Merge branch 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[cris-mirror.git] / drivers / net / ppp / ppp_generic.c
blobf226db4616b7d562c0ca469dd44a4457bb115933
1 /*
2 * Generic PPP layer for Linux.
4 * Copyright 1999-2002 Paul Mackerras.
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
11 * The generic PPP layer handles the PPP network interfaces, the
12 * /dev/ppp device, packet and VJ compression, and multilink.
13 * It talks to PPP `channels' via the interface defined in
14 * include/linux/ppp_channel.h. Channels provide the basic means for
15 * sending and receiving PPP frames on some kind of communications
16 * channel.
18 * Part of the code in this driver was inspired by the old async-only
19 * PPP driver, written by Michael Callahan and Al Longyear, and
20 * subsequently hacked by Paul Mackerras.
22 * ==FILEVERSION 20041108==
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/kmod.h>
28 #include <linux/init.h>
29 #include <linux/list.h>
30 #include <linux/idr.h>
31 #include <linux/netdevice.h>
32 #include <linux/poll.h>
33 #include <linux/ppp_defs.h>
34 #include <linux/filter.h>
35 #include <linux/ppp-ioctl.h>
36 #include <linux/ppp_channel.h>
37 #include <linux/ppp-comp.h>
38 #include <linux/skbuff.h>
39 #include <linux/rtnetlink.h>
40 #include <linux/if_arp.h>
41 #include <linux/ip.h>
42 #include <linux/tcp.h>
43 #include <linux/spinlock.h>
44 #include <linux/rwsem.h>
45 #include <linux/stddef.h>
46 #include <linux/device.h>
47 #include <linux/mutex.h>
48 #include <linux/slab.h>
49 #include <linux/file.h>
50 #include <asm/unaligned.h>
51 #include <net/slhc_vj.h>
52 #include <linux/atomic.h>
54 #include <linux/nsproxy.h>
55 #include <net/net_namespace.h>
56 #include <net/netns/generic.h>
58 #define PPP_VERSION "2.4.2"
61 * Network protocols we support.
63 #define NP_IP 0 /* Internet Protocol V4 */
64 #define NP_IPV6 1 /* Internet Protocol V6 */
65 #define NP_IPX 2 /* IPX protocol */
66 #define NP_AT 3 /* Appletalk protocol */
67 #define NP_MPLS_UC 4 /* MPLS unicast */
68 #define NP_MPLS_MC 5 /* MPLS multicast */
69 #define NUM_NP 6 /* Number of NPs. */
71 #define MPHDRLEN 6 /* multilink protocol header length */
72 #define MPHDRLEN_SSN 4 /* ditto with short sequence numbers */
75 * An instance of /dev/ppp can be associated with either a ppp
76 * interface unit or a ppp channel. In both cases, file->private_data
77 * points to one of these.
79 struct ppp_file {
80 enum {
81 INTERFACE=1, CHANNEL
82 } kind;
83 struct sk_buff_head xq; /* pppd transmit queue */
84 struct sk_buff_head rq; /* receive queue for pppd */
85 wait_queue_head_t rwait; /* for poll on reading /dev/ppp */
86 atomic_t refcnt; /* # refs (incl /dev/ppp attached) */
87 int hdrlen; /* space to leave for headers */
88 int index; /* interface unit / channel number */
89 int dead; /* unit/channel has been shut down */
92 #define PF_TO_X(pf, X) container_of(pf, X, file)
94 #define PF_TO_PPP(pf) PF_TO_X(pf, struct ppp)
95 #define PF_TO_CHANNEL(pf) PF_TO_X(pf, struct channel)
98 * Data structure to hold primary network stats for which
99 * we want to use 64 bit storage. Other network stats
100 * are stored in dev->stats of the ppp strucute.
102 struct ppp_link_stats {
103 u64 rx_packets;
104 u64 tx_packets;
105 u64 rx_bytes;
106 u64 tx_bytes;
110 * Data structure describing one ppp unit.
111 * A ppp unit corresponds to a ppp network interface device
112 * and represents a multilink bundle.
113 * It can have 0 or more ppp channels connected to it.
115 struct ppp {
116 struct ppp_file file; /* stuff for read/write/poll 0 */
117 struct file *owner; /* file that owns this unit 48 */
118 struct list_head channels; /* list of attached channels 4c */
119 int n_channels; /* how many channels are attached 54 */
120 spinlock_t rlock; /* lock for receive side 58 */
121 spinlock_t wlock; /* lock for transmit side 5c */
122 int mru; /* max receive unit 60 */
123 unsigned int flags; /* control bits 64 */
124 unsigned int xstate; /* transmit state bits 68 */
125 unsigned int rstate; /* receive state bits 6c */
126 int debug; /* debug flags 70 */
127 struct slcompress *vj; /* state for VJ header compression */
128 enum NPmode npmode[NUM_NP]; /* what to do with each net proto 78 */
129 struct sk_buff *xmit_pending; /* a packet ready to go out 88 */
130 struct compressor *xcomp; /* transmit packet compressor 8c */
131 void *xc_state; /* its internal state 90 */
132 struct compressor *rcomp; /* receive decompressor 94 */
133 void *rc_state; /* its internal state 98 */
134 unsigned long last_xmit; /* jiffies when last pkt sent 9c */
135 unsigned long last_recv; /* jiffies when last pkt rcvd a0 */
136 struct net_device *dev; /* network interface device a4 */
137 int closing; /* is device closing down? a8 */
138 #ifdef CONFIG_PPP_MULTILINK
139 int nxchan; /* next channel to send something on */
140 u32 nxseq; /* next sequence number to send */
141 int mrru; /* MP: max reconst. receive unit */
142 u32 nextseq; /* MP: seq no of next packet */
143 u32 minseq; /* MP: min of most recent seqnos */
144 struct sk_buff_head mrq; /* MP: receive reconstruction queue */
145 #endif /* CONFIG_PPP_MULTILINK */
146 #ifdef CONFIG_PPP_FILTER
147 struct bpf_prog *pass_filter; /* filter for packets to pass */
148 struct bpf_prog *active_filter; /* filter for pkts to reset idle */
149 #endif /* CONFIG_PPP_FILTER */
150 struct net *ppp_net; /* the net we belong to */
151 struct ppp_link_stats stats64; /* 64 bit network stats */
155 * Bits in flags: SC_NO_TCP_CCID, SC_CCP_OPEN, SC_CCP_UP, SC_LOOP_TRAFFIC,
156 * SC_MULTILINK, SC_MP_SHORTSEQ, SC_MP_XSHORTSEQ, SC_COMP_TCP, SC_REJ_COMP_TCP,
157 * SC_MUST_COMP
158 * Bits in rstate: SC_DECOMP_RUN, SC_DC_ERROR, SC_DC_FERROR.
159 * Bits in xstate: SC_COMP_RUN
161 #define SC_FLAG_BITS (SC_NO_TCP_CCID|SC_CCP_OPEN|SC_CCP_UP|SC_LOOP_TRAFFIC \
162 |SC_MULTILINK|SC_MP_SHORTSEQ|SC_MP_XSHORTSEQ \
163 |SC_COMP_TCP|SC_REJ_COMP_TCP|SC_MUST_COMP)
166 * Private data structure for each channel.
167 * This includes the data structure used for multilink.
169 struct channel {
170 struct ppp_file file; /* stuff for read/write/poll */
171 struct list_head list; /* link in all/new_channels list */
172 struct ppp_channel *chan; /* public channel data structure */
173 struct rw_semaphore chan_sem; /* protects `chan' during chan ioctl */
174 spinlock_t downl; /* protects `chan', file.xq dequeue */
175 struct ppp *ppp; /* ppp unit we're connected to */
176 struct net *chan_net; /* the net channel belongs to */
177 struct list_head clist; /* link in list of channels per unit */
178 rwlock_t upl; /* protects `ppp' */
179 #ifdef CONFIG_PPP_MULTILINK
180 u8 avail; /* flag used in multilink stuff */
181 u8 had_frag; /* >= 1 fragments have been sent */
182 u32 lastseq; /* MP: last sequence # received */
183 int speed; /* speed of the corresponding ppp channel*/
184 #endif /* CONFIG_PPP_MULTILINK */
187 struct ppp_config {
188 struct file *file;
189 s32 unit;
190 bool ifname_is_set;
194 * SMP locking issues:
195 * Both the ppp.rlock and ppp.wlock locks protect the ppp.channels
196 * list and the ppp.n_channels field, you need to take both locks
197 * before you modify them.
198 * The lock ordering is: channel.upl -> ppp.wlock -> ppp.rlock ->
199 * channel.downl.
202 static DEFINE_MUTEX(ppp_mutex);
203 static atomic_t ppp_unit_count = ATOMIC_INIT(0);
204 static atomic_t channel_count = ATOMIC_INIT(0);
206 /* per-net private data for this module */
207 static int ppp_net_id __read_mostly;
208 struct ppp_net {
209 /* units to ppp mapping */
210 struct idr units_idr;
213 * all_ppp_mutex protects the units_idr mapping.
214 * It also ensures that finding a ppp unit in the units_idr
215 * map and updating its file.refcnt field is atomic.
217 struct mutex all_ppp_mutex;
219 /* channels */
220 struct list_head all_channels;
221 struct list_head new_channels;
222 int last_channel_index;
225 * all_channels_lock protects all_channels and
226 * last_channel_index, and the atomicity of find
227 * a channel and updating its file.refcnt field.
229 spinlock_t all_channels_lock;
232 /* Get the PPP protocol number from a skb */
233 #define PPP_PROTO(skb) get_unaligned_be16((skb)->data)
235 /* We limit the length of ppp->file.rq to this (arbitrary) value */
236 #define PPP_MAX_RQLEN 32
239 * Maximum number of multilink fragments queued up.
240 * This has to be large enough to cope with the maximum latency of
241 * the slowest channel relative to the others. Strictly it should
242 * depend on the number of channels and their characteristics.
244 #define PPP_MP_MAX_QLEN 128
246 /* Multilink header bits. */
247 #define B 0x80 /* this fragment begins a packet */
248 #define E 0x40 /* this fragment ends a packet */
250 /* Compare multilink sequence numbers (assumed to be 32 bits wide) */
251 #define seq_before(a, b) ((s32)((a) - (b)) < 0)
252 #define seq_after(a, b) ((s32)((a) - (b)) > 0)
254 /* Prototypes. */
255 static int ppp_unattached_ioctl(struct net *net, struct ppp_file *pf,
256 struct file *file, unsigned int cmd, unsigned long arg);
257 static void ppp_xmit_process(struct ppp *ppp);
258 static void ppp_send_frame(struct ppp *ppp, struct sk_buff *skb);
259 static void ppp_push(struct ppp *ppp);
260 static void ppp_channel_push(struct channel *pch);
261 static void ppp_receive_frame(struct ppp *ppp, struct sk_buff *skb,
262 struct channel *pch);
263 static void ppp_receive_error(struct ppp *ppp);
264 static void ppp_receive_nonmp_frame(struct ppp *ppp, struct sk_buff *skb);
265 static struct sk_buff *ppp_decompress_frame(struct ppp *ppp,
266 struct sk_buff *skb);
267 #ifdef CONFIG_PPP_MULTILINK
268 static void ppp_receive_mp_frame(struct ppp *ppp, struct sk_buff *skb,
269 struct channel *pch);
270 static void ppp_mp_insert(struct ppp *ppp, struct sk_buff *skb);
271 static struct sk_buff *ppp_mp_reconstruct(struct ppp *ppp);
272 static int ppp_mp_explode(struct ppp *ppp, struct sk_buff *skb);
273 #endif /* CONFIG_PPP_MULTILINK */
274 static int ppp_set_compress(struct ppp *ppp, unsigned long arg);
275 static void ppp_ccp_peek(struct ppp *ppp, struct sk_buff *skb, int inbound);
276 static void ppp_ccp_closed(struct ppp *ppp);
277 static struct compressor *find_compressor(int type);
278 static void ppp_get_stats(struct ppp *ppp, struct ppp_stats *st);
279 static int ppp_create_interface(struct net *net, struct file *file, int *unit);
280 static void init_ppp_file(struct ppp_file *pf, int kind);
281 static void ppp_destroy_interface(struct ppp *ppp);
282 static struct ppp *ppp_find_unit(struct ppp_net *pn, int unit);
283 static struct channel *ppp_find_channel(struct ppp_net *pn, int unit);
284 static int ppp_connect_channel(struct channel *pch, int unit);
285 static int ppp_disconnect_channel(struct channel *pch);
286 static void ppp_destroy_channel(struct channel *pch);
287 static int unit_get(struct idr *p, void *ptr);
288 static int unit_set(struct idr *p, void *ptr, int n);
289 static void unit_put(struct idr *p, int n);
290 static void *unit_find(struct idr *p, int n);
291 static void ppp_setup(struct net_device *dev);
293 static const struct net_device_ops ppp_netdev_ops;
295 static struct class *ppp_class;
297 /* per net-namespace data */
298 static inline struct ppp_net *ppp_pernet(struct net *net)
300 BUG_ON(!net);
302 return net_generic(net, ppp_net_id);
305 /* Translates a PPP protocol number to a NP index (NP == network protocol) */
306 static inline int proto_to_npindex(int proto)
308 switch (proto) {
309 case PPP_IP:
310 return NP_IP;
311 case PPP_IPV6:
312 return NP_IPV6;
313 case PPP_IPX:
314 return NP_IPX;
315 case PPP_AT:
316 return NP_AT;
317 case PPP_MPLS_UC:
318 return NP_MPLS_UC;
319 case PPP_MPLS_MC:
320 return NP_MPLS_MC;
322 return -EINVAL;
325 /* Translates an NP index into a PPP protocol number */
326 static const int npindex_to_proto[NUM_NP] = {
327 PPP_IP,
328 PPP_IPV6,
329 PPP_IPX,
330 PPP_AT,
331 PPP_MPLS_UC,
332 PPP_MPLS_MC,
335 /* Translates an ethertype into an NP index */
336 static inline int ethertype_to_npindex(int ethertype)
338 switch (ethertype) {
339 case ETH_P_IP:
340 return NP_IP;
341 case ETH_P_IPV6:
342 return NP_IPV6;
343 case ETH_P_IPX:
344 return NP_IPX;
345 case ETH_P_PPPTALK:
346 case ETH_P_ATALK:
347 return NP_AT;
348 case ETH_P_MPLS_UC:
349 return NP_MPLS_UC;
350 case ETH_P_MPLS_MC:
351 return NP_MPLS_MC;
353 return -1;
356 /* Translates an NP index into an ethertype */
357 static const int npindex_to_ethertype[NUM_NP] = {
358 ETH_P_IP,
359 ETH_P_IPV6,
360 ETH_P_IPX,
361 ETH_P_PPPTALK,
362 ETH_P_MPLS_UC,
363 ETH_P_MPLS_MC,
367 * Locking shorthand.
369 #define ppp_xmit_lock(ppp) spin_lock_bh(&(ppp)->wlock)
370 #define ppp_xmit_unlock(ppp) spin_unlock_bh(&(ppp)->wlock)
371 #define ppp_recv_lock(ppp) spin_lock_bh(&(ppp)->rlock)
372 #define ppp_recv_unlock(ppp) spin_unlock_bh(&(ppp)->rlock)
373 #define ppp_lock(ppp) do { ppp_xmit_lock(ppp); \
374 ppp_recv_lock(ppp); } while (0)
375 #define ppp_unlock(ppp) do { ppp_recv_unlock(ppp); \
376 ppp_xmit_unlock(ppp); } while (0)
379 * /dev/ppp device routines.
380 * The /dev/ppp device is used by pppd to control the ppp unit.
381 * It supports the read, write, ioctl and poll functions.
382 * Open instances of /dev/ppp can be in one of three states:
383 * unattached, attached to a ppp unit, or attached to a ppp channel.
385 static int ppp_open(struct inode *inode, struct file *file)
388 * This could (should?) be enforced by the permissions on /dev/ppp.
390 if (!capable(CAP_NET_ADMIN))
391 return -EPERM;
392 return 0;
395 static int ppp_release(struct inode *unused, struct file *file)
397 struct ppp_file *pf = file->private_data;
398 struct ppp *ppp;
400 if (pf) {
401 file->private_data = NULL;
402 if (pf->kind == INTERFACE) {
403 ppp = PF_TO_PPP(pf);
404 rtnl_lock();
405 if (file == ppp->owner)
406 unregister_netdevice(ppp->dev);
407 rtnl_unlock();
409 if (atomic_dec_and_test(&pf->refcnt)) {
410 switch (pf->kind) {
411 case INTERFACE:
412 ppp_destroy_interface(PF_TO_PPP(pf));
413 break;
414 case CHANNEL:
415 ppp_destroy_channel(PF_TO_CHANNEL(pf));
416 break;
420 return 0;
423 static ssize_t ppp_read(struct file *file, char __user *buf,
424 size_t count, loff_t *ppos)
426 struct ppp_file *pf = file->private_data;
427 DECLARE_WAITQUEUE(wait, current);
428 ssize_t ret;
429 struct sk_buff *skb = NULL;
430 struct iovec iov;
431 struct iov_iter to;
433 ret = count;
435 if (!pf)
436 return -ENXIO;
437 add_wait_queue(&pf->rwait, &wait);
438 for (;;) {
439 set_current_state(TASK_INTERRUPTIBLE);
440 skb = skb_dequeue(&pf->rq);
441 if (skb)
442 break;
443 ret = 0;
444 if (pf->dead)
445 break;
446 if (pf->kind == INTERFACE) {
448 * Return 0 (EOF) on an interface that has no
449 * channels connected, unless it is looping
450 * network traffic (demand mode).
452 struct ppp *ppp = PF_TO_PPP(pf);
454 ppp_recv_lock(ppp);
455 if (ppp->n_channels == 0 &&
456 (ppp->flags & SC_LOOP_TRAFFIC) == 0) {
457 ppp_recv_unlock(ppp);
458 break;
460 ppp_recv_unlock(ppp);
462 ret = -EAGAIN;
463 if (file->f_flags & O_NONBLOCK)
464 break;
465 ret = -ERESTARTSYS;
466 if (signal_pending(current))
467 break;
468 schedule();
470 set_current_state(TASK_RUNNING);
471 remove_wait_queue(&pf->rwait, &wait);
473 if (!skb)
474 goto out;
476 ret = -EOVERFLOW;
477 if (skb->len > count)
478 goto outf;
479 ret = -EFAULT;
480 iov.iov_base = buf;
481 iov.iov_len = count;
482 iov_iter_init(&to, READ, &iov, 1, count);
483 if (skb_copy_datagram_iter(skb, 0, &to, skb->len))
484 goto outf;
485 ret = skb->len;
487 outf:
488 kfree_skb(skb);
489 out:
490 return ret;
493 static ssize_t ppp_write(struct file *file, const char __user *buf,
494 size_t count, loff_t *ppos)
496 struct ppp_file *pf = file->private_data;
497 struct sk_buff *skb;
498 ssize_t ret;
500 if (!pf)
501 return -ENXIO;
502 ret = -ENOMEM;
503 skb = alloc_skb(count + pf->hdrlen, GFP_KERNEL);
504 if (!skb)
505 goto out;
506 skb_reserve(skb, pf->hdrlen);
507 ret = -EFAULT;
508 if (copy_from_user(skb_put(skb, count), buf, count)) {
509 kfree_skb(skb);
510 goto out;
513 skb_queue_tail(&pf->xq, skb);
515 switch (pf->kind) {
516 case INTERFACE:
517 ppp_xmit_process(PF_TO_PPP(pf));
518 break;
519 case CHANNEL:
520 ppp_channel_push(PF_TO_CHANNEL(pf));
521 break;
524 ret = count;
526 out:
527 return ret;
530 /* No kernel lock - fine */
531 static unsigned int ppp_poll(struct file *file, poll_table *wait)
533 struct ppp_file *pf = file->private_data;
534 unsigned int mask;
536 if (!pf)
537 return 0;
538 poll_wait(file, &pf->rwait, wait);
539 mask = POLLOUT | POLLWRNORM;
540 if (skb_peek(&pf->rq))
541 mask |= POLLIN | POLLRDNORM;
542 if (pf->dead)
543 mask |= POLLHUP;
544 else if (pf->kind == INTERFACE) {
545 /* see comment in ppp_read */
546 struct ppp *ppp = PF_TO_PPP(pf);
548 ppp_recv_lock(ppp);
549 if (ppp->n_channels == 0 &&
550 (ppp->flags & SC_LOOP_TRAFFIC) == 0)
551 mask |= POLLIN | POLLRDNORM;
552 ppp_recv_unlock(ppp);
555 return mask;
558 #ifdef CONFIG_PPP_FILTER
559 static int get_filter(void __user *arg, struct sock_filter **p)
561 struct sock_fprog uprog;
562 struct sock_filter *code = NULL;
563 int len;
565 if (copy_from_user(&uprog, arg, sizeof(uprog)))
566 return -EFAULT;
568 if (!uprog.len) {
569 *p = NULL;
570 return 0;
573 len = uprog.len * sizeof(struct sock_filter);
574 code = memdup_user(uprog.filter, len);
575 if (IS_ERR(code))
576 return PTR_ERR(code);
578 *p = code;
579 return uprog.len;
581 #endif /* CONFIG_PPP_FILTER */
583 static long ppp_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
585 struct ppp_file *pf;
586 struct ppp *ppp;
587 int err = -EFAULT, val, val2, i;
588 struct ppp_idle idle;
589 struct npioctl npi;
590 int unit, cflags;
591 struct slcompress *vj;
592 void __user *argp = (void __user *)arg;
593 int __user *p = argp;
595 mutex_lock(&ppp_mutex);
597 pf = file->private_data;
598 if (!pf) {
599 err = ppp_unattached_ioctl(current->nsproxy->net_ns,
600 pf, file, cmd, arg);
601 goto out;
604 if (cmd == PPPIOCDETACH) {
606 * We have to be careful here... if the file descriptor
607 * has been dup'd, we could have another process in the
608 * middle of a poll using the same file *, so we had
609 * better not free the interface data structures -
610 * instead we fail the ioctl. Even in this case, we
611 * shut down the interface if we are the owner of it.
612 * Actually, we should get rid of PPPIOCDETACH, userland
613 * (i.e. pppd) could achieve the same effect by closing
614 * this fd and reopening /dev/ppp.
616 err = -EINVAL;
617 if (pf->kind == INTERFACE) {
618 ppp = PF_TO_PPP(pf);
619 rtnl_lock();
620 if (file == ppp->owner)
621 unregister_netdevice(ppp->dev);
622 rtnl_unlock();
624 if (atomic_long_read(&file->f_count) < 2) {
625 ppp_release(NULL, file);
626 err = 0;
627 } else
628 pr_warn("PPPIOCDETACH file->f_count=%ld\n",
629 atomic_long_read(&file->f_count));
630 goto out;
633 if (pf->kind == CHANNEL) {
634 struct channel *pch;
635 struct ppp_channel *chan;
637 pch = PF_TO_CHANNEL(pf);
639 switch (cmd) {
640 case PPPIOCCONNECT:
641 if (get_user(unit, p))
642 break;
643 err = ppp_connect_channel(pch, unit);
644 break;
646 case PPPIOCDISCONN:
647 err = ppp_disconnect_channel(pch);
648 break;
650 default:
651 down_read(&pch->chan_sem);
652 chan = pch->chan;
653 err = -ENOTTY;
654 if (chan && chan->ops->ioctl)
655 err = chan->ops->ioctl(chan, cmd, arg);
656 up_read(&pch->chan_sem);
658 goto out;
661 if (pf->kind != INTERFACE) {
662 /* can't happen */
663 pr_err("PPP: not interface or channel??\n");
664 err = -EINVAL;
665 goto out;
668 ppp = PF_TO_PPP(pf);
669 switch (cmd) {
670 case PPPIOCSMRU:
671 if (get_user(val, p))
672 break;
673 ppp->mru = val;
674 err = 0;
675 break;
677 case PPPIOCSFLAGS:
678 if (get_user(val, p))
679 break;
680 ppp_lock(ppp);
681 cflags = ppp->flags & ~val;
682 #ifdef CONFIG_PPP_MULTILINK
683 if (!(ppp->flags & SC_MULTILINK) && (val & SC_MULTILINK))
684 ppp->nextseq = 0;
685 #endif
686 ppp->flags = val & SC_FLAG_BITS;
687 ppp_unlock(ppp);
688 if (cflags & SC_CCP_OPEN)
689 ppp_ccp_closed(ppp);
690 err = 0;
691 break;
693 case PPPIOCGFLAGS:
694 val = ppp->flags | ppp->xstate | ppp->rstate;
695 if (put_user(val, p))
696 break;
697 err = 0;
698 break;
700 case PPPIOCSCOMPRESS:
701 err = ppp_set_compress(ppp, arg);
702 break;
704 case PPPIOCGUNIT:
705 if (put_user(ppp->file.index, p))
706 break;
707 err = 0;
708 break;
710 case PPPIOCSDEBUG:
711 if (get_user(val, p))
712 break;
713 ppp->debug = val;
714 err = 0;
715 break;
717 case PPPIOCGDEBUG:
718 if (put_user(ppp->debug, p))
719 break;
720 err = 0;
721 break;
723 case PPPIOCGIDLE:
724 idle.xmit_idle = (jiffies - ppp->last_xmit) / HZ;
725 idle.recv_idle = (jiffies - ppp->last_recv) / HZ;
726 if (copy_to_user(argp, &idle, sizeof(idle)))
727 break;
728 err = 0;
729 break;
731 case PPPIOCSMAXCID:
732 if (get_user(val, p))
733 break;
734 val2 = 15;
735 if ((val >> 16) != 0) {
736 val2 = val >> 16;
737 val &= 0xffff;
739 vj = slhc_init(val2+1, val+1);
740 if (IS_ERR(vj)) {
741 err = PTR_ERR(vj);
742 break;
744 ppp_lock(ppp);
745 if (ppp->vj)
746 slhc_free(ppp->vj);
747 ppp->vj = vj;
748 ppp_unlock(ppp);
749 err = 0;
750 break;
752 case PPPIOCGNPMODE:
753 case PPPIOCSNPMODE:
754 if (copy_from_user(&npi, argp, sizeof(npi)))
755 break;
756 err = proto_to_npindex(npi.protocol);
757 if (err < 0)
758 break;
759 i = err;
760 if (cmd == PPPIOCGNPMODE) {
761 err = -EFAULT;
762 npi.mode = ppp->npmode[i];
763 if (copy_to_user(argp, &npi, sizeof(npi)))
764 break;
765 } else {
766 ppp->npmode[i] = npi.mode;
767 /* we may be able to transmit more packets now (??) */
768 netif_wake_queue(ppp->dev);
770 err = 0;
771 break;
773 #ifdef CONFIG_PPP_FILTER
774 case PPPIOCSPASS:
776 struct sock_filter *code;
778 err = get_filter(argp, &code);
779 if (err >= 0) {
780 struct bpf_prog *pass_filter = NULL;
781 struct sock_fprog_kern fprog = {
782 .len = err,
783 .filter = code,
786 err = 0;
787 if (fprog.filter)
788 err = bpf_prog_create(&pass_filter, &fprog);
789 if (!err) {
790 ppp_lock(ppp);
791 if (ppp->pass_filter)
792 bpf_prog_destroy(ppp->pass_filter);
793 ppp->pass_filter = pass_filter;
794 ppp_unlock(ppp);
796 kfree(code);
798 break;
800 case PPPIOCSACTIVE:
802 struct sock_filter *code;
804 err = get_filter(argp, &code);
805 if (err >= 0) {
806 struct bpf_prog *active_filter = NULL;
807 struct sock_fprog_kern fprog = {
808 .len = err,
809 .filter = code,
812 err = 0;
813 if (fprog.filter)
814 err = bpf_prog_create(&active_filter, &fprog);
815 if (!err) {
816 ppp_lock(ppp);
817 if (ppp->active_filter)
818 bpf_prog_destroy(ppp->active_filter);
819 ppp->active_filter = active_filter;
820 ppp_unlock(ppp);
822 kfree(code);
824 break;
826 #endif /* CONFIG_PPP_FILTER */
828 #ifdef CONFIG_PPP_MULTILINK
829 case PPPIOCSMRRU:
830 if (get_user(val, p))
831 break;
832 ppp_recv_lock(ppp);
833 ppp->mrru = val;
834 ppp_recv_unlock(ppp);
835 err = 0;
836 break;
837 #endif /* CONFIG_PPP_MULTILINK */
839 default:
840 err = -ENOTTY;
843 out:
844 mutex_unlock(&ppp_mutex);
846 return err;
849 static int ppp_unattached_ioctl(struct net *net, struct ppp_file *pf,
850 struct file *file, unsigned int cmd, unsigned long arg)
852 int unit, err = -EFAULT;
853 struct ppp *ppp;
854 struct channel *chan;
855 struct ppp_net *pn;
856 int __user *p = (int __user *)arg;
858 switch (cmd) {
859 case PPPIOCNEWUNIT:
860 /* Create a new ppp unit */
861 if (get_user(unit, p))
862 break;
863 err = ppp_create_interface(net, file, &unit);
864 if (err < 0)
865 break;
867 err = -EFAULT;
868 if (put_user(unit, p))
869 break;
870 err = 0;
871 break;
873 case PPPIOCATTACH:
874 /* Attach to an existing ppp unit */
875 if (get_user(unit, p))
876 break;
877 err = -ENXIO;
878 pn = ppp_pernet(net);
879 mutex_lock(&pn->all_ppp_mutex);
880 ppp = ppp_find_unit(pn, unit);
881 if (ppp) {
882 atomic_inc(&ppp->file.refcnt);
883 file->private_data = &ppp->file;
884 err = 0;
886 mutex_unlock(&pn->all_ppp_mutex);
887 break;
889 case PPPIOCATTCHAN:
890 if (get_user(unit, p))
891 break;
892 err = -ENXIO;
893 pn = ppp_pernet(net);
894 spin_lock_bh(&pn->all_channels_lock);
895 chan = ppp_find_channel(pn, unit);
896 if (chan) {
897 atomic_inc(&chan->file.refcnt);
898 file->private_data = &chan->file;
899 err = 0;
901 spin_unlock_bh(&pn->all_channels_lock);
902 break;
904 default:
905 err = -ENOTTY;
908 return err;
911 static const struct file_operations ppp_device_fops = {
912 .owner = THIS_MODULE,
913 .read = ppp_read,
914 .write = ppp_write,
915 .poll = ppp_poll,
916 .unlocked_ioctl = ppp_ioctl,
917 .open = ppp_open,
918 .release = ppp_release,
919 .llseek = noop_llseek,
922 static __net_init int ppp_init_net(struct net *net)
924 struct ppp_net *pn = net_generic(net, ppp_net_id);
926 idr_init(&pn->units_idr);
927 mutex_init(&pn->all_ppp_mutex);
929 INIT_LIST_HEAD(&pn->all_channels);
930 INIT_LIST_HEAD(&pn->new_channels);
932 spin_lock_init(&pn->all_channels_lock);
934 return 0;
937 static __net_exit void ppp_exit_net(struct net *net)
939 struct ppp_net *pn = net_generic(net, ppp_net_id);
940 struct net_device *dev;
941 struct net_device *aux;
942 struct ppp *ppp;
943 LIST_HEAD(list);
944 int id;
946 rtnl_lock();
947 for_each_netdev_safe(net, dev, aux) {
948 if (dev->netdev_ops == &ppp_netdev_ops)
949 unregister_netdevice_queue(dev, &list);
952 idr_for_each_entry(&pn->units_idr, ppp, id)
953 /* Skip devices already unregistered by previous loop */
954 if (!net_eq(dev_net(ppp->dev), net))
955 unregister_netdevice_queue(ppp->dev, &list);
957 unregister_netdevice_many(&list);
958 rtnl_unlock();
960 idr_destroy(&pn->units_idr);
963 static struct pernet_operations ppp_net_ops = {
964 .init = ppp_init_net,
965 .exit = ppp_exit_net,
966 .id = &ppp_net_id,
967 .size = sizeof(struct ppp_net),
970 static int ppp_unit_register(struct ppp *ppp, int unit, bool ifname_is_set)
972 struct ppp_net *pn = ppp_pernet(ppp->ppp_net);
973 int ret;
975 mutex_lock(&pn->all_ppp_mutex);
977 if (unit < 0) {
978 ret = unit_get(&pn->units_idr, ppp);
979 if (ret < 0)
980 goto err;
981 } else {
982 /* Caller asked for a specific unit number. Fail with -EEXIST
983 * if unavailable. For backward compatibility, return -EEXIST
984 * too if idr allocation fails; this makes pppd retry without
985 * requesting a specific unit number.
987 if (unit_find(&pn->units_idr, unit)) {
988 ret = -EEXIST;
989 goto err;
991 ret = unit_set(&pn->units_idr, ppp, unit);
992 if (ret < 0) {
993 /* Rewrite error for backward compatibility */
994 ret = -EEXIST;
995 goto err;
998 ppp->file.index = ret;
1000 if (!ifname_is_set)
1001 snprintf(ppp->dev->name, IFNAMSIZ, "ppp%i", ppp->file.index);
1003 ret = register_netdevice(ppp->dev);
1004 if (ret < 0)
1005 goto err_unit;
1007 atomic_inc(&ppp_unit_count);
1009 mutex_unlock(&pn->all_ppp_mutex);
1011 return 0;
1013 err_unit:
1014 unit_put(&pn->units_idr, ppp->file.index);
1015 err:
1016 mutex_unlock(&pn->all_ppp_mutex);
1018 return ret;
1021 static int ppp_dev_configure(struct net *src_net, struct net_device *dev,
1022 const struct ppp_config *conf)
1024 struct ppp *ppp = netdev_priv(dev);
1025 int indx;
1026 int err;
1028 ppp->dev = dev;
1029 ppp->ppp_net = src_net;
1030 ppp->mru = PPP_MRU;
1031 ppp->owner = conf->file;
1033 init_ppp_file(&ppp->file, INTERFACE);
1034 ppp->file.hdrlen = PPP_HDRLEN - 2; /* don't count proto bytes */
1036 for (indx = 0; indx < NUM_NP; ++indx)
1037 ppp->npmode[indx] = NPMODE_PASS;
1038 INIT_LIST_HEAD(&ppp->channels);
1039 spin_lock_init(&ppp->rlock);
1040 spin_lock_init(&ppp->wlock);
1041 #ifdef CONFIG_PPP_MULTILINK
1042 ppp->minseq = -1;
1043 skb_queue_head_init(&ppp->mrq);
1044 #endif /* CONFIG_PPP_MULTILINK */
1045 #ifdef CONFIG_PPP_FILTER
1046 ppp->pass_filter = NULL;
1047 ppp->active_filter = NULL;
1048 #endif /* CONFIG_PPP_FILTER */
1050 err = ppp_unit_register(ppp, conf->unit, conf->ifname_is_set);
1051 if (err < 0)
1052 return err;
1054 conf->file->private_data = &ppp->file;
1056 return 0;
1059 static const struct nla_policy ppp_nl_policy[IFLA_PPP_MAX + 1] = {
1060 [IFLA_PPP_DEV_FD] = { .type = NLA_S32 },
1063 static int ppp_nl_validate(struct nlattr *tb[], struct nlattr *data[])
1065 if (!data)
1066 return -EINVAL;
1068 if (!data[IFLA_PPP_DEV_FD])
1069 return -EINVAL;
1070 if (nla_get_s32(data[IFLA_PPP_DEV_FD]) < 0)
1071 return -EBADF;
1073 return 0;
1076 static int ppp_nl_newlink(struct net *src_net, struct net_device *dev,
1077 struct nlattr *tb[], struct nlattr *data[])
1079 struct ppp_config conf = {
1080 .unit = -1,
1081 .ifname_is_set = true,
1083 struct file *file;
1084 int err;
1086 file = fget(nla_get_s32(data[IFLA_PPP_DEV_FD]));
1087 if (!file)
1088 return -EBADF;
1090 /* rtnl_lock is already held here, but ppp_create_interface() locks
1091 * ppp_mutex before holding rtnl_lock. Using mutex_trylock() avoids
1092 * possible deadlock due to lock order inversion, at the cost of
1093 * pushing the problem back to userspace.
1095 if (!mutex_trylock(&ppp_mutex)) {
1096 err = -EBUSY;
1097 goto out;
1100 if (file->f_op != &ppp_device_fops || file->private_data) {
1101 err = -EBADF;
1102 goto out_unlock;
1105 conf.file = file;
1106 err = ppp_dev_configure(src_net, dev, &conf);
1108 out_unlock:
1109 mutex_unlock(&ppp_mutex);
1110 out:
1111 fput(file);
1113 return err;
1116 static void ppp_nl_dellink(struct net_device *dev, struct list_head *head)
1118 unregister_netdevice_queue(dev, head);
1121 static size_t ppp_nl_get_size(const struct net_device *dev)
1123 return 0;
1126 static int ppp_nl_fill_info(struct sk_buff *skb, const struct net_device *dev)
1128 return 0;
1131 static struct net *ppp_nl_get_link_net(const struct net_device *dev)
1133 struct ppp *ppp = netdev_priv(dev);
1135 return ppp->ppp_net;
1138 static struct rtnl_link_ops ppp_link_ops __read_mostly = {
1139 .kind = "ppp",
1140 .maxtype = IFLA_PPP_MAX,
1141 .policy = ppp_nl_policy,
1142 .priv_size = sizeof(struct ppp),
1143 .setup = ppp_setup,
1144 .validate = ppp_nl_validate,
1145 .newlink = ppp_nl_newlink,
1146 .dellink = ppp_nl_dellink,
1147 .get_size = ppp_nl_get_size,
1148 .fill_info = ppp_nl_fill_info,
1149 .get_link_net = ppp_nl_get_link_net,
1152 #define PPP_MAJOR 108
1154 /* Called at boot time if ppp is compiled into the kernel,
1155 or at module load time (from init_module) if compiled as a module. */
1156 static int __init ppp_init(void)
1158 int err;
1160 pr_info("PPP generic driver version " PPP_VERSION "\n");
1162 err = register_pernet_device(&ppp_net_ops);
1163 if (err) {
1164 pr_err("failed to register PPP pernet device (%d)\n", err);
1165 goto out;
1168 err = register_chrdev(PPP_MAJOR, "ppp", &ppp_device_fops);
1169 if (err) {
1170 pr_err("failed to register PPP device (%d)\n", err);
1171 goto out_net;
1174 ppp_class = class_create(THIS_MODULE, "ppp");
1175 if (IS_ERR(ppp_class)) {
1176 err = PTR_ERR(ppp_class);
1177 goto out_chrdev;
1180 err = rtnl_link_register(&ppp_link_ops);
1181 if (err) {
1182 pr_err("failed to register rtnetlink PPP handler\n");
1183 goto out_class;
1186 /* not a big deal if we fail here :-) */
1187 device_create(ppp_class, NULL, MKDEV(PPP_MAJOR, 0), NULL, "ppp");
1189 return 0;
1191 out_class:
1192 class_destroy(ppp_class);
1193 out_chrdev:
1194 unregister_chrdev(PPP_MAJOR, "ppp");
1195 out_net:
1196 unregister_pernet_device(&ppp_net_ops);
1197 out:
1198 return err;
1202 * Network interface unit routines.
1204 static netdev_tx_t
1205 ppp_start_xmit(struct sk_buff *skb, struct net_device *dev)
1207 struct ppp *ppp = netdev_priv(dev);
1208 int npi, proto;
1209 unsigned char *pp;
1211 npi = ethertype_to_npindex(ntohs(skb->protocol));
1212 if (npi < 0)
1213 goto outf;
1215 /* Drop, accept or reject the packet */
1216 switch (ppp->npmode[npi]) {
1217 case NPMODE_PASS:
1218 break;
1219 case NPMODE_QUEUE:
1220 /* it would be nice to have a way to tell the network
1221 system to queue this one up for later. */
1222 goto outf;
1223 case NPMODE_DROP:
1224 case NPMODE_ERROR:
1225 goto outf;
1228 /* Put the 2-byte PPP protocol number on the front,
1229 making sure there is room for the address and control fields. */
1230 if (skb_cow_head(skb, PPP_HDRLEN))
1231 goto outf;
1233 pp = skb_push(skb, 2);
1234 proto = npindex_to_proto[npi];
1235 put_unaligned_be16(proto, pp);
1237 skb_scrub_packet(skb, !net_eq(ppp->ppp_net, dev_net(dev)));
1238 skb_queue_tail(&ppp->file.xq, skb);
1239 ppp_xmit_process(ppp);
1240 return NETDEV_TX_OK;
1242 outf:
1243 kfree_skb(skb);
1244 ++dev->stats.tx_dropped;
1245 return NETDEV_TX_OK;
1248 static int
1249 ppp_net_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1251 struct ppp *ppp = netdev_priv(dev);
1252 int err = -EFAULT;
1253 void __user *addr = (void __user *) ifr->ifr_ifru.ifru_data;
1254 struct ppp_stats stats;
1255 struct ppp_comp_stats cstats;
1256 char *vers;
1258 switch (cmd) {
1259 case SIOCGPPPSTATS:
1260 ppp_get_stats(ppp, &stats);
1261 if (copy_to_user(addr, &stats, sizeof(stats)))
1262 break;
1263 err = 0;
1264 break;
1266 case SIOCGPPPCSTATS:
1267 memset(&cstats, 0, sizeof(cstats));
1268 if (ppp->xc_state)
1269 ppp->xcomp->comp_stat(ppp->xc_state, &cstats.c);
1270 if (ppp->rc_state)
1271 ppp->rcomp->decomp_stat(ppp->rc_state, &cstats.d);
1272 if (copy_to_user(addr, &cstats, sizeof(cstats)))
1273 break;
1274 err = 0;
1275 break;
1277 case SIOCGPPPVER:
1278 vers = PPP_VERSION;
1279 if (copy_to_user(addr, vers, strlen(vers) + 1))
1280 break;
1281 err = 0;
1282 break;
1284 default:
1285 err = -EINVAL;
1288 return err;
1291 static struct rtnl_link_stats64*
1292 ppp_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats64)
1294 struct ppp *ppp = netdev_priv(dev);
1296 ppp_recv_lock(ppp);
1297 stats64->rx_packets = ppp->stats64.rx_packets;
1298 stats64->rx_bytes = ppp->stats64.rx_bytes;
1299 ppp_recv_unlock(ppp);
1301 ppp_xmit_lock(ppp);
1302 stats64->tx_packets = ppp->stats64.tx_packets;
1303 stats64->tx_bytes = ppp->stats64.tx_bytes;
1304 ppp_xmit_unlock(ppp);
1306 stats64->rx_errors = dev->stats.rx_errors;
1307 stats64->tx_errors = dev->stats.tx_errors;
1308 stats64->rx_dropped = dev->stats.rx_dropped;
1309 stats64->tx_dropped = dev->stats.tx_dropped;
1310 stats64->rx_length_errors = dev->stats.rx_length_errors;
1312 return stats64;
1315 static int ppp_dev_init(struct net_device *dev)
1317 netdev_lockdep_set_classes(dev);
1318 return 0;
1321 static void ppp_dev_uninit(struct net_device *dev)
1323 struct ppp *ppp = netdev_priv(dev);
1324 struct ppp_net *pn = ppp_pernet(ppp->ppp_net);
1326 ppp_lock(ppp);
1327 ppp->closing = 1;
1328 ppp_unlock(ppp);
1330 mutex_lock(&pn->all_ppp_mutex);
1331 unit_put(&pn->units_idr, ppp->file.index);
1332 mutex_unlock(&pn->all_ppp_mutex);
1334 ppp->owner = NULL;
1336 ppp->file.dead = 1;
1337 wake_up_interruptible(&ppp->file.rwait);
1340 static const struct net_device_ops ppp_netdev_ops = {
1341 .ndo_init = ppp_dev_init,
1342 .ndo_uninit = ppp_dev_uninit,
1343 .ndo_start_xmit = ppp_start_xmit,
1344 .ndo_do_ioctl = ppp_net_ioctl,
1345 .ndo_get_stats64 = ppp_get_stats64,
1348 static struct device_type ppp_type = {
1349 .name = "ppp",
1352 static void ppp_setup(struct net_device *dev)
1354 dev->netdev_ops = &ppp_netdev_ops;
1355 SET_NETDEV_DEVTYPE(dev, &ppp_type);
1357 dev->hard_header_len = PPP_HDRLEN;
1358 dev->mtu = PPP_MRU;
1359 dev->addr_len = 0;
1360 dev->tx_queue_len = 3;
1361 dev->type = ARPHRD_PPP;
1362 dev->flags = IFF_POINTOPOINT | IFF_NOARP | IFF_MULTICAST;
1363 netif_keep_dst(dev);
1367 * Transmit-side routines.
1371 * Called to do any work queued up on the transmit side
1372 * that can now be done.
1374 static void
1375 ppp_xmit_process(struct ppp *ppp)
1377 struct sk_buff *skb;
1379 ppp_xmit_lock(ppp);
1380 if (!ppp->closing) {
1381 ppp_push(ppp);
1382 while (!ppp->xmit_pending &&
1383 (skb = skb_dequeue(&ppp->file.xq)))
1384 ppp_send_frame(ppp, skb);
1385 /* If there's no work left to do, tell the core net
1386 code that we can accept some more. */
1387 if (!ppp->xmit_pending && !skb_peek(&ppp->file.xq))
1388 netif_wake_queue(ppp->dev);
1389 else
1390 netif_stop_queue(ppp->dev);
1392 ppp_xmit_unlock(ppp);
1395 static inline struct sk_buff *
1396 pad_compress_skb(struct ppp *ppp, struct sk_buff *skb)
1398 struct sk_buff *new_skb;
1399 int len;
1400 int new_skb_size = ppp->dev->mtu +
1401 ppp->xcomp->comp_extra + ppp->dev->hard_header_len;
1402 int compressor_skb_size = ppp->dev->mtu +
1403 ppp->xcomp->comp_extra + PPP_HDRLEN;
1404 new_skb = alloc_skb(new_skb_size, GFP_ATOMIC);
1405 if (!new_skb) {
1406 if (net_ratelimit())
1407 netdev_err(ppp->dev, "PPP: no memory (comp pkt)\n");
1408 return NULL;
1410 if (ppp->dev->hard_header_len > PPP_HDRLEN)
1411 skb_reserve(new_skb,
1412 ppp->dev->hard_header_len - PPP_HDRLEN);
1414 /* compressor still expects A/C bytes in hdr */
1415 len = ppp->xcomp->compress(ppp->xc_state, skb->data - 2,
1416 new_skb->data, skb->len + 2,
1417 compressor_skb_size);
1418 if (len > 0 && (ppp->flags & SC_CCP_UP)) {
1419 consume_skb(skb);
1420 skb = new_skb;
1421 skb_put(skb, len);
1422 skb_pull(skb, 2); /* pull off A/C bytes */
1423 } else if (len == 0) {
1424 /* didn't compress, or CCP not up yet */
1425 consume_skb(new_skb);
1426 new_skb = skb;
1427 } else {
1429 * (len < 0)
1430 * MPPE requires that we do not send unencrypted
1431 * frames. The compressor will return -1 if we
1432 * should drop the frame. We cannot simply test
1433 * the compress_proto because MPPE and MPPC share
1434 * the same number.
1436 if (net_ratelimit())
1437 netdev_err(ppp->dev, "ppp: compressor dropped pkt\n");
1438 kfree_skb(skb);
1439 consume_skb(new_skb);
1440 new_skb = NULL;
1442 return new_skb;
1446 * Compress and send a frame.
1447 * The caller should have locked the xmit path,
1448 * and xmit_pending should be 0.
1450 static void
1451 ppp_send_frame(struct ppp *ppp, struct sk_buff *skb)
1453 int proto = PPP_PROTO(skb);
1454 struct sk_buff *new_skb;
1455 int len;
1456 unsigned char *cp;
1458 if (proto < 0x8000) {
1459 #ifdef CONFIG_PPP_FILTER
1460 /* check if we should pass this packet */
1461 /* the filter instructions are constructed assuming
1462 a four-byte PPP header on each packet */
1463 *skb_push(skb, 2) = 1;
1464 if (ppp->pass_filter &&
1465 BPF_PROG_RUN(ppp->pass_filter, skb) == 0) {
1466 if (ppp->debug & 1)
1467 netdev_printk(KERN_DEBUG, ppp->dev,
1468 "PPP: outbound frame "
1469 "not passed\n");
1470 kfree_skb(skb);
1471 return;
1473 /* if this packet passes the active filter, record the time */
1474 if (!(ppp->active_filter &&
1475 BPF_PROG_RUN(ppp->active_filter, skb) == 0))
1476 ppp->last_xmit = jiffies;
1477 skb_pull(skb, 2);
1478 #else
1479 /* for data packets, record the time */
1480 ppp->last_xmit = jiffies;
1481 #endif /* CONFIG_PPP_FILTER */
1484 ++ppp->stats64.tx_packets;
1485 ppp->stats64.tx_bytes += skb->len - 2;
1487 switch (proto) {
1488 case PPP_IP:
1489 if (!ppp->vj || (ppp->flags & SC_COMP_TCP) == 0)
1490 break;
1491 /* try to do VJ TCP header compression */
1492 new_skb = alloc_skb(skb->len + ppp->dev->hard_header_len - 2,
1493 GFP_ATOMIC);
1494 if (!new_skb) {
1495 netdev_err(ppp->dev, "PPP: no memory (VJ comp pkt)\n");
1496 goto drop;
1498 skb_reserve(new_skb, ppp->dev->hard_header_len - 2);
1499 cp = skb->data + 2;
1500 len = slhc_compress(ppp->vj, cp, skb->len - 2,
1501 new_skb->data + 2, &cp,
1502 !(ppp->flags & SC_NO_TCP_CCID));
1503 if (cp == skb->data + 2) {
1504 /* didn't compress */
1505 consume_skb(new_skb);
1506 } else {
1507 if (cp[0] & SL_TYPE_COMPRESSED_TCP) {
1508 proto = PPP_VJC_COMP;
1509 cp[0] &= ~SL_TYPE_COMPRESSED_TCP;
1510 } else {
1511 proto = PPP_VJC_UNCOMP;
1512 cp[0] = skb->data[2];
1514 consume_skb(skb);
1515 skb = new_skb;
1516 cp = skb_put(skb, len + 2);
1517 cp[0] = 0;
1518 cp[1] = proto;
1520 break;
1522 case PPP_CCP:
1523 /* peek at outbound CCP frames */
1524 ppp_ccp_peek(ppp, skb, 0);
1525 break;
1528 /* try to do packet compression */
1529 if ((ppp->xstate & SC_COMP_RUN) && ppp->xc_state &&
1530 proto != PPP_LCP && proto != PPP_CCP) {
1531 if (!(ppp->flags & SC_CCP_UP) && (ppp->flags & SC_MUST_COMP)) {
1532 if (net_ratelimit())
1533 netdev_err(ppp->dev,
1534 "ppp: compression required but "
1535 "down - pkt dropped.\n");
1536 goto drop;
1538 skb = pad_compress_skb(ppp, skb);
1539 if (!skb)
1540 goto drop;
1544 * If we are waiting for traffic (demand dialling),
1545 * queue it up for pppd to receive.
1547 if (ppp->flags & SC_LOOP_TRAFFIC) {
1548 if (ppp->file.rq.qlen > PPP_MAX_RQLEN)
1549 goto drop;
1550 skb_queue_tail(&ppp->file.rq, skb);
1551 wake_up_interruptible(&ppp->file.rwait);
1552 return;
1555 ppp->xmit_pending = skb;
1556 ppp_push(ppp);
1557 return;
1559 drop:
1560 kfree_skb(skb);
1561 ++ppp->dev->stats.tx_errors;
1565 * Try to send the frame in xmit_pending.
1566 * The caller should have the xmit path locked.
1568 static void
1569 ppp_push(struct ppp *ppp)
1571 struct list_head *list;
1572 struct channel *pch;
1573 struct sk_buff *skb = ppp->xmit_pending;
1575 if (!skb)
1576 return;
1578 list = &ppp->channels;
1579 if (list_empty(list)) {
1580 /* nowhere to send the packet, just drop it */
1581 ppp->xmit_pending = NULL;
1582 kfree_skb(skb);
1583 return;
1586 if ((ppp->flags & SC_MULTILINK) == 0) {
1587 /* not doing multilink: send it down the first channel */
1588 list = list->next;
1589 pch = list_entry(list, struct channel, clist);
1591 spin_lock_bh(&pch->downl);
1592 if (pch->chan) {
1593 if (pch->chan->ops->start_xmit(pch->chan, skb))
1594 ppp->xmit_pending = NULL;
1595 } else {
1596 /* channel got unregistered */
1597 kfree_skb(skb);
1598 ppp->xmit_pending = NULL;
1600 spin_unlock_bh(&pch->downl);
1601 return;
1604 #ifdef CONFIG_PPP_MULTILINK
1605 /* Multilink: fragment the packet over as many links
1606 as can take the packet at the moment. */
1607 if (!ppp_mp_explode(ppp, skb))
1608 return;
1609 #endif /* CONFIG_PPP_MULTILINK */
1611 ppp->xmit_pending = NULL;
1612 kfree_skb(skb);
1615 #ifdef CONFIG_PPP_MULTILINK
1616 static bool mp_protocol_compress __read_mostly = true;
1617 module_param(mp_protocol_compress, bool, S_IRUGO | S_IWUSR);
1618 MODULE_PARM_DESC(mp_protocol_compress,
1619 "compress protocol id in multilink fragments");
1622 * Divide a packet to be transmitted into fragments and
1623 * send them out the individual links.
1625 static int ppp_mp_explode(struct ppp *ppp, struct sk_buff *skb)
1627 int len, totlen;
1628 int i, bits, hdrlen, mtu;
1629 int flen;
1630 int navail, nfree, nzero;
1631 int nbigger;
1632 int totspeed;
1633 int totfree;
1634 unsigned char *p, *q;
1635 struct list_head *list;
1636 struct channel *pch;
1637 struct sk_buff *frag;
1638 struct ppp_channel *chan;
1640 totspeed = 0; /*total bitrate of the bundle*/
1641 nfree = 0; /* # channels which have no packet already queued */
1642 navail = 0; /* total # of usable channels (not deregistered) */
1643 nzero = 0; /* number of channels with zero speed associated*/
1644 totfree = 0; /*total # of channels available and
1645 *having no queued packets before
1646 *starting the fragmentation*/
1648 hdrlen = (ppp->flags & SC_MP_XSHORTSEQ)? MPHDRLEN_SSN: MPHDRLEN;
1649 i = 0;
1650 list_for_each_entry(pch, &ppp->channels, clist) {
1651 if (pch->chan) {
1652 pch->avail = 1;
1653 navail++;
1654 pch->speed = pch->chan->speed;
1655 } else {
1656 pch->avail = 0;
1658 if (pch->avail) {
1659 if (skb_queue_empty(&pch->file.xq) ||
1660 !pch->had_frag) {
1661 if (pch->speed == 0)
1662 nzero++;
1663 else
1664 totspeed += pch->speed;
1666 pch->avail = 2;
1667 ++nfree;
1668 ++totfree;
1670 if (!pch->had_frag && i < ppp->nxchan)
1671 ppp->nxchan = i;
1673 ++i;
1676 * Don't start sending this packet unless at least half of
1677 * the channels are free. This gives much better TCP
1678 * performance if we have a lot of channels.
1680 if (nfree == 0 || nfree < navail / 2)
1681 return 0; /* can't take now, leave it in xmit_pending */
1683 /* Do protocol field compression */
1684 p = skb->data;
1685 len = skb->len;
1686 if (*p == 0 && mp_protocol_compress) {
1687 ++p;
1688 --len;
1691 totlen = len;
1692 nbigger = len % nfree;
1694 /* skip to the channel after the one we last used
1695 and start at that one */
1696 list = &ppp->channels;
1697 for (i = 0; i < ppp->nxchan; ++i) {
1698 list = list->next;
1699 if (list == &ppp->channels) {
1700 i = 0;
1701 break;
1705 /* create a fragment for each channel */
1706 bits = B;
1707 while (len > 0) {
1708 list = list->next;
1709 if (list == &ppp->channels) {
1710 i = 0;
1711 continue;
1713 pch = list_entry(list, struct channel, clist);
1714 ++i;
1715 if (!pch->avail)
1716 continue;
1719 * Skip this channel if it has a fragment pending already and
1720 * we haven't given a fragment to all of the free channels.
1722 if (pch->avail == 1) {
1723 if (nfree > 0)
1724 continue;
1725 } else {
1726 pch->avail = 1;
1729 /* check the channel's mtu and whether it is still attached. */
1730 spin_lock_bh(&pch->downl);
1731 if (pch->chan == NULL) {
1732 /* can't use this channel, it's being deregistered */
1733 if (pch->speed == 0)
1734 nzero--;
1735 else
1736 totspeed -= pch->speed;
1738 spin_unlock_bh(&pch->downl);
1739 pch->avail = 0;
1740 totlen = len;
1741 totfree--;
1742 nfree--;
1743 if (--navail == 0)
1744 break;
1745 continue;
1749 *if the channel speed is not set divide
1750 *the packet evenly among the free channels;
1751 *otherwise divide it according to the speed
1752 *of the channel we are going to transmit on
1754 flen = len;
1755 if (nfree > 0) {
1756 if (pch->speed == 0) {
1757 flen = len/nfree;
1758 if (nbigger > 0) {
1759 flen++;
1760 nbigger--;
1762 } else {
1763 flen = (((totfree - nzero)*(totlen + hdrlen*totfree)) /
1764 ((totspeed*totfree)/pch->speed)) - hdrlen;
1765 if (nbigger > 0) {
1766 flen += ((totfree - nzero)*pch->speed)/totspeed;
1767 nbigger -= ((totfree - nzero)*pch->speed)/
1768 totspeed;
1771 nfree--;
1775 *check if we are on the last channel or
1776 *we exceded the length of the data to
1777 *fragment
1779 if ((nfree <= 0) || (flen > len))
1780 flen = len;
1782 *it is not worth to tx on slow channels:
1783 *in that case from the resulting flen according to the
1784 *above formula will be equal or less than zero.
1785 *Skip the channel in this case
1787 if (flen <= 0) {
1788 pch->avail = 2;
1789 spin_unlock_bh(&pch->downl);
1790 continue;
1794 * hdrlen includes the 2-byte PPP protocol field, but the
1795 * MTU counts only the payload excluding the protocol field.
1796 * (RFC1661 Section 2)
1798 mtu = pch->chan->mtu - (hdrlen - 2);
1799 if (mtu < 4)
1800 mtu = 4;
1801 if (flen > mtu)
1802 flen = mtu;
1803 if (flen == len)
1804 bits |= E;
1805 frag = alloc_skb(flen + hdrlen + (flen == 0), GFP_ATOMIC);
1806 if (!frag)
1807 goto noskb;
1808 q = skb_put(frag, flen + hdrlen);
1810 /* make the MP header */
1811 put_unaligned_be16(PPP_MP, q);
1812 if (ppp->flags & SC_MP_XSHORTSEQ) {
1813 q[2] = bits + ((ppp->nxseq >> 8) & 0xf);
1814 q[3] = ppp->nxseq;
1815 } else {
1816 q[2] = bits;
1817 q[3] = ppp->nxseq >> 16;
1818 q[4] = ppp->nxseq >> 8;
1819 q[5] = ppp->nxseq;
1822 memcpy(q + hdrlen, p, flen);
1824 /* try to send it down the channel */
1825 chan = pch->chan;
1826 if (!skb_queue_empty(&pch->file.xq) ||
1827 !chan->ops->start_xmit(chan, frag))
1828 skb_queue_tail(&pch->file.xq, frag);
1829 pch->had_frag = 1;
1830 p += flen;
1831 len -= flen;
1832 ++ppp->nxseq;
1833 bits = 0;
1834 spin_unlock_bh(&pch->downl);
1836 ppp->nxchan = i;
1838 return 1;
1840 noskb:
1841 spin_unlock_bh(&pch->downl);
1842 if (ppp->debug & 1)
1843 netdev_err(ppp->dev, "PPP: no memory (fragment)\n");
1844 ++ppp->dev->stats.tx_errors;
1845 ++ppp->nxseq;
1846 return 1; /* abandon the frame */
1848 #endif /* CONFIG_PPP_MULTILINK */
1851 * Try to send data out on a channel.
1853 static void
1854 ppp_channel_push(struct channel *pch)
1856 struct sk_buff *skb;
1857 struct ppp *ppp;
1859 spin_lock_bh(&pch->downl);
1860 if (pch->chan) {
1861 while (!skb_queue_empty(&pch->file.xq)) {
1862 skb = skb_dequeue(&pch->file.xq);
1863 if (!pch->chan->ops->start_xmit(pch->chan, skb)) {
1864 /* put the packet back and try again later */
1865 skb_queue_head(&pch->file.xq, skb);
1866 break;
1869 } else {
1870 /* channel got deregistered */
1871 skb_queue_purge(&pch->file.xq);
1873 spin_unlock_bh(&pch->downl);
1874 /* see if there is anything from the attached unit to be sent */
1875 if (skb_queue_empty(&pch->file.xq)) {
1876 read_lock_bh(&pch->upl);
1877 ppp = pch->ppp;
1878 if (ppp)
1879 ppp_xmit_process(ppp);
1880 read_unlock_bh(&pch->upl);
1885 * Receive-side routines.
1888 struct ppp_mp_skb_parm {
1889 u32 sequence;
1890 u8 BEbits;
1892 #define PPP_MP_CB(skb) ((struct ppp_mp_skb_parm *)((skb)->cb))
1894 static inline void
1895 ppp_do_recv(struct ppp *ppp, struct sk_buff *skb, struct channel *pch)
1897 ppp_recv_lock(ppp);
1898 if (!ppp->closing)
1899 ppp_receive_frame(ppp, skb, pch);
1900 else
1901 kfree_skb(skb);
1902 ppp_recv_unlock(ppp);
1905 void
1906 ppp_input(struct ppp_channel *chan, struct sk_buff *skb)
1908 struct channel *pch = chan->ppp;
1909 int proto;
1911 if (!pch) {
1912 kfree_skb(skb);
1913 return;
1916 read_lock_bh(&pch->upl);
1917 if (!pskb_may_pull(skb, 2)) {
1918 kfree_skb(skb);
1919 if (pch->ppp) {
1920 ++pch->ppp->dev->stats.rx_length_errors;
1921 ppp_receive_error(pch->ppp);
1923 goto done;
1926 proto = PPP_PROTO(skb);
1927 if (!pch->ppp || proto >= 0xc000 || proto == PPP_CCPFRAG) {
1928 /* put it on the channel queue */
1929 skb_queue_tail(&pch->file.rq, skb);
1930 /* drop old frames if queue too long */
1931 while (pch->file.rq.qlen > PPP_MAX_RQLEN &&
1932 (skb = skb_dequeue(&pch->file.rq)))
1933 kfree_skb(skb);
1934 wake_up_interruptible(&pch->file.rwait);
1935 } else {
1936 ppp_do_recv(pch->ppp, skb, pch);
1939 done:
1940 read_unlock_bh(&pch->upl);
1943 /* Put a 0-length skb in the receive queue as an error indication */
1944 void
1945 ppp_input_error(struct ppp_channel *chan, int code)
1947 struct channel *pch = chan->ppp;
1948 struct sk_buff *skb;
1950 if (!pch)
1951 return;
1953 read_lock_bh(&pch->upl);
1954 if (pch->ppp) {
1955 skb = alloc_skb(0, GFP_ATOMIC);
1956 if (skb) {
1957 skb->len = 0; /* probably unnecessary */
1958 skb->cb[0] = code;
1959 ppp_do_recv(pch->ppp, skb, pch);
1962 read_unlock_bh(&pch->upl);
1966 * We come in here to process a received frame.
1967 * The receive side of the ppp unit is locked.
1969 static void
1970 ppp_receive_frame(struct ppp *ppp, struct sk_buff *skb, struct channel *pch)
1972 /* note: a 0-length skb is used as an error indication */
1973 if (skb->len > 0) {
1974 skb_checksum_complete_unset(skb);
1975 #ifdef CONFIG_PPP_MULTILINK
1976 /* XXX do channel-level decompression here */
1977 if (PPP_PROTO(skb) == PPP_MP)
1978 ppp_receive_mp_frame(ppp, skb, pch);
1979 else
1980 #endif /* CONFIG_PPP_MULTILINK */
1981 ppp_receive_nonmp_frame(ppp, skb);
1982 } else {
1983 kfree_skb(skb);
1984 ppp_receive_error(ppp);
1988 static void
1989 ppp_receive_error(struct ppp *ppp)
1991 ++ppp->dev->stats.rx_errors;
1992 if (ppp->vj)
1993 slhc_toss(ppp->vj);
1996 static void
1997 ppp_receive_nonmp_frame(struct ppp *ppp, struct sk_buff *skb)
1999 struct sk_buff *ns;
2000 int proto, len, npi;
2003 * Decompress the frame, if compressed.
2004 * Note that some decompressors need to see uncompressed frames
2005 * that come in as well as compressed frames.
2007 if (ppp->rc_state && (ppp->rstate & SC_DECOMP_RUN) &&
2008 (ppp->rstate & (SC_DC_FERROR | SC_DC_ERROR)) == 0)
2009 skb = ppp_decompress_frame(ppp, skb);
2011 if (ppp->flags & SC_MUST_COMP && ppp->rstate & SC_DC_FERROR)
2012 goto err;
2014 proto = PPP_PROTO(skb);
2015 switch (proto) {
2016 case PPP_VJC_COMP:
2017 /* decompress VJ compressed packets */
2018 if (!ppp->vj || (ppp->flags & SC_REJ_COMP_TCP))
2019 goto err;
2021 if (skb_tailroom(skb) < 124 || skb_cloned(skb)) {
2022 /* copy to a new sk_buff with more tailroom */
2023 ns = dev_alloc_skb(skb->len + 128);
2024 if (!ns) {
2025 netdev_err(ppp->dev, "PPP: no memory "
2026 "(VJ decomp)\n");
2027 goto err;
2029 skb_reserve(ns, 2);
2030 skb_copy_bits(skb, 0, skb_put(ns, skb->len), skb->len);
2031 consume_skb(skb);
2032 skb = ns;
2034 else
2035 skb->ip_summed = CHECKSUM_NONE;
2037 len = slhc_uncompress(ppp->vj, skb->data + 2, skb->len - 2);
2038 if (len <= 0) {
2039 netdev_printk(KERN_DEBUG, ppp->dev,
2040 "PPP: VJ decompression error\n");
2041 goto err;
2043 len += 2;
2044 if (len > skb->len)
2045 skb_put(skb, len - skb->len);
2046 else if (len < skb->len)
2047 skb_trim(skb, len);
2048 proto = PPP_IP;
2049 break;
2051 case PPP_VJC_UNCOMP:
2052 if (!ppp->vj || (ppp->flags & SC_REJ_COMP_TCP))
2053 goto err;
2055 /* Until we fix the decompressor need to make sure
2056 * data portion is linear.
2058 if (!pskb_may_pull(skb, skb->len))
2059 goto err;
2061 if (slhc_remember(ppp->vj, skb->data + 2, skb->len - 2) <= 0) {
2062 netdev_err(ppp->dev, "PPP: VJ uncompressed error\n");
2063 goto err;
2065 proto = PPP_IP;
2066 break;
2068 case PPP_CCP:
2069 ppp_ccp_peek(ppp, skb, 1);
2070 break;
2073 ++ppp->stats64.rx_packets;
2074 ppp->stats64.rx_bytes += skb->len - 2;
2076 npi = proto_to_npindex(proto);
2077 if (npi < 0) {
2078 /* control or unknown frame - pass it to pppd */
2079 skb_queue_tail(&ppp->file.rq, skb);
2080 /* limit queue length by dropping old frames */
2081 while (ppp->file.rq.qlen > PPP_MAX_RQLEN &&
2082 (skb = skb_dequeue(&ppp->file.rq)))
2083 kfree_skb(skb);
2084 /* wake up any process polling or blocking on read */
2085 wake_up_interruptible(&ppp->file.rwait);
2087 } else {
2088 /* network protocol frame - give it to the kernel */
2090 #ifdef CONFIG_PPP_FILTER
2091 /* check if the packet passes the pass and active filters */
2092 /* the filter instructions are constructed assuming
2093 a four-byte PPP header on each packet */
2094 if (ppp->pass_filter || ppp->active_filter) {
2095 if (skb_unclone(skb, GFP_ATOMIC))
2096 goto err;
2098 *skb_push(skb, 2) = 0;
2099 if (ppp->pass_filter &&
2100 BPF_PROG_RUN(ppp->pass_filter, skb) == 0) {
2101 if (ppp->debug & 1)
2102 netdev_printk(KERN_DEBUG, ppp->dev,
2103 "PPP: inbound frame "
2104 "not passed\n");
2105 kfree_skb(skb);
2106 return;
2108 if (!(ppp->active_filter &&
2109 BPF_PROG_RUN(ppp->active_filter, skb) == 0))
2110 ppp->last_recv = jiffies;
2111 __skb_pull(skb, 2);
2112 } else
2113 #endif /* CONFIG_PPP_FILTER */
2114 ppp->last_recv = jiffies;
2116 if ((ppp->dev->flags & IFF_UP) == 0 ||
2117 ppp->npmode[npi] != NPMODE_PASS) {
2118 kfree_skb(skb);
2119 } else {
2120 /* chop off protocol */
2121 skb_pull_rcsum(skb, 2);
2122 skb->dev = ppp->dev;
2123 skb->protocol = htons(npindex_to_ethertype[npi]);
2124 skb_reset_mac_header(skb);
2125 skb_scrub_packet(skb, !net_eq(ppp->ppp_net,
2126 dev_net(ppp->dev)));
2127 netif_rx(skb);
2130 return;
2132 err:
2133 kfree_skb(skb);
2134 ppp_receive_error(ppp);
2137 static struct sk_buff *
2138 ppp_decompress_frame(struct ppp *ppp, struct sk_buff *skb)
2140 int proto = PPP_PROTO(skb);
2141 struct sk_buff *ns;
2142 int len;
2144 /* Until we fix all the decompressor's need to make sure
2145 * data portion is linear.
2147 if (!pskb_may_pull(skb, skb->len))
2148 goto err;
2150 if (proto == PPP_COMP) {
2151 int obuff_size;
2153 switch(ppp->rcomp->compress_proto) {
2154 case CI_MPPE:
2155 obuff_size = ppp->mru + PPP_HDRLEN + 1;
2156 break;
2157 default:
2158 obuff_size = ppp->mru + PPP_HDRLEN;
2159 break;
2162 ns = dev_alloc_skb(obuff_size);
2163 if (!ns) {
2164 netdev_err(ppp->dev, "ppp_decompress_frame: "
2165 "no memory\n");
2166 goto err;
2168 /* the decompressor still expects the A/C bytes in the hdr */
2169 len = ppp->rcomp->decompress(ppp->rc_state, skb->data - 2,
2170 skb->len + 2, ns->data, obuff_size);
2171 if (len < 0) {
2172 /* Pass the compressed frame to pppd as an
2173 error indication. */
2174 if (len == DECOMP_FATALERROR)
2175 ppp->rstate |= SC_DC_FERROR;
2176 kfree_skb(ns);
2177 goto err;
2180 consume_skb(skb);
2181 skb = ns;
2182 skb_put(skb, len);
2183 skb_pull(skb, 2); /* pull off the A/C bytes */
2185 } else {
2186 /* Uncompressed frame - pass to decompressor so it
2187 can update its dictionary if necessary. */
2188 if (ppp->rcomp->incomp)
2189 ppp->rcomp->incomp(ppp->rc_state, skb->data - 2,
2190 skb->len + 2);
2193 return skb;
2195 err:
2196 ppp->rstate |= SC_DC_ERROR;
2197 ppp_receive_error(ppp);
2198 return skb;
2201 #ifdef CONFIG_PPP_MULTILINK
2203 * Receive a multilink frame.
2204 * We put it on the reconstruction queue and then pull off
2205 * as many completed frames as we can.
2207 static void
2208 ppp_receive_mp_frame(struct ppp *ppp, struct sk_buff *skb, struct channel *pch)
2210 u32 mask, seq;
2211 struct channel *ch;
2212 int mphdrlen = (ppp->flags & SC_MP_SHORTSEQ)? MPHDRLEN_SSN: MPHDRLEN;
2214 if (!pskb_may_pull(skb, mphdrlen + 1) || ppp->mrru == 0)
2215 goto err; /* no good, throw it away */
2217 /* Decode sequence number and begin/end bits */
2218 if (ppp->flags & SC_MP_SHORTSEQ) {
2219 seq = ((skb->data[2] & 0x0f) << 8) | skb->data[3];
2220 mask = 0xfff;
2221 } else {
2222 seq = (skb->data[3] << 16) | (skb->data[4] << 8)| skb->data[5];
2223 mask = 0xffffff;
2225 PPP_MP_CB(skb)->BEbits = skb->data[2];
2226 skb_pull(skb, mphdrlen); /* pull off PPP and MP headers */
2229 * Do protocol ID decompression on the first fragment of each packet.
2231 if ((PPP_MP_CB(skb)->BEbits & B) && (skb->data[0] & 1))
2232 *skb_push(skb, 1) = 0;
2235 * Expand sequence number to 32 bits, making it as close
2236 * as possible to ppp->minseq.
2238 seq |= ppp->minseq & ~mask;
2239 if ((int)(ppp->minseq - seq) > (int)(mask >> 1))
2240 seq += mask + 1;
2241 else if ((int)(seq - ppp->minseq) > (int)(mask >> 1))
2242 seq -= mask + 1; /* should never happen */
2243 PPP_MP_CB(skb)->sequence = seq;
2244 pch->lastseq = seq;
2247 * If this packet comes before the next one we were expecting,
2248 * drop it.
2250 if (seq_before(seq, ppp->nextseq)) {
2251 kfree_skb(skb);
2252 ++ppp->dev->stats.rx_dropped;
2253 ppp_receive_error(ppp);
2254 return;
2258 * Reevaluate minseq, the minimum over all channels of the
2259 * last sequence number received on each channel. Because of
2260 * the increasing sequence number rule, we know that any fragment
2261 * before `minseq' which hasn't arrived is never going to arrive.
2262 * The list of channels can't change because we have the receive
2263 * side of the ppp unit locked.
2265 list_for_each_entry(ch, &ppp->channels, clist) {
2266 if (seq_before(ch->lastseq, seq))
2267 seq = ch->lastseq;
2269 if (seq_before(ppp->minseq, seq))
2270 ppp->minseq = seq;
2272 /* Put the fragment on the reconstruction queue */
2273 ppp_mp_insert(ppp, skb);
2275 /* If the queue is getting long, don't wait any longer for packets
2276 before the start of the queue. */
2277 if (skb_queue_len(&ppp->mrq) >= PPP_MP_MAX_QLEN) {
2278 struct sk_buff *mskb = skb_peek(&ppp->mrq);
2279 if (seq_before(ppp->minseq, PPP_MP_CB(mskb)->sequence))
2280 ppp->minseq = PPP_MP_CB(mskb)->sequence;
2283 /* Pull completed packets off the queue and receive them. */
2284 while ((skb = ppp_mp_reconstruct(ppp))) {
2285 if (pskb_may_pull(skb, 2))
2286 ppp_receive_nonmp_frame(ppp, skb);
2287 else {
2288 ++ppp->dev->stats.rx_length_errors;
2289 kfree_skb(skb);
2290 ppp_receive_error(ppp);
2294 return;
2296 err:
2297 kfree_skb(skb);
2298 ppp_receive_error(ppp);
2302 * Insert a fragment on the MP reconstruction queue.
2303 * The queue is ordered by increasing sequence number.
2305 static void
2306 ppp_mp_insert(struct ppp *ppp, struct sk_buff *skb)
2308 struct sk_buff *p;
2309 struct sk_buff_head *list = &ppp->mrq;
2310 u32 seq = PPP_MP_CB(skb)->sequence;
2312 /* N.B. we don't need to lock the list lock because we have the
2313 ppp unit receive-side lock. */
2314 skb_queue_walk(list, p) {
2315 if (seq_before(seq, PPP_MP_CB(p)->sequence))
2316 break;
2318 __skb_queue_before(list, p, skb);
2322 * Reconstruct a packet from the MP fragment queue.
2323 * We go through increasing sequence numbers until we find a
2324 * complete packet, or we get to the sequence number for a fragment
2325 * which hasn't arrived but might still do so.
2327 static struct sk_buff *
2328 ppp_mp_reconstruct(struct ppp *ppp)
2330 u32 seq = ppp->nextseq;
2331 u32 minseq = ppp->minseq;
2332 struct sk_buff_head *list = &ppp->mrq;
2333 struct sk_buff *p, *tmp;
2334 struct sk_buff *head, *tail;
2335 struct sk_buff *skb = NULL;
2336 int lost = 0, len = 0;
2338 if (ppp->mrru == 0) /* do nothing until mrru is set */
2339 return NULL;
2340 head = list->next;
2341 tail = NULL;
2342 skb_queue_walk_safe(list, p, tmp) {
2343 again:
2344 if (seq_before(PPP_MP_CB(p)->sequence, seq)) {
2345 /* this can't happen, anyway ignore the skb */
2346 netdev_err(ppp->dev, "ppp_mp_reconstruct bad "
2347 "seq %u < %u\n",
2348 PPP_MP_CB(p)->sequence, seq);
2349 __skb_unlink(p, list);
2350 kfree_skb(p);
2351 continue;
2353 if (PPP_MP_CB(p)->sequence != seq) {
2354 u32 oldseq;
2355 /* Fragment `seq' is missing. If it is after
2356 minseq, it might arrive later, so stop here. */
2357 if (seq_after(seq, minseq))
2358 break;
2359 /* Fragment `seq' is lost, keep going. */
2360 lost = 1;
2361 oldseq = seq;
2362 seq = seq_before(minseq, PPP_MP_CB(p)->sequence)?
2363 minseq + 1: PPP_MP_CB(p)->sequence;
2365 if (ppp->debug & 1)
2366 netdev_printk(KERN_DEBUG, ppp->dev,
2367 "lost frag %u..%u\n",
2368 oldseq, seq-1);
2370 goto again;
2374 * At this point we know that all the fragments from
2375 * ppp->nextseq to seq are either present or lost.
2376 * Also, there are no complete packets in the queue
2377 * that have no missing fragments and end before this
2378 * fragment.
2381 /* B bit set indicates this fragment starts a packet */
2382 if (PPP_MP_CB(p)->BEbits & B) {
2383 head = p;
2384 lost = 0;
2385 len = 0;
2388 len += p->len;
2390 /* Got a complete packet yet? */
2391 if (lost == 0 && (PPP_MP_CB(p)->BEbits & E) &&
2392 (PPP_MP_CB(head)->BEbits & B)) {
2393 if (len > ppp->mrru + 2) {
2394 ++ppp->dev->stats.rx_length_errors;
2395 netdev_printk(KERN_DEBUG, ppp->dev,
2396 "PPP: reconstructed packet"
2397 " is too long (%d)\n", len);
2398 } else {
2399 tail = p;
2400 break;
2402 ppp->nextseq = seq + 1;
2406 * If this is the ending fragment of a packet,
2407 * and we haven't found a complete valid packet yet,
2408 * we can discard up to and including this fragment.
2410 if (PPP_MP_CB(p)->BEbits & E) {
2411 struct sk_buff *tmp2;
2413 skb_queue_reverse_walk_from_safe(list, p, tmp2) {
2414 if (ppp->debug & 1)
2415 netdev_printk(KERN_DEBUG, ppp->dev,
2416 "discarding frag %u\n",
2417 PPP_MP_CB(p)->sequence);
2418 __skb_unlink(p, list);
2419 kfree_skb(p);
2421 head = skb_peek(list);
2422 if (!head)
2423 break;
2425 ++seq;
2428 /* If we have a complete packet, copy it all into one skb. */
2429 if (tail != NULL) {
2430 /* If we have discarded any fragments,
2431 signal a receive error. */
2432 if (PPP_MP_CB(head)->sequence != ppp->nextseq) {
2433 skb_queue_walk_safe(list, p, tmp) {
2434 if (p == head)
2435 break;
2436 if (ppp->debug & 1)
2437 netdev_printk(KERN_DEBUG, ppp->dev,
2438 "discarding frag %u\n",
2439 PPP_MP_CB(p)->sequence);
2440 __skb_unlink(p, list);
2441 kfree_skb(p);
2444 if (ppp->debug & 1)
2445 netdev_printk(KERN_DEBUG, ppp->dev,
2446 " missed pkts %u..%u\n",
2447 ppp->nextseq,
2448 PPP_MP_CB(head)->sequence-1);
2449 ++ppp->dev->stats.rx_dropped;
2450 ppp_receive_error(ppp);
2453 skb = head;
2454 if (head != tail) {
2455 struct sk_buff **fragpp = &skb_shinfo(skb)->frag_list;
2456 p = skb_queue_next(list, head);
2457 __skb_unlink(skb, list);
2458 skb_queue_walk_from_safe(list, p, tmp) {
2459 __skb_unlink(p, list);
2460 *fragpp = p;
2461 p->next = NULL;
2462 fragpp = &p->next;
2464 skb->len += p->len;
2465 skb->data_len += p->len;
2466 skb->truesize += p->truesize;
2468 if (p == tail)
2469 break;
2471 } else {
2472 __skb_unlink(skb, list);
2475 ppp->nextseq = PPP_MP_CB(tail)->sequence + 1;
2478 return skb;
2480 #endif /* CONFIG_PPP_MULTILINK */
2483 * Channel interface.
2486 /* Create a new, unattached ppp channel. */
2487 int ppp_register_channel(struct ppp_channel *chan)
2489 return ppp_register_net_channel(current->nsproxy->net_ns, chan);
2492 /* Create a new, unattached ppp channel for specified net. */
2493 int ppp_register_net_channel(struct net *net, struct ppp_channel *chan)
2495 struct channel *pch;
2496 struct ppp_net *pn;
2498 pch = kzalloc(sizeof(struct channel), GFP_KERNEL);
2499 if (!pch)
2500 return -ENOMEM;
2502 pn = ppp_pernet(net);
2504 pch->ppp = NULL;
2505 pch->chan = chan;
2506 pch->chan_net = get_net(net);
2507 chan->ppp = pch;
2508 init_ppp_file(&pch->file, CHANNEL);
2509 pch->file.hdrlen = chan->hdrlen;
2510 #ifdef CONFIG_PPP_MULTILINK
2511 pch->lastseq = -1;
2512 #endif /* CONFIG_PPP_MULTILINK */
2513 init_rwsem(&pch->chan_sem);
2514 spin_lock_init(&pch->downl);
2515 rwlock_init(&pch->upl);
2517 spin_lock_bh(&pn->all_channels_lock);
2518 pch->file.index = ++pn->last_channel_index;
2519 list_add(&pch->list, &pn->new_channels);
2520 atomic_inc(&channel_count);
2521 spin_unlock_bh(&pn->all_channels_lock);
2523 return 0;
2527 * Return the index of a channel.
2529 int ppp_channel_index(struct ppp_channel *chan)
2531 struct channel *pch = chan->ppp;
2533 if (pch)
2534 return pch->file.index;
2535 return -1;
2539 * Return the PPP unit number to which a channel is connected.
2541 int ppp_unit_number(struct ppp_channel *chan)
2543 struct channel *pch = chan->ppp;
2544 int unit = -1;
2546 if (pch) {
2547 read_lock_bh(&pch->upl);
2548 if (pch->ppp)
2549 unit = pch->ppp->file.index;
2550 read_unlock_bh(&pch->upl);
2552 return unit;
2556 * Return the PPP device interface name of a channel.
2558 char *ppp_dev_name(struct ppp_channel *chan)
2560 struct channel *pch = chan->ppp;
2561 char *name = NULL;
2563 if (pch) {
2564 read_lock_bh(&pch->upl);
2565 if (pch->ppp && pch->ppp->dev)
2566 name = pch->ppp->dev->name;
2567 read_unlock_bh(&pch->upl);
2569 return name;
2574 * Disconnect a channel from the generic layer.
2575 * This must be called in process context.
2577 void
2578 ppp_unregister_channel(struct ppp_channel *chan)
2580 struct channel *pch = chan->ppp;
2581 struct ppp_net *pn;
2583 if (!pch)
2584 return; /* should never happen */
2586 chan->ppp = NULL;
2589 * This ensures that we have returned from any calls into the
2590 * the channel's start_xmit or ioctl routine before we proceed.
2592 down_write(&pch->chan_sem);
2593 spin_lock_bh(&pch->downl);
2594 pch->chan = NULL;
2595 spin_unlock_bh(&pch->downl);
2596 up_write(&pch->chan_sem);
2597 ppp_disconnect_channel(pch);
2599 pn = ppp_pernet(pch->chan_net);
2600 spin_lock_bh(&pn->all_channels_lock);
2601 list_del(&pch->list);
2602 spin_unlock_bh(&pn->all_channels_lock);
2604 pch->file.dead = 1;
2605 wake_up_interruptible(&pch->file.rwait);
2606 if (atomic_dec_and_test(&pch->file.refcnt))
2607 ppp_destroy_channel(pch);
2611 * Callback from a channel when it can accept more to transmit.
2612 * This should be called at BH/softirq level, not interrupt level.
2614 void
2615 ppp_output_wakeup(struct ppp_channel *chan)
2617 struct channel *pch = chan->ppp;
2619 if (!pch)
2620 return;
2621 ppp_channel_push(pch);
2625 * Compression control.
2628 /* Process the PPPIOCSCOMPRESS ioctl. */
2629 static int
2630 ppp_set_compress(struct ppp *ppp, unsigned long arg)
2632 int err;
2633 struct compressor *cp, *ocomp;
2634 struct ppp_option_data data;
2635 void *state, *ostate;
2636 unsigned char ccp_option[CCP_MAX_OPTION_LENGTH];
2638 err = -EFAULT;
2639 if (copy_from_user(&data, (void __user *) arg, sizeof(data)))
2640 goto out;
2641 if (data.length > CCP_MAX_OPTION_LENGTH)
2642 goto out;
2643 if (copy_from_user(ccp_option, (void __user *) data.ptr, data.length))
2644 goto out;
2646 err = -EINVAL;
2647 if (data.length < 2 || ccp_option[1] < 2 || ccp_option[1] > data.length)
2648 goto out;
2650 cp = try_then_request_module(
2651 find_compressor(ccp_option[0]),
2652 "ppp-compress-%d", ccp_option[0]);
2653 if (!cp)
2654 goto out;
2656 err = -ENOBUFS;
2657 if (data.transmit) {
2658 state = cp->comp_alloc(ccp_option, data.length);
2659 if (state) {
2660 ppp_xmit_lock(ppp);
2661 ppp->xstate &= ~SC_COMP_RUN;
2662 ocomp = ppp->xcomp;
2663 ostate = ppp->xc_state;
2664 ppp->xcomp = cp;
2665 ppp->xc_state = state;
2666 ppp_xmit_unlock(ppp);
2667 if (ostate) {
2668 ocomp->comp_free(ostate);
2669 module_put(ocomp->owner);
2671 err = 0;
2672 } else
2673 module_put(cp->owner);
2675 } else {
2676 state = cp->decomp_alloc(ccp_option, data.length);
2677 if (state) {
2678 ppp_recv_lock(ppp);
2679 ppp->rstate &= ~SC_DECOMP_RUN;
2680 ocomp = ppp->rcomp;
2681 ostate = ppp->rc_state;
2682 ppp->rcomp = cp;
2683 ppp->rc_state = state;
2684 ppp_recv_unlock(ppp);
2685 if (ostate) {
2686 ocomp->decomp_free(ostate);
2687 module_put(ocomp->owner);
2689 err = 0;
2690 } else
2691 module_put(cp->owner);
2694 out:
2695 return err;
2699 * Look at a CCP packet and update our state accordingly.
2700 * We assume the caller has the xmit or recv path locked.
2702 static void
2703 ppp_ccp_peek(struct ppp *ppp, struct sk_buff *skb, int inbound)
2705 unsigned char *dp;
2706 int len;
2708 if (!pskb_may_pull(skb, CCP_HDRLEN + 2))
2709 return; /* no header */
2710 dp = skb->data + 2;
2712 switch (CCP_CODE(dp)) {
2713 case CCP_CONFREQ:
2715 /* A ConfReq starts negotiation of compression
2716 * in one direction of transmission,
2717 * and hence brings it down...but which way?
2719 * Remember:
2720 * A ConfReq indicates what the sender would like to receive
2722 if(inbound)
2723 /* He is proposing what I should send */
2724 ppp->xstate &= ~SC_COMP_RUN;
2725 else
2726 /* I am proposing to what he should send */
2727 ppp->rstate &= ~SC_DECOMP_RUN;
2729 break;
2731 case CCP_TERMREQ:
2732 case CCP_TERMACK:
2734 * CCP is going down, both directions of transmission
2736 ppp->rstate &= ~SC_DECOMP_RUN;
2737 ppp->xstate &= ~SC_COMP_RUN;
2738 break;
2740 case CCP_CONFACK:
2741 if ((ppp->flags & (SC_CCP_OPEN | SC_CCP_UP)) != SC_CCP_OPEN)
2742 break;
2743 len = CCP_LENGTH(dp);
2744 if (!pskb_may_pull(skb, len + 2))
2745 return; /* too short */
2746 dp += CCP_HDRLEN;
2747 len -= CCP_HDRLEN;
2748 if (len < CCP_OPT_MINLEN || len < CCP_OPT_LENGTH(dp))
2749 break;
2750 if (inbound) {
2751 /* we will start receiving compressed packets */
2752 if (!ppp->rc_state)
2753 break;
2754 if (ppp->rcomp->decomp_init(ppp->rc_state, dp, len,
2755 ppp->file.index, 0, ppp->mru, ppp->debug)) {
2756 ppp->rstate |= SC_DECOMP_RUN;
2757 ppp->rstate &= ~(SC_DC_ERROR | SC_DC_FERROR);
2759 } else {
2760 /* we will soon start sending compressed packets */
2761 if (!ppp->xc_state)
2762 break;
2763 if (ppp->xcomp->comp_init(ppp->xc_state, dp, len,
2764 ppp->file.index, 0, ppp->debug))
2765 ppp->xstate |= SC_COMP_RUN;
2767 break;
2769 case CCP_RESETACK:
2770 /* reset the [de]compressor */
2771 if ((ppp->flags & SC_CCP_UP) == 0)
2772 break;
2773 if (inbound) {
2774 if (ppp->rc_state && (ppp->rstate & SC_DECOMP_RUN)) {
2775 ppp->rcomp->decomp_reset(ppp->rc_state);
2776 ppp->rstate &= ~SC_DC_ERROR;
2778 } else {
2779 if (ppp->xc_state && (ppp->xstate & SC_COMP_RUN))
2780 ppp->xcomp->comp_reset(ppp->xc_state);
2782 break;
2786 /* Free up compression resources. */
2787 static void
2788 ppp_ccp_closed(struct ppp *ppp)
2790 void *xstate, *rstate;
2791 struct compressor *xcomp, *rcomp;
2793 ppp_lock(ppp);
2794 ppp->flags &= ~(SC_CCP_OPEN | SC_CCP_UP);
2795 ppp->xstate = 0;
2796 xcomp = ppp->xcomp;
2797 xstate = ppp->xc_state;
2798 ppp->xc_state = NULL;
2799 ppp->rstate = 0;
2800 rcomp = ppp->rcomp;
2801 rstate = ppp->rc_state;
2802 ppp->rc_state = NULL;
2803 ppp_unlock(ppp);
2805 if (xstate) {
2806 xcomp->comp_free(xstate);
2807 module_put(xcomp->owner);
2809 if (rstate) {
2810 rcomp->decomp_free(rstate);
2811 module_put(rcomp->owner);
2815 /* List of compressors. */
2816 static LIST_HEAD(compressor_list);
2817 static DEFINE_SPINLOCK(compressor_list_lock);
2819 struct compressor_entry {
2820 struct list_head list;
2821 struct compressor *comp;
2824 static struct compressor_entry *
2825 find_comp_entry(int proto)
2827 struct compressor_entry *ce;
2829 list_for_each_entry(ce, &compressor_list, list) {
2830 if (ce->comp->compress_proto == proto)
2831 return ce;
2833 return NULL;
2836 /* Register a compressor */
2838 ppp_register_compressor(struct compressor *cp)
2840 struct compressor_entry *ce;
2841 int ret;
2842 spin_lock(&compressor_list_lock);
2843 ret = -EEXIST;
2844 if (find_comp_entry(cp->compress_proto))
2845 goto out;
2846 ret = -ENOMEM;
2847 ce = kmalloc(sizeof(struct compressor_entry), GFP_ATOMIC);
2848 if (!ce)
2849 goto out;
2850 ret = 0;
2851 ce->comp = cp;
2852 list_add(&ce->list, &compressor_list);
2853 out:
2854 spin_unlock(&compressor_list_lock);
2855 return ret;
2858 /* Unregister a compressor */
2859 void
2860 ppp_unregister_compressor(struct compressor *cp)
2862 struct compressor_entry *ce;
2864 spin_lock(&compressor_list_lock);
2865 ce = find_comp_entry(cp->compress_proto);
2866 if (ce && ce->comp == cp) {
2867 list_del(&ce->list);
2868 kfree(ce);
2870 spin_unlock(&compressor_list_lock);
2873 /* Find a compressor. */
2874 static struct compressor *
2875 find_compressor(int type)
2877 struct compressor_entry *ce;
2878 struct compressor *cp = NULL;
2880 spin_lock(&compressor_list_lock);
2881 ce = find_comp_entry(type);
2882 if (ce) {
2883 cp = ce->comp;
2884 if (!try_module_get(cp->owner))
2885 cp = NULL;
2887 spin_unlock(&compressor_list_lock);
2888 return cp;
2892 * Miscelleneous stuff.
2895 static void
2896 ppp_get_stats(struct ppp *ppp, struct ppp_stats *st)
2898 struct slcompress *vj = ppp->vj;
2900 memset(st, 0, sizeof(*st));
2901 st->p.ppp_ipackets = ppp->stats64.rx_packets;
2902 st->p.ppp_ierrors = ppp->dev->stats.rx_errors;
2903 st->p.ppp_ibytes = ppp->stats64.rx_bytes;
2904 st->p.ppp_opackets = ppp->stats64.tx_packets;
2905 st->p.ppp_oerrors = ppp->dev->stats.tx_errors;
2906 st->p.ppp_obytes = ppp->stats64.tx_bytes;
2907 if (!vj)
2908 return;
2909 st->vj.vjs_packets = vj->sls_o_compressed + vj->sls_o_uncompressed;
2910 st->vj.vjs_compressed = vj->sls_o_compressed;
2911 st->vj.vjs_searches = vj->sls_o_searches;
2912 st->vj.vjs_misses = vj->sls_o_misses;
2913 st->vj.vjs_errorin = vj->sls_i_error;
2914 st->vj.vjs_tossed = vj->sls_i_tossed;
2915 st->vj.vjs_uncompressedin = vj->sls_i_uncompressed;
2916 st->vj.vjs_compressedin = vj->sls_i_compressed;
2920 * Stuff for handling the lists of ppp units and channels
2921 * and for initialization.
2925 * Create a new ppp interface unit. Fails if it can't allocate memory
2926 * or if there is already a unit with the requested number.
2927 * unit == -1 means allocate a new number.
2929 static int ppp_create_interface(struct net *net, struct file *file, int *unit)
2931 struct ppp_config conf = {
2932 .file = file,
2933 .unit = *unit,
2934 .ifname_is_set = false,
2936 struct net_device *dev;
2937 struct ppp *ppp;
2938 int err;
2940 dev = alloc_netdev(sizeof(struct ppp), "", NET_NAME_ENUM, ppp_setup);
2941 if (!dev) {
2942 err = -ENOMEM;
2943 goto err;
2945 dev_net_set(dev, net);
2946 dev->rtnl_link_ops = &ppp_link_ops;
2948 rtnl_lock();
2950 err = ppp_dev_configure(net, dev, &conf);
2951 if (err < 0)
2952 goto err_dev;
2953 ppp = netdev_priv(dev);
2954 *unit = ppp->file.index;
2956 rtnl_unlock();
2958 return 0;
2960 err_dev:
2961 rtnl_unlock();
2962 free_netdev(dev);
2963 err:
2964 return err;
2968 * Initialize a ppp_file structure.
2970 static void
2971 init_ppp_file(struct ppp_file *pf, int kind)
2973 pf->kind = kind;
2974 skb_queue_head_init(&pf->xq);
2975 skb_queue_head_init(&pf->rq);
2976 atomic_set(&pf->refcnt, 1);
2977 init_waitqueue_head(&pf->rwait);
2981 * Free the memory used by a ppp unit. This is only called once
2982 * there are no channels connected to the unit and no file structs
2983 * that reference the unit.
2985 static void ppp_destroy_interface(struct ppp *ppp)
2987 atomic_dec(&ppp_unit_count);
2989 if (!ppp->file.dead || ppp->n_channels) {
2990 /* "can't happen" */
2991 netdev_err(ppp->dev, "ppp: destroying ppp struct %p "
2992 "but dead=%d n_channels=%d !\n",
2993 ppp, ppp->file.dead, ppp->n_channels);
2994 return;
2997 ppp_ccp_closed(ppp);
2998 if (ppp->vj) {
2999 slhc_free(ppp->vj);
3000 ppp->vj = NULL;
3002 skb_queue_purge(&ppp->file.xq);
3003 skb_queue_purge(&ppp->file.rq);
3004 #ifdef CONFIG_PPP_MULTILINK
3005 skb_queue_purge(&ppp->mrq);
3006 #endif /* CONFIG_PPP_MULTILINK */
3007 #ifdef CONFIG_PPP_FILTER
3008 if (ppp->pass_filter) {
3009 bpf_prog_destroy(ppp->pass_filter);
3010 ppp->pass_filter = NULL;
3013 if (ppp->active_filter) {
3014 bpf_prog_destroy(ppp->active_filter);
3015 ppp->active_filter = NULL;
3017 #endif /* CONFIG_PPP_FILTER */
3019 kfree_skb(ppp->xmit_pending);
3021 free_netdev(ppp->dev);
3025 * Locate an existing ppp unit.
3026 * The caller should have locked the all_ppp_mutex.
3028 static struct ppp *
3029 ppp_find_unit(struct ppp_net *pn, int unit)
3031 return unit_find(&pn->units_idr, unit);
3035 * Locate an existing ppp channel.
3036 * The caller should have locked the all_channels_lock.
3037 * First we look in the new_channels list, then in the
3038 * all_channels list. If found in the new_channels list,
3039 * we move it to the all_channels list. This is for speed
3040 * when we have a lot of channels in use.
3042 static struct channel *
3043 ppp_find_channel(struct ppp_net *pn, int unit)
3045 struct channel *pch;
3047 list_for_each_entry(pch, &pn->new_channels, list) {
3048 if (pch->file.index == unit) {
3049 list_move(&pch->list, &pn->all_channels);
3050 return pch;
3054 list_for_each_entry(pch, &pn->all_channels, list) {
3055 if (pch->file.index == unit)
3056 return pch;
3059 return NULL;
3063 * Connect a PPP channel to a PPP interface unit.
3065 static int
3066 ppp_connect_channel(struct channel *pch, int unit)
3068 struct ppp *ppp;
3069 struct ppp_net *pn;
3070 int ret = -ENXIO;
3071 int hdrlen;
3073 pn = ppp_pernet(pch->chan_net);
3075 mutex_lock(&pn->all_ppp_mutex);
3076 ppp = ppp_find_unit(pn, unit);
3077 if (!ppp)
3078 goto out;
3079 write_lock_bh(&pch->upl);
3080 ret = -EINVAL;
3081 if (pch->ppp)
3082 goto outl;
3084 ppp_lock(ppp);
3085 if (pch->file.hdrlen > ppp->file.hdrlen)
3086 ppp->file.hdrlen = pch->file.hdrlen;
3087 hdrlen = pch->file.hdrlen + 2; /* for protocol bytes */
3088 if (hdrlen > ppp->dev->hard_header_len)
3089 ppp->dev->hard_header_len = hdrlen;
3090 list_add_tail(&pch->clist, &ppp->channels);
3091 ++ppp->n_channels;
3092 pch->ppp = ppp;
3093 atomic_inc(&ppp->file.refcnt);
3094 ppp_unlock(ppp);
3095 ret = 0;
3097 outl:
3098 write_unlock_bh(&pch->upl);
3099 out:
3100 mutex_unlock(&pn->all_ppp_mutex);
3101 return ret;
3105 * Disconnect a channel from its ppp unit.
3107 static int
3108 ppp_disconnect_channel(struct channel *pch)
3110 struct ppp *ppp;
3111 int err = -EINVAL;
3113 write_lock_bh(&pch->upl);
3114 ppp = pch->ppp;
3115 pch->ppp = NULL;
3116 write_unlock_bh(&pch->upl);
3117 if (ppp) {
3118 /* remove it from the ppp unit's list */
3119 ppp_lock(ppp);
3120 list_del(&pch->clist);
3121 if (--ppp->n_channels == 0)
3122 wake_up_interruptible(&ppp->file.rwait);
3123 ppp_unlock(ppp);
3124 if (atomic_dec_and_test(&ppp->file.refcnt))
3125 ppp_destroy_interface(ppp);
3126 err = 0;
3128 return err;
3132 * Free up the resources used by a ppp channel.
3134 static void ppp_destroy_channel(struct channel *pch)
3136 put_net(pch->chan_net);
3137 pch->chan_net = NULL;
3139 atomic_dec(&channel_count);
3141 if (!pch->file.dead) {
3142 /* "can't happen" */
3143 pr_err("ppp: destroying undead channel %p !\n", pch);
3144 return;
3146 skb_queue_purge(&pch->file.xq);
3147 skb_queue_purge(&pch->file.rq);
3148 kfree(pch);
3151 static void __exit ppp_cleanup(void)
3153 /* should never happen */
3154 if (atomic_read(&ppp_unit_count) || atomic_read(&channel_count))
3155 pr_err("PPP: removing module but units remain!\n");
3156 rtnl_link_unregister(&ppp_link_ops);
3157 unregister_chrdev(PPP_MAJOR, "ppp");
3158 device_destroy(ppp_class, MKDEV(PPP_MAJOR, 0));
3159 class_destroy(ppp_class);
3160 unregister_pernet_device(&ppp_net_ops);
3164 * Units handling. Caller must protect concurrent access
3165 * by holding all_ppp_mutex
3168 /* associate pointer with specified number */
3169 static int unit_set(struct idr *p, void *ptr, int n)
3171 int unit;
3173 unit = idr_alloc(p, ptr, n, n + 1, GFP_KERNEL);
3174 if (unit == -ENOSPC)
3175 unit = -EINVAL;
3176 return unit;
3179 /* get new free unit number and associate pointer with it */
3180 static int unit_get(struct idr *p, void *ptr)
3182 return idr_alloc(p, ptr, 0, 0, GFP_KERNEL);
3185 /* put unit number back to a pool */
3186 static void unit_put(struct idr *p, int n)
3188 idr_remove(p, n);
3191 /* get pointer associated with the number */
3192 static void *unit_find(struct idr *p, int n)
3194 return idr_find(p, n);
3197 /* Module/initialization stuff */
3199 module_init(ppp_init);
3200 module_exit(ppp_cleanup);
3202 EXPORT_SYMBOL(ppp_register_net_channel);
3203 EXPORT_SYMBOL(ppp_register_channel);
3204 EXPORT_SYMBOL(ppp_unregister_channel);
3205 EXPORT_SYMBOL(ppp_channel_index);
3206 EXPORT_SYMBOL(ppp_unit_number);
3207 EXPORT_SYMBOL(ppp_dev_name);
3208 EXPORT_SYMBOL(ppp_input);
3209 EXPORT_SYMBOL(ppp_input_error);
3210 EXPORT_SYMBOL(ppp_output_wakeup);
3211 EXPORT_SYMBOL(ppp_register_compressor);
3212 EXPORT_SYMBOL(ppp_unregister_compressor);
3213 MODULE_LICENSE("GPL");
3214 MODULE_ALIAS_CHARDEV(PPP_MAJOR, 0);
3215 MODULE_ALIAS_RTNL_LINK("ppp");
3216 MODULE_ALIAS("devname:ppp");