Merge branch 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[cris-mirror.git] / drivers / net / wireless / ath / ath9k / ar9002_phy.c
blob61a9b85045d2ea1c7cb38e7972faf0e6520c58a3
1 /*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 /**
18 * DOC: Programming Atheros 802.11n analog front end radios
20 * AR5416 MAC based PCI devices and AR518 MAC based PCI-Express
21 * devices have either an external AR2133 analog front end radio for single
22 * band 2.4 GHz communication or an AR5133 analog front end radio for dual
23 * band 2.4 GHz / 5 GHz communication.
25 * All devices after the AR5416 and AR5418 family starting with the AR9280
26 * have their analog front radios, MAC/BB and host PCIe/USB interface embedded
27 * into a single-chip and require less programming.
29 * The following single-chips exist with a respective embedded radio:
31 * AR9280 - 11n dual-band 2x2 MIMO for PCIe
32 * AR9281 - 11n single-band 1x2 MIMO for PCIe
33 * AR9285 - 11n single-band 1x1 for PCIe
34 * AR9287 - 11n single-band 2x2 MIMO for PCIe
36 * AR9220 - 11n dual-band 2x2 MIMO for PCI
37 * AR9223 - 11n single-band 2x2 MIMO for PCI
39 * AR9287 - 11n single-band 1x1 MIMO for USB
42 #include "hw.h"
43 #include "ar9002_phy.h"
45 /**
46 * ar9002_hw_set_channel - set channel on single-chip device
47 * @ah: atheros hardware structure
48 * @chan:
50 * This is the function to change channel on single-chip devices, that is
51 * all devices after ar9280.
53 * This function takes the channel value in MHz and sets
54 * hardware channel value. Assumes writes have been enabled to analog bus.
56 * Actual Expression,
58 * For 2GHz channel,
59 * Channel Frequency = (3/4) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^17)
60 * (freq_ref = 40MHz)
62 * For 5GHz channel,
63 * Channel Frequency = (3/2) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^10)
64 * (freq_ref = 40MHz/(24>>amodeRefSel))
66 static int ar9002_hw_set_channel(struct ath_hw *ah, struct ath9k_channel *chan)
68 u16 bMode, fracMode, aModeRefSel = 0;
69 u32 freq, ndiv, channelSel = 0, channelFrac = 0, reg32 = 0;
70 struct chan_centers centers;
71 u32 refDivA = 24;
73 ath9k_hw_get_channel_centers(ah, chan, &centers);
74 freq = centers.synth_center;
76 reg32 = REG_READ(ah, AR_PHY_SYNTH_CONTROL);
77 reg32 &= 0xc0000000;
79 if (freq < 4800) { /* 2 GHz, fractional mode */
80 u32 txctl;
81 int regWrites = 0;
83 bMode = 1;
84 fracMode = 1;
85 aModeRefSel = 0;
86 channelSel = CHANSEL_2G(freq);
88 if (AR_SREV_9287_11_OR_LATER(ah)) {
89 if (freq == 2484) {
90 /* Enable channel spreading for channel 14 */
91 REG_WRITE_ARRAY(&ah->iniCckfirJapan2484,
92 1, regWrites);
93 } else {
94 REG_WRITE_ARRAY(&ah->iniCckfirNormal,
95 1, regWrites);
97 } else {
98 txctl = REG_READ(ah, AR_PHY_CCK_TX_CTRL);
99 if (freq == 2484) {
100 /* Enable channel spreading for channel 14 */
101 REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
102 txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
103 } else {
104 REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
105 txctl & ~AR_PHY_CCK_TX_CTRL_JAPAN);
108 } else {
109 bMode = 0;
110 fracMode = 0;
112 switch (ah->eep_ops->get_eeprom(ah, EEP_FRAC_N_5G)) {
113 case 0:
114 if (IS_CHAN_HALF_RATE(chan) || IS_CHAN_QUARTER_RATE(chan))
115 aModeRefSel = 0;
116 else if ((freq % 20) == 0)
117 aModeRefSel = 3;
118 else if ((freq % 10) == 0)
119 aModeRefSel = 2;
120 if (aModeRefSel)
121 break;
122 case 1:
123 default:
124 aModeRefSel = 0;
126 * Enable 2G (fractional) mode for channels
127 * which are 5MHz spaced.
129 fracMode = 1;
130 refDivA = 1;
131 channelSel = CHANSEL_5G(freq);
133 /* RefDivA setting */
134 ath9k_hw_analog_shift_rmw(ah, AR_AN_SYNTH9,
135 AR_AN_SYNTH9_REFDIVA,
136 AR_AN_SYNTH9_REFDIVA_S, refDivA);
140 if (!fracMode) {
141 ndiv = (freq * (refDivA >> aModeRefSel)) / 60;
142 channelSel = ndiv & 0x1ff;
143 channelFrac = (ndiv & 0xfffffe00) * 2;
144 channelSel = (channelSel << 17) | channelFrac;
148 reg32 = reg32 |
149 (bMode << 29) |
150 (fracMode << 28) | (aModeRefSel << 26) | (channelSel);
152 REG_WRITE(ah, AR_PHY_SYNTH_CONTROL, reg32);
154 ah->curchan = chan;
156 return 0;
160 * ar9002_hw_spur_mitigate - convert baseband spur frequency
161 * @ah: atheros hardware structure
162 * @chan:
164 * For single-chip solutions. Converts to baseband spur frequency given the
165 * input channel frequency and compute register settings below.
167 static void ar9002_hw_spur_mitigate(struct ath_hw *ah,
168 struct ath9k_channel *chan)
170 int bb_spur = AR_NO_SPUR;
171 int freq;
172 int bin;
173 int bb_spur_off, spur_subchannel_sd;
174 int spur_freq_sd;
175 int spur_delta_phase;
176 int denominator;
177 int tmp, newVal;
178 int i;
179 struct chan_centers centers;
181 int cur_bb_spur;
182 bool is2GHz = IS_CHAN_2GHZ(chan);
184 ath9k_hw_get_channel_centers(ah, chan, &centers);
185 freq = centers.synth_center;
187 for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
188 cur_bb_spur = ah->eep_ops->get_spur_channel(ah, i, is2GHz);
190 if (AR_NO_SPUR == cur_bb_spur)
191 break;
193 if (is2GHz)
194 cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_2GHZ;
195 else
196 cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_5GHZ;
198 cur_bb_spur = cur_bb_spur - freq;
200 if (IS_CHAN_HT40(chan)) {
201 if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT40) &&
202 (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT40)) {
203 bb_spur = cur_bb_spur;
204 break;
206 } else if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT20) &&
207 (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT20)) {
208 bb_spur = cur_bb_spur;
209 break;
213 if (AR_NO_SPUR == bb_spur) {
214 REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
215 AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
216 return;
217 } else {
218 REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
219 AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
222 bin = bb_spur * 320;
224 tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
226 ENABLE_REGWRITE_BUFFER(ah);
228 newVal = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
229 AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
230 AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
231 AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
232 REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), newVal);
234 newVal = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
235 AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
236 AR_PHY_SPUR_REG_MASK_RATE_SELECT |
237 AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
238 SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
239 REG_WRITE(ah, AR_PHY_SPUR_REG, newVal);
241 if (IS_CHAN_HT40(chan)) {
242 if (bb_spur < 0) {
243 spur_subchannel_sd = 1;
244 bb_spur_off = bb_spur + 10;
245 } else {
246 spur_subchannel_sd = 0;
247 bb_spur_off = bb_spur - 10;
249 } else {
250 spur_subchannel_sd = 0;
251 bb_spur_off = bb_spur;
254 if (IS_CHAN_HT40(chan))
255 spur_delta_phase =
256 ((bb_spur * 262144) /
257 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
258 else
259 spur_delta_phase =
260 ((bb_spur * 524288) /
261 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
263 denominator = IS_CHAN_2GHZ(chan) ? 44 : 40;
264 spur_freq_sd = ((bb_spur_off * 2048) / denominator) & 0x3ff;
266 newVal = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
267 SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
268 SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
269 REG_WRITE(ah, AR_PHY_TIMING11, newVal);
271 newVal = spur_subchannel_sd << AR_PHY_SFCORR_SPUR_SUBCHNL_SD_S;
272 REG_WRITE(ah, AR_PHY_SFCORR_EXT, newVal);
274 ar5008_hw_cmn_spur_mitigate(ah, chan, bin);
276 REGWRITE_BUFFER_FLUSH(ah);
279 static void ar9002_olc_init(struct ath_hw *ah)
281 u32 i;
283 if (!OLC_FOR_AR9280_20_LATER)
284 return;
286 if (OLC_FOR_AR9287_10_LATER) {
287 REG_SET_BIT(ah, AR_PHY_TX_PWRCTRL9,
288 AR_PHY_TX_PWRCTRL9_RES_DC_REMOVAL);
289 ath9k_hw_analog_shift_rmw(ah, AR9287_AN_TXPC0,
290 AR9287_AN_TXPC0_TXPCMODE,
291 AR9287_AN_TXPC0_TXPCMODE_S,
292 AR9287_AN_TXPC0_TXPCMODE_TEMPSENSE);
293 udelay(100);
294 } else {
295 for (i = 0; i < AR9280_TX_GAIN_TABLE_SIZE; i++)
296 ah->originalGain[i] =
297 MS(REG_READ(ah, AR_PHY_TX_GAIN_TBL1 + i * 4),
298 AR_PHY_TX_GAIN);
299 ah->PDADCdelta = 0;
303 static u32 ar9002_hw_compute_pll_control(struct ath_hw *ah,
304 struct ath9k_channel *chan)
306 int ref_div = 5;
307 int pll_div = 0x2c;
308 u32 pll;
310 if (chan && IS_CHAN_5GHZ(chan) && !IS_CHAN_A_FAST_CLOCK(ah, chan)) {
311 if (AR_SREV_9280_20(ah)) {
312 ref_div = 10;
313 pll_div = 0x50;
314 } else {
315 pll_div = 0x28;
319 pll = SM(ref_div, AR_RTC_9160_PLL_REFDIV);
320 pll |= SM(pll_div, AR_RTC_9160_PLL_DIV);
322 if (chan && IS_CHAN_HALF_RATE(chan))
323 pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
324 else if (chan && IS_CHAN_QUARTER_RATE(chan))
325 pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
327 return pll;
330 static void ar9002_hw_do_getnf(struct ath_hw *ah,
331 int16_t nfarray[NUM_NF_READINGS])
333 int16_t nf;
335 nf = MS(REG_READ(ah, AR_PHY_CCA), AR9280_PHY_MINCCA_PWR);
336 nfarray[0] = sign_extend32(nf, 8);
338 nf = MS(REG_READ(ah, AR_PHY_EXT_CCA), AR9280_PHY_EXT_MINCCA_PWR);
339 if (IS_CHAN_HT40(ah->curchan))
340 nfarray[3] = sign_extend32(nf, 8);
342 if (!(ah->rxchainmask & BIT(1)))
343 return;
345 nf = MS(REG_READ(ah, AR_PHY_CH1_CCA), AR9280_PHY_CH1_MINCCA_PWR);
346 nfarray[1] = sign_extend32(nf, 8);
348 nf = MS(REG_READ(ah, AR_PHY_CH1_EXT_CCA), AR9280_PHY_CH1_EXT_MINCCA_PWR);
349 if (IS_CHAN_HT40(ah->curchan))
350 nfarray[4] = sign_extend32(nf, 8);
353 static void ar9002_hw_set_nf_limits(struct ath_hw *ah)
355 if (AR_SREV_9285(ah)) {
356 ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9285_2GHZ;
357 ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9285_2GHZ;
358 ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9285_2GHZ;
359 } else if (AR_SREV_9287(ah)) {
360 ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9287_2GHZ;
361 ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9287_2GHZ;
362 ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9287_2GHZ;
363 } else if (AR_SREV_9271(ah)) {
364 ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9271_2GHZ;
365 ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9271_2GHZ;
366 ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9271_2GHZ;
367 } else {
368 ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9280_2GHZ;
369 ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9280_2GHZ;
370 ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9280_2GHZ;
371 ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_9280_5GHZ;
372 ah->nf_5g.min = AR_PHY_CCA_MIN_GOOD_VAL_9280_5GHZ;
373 ah->nf_5g.nominal = AR_PHY_CCA_NOM_VAL_9280_5GHZ;
377 static void ar9002_hw_antdiv_comb_conf_get(struct ath_hw *ah,
378 struct ath_hw_antcomb_conf *antconf)
380 u32 regval;
382 regval = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
383 antconf->main_lna_conf = (regval & AR_PHY_9285_ANT_DIV_MAIN_LNACONF) >>
384 AR_PHY_9285_ANT_DIV_MAIN_LNACONF_S;
385 antconf->alt_lna_conf = (regval & AR_PHY_9285_ANT_DIV_ALT_LNACONF) >>
386 AR_PHY_9285_ANT_DIV_ALT_LNACONF_S;
387 antconf->fast_div_bias = (regval & AR_PHY_9285_FAST_DIV_BIAS) >>
388 AR_PHY_9285_FAST_DIV_BIAS_S;
389 antconf->lna1_lna2_switch_delta = -1;
390 antconf->lna1_lna2_delta = -3;
391 antconf->div_group = 0;
394 static void ar9002_hw_antdiv_comb_conf_set(struct ath_hw *ah,
395 struct ath_hw_antcomb_conf *antconf)
397 u32 regval;
399 regval = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
400 regval &= ~(AR_PHY_9285_ANT_DIV_MAIN_LNACONF |
401 AR_PHY_9285_ANT_DIV_ALT_LNACONF |
402 AR_PHY_9285_FAST_DIV_BIAS);
403 regval |= ((antconf->main_lna_conf << AR_PHY_9285_ANT_DIV_MAIN_LNACONF_S)
404 & AR_PHY_9285_ANT_DIV_MAIN_LNACONF);
405 regval |= ((antconf->alt_lna_conf << AR_PHY_9285_ANT_DIV_ALT_LNACONF_S)
406 & AR_PHY_9285_ANT_DIV_ALT_LNACONF);
407 regval |= ((antconf->fast_div_bias << AR_PHY_9285_FAST_DIV_BIAS_S)
408 & AR_PHY_9285_FAST_DIV_BIAS);
410 REG_WRITE(ah, AR_PHY_MULTICHAIN_GAIN_CTL, regval);
413 #ifdef CONFIG_ATH9K_BTCOEX_SUPPORT
415 static void ar9002_hw_set_bt_ant_diversity(struct ath_hw *ah, bool enable)
417 struct ath_btcoex_hw *btcoex = &ah->btcoex_hw;
418 u8 antdiv_ctrl1, antdiv_ctrl2;
419 u32 regval;
421 if (enable) {
422 antdiv_ctrl1 = ATH_BT_COEX_ANTDIV_CONTROL1_ENABLE;
423 antdiv_ctrl2 = ATH_BT_COEX_ANTDIV_CONTROL2_ENABLE;
426 * Don't disable BT ant to allow BB to control SWCOM.
428 btcoex->bt_coex_mode2 &= (~(AR_BT_DISABLE_BT_ANT));
429 REG_WRITE(ah, AR_BT_COEX_MODE2, btcoex->bt_coex_mode2);
431 REG_WRITE(ah, AR_PHY_SWITCH_COM, ATH_BT_COEX_ANT_DIV_SWITCH_COM);
432 REG_RMW(ah, AR_PHY_SWITCH_CHAIN_0, 0, 0xf0000000);
433 } else {
435 * Disable antenna diversity, use LNA1 only.
437 antdiv_ctrl1 = ATH_BT_COEX_ANTDIV_CONTROL1_FIXED_A;
438 antdiv_ctrl2 = ATH_BT_COEX_ANTDIV_CONTROL2_FIXED_A;
441 * Disable BT Ant. to allow concurrent BT and WLAN receive.
443 btcoex->bt_coex_mode2 |= AR_BT_DISABLE_BT_ANT;
444 REG_WRITE(ah, AR_BT_COEX_MODE2, btcoex->bt_coex_mode2);
447 * Program SWCOM table to make sure RF switch always parks
448 * at BT side.
450 REG_WRITE(ah, AR_PHY_SWITCH_COM, 0);
451 REG_RMW(ah, AR_PHY_SWITCH_CHAIN_0, 0, 0xf0000000);
454 regval = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
455 regval &= (~(AR_PHY_9285_ANT_DIV_CTL_ALL));
457 * Clear ant_fast_div_bias [14:9] since for WB195,
458 * the main LNA is always LNA1.
460 regval &= (~(AR_PHY_9285_FAST_DIV_BIAS));
461 regval |= SM(antdiv_ctrl1, AR_PHY_9285_ANT_DIV_CTL);
462 regval |= SM(antdiv_ctrl2, AR_PHY_9285_ANT_DIV_ALT_LNACONF);
463 regval |= SM((antdiv_ctrl2 >> 2), AR_PHY_9285_ANT_DIV_MAIN_LNACONF);
464 regval |= SM((antdiv_ctrl1 >> 1), AR_PHY_9285_ANT_DIV_ALT_GAINTB);
465 regval |= SM((antdiv_ctrl1 >> 2), AR_PHY_9285_ANT_DIV_MAIN_GAINTB);
466 REG_WRITE(ah, AR_PHY_MULTICHAIN_GAIN_CTL, regval);
468 regval = REG_READ(ah, AR_PHY_CCK_DETECT);
469 regval &= (~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
470 regval |= SM((antdiv_ctrl1 >> 3), AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
471 REG_WRITE(ah, AR_PHY_CCK_DETECT, regval);
474 #endif
476 static void ar9002_hw_spectral_scan_config(struct ath_hw *ah,
477 struct ath_spec_scan *param)
479 u32 repeat_bit;
480 u8 count;
482 if (!param->enabled) {
483 REG_CLR_BIT(ah, AR_PHY_SPECTRAL_SCAN,
484 AR_PHY_SPECTRAL_SCAN_ENABLE);
485 return;
487 REG_SET_BIT(ah, AR_PHY_RADAR_0, AR_PHY_RADAR_0_FFT_ENA);
488 REG_SET_BIT(ah, AR_PHY_SPECTRAL_SCAN, AR_PHY_SPECTRAL_SCAN_ENABLE);
490 if (AR_SREV_9280(ah))
491 repeat_bit = AR_PHY_SPECTRAL_SCAN_SHORT_REPEAT;
492 else
493 repeat_bit = AR_PHY_SPECTRAL_SCAN_SHORT_REPEAT_KIWI;
495 if (param->short_repeat)
496 REG_SET_BIT(ah, AR_PHY_SPECTRAL_SCAN, repeat_bit);
497 else
498 REG_CLR_BIT(ah, AR_PHY_SPECTRAL_SCAN, repeat_bit);
500 /* on AR92xx, the highest bit of count will make the the chip send
501 * spectral samples endlessly. Check if this really was intended,
502 * and fix otherwise.
504 count = param->count;
505 if (param->endless) {
506 if (AR_SREV_9280(ah))
507 count = 0x80;
508 else
509 count = 0;
510 } else if (count & 0x80)
511 count = 0x7f;
512 else if (!count)
513 count = 1;
515 if (AR_SREV_9280(ah)) {
516 REG_RMW_FIELD(ah, AR_PHY_SPECTRAL_SCAN,
517 AR_PHY_SPECTRAL_SCAN_COUNT, count);
518 } else {
519 REG_RMW_FIELD(ah, AR_PHY_SPECTRAL_SCAN,
520 AR_PHY_SPECTRAL_SCAN_COUNT_KIWI, count);
521 REG_SET_BIT(ah, AR_PHY_SPECTRAL_SCAN,
522 AR_PHY_SPECTRAL_SCAN_PHYERR_MASK_SELECT);
525 REG_RMW_FIELD(ah, AR_PHY_SPECTRAL_SCAN,
526 AR_PHY_SPECTRAL_SCAN_PERIOD, param->period);
527 REG_RMW_FIELD(ah, AR_PHY_SPECTRAL_SCAN,
528 AR_PHY_SPECTRAL_SCAN_FFT_PERIOD, param->fft_period);
530 return;
533 static void ar9002_hw_spectral_scan_trigger(struct ath_hw *ah)
535 REG_SET_BIT(ah, AR_PHY_SPECTRAL_SCAN, AR_PHY_SPECTRAL_SCAN_ENABLE);
536 /* Activate spectral scan */
537 REG_SET_BIT(ah, AR_PHY_SPECTRAL_SCAN,
538 AR_PHY_SPECTRAL_SCAN_ACTIVE);
541 static void ar9002_hw_spectral_scan_wait(struct ath_hw *ah)
543 struct ath_common *common = ath9k_hw_common(ah);
545 /* Poll for spectral scan complete */
546 if (!ath9k_hw_wait(ah, AR_PHY_SPECTRAL_SCAN,
547 AR_PHY_SPECTRAL_SCAN_ACTIVE,
548 0, AH_WAIT_TIMEOUT)) {
549 ath_err(common, "spectral scan wait failed\n");
550 return;
554 static void ar9002_hw_tx99_start(struct ath_hw *ah, u32 qnum)
556 REG_SET_BIT(ah, 0x9864, 0x7f000);
557 REG_SET_BIT(ah, 0x9924, 0x7f00fe);
558 REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_DIS);
559 REG_WRITE(ah, AR_CR, AR_CR_RXD);
560 REG_WRITE(ah, AR_DLCL_IFS(qnum), 0);
561 REG_WRITE(ah, AR_D_GBL_IFS_SIFS, 20);
562 REG_WRITE(ah, AR_D_GBL_IFS_EIFS, 20);
563 REG_WRITE(ah, AR_D_FPCTL, 0x10|qnum);
564 REG_WRITE(ah, AR_TIME_OUT, 0x00000400);
565 REG_WRITE(ah, AR_DRETRY_LIMIT(qnum), 0xffffffff);
566 REG_SET_BIT(ah, AR_QMISC(qnum), AR_Q_MISC_DCU_EARLY_TERM_REQ);
569 static void ar9002_hw_tx99_stop(struct ath_hw *ah)
571 REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_DIS);
574 void ar9002_hw_attach_phy_ops(struct ath_hw *ah)
576 struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah);
577 struct ath_hw_ops *ops = ath9k_hw_ops(ah);
579 priv_ops->set_rf_regs = NULL;
580 priv_ops->rf_set_freq = ar9002_hw_set_channel;
581 priv_ops->spur_mitigate_freq = ar9002_hw_spur_mitigate;
582 priv_ops->olc_init = ar9002_olc_init;
583 priv_ops->compute_pll_control = ar9002_hw_compute_pll_control;
584 priv_ops->do_getnf = ar9002_hw_do_getnf;
586 ops->antdiv_comb_conf_get = ar9002_hw_antdiv_comb_conf_get;
587 ops->antdiv_comb_conf_set = ar9002_hw_antdiv_comb_conf_set;
588 ops->spectral_scan_config = ar9002_hw_spectral_scan_config;
589 ops->spectral_scan_trigger = ar9002_hw_spectral_scan_trigger;
590 ops->spectral_scan_wait = ar9002_hw_spectral_scan_wait;
592 #ifdef CONFIG_ATH9K_BTCOEX_SUPPORT
593 ops->set_bt_ant_diversity = ar9002_hw_set_bt_ant_diversity;
594 #endif
595 ops->tx99_start = ar9002_hw_tx99_start;
596 ops->tx99_stop = ar9002_hw_tx99_stop;
598 ar9002_hw_set_nf_limits(ah);