2 * NVM Express device driver
3 * Copyright (c) 2011-2014, Intel Corporation.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 #include <linux/aer.h>
16 #include <linux/bitops.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/cpu.h>
20 #include <linux/delay.h>
21 #include <linux/errno.h>
23 #include <linux/genhd.h>
24 #include <linux/hdreg.h>
25 #include <linux/idr.h>
26 #include <linux/init.h>
27 #include <linux/interrupt.h>
29 #include <linux/kdev_t.h>
30 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/moduleparam.h>
34 #include <linux/mutex.h>
35 #include <linux/pci.h>
36 #include <linux/poison.h>
37 #include <linux/ptrace.h>
38 #include <linux/sched.h>
39 #include <linux/slab.h>
40 #include <linux/t10-pi.h>
41 #include <linux/timer.h>
42 #include <linux/types.h>
43 #include <linux/io-64-nonatomic-lo-hi.h>
44 #include <asm/unaligned.h>
48 #define NVME_Q_DEPTH 1024
49 #define NVME_AQ_DEPTH 256
50 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
51 #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
54 * We handle AEN commands ourselves and don't even let the
55 * block layer know about them.
57 #define NVME_AQ_BLKMQ_DEPTH (NVME_AQ_DEPTH - NVME_NR_AERS)
59 static int use_threaded_interrupts
;
60 module_param(use_threaded_interrupts
, int, 0);
62 static bool use_cmb_sqes
= true;
63 module_param(use_cmb_sqes
, bool, 0644);
64 MODULE_PARM_DESC(use_cmb_sqes
, "use controller's memory buffer for I/O SQes");
66 static struct workqueue_struct
*nvme_workq
;
71 static int nvme_reset(struct nvme_dev
*dev
);
72 static void nvme_process_cq(struct nvme_queue
*nvmeq
);
73 static void nvme_dev_disable(struct nvme_dev
*dev
, bool shutdown
);
76 * Represents an NVM Express device. Each nvme_dev is a PCI function.
79 struct nvme_queue
**queues
;
80 struct blk_mq_tag_set tagset
;
81 struct blk_mq_tag_set admin_tagset
;
84 struct dma_pool
*prp_page_pool
;
85 struct dma_pool
*prp_small_pool
;
87 unsigned online_queues
;
91 struct msix_entry
*entry
;
93 struct work_struct reset_work
;
94 struct work_struct remove_work
;
95 struct timer_list watchdog_timer
;
96 struct mutex shutdown_lock
;
99 dma_addr_t cmb_dma_addr
;
102 struct nvme_ctrl ctrl
;
103 struct completion ioq_wait
;
106 static inline struct nvme_dev
*to_nvme_dev(struct nvme_ctrl
*ctrl
)
108 return container_of(ctrl
, struct nvme_dev
, ctrl
);
112 * An NVM Express queue. Each device has at least two (one for admin
113 * commands and one for I/O commands).
116 struct device
*q_dmadev
;
117 struct nvme_dev
*dev
;
118 char irqname
[24]; /* nvme4294967295-65535\0 */
120 struct nvme_command
*sq_cmds
;
121 struct nvme_command __iomem
*sq_cmds_io
;
122 volatile struct nvme_completion
*cqes
;
123 struct blk_mq_tags
**tags
;
124 dma_addr_t sq_dma_addr
;
125 dma_addr_t cq_dma_addr
;
137 * The nvme_iod describes the data in an I/O, including the list of PRP
138 * entries. You can't see it in this data structure because C doesn't let
139 * me express that. Use nvme_init_iod to ensure there's enough space
140 * allocated to store the PRP list.
143 struct nvme_queue
*nvmeq
;
145 int npages
; /* In the PRP list. 0 means small pool in use */
146 int nents
; /* Used in scatterlist */
147 int length
; /* Of data, in bytes */
148 dma_addr_t first_dma
;
149 struct scatterlist meta_sg
; /* metadata requires single contiguous buffer */
150 struct scatterlist
*sg
;
151 struct scatterlist inline_sg
[0];
155 * Check we didin't inadvertently grow the command struct
157 static inline void _nvme_check_size(void)
159 BUILD_BUG_ON(sizeof(struct nvme_rw_command
) != 64);
160 BUILD_BUG_ON(sizeof(struct nvme_create_cq
) != 64);
161 BUILD_BUG_ON(sizeof(struct nvme_create_sq
) != 64);
162 BUILD_BUG_ON(sizeof(struct nvme_delete_queue
) != 64);
163 BUILD_BUG_ON(sizeof(struct nvme_features
) != 64);
164 BUILD_BUG_ON(sizeof(struct nvme_format_cmd
) != 64);
165 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd
) != 64);
166 BUILD_BUG_ON(sizeof(struct nvme_command
) != 64);
167 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl
) != 4096);
168 BUILD_BUG_ON(sizeof(struct nvme_id_ns
) != 4096);
169 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type
) != 64);
170 BUILD_BUG_ON(sizeof(struct nvme_smart_log
) != 512);
174 * Max size of iod being embedded in the request payload
176 #define NVME_INT_PAGES 2
177 #define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
180 * Will slightly overestimate the number of pages needed. This is OK
181 * as it only leads to a small amount of wasted memory for the lifetime of
184 static int nvme_npages(unsigned size
, struct nvme_dev
*dev
)
186 unsigned nprps
= DIV_ROUND_UP(size
+ dev
->ctrl
.page_size
,
187 dev
->ctrl
.page_size
);
188 return DIV_ROUND_UP(8 * nprps
, PAGE_SIZE
- 8);
191 static unsigned int nvme_iod_alloc_size(struct nvme_dev
*dev
,
192 unsigned int size
, unsigned int nseg
)
194 return sizeof(__le64
*) * nvme_npages(size
, dev
) +
195 sizeof(struct scatterlist
) * nseg
;
198 static unsigned int nvme_cmd_size(struct nvme_dev
*dev
)
200 return sizeof(struct nvme_iod
) +
201 nvme_iod_alloc_size(dev
, NVME_INT_BYTES(dev
), NVME_INT_PAGES
);
204 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx
*hctx
, void *data
,
205 unsigned int hctx_idx
)
207 struct nvme_dev
*dev
= data
;
208 struct nvme_queue
*nvmeq
= dev
->queues
[0];
210 WARN_ON(hctx_idx
!= 0);
211 WARN_ON(dev
->admin_tagset
.tags
[0] != hctx
->tags
);
212 WARN_ON(nvmeq
->tags
);
214 hctx
->driver_data
= nvmeq
;
215 nvmeq
->tags
= &dev
->admin_tagset
.tags
[0];
219 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx
*hctx
, unsigned int hctx_idx
)
221 struct nvme_queue
*nvmeq
= hctx
->driver_data
;
226 static int nvme_admin_init_request(void *data
, struct request
*req
,
227 unsigned int hctx_idx
, unsigned int rq_idx
,
228 unsigned int numa_node
)
230 struct nvme_dev
*dev
= data
;
231 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
232 struct nvme_queue
*nvmeq
= dev
->queues
[0];
239 static int nvme_init_hctx(struct blk_mq_hw_ctx
*hctx
, void *data
,
240 unsigned int hctx_idx
)
242 struct nvme_dev
*dev
= data
;
243 struct nvme_queue
*nvmeq
= dev
->queues
[hctx_idx
+ 1];
246 nvmeq
->tags
= &dev
->tagset
.tags
[hctx_idx
];
248 WARN_ON(dev
->tagset
.tags
[hctx_idx
] != hctx
->tags
);
249 hctx
->driver_data
= nvmeq
;
253 static int nvme_init_request(void *data
, struct request
*req
,
254 unsigned int hctx_idx
, unsigned int rq_idx
,
255 unsigned int numa_node
)
257 struct nvme_dev
*dev
= data
;
258 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
259 struct nvme_queue
*nvmeq
= dev
->queues
[hctx_idx
+ 1];
267 * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
268 * @nvmeq: The queue to use
269 * @cmd: The command to send
271 * Safe to use from interrupt context
273 static void __nvme_submit_cmd(struct nvme_queue
*nvmeq
,
274 struct nvme_command
*cmd
)
276 u16 tail
= nvmeq
->sq_tail
;
278 if (nvmeq
->sq_cmds_io
)
279 memcpy_toio(&nvmeq
->sq_cmds_io
[tail
], cmd
, sizeof(*cmd
));
281 memcpy(&nvmeq
->sq_cmds
[tail
], cmd
, sizeof(*cmd
));
283 if (++tail
== nvmeq
->q_depth
)
285 writel(tail
, nvmeq
->q_db
);
286 nvmeq
->sq_tail
= tail
;
289 static __le64
**iod_list(struct request
*req
)
291 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
292 return (__le64
**)(iod
->sg
+ req
->nr_phys_segments
);
295 static int nvme_init_iod(struct request
*rq
, unsigned size
,
296 struct nvme_dev
*dev
)
298 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(rq
);
299 int nseg
= rq
->nr_phys_segments
;
301 if (nseg
> NVME_INT_PAGES
|| size
> NVME_INT_BYTES(dev
)) {
302 iod
->sg
= kmalloc(nvme_iod_alloc_size(dev
, size
, nseg
), GFP_ATOMIC
);
304 return BLK_MQ_RQ_QUEUE_BUSY
;
306 iod
->sg
= iod
->inline_sg
;
314 if (!(rq
->cmd_flags
& REQ_DONTPREP
)) {
316 rq
->cmd_flags
|= REQ_DONTPREP
;
321 static void nvme_free_iod(struct nvme_dev
*dev
, struct request
*req
)
323 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
324 const int last_prp
= dev
->ctrl
.page_size
/ 8 - 1;
326 __le64
**list
= iod_list(req
);
327 dma_addr_t prp_dma
= iod
->first_dma
;
329 nvme_cleanup_cmd(req
);
331 if (iod
->npages
== 0)
332 dma_pool_free(dev
->prp_small_pool
, list
[0], prp_dma
);
333 for (i
= 0; i
< iod
->npages
; i
++) {
334 __le64
*prp_list
= list
[i
];
335 dma_addr_t next_prp_dma
= le64_to_cpu(prp_list
[last_prp
]);
336 dma_pool_free(dev
->prp_page_pool
, prp_list
, prp_dma
);
337 prp_dma
= next_prp_dma
;
340 if (iod
->sg
!= iod
->inline_sg
)
344 #ifdef CONFIG_BLK_DEV_INTEGRITY
345 static void nvme_dif_prep(u32 p
, u32 v
, struct t10_pi_tuple
*pi
)
347 if (be32_to_cpu(pi
->ref_tag
) == v
)
348 pi
->ref_tag
= cpu_to_be32(p
);
351 static void nvme_dif_complete(u32 p
, u32 v
, struct t10_pi_tuple
*pi
)
353 if (be32_to_cpu(pi
->ref_tag
) == p
)
354 pi
->ref_tag
= cpu_to_be32(v
);
358 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
360 * The virtual start sector is the one that was originally submitted by the
361 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
362 * start sector may be different. Remap protection information to match the
363 * physical LBA on writes, and back to the original seed on reads.
365 * Type 0 and 3 do not have a ref tag, so no remapping required.
367 static void nvme_dif_remap(struct request
*req
,
368 void (*dif_swap
)(u32 p
, u32 v
, struct t10_pi_tuple
*pi
))
370 struct nvme_ns
*ns
= req
->rq_disk
->private_data
;
371 struct bio_integrity_payload
*bip
;
372 struct t10_pi_tuple
*pi
;
374 u32 i
, nlb
, ts
, phys
, virt
;
376 if (!ns
->pi_type
|| ns
->pi_type
== NVME_NS_DPS_PI_TYPE3
)
379 bip
= bio_integrity(req
->bio
);
383 pmap
= kmap_atomic(bip
->bip_vec
->bv_page
) + bip
->bip_vec
->bv_offset
;
386 virt
= bip_get_seed(bip
);
387 phys
= nvme_block_nr(ns
, blk_rq_pos(req
));
388 nlb
= (blk_rq_bytes(req
) >> ns
->lba_shift
);
389 ts
= ns
->disk
->queue
->integrity
.tuple_size
;
391 for (i
= 0; i
< nlb
; i
++, virt
++, phys
++) {
392 pi
= (struct t10_pi_tuple
*)p
;
393 dif_swap(phys
, virt
, pi
);
398 #else /* CONFIG_BLK_DEV_INTEGRITY */
399 static void nvme_dif_remap(struct request
*req
,
400 void (*dif_swap
)(u32 p
, u32 v
, struct t10_pi_tuple
*pi
))
403 static void nvme_dif_prep(u32 p
, u32 v
, struct t10_pi_tuple
*pi
)
406 static void nvme_dif_complete(u32 p
, u32 v
, struct t10_pi_tuple
*pi
)
411 static bool nvme_setup_prps(struct nvme_dev
*dev
, struct request
*req
,
414 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
415 struct dma_pool
*pool
;
416 int length
= total_len
;
417 struct scatterlist
*sg
= iod
->sg
;
418 int dma_len
= sg_dma_len(sg
);
419 u64 dma_addr
= sg_dma_address(sg
);
420 u32 page_size
= dev
->ctrl
.page_size
;
421 int offset
= dma_addr
& (page_size
- 1);
423 __le64
**list
= iod_list(req
);
427 length
-= (page_size
- offset
);
431 dma_len
-= (page_size
- offset
);
433 dma_addr
+= (page_size
- offset
);
436 dma_addr
= sg_dma_address(sg
);
437 dma_len
= sg_dma_len(sg
);
440 if (length
<= page_size
) {
441 iod
->first_dma
= dma_addr
;
445 nprps
= DIV_ROUND_UP(length
, page_size
);
446 if (nprps
<= (256 / 8)) {
447 pool
= dev
->prp_small_pool
;
450 pool
= dev
->prp_page_pool
;
454 prp_list
= dma_pool_alloc(pool
, GFP_ATOMIC
, &prp_dma
);
456 iod
->first_dma
= dma_addr
;
461 iod
->first_dma
= prp_dma
;
464 if (i
== page_size
>> 3) {
465 __le64
*old_prp_list
= prp_list
;
466 prp_list
= dma_pool_alloc(pool
, GFP_ATOMIC
, &prp_dma
);
469 list
[iod
->npages
++] = prp_list
;
470 prp_list
[0] = old_prp_list
[i
- 1];
471 old_prp_list
[i
- 1] = cpu_to_le64(prp_dma
);
474 prp_list
[i
++] = cpu_to_le64(dma_addr
);
475 dma_len
-= page_size
;
476 dma_addr
+= page_size
;
484 dma_addr
= sg_dma_address(sg
);
485 dma_len
= sg_dma_len(sg
);
491 static int nvme_map_data(struct nvme_dev
*dev
, struct request
*req
,
492 unsigned size
, struct nvme_command
*cmnd
)
494 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
495 struct request_queue
*q
= req
->q
;
496 enum dma_data_direction dma_dir
= rq_data_dir(req
) ?
497 DMA_TO_DEVICE
: DMA_FROM_DEVICE
;
498 int ret
= BLK_MQ_RQ_QUEUE_ERROR
;
500 sg_init_table(iod
->sg
, req
->nr_phys_segments
);
501 iod
->nents
= blk_rq_map_sg(q
, req
, iod
->sg
);
505 ret
= BLK_MQ_RQ_QUEUE_BUSY
;
506 if (!dma_map_sg(dev
->dev
, iod
->sg
, iod
->nents
, dma_dir
))
509 if (!nvme_setup_prps(dev
, req
, size
))
512 ret
= BLK_MQ_RQ_QUEUE_ERROR
;
513 if (blk_integrity_rq(req
)) {
514 if (blk_rq_count_integrity_sg(q
, req
->bio
) != 1)
517 sg_init_table(&iod
->meta_sg
, 1);
518 if (blk_rq_map_integrity_sg(q
, req
->bio
, &iod
->meta_sg
) != 1)
521 if (rq_data_dir(req
))
522 nvme_dif_remap(req
, nvme_dif_prep
);
524 if (!dma_map_sg(dev
->dev
, &iod
->meta_sg
, 1, dma_dir
))
528 cmnd
->rw
.dptr
.prp1
= cpu_to_le64(sg_dma_address(iod
->sg
));
529 cmnd
->rw
.dptr
.prp2
= cpu_to_le64(iod
->first_dma
);
530 if (blk_integrity_rq(req
))
531 cmnd
->rw
.metadata
= cpu_to_le64(sg_dma_address(&iod
->meta_sg
));
532 return BLK_MQ_RQ_QUEUE_OK
;
535 dma_unmap_sg(dev
->dev
, iod
->sg
, iod
->nents
, dma_dir
);
540 static void nvme_unmap_data(struct nvme_dev
*dev
, struct request
*req
)
542 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
543 enum dma_data_direction dma_dir
= rq_data_dir(req
) ?
544 DMA_TO_DEVICE
: DMA_FROM_DEVICE
;
547 dma_unmap_sg(dev
->dev
, iod
->sg
, iod
->nents
, dma_dir
);
548 if (blk_integrity_rq(req
)) {
549 if (!rq_data_dir(req
))
550 nvme_dif_remap(req
, nvme_dif_complete
);
551 dma_unmap_sg(dev
->dev
, &iod
->meta_sg
, 1, dma_dir
);
555 nvme_free_iod(dev
, req
);
559 * NOTE: ns is NULL when called on the admin queue.
561 static int nvme_queue_rq(struct blk_mq_hw_ctx
*hctx
,
562 const struct blk_mq_queue_data
*bd
)
564 struct nvme_ns
*ns
= hctx
->queue
->queuedata
;
565 struct nvme_queue
*nvmeq
= hctx
->driver_data
;
566 struct nvme_dev
*dev
= nvmeq
->dev
;
567 struct request
*req
= bd
->rq
;
568 struct nvme_command cmnd
;
570 int ret
= BLK_MQ_RQ_QUEUE_OK
;
573 * If formated with metadata, require the block layer provide a buffer
574 * unless this namespace is formated such that the metadata can be
575 * stripped/generated by the controller with PRACT=1.
577 if (ns
&& ns
->ms
&& !blk_integrity_rq(req
)) {
578 if (!(ns
->pi_type
&& ns
->ms
== 8) &&
579 req
->cmd_type
!= REQ_TYPE_DRV_PRIV
) {
580 blk_mq_end_request(req
, -EFAULT
);
581 return BLK_MQ_RQ_QUEUE_OK
;
585 map_len
= nvme_map_len(req
);
586 ret
= nvme_init_iod(req
, map_len
, dev
);
590 ret
= nvme_setup_cmd(ns
, req
, &cmnd
);
594 if (req
->nr_phys_segments
)
595 ret
= nvme_map_data(dev
, req
, map_len
, &cmnd
);
600 cmnd
.common
.command_id
= req
->tag
;
601 blk_mq_start_request(req
);
603 spin_lock_irq(&nvmeq
->q_lock
);
604 if (unlikely(nvmeq
->cq_vector
< 0)) {
605 if (ns
&& !test_bit(NVME_NS_DEAD
, &ns
->flags
))
606 ret
= BLK_MQ_RQ_QUEUE_BUSY
;
608 ret
= BLK_MQ_RQ_QUEUE_ERROR
;
609 spin_unlock_irq(&nvmeq
->q_lock
);
612 __nvme_submit_cmd(nvmeq
, &cmnd
);
613 nvme_process_cq(nvmeq
);
614 spin_unlock_irq(&nvmeq
->q_lock
);
615 return BLK_MQ_RQ_QUEUE_OK
;
617 nvme_free_iod(dev
, req
);
621 static void nvme_complete_rq(struct request
*req
)
623 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
624 struct nvme_dev
*dev
= iod
->nvmeq
->dev
;
627 nvme_unmap_data(dev
, req
);
629 if (unlikely(req
->errors
)) {
630 if (nvme_req_needs_retry(req
, req
->errors
)) {
632 nvme_requeue_req(req
);
636 if (req
->cmd_type
== REQ_TYPE_DRV_PRIV
)
639 error
= nvme_error_status(req
->errors
);
642 if (unlikely(iod
->aborted
)) {
643 dev_warn(dev
->ctrl
.device
,
644 "completing aborted command with status: %04x\n",
648 blk_mq_end_request(req
, error
);
651 /* We read the CQE phase first to check if the rest of the entry is valid */
652 static inline bool nvme_cqe_valid(struct nvme_queue
*nvmeq
, u16 head
,
655 return (le16_to_cpu(nvmeq
->cqes
[head
].status
) & 1) == phase
;
658 static void __nvme_process_cq(struct nvme_queue
*nvmeq
, unsigned int *tag
)
662 head
= nvmeq
->cq_head
;
663 phase
= nvmeq
->cq_phase
;
665 while (nvme_cqe_valid(nvmeq
, head
, phase
)) {
666 struct nvme_completion cqe
= nvmeq
->cqes
[head
];
669 if (++head
== nvmeq
->q_depth
) {
674 if (tag
&& *tag
== cqe
.command_id
)
677 if (unlikely(cqe
.command_id
>= nvmeq
->q_depth
)) {
678 dev_warn(nvmeq
->dev
->ctrl
.device
,
679 "invalid id %d completed on queue %d\n",
680 cqe
.command_id
, le16_to_cpu(cqe
.sq_id
));
685 * AEN requests are special as they don't time out and can
686 * survive any kind of queue freeze and often don't respond to
687 * aborts. We don't even bother to allocate a struct request
688 * for them but rather special case them here.
690 if (unlikely(nvmeq
->qid
== 0 &&
691 cqe
.command_id
>= NVME_AQ_BLKMQ_DEPTH
)) {
692 nvme_complete_async_event(&nvmeq
->dev
->ctrl
, &cqe
);
696 req
= blk_mq_tag_to_rq(*nvmeq
->tags
, cqe
.command_id
);
697 if (req
->cmd_type
== REQ_TYPE_DRV_PRIV
&& req
->special
)
698 memcpy(req
->special
, &cqe
, sizeof(cqe
));
699 blk_mq_complete_request(req
, le16_to_cpu(cqe
.status
) >> 1);
703 /* If the controller ignores the cq head doorbell and continuously
704 * writes to the queue, it is theoretically possible to wrap around
705 * the queue twice and mistakenly return IRQ_NONE. Linux only
706 * requires that 0.1% of your interrupts are handled, so this isn't
709 if (head
== nvmeq
->cq_head
&& phase
== nvmeq
->cq_phase
)
712 if (likely(nvmeq
->cq_vector
>= 0))
713 writel(head
, nvmeq
->q_db
+ nvmeq
->dev
->db_stride
);
714 nvmeq
->cq_head
= head
;
715 nvmeq
->cq_phase
= phase
;
720 static void nvme_process_cq(struct nvme_queue
*nvmeq
)
722 __nvme_process_cq(nvmeq
, NULL
);
725 static irqreturn_t
nvme_irq(int irq
, void *data
)
728 struct nvme_queue
*nvmeq
= data
;
729 spin_lock(&nvmeq
->q_lock
);
730 nvme_process_cq(nvmeq
);
731 result
= nvmeq
->cqe_seen
? IRQ_HANDLED
: IRQ_NONE
;
733 spin_unlock(&nvmeq
->q_lock
);
737 static irqreturn_t
nvme_irq_check(int irq
, void *data
)
739 struct nvme_queue
*nvmeq
= data
;
740 if (nvme_cqe_valid(nvmeq
, nvmeq
->cq_head
, nvmeq
->cq_phase
))
741 return IRQ_WAKE_THREAD
;
745 static int nvme_poll(struct blk_mq_hw_ctx
*hctx
, unsigned int tag
)
747 struct nvme_queue
*nvmeq
= hctx
->driver_data
;
749 if (nvme_cqe_valid(nvmeq
, nvmeq
->cq_head
, nvmeq
->cq_phase
)) {
750 spin_lock_irq(&nvmeq
->q_lock
);
751 __nvme_process_cq(nvmeq
, &tag
);
752 spin_unlock_irq(&nvmeq
->q_lock
);
761 static void nvme_pci_submit_async_event(struct nvme_ctrl
*ctrl
, int aer_idx
)
763 struct nvme_dev
*dev
= to_nvme_dev(ctrl
);
764 struct nvme_queue
*nvmeq
= dev
->queues
[0];
765 struct nvme_command c
;
767 memset(&c
, 0, sizeof(c
));
768 c
.common
.opcode
= nvme_admin_async_event
;
769 c
.common
.command_id
= NVME_AQ_BLKMQ_DEPTH
+ aer_idx
;
771 spin_lock_irq(&nvmeq
->q_lock
);
772 __nvme_submit_cmd(nvmeq
, &c
);
773 spin_unlock_irq(&nvmeq
->q_lock
);
776 static int adapter_delete_queue(struct nvme_dev
*dev
, u8 opcode
, u16 id
)
778 struct nvme_command c
;
780 memset(&c
, 0, sizeof(c
));
781 c
.delete_queue
.opcode
= opcode
;
782 c
.delete_queue
.qid
= cpu_to_le16(id
);
784 return nvme_submit_sync_cmd(dev
->ctrl
.admin_q
, &c
, NULL
, 0);
787 static int adapter_alloc_cq(struct nvme_dev
*dev
, u16 qid
,
788 struct nvme_queue
*nvmeq
)
790 struct nvme_command c
;
791 int flags
= NVME_QUEUE_PHYS_CONTIG
| NVME_CQ_IRQ_ENABLED
;
794 * Note: we (ab)use the fact the the prp fields survive if no data
795 * is attached to the request.
797 memset(&c
, 0, sizeof(c
));
798 c
.create_cq
.opcode
= nvme_admin_create_cq
;
799 c
.create_cq
.prp1
= cpu_to_le64(nvmeq
->cq_dma_addr
);
800 c
.create_cq
.cqid
= cpu_to_le16(qid
);
801 c
.create_cq
.qsize
= cpu_to_le16(nvmeq
->q_depth
- 1);
802 c
.create_cq
.cq_flags
= cpu_to_le16(flags
);
803 c
.create_cq
.irq_vector
= cpu_to_le16(nvmeq
->cq_vector
);
805 return nvme_submit_sync_cmd(dev
->ctrl
.admin_q
, &c
, NULL
, 0);
808 static int adapter_alloc_sq(struct nvme_dev
*dev
, u16 qid
,
809 struct nvme_queue
*nvmeq
)
811 struct nvme_command c
;
812 int flags
= NVME_QUEUE_PHYS_CONTIG
| NVME_SQ_PRIO_MEDIUM
;
815 * Note: we (ab)use the fact the the prp fields survive if no data
816 * is attached to the request.
818 memset(&c
, 0, sizeof(c
));
819 c
.create_sq
.opcode
= nvme_admin_create_sq
;
820 c
.create_sq
.prp1
= cpu_to_le64(nvmeq
->sq_dma_addr
);
821 c
.create_sq
.sqid
= cpu_to_le16(qid
);
822 c
.create_sq
.qsize
= cpu_to_le16(nvmeq
->q_depth
- 1);
823 c
.create_sq
.sq_flags
= cpu_to_le16(flags
);
824 c
.create_sq
.cqid
= cpu_to_le16(qid
);
826 return nvme_submit_sync_cmd(dev
->ctrl
.admin_q
, &c
, NULL
, 0);
829 static int adapter_delete_cq(struct nvme_dev
*dev
, u16 cqid
)
831 return adapter_delete_queue(dev
, nvme_admin_delete_cq
, cqid
);
834 static int adapter_delete_sq(struct nvme_dev
*dev
, u16 sqid
)
836 return adapter_delete_queue(dev
, nvme_admin_delete_sq
, sqid
);
839 static void abort_endio(struct request
*req
, int error
)
841 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
842 struct nvme_queue
*nvmeq
= iod
->nvmeq
;
843 u16 status
= req
->errors
;
845 dev_warn(nvmeq
->dev
->ctrl
.device
, "Abort status: 0x%x", status
);
846 atomic_inc(&nvmeq
->dev
->ctrl
.abort_limit
);
847 blk_mq_free_request(req
);
850 static enum blk_eh_timer_return
nvme_timeout(struct request
*req
, bool reserved
)
852 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
853 struct nvme_queue
*nvmeq
= iod
->nvmeq
;
854 struct nvme_dev
*dev
= nvmeq
->dev
;
855 struct request
*abort_req
;
856 struct nvme_command cmd
;
859 * Shutdown immediately if controller times out while starting. The
860 * reset work will see the pci device disabled when it gets the forced
861 * cancellation error. All outstanding requests are completed on
862 * shutdown, so we return BLK_EH_HANDLED.
864 if (dev
->ctrl
.state
== NVME_CTRL_RESETTING
) {
865 dev_warn(dev
->ctrl
.device
,
866 "I/O %d QID %d timeout, disable controller\n",
867 req
->tag
, nvmeq
->qid
);
868 nvme_dev_disable(dev
, false);
869 req
->errors
= NVME_SC_CANCELLED
;
870 return BLK_EH_HANDLED
;
874 * Shutdown the controller immediately and schedule a reset if the
875 * command was already aborted once before and still hasn't been
876 * returned to the driver, or if this is the admin queue.
878 if (!nvmeq
->qid
|| iod
->aborted
) {
879 dev_warn(dev
->ctrl
.device
,
880 "I/O %d QID %d timeout, reset controller\n",
881 req
->tag
, nvmeq
->qid
);
882 nvme_dev_disable(dev
, false);
883 queue_work(nvme_workq
, &dev
->reset_work
);
886 * Mark the request as handled, since the inline shutdown
887 * forces all outstanding requests to complete.
889 req
->errors
= NVME_SC_CANCELLED
;
890 return BLK_EH_HANDLED
;
895 if (atomic_dec_return(&dev
->ctrl
.abort_limit
) < 0) {
896 atomic_inc(&dev
->ctrl
.abort_limit
);
897 return BLK_EH_RESET_TIMER
;
900 memset(&cmd
, 0, sizeof(cmd
));
901 cmd
.abort
.opcode
= nvme_admin_abort_cmd
;
902 cmd
.abort
.cid
= req
->tag
;
903 cmd
.abort
.sqid
= cpu_to_le16(nvmeq
->qid
);
905 dev_warn(nvmeq
->dev
->ctrl
.device
,
906 "I/O %d QID %d timeout, aborting\n",
907 req
->tag
, nvmeq
->qid
);
909 abort_req
= nvme_alloc_request(dev
->ctrl
.admin_q
, &cmd
,
910 BLK_MQ_REQ_NOWAIT
, NVME_QID_ANY
);
911 if (IS_ERR(abort_req
)) {
912 atomic_inc(&dev
->ctrl
.abort_limit
);
913 return BLK_EH_RESET_TIMER
;
916 abort_req
->timeout
= ADMIN_TIMEOUT
;
917 abort_req
->end_io_data
= NULL
;
918 blk_execute_rq_nowait(abort_req
->q
, NULL
, abort_req
, 0, abort_endio
);
921 * The aborted req will be completed on receiving the abort req.
922 * We enable the timer again. If hit twice, it'll cause a device reset,
923 * as the device then is in a faulty state.
925 return BLK_EH_RESET_TIMER
;
928 static void nvme_free_queue(struct nvme_queue
*nvmeq
)
930 dma_free_coherent(nvmeq
->q_dmadev
, CQ_SIZE(nvmeq
->q_depth
),
931 (void *)nvmeq
->cqes
, nvmeq
->cq_dma_addr
);
933 dma_free_coherent(nvmeq
->q_dmadev
, SQ_SIZE(nvmeq
->q_depth
),
934 nvmeq
->sq_cmds
, nvmeq
->sq_dma_addr
);
938 static void nvme_free_queues(struct nvme_dev
*dev
, int lowest
)
942 for (i
= dev
->queue_count
- 1; i
>= lowest
; i
--) {
943 struct nvme_queue
*nvmeq
= dev
->queues
[i
];
945 dev
->queues
[i
] = NULL
;
946 nvme_free_queue(nvmeq
);
951 * nvme_suspend_queue - put queue into suspended state
952 * @nvmeq - queue to suspend
954 static int nvme_suspend_queue(struct nvme_queue
*nvmeq
)
958 spin_lock_irq(&nvmeq
->q_lock
);
959 if (nvmeq
->cq_vector
== -1) {
960 spin_unlock_irq(&nvmeq
->q_lock
);
963 vector
= nvmeq
->dev
->entry
[nvmeq
->cq_vector
].vector
;
964 nvmeq
->dev
->online_queues
--;
965 nvmeq
->cq_vector
= -1;
966 spin_unlock_irq(&nvmeq
->q_lock
);
968 if (!nvmeq
->qid
&& nvmeq
->dev
->ctrl
.admin_q
)
969 blk_mq_stop_hw_queues(nvmeq
->dev
->ctrl
.admin_q
);
971 irq_set_affinity_hint(vector
, NULL
);
972 free_irq(vector
, nvmeq
);
977 static void nvme_disable_admin_queue(struct nvme_dev
*dev
, bool shutdown
)
979 struct nvme_queue
*nvmeq
= dev
->queues
[0];
983 if (nvme_suspend_queue(nvmeq
))
987 nvme_shutdown_ctrl(&dev
->ctrl
);
989 nvme_disable_ctrl(&dev
->ctrl
, lo_hi_readq(
990 dev
->bar
+ NVME_REG_CAP
));
992 spin_lock_irq(&nvmeq
->q_lock
);
993 nvme_process_cq(nvmeq
);
994 spin_unlock_irq(&nvmeq
->q_lock
);
997 static int nvme_cmb_qdepth(struct nvme_dev
*dev
, int nr_io_queues
,
1000 int q_depth
= dev
->q_depth
;
1001 unsigned q_size_aligned
= roundup(q_depth
* entry_size
,
1002 dev
->ctrl
.page_size
);
1004 if (q_size_aligned
* nr_io_queues
> dev
->cmb_size
) {
1005 u64 mem_per_q
= div_u64(dev
->cmb_size
, nr_io_queues
);
1006 mem_per_q
= round_down(mem_per_q
, dev
->ctrl
.page_size
);
1007 q_depth
= div_u64(mem_per_q
, entry_size
);
1010 * Ensure the reduced q_depth is above some threshold where it
1011 * would be better to map queues in system memory with the
1021 static int nvme_alloc_sq_cmds(struct nvme_dev
*dev
, struct nvme_queue
*nvmeq
,
1024 if (qid
&& dev
->cmb
&& use_cmb_sqes
&& NVME_CMB_SQS(dev
->cmbsz
)) {
1025 unsigned offset
= (qid
- 1) * roundup(SQ_SIZE(depth
),
1026 dev
->ctrl
.page_size
);
1027 nvmeq
->sq_dma_addr
= dev
->cmb_dma_addr
+ offset
;
1028 nvmeq
->sq_cmds_io
= dev
->cmb
+ offset
;
1030 nvmeq
->sq_cmds
= dma_alloc_coherent(dev
->dev
, SQ_SIZE(depth
),
1031 &nvmeq
->sq_dma_addr
, GFP_KERNEL
);
1032 if (!nvmeq
->sq_cmds
)
1039 static struct nvme_queue
*nvme_alloc_queue(struct nvme_dev
*dev
, int qid
,
1042 struct nvme_queue
*nvmeq
= kzalloc(sizeof(*nvmeq
), GFP_KERNEL
);
1046 nvmeq
->cqes
= dma_zalloc_coherent(dev
->dev
, CQ_SIZE(depth
),
1047 &nvmeq
->cq_dma_addr
, GFP_KERNEL
);
1051 if (nvme_alloc_sq_cmds(dev
, nvmeq
, qid
, depth
))
1054 nvmeq
->q_dmadev
= dev
->dev
;
1056 snprintf(nvmeq
->irqname
, sizeof(nvmeq
->irqname
), "nvme%dq%d",
1057 dev
->ctrl
.instance
, qid
);
1058 spin_lock_init(&nvmeq
->q_lock
);
1060 nvmeq
->cq_phase
= 1;
1061 nvmeq
->q_db
= &dev
->dbs
[qid
* 2 * dev
->db_stride
];
1062 nvmeq
->q_depth
= depth
;
1064 nvmeq
->cq_vector
= -1;
1065 dev
->queues
[qid
] = nvmeq
;
1071 dma_free_coherent(dev
->dev
, CQ_SIZE(depth
), (void *)nvmeq
->cqes
,
1072 nvmeq
->cq_dma_addr
);
1078 static int queue_request_irq(struct nvme_dev
*dev
, struct nvme_queue
*nvmeq
,
1081 if (use_threaded_interrupts
)
1082 return request_threaded_irq(dev
->entry
[nvmeq
->cq_vector
].vector
,
1083 nvme_irq_check
, nvme_irq
, IRQF_SHARED
,
1085 return request_irq(dev
->entry
[nvmeq
->cq_vector
].vector
, nvme_irq
,
1086 IRQF_SHARED
, name
, nvmeq
);
1089 static void nvme_init_queue(struct nvme_queue
*nvmeq
, u16 qid
)
1091 struct nvme_dev
*dev
= nvmeq
->dev
;
1093 spin_lock_irq(&nvmeq
->q_lock
);
1096 nvmeq
->cq_phase
= 1;
1097 nvmeq
->q_db
= &dev
->dbs
[qid
* 2 * dev
->db_stride
];
1098 memset((void *)nvmeq
->cqes
, 0, CQ_SIZE(nvmeq
->q_depth
));
1099 dev
->online_queues
++;
1100 spin_unlock_irq(&nvmeq
->q_lock
);
1103 static int nvme_create_queue(struct nvme_queue
*nvmeq
, int qid
)
1105 struct nvme_dev
*dev
= nvmeq
->dev
;
1108 nvmeq
->cq_vector
= qid
- 1;
1109 result
= adapter_alloc_cq(dev
, qid
, nvmeq
);
1113 result
= adapter_alloc_sq(dev
, qid
, nvmeq
);
1117 result
= queue_request_irq(dev
, nvmeq
, nvmeq
->irqname
);
1121 nvme_init_queue(nvmeq
, qid
);
1125 adapter_delete_sq(dev
, qid
);
1127 adapter_delete_cq(dev
, qid
);
1131 static struct blk_mq_ops nvme_mq_admin_ops
= {
1132 .queue_rq
= nvme_queue_rq
,
1133 .complete
= nvme_complete_rq
,
1134 .map_queue
= blk_mq_map_queue
,
1135 .init_hctx
= nvme_admin_init_hctx
,
1136 .exit_hctx
= nvme_admin_exit_hctx
,
1137 .init_request
= nvme_admin_init_request
,
1138 .timeout
= nvme_timeout
,
1141 static struct blk_mq_ops nvme_mq_ops
= {
1142 .queue_rq
= nvme_queue_rq
,
1143 .complete
= nvme_complete_rq
,
1144 .map_queue
= blk_mq_map_queue
,
1145 .init_hctx
= nvme_init_hctx
,
1146 .init_request
= nvme_init_request
,
1147 .timeout
= nvme_timeout
,
1151 static void nvme_dev_remove_admin(struct nvme_dev
*dev
)
1153 if (dev
->ctrl
.admin_q
&& !blk_queue_dying(dev
->ctrl
.admin_q
)) {
1155 * If the controller was reset during removal, it's possible
1156 * user requests may be waiting on a stopped queue. Start the
1157 * queue to flush these to completion.
1159 blk_mq_start_stopped_hw_queues(dev
->ctrl
.admin_q
, true);
1160 blk_cleanup_queue(dev
->ctrl
.admin_q
);
1161 blk_mq_free_tag_set(&dev
->admin_tagset
);
1165 static int nvme_alloc_admin_tags(struct nvme_dev
*dev
)
1167 if (!dev
->ctrl
.admin_q
) {
1168 dev
->admin_tagset
.ops
= &nvme_mq_admin_ops
;
1169 dev
->admin_tagset
.nr_hw_queues
= 1;
1172 * Subtract one to leave an empty queue entry for 'Full Queue'
1173 * condition. See NVM-Express 1.2 specification, section 4.1.2.
1175 dev
->admin_tagset
.queue_depth
= NVME_AQ_BLKMQ_DEPTH
- 1;
1176 dev
->admin_tagset
.timeout
= ADMIN_TIMEOUT
;
1177 dev
->admin_tagset
.numa_node
= dev_to_node(dev
->dev
);
1178 dev
->admin_tagset
.cmd_size
= nvme_cmd_size(dev
);
1179 dev
->admin_tagset
.driver_data
= dev
;
1181 if (blk_mq_alloc_tag_set(&dev
->admin_tagset
))
1184 dev
->ctrl
.admin_q
= blk_mq_init_queue(&dev
->admin_tagset
);
1185 if (IS_ERR(dev
->ctrl
.admin_q
)) {
1186 blk_mq_free_tag_set(&dev
->admin_tagset
);
1189 if (!blk_get_queue(dev
->ctrl
.admin_q
)) {
1190 nvme_dev_remove_admin(dev
);
1191 dev
->ctrl
.admin_q
= NULL
;
1195 blk_mq_start_stopped_hw_queues(dev
->ctrl
.admin_q
, true);
1200 static int nvme_configure_admin_queue(struct nvme_dev
*dev
)
1204 u64 cap
= lo_hi_readq(dev
->bar
+ NVME_REG_CAP
);
1205 struct nvme_queue
*nvmeq
;
1207 dev
->subsystem
= readl(dev
->bar
+ NVME_REG_VS
) >= NVME_VS(1, 1) ?
1208 NVME_CAP_NSSRC(cap
) : 0;
1210 if (dev
->subsystem
&&
1211 (readl(dev
->bar
+ NVME_REG_CSTS
) & NVME_CSTS_NSSRO
))
1212 writel(NVME_CSTS_NSSRO
, dev
->bar
+ NVME_REG_CSTS
);
1214 result
= nvme_disable_ctrl(&dev
->ctrl
, cap
);
1218 nvmeq
= dev
->queues
[0];
1220 nvmeq
= nvme_alloc_queue(dev
, 0, NVME_AQ_DEPTH
);
1225 aqa
= nvmeq
->q_depth
- 1;
1228 writel(aqa
, dev
->bar
+ NVME_REG_AQA
);
1229 lo_hi_writeq(nvmeq
->sq_dma_addr
, dev
->bar
+ NVME_REG_ASQ
);
1230 lo_hi_writeq(nvmeq
->cq_dma_addr
, dev
->bar
+ NVME_REG_ACQ
);
1232 result
= nvme_enable_ctrl(&dev
->ctrl
, cap
);
1236 nvmeq
->cq_vector
= 0;
1237 result
= queue_request_irq(dev
, nvmeq
, nvmeq
->irqname
);
1239 nvmeq
->cq_vector
= -1;
1246 nvme_free_queues(dev
, 0);
1250 static bool nvme_should_reset(struct nvme_dev
*dev
, u32 csts
)
1253 /* If true, indicates loss of adapter communication, possibly by a
1254 * NVMe Subsystem reset.
1256 bool nssro
= dev
->subsystem
&& (csts
& NVME_CSTS_NSSRO
);
1258 /* If there is a reset ongoing, we shouldn't reset again. */
1259 if (work_busy(&dev
->reset_work
))
1262 /* We shouldn't reset unless the controller is on fatal error state
1263 * _or_ if we lost the communication with it.
1265 if (!(csts
& NVME_CSTS_CFS
) && !nssro
)
1268 /* If PCI error recovery process is happening, we cannot reset or
1269 * the recovery mechanism will surely fail.
1271 if (pci_channel_offline(to_pci_dev(dev
->dev
)))
1277 static void nvme_watchdog_timer(unsigned long data
)
1279 struct nvme_dev
*dev
= (struct nvme_dev
*)data
;
1280 u32 csts
= readl(dev
->bar
+ NVME_REG_CSTS
);
1282 /* Skip controllers under certain specific conditions. */
1283 if (nvme_should_reset(dev
, csts
)) {
1284 if (queue_work(nvme_workq
, &dev
->reset_work
))
1286 "Failed status: 0x%x, reset controller.\n",
1291 mod_timer(&dev
->watchdog_timer
, round_jiffies(jiffies
+ HZ
));
1294 static int nvme_create_io_queues(struct nvme_dev
*dev
)
1299 for (i
= dev
->queue_count
; i
<= dev
->max_qid
; i
++) {
1300 if (!nvme_alloc_queue(dev
, i
, dev
->q_depth
)) {
1306 max
= min(dev
->max_qid
, dev
->queue_count
- 1);
1307 for (i
= dev
->online_queues
; i
<= max
; i
++) {
1308 ret
= nvme_create_queue(dev
->queues
[i
], i
);
1310 nvme_free_queues(dev
, i
);
1316 * Ignore failing Create SQ/CQ commands, we can continue with less
1317 * than the desired aount of queues, and even a controller without
1318 * I/O queues an still be used to issue admin commands. This might
1319 * be useful to upgrade a buggy firmware for example.
1321 return ret
>= 0 ? 0 : ret
;
1324 static void __iomem
*nvme_map_cmb(struct nvme_dev
*dev
)
1326 u64 szu
, size
, offset
;
1328 resource_size_t bar_size
;
1329 struct pci_dev
*pdev
= to_pci_dev(dev
->dev
);
1331 dma_addr_t dma_addr
;
1336 dev
->cmbsz
= readl(dev
->bar
+ NVME_REG_CMBSZ
);
1337 if (!(NVME_CMB_SZ(dev
->cmbsz
)))
1340 cmbloc
= readl(dev
->bar
+ NVME_REG_CMBLOC
);
1342 szu
= (u64
)1 << (12 + 4 * NVME_CMB_SZU(dev
->cmbsz
));
1343 size
= szu
* NVME_CMB_SZ(dev
->cmbsz
);
1344 offset
= szu
* NVME_CMB_OFST(cmbloc
);
1345 bar_size
= pci_resource_len(pdev
, NVME_CMB_BIR(cmbloc
));
1347 if (offset
> bar_size
)
1351 * Controllers may support a CMB size larger than their BAR,
1352 * for example, due to being behind a bridge. Reduce the CMB to
1353 * the reported size of the BAR
1355 if (size
> bar_size
- offset
)
1356 size
= bar_size
- offset
;
1358 dma_addr
= pci_resource_start(pdev
, NVME_CMB_BIR(cmbloc
)) + offset
;
1359 cmb
= ioremap_wc(dma_addr
, size
);
1363 dev
->cmb_dma_addr
= dma_addr
;
1364 dev
->cmb_size
= size
;
1368 static inline void nvme_release_cmb(struct nvme_dev
*dev
)
1376 static size_t db_bar_size(struct nvme_dev
*dev
, unsigned nr_io_queues
)
1378 return 4096 + ((nr_io_queues
+ 1) * 8 * dev
->db_stride
);
1381 static int nvme_setup_io_queues(struct nvme_dev
*dev
)
1383 struct nvme_queue
*adminq
= dev
->queues
[0];
1384 struct pci_dev
*pdev
= to_pci_dev(dev
->dev
);
1385 int result
, i
, vecs
, nr_io_queues
, size
;
1387 nr_io_queues
= num_online_cpus();
1388 result
= nvme_set_queue_count(&dev
->ctrl
, &nr_io_queues
);
1392 if (nr_io_queues
== 0)
1395 if (dev
->cmb
&& NVME_CMB_SQS(dev
->cmbsz
)) {
1396 result
= nvme_cmb_qdepth(dev
, nr_io_queues
,
1397 sizeof(struct nvme_command
));
1399 dev
->q_depth
= result
;
1401 nvme_release_cmb(dev
);
1404 size
= db_bar_size(dev
, nr_io_queues
);
1408 dev
->bar
= ioremap(pci_resource_start(pdev
, 0), size
);
1411 if (!--nr_io_queues
)
1413 size
= db_bar_size(dev
, nr_io_queues
);
1415 dev
->dbs
= dev
->bar
+ 4096;
1416 adminq
->q_db
= dev
->dbs
;
1419 /* Deregister the admin queue's interrupt */
1420 free_irq(dev
->entry
[0].vector
, adminq
);
1423 * If we enable msix early due to not intx, disable it again before
1424 * setting up the full range we need.
1426 if (pdev
->msi_enabled
)
1427 pci_disable_msi(pdev
);
1428 else if (pdev
->msix_enabled
)
1429 pci_disable_msix(pdev
);
1431 for (i
= 0; i
< nr_io_queues
; i
++)
1432 dev
->entry
[i
].entry
= i
;
1433 vecs
= pci_enable_msix_range(pdev
, dev
->entry
, 1, nr_io_queues
);
1435 vecs
= pci_enable_msi_range(pdev
, 1, min(nr_io_queues
, 32));
1439 for (i
= 0; i
< vecs
; i
++)
1440 dev
->entry
[i
].vector
= i
+ pdev
->irq
;
1445 * Should investigate if there's a performance win from allocating
1446 * more queues than interrupt vectors; it might allow the submission
1447 * path to scale better, even if the receive path is limited by the
1448 * number of interrupts.
1450 nr_io_queues
= vecs
;
1451 dev
->max_qid
= nr_io_queues
;
1453 result
= queue_request_irq(dev
, adminq
, adminq
->irqname
);
1455 adminq
->cq_vector
= -1;
1458 return nvme_create_io_queues(dev
);
1461 nvme_free_queues(dev
, 1);
1465 static void nvme_pci_post_scan(struct nvme_ctrl
*ctrl
)
1467 struct nvme_dev
*dev
= to_nvme_dev(ctrl
);
1468 struct nvme_queue
*nvmeq
;
1471 for (i
= 0; i
< dev
->online_queues
; i
++) {
1472 nvmeq
= dev
->queues
[i
];
1474 if (!nvmeq
->tags
|| !(*nvmeq
->tags
))
1477 irq_set_affinity_hint(dev
->entry
[nvmeq
->cq_vector
].vector
,
1478 blk_mq_tags_cpumask(*nvmeq
->tags
));
1482 static void nvme_del_queue_end(struct request
*req
, int error
)
1484 struct nvme_queue
*nvmeq
= req
->end_io_data
;
1486 blk_mq_free_request(req
);
1487 complete(&nvmeq
->dev
->ioq_wait
);
1490 static void nvme_del_cq_end(struct request
*req
, int error
)
1492 struct nvme_queue
*nvmeq
= req
->end_io_data
;
1495 unsigned long flags
;
1498 * We might be called with the AQ q_lock held
1499 * and the I/O queue q_lock should always
1500 * nest inside the AQ one.
1502 spin_lock_irqsave_nested(&nvmeq
->q_lock
, flags
,
1503 SINGLE_DEPTH_NESTING
);
1504 nvme_process_cq(nvmeq
);
1505 spin_unlock_irqrestore(&nvmeq
->q_lock
, flags
);
1508 nvme_del_queue_end(req
, error
);
1511 static int nvme_delete_queue(struct nvme_queue
*nvmeq
, u8 opcode
)
1513 struct request_queue
*q
= nvmeq
->dev
->ctrl
.admin_q
;
1514 struct request
*req
;
1515 struct nvme_command cmd
;
1517 memset(&cmd
, 0, sizeof(cmd
));
1518 cmd
.delete_queue
.opcode
= opcode
;
1519 cmd
.delete_queue
.qid
= cpu_to_le16(nvmeq
->qid
);
1521 req
= nvme_alloc_request(q
, &cmd
, BLK_MQ_REQ_NOWAIT
, NVME_QID_ANY
);
1523 return PTR_ERR(req
);
1525 req
->timeout
= ADMIN_TIMEOUT
;
1526 req
->end_io_data
= nvmeq
;
1528 blk_execute_rq_nowait(q
, NULL
, req
, false,
1529 opcode
== nvme_admin_delete_cq
?
1530 nvme_del_cq_end
: nvme_del_queue_end
);
1534 static void nvme_disable_io_queues(struct nvme_dev
*dev
)
1536 int pass
, queues
= dev
->online_queues
- 1;
1537 unsigned long timeout
;
1538 u8 opcode
= nvme_admin_delete_sq
;
1540 for (pass
= 0; pass
< 2; pass
++) {
1541 int sent
= 0, i
= queues
;
1543 reinit_completion(&dev
->ioq_wait
);
1545 timeout
= ADMIN_TIMEOUT
;
1546 for (; i
> 0; i
--, sent
++)
1547 if (nvme_delete_queue(dev
->queues
[i
], opcode
))
1551 timeout
= wait_for_completion_io_timeout(&dev
->ioq_wait
, timeout
);
1557 opcode
= nvme_admin_delete_cq
;
1562 * Return: error value if an error occurred setting up the queues or calling
1563 * Identify Device. 0 if these succeeded, even if adding some of the
1564 * namespaces failed. At the moment, these failures are silent. TBD which
1565 * failures should be reported.
1567 static int nvme_dev_add(struct nvme_dev
*dev
)
1569 if (!dev
->ctrl
.tagset
) {
1570 dev
->tagset
.ops
= &nvme_mq_ops
;
1571 dev
->tagset
.nr_hw_queues
= dev
->online_queues
- 1;
1572 dev
->tagset
.timeout
= NVME_IO_TIMEOUT
;
1573 dev
->tagset
.numa_node
= dev_to_node(dev
->dev
);
1574 dev
->tagset
.queue_depth
=
1575 min_t(int, dev
->q_depth
, BLK_MQ_MAX_DEPTH
) - 1;
1576 dev
->tagset
.cmd_size
= nvme_cmd_size(dev
);
1577 dev
->tagset
.flags
= BLK_MQ_F_SHOULD_MERGE
;
1578 dev
->tagset
.driver_data
= dev
;
1580 if (blk_mq_alloc_tag_set(&dev
->tagset
))
1582 dev
->ctrl
.tagset
= &dev
->tagset
;
1584 blk_mq_update_nr_hw_queues(&dev
->tagset
, dev
->online_queues
- 1);
1586 /* Free previously allocated queues that are no longer usable */
1587 nvme_free_queues(dev
, dev
->online_queues
);
1593 static int nvme_pci_enable(struct nvme_dev
*dev
)
1596 int result
= -ENOMEM
;
1597 struct pci_dev
*pdev
= to_pci_dev(dev
->dev
);
1599 if (pci_enable_device_mem(pdev
))
1602 pci_set_master(pdev
);
1604 if (dma_set_mask_and_coherent(dev
->dev
, DMA_BIT_MASK(64)) &&
1605 dma_set_mask_and_coherent(dev
->dev
, DMA_BIT_MASK(32)))
1608 if (readl(dev
->bar
+ NVME_REG_CSTS
) == -1) {
1614 * Some devices and/or platforms don't advertise or work with INTx
1615 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
1616 * adjust this later.
1618 if (pci_enable_msix(pdev
, dev
->entry
, 1)) {
1619 pci_enable_msi(pdev
);
1620 dev
->entry
[0].vector
= pdev
->irq
;
1623 if (!dev
->entry
[0].vector
) {
1628 cap
= lo_hi_readq(dev
->bar
+ NVME_REG_CAP
);
1630 dev
->q_depth
= min_t(int, NVME_CAP_MQES(cap
) + 1, NVME_Q_DEPTH
);
1631 dev
->db_stride
= 1 << NVME_CAP_STRIDE(cap
);
1632 dev
->dbs
= dev
->bar
+ 4096;
1635 * Temporary fix for the Apple controller found in the MacBook8,1 and
1636 * some MacBook7,1 to avoid controller resets and data loss.
1638 if (pdev
->vendor
== PCI_VENDOR_ID_APPLE
&& pdev
->device
== 0x2001) {
1640 dev_warn(dev
->dev
, "detected Apple NVMe controller, set "
1641 "queue depth=%u to work around controller resets\n",
1645 if (readl(dev
->bar
+ NVME_REG_VS
) >= NVME_VS(1, 2))
1646 dev
->cmb
= nvme_map_cmb(dev
);
1648 pci_enable_pcie_error_reporting(pdev
);
1649 pci_save_state(pdev
);
1653 pci_disable_device(pdev
);
1657 static void nvme_dev_unmap(struct nvme_dev
*dev
)
1661 pci_release_mem_regions(to_pci_dev(dev
->dev
));
1664 static void nvme_pci_disable(struct nvme_dev
*dev
)
1666 struct pci_dev
*pdev
= to_pci_dev(dev
->dev
);
1668 if (pdev
->msi_enabled
)
1669 pci_disable_msi(pdev
);
1670 else if (pdev
->msix_enabled
)
1671 pci_disable_msix(pdev
);
1673 if (pci_is_enabled(pdev
)) {
1674 pci_disable_pcie_error_reporting(pdev
);
1675 pci_disable_device(pdev
);
1679 static void nvme_dev_disable(struct nvme_dev
*dev
, bool shutdown
)
1684 del_timer_sync(&dev
->watchdog_timer
);
1686 mutex_lock(&dev
->shutdown_lock
);
1687 if (pci_is_enabled(to_pci_dev(dev
->dev
))) {
1688 nvme_stop_queues(&dev
->ctrl
);
1689 csts
= readl(dev
->bar
+ NVME_REG_CSTS
);
1692 for (i
= dev
->queue_count
- 1; i
> 0; i
--)
1693 nvme_suspend_queue(dev
->queues
[i
]);
1695 if (csts
& NVME_CSTS_CFS
|| !(csts
& NVME_CSTS_RDY
)) {
1696 /* A device might become IO incapable very soon during
1697 * probe, before the admin queue is configured. Thus,
1698 * queue_count can be 0 here.
1700 if (dev
->queue_count
)
1701 nvme_suspend_queue(dev
->queues
[0]);
1703 nvme_disable_io_queues(dev
);
1704 nvme_disable_admin_queue(dev
, shutdown
);
1706 nvme_pci_disable(dev
);
1708 blk_mq_tagset_busy_iter(&dev
->tagset
, nvme_cancel_request
, &dev
->ctrl
);
1709 blk_mq_tagset_busy_iter(&dev
->admin_tagset
, nvme_cancel_request
, &dev
->ctrl
);
1710 mutex_unlock(&dev
->shutdown_lock
);
1713 static int nvme_setup_prp_pools(struct nvme_dev
*dev
)
1715 dev
->prp_page_pool
= dma_pool_create("prp list page", dev
->dev
,
1716 PAGE_SIZE
, PAGE_SIZE
, 0);
1717 if (!dev
->prp_page_pool
)
1720 /* Optimisation for I/Os between 4k and 128k */
1721 dev
->prp_small_pool
= dma_pool_create("prp list 256", dev
->dev
,
1723 if (!dev
->prp_small_pool
) {
1724 dma_pool_destroy(dev
->prp_page_pool
);
1730 static void nvme_release_prp_pools(struct nvme_dev
*dev
)
1732 dma_pool_destroy(dev
->prp_page_pool
);
1733 dma_pool_destroy(dev
->prp_small_pool
);
1736 static void nvme_pci_free_ctrl(struct nvme_ctrl
*ctrl
)
1738 struct nvme_dev
*dev
= to_nvme_dev(ctrl
);
1740 put_device(dev
->dev
);
1741 if (dev
->tagset
.tags
)
1742 blk_mq_free_tag_set(&dev
->tagset
);
1743 if (dev
->ctrl
.admin_q
)
1744 blk_put_queue(dev
->ctrl
.admin_q
);
1750 static void nvme_remove_dead_ctrl(struct nvme_dev
*dev
, int status
)
1752 dev_warn(dev
->ctrl
.device
, "Removing after probe failure status: %d\n", status
);
1754 kref_get(&dev
->ctrl
.kref
);
1755 nvme_dev_disable(dev
, false);
1756 if (!schedule_work(&dev
->remove_work
))
1757 nvme_put_ctrl(&dev
->ctrl
);
1760 static void nvme_reset_work(struct work_struct
*work
)
1762 struct nvme_dev
*dev
= container_of(work
, struct nvme_dev
, reset_work
);
1763 int result
= -ENODEV
;
1765 if (WARN_ON(dev
->ctrl
.state
== NVME_CTRL_RESETTING
))
1769 * If we're called to reset a live controller first shut it down before
1772 if (dev
->ctrl
.ctrl_config
& NVME_CC_ENABLE
)
1773 nvme_dev_disable(dev
, false);
1775 if (!nvme_change_ctrl_state(&dev
->ctrl
, NVME_CTRL_RESETTING
))
1778 result
= nvme_pci_enable(dev
);
1782 result
= nvme_configure_admin_queue(dev
);
1786 nvme_init_queue(dev
->queues
[0], 0);
1787 result
= nvme_alloc_admin_tags(dev
);
1791 result
= nvme_init_identify(&dev
->ctrl
);
1795 result
= nvme_setup_io_queues(dev
);
1800 * A controller that can not execute IO typically requires user
1801 * intervention to correct. For such degraded controllers, the driver
1802 * should not submit commands the user did not request, so skip
1803 * registering for asynchronous event notification on this condition.
1805 if (dev
->online_queues
> 1)
1806 nvme_queue_async_events(&dev
->ctrl
);
1808 mod_timer(&dev
->watchdog_timer
, round_jiffies(jiffies
+ HZ
));
1811 * Keep the controller around but remove all namespaces if we don't have
1812 * any working I/O queue.
1814 if (dev
->online_queues
< 2) {
1815 dev_warn(dev
->ctrl
.device
, "IO queues not created\n");
1816 nvme_kill_queues(&dev
->ctrl
);
1817 nvme_remove_namespaces(&dev
->ctrl
);
1819 nvme_start_queues(&dev
->ctrl
);
1823 if (!nvme_change_ctrl_state(&dev
->ctrl
, NVME_CTRL_LIVE
)) {
1824 dev_warn(dev
->ctrl
.device
, "failed to mark controller live\n");
1828 if (dev
->online_queues
> 1)
1829 nvme_queue_scan(&dev
->ctrl
);
1833 nvme_remove_dead_ctrl(dev
, result
);
1836 static void nvme_remove_dead_ctrl_work(struct work_struct
*work
)
1838 struct nvme_dev
*dev
= container_of(work
, struct nvme_dev
, remove_work
);
1839 struct pci_dev
*pdev
= to_pci_dev(dev
->dev
);
1841 nvme_kill_queues(&dev
->ctrl
);
1842 if (pci_get_drvdata(pdev
))
1843 device_release_driver(&pdev
->dev
);
1844 nvme_put_ctrl(&dev
->ctrl
);
1847 static int nvme_reset(struct nvme_dev
*dev
)
1849 if (!dev
->ctrl
.admin_q
|| blk_queue_dying(dev
->ctrl
.admin_q
))
1852 if (!queue_work(nvme_workq
, &dev
->reset_work
))
1855 flush_work(&dev
->reset_work
);
1859 static int nvme_pci_reg_read32(struct nvme_ctrl
*ctrl
, u32 off
, u32
*val
)
1861 *val
= readl(to_nvme_dev(ctrl
)->bar
+ off
);
1865 static int nvme_pci_reg_write32(struct nvme_ctrl
*ctrl
, u32 off
, u32 val
)
1867 writel(val
, to_nvme_dev(ctrl
)->bar
+ off
);
1871 static int nvme_pci_reg_read64(struct nvme_ctrl
*ctrl
, u32 off
, u64
*val
)
1873 *val
= readq(to_nvme_dev(ctrl
)->bar
+ off
);
1877 static int nvme_pci_reset_ctrl(struct nvme_ctrl
*ctrl
)
1879 return nvme_reset(to_nvme_dev(ctrl
));
1882 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops
= {
1884 .module
= THIS_MODULE
,
1885 .reg_read32
= nvme_pci_reg_read32
,
1886 .reg_write32
= nvme_pci_reg_write32
,
1887 .reg_read64
= nvme_pci_reg_read64
,
1888 .reset_ctrl
= nvme_pci_reset_ctrl
,
1889 .free_ctrl
= nvme_pci_free_ctrl
,
1890 .post_scan
= nvme_pci_post_scan
,
1891 .submit_async_event
= nvme_pci_submit_async_event
,
1894 static int nvme_dev_map(struct nvme_dev
*dev
)
1896 struct pci_dev
*pdev
= to_pci_dev(dev
->dev
);
1898 if (pci_request_mem_regions(pdev
, "nvme"))
1901 dev
->bar
= ioremap(pci_resource_start(pdev
, 0), 8192);
1907 pci_release_mem_regions(pdev
);
1911 static int nvme_probe(struct pci_dev
*pdev
, const struct pci_device_id
*id
)
1913 int node
, result
= -ENOMEM
;
1914 struct nvme_dev
*dev
;
1916 node
= dev_to_node(&pdev
->dev
);
1917 if (node
== NUMA_NO_NODE
)
1918 set_dev_node(&pdev
->dev
, first_memory_node
);
1920 dev
= kzalloc_node(sizeof(*dev
), GFP_KERNEL
, node
);
1923 dev
->entry
= kzalloc_node(num_possible_cpus() * sizeof(*dev
->entry
),
1927 dev
->queues
= kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
1932 dev
->dev
= get_device(&pdev
->dev
);
1933 pci_set_drvdata(pdev
, dev
);
1935 result
= nvme_dev_map(dev
);
1939 INIT_WORK(&dev
->reset_work
, nvme_reset_work
);
1940 INIT_WORK(&dev
->remove_work
, nvme_remove_dead_ctrl_work
);
1941 setup_timer(&dev
->watchdog_timer
, nvme_watchdog_timer
,
1942 (unsigned long)dev
);
1943 mutex_init(&dev
->shutdown_lock
);
1944 init_completion(&dev
->ioq_wait
);
1946 result
= nvme_setup_prp_pools(dev
);
1950 result
= nvme_init_ctrl(&dev
->ctrl
, &pdev
->dev
, &nvme_pci_ctrl_ops
,
1955 dev_info(dev
->ctrl
.device
, "pci function %s\n", dev_name(&pdev
->dev
));
1957 queue_work(nvme_workq
, &dev
->reset_work
);
1961 nvme_release_prp_pools(dev
);
1963 put_device(dev
->dev
);
1964 nvme_dev_unmap(dev
);
1972 static void nvme_reset_notify(struct pci_dev
*pdev
, bool prepare
)
1974 struct nvme_dev
*dev
= pci_get_drvdata(pdev
);
1977 nvme_dev_disable(dev
, false);
1979 queue_work(nvme_workq
, &dev
->reset_work
);
1982 static void nvme_shutdown(struct pci_dev
*pdev
)
1984 struct nvme_dev
*dev
= pci_get_drvdata(pdev
);
1985 nvme_dev_disable(dev
, true);
1989 * The driver's remove may be called on a device in a partially initialized
1990 * state. This function must not have any dependencies on the device state in
1993 static void nvme_remove(struct pci_dev
*pdev
)
1995 struct nvme_dev
*dev
= pci_get_drvdata(pdev
);
1997 nvme_change_ctrl_state(&dev
->ctrl
, NVME_CTRL_DELETING
);
1999 pci_set_drvdata(pdev
, NULL
);
2001 if (!pci_device_is_present(pdev
))
2002 nvme_change_ctrl_state(&dev
->ctrl
, NVME_CTRL_DEAD
);
2004 flush_work(&dev
->reset_work
);
2005 nvme_uninit_ctrl(&dev
->ctrl
);
2006 nvme_dev_disable(dev
, true);
2007 nvme_dev_remove_admin(dev
);
2008 nvme_free_queues(dev
, 0);
2009 nvme_release_cmb(dev
);
2010 nvme_release_prp_pools(dev
);
2011 nvme_dev_unmap(dev
);
2012 nvme_put_ctrl(&dev
->ctrl
);
2015 static int nvme_pci_sriov_configure(struct pci_dev
*pdev
, int numvfs
)
2020 if (pci_vfs_assigned(pdev
)) {
2021 dev_warn(&pdev
->dev
,
2022 "Cannot disable SR-IOV VFs while assigned\n");
2025 pci_disable_sriov(pdev
);
2029 ret
= pci_enable_sriov(pdev
, numvfs
);
2030 return ret
? ret
: numvfs
;
2033 #ifdef CONFIG_PM_SLEEP
2034 static int nvme_suspend(struct device
*dev
)
2036 struct pci_dev
*pdev
= to_pci_dev(dev
);
2037 struct nvme_dev
*ndev
= pci_get_drvdata(pdev
);
2039 nvme_dev_disable(ndev
, true);
2043 static int nvme_resume(struct device
*dev
)
2045 struct pci_dev
*pdev
= to_pci_dev(dev
);
2046 struct nvme_dev
*ndev
= pci_get_drvdata(pdev
);
2048 queue_work(nvme_workq
, &ndev
->reset_work
);
2053 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops
, nvme_suspend
, nvme_resume
);
2055 static pci_ers_result_t
nvme_error_detected(struct pci_dev
*pdev
,
2056 pci_channel_state_t state
)
2058 struct nvme_dev
*dev
= pci_get_drvdata(pdev
);
2061 * A frozen channel requires a reset. When detected, this method will
2062 * shutdown the controller to quiesce. The controller will be restarted
2063 * after the slot reset through driver's slot_reset callback.
2066 case pci_channel_io_normal
:
2067 return PCI_ERS_RESULT_CAN_RECOVER
;
2068 case pci_channel_io_frozen
:
2069 dev_warn(dev
->ctrl
.device
,
2070 "frozen state error detected, reset controller\n");
2071 nvme_dev_disable(dev
, false);
2072 return PCI_ERS_RESULT_NEED_RESET
;
2073 case pci_channel_io_perm_failure
:
2074 dev_warn(dev
->ctrl
.device
,
2075 "failure state error detected, request disconnect\n");
2076 return PCI_ERS_RESULT_DISCONNECT
;
2078 return PCI_ERS_RESULT_NEED_RESET
;
2081 static pci_ers_result_t
nvme_slot_reset(struct pci_dev
*pdev
)
2083 struct nvme_dev
*dev
= pci_get_drvdata(pdev
);
2085 dev_info(dev
->ctrl
.device
, "restart after slot reset\n");
2086 pci_restore_state(pdev
);
2087 queue_work(nvme_workq
, &dev
->reset_work
);
2088 return PCI_ERS_RESULT_RECOVERED
;
2091 static void nvme_error_resume(struct pci_dev
*pdev
)
2093 pci_cleanup_aer_uncorrect_error_status(pdev
);
2096 static const struct pci_error_handlers nvme_err_handler
= {
2097 .error_detected
= nvme_error_detected
,
2098 .slot_reset
= nvme_slot_reset
,
2099 .resume
= nvme_error_resume
,
2100 .reset_notify
= nvme_reset_notify
,
2103 /* Move to pci_ids.h later */
2104 #define PCI_CLASS_STORAGE_EXPRESS 0x010802
2106 static const struct pci_device_id nvme_id_table
[] = {
2107 { PCI_VDEVICE(INTEL
, 0x0953),
2108 .driver_data
= NVME_QUIRK_STRIPE_SIZE
|
2109 NVME_QUIRK_DISCARD_ZEROES
, },
2110 { PCI_VDEVICE(INTEL
, 0x0a53),
2111 .driver_data
= NVME_QUIRK_STRIPE_SIZE
|
2112 NVME_QUIRK_DISCARD_ZEROES
, },
2113 { PCI_VDEVICE(INTEL
, 0x0a54),
2114 .driver_data
= NVME_QUIRK_STRIPE_SIZE
|
2115 NVME_QUIRK_DISCARD_ZEROES
, },
2116 { PCI_VDEVICE(INTEL
, 0x5845), /* Qemu emulated controller */
2117 .driver_data
= NVME_QUIRK_IDENTIFY_CNS
, },
2118 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
2119 .driver_data
= NVME_QUIRK_DELAY_BEFORE_CHK_RDY
, },
2120 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
2121 .driver_data
= NVME_QUIRK_DELAY_BEFORE_CHK_RDY
, },
2122 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS
, 0xffffff) },
2123 { PCI_DEVICE(PCI_VENDOR_ID_APPLE
, 0x2001) },
2126 MODULE_DEVICE_TABLE(pci
, nvme_id_table
);
2128 static struct pci_driver nvme_driver
= {
2130 .id_table
= nvme_id_table
,
2131 .probe
= nvme_probe
,
2132 .remove
= nvme_remove
,
2133 .shutdown
= nvme_shutdown
,
2135 .pm
= &nvme_dev_pm_ops
,
2137 .sriov_configure
= nvme_pci_sriov_configure
,
2138 .err_handler
= &nvme_err_handler
,
2141 static int __init
nvme_init(void)
2145 nvme_workq
= alloc_workqueue("nvme", WQ_UNBOUND
| WQ_MEM_RECLAIM
, 0);
2149 result
= pci_register_driver(&nvme_driver
);
2151 destroy_workqueue(nvme_workq
);
2155 static void __exit
nvme_exit(void)
2157 pci_unregister_driver(&nvme_driver
);
2158 destroy_workqueue(nvme_workq
);
2162 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2163 MODULE_LICENSE("GPL");
2164 MODULE_VERSION("1.0");
2165 module_init(nvme_init
);
2166 module_exit(nvme_exit
);