2 * Copyright (c) 2008-2011 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 #include <asm/unaligned.h>
19 #include "ar9002_phy.h"
21 static void ath9k_get_txgain_index(struct ath_hw
*ah
,
22 struct ath9k_channel
*chan
,
23 struct calDataPerFreqOpLoop
*rawDatasetOpLoop
,
24 u8
*calChans
, u16 availPiers
, u8
*pwr
, u8
*pcdacIdx
)
27 u16 idxL
= 0, idxR
= 0, numPiers
;
29 struct chan_centers centers
;
31 ath9k_hw_get_channel_centers(ah
, chan
, ¢ers
);
33 for (numPiers
= 0; numPiers
< availPiers
; numPiers
++)
34 if (calChans
[numPiers
] == AR5416_BCHAN_UNUSED
)
37 match
= ath9k_hw_get_lower_upper_index(
38 (u8
)FREQ2FBIN(centers
.synth_center
, IS_CHAN_2GHZ(chan
)),
39 calChans
, numPiers
, &idxL
, &idxR
);
41 pcdac
= rawDatasetOpLoop
[idxL
].pcdac
[0][0];
42 *pwr
= rawDatasetOpLoop
[idxL
].pwrPdg
[0][0];
44 pcdac
= rawDatasetOpLoop
[idxR
].pcdac
[0][0];
45 *pwr
= (rawDatasetOpLoop
[idxL
].pwrPdg
[0][0] +
46 rawDatasetOpLoop
[idxR
].pwrPdg
[0][0])/2;
49 while (pcdac
> ah
->originalGain
[i
] &&
50 i
< (AR9280_TX_GAIN_TABLE_SIZE
- 1))
56 static void ath9k_olc_get_pdadcs(struct ath_hw
*ah
,
64 REG_RMW_FIELD(ah
, AR_PHY_TX_PWRCTRL6_0
,
65 AR_PHY_TX_PWRCTRL_ERR_EST_MODE
, 3);
66 REG_RMW_FIELD(ah
, AR_PHY_TX_PWRCTRL6_1
,
67 AR_PHY_TX_PWRCTRL_ERR_EST_MODE
, 3);
69 REG_RMW_FIELD(ah
, AR_PHY_TX_PWRCTRL7
,
70 AR_PHY_TX_PWRCTRL_INIT_TX_GAIN
, initTxGain
);
73 for (i
= 0; i
< AR5416_NUM_PDADC_VALUES
; i
++)
75 pPDADCValues
[i
] = 0x0;
77 pPDADCValues
[i
] = 0xFF;
80 static int ath9k_hw_def_get_eeprom_ver(struct ath_hw
*ah
)
82 return ((ah
->eeprom
.def
.baseEepHeader
.version
>> 12) & 0xF);
85 static int ath9k_hw_def_get_eeprom_rev(struct ath_hw
*ah
)
87 return ((ah
->eeprom
.def
.baseEepHeader
.version
) & 0xFFF);
90 #define SIZE_EEPROM_DEF (sizeof(struct ar5416_eeprom_def) / sizeof(u16))
92 static bool __ath9k_hw_def_fill_eeprom(struct ath_hw
*ah
)
94 u16
*eep_data
= (u16
*)&ah
->eeprom
.def
;
95 int addr
, ar5416_eep_start_loc
= 0x100;
97 for (addr
= 0; addr
< SIZE_EEPROM_DEF
; addr
++) {
98 if (!ath9k_hw_nvram_read(ah
, addr
+ ar5416_eep_start_loc
,
106 static bool __ath9k_hw_usb_def_fill_eeprom(struct ath_hw
*ah
)
108 u16
*eep_data
= (u16
*)&ah
->eeprom
.def
;
110 ath9k_hw_usb_gen_fill_eeprom(ah
, eep_data
,
111 0x100, SIZE_EEPROM_DEF
);
115 static bool ath9k_hw_def_fill_eeprom(struct ath_hw
*ah
)
117 struct ath_common
*common
= ath9k_hw_common(ah
);
119 if (!ath9k_hw_use_flash(ah
)) {
120 ath_dbg(common
, EEPROM
, "Reading from EEPROM, not flash\n");
123 if (common
->bus_ops
->ath_bus_type
== ATH_USB
)
124 return __ath9k_hw_usb_def_fill_eeprom(ah
);
126 return __ath9k_hw_def_fill_eeprom(ah
);
129 #if defined(CONFIG_ATH9K_DEBUGFS) || defined(CONFIG_ATH9K_HTC_DEBUGFS)
130 static u32
ath9k_def_dump_modal_eeprom(char *buf
, u32 len
, u32 size
,
131 struct modal_eep_header
*modal_hdr
)
133 PR_EEP("Chain0 Ant. Control", modal_hdr
->antCtrlChain
[0]);
134 PR_EEP("Chain1 Ant. Control", modal_hdr
->antCtrlChain
[1]);
135 PR_EEP("Chain2 Ant. Control", modal_hdr
->antCtrlChain
[2]);
136 PR_EEP("Ant. Common Control", modal_hdr
->antCtrlCommon
);
137 PR_EEP("Chain0 Ant. Gain", modal_hdr
->antennaGainCh
[0]);
138 PR_EEP("Chain1 Ant. Gain", modal_hdr
->antennaGainCh
[1]);
139 PR_EEP("Chain2 Ant. Gain", modal_hdr
->antennaGainCh
[2]);
140 PR_EEP("Switch Settle", modal_hdr
->switchSettling
);
141 PR_EEP("Chain0 TxRxAtten", modal_hdr
->txRxAttenCh
[0]);
142 PR_EEP("Chain1 TxRxAtten", modal_hdr
->txRxAttenCh
[1]);
143 PR_EEP("Chain2 TxRxAtten", modal_hdr
->txRxAttenCh
[2]);
144 PR_EEP("Chain0 RxTxMargin", modal_hdr
->rxTxMarginCh
[0]);
145 PR_EEP("Chain1 RxTxMargin", modal_hdr
->rxTxMarginCh
[1]);
146 PR_EEP("Chain2 RxTxMargin", modal_hdr
->rxTxMarginCh
[2]);
147 PR_EEP("ADC Desired size", modal_hdr
->adcDesiredSize
);
148 PR_EEP("PGA Desired size", modal_hdr
->pgaDesiredSize
);
149 PR_EEP("Chain0 xlna Gain", modal_hdr
->xlnaGainCh
[0]);
150 PR_EEP("Chain1 xlna Gain", modal_hdr
->xlnaGainCh
[1]);
151 PR_EEP("Chain2 xlna Gain", modal_hdr
->xlnaGainCh
[2]);
152 PR_EEP("txEndToXpaOff", modal_hdr
->txEndToXpaOff
);
153 PR_EEP("txEndToRxOn", modal_hdr
->txEndToRxOn
);
154 PR_EEP("txFrameToXpaOn", modal_hdr
->txFrameToXpaOn
);
155 PR_EEP("CCA Threshold)", modal_hdr
->thresh62
);
156 PR_EEP("Chain0 NF Threshold", modal_hdr
->noiseFloorThreshCh
[0]);
157 PR_EEP("Chain1 NF Threshold", modal_hdr
->noiseFloorThreshCh
[1]);
158 PR_EEP("Chain2 NF Threshold", modal_hdr
->noiseFloorThreshCh
[2]);
159 PR_EEP("xpdGain", modal_hdr
->xpdGain
);
160 PR_EEP("External PD", modal_hdr
->xpd
);
161 PR_EEP("Chain0 I Coefficient", modal_hdr
->iqCalICh
[0]);
162 PR_EEP("Chain1 I Coefficient", modal_hdr
->iqCalICh
[1]);
163 PR_EEP("Chain2 I Coefficient", modal_hdr
->iqCalICh
[2]);
164 PR_EEP("Chain0 Q Coefficient", modal_hdr
->iqCalQCh
[0]);
165 PR_EEP("Chain1 Q Coefficient", modal_hdr
->iqCalQCh
[1]);
166 PR_EEP("Chain2 Q Coefficient", modal_hdr
->iqCalQCh
[2]);
167 PR_EEP("pdGainOverlap", modal_hdr
->pdGainOverlap
);
168 PR_EEP("Chain0 OutputBias", modal_hdr
->ob
);
169 PR_EEP("Chain0 DriverBias", modal_hdr
->db
);
170 PR_EEP("xPA Bias Level", modal_hdr
->xpaBiasLvl
);
171 PR_EEP("2chain pwr decrease", modal_hdr
->pwrDecreaseFor2Chain
);
172 PR_EEP("3chain pwr decrease", modal_hdr
->pwrDecreaseFor3Chain
);
173 PR_EEP("txFrameToDataStart", modal_hdr
->txFrameToDataStart
);
174 PR_EEP("txFrameToPaOn", modal_hdr
->txFrameToPaOn
);
175 PR_EEP("HT40 Power Inc.", modal_hdr
->ht40PowerIncForPdadc
);
176 PR_EEP("Chain0 bswAtten", modal_hdr
->bswAtten
[0]);
177 PR_EEP("Chain1 bswAtten", modal_hdr
->bswAtten
[1]);
178 PR_EEP("Chain2 bswAtten", modal_hdr
->bswAtten
[2]);
179 PR_EEP("Chain0 bswMargin", modal_hdr
->bswMargin
[0]);
180 PR_EEP("Chain1 bswMargin", modal_hdr
->bswMargin
[1]);
181 PR_EEP("Chain2 bswMargin", modal_hdr
->bswMargin
[2]);
182 PR_EEP("HT40 Switch Settle", modal_hdr
->swSettleHt40
);
183 PR_EEP("Chain0 xatten2Db", modal_hdr
->xatten2Db
[0]);
184 PR_EEP("Chain1 xatten2Db", modal_hdr
->xatten2Db
[1]);
185 PR_EEP("Chain2 xatten2Db", modal_hdr
->xatten2Db
[2]);
186 PR_EEP("Chain0 xatten2Margin", modal_hdr
->xatten2Margin
[0]);
187 PR_EEP("Chain1 xatten2Margin", modal_hdr
->xatten2Margin
[1]);
188 PR_EEP("Chain2 xatten2Margin", modal_hdr
->xatten2Margin
[2]);
189 PR_EEP("Chain1 OutputBias", modal_hdr
->ob_ch1
);
190 PR_EEP("Chain1 DriverBias", modal_hdr
->db_ch1
);
191 PR_EEP("LNA Control", modal_hdr
->lna_ctl
);
192 PR_EEP("XPA Bias Freq0", modal_hdr
->xpaBiasLvlFreq
[0]);
193 PR_EEP("XPA Bias Freq1", modal_hdr
->xpaBiasLvlFreq
[1]);
194 PR_EEP("XPA Bias Freq2", modal_hdr
->xpaBiasLvlFreq
[2]);
199 static u32
ath9k_hw_def_dump_eeprom(struct ath_hw
*ah
, bool dump_base_hdr
,
200 u8
*buf
, u32 len
, u32 size
)
202 struct ar5416_eeprom_def
*eep
= &ah
->eeprom
.def
;
203 struct base_eep_header
*pBase
= &eep
->baseEepHeader
;
205 if (!dump_base_hdr
) {
206 len
+= scnprintf(buf
+ len
, size
- len
,
207 "%20s :\n", "2GHz modal Header");
208 len
= ath9k_def_dump_modal_eeprom(buf
, len
, size
,
209 &eep
->modalHeader
[0]);
210 len
+= scnprintf(buf
+ len
, size
- len
,
211 "%20s :\n", "5GHz modal Header");
212 len
= ath9k_def_dump_modal_eeprom(buf
, len
, size
,
213 &eep
->modalHeader
[1]);
217 PR_EEP("Major Version", pBase
->version
>> 12);
218 PR_EEP("Minor Version", pBase
->version
& 0xFFF);
219 PR_EEP("Checksum", pBase
->checksum
);
220 PR_EEP("Length", pBase
->length
);
221 PR_EEP("RegDomain1", pBase
->regDmn
[0]);
222 PR_EEP("RegDomain2", pBase
->regDmn
[1]);
223 PR_EEP("TX Mask", pBase
->txMask
);
224 PR_EEP("RX Mask", pBase
->rxMask
);
225 PR_EEP("Allow 5GHz", !!(pBase
->opCapFlags
& AR5416_OPFLAGS_11A
));
226 PR_EEP("Allow 2GHz", !!(pBase
->opCapFlags
& AR5416_OPFLAGS_11G
));
227 PR_EEP("Disable 2GHz HT20", !!(pBase
->opCapFlags
&
228 AR5416_OPFLAGS_N_2G_HT20
));
229 PR_EEP("Disable 2GHz HT40", !!(pBase
->opCapFlags
&
230 AR5416_OPFLAGS_N_2G_HT40
));
231 PR_EEP("Disable 5Ghz HT20", !!(pBase
->opCapFlags
&
232 AR5416_OPFLAGS_N_5G_HT20
));
233 PR_EEP("Disable 5Ghz HT40", !!(pBase
->opCapFlags
&
234 AR5416_OPFLAGS_N_5G_HT40
));
235 PR_EEP("Big Endian", !!(pBase
->eepMisc
& 0x01));
236 PR_EEP("Cal Bin Major Ver", (pBase
->binBuildNumber
>> 24) & 0xFF);
237 PR_EEP("Cal Bin Minor Ver", (pBase
->binBuildNumber
>> 16) & 0xFF);
238 PR_EEP("Cal Bin Build", (pBase
->binBuildNumber
>> 8) & 0xFF);
239 PR_EEP("OpenLoop Power Ctrl", pBase
->openLoopPwrCntl
);
241 len
+= scnprintf(buf
+ len
, size
- len
, "%20s : %pM\n", "MacAddress",
251 static u32
ath9k_hw_def_dump_eeprom(struct ath_hw
*ah
, bool dump_base_hdr
,
252 u8
*buf
, u32 len
, u32 size
)
258 static int ath9k_hw_def_check_eeprom(struct ath_hw
*ah
)
260 struct ar5416_eeprom_def
*eep
= &ah
->eeprom
.def
;
261 struct ath_common
*common
= ath9k_hw_common(ah
);
266 err
= ath9k_hw_nvram_swap_data(ah
, &need_swap
, SIZE_EEPROM_DEF
);
271 el
= swab16(eep
->baseEepHeader
.length
);
273 el
= eep
->baseEepHeader
.length
;
275 el
= min(el
/ sizeof(u16
), SIZE_EEPROM_DEF
);
276 if (!ath9k_hw_nvram_validate_checksum(ah
, el
))
283 word
= swab16(eep
->baseEepHeader
.length
);
284 eep
->baseEepHeader
.length
= word
;
286 word
= swab16(eep
->baseEepHeader
.checksum
);
287 eep
->baseEepHeader
.checksum
= word
;
289 word
= swab16(eep
->baseEepHeader
.version
);
290 eep
->baseEepHeader
.version
= word
;
292 word
= swab16(eep
->baseEepHeader
.regDmn
[0]);
293 eep
->baseEepHeader
.regDmn
[0] = word
;
295 word
= swab16(eep
->baseEepHeader
.regDmn
[1]);
296 eep
->baseEepHeader
.regDmn
[1] = word
;
298 word
= swab16(eep
->baseEepHeader
.rfSilent
);
299 eep
->baseEepHeader
.rfSilent
= word
;
301 word
= swab16(eep
->baseEepHeader
.blueToothOptions
);
302 eep
->baseEepHeader
.blueToothOptions
= word
;
304 word
= swab16(eep
->baseEepHeader
.deviceCap
);
305 eep
->baseEepHeader
.deviceCap
= word
;
307 for (j
= 0; j
< ARRAY_SIZE(eep
->modalHeader
); j
++) {
308 struct modal_eep_header
*pModal
=
309 &eep
->modalHeader
[j
];
310 integer
= swab32(pModal
->antCtrlCommon
);
311 pModal
->antCtrlCommon
= integer
;
313 for (i
= 0; i
< AR5416_MAX_CHAINS
; i
++) {
314 integer
= swab32(pModal
->antCtrlChain
[i
]);
315 pModal
->antCtrlChain
[i
] = integer
;
317 for (i
= 0; i
< 3; i
++) {
318 word
= swab16(pModal
->xpaBiasLvlFreq
[i
]);
319 pModal
->xpaBiasLvlFreq
[i
] = word
;
322 for (i
= 0; i
< AR_EEPROM_MODAL_SPURS
; i
++) {
323 word
= swab16(pModal
->spurChans
[i
].spurChan
);
324 pModal
->spurChans
[i
].spurChan
= word
;
329 if (!ath9k_hw_nvram_check_version(ah
, AR5416_EEP_VER
,
330 AR5416_EEP_NO_BACK_VER
))
333 /* Enable fixup for AR_AN_TOP2 if necessary */
334 if ((ah
->hw_version
.devid
== AR9280_DEVID_PCI
) &&
335 ((eep
->baseEepHeader
.version
& 0xff) > 0x0a) &&
336 (eep
->baseEepHeader
.pwdclkind
== 0))
337 ah
->need_an_top2_fixup
= true;
339 if ((common
->bus_ops
->ath_bus_type
== ATH_USB
) &&
341 eep
->modalHeader
[0].xpaBiasLvl
= 0;
346 #undef SIZE_EEPROM_DEF
348 static u32
ath9k_hw_def_get_eeprom(struct ath_hw
*ah
,
349 enum eeprom_param param
)
351 struct ar5416_eeprom_def
*eep
= &ah
->eeprom
.def
;
352 struct modal_eep_header
*pModal
= eep
->modalHeader
;
353 struct base_eep_header
*pBase
= &eep
->baseEepHeader
;
358 return pModal
[0].noiseFloorThreshCh
[0];
360 return pModal
[1].noiseFloorThreshCh
[0];
362 return get_unaligned_be16(pBase
->macAddr
);
364 return get_unaligned_be16(pBase
->macAddr
+ 2);
366 return get_unaligned_be16(pBase
->macAddr
+ 4);
368 return pBase
->regDmn
[0];
370 return pBase
->deviceCap
;
372 return pBase
->opCapFlags
;
374 return pBase
->rfSilent
;
384 return AR5416_VER_MASK
;
386 return pBase
->txMask
;
388 return pBase
->rxMask
;
390 return pBase
->fastClk5g
;
391 case EEP_RXGAIN_TYPE
:
392 return pBase
->rxGainType
;
393 case EEP_TXGAIN_TYPE
:
394 return pBase
->txGainType
;
396 if (AR5416_VER_MASK
>= AR5416_EEP_MINOR_VER_19
)
397 return pBase
->openLoopPwrCntl
? true : false;
400 case EEP_RC_CHAIN_MASK
:
401 if (AR5416_VER_MASK
>= AR5416_EEP_MINOR_VER_19
)
402 return pBase
->rcChainMask
;
405 case EEP_DAC_HPWR_5G
:
406 if (AR5416_VER_MASK
>= AR5416_EEP_MINOR_VER_20
)
407 return pBase
->dacHiPwrMode_5G
;
411 if (AR5416_VER_MASK
>= AR5416_EEP_MINOR_VER_22
)
412 return pBase
->frac_n_5g
;
415 case EEP_PWR_TABLE_OFFSET
:
416 if (AR5416_VER_MASK
>= AR5416_EEP_MINOR_VER_21
)
417 return pBase
->pwr_table_offset
;
419 return AR5416_PWR_TABLE_OFFSET_DB
;
420 case EEP_ANTENNA_GAIN_2G
:
423 case EEP_ANTENNA_GAIN_5G
:
424 return max_t(u8
, max_t(u8
,
425 pModal
[band
].antennaGainCh
[0],
426 pModal
[band
].antennaGainCh
[1]),
427 pModal
[band
].antennaGainCh
[2]);
433 static void ath9k_hw_def_set_gain(struct ath_hw
*ah
,
434 struct modal_eep_header
*pModal
,
435 struct ar5416_eeprom_def
*eep
,
436 u8 txRxAttenLocal
, int regChainOffset
, int i
)
438 ENABLE_REG_RMW_BUFFER(ah
);
439 if (AR5416_VER_MASK
>= AR5416_EEP_MINOR_VER_3
) {
440 txRxAttenLocal
= pModal
->txRxAttenCh
[i
];
442 if (AR_SREV_9280_20_OR_LATER(ah
)) {
443 REG_RMW_FIELD(ah
, AR_PHY_GAIN_2GHZ
+ regChainOffset
,
444 AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN
,
445 pModal
->bswMargin
[i
]);
446 REG_RMW_FIELD(ah
, AR_PHY_GAIN_2GHZ
+ regChainOffset
,
447 AR_PHY_GAIN_2GHZ_XATTEN1_DB
,
448 pModal
->bswAtten
[i
]);
449 REG_RMW_FIELD(ah
, AR_PHY_GAIN_2GHZ
+ regChainOffset
,
450 AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN
,
451 pModal
->xatten2Margin
[i
]);
452 REG_RMW_FIELD(ah
, AR_PHY_GAIN_2GHZ
+ regChainOffset
,
453 AR_PHY_GAIN_2GHZ_XATTEN2_DB
,
454 pModal
->xatten2Db
[i
]);
456 REG_RMW(ah
, AR_PHY_GAIN_2GHZ
+ regChainOffset
,
457 SM(pModal
-> bswMargin
[i
], AR_PHY_GAIN_2GHZ_BSW_MARGIN
),
458 AR_PHY_GAIN_2GHZ_BSW_MARGIN
);
459 REG_RMW(ah
, AR_PHY_GAIN_2GHZ
+ regChainOffset
,
460 SM(pModal
->bswAtten
[i
], AR_PHY_GAIN_2GHZ_BSW_ATTEN
),
461 AR_PHY_GAIN_2GHZ_BSW_ATTEN
);
465 if (AR_SREV_9280_20_OR_LATER(ah
)) {
467 AR_PHY_RXGAIN
+ regChainOffset
,
468 AR9280_PHY_RXGAIN_TXRX_ATTEN
, txRxAttenLocal
);
470 AR_PHY_RXGAIN
+ regChainOffset
,
471 AR9280_PHY_RXGAIN_TXRX_MARGIN
, pModal
->rxTxMarginCh
[i
]);
473 REG_RMW(ah
, AR_PHY_RXGAIN
+ regChainOffset
,
474 SM(txRxAttenLocal
, AR_PHY_RXGAIN_TXRX_ATTEN
),
475 AR_PHY_RXGAIN_TXRX_ATTEN
);
476 REG_RMW(ah
, AR_PHY_GAIN_2GHZ
+ regChainOffset
,
477 SM(pModal
->rxTxMarginCh
[i
], AR_PHY_GAIN_2GHZ_RXTX_MARGIN
),
478 AR_PHY_GAIN_2GHZ_RXTX_MARGIN
);
480 REG_RMW_BUFFER_FLUSH(ah
);
483 static void ath9k_hw_def_set_board_values(struct ath_hw
*ah
,
484 struct ath9k_channel
*chan
)
486 struct modal_eep_header
*pModal
;
487 struct ar5416_eeprom_def
*eep
= &ah
->eeprom
.def
;
488 int i
, regChainOffset
;
491 pModal
= &(eep
->modalHeader
[IS_CHAN_2GHZ(chan
)]);
492 txRxAttenLocal
= IS_CHAN_2GHZ(chan
) ? 23 : 44;
494 REG_WRITE(ah
, AR_PHY_SWITCH_COM
, pModal
->antCtrlCommon
& 0xffff);
496 for (i
= 0; i
< AR5416_MAX_CHAINS
; i
++) {
497 if (AR_SREV_9280(ah
)) {
502 if ((ah
->rxchainmask
== 5 || ah
->txchainmask
== 5) && (i
!= 0))
503 regChainOffset
= (i
== 1) ? 0x2000 : 0x1000;
505 regChainOffset
= i
* 0x1000;
507 REG_WRITE(ah
, AR_PHY_SWITCH_CHAIN_0
+ regChainOffset
,
508 pModal
->antCtrlChain
[i
]);
510 REG_WRITE(ah
, AR_PHY_TIMING_CTRL4(0) + regChainOffset
,
511 (REG_READ(ah
, AR_PHY_TIMING_CTRL4(0) + regChainOffset
) &
512 ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF
|
513 AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF
)) |
514 SM(pModal
->iqCalICh
[i
],
515 AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF
) |
516 SM(pModal
->iqCalQCh
[i
],
517 AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF
));
519 ath9k_hw_def_set_gain(ah
, pModal
, eep
, txRxAttenLocal
,
523 if (AR_SREV_9280_20_OR_LATER(ah
)) {
524 if (IS_CHAN_2GHZ(chan
)) {
525 ath9k_hw_analog_shift_rmw(ah
, AR_AN_RF2G1_CH0
,
527 AR_AN_RF2G1_CH0_OB_S
,
529 ath9k_hw_analog_shift_rmw(ah
, AR_AN_RF2G1_CH0
,
531 AR_AN_RF2G1_CH0_DB_S
,
533 ath9k_hw_analog_shift_rmw(ah
, AR_AN_RF2G1_CH1
,
535 AR_AN_RF2G1_CH1_OB_S
,
537 ath9k_hw_analog_shift_rmw(ah
, AR_AN_RF2G1_CH1
,
539 AR_AN_RF2G1_CH1_DB_S
,
542 ath9k_hw_analog_shift_rmw(ah
, AR_AN_RF5G1_CH0
,
544 AR_AN_RF5G1_CH0_OB5_S
,
546 ath9k_hw_analog_shift_rmw(ah
, AR_AN_RF5G1_CH0
,
548 AR_AN_RF5G1_CH0_DB5_S
,
550 ath9k_hw_analog_shift_rmw(ah
, AR_AN_RF5G1_CH1
,
552 AR_AN_RF5G1_CH1_OB5_S
,
554 ath9k_hw_analog_shift_rmw(ah
, AR_AN_RF5G1_CH1
,
556 AR_AN_RF5G1_CH1_DB5_S
,
559 ath9k_hw_analog_shift_rmw(ah
, AR_AN_TOP2
,
560 AR_AN_TOP2_XPABIAS_LVL
,
561 AR_AN_TOP2_XPABIAS_LVL_S
,
563 ath9k_hw_analog_shift_rmw(ah
, AR_AN_TOP2
,
564 AR_AN_TOP2_LOCALBIAS
,
565 AR_AN_TOP2_LOCALBIAS_S
,
567 LNA_CTL_LOCAL_BIAS
));
568 REG_RMW_FIELD(ah
, AR_PHY_XPA_CFG
, AR_PHY_FORCE_XPA_CFG
,
569 !!(pModal
->lna_ctl
& LNA_CTL_FORCE_XPA
));
572 REG_RMW_FIELD(ah
, AR_PHY_SETTLING
, AR_PHY_SETTLING_SWITCH
,
573 pModal
->switchSettling
);
574 REG_RMW_FIELD(ah
, AR_PHY_DESIRED_SZ
, AR_PHY_DESIRED_SZ_ADC
,
575 pModal
->adcDesiredSize
);
577 if (!AR_SREV_9280_20_OR_LATER(ah
))
578 REG_RMW_FIELD(ah
, AR_PHY_DESIRED_SZ
,
579 AR_PHY_DESIRED_SZ_PGA
,
580 pModal
->pgaDesiredSize
);
582 REG_WRITE(ah
, AR_PHY_RF_CTL4
,
583 SM(pModal
->txEndToXpaOff
, AR_PHY_RF_CTL4_TX_END_XPAA_OFF
)
584 | SM(pModal
->txEndToXpaOff
,
585 AR_PHY_RF_CTL4_TX_END_XPAB_OFF
)
586 | SM(pModal
->txFrameToXpaOn
,
587 AR_PHY_RF_CTL4_FRAME_XPAA_ON
)
588 | SM(pModal
->txFrameToXpaOn
,
589 AR_PHY_RF_CTL4_FRAME_XPAB_ON
));
591 REG_RMW_FIELD(ah
, AR_PHY_RF_CTL3
, AR_PHY_TX_END_TO_A2_RX_ON
,
592 pModal
->txEndToRxOn
);
594 if (AR_SREV_9280_20_OR_LATER(ah
)) {
595 REG_RMW_FIELD(ah
, AR_PHY_CCA
, AR9280_PHY_CCA_THRESH62
,
597 REG_RMW_FIELD(ah
, AR_PHY_EXT_CCA0
,
598 AR_PHY_EXT_CCA0_THRESH62
,
601 REG_RMW_FIELD(ah
, AR_PHY_CCA
, AR_PHY_CCA_THRESH62
,
603 REG_RMW_FIELD(ah
, AR_PHY_EXT_CCA
,
604 AR_PHY_EXT_CCA_THRESH62
,
608 if (AR5416_VER_MASK
>= AR5416_EEP_MINOR_VER_2
) {
609 REG_RMW_FIELD(ah
, AR_PHY_RF_CTL2
,
610 AR_PHY_TX_END_DATA_START
,
611 pModal
->txFrameToDataStart
);
612 REG_RMW_FIELD(ah
, AR_PHY_RF_CTL2
, AR_PHY_TX_END_PA_ON
,
613 pModal
->txFrameToPaOn
);
616 if (AR5416_VER_MASK
>= AR5416_EEP_MINOR_VER_3
) {
617 if (IS_CHAN_HT40(chan
))
618 REG_RMW_FIELD(ah
, AR_PHY_SETTLING
,
619 AR_PHY_SETTLING_SWITCH
,
620 pModal
->swSettleHt40
);
623 if (AR_SREV_9280_20_OR_LATER(ah
) &&
624 AR5416_VER_MASK
>= AR5416_EEP_MINOR_VER_19
)
625 REG_RMW_FIELD(ah
, AR_PHY_CCK_TX_CTRL
,
626 AR_PHY_CCK_TX_CTRL_TX_DAC_SCALE_CCK
,
630 if (AR_SREV_9280_20(ah
) && AR5416_VER_MASK
>= AR5416_EEP_MINOR_VER_20
) {
631 if (IS_CHAN_2GHZ(chan
))
632 REG_RMW_FIELD(ah
, AR_AN_TOP1
, AR_AN_TOP1_DACIPMODE
,
633 eep
->baseEepHeader
.dacLpMode
);
634 else if (eep
->baseEepHeader
.dacHiPwrMode_5G
)
635 REG_RMW_FIELD(ah
, AR_AN_TOP1
, AR_AN_TOP1_DACIPMODE
, 0);
637 REG_RMW_FIELD(ah
, AR_AN_TOP1
, AR_AN_TOP1_DACIPMODE
,
638 eep
->baseEepHeader
.dacLpMode
);
642 REG_RMW_FIELD(ah
, AR_PHY_FRAME_CTL
, AR_PHY_FRAME_CTL_TX_CLIP
,
643 pModal
->miscBits
>> 2);
645 REG_RMW_FIELD(ah
, AR_PHY_TX_PWRCTRL9
,
646 AR_PHY_TX_DESIRED_SCALE_CCK
,
647 eep
->baseEepHeader
.desiredScaleCCK
);
651 static void ath9k_hw_def_set_addac(struct ath_hw
*ah
,
652 struct ath9k_channel
*chan
)
654 #define XPA_LVL_FREQ(cnt) (pModal->xpaBiasLvlFreq[cnt])
655 struct modal_eep_header
*pModal
;
656 struct ar5416_eeprom_def
*eep
= &ah
->eeprom
.def
;
659 if (ah
->hw_version
.macVersion
!= AR_SREV_VERSION_9160
)
662 if (ah
->eep_ops
->get_eeprom_rev(ah
) < AR5416_EEP_MINOR_VER_7
)
665 pModal
= &(eep
->modalHeader
[IS_CHAN_2GHZ(chan
)]);
667 if (pModal
->xpaBiasLvl
!= 0xff) {
668 biaslevel
= pModal
->xpaBiasLvl
;
670 u16 resetFreqBin
, freqBin
, freqCount
= 0;
671 struct chan_centers centers
;
673 ath9k_hw_get_channel_centers(ah
, chan
, ¢ers
);
675 resetFreqBin
= FREQ2FBIN(centers
.synth_center
,
677 freqBin
= XPA_LVL_FREQ(0) & 0xff;
678 biaslevel
= (u8
) (XPA_LVL_FREQ(0) >> 14);
682 while (freqCount
< 3) {
683 if (XPA_LVL_FREQ(freqCount
) == 0x0)
686 freqBin
= XPA_LVL_FREQ(freqCount
) & 0xff;
687 if (resetFreqBin
>= freqBin
)
688 biaslevel
= (u8
)(XPA_LVL_FREQ(freqCount
) >> 14);
695 if (IS_CHAN_2GHZ(chan
)) {
696 INI_RA(&ah
->iniAddac
, 7, 1) = (INI_RA(&ah
->iniAddac
,
697 7, 1) & (~0x18)) | biaslevel
<< 3;
699 INI_RA(&ah
->iniAddac
, 6, 1) = (INI_RA(&ah
->iniAddac
,
700 6, 1) & (~0xc0)) | biaslevel
<< 6;
705 static int16_t ath9k_change_gain_boundary_setting(struct ath_hw
*ah
,
708 u16 pdGainOverlap_t2
,
709 int8_t pwr_table_offset
,
715 /* Prior to writing the boundaries or the pdadc vs. power table
716 * into the chip registers the default starting point on the pdadc
717 * vs. power table needs to be checked and the curve boundaries
718 * adjusted accordingly
720 if (AR_SREV_9280_20_OR_LATER(ah
)) {
723 if (AR5416_PWR_TABLE_OFFSET_DB
!= pwr_table_offset
) {
724 /* get the difference in dB */
725 *diff
= (u16
)(pwr_table_offset
- AR5416_PWR_TABLE_OFFSET_DB
);
726 /* get the number of half dB steps */
728 /* change the original gain boundary settings
729 * by the number of half dB steps
731 for (k
= 0; k
< numXpdGain
; k
++)
732 gb
[k
] = (u16
)(gb
[k
] - *diff
);
734 /* Because of a hardware limitation, ensure the gain boundary
735 * is not larger than (63 - overlap)
737 gb_limit
= (u16
)(MAX_RATE_POWER
- pdGainOverlap_t2
);
739 for (k
= 0; k
< numXpdGain
; k
++)
740 gb
[k
] = (u16
)min(gb_limit
, gb
[k
]);
746 static void ath9k_adjust_pdadc_values(struct ath_hw
*ah
,
747 int8_t pwr_table_offset
,
751 #define NUM_PDADC(diff) (AR5416_NUM_PDADC_VALUES - diff)
754 /* If this is a board that has a pwrTableOffset that differs from
755 * the default AR5416_PWR_TABLE_OFFSET_DB then the start of the
756 * pdadc vs pwr table needs to be adjusted prior to writing to the
759 if (AR_SREV_9280_20_OR_LATER(ah
)) {
760 if (AR5416_PWR_TABLE_OFFSET_DB
!= pwr_table_offset
) {
761 /* shift the table to start at the new offset */
762 for (k
= 0; k
< (u16
)NUM_PDADC(diff
); k
++ ) {
763 pdadcValues
[k
] = pdadcValues
[k
+ diff
];
766 /* fill the back of the table */
767 for (k
= (u16
)NUM_PDADC(diff
); k
< NUM_PDADC(0); k
++) {
768 pdadcValues
[k
] = pdadcValues
[NUM_PDADC(diff
)];
775 static void ath9k_hw_set_def_power_cal_table(struct ath_hw
*ah
,
776 struct ath9k_channel
*chan
)
778 #define SM_PD_GAIN(x) SM(0x38, AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_##x)
779 #define SM_PDGAIN_B(x, y) \
780 SM((gainBoundaries[x]), AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_##y)
781 struct ath_common
*common
= ath9k_hw_common(ah
);
782 struct ar5416_eeprom_def
*pEepData
= &ah
->eeprom
.def
;
783 struct cal_data_per_freq
*pRawDataset
;
784 u8
*pCalBChans
= NULL
;
785 u16 pdGainOverlap_t2
;
786 static u8 pdadcValues
[AR5416_NUM_PDADC_VALUES
];
787 u16 gainBoundaries
[AR5416_PD_GAINS_IN_MASK
];
790 u16 numXpdGain
, xpdMask
;
791 u16 xpdGainValues
[AR5416_NUM_PD_GAINS
] = { 0, 0, 0, 0 };
792 u32 reg32
, regOffset
, regChainOffset
;
794 int8_t pwr_table_offset
;
796 modalIdx
= IS_CHAN_2GHZ(chan
) ? 1 : 0;
797 xpdMask
= pEepData
->modalHeader
[modalIdx
].xpdGain
;
799 pwr_table_offset
= ah
->eep_ops
->get_eeprom(ah
, EEP_PWR_TABLE_OFFSET
);
801 if ((pEepData
->baseEepHeader
.version
& AR5416_EEP_VER_MINOR_MASK
) >=
802 AR5416_EEP_MINOR_VER_2
) {
804 pEepData
->modalHeader
[modalIdx
].pdGainOverlap
;
806 pdGainOverlap_t2
= (u16
)(MS(REG_READ(ah
, AR_PHY_TPCRG5
),
807 AR_PHY_TPCRG5_PD_GAIN_OVERLAP
));
810 if (IS_CHAN_2GHZ(chan
)) {
811 pCalBChans
= pEepData
->calFreqPier2G
;
812 numPiers
= AR5416_NUM_2G_CAL_PIERS
;
814 pCalBChans
= pEepData
->calFreqPier5G
;
815 numPiers
= AR5416_NUM_5G_CAL_PIERS
;
818 if (OLC_FOR_AR9280_20_LATER
&& IS_CHAN_2GHZ(chan
)) {
819 pRawDataset
= pEepData
->calPierData2G
[0];
820 ah
->initPDADC
= ((struct calDataPerFreqOpLoop
*)
821 pRawDataset
)->vpdPdg
[0][0];
826 for (i
= 1; i
<= AR5416_PD_GAINS_IN_MASK
; i
++) {
827 if ((xpdMask
>> (AR5416_PD_GAINS_IN_MASK
- i
)) & 1) {
828 if (numXpdGain
>= AR5416_NUM_PD_GAINS
)
830 xpdGainValues
[numXpdGain
] =
831 (u16
)(AR5416_PD_GAINS_IN_MASK
- i
);
836 REG_RMW_FIELD(ah
, AR_PHY_TPCRG1
, AR_PHY_TPCRG1_NUM_PD_GAIN
,
837 (numXpdGain
- 1) & 0x3);
838 REG_RMW_FIELD(ah
, AR_PHY_TPCRG1
, AR_PHY_TPCRG1_PD_GAIN_1
,
840 REG_RMW_FIELD(ah
, AR_PHY_TPCRG1
, AR_PHY_TPCRG1_PD_GAIN_2
,
842 REG_RMW_FIELD(ah
, AR_PHY_TPCRG1
, AR_PHY_TPCRG1_PD_GAIN_3
,
845 for (i
= 0; i
< AR5416_MAX_CHAINS
; i
++) {
846 if ((ah
->rxchainmask
== 5 || ah
->txchainmask
== 5) &&
848 regChainOffset
= (i
== 1) ? 0x2000 : 0x1000;
850 regChainOffset
= i
* 0x1000;
852 if (pEepData
->baseEepHeader
.txMask
& (1 << i
)) {
853 if (IS_CHAN_2GHZ(chan
))
854 pRawDataset
= pEepData
->calPierData2G
[i
];
856 pRawDataset
= pEepData
->calPierData5G
[i
];
859 if (OLC_FOR_AR9280_20_LATER
) {
863 ath9k_get_txgain_index(ah
, chan
,
864 (struct calDataPerFreqOpLoop
*)pRawDataset
,
865 pCalBChans
, numPiers
, &txPower
, &pcdacIdx
);
866 ath9k_olc_get_pdadcs(ah
, pcdacIdx
,
867 txPower
/2, pdadcValues
);
869 ath9k_hw_get_gain_boundaries_pdadcs(ah
,
871 pCalBChans
, numPiers
,
878 diff
= ath9k_change_gain_boundary_setting(ah
,
885 ENABLE_REGWRITE_BUFFER(ah
);
887 if (OLC_FOR_AR9280_20_LATER
) {
889 AR_PHY_TPCRG5
+ regChainOffset
,
891 AR_PHY_TPCRG5_PD_GAIN_OVERLAP
) |
892 SM_PD_GAIN(1) | SM_PD_GAIN(2) |
893 SM_PD_GAIN(3) | SM_PD_GAIN(4));
896 AR_PHY_TPCRG5
+ regChainOffset
,
898 AR_PHY_TPCRG5_PD_GAIN_OVERLAP
)|
905 ath9k_adjust_pdadc_values(ah
, pwr_table_offset
,
908 regOffset
= AR_PHY_BASE
+ (672 << 2) + regChainOffset
;
909 for (j
= 0; j
< 32; j
++) {
910 reg32
= get_unaligned_le32(&pdadcValues
[4 * j
]);
911 REG_WRITE(ah
, regOffset
, reg32
);
913 ath_dbg(common
, EEPROM
,
914 "PDADC (%d,%4x): %4.4x %8.8x\n",
915 i
, regChainOffset
, regOffset
,
917 ath_dbg(common
, EEPROM
,
918 "PDADC: Chain %d | PDADC %3d Value %3d | PDADC %3d Value %3d | PDADC %3d Value %3d | PDADC %3d Value %3d |\n",
919 i
, 4 * j
, pdadcValues
[4 * j
],
920 4 * j
+ 1, pdadcValues
[4 * j
+ 1],
921 4 * j
+ 2, pdadcValues
[4 * j
+ 2],
922 4 * j
+ 3, pdadcValues
[4 * j
+ 3]);
926 REGWRITE_BUFFER_FLUSH(ah
);
934 static void ath9k_hw_set_def_power_per_rate_table(struct ath_hw
*ah
,
935 struct ath9k_channel
*chan
,
938 u16 antenna_reduction
,
941 struct ar5416_eeprom_def
*pEepData
= &ah
->eeprom
.def
;
942 u16 twiceMaxEdgePower
;
944 struct cal_ctl_data
*rep
;
945 struct cal_target_power_leg targetPowerOfdm
, targetPowerCck
= {
948 struct cal_target_power_leg targetPowerOfdmExt
= {
949 0, { 0, 0, 0, 0} }, targetPowerCckExt
= {
952 struct cal_target_power_ht targetPowerHt20
, targetPowerHt40
= {
955 u16 scaledPower
= 0, minCtlPower
;
956 static const u16 ctlModesFor11a
[] = {
957 CTL_11A
, CTL_5GHT20
, CTL_11A_EXT
, CTL_5GHT40
959 static const u16 ctlModesFor11g
[] = {
960 CTL_11B
, CTL_11G
, CTL_2GHT20
,
961 CTL_11B_EXT
, CTL_11G_EXT
, CTL_2GHT40
966 struct chan_centers centers
;
968 u16 twiceMinEdgePower
;
970 tx_chainmask
= ah
->txchainmask
;
972 ath9k_hw_get_channel_centers(ah
, chan
, ¢ers
);
974 scaledPower
= ath9k_hw_get_scaled_power(ah
, powerLimit
,
977 if (IS_CHAN_2GHZ(chan
)) {
978 numCtlModes
= ARRAY_SIZE(ctlModesFor11g
) -
979 SUB_NUM_CTL_MODES_AT_2G_40
;
980 pCtlMode
= ctlModesFor11g
;
982 ath9k_hw_get_legacy_target_powers(ah
, chan
,
983 pEepData
->calTargetPowerCck
,
984 AR5416_NUM_2G_CCK_TARGET_POWERS
,
985 &targetPowerCck
, 4, false);
986 ath9k_hw_get_legacy_target_powers(ah
, chan
,
987 pEepData
->calTargetPower2G
,
988 AR5416_NUM_2G_20_TARGET_POWERS
,
989 &targetPowerOfdm
, 4, false);
990 ath9k_hw_get_target_powers(ah
, chan
,
991 pEepData
->calTargetPower2GHT20
,
992 AR5416_NUM_2G_20_TARGET_POWERS
,
993 &targetPowerHt20
, 8, false);
995 if (IS_CHAN_HT40(chan
)) {
996 numCtlModes
= ARRAY_SIZE(ctlModesFor11g
);
997 ath9k_hw_get_target_powers(ah
, chan
,
998 pEepData
->calTargetPower2GHT40
,
999 AR5416_NUM_2G_40_TARGET_POWERS
,
1000 &targetPowerHt40
, 8, true);
1001 ath9k_hw_get_legacy_target_powers(ah
, chan
,
1002 pEepData
->calTargetPowerCck
,
1003 AR5416_NUM_2G_CCK_TARGET_POWERS
,
1004 &targetPowerCckExt
, 4, true);
1005 ath9k_hw_get_legacy_target_powers(ah
, chan
,
1006 pEepData
->calTargetPower2G
,
1007 AR5416_NUM_2G_20_TARGET_POWERS
,
1008 &targetPowerOfdmExt
, 4, true);
1011 numCtlModes
= ARRAY_SIZE(ctlModesFor11a
) -
1012 SUB_NUM_CTL_MODES_AT_5G_40
;
1013 pCtlMode
= ctlModesFor11a
;
1015 ath9k_hw_get_legacy_target_powers(ah
, chan
,
1016 pEepData
->calTargetPower5G
,
1017 AR5416_NUM_5G_20_TARGET_POWERS
,
1018 &targetPowerOfdm
, 4, false);
1019 ath9k_hw_get_target_powers(ah
, chan
,
1020 pEepData
->calTargetPower5GHT20
,
1021 AR5416_NUM_5G_20_TARGET_POWERS
,
1022 &targetPowerHt20
, 8, false);
1024 if (IS_CHAN_HT40(chan
)) {
1025 numCtlModes
= ARRAY_SIZE(ctlModesFor11a
);
1026 ath9k_hw_get_target_powers(ah
, chan
,
1027 pEepData
->calTargetPower5GHT40
,
1028 AR5416_NUM_5G_40_TARGET_POWERS
,
1029 &targetPowerHt40
, 8, true);
1030 ath9k_hw_get_legacy_target_powers(ah
, chan
,
1031 pEepData
->calTargetPower5G
,
1032 AR5416_NUM_5G_20_TARGET_POWERS
,
1033 &targetPowerOfdmExt
, 4, true);
1037 for (ctlMode
= 0; ctlMode
< numCtlModes
; ctlMode
++) {
1038 bool isHt40CtlMode
= (pCtlMode
[ctlMode
] == CTL_5GHT40
) ||
1039 (pCtlMode
[ctlMode
] == CTL_2GHT40
);
1041 freq
= centers
.synth_center
;
1042 else if (pCtlMode
[ctlMode
] & EXT_ADDITIVE
)
1043 freq
= centers
.ext_center
;
1045 freq
= centers
.ctl_center
;
1047 twiceMaxEdgePower
= MAX_RATE_POWER
;
1049 for (i
= 0; (i
< AR5416_NUM_CTLS
) && pEepData
->ctlIndex
[i
]; i
++) {
1050 if ((((cfgCtl
& ~CTL_MODE_M
) |
1051 (pCtlMode
[ctlMode
] & CTL_MODE_M
)) ==
1052 pEepData
->ctlIndex
[i
]) ||
1053 (((cfgCtl
& ~CTL_MODE_M
) |
1054 (pCtlMode
[ctlMode
] & CTL_MODE_M
)) ==
1055 ((pEepData
->ctlIndex
[i
] & CTL_MODE_M
) | SD_NO_CTL
))) {
1056 rep
= &(pEepData
->ctlData
[i
]);
1058 twiceMinEdgePower
= ath9k_hw_get_max_edge_power(freq
,
1059 rep
->ctlEdges
[ar5416_get_ntxchains(tx_chainmask
) - 1],
1060 IS_CHAN_2GHZ(chan
), AR5416_NUM_BAND_EDGES
);
1062 if ((cfgCtl
& ~CTL_MODE_M
) == SD_NO_CTL
) {
1063 twiceMaxEdgePower
= min(twiceMaxEdgePower
,
1066 twiceMaxEdgePower
= twiceMinEdgePower
;
1072 minCtlPower
= min(twiceMaxEdgePower
, scaledPower
);
1074 switch (pCtlMode
[ctlMode
]) {
1076 for (i
= 0; i
< ARRAY_SIZE(targetPowerCck
.tPow2x
); i
++) {
1077 targetPowerCck
.tPow2x
[i
] =
1078 min((u16
)targetPowerCck
.tPow2x
[i
],
1084 for (i
= 0; i
< ARRAY_SIZE(targetPowerOfdm
.tPow2x
); i
++) {
1085 targetPowerOfdm
.tPow2x
[i
] =
1086 min((u16
)targetPowerOfdm
.tPow2x
[i
],
1092 for (i
= 0; i
< ARRAY_SIZE(targetPowerHt20
.tPow2x
); i
++) {
1093 targetPowerHt20
.tPow2x
[i
] =
1094 min((u16
)targetPowerHt20
.tPow2x
[i
],
1099 targetPowerCckExt
.tPow2x
[0] = min((u16
)
1100 targetPowerCckExt
.tPow2x
[0],
1105 targetPowerOfdmExt
.tPow2x
[0] = min((u16
)
1106 targetPowerOfdmExt
.tPow2x
[0],
1111 for (i
= 0; i
< ARRAY_SIZE(targetPowerHt40
.tPow2x
); i
++) {
1112 targetPowerHt40
.tPow2x
[i
] =
1113 min((u16
)targetPowerHt40
.tPow2x
[i
],
1122 ratesArray
[rate6mb
] = ratesArray
[rate9mb
] = ratesArray
[rate12mb
] =
1123 ratesArray
[rate18mb
] = ratesArray
[rate24mb
] =
1124 targetPowerOfdm
.tPow2x
[0];
1125 ratesArray
[rate36mb
] = targetPowerOfdm
.tPow2x
[1];
1126 ratesArray
[rate48mb
] = targetPowerOfdm
.tPow2x
[2];
1127 ratesArray
[rate54mb
] = targetPowerOfdm
.tPow2x
[3];
1128 ratesArray
[rateXr
] = targetPowerOfdm
.tPow2x
[0];
1130 for (i
= 0; i
< ARRAY_SIZE(targetPowerHt20
.tPow2x
); i
++)
1131 ratesArray
[rateHt20_0
+ i
] = targetPowerHt20
.tPow2x
[i
];
1133 if (IS_CHAN_2GHZ(chan
)) {
1134 ratesArray
[rate1l
] = targetPowerCck
.tPow2x
[0];
1135 ratesArray
[rate2s
] = ratesArray
[rate2l
] =
1136 targetPowerCck
.tPow2x
[1];
1137 ratesArray
[rate5_5s
] = ratesArray
[rate5_5l
] =
1138 targetPowerCck
.tPow2x
[2];
1139 ratesArray
[rate11s
] = ratesArray
[rate11l
] =
1140 targetPowerCck
.tPow2x
[3];
1142 if (IS_CHAN_HT40(chan
)) {
1143 for (i
= 0; i
< ARRAY_SIZE(targetPowerHt40
.tPow2x
); i
++) {
1144 ratesArray
[rateHt40_0
+ i
] =
1145 targetPowerHt40
.tPow2x
[i
];
1147 ratesArray
[rateDupOfdm
] = targetPowerHt40
.tPow2x
[0];
1148 ratesArray
[rateDupCck
] = targetPowerHt40
.tPow2x
[0];
1149 ratesArray
[rateExtOfdm
] = targetPowerOfdmExt
.tPow2x
[0];
1150 if (IS_CHAN_2GHZ(chan
)) {
1151 ratesArray
[rateExtCck
] =
1152 targetPowerCckExt
.tPow2x
[0];
1157 static void ath9k_hw_def_set_txpower(struct ath_hw
*ah
,
1158 struct ath9k_channel
*chan
,
1160 u8 twiceAntennaReduction
,
1161 u8 powerLimit
, bool test
)
1163 #define RT_AR_DELTA(x) (ratesArray[x] - cck_ofdm_delta)
1164 struct ath_regulatory
*regulatory
= ath9k_hw_regulatory(ah
);
1165 struct ar5416_eeprom_def
*pEepData
= &ah
->eeprom
.def
;
1166 struct modal_eep_header
*pModal
=
1167 &(pEepData
->modalHeader
[IS_CHAN_2GHZ(chan
)]);
1168 int16_t ratesArray
[Ar5416RateSize
];
1169 u8 ht40PowerIncForPdadc
= 2;
1170 int i
, cck_ofdm_delta
= 0;
1172 memset(ratesArray
, 0, sizeof(ratesArray
));
1174 if ((pEepData
->baseEepHeader
.version
& AR5416_EEP_VER_MINOR_MASK
) >=
1175 AR5416_EEP_MINOR_VER_2
) {
1176 ht40PowerIncForPdadc
= pModal
->ht40PowerIncForPdadc
;
1179 ath9k_hw_set_def_power_per_rate_table(ah
, chan
,
1180 &ratesArray
[0], cfgCtl
,
1181 twiceAntennaReduction
,
1184 ath9k_hw_set_def_power_cal_table(ah
, chan
);
1186 regulatory
->max_power_level
= 0;
1187 for (i
= 0; i
< ARRAY_SIZE(ratesArray
); i
++) {
1188 if (ratesArray
[i
] > MAX_RATE_POWER
)
1189 ratesArray
[i
] = MAX_RATE_POWER
;
1190 if (ratesArray
[i
] > regulatory
->max_power_level
)
1191 regulatory
->max_power_level
= ratesArray
[i
];
1194 ath9k_hw_update_regulatory_maxpower(ah
);
1199 if (AR_SREV_9280_20_OR_LATER(ah
)) {
1200 for (i
= 0; i
< Ar5416RateSize
; i
++) {
1201 int8_t pwr_table_offset
;
1203 pwr_table_offset
= ah
->eep_ops
->get_eeprom(ah
,
1204 EEP_PWR_TABLE_OFFSET
);
1205 ratesArray
[i
] -= pwr_table_offset
* 2;
1209 ENABLE_REGWRITE_BUFFER(ah
);
1211 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE1
,
1212 ATH9K_POW_SM(ratesArray
[rate18mb
], 24)
1213 | ATH9K_POW_SM(ratesArray
[rate12mb
], 16)
1214 | ATH9K_POW_SM(ratesArray
[rate9mb
], 8)
1215 | ATH9K_POW_SM(ratesArray
[rate6mb
], 0));
1216 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE2
,
1217 ATH9K_POW_SM(ratesArray
[rate54mb
], 24)
1218 | ATH9K_POW_SM(ratesArray
[rate48mb
], 16)
1219 | ATH9K_POW_SM(ratesArray
[rate36mb
], 8)
1220 | ATH9K_POW_SM(ratesArray
[rate24mb
], 0));
1222 if (IS_CHAN_2GHZ(chan
)) {
1223 if (OLC_FOR_AR9280_20_LATER
) {
1225 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE3
,
1226 ATH9K_POW_SM(RT_AR_DELTA(rate2s
), 24)
1227 | ATH9K_POW_SM(RT_AR_DELTA(rate2l
), 16)
1228 | ATH9K_POW_SM(ratesArray
[rateXr
], 8)
1229 | ATH9K_POW_SM(RT_AR_DELTA(rate1l
), 0));
1230 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE4
,
1231 ATH9K_POW_SM(RT_AR_DELTA(rate11s
), 24)
1232 | ATH9K_POW_SM(RT_AR_DELTA(rate11l
), 16)
1233 | ATH9K_POW_SM(RT_AR_DELTA(rate5_5s
), 8)
1234 | ATH9K_POW_SM(RT_AR_DELTA(rate5_5l
), 0));
1236 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE3
,
1237 ATH9K_POW_SM(ratesArray
[rate2s
], 24)
1238 | ATH9K_POW_SM(ratesArray
[rate2l
], 16)
1239 | ATH9K_POW_SM(ratesArray
[rateXr
], 8)
1240 | ATH9K_POW_SM(ratesArray
[rate1l
], 0));
1241 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE4
,
1242 ATH9K_POW_SM(ratesArray
[rate11s
], 24)
1243 | ATH9K_POW_SM(ratesArray
[rate11l
], 16)
1244 | ATH9K_POW_SM(ratesArray
[rate5_5s
], 8)
1245 | ATH9K_POW_SM(ratesArray
[rate5_5l
], 0));
1249 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE5
,
1250 ATH9K_POW_SM(ratesArray
[rateHt20_3
], 24)
1251 | ATH9K_POW_SM(ratesArray
[rateHt20_2
], 16)
1252 | ATH9K_POW_SM(ratesArray
[rateHt20_1
], 8)
1253 | ATH9K_POW_SM(ratesArray
[rateHt20_0
], 0));
1254 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE6
,
1255 ATH9K_POW_SM(ratesArray
[rateHt20_7
], 24)
1256 | ATH9K_POW_SM(ratesArray
[rateHt20_6
], 16)
1257 | ATH9K_POW_SM(ratesArray
[rateHt20_5
], 8)
1258 | ATH9K_POW_SM(ratesArray
[rateHt20_4
], 0));
1260 if (IS_CHAN_HT40(chan
)) {
1261 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE7
,
1262 ATH9K_POW_SM(ratesArray
[rateHt40_3
] +
1263 ht40PowerIncForPdadc
, 24)
1264 | ATH9K_POW_SM(ratesArray
[rateHt40_2
] +
1265 ht40PowerIncForPdadc
, 16)
1266 | ATH9K_POW_SM(ratesArray
[rateHt40_1
] +
1267 ht40PowerIncForPdadc
, 8)
1268 | ATH9K_POW_SM(ratesArray
[rateHt40_0
] +
1269 ht40PowerIncForPdadc
, 0));
1270 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE8
,
1271 ATH9K_POW_SM(ratesArray
[rateHt40_7
] +
1272 ht40PowerIncForPdadc
, 24)
1273 | ATH9K_POW_SM(ratesArray
[rateHt40_6
] +
1274 ht40PowerIncForPdadc
, 16)
1275 | ATH9K_POW_SM(ratesArray
[rateHt40_5
] +
1276 ht40PowerIncForPdadc
, 8)
1277 | ATH9K_POW_SM(ratesArray
[rateHt40_4
] +
1278 ht40PowerIncForPdadc
, 0));
1279 if (OLC_FOR_AR9280_20_LATER
) {
1280 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE9
,
1281 ATH9K_POW_SM(ratesArray
[rateExtOfdm
], 24)
1282 | ATH9K_POW_SM(RT_AR_DELTA(rateExtCck
), 16)
1283 | ATH9K_POW_SM(ratesArray
[rateDupOfdm
], 8)
1284 | ATH9K_POW_SM(RT_AR_DELTA(rateDupCck
), 0));
1286 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE9
,
1287 ATH9K_POW_SM(ratesArray
[rateExtOfdm
], 24)
1288 | ATH9K_POW_SM(ratesArray
[rateExtCck
], 16)
1289 | ATH9K_POW_SM(ratesArray
[rateDupOfdm
], 8)
1290 | ATH9K_POW_SM(ratesArray
[rateDupCck
], 0));
1294 REG_WRITE(ah
, AR_PHY_POWER_TX_SUB
,
1295 ATH9K_POW_SM(pModal
->pwrDecreaseFor3Chain
, 6)
1296 | ATH9K_POW_SM(pModal
->pwrDecreaseFor2Chain
, 0));
1298 /* TPC initializations */
1299 if (ah
->tpc_enabled
) {
1302 ht40_delta
= (IS_CHAN_HT40(chan
)) ? ht40PowerIncForPdadc
: 0;
1303 ar5008_hw_init_rate_txpower(ah
, ratesArray
, chan
, ht40_delta
);
1305 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE_MAX
,
1306 MAX_RATE_POWER
| AR_PHY_POWER_TX_RATE_MAX_TPC_ENABLE
);
1309 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE_MAX
, MAX_RATE_POWER
);
1312 REGWRITE_BUFFER_FLUSH(ah
);
1315 static u16
ath9k_hw_def_get_spur_channel(struct ath_hw
*ah
, u16 i
, bool is2GHz
)
1317 return ah
->eeprom
.def
.modalHeader
[is2GHz
].spurChans
[i
].spurChan
;
1320 const struct eeprom_ops eep_def_ops
= {
1321 .check_eeprom
= ath9k_hw_def_check_eeprom
,
1322 .get_eeprom
= ath9k_hw_def_get_eeprom
,
1323 .fill_eeprom
= ath9k_hw_def_fill_eeprom
,
1324 .dump_eeprom
= ath9k_hw_def_dump_eeprom
,
1325 .get_eeprom_ver
= ath9k_hw_def_get_eeprom_ver
,
1326 .get_eeprom_rev
= ath9k_hw_def_get_eeprom_rev
,
1327 .set_board_values
= ath9k_hw_def_set_board_values
,
1328 .set_addac
= ath9k_hw_def_set_addac
,
1329 .set_txpower
= ath9k_hw_def_set_txpower
,
1330 .get_spur_channel
= ath9k_hw_def_get_spur_channel