DES_ACTIVE_0
,
2130 FEC_R_DES_ACTIVE_1
, FEC_R_DES_ACTIVE_2
, FEC_X_DES_ACTIVE_0
,
2131 FEC_X_DES_ACTIVE_1
, FEC_X_DES_ACTIVE_2
, FEC_MII_DATA
, FEC_MII_SPEED
,
2132 FEC_R_BOUND
, FEC_R_FSTART
, FEC_X_WMRK
, FEC_X_FSTART
, FEC_R_CNTRL
,
2133 FEC_MAX_FRM_LEN
, FEC_X_CNTRL
, FEC_ADDR_LOW
, FEC_ADDR_HIGH
,
2134 FEC_GRP_HASH_TABLE_HIGH
, FEC_GRP_HASH_TABLE_LOW
, FEC_R_DES_START_0
,
2135 FEC_R_DES_START_1
, FEC_R_DES_START_2
, FEC_X_DES_START_0
,
2136 FEC_X_DES_START_1
, FEC_X_DES_START_2
, FEC_R_BUFF_SIZE_0
,
2137 FEC_R_BUFF_SIZE_1
, FEC_R_BUFF_SIZE_2
2141 static void fec_enet_get_regs(struct net_device
*ndev
,
2142 struct ethtool_regs
*regs
, void *regbuf
)
2144 struct fec_enet_private
*fep
= netdev_priv(ndev
);
2145 u32 __iomem
*theregs
= (u32 __iomem
*)fep
->hwp
;
2146 u32
*buf
= (u32
*)regbuf
;
2149 memset(buf
, 0, regs
->len
);
2151 for (i
= 0; i
< ARRAY_SIZE(fec_enet_register_offset
); i
++) {
2152 off
= fec_enet_register_offset
[i
] / 4;
2153 buf
[off
] = readl(&theregs
[off
]);
2157 static int fec_enet_get_ts_info(struct net_device
*ndev
,
2158 struct ethtool_ts_info
*info
)
2160 struct fec_enet_private
*fep
= netdev_priv(ndev
);
2162 if (fep
->bufdesc_ex
) {
2164 info
->so_timestamping
= SOF_TIMESTAMPING_TX_SOFTWARE
|
2165 SOF_TIMESTAMPING_RX_SOFTWARE
|
2166 SOF_TIMESTAMPING_SOFTWARE
|
2167 SOF_TIMESTAMPING_TX_HARDWARE
|
2168 SOF_TIMESTAMPING_RX_HARDWARE
|
2169 SOF_TIMESTAMPING_RAW_HARDWARE
;
2171 info
->phc_index
= ptp_clock_index(fep
->ptp_clock
);
2173 info
->phc_index
= -1;
2175 info
->tx_types
= (1 << HWTSTAMP_TX_OFF
) |
2176 (1 << HWTSTAMP_TX_ON
);
2178 info
->rx_filters
= (1 << HWTSTAMP_FILTER_NONE
) |
2179 (1 << HWTSTAMP_FILTER_ALL
);
2182 return ethtool_op_get_ts_info(ndev
, info
);
2186 #if !defined(CONFIG_M5272)
2188 static void fec_enet_get_pauseparam(struct net_device
*ndev
,
2189 struct ethtool_pauseparam
*pause
)
2191 struct fec_enet_private
*fep
= netdev_priv(ndev
);
2193 pause
->autoneg
= (fep
->pause_flag
& FEC_PAUSE_FLAG_AUTONEG
) != 0;
2194 pause
->tx_pause
= (fep
->pause_flag
& FEC_PAUSE_FLAG_ENABLE
) != 0;
2195 pause
->rx_pause
= pause
->tx_pause
;
2198 static int fec_enet_set_pauseparam(struct net_device
*ndev
,
2199 struct ethtool_pauseparam
*pause
)
2201 struct fec_enet_private
*fep
= netdev_priv(ndev
);
2206 if (pause
->tx_pause
!= pause
->rx_pause
) {
2208 "hardware only support enable/disable both tx and rx");
2212 fep
->pause_flag
= 0;
2214 /* tx pause must be same as rx pause */
2215 fep
->pause_flag
|= pause
->rx_pause
? FEC_PAUSE_FLAG_ENABLE
: 0;
2216 fep
->pause_flag
|= pause
->autoneg
? FEC_PAUSE_FLAG_AUTONEG
: 0;
2218 if (pause
->rx_pause
|| pause
->autoneg
) {
2219 ndev
->phydev
->supported
|= ADVERTISED_Pause
;
2220 ndev
->phydev
->advertising
|= ADVERTISED_Pause
;
2222 ndev
->phydev
->supported
&= ~ADVERTISED_Pause
;
2223 ndev
->phydev
->advertising
&= ~ADVERTISED_Pause
;
2226 if (pause
->autoneg
) {
2227 if (netif_running(ndev
))
2229 phy_start_aneg(ndev
->phydev
);
2231 if (netif_running(ndev
)) {
2232 napi_disable(&fep
->napi
);
2233 netif_tx_lock_bh(ndev
);
2235 netif_wake_queue(ndev
);
2236 netif_tx_unlock_bh(ndev
);
2237 napi_enable(&fep
->napi
);
2243 static const struct fec_stat
{
2244 char name
[ETH_GSTRING_LEN
];
2248 { "tx_dropped", RMON_T_DROP
},
2249 { "tx_packets", RMON_T_PACKETS
},
2250 { "tx_broadcast", RMON_T_BC_PKT
},
2251 { "tx_multicast", RMON_T_MC_PKT
},
2252 { "tx_crc_errors", RMON_T_CRC_ALIGN
},
2253 { "tx_undersize", RMON_T_UNDERSIZE
},
2254 { "tx_oversize", RMON_T_OVERSIZE
},
2255 { "tx_fragment", RMON_T_FRAG
},
2256 { "tx_jabber", RMON_T_JAB
},
2257 { "tx_collision", RMON_T_COL
},
2258 { "tx_64byte", RMON_T_P64
},
2259 { "tx_65to127byte", RMON_T_P65TO127
},
2260 { "tx_128to255byte", RMON_T_P128TO255
},
2261 { "tx_256to511byte", RMON_T_P256TO511
},
2262 { "tx_512to1023byte", RMON_T_P512TO1023
},
2263 { "tx_1024to2047byte", RMON_T_P1024TO2047
},
2264 { "tx_GTE2048byte", RMON_T_P_GTE2048
},
2265 { "tx_octets", RMON_T_OCTETS
},
2268 { "IEEE_tx_drop", IEEE_T_DROP
},
2269 { "IEEE_tx_frame_ok", IEEE_T_FRAME_OK
},
2270 { "IEEE_tx_1col", IEEE_T_1COL
},
2271 { "IEEE_tx_mcol", IEEE_T_MCOL
},
2272 { "IEEE_tx_def", IEEE_T_DEF
},
2273 { "IEEE_tx_lcol", IEEE_T_LCOL
},
2274 { "IEEE_tx_excol", IEEE_T_EXCOL
},
2275 { "IEEE_tx_macerr", IEEE_T_MACERR
},
2276 { "IEEE_tx_cserr", IEEE_T_CSERR
},
2277 { "IEEE_tx_sqe", IEEE_T_SQE
},
2278 { "IEEE_tx_fdxfc", IEEE_T_FDXFC
},
2279 { "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK
},
2282 { "rx_packets", RMON_R_PACKETS
},
2283 { "rx_broadcast", RMON_R_BC_PKT
},
2284 { "rx_multicast", RMON_R_MC_PKT
},
2285 { "rx_crc_errors", RMON_R_CRC_ALIGN
},
2286 { "rx_undersize", RMON_R_UNDERSIZE
},
2287 { "rx_oversize", RMON_R_OVERSIZE
},
2288 { "rx_fragment", RMON_R_FRAG
},
2289 { "rx_jabber", RMON_R_JAB
},
2290 { "rx_64byte", RMON_R_P64
},
2291 { "rx_65to127byte", RMON_R_P65TO127
},
2292 { "rx_128to255byte", RMON_R_P128TO255
},
2293 { "rx_256to511byte", RMON_R_P256TO511
},
2294 { "rx_512to1023byte", RMON_R_P512TO1023
},
2295 { "rx_1024to2047byte", RMON_R_P1024TO2047
},
2296 { "rx_GTE2048byte", RMON_R_P_GTE2048
},
2297 { "rx_octets", RMON_R_OCTETS
},
2300 { "IEEE_rx_drop", IEEE_R_DROP
},
2301 { "IEEE_rx_frame_ok", IEEE_R_FRAME_OK
},
2302 { "IEEE_rx_crc", IEEE_R_CRC
},
2303 { "IEEE_rx_align", IEEE_R_ALIGN
},
2304 { "IEEE_rx_macerr", IEEE_R_MACERR
},
2305 { "IEEE_rx_fdxfc", IEEE_R_FDXFC
},
2306 { "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK
},
2309 static void fec_enet_get_ethtool_stats(struct net_device
*dev
,
2310 struct ethtool_stats
*stats
, u64
*data
)
2312 struct fec_enet_private
*fep
= netdev_priv(dev
);
2315 for (i
= 0; i
< ARRAY_SIZE(fec_stats
); i
++)
2316 data
[i
] = readl(fep
->hwp
+ fec_stats
[i
].offset
);
2319 static void fec_enet_get_strings(struct net_device
*netdev
,
2320 u32 stringset
, u8
*data
)
2323 switch (stringset
) {
2325 for (i
= 0; i
< ARRAY_SIZE(fec_stats
); i
++)
2326 memcpy(data
+ i
* ETH_GSTRING_LEN
,
2327 fec_stats
[i
].name
, ETH_GSTRING_LEN
);
2332 static int fec_enet_get_sset_count(struct net_device
*dev
, int sset
)
2336 return ARRAY_SIZE(fec_stats
);
2341 #endif /* !defined(CONFIG_M5272) */
2343 static int fec_enet_nway_reset(struct net_device
*dev
)
2345 struct phy_device
*phydev
= dev
->phydev
;
2350 return genphy_restart_aneg(phydev
);
2353 /* ITR clock source is enet system clock (clk_ahb).
2354 * TCTT unit is cycle_ns * 64 cycle
2355 * So, the ICTT value = X us / (cycle_ns * 64)
2357 static int fec_enet_us_to_itr_clock(struct net_device
*ndev
, int us
)
2359 struct fec_enet_private
*fep
= netdev_priv(ndev
);
2361 return us
* (fep
->itr_clk_rate
/ 64000) / 1000;
2364 /* Set threshold for interrupt coalescing */
2365 static void fec_enet_itr_coal_set(struct net_device
*ndev
)
2367 struct fec_enet_private
*fep
= netdev_priv(ndev
);
2370 /* Must be greater than zero to avoid unpredictable behavior */
2371 if (!fep
->rx_time_itr
|| !fep
->rx_pkts_itr
||
2372 !fep
->tx_time_itr
|| !fep
->tx_pkts_itr
)
2375 /* Select enet system clock as Interrupt Coalescing
2376 * timer Clock Source
2378 rx_itr
= FEC_ITR_CLK_SEL
;
2379 tx_itr
= FEC_ITR_CLK_SEL
;
2381 /* set ICFT and ICTT */
2382 rx_itr
|= FEC_ITR_ICFT(fep
->rx_pkts_itr
);
2383 rx_itr
|= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev
, fep
->rx_time_itr
));
2384 tx_itr
|= FEC_ITR_ICFT(fep
->tx_pkts_itr
);
2385 tx_itr
|= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev
, fep
->tx_time_itr
));
2387 rx_itr
|= FEC_ITR_EN
;
2388 tx_itr
|= FEC_ITR_EN
;
2390 writel(tx_itr
, fep
->hwp
+ FEC_TXIC0
);
2391 writel(rx_itr
, fep
->hwp
+ FEC_RXIC0
);
2392 if (fep
->quirks
& FEC_QUIRK_HAS_AVB
) {
2393 writel(tx_itr
, fep
->hwp
+ FEC_TXIC1
);
2394 writel(rx_itr
, fep
->hwp
+ FEC_RXIC1
);
2395 writel(tx_itr
, fep
->hwp
+ FEC_TXIC2
);
2396 writel(rx_itr
, fep
->hwp
+ FEC_RXIC2
);
2401 fec_enet_get_coalesce(struct net_device
*ndev
, struct ethtool_coalesce
*ec
)
2403 struct fec_enet_private
*fep
= netdev_priv(ndev
);
2405 if (!(fep
->quirks
& FEC_QUIRK_HAS_COALESCE
))
2408 ec
->rx_coalesce_usecs
= fep
->rx_time_itr
;
2409 ec
->rx_max_coalesced_frames
= fep
->rx_pkts_itr
;
2411 ec
->tx_coalesce_usecs
= fep
->tx_time_itr
;
2412 ec
->tx_max_coalesced_frames
= fep
->tx_pkts_itr
;
2418 fec_enet_set_coalesce(struct net_device
*ndev
, struct ethtool_coalesce
*ec
)
2420 struct fec_enet_private
*fep
= netdev_priv(ndev
);
2423 if (!(fep
->quirks
& FEC_QUIRK_HAS_COALESCE
))
2426 if (ec
->rx_max_coalesced_frames
> 255) {
2427 pr_err("Rx coalesced frames exceed hardware limitation\n");
2431 if (ec
->tx_max_coalesced_frames
> 255) {
2432 pr_err("Tx coalesced frame exceed hardware limitation\n");
2436 cycle
= fec_enet_us_to_itr_clock(ndev
, fep
->rx_time_itr
);
2437 if (cycle
> 0xFFFF) {
2438 pr_err("Rx coalesced usec exceed hardware limitation\n");
2442 cycle
= fec_enet_us_to_itr_clock(ndev
, fep
->tx_time_itr
);
2443 if (cycle
> 0xFFFF) {
2444 pr_err("Rx coalesced usec exceed hardware limitation\n");
2448 fep
->rx_time_itr
= ec
->rx_coalesce_usecs
;
2449 fep
->rx_pkts_itr
= ec
->rx_max_coalesced_frames
;
2451 fep
->tx_time_itr
= ec
->tx_coalesce_usecs
;
2452 fep
->tx_pkts_itr
= ec
->tx_max_coalesced_frames
;
2454 fec_enet_itr_coal_set(ndev
);
2459 static void fec_enet_itr_coal_init(struct net_device
*ndev
)
2461 struct ethtool_coalesce ec
;
2463 ec
.rx_coalesce_usecs
= FEC_ITR_ICTT_DEFAULT
;
2464 ec
.rx_max_coalesced_frames
= FEC_ITR_ICFT_DEFAULT
;
2466 ec
.tx_coalesce_usecs
= FEC_ITR_ICTT_DEFAULT
;
2467 ec
.tx_max_coalesced_frames
= FEC_ITR_ICFT_DEFAULT
;
2469 fec_enet_set_coalesce(ndev
, &ec
);
2472 static int fec_enet_get_tunable(struct net_device
*netdev
,
2473 const struct ethtool_tunable
*tuna
,
2476 struct fec_enet_private
*fep
= netdev_priv(netdev
);
2480 case ETHTOOL_RX_COPYBREAK
:
2481 *(u32
*)data
= fep
->rx_copybreak
;
2491 static int fec_enet_set_tunable(struct net_device
*netdev
,
2492 const struct ethtool_tunable
*tuna
,
2495 struct fec_enet_private
*fep
= netdev_priv(netdev
);
2499 case ETHTOOL_RX_COPYBREAK
:
2500 fep
->rx_copybreak
= *(u32
*)data
;
2511 fec_enet_get_wol(struct net_device
*ndev
, struct ethtool_wolinfo
*wol
)
2513 struct fec_enet_private
*fep
= netdev_priv(ndev
);
2515 if (fep
->wol_flag
& FEC_WOL_HAS_MAGIC_PACKET
) {
2516 wol
->supported
= WAKE_MAGIC
;
2517 wol
->wolopts
= fep
->wol_flag
& FEC_WOL_FLAG_ENABLE
? WAKE_MAGIC
: 0;
2519 wol
->supported
= wol
->wolopts
= 0;
2524 fec_enet_set_wol(struct net_device
*ndev
, struct ethtool_wolinfo
*wol
)
2526 struct fec_enet_private
*fep
= netdev_priv(ndev
);
2528 if (!(fep
->wol_flag
& FEC_WOL_HAS_MAGIC_PACKET
))
2531 if (wol
->wolopts
& ~WAKE_MAGIC
)
2534 device_set_wakeup_enable(&ndev
->dev
, wol
->wolopts
& WAKE_MAGIC
);
2535 if (device_may_wakeup(&ndev
->dev
)) {
2536 fep
->wol_flag
|= FEC_WOL_FLAG_ENABLE
;
2537 if (fep
->irq
[0] > 0)
2538 enable_irq_wake(fep
->irq
[0]);
2540 fep
->wol_flag
&= (~FEC_WOL_FLAG_ENABLE
);
2541 if (fep
->irq
[0] > 0)
2542 disable_irq_wake(fep
->irq
[0]);
2548 static const struct ethtool_ops fec_enet_ethtool_ops
= {
2549 .get_drvinfo
= fec_enet_get_drvinfo
,
2550 .get_regs_len
= fec_enet_get_regs_len
,
2551 .get_regs
= fec_enet_get_regs
,
2552 .nway_reset
= fec_enet_nway_reset
,
2553 .get_link
= ethtool_op_get_link
,
2554 .get_coalesce
= fec_enet_get_coalesce
,
2555 .set_coalesce
= fec_enet_set_coalesce
,
2556 #ifndef CONFIG_M5272
2557 .get_pauseparam
= fec_enet_get_pauseparam
,
2558 .set_pauseparam
= fec_enet_set_pauseparam
,
2559 .get_strings
= fec_enet_get_strings
,
2560 .get_ethtool_stats
= fec_enet_get_ethtool_stats
,
2561 .get_sset_count
= fec_enet_get_sset_count
,
2563 .get_ts_info
= fec_enet_get_ts_info
,
2564 .get_tunable
= fec_enet_get_tunable
,
2565 .set_tunable
= fec_enet_set_tunable
,
2566 .get_wol
= fec_enet_get_wol
,
2567 .set_wol
= fec_enet_set_wol
,
2568 .get_link_ksettings
= phy_ethtool_get_link_ksettings
,
2569 .set_link_ksettings
= phy_ethtool_set_link_ksettings
,
2572 static int fec_enet_ioctl(struct net_device
*ndev
, struct ifreq
*rq
, int cmd
)
2574 struct fec_enet_private
*fep
= netdev_priv(ndev
);
2575 struct phy_device
*phydev
= ndev
->phydev
;
2577 if (!netif_running(ndev
))
2583 if (fep
->bufdesc_ex
) {
2584 if (cmd
== SIOCSHWTSTAMP
)
2585 return fec_ptp_set(ndev
, rq
);
2586 if (cmd
== SIOCGHWTSTAMP
)
2587 return fec_ptp_get(ndev
, rq
);
2590 return phy_mii_ioctl(phydev
, rq
, cmd
);
2593 static void fec_enet_free_buffers(struct net_device
*ndev
)
2595 struct fec_enet_private
*fep
= netdev_priv(ndev
);
2597 struct sk_buff
*skb
;
2598 struct bufdesc
*bdp
;
2599 struct fec_enet_priv_tx_q
*txq
;
2600 struct fec_enet_priv_rx_q
*rxq
;
2603 for (q
= 0; q
< fep
->num_rx_queues
; q
++) {
2604 rxq
= fep
->rx_queue
[q
];
2606 for (i
= 0; i
< rxq
->bd
.ring_size
; i
++) {
2607 skb
= rxq
->rx_skbuff
[i
];
2608 rxq
->rx_skbuff
[i
] = NULL
;
2610 dma_unmap_single(&fep
->pdev
->dev
,
2611 fec32_to_cpu(bdp
->cbd_bufaddr
),
2612 FEC_ENET_RX_FRSIZE
- fep
->rx_align
,
2616 bdp
= fec_enet_get_nextdesc(bdp
, &rxq
->bd
);
2620 for (q
= 0; q
< fep
->num_tx_queues
; q
++) {
2621 txq
= fep
->tx_queue
[q
];
2623 for (i
= 0; i
< txq
->bd
.ring_size
; i
++) {
2624 kfree(txq
->tx_bounce
[i
]);
2625 txq
->tx_bounce
[i
] = NULL
;
2626 skb
= txq
->tx_skbuff
[i
];
2627 txq
->tx_skbuff
[i
] = NULL
;
2633 static void fec_enet_free_queue(struct net_device
*ndev
)
2635 struct fec_enet_private
*fep
= netdev_priv(ndev
);
2637 struct fec_enet_priv_tx_q
*txq
;
2639 for (i
= 0; i
< fep
->num_tx_queues
; i
++)
2640 if (fep
->tx_queue
[i
] && fep
->tx_queue
[i
]->tso_hdrs
) {
2641 txq
= fep
->tx_queue
[i
];
2642 dma_free_coherent(NULL
,
2643 txq
->bd
.ring_size
* TSO_HEADER_SIZE
,
2648 for (i
= 0; i
< fep
->num_rx_queues
; i
++)
2649 kfree(fep
->rx_queue
[i
]);
2650 for (i
= 0; i
< fep
->num_tx_queues
; i
++)
2651 kfree(fep
->tx_queue
[i
]);
2654 static int fec_enet_alloc_queue(struct net_device
*ndev
)
2656 struct fec_enet_private
*fep
= netdev_priv(ndev
);
2659 struct fec_enet_priv_tx_q
*txq
;
2661 for (i
= 0; i
< fep
->num_tx_queues
; i
++) {
2662 txq
= kzalloc(sizeof(*txq
), GFP_KERNEL
);
2668 fep
->tx_queue
[i
] = txq
;
2669 txq
->bd
.ring_size
= TX_RING_SIZE
;
2670 fep
->total_tx_ring_size
+= fep
->tx_queue
[i
]->bd
.ring_size
;
2672 txq
->tx_stop_threshold
= FEC_MAX_SKB_DESCS
;
2673 txq
->tx_wake_threshold
=
2674 (txq
->bd
.ring_size
- txq
->tx_stop_threshold
) / 2;
2676 txq
->tso_hdrs
= dma_alloc_coherent(NULL
,
2677 txq
->bd
.ring_size
* TSO_HEADER_SIZE
,
2680 if (!txq
->tso_hdrs
) {
2686 for (i
= 0; i
< fep
->num_rx_queues
; i
++) {
2687 fep
->rx_queue
[i
] = kzalloc(sizeof(*fep
->rx_queue
[i
]),
2689 if (!fep
->rx_queue
[i
]) {
2694 fep
->rx_queue
[i
]->bd
.ring_size
= RX_RING_SIZE
;
2695 fep
->total_rx_ring_size
+= fep
->rx_queue
[i
]->bd
.ring_size
;
2700 fec_enet_free_queue(ndev
);
2705 fec_enet_alloc_rxq_buffers(struct net_device
*ndev
, unsigned int queue
)
2707 struct fec_enet_private
*fep
= netdev_priv(ndev
);
2709 struct sk_buff
*skb
;
2710 struct bufdesc
*bdp
;
2711 struct fec_enet_priv_rx_q
*rxq
;
2713 rxq
= fep
->rx_queue
[queue
];
2715 for (i
= 0; i
< rxq
->bd
.ring_size
; i
++) {
2716 skb
= netdev_alloc_skb(ndev
, FEC_ENET_RX_FRSIZE
);
2720 if (fec_enet_new_rxbdp(ndev
, bdp
, skb
)) {
2725 rxq
->rx_skbuff
[i
] = skb
;
2726 bdp
->cbd_sc
= cpu_to_fec16(BD_ENET_RX_EMPTY
);
2728 if (fep
->bufdesc_ex
) {
2729 struct bufdesc_ex
*ebdp
= (struct bufdesc_ex
*)bdp
;
2730 ebdp
->cbd_esc
= cpu_to_fec32(BD_ENET_RX_INT
);
2733 bdp
= fec_enet_get_nextdesc(bdp
, &rxq
->bd
);
2736 /* Set the last buffer to wrap. */
2737 bdp
= fec_enet_get_prevdesc(bdp
, &rxq
->bd
);
2738 bdp
->cbd_sc
|= cpu_to_fec16(BD_SC_WRAP
);
2742 fec_enet_free_buffers(ndev
);
2747 fec_enet_alloc_txq_buffers(struct net_device
*ndev
, unsigned int queue
)
2749 struct fec_enet_private
*fep
= netdev_priv(ndev
);
2751 struct bufdesc
*bdp
;
2752 struct fec_enet_priv_tx_q
*txq
;
2754 txq
= fep
->tx_queue
[queue
];
2756 for (i
= 0; i
< txq
->bd
.ring_size
; i
++) {
2757 txq
->tx_bounce
[i
] = kmalloc(FEC_ENET_TX_FRSIZE
, GFP_KERNEL
);
2758 if (!txq
->tx_bounce
[i
])
2761 bdp
->cbd_sc
= cpu_to_fec16(0);
2762 bdp
->cbd_bufaddr
= cpu_to_fec32(0);
2764 if (fep
->bufdesc_ex
) {
2765 struct bufdesc_ex
*ebdp
= (struct bufdesc_ex
*)bdp
;
2766 ebdp
->cbd_esc
= cpu_to_fec32(BD_ENET_TX_INT
);
2769 bdp
= fec_enet_get_nextdesc(bdp
, &txq
->bd
);
2772 /* Set the last buffer to wrap. */
2773 bdp
= fec_enet_get_prevdesc(bdp
, &txq
->bd
);
2774 bdp
->cbd_sc
|= cpu_to_fec16(BD_SC_WRAP
);
2779 fec_enet_free_buffers(ndev
);
2783 static int fec_enet_alloc_buffers(struct net_device
*ndev
)
2785 struct fec_enet_private
*fep
= netdev_priv(ndev
);
2788 for (i
= 0; i
< fep
->num_rx_queues
; i
++)
2789 if (fec_enet_alloc_rxq_buffers(ndev
, i
))
2792 for (i
= 0; i
< fep
->num_tx_queues
; i
++)
2793 if (fec_enet_alloc_txq_buffers(ndev
, i
))
2799 fec_enet_open(struct net_device
*ndev
)
2801 struct fec_enet_private
*fep
= netdev_priv(ndev
);
2804 ret
= pm_runtime_get_sync(&fep
->pdev
->dev
);
2808 pinctrl_pm_select_default_state(&fep
->pdev
->dev
);
2809 ret
= fec_enet_clk_enable(ndev
, true);
2813 /* I should reset the ring buffers here, but I don't yet know
2814 * a simple way to do that.
2817 ret
= fec_enet_alloc_buffers(ndev
);
2819 goto err_enet_alloc
;
2821 /* Init MAC prior to mii bus probe */
2824 /* Probe and connect to PHY when open the interface */
2825 ret
= fec_enet_mii_probe(ndev
);
2827 goto err_enet_mii_probe
;
2829 if (fep
->quirks
& FEC_QUIRK_ERR006687
)
2830 imx6q_cpuidle_fec_irqs_used();
2832 napi_enable(&fep
->napi
);
2833 phy_start(ndev
->phydev
);
2834 netif_tx_start_all_queues(ndev
);
2836 device_set_wakeup_enable(&ndev
->dev
, fep
->wol_flag
&
2837 FEC_WOL_FLAG_ENABLE
);
2842 fec_enet_free_buffers(ndev
);
2844 fec_enet_clk_enable(ndev
, false);
2846 pm_runtime_mark_last_busy(&fep
->pdev
->dev
);
2847 pm_runtime_put_autosuspend(&fep
->pdev
->dev
);
2848 pinctrl_pm_select_sleep_state(&fep
->pdev
->dev
);
2853 fec_enet_close(struct net_device
*ndev
)
2855 struct fec_enet_private
*fep
= netdev_priv(ndev
);
2857 phy_stop(ndev
->phydev
);
2859 if (netif_device_present(ndev
)) {
2860 napi_disable(&fep
->napi
);
2861 netif_tx_disable(ndev
);
2865 phy_disconnect(ndev
->phydev
);
2867 if (fep
->quirks
& FEC_QUIRK_ERR006687
)
2868 imx6q_cpuidle_fec_irqs_unused();
2870 fec_enet_clk_enable(ndev
, false);
2871 pinctrl_pm_select_sleep_state(&fep
->pdev
->dev
);
2872 pm_runtime_mark_last_busy(&fep
->pdev
->dev
);
2873 pm_runtime_put_autosuspend(&fep
->pdev
->dev
);
2875 fec_enet_free_buffers(ndev
);
2880 /* Set or clear the multicast filter for this adaptor.
2881 * Skeleton taken from sunlance driver.
2882 * The CPM Ethernet implementation allows Multicast as well as individual
2883 * MAC address filtering. Some of the drivers check to make sure it is
2884 * a group multicast address, and discard those that are not. I guess I
2885 * will do the same for now, but just remove the test if you want
2886 * individual filtering as well (do the upper net layers want or support
2887 * this kind of feature?).
2890 #define HASH_BITS 6 /* #bits in hash */
2891 #define CRC32_POLY 0xEDB88320
2893 static void set_multicast_list(struct net_device
*ndev
)
2895 struct fec_enet_private
*fep
= netdev_priv(ndev
);
2896 struct netdev_hw_addr
*ha
;
2897 unsigned int i
, bit
, data
, crc
, tmp
;
2900 if (ndev
->flags
& IFF_PROMISC
) {
2901 tmp
= readl(fep
->hwp
+ FEC_R_CNTRL
);
2903 writel(tmp
, fep
->hwp
+ FEC_R_CNTRL
);
2907 tmp
= readl(fep
->hwp
+ FEC_R_CNTRL
);
2909 writel(tmp
, fep
->hwp
+ FEC_R_CNTRL
);
2911 if (ndev
->flags
& IFF_ALLMULTI
) {
2912 /* Catch all multicast addresses, so set the
2915 writel(0xffffffff, fep
->hwp
+ FEC_GRP_HASH_TABLE_HIGH
);
2916 writel(0xffffffff, fep
->hwp
+ FEC_GRP_HASH_TABLE_LOW
);
2921 /* Clear filter and add the addresses in hash register
2923 writel(0, fep
->hwp
+ FEC_GRP_HASH_TABLE_HIGH
);
2924 writel(0, fep
->hwp
+ FEC_GRP_HASH_TABLE_LOW
);
2926 netdev_for_each_mc_addr(ha
, ndev
) {
2927 /* calculate crc32 value of mac address */
2930 for (i
= 0; i
< ndev
->addr_len
; i
++) {
2932 for (bit
= 0; bit
< 8; bit
++, data
>>= 1) {
2934 (((crc
^ data
) & 1) ? CRC32_POLY
: 0);
2938 /* only upper 6 bits (HASH_BITS) are used
2939 * which point to specific bit in he hash registers
2941 hash
= (crc
>> (32 - HASH_BITS
)) & 0x3f;
2944 tmp
= readl(fep
->hwp
+ FEC_GRP_HASH_TABLE_HIGH
);
2945 tmp
|= 1 << (hash
- 32);
2946 writel(tmp
, fep
->hwp
+ FEC_GRP_HASH_TABLE_HIGH
);
2948 tmp
= readl(fep
->hwp
+ FEC_GRP_HASH_TABLE_LOW
);
2950 writel(tmp
, fep
->hwp
+ FEC_GRP_HASH_TABLE_LOW
);
2955 /* Set a MAC change in hardware. */
2957 fec_set_mac_address(struct net_device
*ndev
, void *p
)
2959 struct fec_enet_private
*fep
= netdev_priv(ndev
);
2960 struct sockaddr
*addr
= p
;
2963 if (!is_valid_ether_addr(addr
->sa_data
))
2964 return -EADDRNOTAVAIL
;
2965 memcpy(ndev
->dev_addr
, addr
->sa_data
, ndev
->addr_len
);
2968 /* Add netif status check here to avoid system hang in below case:
2969 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
2970 * After ethx down, fec all clocks are gated off and then register
2971 * access causes system hang.
2973 if (!netif_running(ndev
))
2976 writel(ndev
->dev_addr
[3] | (ndev
->dev_addr
[2] << 8) |
2977 (ndev
->dev_addr
[1] << 16) | (ndev
->dev_addr
[0] << 24),
2978 fep
->hwp
+ FEC_ADDR_LOW
);
2979 writel((ndev
->dev_addr
[5] << 16) | (ndev
->dev_addr
[4] << 24),
2980 fep
->hwp
+ FEC_ADDR_HIGH
);
2984 #ifdef CONFIG_NET_POLL_CONTROLLER
2986 * fec_poll_controller - FEC Poll controller function
2987 * @dev: The FEC network adapter
2989 * Polled functionality used by netconsole and others in non interrupt mode
2992 static void fec_poll_controller(struct net_device
*dev
)
2995 struct fec_enet_private
*fep
= netdev_priv(dev
);
2997 for (i
= 0; i
< FEC_IRQ_NUM
; i
++) {
2998 if (fep
->irq
[i
] > 0) {
2999 disable_irq(fep
->irq
[i
]);
3000 fec_enet_interrupt(fep
->irq
[i
], dev
);
3001 enable_irq(fep
->irq
[i
]);
3007 static inline void fec_enet_set_netdev_features(struct net_device
*netdev
,
3008 netdev_features_t features
)
3010 struct fec_enet_private
*fep
= netdev_priv(netdev
);
3011 netdev_features_t changed
= features
^ netdev
->features
;
3013 netdev
->features
= features
;
3015 /* Receive checksum has been changed */
3016 if (changed
& NETIF_F_RXCSUM
) {
3017 if (features
& NETIF_F_RXCSUM
)
3018 fep
->csum_flags
|= FLAG_RX_CSUM_ENABLED
;
3020 fep
->csum_flags
&= ~FLAG_RX_CSUM_ENABLED
;
3024 static int fec_set_features(struct net_device
*netdev
,
3025 netdev_features_t features
)
3027 struct fec_enet_private
*fep
= netdev_priv(netdev
);
3028 netdev_features_t changed
= features
^ netdev
->features
;
3030 if (netif_running(netdev
) && changed
& NETIF_F_RXCSUM
) {
3031 napi_disable(&fep
->napi
);
3032 netif_tx_lock_bh(netdev
);
3034 fec_enet_set_netdev_features(netdev
, features
);
3035 fec_restart(netdev
);
3036 netif_tx_wake_all_queues(netdev
);
3037 netif_tx_unlock_bh(netdev
);
3038 napi_enable(&fep
->napi
);
3040 fec_enet_set_netdev_features(netdev
, features
);
3046 static const struct net_device_ops fec_netdev_ops
= {
3047 .ndo_open
= fec_enet_open
,
3048 .ndo_stop
= fec_enet_close
,
3049 .ndo_start_xmit
= fec_enet_start_xmit
,
3050 .ndo_set_rx_mode
= set_multicast_list
,
3051 .ndo_change_mtu
= eth_change_mtu
,
3052 .ndo_validate_addr
= eth_validate_addr
,
3053 .ndo_tx_timeout
= fec_timeout
,
3054 .ndo_set_mac_address
= fec_set_mac_address
,
3055 .ndo_do_ioctl
= fec_enet_ioctl
,
3056 #ifdef CONFIG_NET_POLL_CONTROLLER
3057 .ndo_poll_controller
= fec_poll_controller
,
3059 .ndo_set_features
= fec_set_features
,
3062 static const unsigned short offset_des_active_rxq
[] = {
3063 FEC_R_DES_ACTIVE_0
, FEC_R_DES_ACTIVE_1
, FEC_R_DES_ACTIVE_2
3066 static const unsigned short offset_des_active_txq
[] = {
3067 FEC_X_DES_ACTIVE_0
, FEC_X_DES_ACTIVE_1
, FEC_X_DES_ACTIVE_2
3071 * XXX: We need to clean up on failure exits here.
3074 static int fec_enet_init(struct net_device
*ndev
)
3076 struct fec_enet_private
*fep
= netdev_priv(ndev
);
3077 struct bufdesc
*cbd_base
;
3081 unsigned dsize
= fep
->bufdesc_ex
? sizeof(struct bufdesc_ex
) :
3082 sizeof(struct bufdesc
);
3083 unsigned dsize_log2
= __fls(dsize
);
3085 WARN_ON(dsize
!= (1 << dsize_log2
));
3086 #if defined(CONFIG_ARM)
3087 fep
->rx_align
= 0xf;
3088 fep
->tx_align
= 0xf;
3090 fep
->rx_align
= 0x3;
3091 fep
->tx_align
= 0x3;
3094 fec_enet_alloc_queue(ndev
);
3096 bd_size
= (fep
->total_tx_ring_size
+ fep
->total_rx_ring_size
) * dsize
;
3098 /* Allocate memory for buffer descriptors. */
3099 cbd_base
= dmam_alloc_coherent(&fep
->pdev
->dev
, bd_size
, &bd_dma
,
3105 memset(cbd_base
, 0, bd_size
);
3107 /* Get the Ethernet address */
3109 /* make sure MAC we just acquired is programmed into the hw */
3110 fec_set_mac_address(ndev
, NULL
);
3112 /* Set receive and transmit descriptor base. */
3113 for (i
= 0; i
< fep
->num_rx_queues
; i
++) {
3114 struct fec_enet_priv_rx_q
*rxq
= fep
->rx_queue
[i
];
3115 unsigned size
= dsize
* rxq
->bd
.ring_size
;
3118 rxq
->bd
.base
= cbd_base
;
3119 rxq
->bd
.cur
= cbd_base
;
3120 rxq
->bd
.dma
= bd_dma
;
3121 rxq
->bd
.dsize
= dsize
;
3122 rxq
->bd
.dsize_log2
= dsize_log2
;
3123 rxq
->bd
.reg_desc_active
= fep
->hwp
+ offset_des_active_rxq
[i
];
3125 cbd_base
= (struct bufdesc
*)(((void *)cbd_base
) + size
);
3126 rxq
->bd
.last
= (struct bufdesc
*)(((void *)cbd_base
) - dsize
);
3129 for (i
= 0; i
< fep
->num_tx_queues
; i
++) {
3130 struct fec_enet_priv_tx_q
*txq
= fep
->tx_queue
[i
];
3131 unsigned size
= dsize
* txq
->bd
.ring_size
;
3134 txq
->bd
.base
= cbd_base
;
3135 txq
->bd
.cur
= cbd_base
;
3136 txq
->bd
.dma
= bd_dma
;
3137 txq
->bd
.dsize
= dsize
;
3138 txq
->bd
.dsize_log2
= dsize_log2
;
3139 txq
->bd
.reg_desc_active
= fep
->hwp
+ offset_des_active_txq
[i
];
3141 cbd_base
= (struct bufdesc
*)(((void *)cbd_base
) + size
);
3142 txq
->bd
.last
= (struct bufdesc
*)(((void *)cbd_base
) - dsize
);
3146 /* The FEC Ethernet specific entries in the device structure */
3147 ndev
->watchdog_timeo
= TX_TIMEOUT
;
3148 ndev
->netdev_ops
= &fec_netdev_ops
;
3149 ndev
->ethtool_ops
= &fec_enet_ethtool_ops
;
3151 writel(FEC_RX_DISABLED_IMASK
, fep
->hwp
+ FEC_IMASK
);
3152 netif_napi_add(ndev
, &fep
->napi
, fec_enet_rx_napi
, NAPI_POLL_WEIGHT
);
3154 if (fep
->quirks
& FEC_QUIRK_HAS_VLAN
)
3155 /* enable hw VLAN support */
3156 ndev
->features
|= NETIF_F_HW_VLAN_CTAG_RX
;
3158 if (fep
->quirks
& FEC_QUIRK_HAS_CSUM
) {
3159 ndev
->gso_max_segs
= FEC_MAX_TSO_SEGS
;
3161 /* enable hw accelerator */
3162 ndev
->features
|= (NETIF_F_IP_CSUM
| NETIF_F_IPV6_CSUM
3163 | NETIF_F_RXCSUM
| NETIF_F_SG
| NETIF_F_TSO
);
3164 fep
->csum_flags
|= FLAG_RX_CSUM_ENABLED
;
3167 if (fep
->quirks
& FEC_QUIRK_HAS_AVB
) {
3169 fep
->rx_align
= 0x3f;
3172 ndev
->hw_features
= ndev
->features
;
3180 static void fec_reset_phy(struct platform_device
*pdev
)
3183 bool active_high
= false;
3185 struct device_node
*np
= pdev
->dev
.of_node
;
3190 of_property_read_u32(np
, "phy-reset-duration", &msec
);
3191 /* A sane reset duration should not be longer than 1s */
3195 phy_reset
= of_get_named_gpio(np
, "phy-reset-gpios", 0);
3196 if (!gpio_is_valid(phy_reset
))
3199 active_high
= of_property_read_bool(np
, "phy-reset-active-high");
3201 err
= devm_gpio_request_one(&pdev
->dev
, phy_reset
,
3202 active_high
? GPIOF_OUT_INIT_HIGH
: GPIOF_OUT_INIT_LOW
,
3205 dev_err(&pdev
->dev
, "failed to get phy-reset-gpios: %d\n", err
);
3212 usleep_range(msec
* 1000, msec
* 1000 + 1000);
3214 gpio_set_value_cansleep(phy_reset
, !active_high
);
3216 #else /* CONFIG_OF */
3217 static void fec_reset_phy(struct platform_device
*pdev
)
3220 * In case of platform probe, the reset has been done
3224 #endif /* CONFIG_OF */
3227 fec_enet_get_queue_num(struct platform_device
*pdev
, int *num_tx
, int *num_rx
)
3229 struct device_node
*np
= pdev
->dev
.of_node
;
3231 *num_tx
= *num_rx
= 1;
3233 if (!np
|| !of_device_is_available(np
))
3236 /* parse the num of tx and rx queues */
3237 of_property_read_u32(np
, "fsl,num-tx-queues", num_tx
);
3239 of_property_read_u32(np
, "fsl,num-rx-queues", num_rx
);
3241 if (*num_tx
< 1 || *num_tx
> FEC_ENET_MAX_TX_QS
) {
3242 dev_warn(&pdev
->dev
, "Invalid num_tx(=%d), fall back to 1\n",
3248 if (*num_rx
< 1 || *num_rx
> FEC_ENET_MAX_RX_QS
) {
3249 dev_warn(&pdev
->dev
, "Invalid num_rx(=%d), fall back to 1\n",
3258 fec_probe(struct platform_device
*pdev
)
3260 struct fec_enet_private
*fep
;
3261 struct fec_platform_data
*pdata
;
3262 struct net_device
*ndev
;
3263 int i
, irq
, ret
= 0;
3265 const struct of_device_id
*of_id
;
3267 struct device_node
*np
= pdev
->dev
.of_node
, *phy_node
;
3271 fec_enet_get_queue_num(pdev
, &num_tx_qs
, &num_rx_qs
);
3273 /* Init network device */
3274 ndev
= alloc_etherdev_mqs(sizeof(struct fec_enet_private
),
3275 num_tx_qs
, num_rx_qs
);
3279 SET_NETDEV_DEV(ndev
, &pdev
->dev
);
3281 /* setup board info structure */
3282 fep
= netdev_priv(ndev
);
3284 of_id
= of_match_device(fec_dt_ids
, &pdev
->dev
);
3286 pdev
->id_entry
= of_id
->data
;
3287 fep
->quirks
= pdev
->id_entry
->driver_data
;
3290 fep
->num_rx_queues
= num_rx_qs
;
3291 fep
->num_tx_queues
= num_tx_qs
;
3293 #if !defined(CONFIG_M5272)
3294 /* default enable pause frame auto negotiation */
3295 if (fep
->quirks
& FEC_QUIRK_HAS_GBIT
)
3296 fep
->pause_flag
|= FEC_PAUSE_FLAG_AUTONEG
;
3299 /* Select default pin state */
3300 pinctrl_pm_select_default_state(&pdev
->dev
);
3302 r
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
3303 fep
->hwp
= devm_ioremap_resource(&pdev
->dev
, r
);
3304 if (IS_ERR(fep
->hwp
)) {
3305 ret
= PTR_ERR(fep
->hwp
);
3306 goto failed_ioremap
;
3310 fep
->dev_id
= dev_id
++;
3312 platform_set_drvdata(pdev
, ndev
);
3314 if ((of_machine_is_compatible("fsl,imx6q") ||
3315 of_machine_is_compatible("fsl,imx6dl")) &&
3316 !of_property_read_bool(np
, "fsl,err006687-workaround-present"))
3317 fep
->quirks
|= FEC_QUIRK_ERR006687
;
3319 if (of_get_property(np
, "fsl,magic-packet", NULL
))
3320 fep
->wol_flag
|= FEC_WOL_HAS_MAGIC_PACKET
;
3322 phy_node
= of_parse_phandle(np
, "phy-handle", 0);
3323 if (!phy_node
&& of_phy_is_fixed_link(np
)) {
3324 ret
= of_phy_register_fixed_link(np
);
3327 "broken fixed-link specification\n");
3330 phy_node
= of_node_get(np
);
3332 fep
->phy_node
= phy_node
;
3334 ret
= of_get_phy_mode(pdev
->dev
.of_node
);
3336 pdata
= dev_get_platdata(&pdev
->dev
);
3338 fep
->phy_interface
= pdata
->phy
;
3340 fep
->phy_interface
= PHY_INTERFACE_MODE_MII
;
3342 fep
->phy_interface
= ret
;
3345 fep
->clk_ipg
= devm_clk_get(&pdev
->dev
, "ipg");
3346 if (IS_ERR(fep
->clk_ipg
)) {
3347 ret
= PTR_ERR(fep
->clk_ipg
);
3351 fep
->clk_ahb
= devm_clk_get(&pdev
->dev
, "ahb");
3352 if (IS_ERR(fep
->clk_ahb
)) {
3353 ret
= PTR_ERR(fep
->clk_ahb
);
3357 fep
->itr_clk_rate
= clk_get_rate(fep
->clk_ahb
);
3359 /* enet_out is optional, depends on board */
3360 fep
->clk_enet_out
= devm_clk_get(&pdev
->dev
, "enet_out");
3361 if (IS_ERR(fep
->clk_enet_out
))
3362 fep
->clk_enet_out
= NULL
;
3364 fep
->ptp_clk_on
= false;
3365 mutex_init(&fep
->ptp_clk_mutex
);
3367 /* clk_ref is optional, depends on board */
3368 fep
->clk_ref
= devm_clk_get(&pdev
->dev
, "enet_clk_ref");
3369 if (IS_ERR(fep
->clk_ref
))
3370 fep
->clk_ref
= NULL
;
3372 fep
->bufdesc_ex
= fep
->quirks
& FEC_QUIRK_HAS_BUFDESC_EX
;
3373 fep
->clk_ptp
= devm_clk_get(&pdev
->dev
, "ptp");
3374 if (IS_ERR(fep
->clk_ptp
)) {
3375 fep
->clk_ptp
= NULL
;
3376 fep
->bufdesc_ex
= false;
3379 ret
= fec_enet_clk_enable(ndev
, true);
3383 ret
= clk_prepare_enable(fep
->clk_ipg
);
3385 goto failed_clk_ipg
;
3387 fep
->reg_phy
= devm_regulator_get(&pdev
->dev
, "phy");
3388 if (!IS_ERR(fep
->reg_phy
)) {
3389 ret
= regulator_enable(fep
->reg_phy
);
3392 "Failed to enable phy regulator: %d\n", ret
);
3393 goto failed_regulator
;
3396 fep
->reg_phy
= NULL
;
3399 pm_runtime_set_autosuspend_delay(&pdev
->dev
, FEC_MDIO_PM_TIMEOUT
);
3400 pm_runtime_use_autosuspend(&pdev
->dev
);
3401 pm_runtime_get_noresume(&pdev
->dev
);
3402 pm_runtime_set_active(&pdev
->dev
);
3403 pm_runtime_enable(&pdev
->dev
);
3405 fec_reset_phy(pdev
);
3407 if (fep
->bufdesc_ex
)
3410 ret
= fec_enet_init(ndev
);
3414 for (i
= 0; i
< FEC_IRQ_NUM
; i
++) {
3415 irq
= platform_get_irq(pdev
, i
);
3422 ret
= devm_request_irq(&pdev
->dev
, irq
, fec_enet_interrupt
,
3423 0, pdev
->name
, ndev
);
3430 init_completion(&fep
->mdio_done
);
3431 ret
= fec_enet_mii_init(pdev
);
3433 goto failed_mii_init
;
3435 /* Carrier starts down, phylib will bring it up */
3436 netif_carrier_off(ndev
);
3437 fec_enet_clk_enable(ndev
, false);
3438 pinctrl_pm_select_sleep_state(&pdev
->dev
);
3440 ret
= register_netdev(ndev
);
3442 goto failed_register
;
3444 device_init_wakeup(&ndev
->dev
, fep
->wol_flag
&
3445 FEC_WOL_HAS_MAGIC_PACKET
);
3447 if (fep
->bufdesc_ex
&& fep
->ptp_clock
)
3448 netdev_info(ndev
, "registered PHC device %d\n", fep
->dev_id
);
3450 fep
->rx_copybreak
= COPYBREAK_DEFAULT
;
3451 INIT_WORK(&fep
->tx_timeout_work
, fec_enet_timeout_work
);
3453 pm_runtime_mark_last_busy(&pdev
->dev
);
3454 pm_runtime_put_autosuspend(&pdev
->dev
);
3459 fec_enet_mii_remove(fep
);
3465 regulator_disable(fep
->reg_phy
);
3467 clk_disable_unprepare(fep
->clk_ipg
);
3469 fec_enet_clk_enable(ndev
, false);
3472 of_node_put(phy_node
);
3480 fec_drv_remove(struct platform_device
*pdev
)
3482 struct net_device
*ndev
= platform_get_drvdata(pdev
);
3483 struct fec_enet_private
*fep
= netdev_priv(ndev
);
3485 cancel_work_sync(&fep
->tx_timeout_work
);
3487 unregister_netdev(ndev
);
3488 fec_enet_mii_remove(fep
);
3490 regulator_disable(fep
->reg_phy
);
3491 of_node_put(fep
->phy_node
);
3497 static int __maybe_unused
fec_suspend(struct device
*dev
)
3499 struct net_device
*ndev
= dev_get_drvdata(dev
);
3500 struct fec_enet_private
*fep
= netdev_priv(ndev
);
3503 if (netif_running(ndev
)) {
3504 if (fep
->wol_flag
& FEC_WOL_FLAG_ENABLE
)
3505 fep
->wol_flag
|= FEC_WOL_FLAG_SLEEP_ON
;
3506 phy_stop(ndev
->phydev
);
3507 napi_disable(&fep
->napi
);
3508 netif_tx_lock_bh(ndev
);
3509 netif_device_detach(ndev
);
3510 netif_tx_unlock_bh(ndev
);
3512 fec_enet_clk_enable(ndev
, false);
3513 if (!(fep
->wol_flag
& FEC_WOL_FLAG_ENABLE
))
3514 pinctrl_pm_select_sleep_state(&fep
->pdev
->dev
);
3518 if (fep
->reg_phy
&& !(fep
->wol_flag
& FEC_WOL_FLAG_ENABLE
))
3519 regulator_disable(fep
->reg_phy
);
3521 /* SOC supply clock to phy, when clock is disabled, phy link down
3522 * SOC control phy regulator, when regulator is disabled, phy link down
3524 if (fep
->clk_enet_out
|| fep
->reg_phy
)
3530 static int __maybe_unused
fec_resume(struct device
*dev
)
3532 struct net_device
*ndev
= dev_get_drvdata(dev
);
3533 struct fec_enet_private
*fep
= netdev_priv(ndev
);
3534 struct fec_platform_data
*pdata
= fep
->pdev
->dev
.platform_data
;
3538 if (fep
->reg_phy
&& !(fep
->wol_flag
& FEC_WOL_FLAG_ENABLE
)) {
3539 ret
= regulator_enable(fep
->reg_phy
);
3545 if (netif_running(ndev
)) {
3546 ret
= fec_enet_clk_enable(ndev
, true);
3551 if (fep
->wol_flag
& FEC_WOL_FLAG_ENABLE
) {
3552 if (pdata
&& pdata
->sleep_mode_enable
)
3553 pdata
->sleep_mode_enable(false);
3554 val
= readl(fep
->hwp
+ FEC_ECNTRL
);
3555 val
&= ~(FEC_ECR_MAGICEN
| FEC_ECR_SLEEP
);
3556 writel(val
, fep
->hwp
+ FEC_ECNTRL
);
3557 fep
->wol_flag
&= ~FEC_WOL_FLAG_SLEEP_ON
;
3559 pinctrl_pm_select_default_state(&fep
->pdev
->dev
);
3562 netif_tx_lock_bh(ndev
);
3563 netif_device_attach(ndev
);
3564 netif_tx_unlock_bh(ndev
);
3565 napi_enable(&fep
->napi
);
3566 phy_start(ndev
->phydev
);
3574 regulator_disable(fep
->reg_phy
);
3578 static int __maybe_unused
fec_runtime_suspend(struct device
*dev
)
3580 struct net_device
*ndev
= dev_get_drvdata(dev
);
3581 struct fec_enet_private
*fep
= netdev_priv(ndev
);
3583 clk_disable_unprepare(fep
->clk_ipg
);
3588 static int __maybe_unused
fec_runtime_resume(struct device
*dev
)
3590 struct net_device
*ndev
= dev_get_drvdata(dev
);
3591 struct fec_enet_private
*fep
= netdev_priv(ndev
);
3593 return clk_prepare_enable(fep
->clk_ipg
);
3596 static const struct dev_pm_ops fec_pm_ops
= {
3597 SET_SYSTEM_SLEEP_PM_OPS(fec_suspend
, fec_resume
)
3598 SET_RUNTIME_PM_OPS(fec_runtime_suspend
, fec_runtime_resume
, NULL
)
3601 static struct platform_driver fec_driver
= {
3603 .name
= DRIVER_NAME
,
3605 .of_match_table
= fec_dt_ids
,
3607 .id_table
= fec_devtype
,
3609 .remove
= fec_drv_remove
,
3612 module_platform_driver(fec_driver
);
3614 MODULE_ALIAS("platform:"DRIVER_NAME
);
3615 MODULE_LICENSE("GPL");