Merge branch 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[cris-mirror.git] / drivers / nvme / host / rdma.c
blobc2c2c28e6eb59fbd45dfc278354c65626d9b0f95
1 /*
2 * NVMe over Fabrics RDMA host code.
3 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/err.h>
19 #include <linux/string.h>
20 #include <linux/atomic.h>
21 #include <linux/blk-mq.h>
22 #include <linux/types.h>
23 #include <linux/list.h>
24 #include <linux/mutex.h>
25 #include <linux/scatterlist.h>
26 #include <linux/nvme.h>
27 #include <asm/unaligned.h>
29 #include <rdma/ib_verbs.h>
30 #include <rdma/rdma_cm.h>
31 #include <rdma/ib_cm.h>
32 #include <linux/nvme-rdma.h>
34 #include "nvme.h"
35 #include "fabrics.h"
38 #define NVME_RDMA_CONNECT_TIMEOUT_MS 1000 /* 1 second */
40 #define NVME_RDMA_MAX_SEGMENT_SIZE 0xffffff /* 24-bit SGL field */
42 #define NVME_RDMA_MAX_SEGMENTS 256
44 #define NVME_RDMA_MAX_INLINE_SEGMENTS 1
47 * We handle AEN commands ourselves and don't even let the
48 * block layer know about them.
50 #define NVME_RDMA_NR_AEN_COMMANDS 1
51 #define NVME_RDMA_AQ_BLKMQ_DEPTH \
52 (NVMF_AQ_DEPTH - NVME_RDMA_NR_AEN_COMMANDS)
54 struct nvme_rdma_device {
55 struct ib_device *dev;
56 struct ib_pd *pd;
57 struct ib_mr *mr;
58 struct kref ref;
59 struct list_head entry;
62 struct nvme_rdma_qe {
63 struct ib_cqe cqe;
64 void *data;
65 u64 dma;
68 struct nvme_rdma_queue;
69 struct nvme_rdma_request {
70 struct ib_mr *mr;
71 struct nvme_rdma_qe sqe;
72 struct ib_sge sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
73 u32 num_sge;
74 int nents;
75 bool inline_data;
76 struct ib_reg_wr reg_wr;
77 struct ib_cqe reg_cqe;
78 struct nvme_rdma_queue *queue;
79 struct sg_table sg_table;
80 struct scatterlist first_sgl[];
83 enum nvme_rdma_queue_flags {
84 NVME_RDMA_Q_CONNECTED = (1 << 0),
85 NVME_RDMA_IB_QUEUE_ALLOCATED = (1 << 1),
86 NVME_RDMA_Q_DELETING = (1 << 2),
89 struct nvme_rdma_queue {
90 struct nvme_rdma_qe *rsp_ring;
91 u8 sig_count;
92 int queue_size;
93 size_t cmnd_capsule_len;
94 struct nvme_rdma_ctrl *ctrl;
95 struct nvme_rdma_device *device;
96 struct ib_cq *ib_cq;
97 struct ib_qp *qp;
99 unsigned long flags;
100 struct rdma_cm_id *cm_id;
101 int cm_error;
102 struct completion cm_done;
105 struct nvme_rdma_ctrl {
106 /* read and written in the hot path */
107 spinlock_t lock;
109 /* read only in the hot path */
110 struct nvme_rdma_queue *queues;
111 u32 queue_count;
113 /* other member variables */
114 struct blk_mq_tag_set tag_set;
115 struct work_struct delete_work;
116 struct work_struct reset_work;
117 struct work_struct err_work;
119 struct nvme_rdma_qe async_event_sqe;
121 int reconnect_delay;
122 struct delayed_work reconnect_work;
124 struct list_head list;
126 struct blk_mq_tag_set admin_tag_set;
127 struct nvme_rdma_device *device;
129 u64 cap;
130 u32 max_fr_pages;
132 union {
133 struct sockaddr addr;
134 struct sockaddr_in addr_in;
137 struct nvme_ctrl ctrl;
140 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
142 return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
145 static LIST_HEAD(device_list);
146 static DEFINE_MUTEX(device_list_mutex);
148 static LIST_HEAD(nvme_rdma_ctrl_list);
149 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
151 static struct workqueue_struct *nvme_rdma_wq;
154 * Disabling this option makes small I/O goes faster, but is fundamentally
155 * unsafe. With it turned off we will have to register a global rkey that
156 * allows read and write access to all physical memory.
158 static bool register_always = true;
159 module_param(register_always, bool, 0444);
160 MODULE_PARM_DESC(register_always,
161 "Use memory registration even for contiguous memory regions");
163 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
164 struct rdma_cm_event *event);
165 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
167 /* XXX: really should move to a generic header sooner or later.. */
168 static inline void put_unaligned_le24(u32 val, u8 *p)
170 *p++ = val;
171 *p++ = val >> 8;
172 *p++ = val >> 16;
175 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
177 return queue - queue->ctrl->queues;
180 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
182 return queue->cmnd_capsule_len - sizeof(struct nvme_command);
185 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
186 size_t capsule_size, enum dma_data_direction dir)
188 ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
189 kfree(qe->data);
192 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
193 size_t capsule_size, enum dma_data_direction dir)
195 qe->data = kzalloc(capsule_size, GFP_KERNEL);
196 if (!qe->data)
197 return -ENOMEM;
199 qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
200 if (ib_dma_mapping_error(ibdev, qe->dma)) {
201 kfree(qe->data);
202 return -ENOMEM;
205 return 0;
208 static void nvme_rdma_free_ring(struct ib_device *ibdev,
209 struct nvme_rdma_qe *ring, size_t ib_queue_size,
210 size_t capsule_size, enum dma_data_direction dir)
212 int i;
214 for (i = 0; i < ib_queue_size; i++)
215 nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
216 kfree(ring);
219 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
220 size_t ib_queue_size, size_t capsule_size,
221 enum dma_data_direction dir)
223 struct nvme_rdma_qe *ring;
224 int i;
226 ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
227 if (!ring)
228 return NULL;
230 for (i = 0; i < ib_queue_size; i++) {
231 if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
232 goto out_free_ring;
235 return ring;
237 out_free_ring:
238 nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
239 return NULL;
242 static void nvme_rdma_qp_event(struct ib_event *event, void *context)
244 pr_debug("QP event %d\n", event->event);
247 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
249 wait_for_completion_interruptible_timeout(&queue->cm_done,
250 msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1);
251 return queue->cm_error;
254 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
256 struct nvme_rdma_device *dev = queue->device;
257 struct ib_qp_init_attr init_attr;
258 int ret;
260 memset(&init_attr, 0, sizeof(init_attr));
261 init_attr.event_handler = nvme_rdma_qp_event;
262 /* +1 for drain */
263 init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
264 /* +1 for drain */
265 init_attr.cap.max_recv_wr = queue->queue_size + 1;
266 init_attr.cap.max_recv_sge = 1;
267 init_attr.cap.max_send_sge = 1 + NVME_RDMA_MAX_INLINE_SEGMENTS;
268 init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
269 init_attr.qp_type = IB_QPT_RC;
270 init_attr.send_cq = queue->ib_cq;
271 init_attr.recv_cq = queue->ib_cq;
273 ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
275 queue->qp = queue->cm_id->qp;
276 return ret;
279 static int nvme_rdma_reinit_request(void *data, struct request *rq)
281 struct nvme_rdma_ctrl *ctrl = data;
282 struct nvme_rdma_device *dev = ctrl->device;
283 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
284 int ret = 0;
286 if (!req->mr->need_inval)
287 goto out;
289 ib_dereg_mr(req->mr);
291 req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG,
292 ctrl->max_fr_pages);
293 if (IS_ERR(req->mr)) {
294 ret = PTR_ERR(req->mr);
295 req->mr = NULL;
296 goto out;
299 req->mr->need_inval = false;
301 out:
302 return ret;
305 static void __nvme_rdma_exit_request(struct nvme_rdma_ctrl *ctrl,
306 struct request *rq, unsigned int queue_idx)
308 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
309 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
310 struct nvme_rdma_device *dev = queue->device;
312 if (req->mr)
313 ib_dereg_mr(req->mr);
315 nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
316 DMA_TO_DEVICE);
319 static void nvme_rdma_exit_request(void *data, struct request *rq,
320 unsigned int hctx_idx, unsigned int rq_idx)
322 return __nvme_rdma_exit_request(data, rq, hctx_idx + 1);
325 static void nvme_rdma_exit_admin_request(void *data, struct request *rq,
326 unsigned int hctx_idx, unsigned int rq_idx)
328 return __nvme_rdma_exit_request(data, rq, 0);
331 static int __nvme_rdma_init_request(struct nvme_rdma_ctrl *ctrl,
332 struct request *rq, unsigned int queue_idx)
334 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
335 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
336 struct nvme_rdma_device *dev = queue->device;
337 struct ib_device *ibdev = dev->dev;
338 int ret;
340 BUG_ON(queue_idx >= ctrl->queue_count);
342 ret = nvme_rdma_alloc_qe(ibdev, &req->sqe, sizeof(struct nvme_command),
343 DMA_TO_DEVICE);
344 if (ret)
345 return ret;
347 req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG,
348 ctrl->max_fr_pages);
349 if (IS_ERR(req->mr)) {
350 ret = PTR_ERR(req->mr);
351 goto out_free_qe;
354 req->queue = queue;
356 return 0;
358 out_free_qe:
359 nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
360 DMA_TO_DEVICE);
361 return -ENOMEM;
364 static int nvme_rdma_init_request(void *data, struct request *rq,
365 unsigned int hctx_idx, unsigned int rq_idx,
366 unsigned int numa_node)
368 return __nvme_rdma_init_request(data, rq, hctx_idx + 1);
371 static int nvme_rdma_init_admin_request(void *data, struct request *rq,
372 unsigned int hctx_idx, unsigned int rq_idx,
373 unsigned int numa_node)
375 return __nvme_rdma_init_request(data, rq, 0);
378 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
379 unsigned int hctx_idx)
381 struct nvme_rdma_ctrl *ctrl = data;
382 struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
384 BUG_ON(hctx_idx >= ctrl->queue_count);
386 hctx->driver_data = queue;
387 return 0;
390 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
391 unsigned int hctx_idx)
393 struct nvme_rdma_ctrl *ctrl = data;
394 struct nvme_rdma_queue *queue = &ctrl->queues[0];
396 BUG_ON(hctx_idx != 0);
398 hctx->driver_data = queue;
399 return 0;
402 static void nvme_rdma_free_dev(struct kref *ref)
404 struct nvme_rdma_device *ndev =
405 container_of(ref, struct nvme_rdma_device, ref);
407 mutex_lock(&device_list_mutex);
408 list_del(&ndev->entry);
409 mutex_unlock(&device_list_mutex);
411 if (!register_always)
412 ib_dereg_mr(ndev->mr);
413 ib_dealloc_pd(ndev->pd);
415 kfree(ndev);
418 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
420 kref_put(&dev->ref, nvme_rdma_free_dev);
423 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
425 return kref_get_unless_zero(&dev->ref);
428 static struct nvme_rdma_device *
429 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
431 struct nvme_rdma_device *ndev;
433 mutex_lock(&device_list_mutex);
434 list_for_each_entry(ndev, &device_list, entry) {
435 if (ndev->dev->node_guid == cm_id->device->node_guid &&
436 nvme_rdma_dev_get(ndev))
437 goto out_unlock;
440 ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
441 if (!ndev)
442 goto out_err;
444 ndev->dev = cm_id->device;
445 kref_init(&ndev->ref);
447 ndev->pd = ib_alloc_pd(ndev->dev);
448 if (IS_ERR(ndev->pd))
449 goto out_free_dev;
451 if (!register_always) {
452 ndev->mr = ib_get_dma_mr(ndev->pd,
453 IB_ACCESS_LOCAL_WRITE |
454 IB_ACCESS_REMOTE_READ |
455 IB_ACCESS_REMOTE_WRITE);
456 if (IS_ERR(ndev->mr))
457 goto out_free_pd;
460 if (!(ndev->dev->attrs.device_cap_flags &
461 IB_DEVICE_MEM_MGT_EXTENSIONS)) {
462 dev_err(&ndev->dev->dev,
463 "Memory registrations not supported.\n");
464 goto out_free_mr;
467 list_add(&ndev->entry, &device_list);
468 out_unlock:
469 mutex_unlock(&device_list_mutex);
470 return ndev;
472 out_free_mr:
473 if (!register_always)
474 ib_dereg_mr(ndev->mr);
475 out_free_pd:
476 ib_dealloc_pd(ndev->pd);
477 out_free_dev:
478 kfree(ndev);
479 out_err:
480 mutex_unlock(&device_list_mutex);
481 return NULL;
484 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
486 struct nvme_rdma_device *dev;
487 struct ib_device *ibdev;
489 if (!test_and_clear_bit(NVME_RDMA_IB_QUEUE_ALLOCATED, &queue->flags))
490 return;
492 dev = queue->device;
493 ibdev = dev->dev;
494 rdma_destroy_qp(queue->cm_id);
495 ib_free_cq(queue->ib_cq);
497 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
498 sizeof(struct nvme_completion), DMA_FROM_DEVICE);
500 nvme_rdma_dev_put(dev);
503 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue,
504 struct nvme_rdma_device *dev)
506 struct ib_device *ibdev = dev->dev;
507 const int send_wr_factor = 3; /* MR, SEND, INV */
508 const int cq_factor = send_wr_factor + 1; /* + RECV */
509 int comp_vector, idx = nvme_rdma_queue_idx(queue);
511 int ret;
513 queue->device = dev;
516 * The admin queue is barely used once the controller is live, so don't
517 * bother to spread it out.
519 if (idx == 0)
520 comp_vector = 0;
521 else
522 comp_vector = idx % ibdev->num_comp_vectors;
525 /* +1 for ib_stop_cq */
526 queue->ib_cq = ib_alloc_cq(dev->dev, queue,
527 cq_factor * queue->queue_size + 1, comp_vector,
528 IB_POLL_SOFTIRQ);
529 if (IS_ERR(queue->ib_cq)) {
530 ret = PTR_ERR(queue->ib_cq);
531 goto out;
534 ret = nvme_rdma_create_qp(queue, send_wr_factor);
535 if (ret)
536 goto out_destroy_ib_cq;
538 queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
539 sizeof(struct nvme_completion), DMA_FROM_DEVICE);
540 if (!queue->rsp_ring) {
541 ret = -ENOMEM;
542 goto out_destroy_qp;
544 set_bit(NVME_RDMA_IB_QUEUE_ALLOCATED, &queue->flags);
546 return 0;
548 out_destroy_qp:
549 ib_destroy_qp(queue->qp);
550 out_destroy_ib_cq:
551 ib_free_cq(queue->ib_cq);
552 out:
553 return ret;
556 static int nvme_rdma_init_queue(struct nvme_rdma_ctrl *ctrl,
557 int idx, size_t queue_size)
559 struct nvme_rdma_queue *queue;
560 int ret;
562 queue = &ctrl->queues[idx];
563 queue->ctrl = ctrl;
564 queue->flags = 0;
565 init_completion(&queue->cm_done);
567 if (idx > 0)
568 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
569 else
570 queue->cmnd_capsule_len = sizeof(struct nvme_command);
572 queue->queue_size = queue_size;
574 queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
575 RDMA_PS_TCP, IB_QPT_RC);
576 if (IS_ERR(queue->cm_id)) {
577 dev_info(ctrl->ctrl.device,
578 "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
579 return PTR_ERR(queue->cm_id);
582 queue->cm_error = -ETIMEDOUT;
583 ret = rdma_resolve_addr(queue->cm_id, NULL, &ctrl->addr,
584 NVME_RDMA_CONNECT_TIMEOUT_MS);
585 if (ret) {
586 dev_info(ctrl->ctrl.device,
587 "rdma_resolve_addr failed (%d).\n", ret);
588 goto out_destroy_cm_id;
591 ret = nvme_rdma_wait_for_cm(queue);
592 if (ret) {
593 dev_info(ctrl->ctrl.device,
594 "rdma_resolve_addr wait failed (%d).\n", ret);
595 goto out_destroy_cm_id;
598 set_bit(NVME_RDMA_Q_CONNECTED, &queue->flags);
600 return 0;
602 out_destroy_cm_id:
603 nvme_rdma_destroy_queue_ib(queue);
604 rdma_destroy_id(queue->cm_id);
605 return ret;
608 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
610 rdma_disconnect(queue->cm_id);
611 ib_drain_qp(queue->qp);
614 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
616 nvme_rdma_destroy_queue_ib(queue);
617 rdma_destroy_id(queue->cm_id);
620 static void nvme_rdma_stop_and_free_queue(struct nvme_rdma_queue *queue)
622 if (test_and_set_bit(NVME_RDMA_Q_DELETING, &queue->flags))
623 return;
624 nvme_rdma_stop_queue(queue);
625 nvme_rdma_free_queue(queue);
628 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
630 int i;
632 for (i = 1; i < ctrl->queue_count; i++)
633 nvme_rdma_stop_and_free_queue(&ctrl->queues[i]);
636 static int nvme_rdma_connect_io_queues(struct nvme_rdma_ctrl *ctrl)
638 int i, ret = 0;
640 for (i = 1; i < ctrl->queue_count; i++) {
641 ret = nvmf_connect_io_queue(&ctrl->ctrl, i);
642 if (ret)
643 break;
646 return ret;
649 static int nvme_rdma_init_io_queues(struct nvme_rdma_ctrl *ctrl)
651 int i, ret;
653 for (i = 1; i < ctrl->queue_count; i++) {
654 ret = nvme_rdma_init_queue(ctrl, i,
655 ctrl->ctrl.opts->queue_size);
656 if (ret) {
657 dev_info(ctrl->ctrl.device,
658 "failed to initialize i/o queue: %d\n", ret);
659 goto out_free_queues;
663 return 0;
665 out_free_queues:
666 for (i--; i >= 1; i--)
667 nvme_rdma_stop_and_free_queue(&ctrl->queues[i]);
669 return ret;
672 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl)
674 nvme_rdma_free_qe(ctrl->queues[0].device->dev, &ctrl->async_event_sqe,
675 sizeof(struct nvme_command), DMA_TO_DEVICE);
676 nvme_rdma_stop_and_free_queue(&ctrl->queues[0]);
677 blk_cleanup_queue(ctrl->ctrl.admin_q);
678 blk_mq_free_tag_set(&ctrl->admin_tag_set);
679 nvme_rdma_dev_put(ctrl->device);
682 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
684 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
686 if (list_empty(&ctrl->list))
687 goto free_ctrl;
689 mutex_lock(&nvme_rdma_ctrl_mutex);
690 list_del(&ctrl->list);
691 mutex_unlock(&nvme_rdma_ctrl_mutex);
693 kfree(ctrl->queues);
694 nvmf_free_options(nctrl->opts);
695 free_ctrl:
696 kfree(ctrl);
699 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
701 struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
702 struct nvme_rdma_ctrl, reconnect_work);
703 bool changed;
704 int ret;
706 if (ctrl->queue_count > 1) {
707 nvme_rdma_free_io_queues(ctrl);
709 ret = blk_mq_reinit_tagset(&ctrl->tag_set);
710 if (ret)
711 goto requeue;
714 nvme_rdma_stop_and_free_queue(&ctrl->queues[0]);
716 ret = blk_mq_reinit_tagset(&ctrl->admin_tag_set);
717 if (ret)
718 goto requeue;
720 ret = nvme_rdma_init_queue(ctrl, 0, NVMF_AQ_DEPTH);
721 if (ret)
722 goto requeue;
724 blk_mq_start_stopped_hw_queues(ctrl->ctrl.admin_q, true);
726 ret = nvmf_connect_admin_queue(&ctrl->ctrl);
727 if (ret)
728 goto stop_admin_q;
730 ret = nvme_enable_ctrl(&ctrl->ctrl, ctrl->cap);
731 if (ret)
732 goto stop_admin_q;
734 nvme_start_keep_alive(&ctrl->ctrl);
736 if (ctrl->queue_count > 1) {
737 ret = nvme_rdma_init_io_queues(ctrl);
738 if (ret)
739 goto stop_admin_q;
741 ret = nvme_rdma_connect_io_queues(ctrl);
742 if (ret)
743 goto stop_admin_q;
746 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
747 WARN_ON_ONCE(!changed);
749 if (ctrl->queue_count > 1) {
750 nvme_start_queues(&ctrl->ctrl);
751 nvme_queue_scan(&ctrl->ctrl);
752 nvme_queue_async_events(&ctrl->ctrl);
755 dev_info(ctrl->ctrl.device, "Successfully reconnected\n");
757 return;
759 stop_admin_q:
760 blk_mq_stop_hw_queues(ctrl->ctrl.admin_q);
761 requeue:
762 /* Make sure we are not resetting/deleting */
763 if (ctrl->ctrl.state == NVME_CTRL_RECONNECTING) {
764 dev_info(ctrl->ctrl.device,
765 "Failed reconnect attempt, requeueing...\n");
766 queue_delayed_work(nvme_rdma_wq, &ctrl->reconnect_work,
767 ctrl->reconnect_delay * HZ);
771 static void nvme_rdma_error_recovery_work(struct work_struct *work)
773 struct nvme_rdma_ctrl *ctrl = container_of(work,
774 struct nvme_rdma_ctrl, err_work);
775 int i;
777 nvme_stop_keep_alive(&ctrl->ctrl);
779 for (i = 0; i < ctrl->queue_count; i++)
780 clear_bit(NVME_RDMA_Q_CONNECTED, &ctrl->queues[i].flags);
782 if (ctrl->queue_count > 1)
783 nvme_stop_queues(&ctrl->ctrl);
784 blk_mq_stop_hw_queues(ctrl->ctrl.admin_q);
786 /* We must take care of fastfail/requeue all our inflight requests */
787 if (ctrl->queue_count > 1)
788 blk_mq_tagset_busy_iter(&ctrl->tag_set,
789 nvme_cancel_request, &ctrl->ctrl);
790 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
791 nvme_cancel_request, &ctrl->ctrl);
793 dev_info(ctrl->ctrl.device, "reconnecting in %d seconds\n",
794 ctrl->reconnect_delay);
796 queue_delayed_work(nvme_rdma_wq, &ctrl->reconnect_work,
797 ctrl->reconnect_delay * HZ);
800 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
802 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RECONNECTING))
803 return;
805 queue_work(nvme_rdma_wq, &ctrl->err_work);
808 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
809 const char *op)
811 struct nvme_rdma_queue *queue = cq->cq_context;
812 struct nvme_rdma_ctrl *ctrl = queue->ctrl;
814 if (ctrl->ctrl.state == NVME_CTRL_LIVE)
815 dev_info(ctrl->ctrl.device,
816 "%s for CQE 0x%p failed with status %s (%d)\n",
817 op, wc->wr_cqe,
818 ib_wc_status_msg(wc->status), wc->status);
819 nvme_rdma_error_recovery(ctrl);
822 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
824 if (unlikely(wc->status != IB_WC_SUCCESS))
825 nvme_rdma_wr_error(cq, wc, "MEMREG");
828 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
830 if (unlikely(wc->status != IB_WC_SUCCESS))
831 nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
834 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
835 struct nvme_rdma_request *req)
837 struct ib_send_wr *bad_wr;
838 struct ib_send_wr wr = {
839 .opcode = IB_WR_LOCAL_INV,
840 .next = NULL,
841 .num_sge = 0,
842 .send_flags = 0,
843 .ex.invalidate_rkey = req->mr->rkey,
846 req->reg_cqe.done = nvme_rdma_inv_rkey_done;
847 wr.wr_cqe = &req->reg_cqe;
849 return ib_post_send(queue->qp, &wr, &bad_wr);
852 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
853 struct request *rq)
855 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
856 struct nvme_rdma_ctrl *ctrl = queue->ctrl;
857 struct nvme_rdma_device *dev = queue->device;
858 struct ib_device *ibdev = dev->dev;
859 int res;
861 if (!blk_rq_bytes(rq))
862 return;
864 if (req->mr->need_inval) {
865 res = nvme_rdma_inv_rkey(queue, req);
866 if (res < 0) {
867 dev_err(ctrl->ctrl.device,
868 "Queueing INV WR for rkey %#x failed (%d)\n",
869 req->mr->rkey, res);
870 nvme_rdma_error_recovery(queue->ctrl);
874 ib_dma_unmap_sg(ibdev, req->sg_table.sgl,
875 req->nents, rq_data_dir(rq) ==
876 WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
878 nvme_cleanup_cmd(rq);
879 sg_free_table_chained(&req->sg_table, true);
882 static int nvme_rdma_set_sg_null(struct nvme_command *c)
884 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
886 sg->addr = 0;
887 put_unaligned_le24(0, sg->length);
888 put_unaligned_le32(0, sg->key);
889 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
890 return 0;
893 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
894 struct nvme_rdma_request *req, struct nvme_command *c)
896 struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
898 req->sge[1].addr = sg_dma_address(req->sg_table.sgl);
899 req->sge[1].length = sg_dma_len(req->sg_table.sgl);
900 req->sge[1].lkey = queue->device->pd->local_dma_lkey;
902 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
903 sg->length = cpu_to_le32(sg_dma_len(req->sg_table.sgl));
904 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
906 req->inline_data = true;
907 req->num_sge++;
908 return 0;
911 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
912 struct nvme_rdma_request *req, struct nvme_command *c)
914 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
916 sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl));
917 put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length);
918 put_unaligned_le32(queue->device->mr->rkey, sg->key);
919 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
920 return 0;
923 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
924 struct nvme_rdma_request *req, struct nvme_command *c,
925 int count)
927 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
928 int nr;
930 nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, PAGE_SIZE);
931 if (nr < count) {
932 if (nr < 0)
933 return nr;
934 return -EINVAL;
937 ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
939 req->reg_cqe.done = nvme_rdma_memreg_done;
940 memset(&req->reg_wr, 0, sizeof(req->reg_wr));
941 req->reg_wr.wr.opcode = IB_WR_REG_MR;
942 req->reg_wr.wr.wr_cqe = &req->reg_cqe;
943 req->reg_wr.wr.num_sge = 0;
944 req->reg_wr.mr = req->mr;
945 req->reg_wr.key = req->mr->rkey;
946 req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
947 IB_ACCESS_REMOTE_READ |
948 IB_ACCESS_REMOTE_WRITE;
950 req->mr->need_inval = true;
952 sg->addr = cpu_to_le64(req->mr->iova);
953 put_unaligned_le24(req->mr->length, sg->length);
954 put_unaligned_le32(req->mr->rkey, sg->key);
955 sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
956 NVME_SGL_FMT_INVALIDATE;
958 return 0;
961 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
962 struct request *rq, unsigned int map_len,
963 struct nvme_command *c)
965 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
966 struct nvme_rdma_device *dev = queue->device;
967 struct ib_device *ibdev = dev->dev;
968 int nents, count;
969 int ret;
971 req->num_sge = 1;
972 req->inline_data = false;
973 req->mr->need_inval = false;
975 c->common.flags |= NVME_CMD_SGL_METABUF;
977 if (!blk_rq_bytes(rq))
978 return nvme_rdma_set_sg_null(c);
980 req->sg_table.sgl = req->first_sgl;
981 ret = sg_alloc_table_chained(&req->sg_table, rq->nr_phys_segments,
982 req->sg_table.sgl);
983 if (ret)
984 return -ENOMEM;
986 nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl);
987 BUG_ON(nents > rq->nr_phys_segments);
988 req->nents = nents;
990 count = ib_dma_map_sg(ibdev, req->sg_table.sgl, nents,
991 rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
992 if (unlikely(count <= 0)) {
993 sg_free_table_chained(&req->sg_table, true);
994 return -EIO;
997 if (count == 1) {
998 if (rq_data_dir(rq) == WRITE &&
999 map_len <= nvme_rdma_inline_data_size(queue) &&
1000 nvme_rdma_queue_idx(queue))
1001 return nvme_rdma_map_sg_inline(queue, req, c);
1003 if (!register_always)
1004 return nvme_rdma_map_sg_single(queue, req, c);
1007 return nvme_rdma_map_sg_fr(queue, req, c, count);
1010 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
1012 if (unlikely(wc->status != IB_WC_SUCCESS))
1013 nvme_rdma_wr_error(cq, wc, "SEND");
1016 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
1017 struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
1018 struct ib_send_wr *first, bool flush)
1020 struct ib_send_wr wr, *bad_wr;
1021 int ret;
1023 sge->addr = qe->dma;
1024 sge->length = sizeof(struct nvme_command),
1025 sge->lkey = queue->device->pd->local_dma_lkey;
1027 qe->cqe.done = nvme_rdma_send_done;
1029 wr.next = NULL;
1030 wr.wr_cqe = &qe->cqe;
1031 wr.sg_list = sge;
1032 wr.num_sge = num_sge;
1033 wr.opcode = IB_WR_SEND;
1034 wr.send_flags = 0;
1037 * Unsignalled send completions are another giant desaster in the
1038 * IB Verbs spec: If we don't regularly post signalled sends
1039 * the send queue will fill up and only a QP reset will rescue us.
1040 * Would have been way to obvious to handle this in hardware or
1041 * at least the RDMA stack..
1043 * This messy and racy code sniplet is copy and pasted from the iSER
1044 * initiator, and the magic '32' comes from there as well.
1046 * Always signal the flushes. The magic request used for the flush
1047 * sequencer is not allocated in our driver's tagset and it's
1048 * triggered to be freed by blk_cleanup_queue(). So we need to
1049 * always mark it as signaled to ensure that the "wr_cqe", which is
1050 * embeded in request's payload, is not freed when __ib_process_cq()
1051 * calls wr_cqe->done().
1053 if ((++queue->sig_count % 32) == 0 || flush)
1054 wr.send_flags |= IB_SEND_SIGNALED;
1056 if (first)
1057 first->next = &wr;
1058 else
1059 first = &wr;
1061 ret = ib_post_send(queue->qp, first, &bad_wr);
1062 if (ret) {
1063 dev_err(queue->ctrl->ctrl.device,
1064 "%s failed with error code %d\n", __func__, ret);
1066 return ret;
1069 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
1070 struct nvme_rdma_qe *qe)
1072 struct ib_recv_wr wr, *bad_wr;
1073 struct ib_sge list;
1074 int ret;
1076 list.addr = qe->dma;
1077 list.length = sizeof(struct nvme_completion);
1078 list.lkey = queue->device->pd->local_dma_lkey;
1080 qe->cqe.done = nvme_rdma_recv_done;
1082 wr.next = NULL;
1083 wr.wr_cqe = &qe->cqe;
1084 wr.sg_list = &list;
1085 wr.num_sge = 1;
1087 ret = ib_post_recv(queue->qp, &wr, &bad_wr);
1088 if (ret) {
1089 dev_err(queue->ctrl->ctrl.device,
1090 "%s failed with error code %d\n", __func__, ret);
1092 return ret;
1095 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
1097 u32 queue_idx = nvme_rdma_queue_idx(queue);
1099 if (queue_idx == 0)
1100 return queue->ctrl->admin_tag_set.tags[queue_idx];
1101 return queue->ctrl->tag_set.tags[queue_idx - 1];
1104 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg, int aer_idx)
1106 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
1107 struct nvme_rdma_queue *queue = &ctrl->queues[0];
1108 struct ib_device *dev = queue->device->dev;
1109 struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
1110 struct nvme_command *cmd = sqe->data;
1111 struct ib_sge sge;
1112 int ret;
1114 if (WARN_ON_ONCE(aer_idx != 0))
1115 return;
1117 ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
1119 memset(cmd, 0, sizeof(*cmd));
1120 cmd->common.opcode = nvme_admin_async_event;
1121 cmd->common.command_id = NVME_RDMA_AQ_BLKMQ_DEPTH;
1122 cmd->common.flags |= NVME_CMD_SGL_METABUF;
1123 nvme_rdma_set_sg_null(cmd);
1125 ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
1126 DMA_TO_DEVICE);
1128 ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL, false);
1129 WARN_ON_ONCE(ret);
1132 static int nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
1133 struct nvme_completion *cqe, struct ib_wc *wc, int tag)
1135 u16 status = le16_to_cpu(cqe->status);
1136 struct request *rq;
1137 struct nvme_rdma_request *req;
1138 int ret = 0;
1140 status >>= 1;
1142 rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id);
1143 if (!rq) {
1144 dev_err(queue->ctrl->ctrl.device,
1145 "tag 0x%x on QP %#x not found\n",
1146 cqe->command_id, queue->qp->qp_num);
1147 nvme_rdma_error_recovery(queue->ctrl);
1148 return ret;
1150 req = blk_mq_rq_to_pdu(rq);
1152 if (rq->cmd_type == REQ_TYPE_DRV_PRIV && rq->special)
1153 memcpy(rq->special, cqe, sizeof(*cqe));
1155 if (rq->tag == tag)
1156 ret = 1;
1158 if ((wc->wc_flags & IB_WC_WITH_INVALIDATE) &&
1159 wc->ex.invalidate_rkey == req->mr->rkey)
1160 req->mr->need_inval = false;
1162 blk_mq_complete_request(rq, status);
1164 return ret;
1167 static int __nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc, int tag)
1169 struct nvme_rdma_qe *qe =
1170 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1171 struct nvme_rdma_queue *queue = cq->cq_context;
1172 struct ib_device *ibdev = queue->device->dev;
1173 struct nvme_completion *cqe = qe->data;
1174 const size_t len = sizeof(struct nvme_completion);
1175 int ret = 0;
1177 if (unlikely(wc->status != IB_WC_SUCCESS)) {
1178 nvme_rdma_wr_error(cq, wc, "RECV");
1179 return 0;
1182 ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1184 * AEN requests are special as they don't time out and can
1185 * survive any kind of queue freeze and often don't respond to
1186 * aborts. We don't even bother to allocate a struct request
1187 * for them but rather special case them here.
1189 if (unlikely(nvme_rdma_queue_idx(queue) == 0 &&
1190 cqe->command_id >= NVME_RDMA_AQ_BLKMQ_DEPTH))
1191 nvme_complete_async_event(&queue->ctrl->ctrl, cqe);
1192 else
1193 ret = nvme_rdma_process_nvme_rsp(queue, cqe, wc, tag);
1194 ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1196 nvme_rdma_post_recv(queue, qe);
1197 return ret;
1200 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1202 __nvme_rdma_recv_done(cq, wc, -1);
1205 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
1207 int ret, i;
1209 for (i = 0; i < queue->queue_size; i++) {
1210 ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
1211 if (ret)
1212 goto out_destroy_queue_ib;
1215 return 0;
1217 out_destroy_queue_ib:
1218 nvme_rdma_destroy_queue_ib(queue);
1219 return ret;
1222 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
1223 struct rdma_cm_event *ev)
1225 if (ev->param.conn.private_data_len) {
1226 struct nvme_rdma_cm_rej *rej =
1227 (struct nvme_rdma_cm_rej *)ev->param.conn.private_data;
1229 dev_err(queue->ctrl->ctrl.device,
1230 "Connect rejected, status %d.", le16_to_cpu(rej->sts));
1231 /* XXX: Think of something clever to do here... */
1232 } else {
1233 dev_err(queue->ctrl->ctrl.device,
1234 "Connect rejected, no private data.\n");
1237 return -ECONNRESET;
1240 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
1242 struct nvme_rdma_device *dev;
1243 int ret;
1245 dev = nvme_rdma_find_get_device(queue->cm_id);
1246 if (!dev) {
1247 dev_err(queue->cm_id->device->dma_device,
1248 "no client data found!\n");
1249 return -ECONNREFUSED;
1252 ret = nvme_rdma_create_queue_ib(queue, dev);
1253 if (ret) {
1254 nvme_rdma_dev_put(dev);
1255 goto out;
1258 ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS);
1259 if (ret) {
1260 dev_err(queue->ctrl->ctrl.device,
1261 "rdma_resolve_route failed (%d).\n",
1262 queue->cm_error);
1263 goto out_destroy_queue;
1266 return 0;
1268 out_destroy_queue:
1269 nvme_rdma_destroy_queue_ib(queue);
1270 out:
1271 return ret;
1274 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
1276 struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1277 struct rdma_conn_param param = { };
1278 struct nvme_rdma_cm_req priv = { };
1279 int ret;
1281 param.qp_num = queue->qp->qp_num;
1282 param.flow_control = 1;
1284 param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1285 /* maximum retry count */
1286 param.retry_count = 7;
1287 param.rnr_retry_count = 7;
1288 param.private_data = &priv;
1289 param.private_data_len = sizeof(priv);
1291 priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1292 priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1294 * set the admin queue depth to the minimum size
1295 * specified by the Fabrics standard.
1297 if (priv.qid == 0) {
1298 priv.hrqsize = cpu_to_le16(NVMF_AQ_DEPTH);
1299 priv.hsqsize = cpu_to_le16(NVMF_AQ_DEPTH - 1);
1300 } else {
1302 * current interpretation of the fabrics spec
1303 * is at minimum you make hrqsize sqsize+1, or a
1304 * 1's based representation of sqsize.
1306 priv.hrqsize = cpu_to_le16(queue->queue_size);
1307 priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
1310 ret = rdma_connect(queue->cm_id, &param);
1311 if (ret) {
1312 dev_err(ctrl->ctrl.device,
1313 "rdma_connect failed (%d).\n", ret);
1314 goto out_destroy_queue_ib;
1317 return 0;
1319 out_destroy_queue_ib:
1320 nvme_rdma_destroy_queue_ib(queue);
1321 return ret;
1324 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
1325 struct rdma_cm_event *ev)
1327 struct nvme_rdma_queue *queue = cm_id->context;
1328 int cm_error = 0;
1330 dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
1331 rdma_event_msg(ev->event), ev->event,
1332 ev->status, cm_id);
1334 switch (ev->event) {
1335 case RDMA_CM_EVENT_ADDR_RESOLVED:
1336 cm_error = nvme_rdma_addr_resolved(queue);
1337 break;
1338 case RDMA_CM_EVENT_ROUTE_RESOLVED:
1339 cm_error = nvme_rdma_route_resolved(queue);
1340 break;
1341 case RDMA_CM_EVENT_ESTABLISHED:
1342 queue->cm_error = nvme_rdma_conn_established(queue);
1343 /* complete cm_done regardless of success/failure */
1344 complete(&queue->cm_done);
1345 return 0;
1346 case RDMA_CM_EVENT_REJECTED:
1347 cm_error = nvme_rdma_conn_rejected(queue, ev);
1348 break;
1349 case RDMA_CM_EVENT_ADDR_ERROR:
1350 case RDMA_CM_EVENT_ROUTE_ERROR:
1351 case RDMA_CM_EVENT_CONNECT_ERROR:
1352 case RDMA_CM_EVENT_UNREACHABLE:
1353 dev_dbg(queue->ctrl->ctrl.device,
1354 "CM error event %d\n", ev->event);
1355 cm_error = -ECONNRESET;
1356 break;
1357 case RDMA_CM_EVENT_DISCONNECTED:
1358 case RDMA_CM_EVENT_ADDR_CHANGE:
1359 case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1360 dev_dbg(queue->ctrl->ctrl.device,
1361 "disconnect received - connection closed\n");
1362 nvme_rdma_error_recovery(queue->ctrl);
1363 break;
1364 case RDMA_CM_EVENT_DEVICE_REMOVAL:
1365 /* device removal is handled via the ib_client API */
1366 break;
1367 default:
1368 dev_err(queue->ctrl->ctrl.device,
1369 "Unexpected RDMA CM event (%d)\n", ev->event);
1370 nvme_rdma_error_recovery(queue->ctrl);
1371 break;
1374 if (cm_error) {
1375 queue->cm_error = cm_error;
1376 complete(&queue->cm_done);
1379 return 0;
1382 static enum blk_eh_timer_return
1383 nvme_rdma_timeout(struct request *rq, bool reserved)
1385 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1387 /* queue error recovery */
1388 nvme_rdma_error_recovery(req->queue->ctrl);
1390 /* fail with DNR on cmd timeout */
1391 rq->errors = NVME_SC_ABORT_REQ | NVME_SC_DNR;
1393 return BLK_EH_HANDLED;
1396 static int nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
1397 const struct blk_mq_queue_data *bd)
1399 struct nvme_ns *ns = hctx->queue->queuedata;
1400 struct nvme_rdma_queue *queue = hctx->driver_data;
1401 struct request *rq = bd->rq;
1402 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1403 struct nvme_rdma_qe *sqe = &req->sqe;
1404 struct nvme_command *c = sqe->data;
1405 bool flush = false;
1406 struct ib_device *dev;
1407 unsigned int map_len;
1408 int ret;
1410 WARN_ON_ONCE(rq->tag < 0);
1412 dev = queue->device->dev;
1413 ib_dma_sync_single_for_cpu(dev, sqe->dma,
1414 sizeof(struct nvme_command), DMA_TO_DEVICE);
1416 ret = nvme_setup_cmd(ns, rq, c);
1417 if (ret)
1418 return ret;
1420 c->common.command_id = rq->tag;
1421 blk_mq_start_request(rq);
1423 map_len = nvme_map_len(rq);
1424 ret = nvme_rdma_map_data(queue, rq, map_len, c);
1425 if (ret < 0) {
1426 dev_err(queue->ctrl->ctrl.device,
1427 "Failed to map data (%d)\n", ret);
1428 nvme_cleanup_cmd(rq);
1429 goto err;
1432 ib_dma_sync_single_for_device(dev, sqe->dma,
1433 sizeof(struct nvme_command), DMA_TO_DEVICE);
1435 if (rq->cmd_type == REQ_TYPE_FS && req_op(rq) == REQ_OP_FLUSH)
1436 flush = true;
1437 ret = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
1438 req->mr->need_inval ? &req->reg_wr.wr : NULL, flush);
1439 if (ret) {
1440 nvme_rdma_unmap_data(queue, rq);
1441 goto err;
1444 return BLK_MQ_RQ_QUEUE_OK;
1445 err:
1446 return (ret == -ENOMEM || ret == -EAGAIN) ?
1447 BLK_MQ_RQ_QUEUE_BUSY : BLK_MQ_RQ_QUEUE_ERROR;
1450 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
1452 struct nvme_rdma_queue *queue = hctx->driver_data;
1453 struct ib_cq *cq = queue->ib_cq;
1454 struct ib_wc wc;
1455 int found = 0;
1457 ib_req_notify_cq(cq, IB_CQ_NEXT_COMP);
1458 while (ib_poll_cq(cq, 1, &wc) > 0) {
1459 struct ib_cqe *cqe = wc.wr_cqe;
1461 if (cqe) {
1462 if (cqe->done == nvme_rdma_recv_done)
1463 found |= __nvme_rdma_recv_done(cq, &wc, tag);
1464 else
1465 cqe->done(cq, &wc);
1469 return found;
1472 static void nvme_rdma_complete_rq(struct request *rq)
1474 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1475 struct nvme_rdma_queue *queue = req->queue;
1476 int error = 0;
1478 nvme_rdma_unmap_data(queue, rq);
1480 if (unlikely(rq->errors)) {
1481 if (nvme_req_needs_retry(rq, rq->errors)) {
1482 nvme_requeue_req(rq);
1483 return;
1486 if (rq->cmd_type == REQ_TYPE_DRV_PRIV)
1487 error = rq->errors;
1488 else
1489 error = nvme_error_status(rq->errors);
1492 blk_mq_end_request(rq, error);
1495 static struct blk_mq_ops nvme_rdma_mq_ops = {
1496 .queue_rq = nvme_rdma_queue_rq,
1497 .complete = nvme_rdma_complete_rq,
1498 .map_queue = blk_mq_map_queue,
1499 .init_request = nvme_rdma_init_request,
1500 .exit_request = nvme_rdma_exit_request,
1501 .reinit_request = nvme_rdma_reinit_request,
1502 .init_hctx = nvme_rdma_init_hctx,
1503 .poll = nvme_rdma_poll,
1504 .timeout = nvme_rdma_timeout,
1507 static struct blk_mq_ops nvme_rdma_admin_mq_ops = {
1508 .queue_rq = nvme_rdma_queue_rq,
1509 .complete = nvme_rdma_complete_rq,
1510 .map_queue = blk_mq_map_queue,
1511 .init_request = nvme_rdma_init_admin_request,
1512 .exit_request = nvme_rdma_exit_admin_request,
1513 .reinit_request = nvme_rdma_reinit_request,
1514 .init_hctx = nvme_rdma_init_admin_hctx,
1515 .timeout = nvme_rdma_timeout,
1518 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl)
1520 int error;
1522 error = nvme_rdma_init_queue(ctrl, 0, NVMF_AQ_DEPTH);
1523 if (error)
1524 return error;
1526 ctrl->device = ctrl->queues[0].device;
1529 * We need a reference on the device as long as the tag_set is alive,
1530 * as the MRs in the request structures need a valid ib_device.
1532 error = -EINVAL;
1533 if (!nvme_rdma_dev_get(ctrl->device))
1534 goto out_free_queue;
1536 ctrl->max_fr_pages = min_t(u32, NVME_RDMA_MAX_SEGMENTS,
1537 ctrl->device->dev->attrs.max_fast_reg_page_list_len);
1539 memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set));
1540 ctrl->admin_tag_set.ops = &nvme_rdma_admin_mq_ops;
1541 ctrl->admin_tag_set.queue_depth = NVME_RDMA_AQ_BLKMQ_DEPTH;
1542 ctrl->admin_tag_set.reserved_tags = 2; /* connect + keep-alive */
1543 ctrl->admin_tag_set.numa_node = NUMA_NO_NODE;
1544 ctrl->admin_tag_set.cmd_size = sizeof(struct nvme_rdma_request) +
1545 SG_CHUNK_SIZE * sizeof(struct scatterlist);
1546 ctrl->admin_tag_set.driver_data = ctrl;
1547 ctrl->admin_tag_set.nr_hw_queues = 1;
1548 ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT;
1550 error = blk_mq_alloc_tag_set(&ctrl->admin_tag_set);
1551 if (error)
1552 goto out_put_dev;
1554 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
1555 if (IS_ERR(ctrl->ctrl.admin_q)) {
1556 error = PTR_ERR(ctrl->ctrl.admin_q);
1557 goto out_free_tagset;
1560 error = nvmf_connect_admin_queue(&ctrl->ctrl);
1561 if (error)
1562 goto out_cleanup_queue;
1564 error = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP, &ctrl->cap);
1565 if (error) {
1566 dev_err(ctrl->ctrl.device,
1567 "prop_get NVME_REG_CAP failed\n");
1568 goto out_cleanup_queue;
1571 ctrl->ctrl.sqsize =
1572 min_t(int, NVME_CAP_MQES(ctrl->cap) + 1, ctrl->ctrl.sqsize);
1574 error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->cap);
1575 if (error)
1576 goto out_cleanup_queue;
1578 ctrl->ctrl.max_hw_sectors =
1579 (ctrl->max_fr_pages - 1) << (PAGE_SHIFT - 9);
1581 error = nvme_init_identify(&ctrl->ctrl);
1582 if (error)
1583 goto out_cleanup_queue;
1585 error = nvme_rdma_alloc_qe(ctrl->queues[0].device->dev,
1586 &ctrl->async_event_sqe, sizeof(struct nvme_command),
1587 DMA_TO_DEVICE);
1588 if (error)
1589 goto out_cleanup_queue;
1591 nvme_start_keep_alive(&ctrl->ctrl);
1593 return 0;
1595 out_cleanup_queue:
1596 blk_cleanup_queue(ctrl->ctrl.admin_q);
1597 out_free_tagset:
1598 /* disconnect and drain the queue before freeing the tagset */
1599 nvme_rdma_stop_queue(&ctrl->queues[0]);
1600 blk_mq_free_tag_set(&ctrl->admin_tag_set);
1601 out_put_dev:
1602 nvme_rdma_dev_put(ctrl->device);
1603 out_free_queue:
1604 nvme_rdma_free_queue(&ctrl->queues[0]);
1605 return error;
1608 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl)
1610 nvme_stop_keep_alive(&ctrl->ctrl);
1611 cancel_work_sync(&ctrl->err_work);
1612 cancel_delayed_work_sync(&ctrl->reconnect_work);
1614 if (ctrl->queue_count > 1) {
1615 nvme_stop_queues(&ctrl->ctrl);
1616 blk_mq_tagset_busy_iter(&ctrl->tag_set,
1617 nvme_cancel_request, &ctrl->ctrl);
1618 nvme_rdma_free_io_queues(ctrl);
1621 if (test_bit(NVME_RDMA_Q_CONNECTED, &ctrl->queues[0].flags))
1622 nvme_shutdown_ctrl(&ctrl->ctrl);
1624 blk_mq_stop_hw_queues(ctrl->ctrl.admin_q);
1625 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
1626 nvme_cancel_request, &ctrl->ctrl);
1627 nvme_rdma_destroy_admin_queue(ctrl);
1630 static void __nvme_rdma_remove_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
1632 nvme_uninit_ctrl(&ctrl->ctrl);
1633 if (shutdown)
1634 nvme_rdma_shutdown_ctrl(ctrl);
1636 if (ctrl->ctrl.tagset) {
1637 blk_cleanup_queue(ctrl->ctrl.connect_q);
1638 blk_mq_free_tag_set(&ctrl->tag_set);
1639 nvme_rdma_dev_put(ctrl->device);
1642 nvme_put_ctrl(&ctrl->ctrl);
1645 static void nvme_rdma_del_ctrl_work(struct work_struct *work)
1647 struct nvme_rdma_ctrl *ctrl = container_of(work,
1648 struct nvme_rdma_ctrl, delete_work);
1650 __nvme_rdma_remove_ctrl(ctrl, true);
1653 static int __nvme_rdma_del_ctrl(struct nvme_rdma_ctrl *ctrl)
1655 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING))
1656 return -EBUSY;
1658 if (!queue_work(nvme_rdma_wq, &ctrl->delete_work))
1659 return -EBUSY;
1661 return 0;
1664 static int nvme_rdma_del_ctrl(struct nvme_ctrl *nctrl)
1666 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
1667 int ret = 0;
1670 * Keep a reference until all work is flushed since
1671 * __nvme_rdma_del_ctrl can free the ctrl mem
1673 if (!kref_get_unless_zero(&ctrl->ctrl.kref))
1674 return -EBUSY;
1675 ret = __nvme_rdma_del_ctrl(ctrl);
1676 if (!ret)
1677 flush_work(&ctrl->delete_work);
1678 nvme_put_ctrl(&ctrl->ctrl);
1679 return ret;
1682 static void nvme_rdma_remove_ctrl_work(struct work_struct *work)
1684 struct nvme_rdma_ctrl *ctrl = container_of(work,
1685 struct nvme_rdma_ctrl, delete_work);
1687 __nvme_rdma_remove_ctrl(ctrl, false);
1690 static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
1692 struct nvme_rdma_ctrl *ctrl = container_of(work,
1693 struct nvme_rdma_ctrl, reset_work);
1694 int ret;
1695 bool changed;
1697 nvme_rdma_shutdown_ctrl(ctrl);
1699 ret = nvme_rdma_configure_admin_queue(ctrl);
1700 if (ret) {
1701 /* ctrl is already shutdown, just remove the ctrl */
1702 INIT_WORK(&ctrl->delete_work, nvme_rdma_remove_ctrl_work);
1703 goto del_dead_ctrl;
1706 if (ctrl->queue_count > 1) {
1707 ret = blk_mq_reinit_tagset(&ctrl->tag_set);
1708 if (ret)
1709 goto del_dead_ctrl;
1711 ret = nvme_rdma_init_io_queues(ctrl);
1712 if (ret)
1713 goto del_dead_ctrl;
1715 ret = nvme_rdma_connect_io_queues(ctrl);
1716 if (ret)
1717 goto del_dead_ctrl;
1720 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1721 WARN_ON_ONCE(!changed);
1723 if (ctrl->queue_count > 1) {
1724 nvme_start_queues(&ctrl->ctrl);
1725 nvme_queue_scan(&ctrl->ctrl);
1726 nvme_queue_async_events(&ctrl->ctrl);
1729 return;
1731 del_dead_ctrl:
1732 /* Deleting this dead controller... */
1733 dev_warn(ctrl->ctrl.device, "Removing after reset failure\n");
1734 WARN_ON(!queue_work(nvme_rdma_wq, &ctrl->delete_work));
1737 static int nvme_rdma_reset_ctrl(struct nvme_ctrl *nctrl)
1739 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
1741 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
1742 return -EBUSY;
1744 if (!queue_work(nvme_rdma_wq, &ctrl->reset_work))
1745 return -EBUSY;
1747 flush_work(&ctrl->reset_work);
1749 return 0;
1752 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
1753 .name = "rdma",
1754 .module = THIS_MODULE,
1755 .is_fabrics = true,
1756 .reg_read32 = nvmf_reg_read32,
1757 .reg_read64 = nvmf_reg_read64,
1758 .reg_write32 = nvmf_reg_write32,
1759 .reset_ctrl = nvme_rdma_reset_ctrl,
1760 .free_ctrl = nvme_rdma_free_ctrl,
1761 .submit_async_event = nvme_rdma_submit_async_event,
1762 .delete_ctrl = nvme_rdma_del_ctrl,
1763 .get_subsysnqn = nvmf_get_subsysnqn,
1764 .get_address = nvmf_get_address,
1767 static int nvme_rdma_create_io_queues(struct nvme_rdma_ctrl *ctrl)
1769 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
1770 int ret;
1772 ret = nvme_set_queue_count(&ctrl->ctrl, &opts->nr_io_queues);
1773 if (ret)
1774 return ret;
1776 ctrl->queue_count = opts->nr_io_queues + 1;
1777 if (ctrl->queue_count < 2)
1778 return 0;
1780 dev_info(ctrl->ctrl.device,
1781 "creating %d I/O queues.\n", opts->nr_io_queues);
1783 ret = nvme_rdma_init_io_queues(ctrl);
1784 if (ret)
1785 return ret;
1788 * We need a reference on the device as long as the tag_set is alive,
1789 * as the MRs in the request structures need a valid ib_device.
1791 ret = -EINVAL;
1792 if (!nvme_rdma_dev_get(ctrl->device))
1793 goto out_free_io_queues;
1795 memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set));
1796 ctrl->tag_set.ops = &nvme_rdma_mq_ops;
1797 ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size;
1798 ctrl->tag_set.reserved_tags = 1; /* fabric connect */
1799 ctrl->tag_set.numa_node = NUMA_NO_NODE;
1800 ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
1801 ctrl->tag_set.cmd_size = sizeof(struct nvme_rdma_request) +
1802 SG_CHUNK_SIZE * sizeof(struct scatterlist);
1803 ctrl->tag_set.driver_data = ctrl;
1804 ctrl->tag_set.nr_hw_queues = ctrl->queue_count - 1;
1805 ctrl->tag_set.timeout = NVME_IO_TIMEOUT;
1807 ret = blk_mq_alloc_tag_set(&ctrl->tag_set);
1808 if (ret)
1809 goto out_put_dev;
1810 ctrl->ctrl.tagset = &ctrl->tag_set;
1812 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
1813 if (IS_ERR(ctrl->ctrl.connect_q)) {
1814 ret = PTR_ERR(ctrl->ctrl.connect_q);
1815 goto out_free_tag_set;
1818 ret = nvme_rdma_connect_io_queues(ctrl);
1819 if (ret)
1820 goto out_cleanup_connect_q;
1822 return 0;
1824 out_cleanup_connect_q:
1825 blk_cleanup_queue(ctrl->ctrl.connect_q);
1826 out_free_tag_set:
1827 blk_mq_free_tag_set(&ctrl->tag_set);
1828 out_put_dev:
1829 nvme_rdma_dev_put(ctrl->device);
1830 out_free_io_queues:
1831 nvme_rdma_free_io_queues(ctrl);
1832 return ret;
1835 static int nvme_rdma_parse_ipaddr(struct sockaddr_in *in_addr, char *p)
1837 u8 *addr = (u8 *)&in_addr->sin_addr.s_addr;
1838 size_t buflen = strlen(p);
1840 /* XXX: handle IPv6 addresses */
1842 if (buflen > INET_ADDRSTRLEN)
1843 return -EINVAL;
1844 if (in4_pton(p, buflen, addr, '\0', NULL) == 0)
1845 return -EINVAL;
1846 in_addr->sin_family = AF_INET;
1847 return 0;
1850 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
1851 struct nvmf_ctrl_options *opts)
1853 struct nvme_rdma_ctrl *ctrl;
1854 int ret;
1855 bool changed;
1857 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1858 if (!ctrl)
1859 return ERR_PTR(-ENOMEM);
1860 ctrl->ctrl.opts = opts;
1861 INIT_LIST_HEAD(&ctrl->list);
1863 ret = nvme_rdma_parse_ipaddr(&ctrl->addr_in, opts->traddr);
1864 if (ret) {
1865 pr_err("malformed IP address passed: %s\n", opts->traddr);
1866 goto out_free_ctrl;
1869 if (opts->mask & NVMF_OPT_TRSVCID) {
1870 u16 port;
1872 ret = kstrtou16(opts->trsvcid, 0, &port);
1873 if (ret)
1874 goto out_free_ctrl;
1876 ctrl->addr_in.sin_port = cpu_to_be16(port);
1877 } else {
1878 ctrl->addr_in.sin_port = cpu_to_be16(NVME_RDMA_IP_PORT);
1881 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
1882 0 /* no quirks, we're perfect! */);
1883 if (ret)
1884 goto out_free_ctrl;
1886 ctrl->reconnect_delay = opts->reconnect_delay;
1887 INIT_DELAYED_WORK(&ctrl->reconnect_work,
1888 nvme_rdma_reconnect_ctrl_work);
1889 INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
1890 INIT_WORK(&ctrl->delete_work, nvme_rdma_del_ctrl_work);
1891 INIT_WORK(&ctrl->reset_work, nvme_rdma_reset_ctrl_work);
1892 spin_lock_init(&ctrl->lock);
1894 ctrl->queue_count = opts->nr_io_queues + 1; /* +1 for admin queue */
1895 ctrl->ctrl.sqsize = opts->queue_size - 1;
1896 ctrl->ctrl.kato = opts->kato;
1898 ret = -ENOMEM;
1899 ctrl->queues = kcalloc(ctrl->queue_count, sizeof(*ctrl->queues),
1900 GFP_KERNEL);
1901 if (!ctrl->queues)
1902 goto out_uninit_ctrl;
1904 ret = nvme_rdma_configure_admin_queue(ctrl);
1905 if (ret)
1906 goto out_kfree_queues;
1908 /* sanity check icdoff */
1909 if (ctrl->ctrl.icdoff) {
1910 dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
1911 goto out_remove_admin_queue;
1914 /* sanity check keyed sgls */
1915 if (!(ctrl->ctrl.sgls & (1 << 20))) {
1916 dev_err(ctrl->ctrl.device, "Mandatory keyed sgls are not support\n");
1917 goto out_remove_admin_queue;
1920 if (opts->queue_size > ctrl->ctrl.maxcmd) {
1921 /* warn if maxcmd is lower than queue_size */
1922 dev_warn(ctrl->ctrl.device,
1923 "queue_size %zu > ctrl maxcmd %u, clamping down\n",
1924 opts->queue_size, ctrl->ctrl.maxcmd);
1925 opts->queue_size = ctrl->ctrl.maxcmd;
1928 if (opts->nr_io_queues) {
1929 ret = nvme_rdma_create_io_queues(ctrl);
1930 if (ret)
1931 goto out_remove_admin_queue;
1934 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1935 WARN_ON_ONCE(!changed);
1937 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n",
1938 ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
1940 kref_get(&ctrl->ctrl.kref);
1942 mutex_lock(&nvme_rdma_ctrl_mutex);
1943 list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
1944 mutex_unlock(&nvme_rdma_ctrl_mutex);
1946 if (opts->nr_io_queues) {
1947 nvme_queue_scan(&ctrl->ctrl);
1948 nvme_queue_async_events(&ctrl->ctrl);
1951 return &ctrl->ctrl;
1953 out_remove_admin_queue:
1954 nvme_stop_keep_alive(&ctrl->ctrl);
1955 nvme_rdma_destroy_admin_queue(ctrl);
1956 out_kfree_queues:
1957 kfree(ctrl->queues);
1958 out_uninit_ctrl:
1959 nvme_uninit_ctrl(&ctrl->ctrl);
1960 nvme_put_ctrl(&ctrl->ctrl);
1961 if (ret > 0)
1962 ret = -EIO;
1963 return ERR_PTR(ret);
1964 out_free_ctrl:
1965 kfree(ctrl);
1966 return ERR_PTR(ret);
1969 static struct nvmf_transport_ops nvme_rdma_transport = {
1970 .name = "rdma",
1971 .required_opts = NVMF_OPT_TRADDR,
1972 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY,
1973 .create_ctrl = nvme_rdma_create_ctrl,
1976 static void nvme_rdma_add_one(struct ib_device *ib_device)
1980 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
1982 struct nvme_rdma_ctrl *ctrl;
1984 /* Delete all controllers using this device */
1985 mutex_lock(&nvme_rdma_ctrl_mutex);
1986 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
1987 if (ctrl->device->dev != ib_device)
1988 continue;
1989 dev_info(ctrl->ctrl.device,
1990 "Removing ctrl: NQN \"%s\", addr %pISp\n",
1991 ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
1992 __nvme_rdma_del_ctrl(ctrl);
1994 mutex_unlock(&nvme_rdma_ctrl_mutex);
1996 flush_workqueue(nvme_rdma_wq);
1999 static struct ib_client nvme_rdma_ib_client = {
2000 .name = "nvme_rdma",
2001 .add = nvme_rdma_add_one,
2002 .remove = nvme_rdma_remove_one
2005 static int __init nvme_rdma_init_module(void)
2007 int ret;
2009 nvme_rdma_wq = create_workqueue("nvme_rdma_wq");
2010 if (!nvme_rdma_wq)
2011 return -ENOMEM;
2013 ret = ib_register_client(&nvme_rdma_ib_client);
2014 if (ret) {
2015 destroy_workqueue(nvme_rdma_wq);
2016 return ret;
2019 nvmf_register_transport(&nvme_rdma_transport);
2020 return 0;
2023 static void __exit nvme_rdma_cleanup_module(void)
2025 nvmf_unregister_transport(&nvme_rdma_transport);
2026 ib_unregister_client(&nvme_rdma_ib_client);
2027 destroy_workqueue(nvme_rdma_wq);
2030 module_init(nvme_rdma_init_module);
2031 module_exit(nvme_rdma_cleanup_module);
2033 MODULE_LICENSE("GPL v2");