2 * NVMe over Fabrics RDMA host code.
3 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/err.h>
19 #include <linux/string.h>
20 #include <linux/atomic.h>
21 #include <linux/blk-mq.h>
22 #include <linux/types.h>
23 #include <linux/list.h>
24 #include <linux/mutex.h>
25 #include <linux/scatterlist.h>
26 #include <linux/nvme.h>
27 #include <asm/unaligned.h>
29 #include <rdma/ib_verbs.h>
30 #include <rdma/rdma_cm.h>
31 #include <rdma/ib_cm.h>
32 #include <linux/nvme-rdma.h>
38 #define NVME_RDMA_CONNECT_TIMEOUT_MS 1000 /* 1 second */
40 #define NVME_RDMA_MAX_SEGMENT_SIZE 0xffffff /* 24-bit SGL field */
42 #define NVME_RDMA_MAX_SEGMENTS 256
44 #define NVME_RDMA_MAX_INLINE_SEGMENTS 1
47 * We handle AEN commands ourselves and don't even let the
48 * block layer know about them.
50 #define NVME_RDMA_NR_AEN_COMMANDS 1
51 #define NVME_RDMA_AQ_BLKMQ_DEPTH \
52 (NVMF_AQ_DEPTH - NVME_RDMA_NR_AEN_COMMANDS)
54 struct nvme_rdma_device
{
55 struct ib_device
*dev
;
59 struct list_head entry
;
68 struct nvme_rdma_queue
;
69 struct nvme_rdma_request
{
71 struct nvme_rdma_qe sqe
;
72 struct ib_sge sge
[1 + NVME_RDMA_MAX_INLINE_SEGMENTS
];
76 struct ib_reg_wr reg_wr
;
77 struct ib_cqe reg_cqe
;
78 struct nvme_rdma_queue
*queue
;
79 struct sg_table sg_table
;
80 struct scatterlist first_sgl
[];
83 enum nvme_rdma_queue_flags
{
84 NVME_RDMA_Q_CONNECTED
= (1 << 0),
85 NVME_RDMA_IB_QUEUE_ALLOCATED
= (1 << 1),
86 NVME_RDMA_Q_DELETING
= (1 << 2),
89 struct nvme_rdma_queue
{
90 struct nvme_rdma_qe
*rsp_ring
;
93 size_t cmnd_capsule_len
;
94 struct nvme_rdma_ctrl
*ctrl
;
95 struct nvme_rdma_device
*device
;
100 struct rdma_cm_id
*cm_id
;
102 struct completion cm_done
;
105 struct nvme_rdma_ctrl
{
106 /* read and written in the hot path */
109 /* read only in the hot path */
110 struct nvme_rdma_queue
*queues
;
113 /* other member variables */
114 struct blk_mq_tag_set tag_set
;
115 struct work_struct delete_work
;
116 struct work_struct reset_work
;
117 struct work_struct err_work
;
119 struct nvme_rdma_qe async_event_sqe
;
122 struct delayed_work reconnect_work
;
124 struct list_head list
;
126 struct blk_mq_tag_set admin_tag_set
;
127 struct nvme_rdma_device
*device
;
133 struct sockaddr addr
;
134 struct sockaddr_in addr_in
;
137 struct nvme_ctrl ctrl
;
140 static inline struct nvme_rdma_ctrl
*to_rdma_ctrl(struct nvme_ctrl
*ctrl
)
142 return container_of(ctrl
, struct nvme_rdma_ctrl
, ctrl
);
145 static LIST_HEAD(device_list
);
146 static DEFINE_MUTEX(device_list_mutex
);
148 static LIST_HEAD(nvme_rdma_ctrl_list
);
149 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex
);
151 static struct workqueue_struct
*nvme_rdma_wq
;
154 * Disabling this option makes small I/O goes faster, but is fundamentally
155 * unsafe. With it turned off we will have to register a global rkey that
156 * allows read and write access to all physical memory.
158 static bool register_always
= true;
159 module_param(register_always
, bool, 0444);
160 MODULE_PARM_DESC(register_always
,
161 "Use memory registration even for contiguous memory regions");
163 static int nvme_rdma_cm_handler(struct rdma_cm_id
*cm_id
,
164 struct rdma_cm_event
*event
);
165 static void nvme_rdma_recv_done(struct ib_cq
*cq
, struct ib_wc
*wc
);
167 /* XXX: really should move to a generic header sooner or later.. */
168 static inline void put_unaligned_le24(u32 val
, u8
*p
)
175 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue
*queue
)
177 return queue
- queue
->ctrl
->queues
;
180 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue
*queue
)
182 return queue
->cmnd_capsule_len
- sizeof(struct nvme_command
);
185 static void nvme_rdma_free_qe(struct ib_device
*ibdev
, struct nvme_rdma_qe
*qe
,
186 size_t capsule_size
, enum dma_data_direction dir
)
188 ib_dma_unmap_single(ibdev
, qe
->dma
, capsule_size
, dir
);
192 static int nvme_rdma_alloc_qe(struct ib_device
*ibdev
, struct nvme_rdma_qe
*qe
,
193 size_t capsule_size
, enum dma_data_direction dir
)
195 qe
->data
= kzalloc(capsule_size
, GFP_KERNEL
);
199 qe
->dma
= ib_dma_map_single(ibdev
, qe
->data
, capsule_size
, dir
);
200 if (ib_dma_mapping_error(ibdev
, qe
->dma
)) {
208 static void nvme_rdma_free_ring(struct ib_device
*ibdev
,
209 struct nvme_rdma_qe
*ring
, size_t ib_queue_size
,
210 size_t capsule_size
, enum dma_data_direction dir
)
214 for (i
= 0; i
< ib_queue_size
; i
++)
215 nvme_rdma_free_qe(ibdev
, &ring
[i
], capsule_size
, dir
);
219 static struct nvme_rdma_qe
*nvme_rdma_alloc_ring(struct ib_device
*ibdev
,
220 size_t ib_queue_size
, size_t capsule_size
,
221 enum dma_data_direction dir
)
223 struct nvme_rdma_qe
*ring
;
226 ring
= kcalloc(ib_queue_size
, sizeof(struct nvme_rdma_qe
), GFP_KERNEL
);
230 for (i
= 0; i
< ib_queue_size
; i
++) {
231 if (nvme_rdma_alloc_qe(ibdev
, &ring
[i
], capsule_size
, dir
))
238 nvme_rdma_free_ring(ibdev
, ring
, i
, capsule_size
, dir
);
242 static void nvme_rdma_qp_event(struct ib_event
*event
, void *context
)
244 pr_debug("QP event %d\n", event
->event
);
247 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue
*queue
)
249 wait_for_completion_interruptible_timeout(&queue
->cm_done
,
250 msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS
) + 1);
251 return queue
->cm_error
;
254 static int nvme_rdma_create_qp(struct nvme_rdma_queue
*queue
, const int factor
)
256 struct nvme_rdma_device
*dev
= queue
->device
;
257 struct ib_qp_init_attr init_attr
;
260 memset(&init_attr
, 0, sizeof(init_attr
));
261 init_attr
.event_handler
= nvme_rdma_qp_event
;
263 init_attr
.cap
.max_send_wr
= factor
* queue
->queue_size
+ 1;
265 init_attr
.cap
.max_recv_wr
= queue
->queue_size
+ 1;
266 init_attr
.cap
.max_recv_sge
= 1;
267 init_attr
.cap
.max_send_sge
= 1 + NVME_RDMA_MAX_INLINE_SEGMENTS
;
268 init_attr
.sq_sig_type
= IB_SIGNAL_REQ_WR
;
269 init_attr
.qp_type
= IB_QPT_RC
;
270 init_attr
.send_cq
= queue
->ib_cq
;
271 init_attr
.recv_cq
= queue
->ib_cq
;
273 ret
= rdma_create_qp(queue
->cm_id
, dev
->pd
, &init_attr
);
275 queue
->qp
= queue
->cm_id
->qp
;
279 static int nvme_rdma_reinit_request(void *data
, struct request
*rq
)
281 struct nvme_rdma_ctrl
*ctrl
= data
;
282 struct nvme_rdma_device
*dev
= ctrl
->device
;
283 struct nvme_rdma_request
*req
= blk_mq_rq_to_pdu(rq
);
286 if (!req
->mr
->need_inval
)
289 ib_dereg_mr(req
->mr
);
291 req
->mr
= ib_alloc_mr(dev
->pd
, IB_MR_TYPE_MEM_REG
,
293 if (IS_ERR(req
->mr
)) {
294 ret
= PTR_ERR(req
->mr
);
299 req
->mr
->need_inval
= false;
305 static void __nvme_rdma_exit_request(struct nvme_rdma_ctrl
*ctrl
,
306 struct request
*rq
, unsigned int queue_idx
)
308 struct nvme_rdma_request
*req
= blk_mq_rq_to_pdu(rq
);
309 struct nvme_rdma_queue
*queue
= &ctrl
->queues
[queue_idx
];
310 struct nvme_rdma_device
*dev
= queue
->device
;
313 ib_dereg_mr(req
->mr
);
315 nvme_rdma_free_qe(dev
->dev
, &req
->sqe
, sizeof(struct nvme_command
),
319 static void nvme_rdma_exit_request(void *data
, struct request
*rq
,
320 unsigned int hctx_idx
, unsigned int rq_idx
)
322 return __nvme_rdma_exit_request(data
, rq
, hctx_idx
+ 1);
325 static void nvme_rdma_exit_admin_request(void *data
, struct request
*rq
,
326 unsigned int hctx_idx
, unsigned int rq_idx
)
328 return __nvme_rdma_exit_request(data
, rq
, 0);
331 static int __nvme_rdma_init_request(struct nvme_rdma_ctrl
*ctrl
,
332 struct request
*rq
, unsigned int queue_idx
)
334 struct nvme_rdma_request
*req
= blk_mq_rq_to_pdu(rq
);
335 struct nvme_rdma_queue
*queue
= &ctrl
->queues
[queue_idx
];
336 struct nvme_rdma_device
*dev
= queue
->device
;
337 struct ib_device
*ibdev
= dev
->dev
;
340 BUG_ON(queue_idx
>= ctrl
->queue_count
);
342 ret
= nvme_rdma_alloc_qe(ibdev
, &req
->sqe
, sizeof(struct nvme_command
),
347 req
->mr
= ib_alloc_mr(dev
->pd
, IB_MR_TYPE_MEM_REG
,
349 if (IS_ERR(req
->mr
)) {
350 ret
= PTR_ERR(req
->mr
);
359 nvme_rdma_free_qe(dev
->dev
, &req
->sqe
, sizeof(struct nvme_command
),
364 static int nvme_rdma_init_request(void *data
, struct request
*rq
,
365 unsigned int hctx_idx
, unsigned int rq_idx
,
366 unsigned int numa_node
)
368 return __nvme_rdma_init_request(data
, rq
, hctx_idx
+ 1);
371 static int nvme_rdma_init_admin_request(void *data
, struct request
*rq
,
372 unsigned int hctx_idx
, unsigned int rq_idx
,
373 unsigned int numa_node
)
375 return __nvme_rdma_init_request(data
, rq
, 0);
378 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx
*hctx
, void *data
,
379 unsigned int hctx_idx
)
381 struct nvme_rdma_ctrl
*ctrl
= data
;
382 struct nvme_rdma_queue
*queue
= &ctrl
->queues
[hctx_idx
+ 1];
384 BUG_ON(hctx_idx
>= ctrl
->queue_count
);
386 hctx
->driver_data
= queue
;
390 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx
*hctx
, void *data
,
391 unsigned int hctx_idx
)
393 struct nvme_rdma_ctrl
*ctrl
= data
;
394 struct nvme_rdma_queue
*queue
= &ctrl
->queues
[0];
396 BUG_ON(hctx_idx
!= 0);
398 hctx
->driver_data
= queue
;
402 static void nvme_rdma_free_dev(struct kref
*ref
)
404 struct nvme_rdma_device
*ndev
=
405 container_of(ref
, struct nvme_rdma_device
, ref
);
407 mutex_lock(&device_list_mutex
);
408 list_del(&ndev
->entry
);
409 mutex_unlock(&device_list_mutex
);
411 if (!register_always
)
412 ib_dereg_mr(ndev
->mr
);
413 ib_dealloc_pd(ndev
->pd
);
418 static void nvme_rdma_dev_put(struct nvme_rdma_device
*dev
)
420 kref_put(&dev
->ref
, nvme_rdma_free_dev
);
423 static int nvme_rdma_dev_get(struct nvme_rdma_device
*dev
)
425 return kref_get_unless_zero(&dev
->ref
);
428 static struct nvme_rdma_device
*
429 nvme_rdma_find_get_device(struct rdma_cm_id
*cm_id
)
431 struct nvme_rdma_device
*ndev
;
433 mutex_lock(&device_list_mutex
);
434 list_for_each_entry(ndev
, &device_list
, entry
) {
435 if (ndev
->dev
->node_guid
== cm_id
->device
->node_guid
&&
436 nvme_rdma_dev_get(ndev
))
440 ndev
= kzalloc(sizeof(*ndev
), GFP_KERNEL
);
444 ndev
->dev
= cm_id
->device
;
445 kref_init(&ndev
->ref
);
447 ndev
->pd
= ib_alloc_pd(ndev
->dev
);
448 if (IS_ERR(ndev
->pd
))
451 if (!register_always
) {
452 ndev
->mr
= ib_get_dma_mr(ndev
->pd
,
453 IB_ACCESS_LOCAL_WRITE
|
454 IB_ACCESS_REMOTE_READ
|
455 IB_ACCESS_REMOTE_WRITE
);
456 if (IS_ERR(ndev
->mr
))
460 if (!(ndev
->dev
->attrs
.device_cap_flags
&
461 IB_DEVICE_MEM_MGT_EXTENSIONS
)) {
462 dev_err(&ndev
->dev
->dev
,
463 "Memory registrations not supported.\n");
467 list_add(&ndev
->entry
, &device_list
);
469 mutex_unlock(&device_list_mutex
);
473 if (!register_always
)
474 ib_dereg_mr(ndev
->mr
);
476 ib_dealloc_pd(ndev
->pd
);
480 mutex_unlock(&device_list_mutex
);
484 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue
*queue
)
486 struct nvme_rdma_device
*dev
;
487 struct ib_device
*ibdev
;
489 if (!test_and_clear_bit(NVME_RDMA_IB_QUEUE_ALLOCATED
, &queue
->flags
))
494 rdma_destroy_qp(queue
->cm_id
);
495 ib_free_cq(queue
->ib_cq
);
497 nvme_rdma_free_ring(ibdev
, queue
->rsp_ring
, queue
->queue_size
,
498 sizeof(struct nvme_completion
), DMA_FROM_DEVICE
);
500 nvme_rdma_dev_put(dev
);
503 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue
*queue
,
504 struct nvme_rdma_device
*dev
)
506 struct ib_device
*ibdev
= dev
->dev
;
507 const int send_wr_factor
= 3; /* MR, SEND, INV */
508 const int cq_factor
= send_wr_factor
+ 1; /* + RECV */
509 int comp_vector
, idx
= nvme_rdma_queue_idx(queue
);
516 * The admin queue is barely used once the controller is live, so don't
517 * bother to spread it out.
522 comp_vector
= idx
% ibdev
->num_comp_vectors
;
525 /* +1 for ib_stop_cq */
526 queue
->ib_cq
= ib_alloc_cq(dev
->dev
, queue
,
527 cq_factor
* queue
->queue_size
+ 1, comp_vector
,
529 if (IS_ERR(queue
->ib_cq
)) {
530 ret
= PTR_ERR(queue
->ib_cq
);
534 ret
= nvme_rdma_create_qp(queue
, send_wr_factor
);
536 goto out_destroy_ib_cq
;
538 queue
->rsp_ring
= nvme_rdma_alloc_ring(ibdev
, queue
->queue_size
,
539 sizeof(struct nvme_completion
), DMA_FROM_DEVICE
);
540 if (!queue
->rsp_ring
) {
544 set_bit(NVME_RDMA_IB_QUEUE_ALLOCATED
, &queue
->flags
);
549 ib_destroy_qp(queue
->qp
);
551 ib_free_cq(queue
->ib_cq
);
556 static int nvme_rdma_init_queue(struct nvme_rdma_ctrl
*ctrl
,
557 int idx
, size_t queue_size
)
559 struct nvme_rdma_queue
*queue
;
562 queue
= &ctrl
->queues
[idx
];
565 init_completion(&queue
->cm_done
);
568 queue
->cmnd_capsule_len
= ctrl
->ctrl
.ioccsz
* 16;
570 queue
->cmnd_capsule_len
= sizeof(struct nvme_command
);
572 queue
->queue_size
= queue_size
;
574 queue
->cm_id
= rdma_create_id(&init_net
, nvme_rdma_cm_handler
, queue
,
575 RDMA_PS_TCP
, IB_QPT_RC
);
576 if (IS_ERR(queue
->cm_id
)) {
577 dev_info(ctrl
->ctrl
.device
,
578 "failed to create CM ID: %ld\n", PTR_ERR(queue
->cm_id
));
579 return PTR_ERR(queue
->cm_id
);
582 queue
->cm_error
= -ETIMEDOUT
;
583 ret
= rdma_resolve_addr(queue
->cm_id
, NULL
, &ctrl
->addr
,
584 NVME_RDMA_CONNECT_TIMEOUT_MS
);
586 dev_info(ctrl
->ctrl
.device
,
587 "rdma_resolve_addr failed (%d).\n", ret
);
588 goto out_destroy_cm_id
;
591 ret
= nvme_rdma_wait_for_cm(queue
);
593 dev_info(ctrl
->ctrl
.device
,
594 "rdma_resolve_addr wait failed (%d).\n", ret
);
595 goto out_destroy_cm_id
;
598 set_bit(NVME_RDMA_Q_CONNECTED
, &queue
->flags
);
603 nvme_rdma_destroy_queue_ib(queue
);
604 rdma_destroy_id(queue
->cm_id
);
608 static void nvme_rdma_stop_queue(struct nvme_rdma_queue
*queue
)
610 rdma_disconnect(queue
->cm_id
);
611 ib_drain_qp(queue
->qp
);
614 static void nvme_rdma_free_queue(struct nvme_rdma_queue
*queue
)
616 nvme_rdma_destroy_queue_ib(queue
);
617 rdma_destroy_id(queue
->cm_id
);
620 static void nvme_rdma_stop_and_free_queue(struct nvme_rdma_queue
*queue
)
622 if (test_and_set_bit(NVME_RDMA_Q_DELETING
, &queue
->flags
))
624 nvme_rdma_stop_queue(queue
);
625 nvme_rdma_free_queue(queue
);
628 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl
*ctrl
)
632 for (i
= 1; i
< ctrl
->queue_count
; i
++)
633 nvme_rdma_stop_and_free_queue(&ctrl
->queues
[i
]);
636 static int nvme_rdma_connect_io_queues(struct nvme_rdma_ctrl
*ctrl
)
640 for (i
= 1; i
< ctrl
->queue_count
; i
++) {
641 ret
= nvmf_connect_io_queue(&ctrl
->ctrl
, i
);
649 static int nvme_rdma_init_io_queues(struct nvme_rdma_ctrl
*ctrl
)
653 for (i
= 1; i
< ctrl
->queue_count
; i
++) {
654 ret
= nvme_rdma_init_queue(ctrl
, i
,
655 ctrl
->ctrl
.opts
->queue_size
);
657 dev_info(ctrl
->ctrl
.device
,
658 "failed to initialize i/o queue: %d\n", ret
);
659 goto out_free_queues
;
666 for (i
--; i
>= 1; i
--)
667 nvme_rdma_stop_and_free_queue(&ctrl
->queues
[i
]);
672 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl
*ctrl
)
674 nvme_rdma_free_qe(ctrl
->queues
[0].device
->dev
, &ctrl
->async_event_sqe
,
675 sizeof(struct nvme_command
), DMA_TO_DEVICE
);
676 nvme_rdma_stop_and_free_queue(&ctrl
->queues
[0]);
677 blk_cleanup_queue(ctrl
->ctrl
.admin_q
);
678 blk_mq_free_tag_set(&ctrl
->admin_tag_set
);
679 nvme_rdma_dev_put(ctrl
->device
);
682 static void nvme_rdma_free_ctrl(struct nvme_ctrl
*nctrl
)
684 struct nvme_rdma_ctrl
*ctrl
= to_rdma_ctrl(nctrl
);
686 if (list_empty(&ctrl
->list
))
689 mutex_lock(&nvme_rdma_ctrl_mutex
);
690 list_del(&ctrl
->list
);
691 mutex_unlock(&nvme_rdma_ctrl_mutex
);
694 nvmf_free_options(nctrl
->opts
);
699 static void nvme_rdma_reconnect_ctrl_work(struct work_struct
*work
)
701 struct nvme_rdma_ctrl
*ctrl
= container_of(to_delayed_work(work
),
702 struct nvme_rdma_ctrl
, reconnect_work
);
706 if (ctrl
->queue_count
> 1) {
707 nvme_rdma_free_io_queues(ctrl
);
709 ret
= blk_mq_reinit_tagset(&ctrl
->tag_set
);
714 nvme_rdma_stop_and_free_queue(&ctrl
->queues
[0]);
716 ret
= blk_mq_reinit_tagset(&ctrl
->admin_tag_set
);
720 ret
= nvme_rdma_init_queue(ctrl
, 0, NVMF_AQ_DEPTH
);
724 blk_mq_start_stopped_hw_queues(ctrl
->ctrl
.admin_q
, true);
726 ret
= nvmf_connect_admin_queue(&ctrl
->ctrl
);
730 ret
= nvme_enable_ctrl(&ctrl
->ctrl
, ctrl
->cap
);
734 nvme_start_keep_alive(&ctrl
->ctrl
);
736 if (ctrl
->queue_count
> 1) {
737 ret
= nvme_rdma_init_io_queues(ctrl
);
741 ret
= nvme_rdma_connect_io_queues(ctrl
);
746 changed
= nvme_change_ctrl_state(&ctrl
->ctrl
, NVME_CTRL_LIVE
);
747 WARN_ON_ONCE(!changed
);
749 if (ctrl
->queue_count
> 1) {
750 nvme_start_queues(&ctrl
->ctrl
);
751 nvme_queue_scan(&ctrl
->ctrl
);
752 nvme_queue_async_events(&ctrl
->ctrl
);
755 dev_info(ctrl
->ctrl
.device
, "Successfully reconnected\n");
760 blk_mq_stop_hw_queues(ctrl
->ctrl
.admin_q
);
762 /* Make sure we are not resetting/deleting */
763 if (ctrl
->ctrl
.state
== NVME_CTRL_RECONNECTING
) {
764 dev_info(ctrl
->ctrl
.device
,
765 "Failed reconnect attempt, requeueing...\n");
766 queue_delayed_work(nvme_rdma_wq
, &ctrl
->reconnect_work
,
767 ctrl
->reconnect_delay
* HZ
);
771 static void nvme_rdma_error_recovery_work(struct work_struct
*work
)
773 struct nvme_rdma_ctrl
*ctrl
= container_of(work
,
774 struct nvme_rdma_ctrl
, err_work
);
777 nvme_stop_keep_alive(&ctrl
->ctrl
);
779 for (i
= 0; i
< ctrl
->queue_count
; i
++)
780 clear_bit(NVME_RDMA_Q_CONNECTED
, &ctrl
->queues
[i
].flags
);
782 if (ctrl
->queue_count
> 1)
783 nvme_stop_queues(&ctrl
->ctrl
);
784 blk_mq_stop_hw_queues(ctrl
->ctrl
.admin_q
);
786 /* We must take care of fastfail/requeue all our inflight requests */
787 if (ctrl
->queue_count
> 1)
788 blk_mq_tagset_busy_iter(&ctrl
->tag_set
,
789 nvme_cancel_request
, &ctrl
->ctrl
);
790 blk_mq_tagset_busy_iter(&ctrl
->admin_tag_set
,
791 nvme_cancel_request
, &ctrl
->ctrl
);
793 dev_info(ctrl
->ctrl
.device
, "reconnecting in %d seconds\n",
794 ctrl
->reconnect_delay
);
796 queue_delayed_work(nvme_rdma_wq
, &ctrl
->reconnect_work
,
797 ctrl
->reconnect_delay
* HZ
);
800 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl
*ctrl
)
802 if (!nvme_change_ctrl_state(&ctrl
->ctrl
, NVME_CTRL_RECONNECTING
))
805 queue_work(nvme_rdma_wq
, &ctrl
->err_work
);
808 static void nvme_rdma_wr_error(struct ib_cq
*cq
, struct ib_wc
*wc
,
811 struct nvme_rdma_queue
*queue
= cq
->cq_context
;
812 struct nvme_rdma_ctrl
*ctrl
= queue
->ctrl
;
814 if (ctrl
->ctrl
.state
== NVME_CTRL_LIVE
)
815 dev_info(ctrl
->ctrl
.device
,
816 "%s for CQE 0x%p failed with status %s (%d)\n",
818 ib_wc_status_msg(wc
->status
), wc
->status
);
819 nvme_rdma_error_recovery(ctrl
);
822 static void nvme_rdma_memreg_done(struct ib_cq
*cq
, struct ib_wc
*wc
)
824 if (unlikely(wc
->status
!= IB_WC_SUCCESS
))
825 nvme_rdma_wr_error(cq
, wc
, "MEMREG");
828 static void nvme_rdma_inv_rkey_done(struct ib_cq
*cq
, struct ib_wc
*wc
)
830 if (unlikely(wc
->status
!= IB_WC_SUCCESS
))
831 nvme_rdma_wr_error(cq
, wc
, "LOCAL_INV");
834 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue
*queue
,
835 struct nvme_rdma_request
*req
)
837 struct ib_send_wr
*bad_wr
;
838 struct ib_send_wr wr
= {
839 .opcode
= IB_WR_LOCAL_INV
,
843 .ex
.invalidate_rkey
= req
->mr
->rkey
,
846 req
->reg_cqe
.done
= nvme_rdma_inv_rkey_done
;
847 wr
.wr_cqe
= &req
->reg_cqe
;
849 return ib_post_send(queue
->qp
, &wr
, &bad_wr
);
852 static void nvme_rdma_unmap_data(struct nvme_rdma_queue
*queue
,
855 struct nvme_rdma_request
*req
= blk_mq_rq_to_pdu(rq
);
856 struct nvme_rdma_ctrl
*ctrl
= queue
->ctrl
;
857 struct nvme_rdma_device
*dev
= queue
->device
;
858 struct ib_device
*ibdev
= dev
->dev
;
861 if (!blk_rq_bytes(rq
))
864 if (req
->mr
->need_inval
) {
865 res
= nvme_rdma_inv_rkey(queue
, req
);
867 dev_err(ctrl
->ctrl
.device
,
868 "Queueing INV WR for rkey %#x failed (%d)\n",
870 nvme_rdma_error_recovery(queue
->ctrl
);
874 ib_dma_unmap_sg(ibdev
, req
->sg_table
.sgl
,
875 req
->nents
, rq_data_dir(rq
) ==
876 WRITE
? DMA_TO_DEVICE
: DMA_FROM_DEVICE
);
878 nvme_cleanup_cmd(rq
);
879 sg_free_table_chained(&req
->sg_table
, true);
882 static int nvme_rdma_set_sg_null(struct nvme_command
*c
)
884 struct nvme_keyed_sgl_desc
*sg
= &c
->common
.dptr
.ksgl
;
887 put_unaligned_le24(0, sg
->length
);
888 put_unaligned_le32(0, sg
->key
);
889 sg
->type
= NVME_KEY_SGL_FMT_DATA_DESC
<< 4;
893 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue
*queue
,
894 struct nvme_rdma_request
*req
, struct nvme_command
*c
)
896 struct nvme_sgl_desc
*sg
= &c
->common
.dptr
.sgl
;
898 req
->sge
[1].addr
= sg_dma_address(req
->sg_table
.sgl
);
899 req
->sge
[1].length
= sg_dma_len(req
->sg_table
.sgl
);
900 req
->sge
[1].lkey
= queue
->device
->pd
->local_dma_lkey
;
902 sg
->addr
= cpu_to_le64(queue
->ctrl
->ctrl
.icdoff
);
903 sg
->length
= cpu_to_le32(sg_dma_len(req
->sg_table
.sgl
));
904 sg
->type
= (NVME_SGL_FMT_DATA_DESC
<< 4) | NVME_SGL_FMT_OFFSET
;
906 req
->inline_data
= true;
911 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue
*queue
,
912 struct nvme_rdma_request
*req
, struct nvme_command
*c
)
914 struct nvme_keyed_sgl_desc
*sg
= &c
->common
.dptr
.ksgl
;
916 sg
->addr
= cpu_to_le64(sg_dma_address(req
->sg_table
.sgl
));
917 put_unaligned_le24(sg_dma_len(req
->sg_table
.sgl
), sg
->length
);
918 put_unaligned_le32(queue
->device
->mr
->rkey
, sg
->key
);
919 sg
->type
= NVME_KEY_SGL_FMT_DATA_DESC
<< 4;
923 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue
*queue
,
924 struct nvme_rdma_request
*req
, struct nvme_command
*c
,
927 struct nvme_keyed_sgl_desc
*sg
= &c
->common
.dptr
.ksgl
;
930 nr
= ib_map_mr_sg(req
->mr
, req
->sg_table
.sgl
, count
, NULL
, PAGE_SIZE
);
937 ib_update_fast_reg_key(req
->mr
, ib_inc_rkey(req
->mr
->rkey
));
939 req
->reg_cqe
.done
= nvme_rdma_memreg_done
;
940 memset(&req
->reg_wr
, 0, sizeof(req
->reg_wr
));
941 req
->reg_wr
.wr
.opcode
= IB_WR_REG_MR
;
942 req
->reg_wr
.wr
.wr_cqe
= &req
->reg_cqe
;
943 req
->reg_wr
.wr
.num_sge
= 0;
944 req
->reg_wr
.mr
= req
->mr
;
945 req
->reg_wr
.key
= req
->mr
->rkey
;
946 req
->reg_wr
.access
= IB_ACCESS_LOCAL_WRITE
|
947 IB_ACCESS_REMOTE_READ
|
948 IB_ACCESS_REMOTE_WRITE
;
950 req
->mr
->need_inval
= true;
952 sg
->addr
= cpu_to_le64(req
->mr
->iova
);
953 put_unaligned_le24(req
->mr
->length
, sg
->length
);
954 put_unaligned_le32(req
->mr
->rkey
, sg
->key
);
955 sg
->type
= (NVME_KEY_SGL_FMT_DATA_DESC
<< 4) |
956 NVME_SGL_FMT_INVALIDATE
;
961 static int nvme_rdma_map_data(struct nvme_rdma_queue
*queue
,
962 struct request
*rq
, unsigned int map_len
,
963 struct nvme_command
*c
)
965 struct nvme_rdma_request
*req
= blk_mq_rq_to_pdu(rq
);
966 struct nvme_rdma_device
*dev
= queue
->device
;
967 struct ib_device
*ibdev
= dev
->dev
;
972 req
->inline_data
= false;
973 req
->mr
->need_inval
= false;
975 c
->common
.flags
|= NVME_CMD_SGL_METABUF
;
977 if (!blk_rq_bytes(rq
))
978 return nvme_rdma_set_sg_null(c
);
980 req
->sg_table
.sgl
= req
->first_sgl
;
981 ret
= sg_alloc_table_chained(&req
->sg_table
, rq
->nr_phys_segments
,
986 nents
= blk_rq_map_sg(rq
->q
, rq
, req
->sg_table
.sgl
);
987 BUG_ON(nents
> rq
->nr_phys_segments
);
990 count
= ib_dma_map_sg(ibdev
, req
->sg_table
.sgl
, nents
,
991 rq_data_dir(rq
) == WRITE
? DMA_TO_DEVICE
: DMA_FROM_DEVICE
);
992 if (unlikely(count
<= 0)) {
993 sg_free_table_chained(&req
->sg_table
, true);
998 if (rq_data_dir(rq
) == WRITE
&&
999 map_len
<= nvme_rdma_inline_data_size(queue
) &&
1000 nvme_rdma_queue_idx(queue
))
1001 return nvme_rdma_map_sg_inline(queue
, req
, c
);
1003 if (!register_always
)
1004 return nvme_rdma_map_sg_single(queue
, req
, c
);
1007 return nvme_rdma_map_sg_fr(queue
, req
, c
, count
);
1010 static void nvme_rdma_send_done(struct ib_cq
*cq
, struct ib_wc
*wc
)
1012 if (unlikely(wc
->status
!= IB_WC_SUCCESS
))
1013 nvme_rdma_wr_error(cq
, wc
, "SEND");
1016 static int nvme_rdma_post_send(struct nvme_rdma_queue
*queue
,
1017 struct nvme_rdma_qe
*qe
, struct ib_sge
*sge
, u32 num_sge
,
1018 struct ib_send_wr
*first
, bool flush
)
1020 struct ib_send_wr wr
, *bad_wr
;
1023 sge
->addr
= qe
->dma
;
1024 sge
->length
= sizeof(struct nvme_command
),
1025 sge
->lkey
= queue
->device
->pd
->local_dma_lkey
;
1027 qe
->cqe
.done
= nvme_rdma_send_done
;
1030 wr
.wr_cqe
= &qe
->cqe
;
1032 wr
.num_sge
= num_sge
;
1033 wr
.opcode
= IB_WR_SEND
;
1037 * Unsignalled send completions are another giant desaster in the
1038 * IB Verbs spec: If we don't regularly post signalled sends
1039 * the send queue will fill up and only a QP reset will rescue us.
1040 * Would have been way to obvious to handle this in hardware or
1041 * at least the RDMA stack..
1043 * This messy and racy code sniplet is copy and pasted from the iSER
1044 * initiator, and the magic '32' comes from there as well.
1046 * Always signal the flushes. The magic request used for the flush
1047 * sequencer is not allocated in our driver's tagset and it's
1048 * triggered to be freed by blk_cleanup_queue(). So we need to
1049 * always mark it as signaled to ensure that the "wr_cqe", which is
1050 * embeded in request's payload, is not freed when __ib_process_cq()
1051 * calls wr_cqe->done().
1053 if ((++queue
->sig_count
% 32) == 0 || flush
)
1054 wr
.send_flags
|= IB_SEND_SIGNALED
;
1061 ret
= ib_post_send(queue
->qp
, first
, &bad_wr
);
1063 dev_err(queue
->ctrl
->ctrl
.device
,
1064 "%s failed with error code %d\n", __func__
, ret
);
1069 static int nvme_rdma_post_recv(struct nvme_rdma_queue
*queue
,
1070 struct nvme_rdma_qe
*qe
)
1072 struct ib_recv_wr wr
, *bad_wr
;
1076 list
.addr
= qe
->dma
;
1077 list
.length
= sizeof(struct nvme_completion
);
1078 list
.lkey
= queue
->device
->pd
->local_dma_lkey
;
1080 qe
->cqe
.done
= nvme_rdma_recv_done
;
1083 wr
.wr_cqe
= &qe
->cqe
;
1087 ret
= ib_post_recv(queue
->qp
, &wr
, &bad_wr
);
1089 dev_err(queue
->ctrl
->ctrl
.device
,
1090 "%s failed with error code %d\n", __func__
, ret
);
1095 static struct blk_mq_tags
*nvme_rdma_tagset(struct nvme_rdma_queue
*queue
)
1097 u32 queue_idx
= nvme_rdma_queue_idx(queue
);
1100 return queue
->ctrl
->admin_tag_set
.tags
[queue_idx
];
1101 return queue
->ctrl
->tag_set
.tags
[queue_idx
- 1];
1104 static void nvme_rdma_submit_async_event(struct nvme_ctrl
*arg
, int aer_idx
)
1106 struct nvme_rdma_ctrl
*ctrl
= to_rdma_ctrl(arg
);
1107 struct nvme_rdma_queue
*queue
= &ctrl
->queues
[0];
1108 struct ib_device
*dev
= queue
->device
->dev
;
1109 struct nvme_rdma_qe
*sqe
= &ctrl
->async_event_sqe
;
1110 struct nvme_command
*cmd
= sqe
->data
;
1114 if (WARN_ON_ONCE(aer_idx
!= 0))
1117 ib_dma_sync_single_for_cpu(dev
, sqe
->dma
, sizeof(*cmd
), DMA_TO_DEVICE
);
1119 memset(cmd
, 0, sizeof(*cmd
));
1120 cmd
->common
.opcode
= nvme_admin_async_event
;
1121 cmd
->common
.command_id
= NVME_RDMA_AQ_BLKMQ_DEPTH
;
1122 cmd
->common
.flags
|= NVME_CMD_SGL_METABUF
;
1123 nvme_rdma_set_sg_null(cmd
);
1125 ib_dma_sync_single_for_device(dev
, sqe
->dma
, sizeof(*cmd
),
1128 ret
= nvme_rdma_post_send(queue
, sqe
, &sge
, 1, NULL
, false);
1132 static int nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue
*queue
,
1133 struct nvme_completion
*cqe
, struct ib_wc
*wc
, int tag
)
1135 u16 status
= le16_to_cpu(cqe
->status
);
1137 struct nvme_rdma_request
*req
;
1142 rq
= blk_mq_tag_to_rq(nvme_rdma_tagset(queue
), cqe
->command_id
);
1144 dev_err(queue
->ctrl
->ctrl
.device
,
1145 "tag 0x%x on QP %#x not found\n",
1146 cqe
->command_id
, queue
->qp
->qp_num
);
1147 nvme_rdma_error_recovery(queue
->ctrl
);
1150 req
= blk_mq_rq_to_pdu(rq
);
1152 if (rq
->cmd_type
== REQ_TYPE_DRV_PRIV
&& rq
->special
)
1153 memcpy(rq
->special
, cqe
, sizeof(*cqe
));
1158 if ((wc
->wc_flags
& IB_WC_WITH_INVALIDATE
) &&
1159 wc
->ex
.invalidate_rkey
== req
->mr
->rkey
)
1160 req
->mr
->need_inval
= false;
1162 blk_mq_complete_request(rq
, status
);
1167 static int __nvme_rdma_recv_done(struct ib_cq
*cq
, struct ib_wc
*wc
, int tag
)
1169 struct nvme_rdma_qe
*qe
=
1170 container_of(wc
->wr_cqe
, struct nvme_rdma_qe
, cqe
);
1171 struct nvme_rdma_queue
*queue
= cq
->cq_context
;
1172 struct ib_device
*ibdev
= queue
->device
->dev
;
1173 struct nvme_completion
*cqe
= qe
->data
;
1174 const size_t len
= sizeof(struct nvme_completion
);
1177 if (unlikely(wc
->status
!= IB_WC_SUCCESS
)) {
1178 nvme_rdma_wr_error(cq
, wc
, "RECV");
1182 ib_dma_sync_single_for_cpu(ibdev
, qe
->dma
, len
, DMA_FROM_DEVICE
);
1184 * AEN requests are special as they don't time out and can
1185 * survive any kind of queue freeze and often don't respond to
1186 * aborts. We don't even bother to allocate a struct request
1187 * for them but rather special case them here.
1189 if (unlikely(nvme_rdma_queue_idx(queue
) == 0 &&
1190 cqe
->command_id
>= NVME_RDMA_AQ_BLKMQ_DEPTH
))
1191 nvme_complete_async_event(&queue
->ctrl
->ctrl
, cqe
);
1193 ret
= nvme_rdma_process_nvme_rsp(queue
, cqe
, wc
, tag
);
1194 ib_dma_sync_single_for_device(ibdev
, qe
->dma
, len
, DMA_FROM_DEVICE
);
1196 nvme_rdma_post_recv(queue
, qe
);
1200 static void nvme_rdma_recv_done(struct ib_cq
*cq
, struct ib_wc
*wc
)
1202 __nvme_rdma_recv_done(cq
, wc
, -1);
1205 static int nvme_rdma_conn_established(struct nvme_rdma_queue
*queue
)
1209 for (i
= 0; i
< queue
->queue_size
; i
++) {
1210 ret
= nvme_rdma_post_recv(queue
, &queue
->rsp_ring
[i
]);
1212 goto out_destroy_queue_ib
;
1217 out_destroy_queue_ib
:
1218 nvme_rdma_destroy_queue_ib(queue
);
1222 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue
*queue
,
1223 struct rdma_cm_event
*ev
)
1225 if (ev
->param
.conn
.private_data_len
) {
1226 struct nvme_rdma_cm_rej
*rej
=
1227 (struct nvme_rdma_cm_rej
*)ev
->param
.conn
.private_data
;
1229 dev_err(queue
->ctrl
->ctrl
.device
,
1230 "Connect rejected, status %d.", le16_to_cpu(rej
->sts
));
1231 /* XXX: Think of something clever to do here... */
1233 dev_err(queue
->ctrl
->ctrl
.device
,
1234 "Connect rejected, no private data.\n");
1240 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue
*queue
)
1242 struct nvme_rdma_device
*dev
;
1245 dev
= nvme_rdma_find_get_device(queue
->cm_id
);
1247 dev_err(queue
->cm_id
->device
->dma_device
,
1248 "no client data found!\n");
1249 return -ECONNREFUSED
;
1252 ret
= nvme_rdma_create_queue_ib(queue
, dev
);
1254 nvme_rdma_dev_put(dev
);
1258 ret
= rdma_resolve_route(queue
->cm_id
, NVME_RDMA_CONNECT_TIMEOUT_MS
);
1260 dev_err(queue
->ctrl
->ctrl
.device
,
1261 "rdma_resolve_route failed (%d).\n",
1263 goto out_destroy_queue
;
1269 nvme_rdma_destroy_queue_ib(queue
);
1274 static int nvme_rdma_route_resolved(struct nvme_rdma_queue
*queue
)
1276 struct nvme_rdma_ctrl
*ctrl
= queue
->ctrl
;
1277 struct rdma_conn_param param
= { };
1278 struct nvme_rdma_cm_req priv
= { };
1281 param
.qp_num
= queue
->qp
->qp_num
;
1282 param
.flow_control
= 1;
1284 param
.responder_resources
= queue
->device
->dev
->attrs
.max_qp_rd_atom
;
1285 /* maximum retry count */
1286 param
.retry_count
= 7;
1287 param
.rnr_retry_count
= 7;
1288 param
.private_data
= &priv
;
1289 param
.private_data_len
= sizeof(priv
);
1291 priv
.recfmt
= cpu_to_le16(NVME_RDMA_CM_FMT_1_0
);
1292 priv
.qid
= cpu_to_le16(nvme_rdma_queue_idx(queue
));
1294 * set the admin queue depth to the minimum size
1295 * specified by the Fabrics standard.
1297 if (priv
.qid
== 0) {
1298 priv
.hrqsize
= cpu_to_le16(NVMF_AQ_DEPTH
);
1299 priv
.hsqsize
= cpu_to_le16(NVMF_AQ_DEPTH
- 1);
1302 * current interpretation of the fabrics spec
1303 * is at minimum you make hrqsize sqsize+1, or a
1304 * 1's based representation of sqsize.
1306 priv
.hrqsize
= cpu_to_le16(queue
->queue_size
);
1307 priv
.hsqsize
= cpu_to_le16(queue
->ctrl
->ctrl
.sqsize
);
1310 ret
= rdma_connect(queue
->cm_id
, ¶m
);
1312 dev_err(ctrl
->ctrl
.device
,
1313 "rdma_connect failed (%d).\n", ret
);
1314 goto out_destroy_queue_ib
;
1319 out_destroy_queue_ib
:
1320 nvme_rdma_destroy_queue_ib(queue
);
1324 static int nvme_rdma_cm_handler(struct rdma_cm_id
*cm_id
,
1325 struct rdma_cm_event
*ev
)
1327 struct nvme_rdma_queue
*queue
= cm_id
->context
;
1330 dev_dbg(queue
->ctrl
->ctrl
.device
, "%s (%d): status %d id %p\n",
1331 rdma_event_msg(ev
->event
), ev
->event
,
1334 switch (ev
->event
) {
1335 case RDMA_CM_EVENT_ADDR_RESOLVED
:
1336 cm_error
= nvme_rdma_addr_resolved(queue
);
1338 case RDMA_CM_EVENT_ROUTE_RESOLVED
:
1339 cm_error
= nvme_rdma_route_resolved(queue
);
1341 case RDMA_CM_EVENT_ESTABLISHED
:
1342 queue
->cm_error
= nvme_rdma_conn_established(queue
);
1343 /* complete cm_done regardless of success/failure */
1344 complete(&queue
->cm_done
);
1346 case RDMA_CM_EVENT_REJECTED
:
1347 cm_error
= nvme_rdma_conn_rejected(queue
, ev
);
1349 case RDMA_CM_EVENT_ADDR_ERROR
:
1350 case RDMA_CM_EVENT_ROUTE_ERROR
:
1351 case RDMA_CM_EVENT_CONNECT_ERROR
:
1352 case RDMA_CM_EVENT_UNREACHABLE
:
1353 dev_dbg(queue
->ctrl
->ctrl
.device
,
1354 "CM error event %d\n", ev
->event
);
1355 cm_error
= -ECONNRESET
;
1357 case RDMA_CM_EVENT_DISCONNECTED
:
1358 case RDMA_CM_EVENT_ADDR_CHANGE
:
1359 case RDMA_CM_EVENT_TIMEWAIT_EXIT
:
1360 dev_dbg(queue
->ctrl
->ctrl
.device
,
1361 "disconnect received - connection closed\n");
1362 nvme_rdma_error_recovery(queue
->ctrl
);
1364 case RDMA_CM_EVENT_DEVICE_REMOVAL
:
1365 /* device removal is handled via the ib_client API */
1368 dev_err(queue
->ctrl
->ctrl
.device
,
1369 "Unexpected RDMA CM event (%d)\n", ev
->event
);
1370 nvme_rdma_error_recovery(queue
->ctrl
);
1375 queue
->cm_error
= cm_error
;
1376 complete(&queue
->cm_done
);
1382 static enum blk_eh_timer_return
1383 nvme_rdma_timeout(struct request
*rq
, bool reserved
)
1385 struct nvme_rdma_request
*req
= blk_mq_rq_to_pdu(rq
);
1387 /* queue error recovery */
1388 nvme_rdma_error_recovery(req
->queue
->ctrl
);
1390 /* fail with DNR on cmd timeout */
1391 rq
->errors
= NVME_SC_ABORT_REQ
| NVME_SC_DNR
;
1393 return BLK_EH_HANDLED
;
1396 static int nvme_rdma_queue_rq(struct blk_mq_hw_ctx
*hctx
,
1397 const struct blk_mq_queue_data
*bd
)
1399 struct nvme_ns
*ns
= hctx
->queue
->queuedata
;
1400 struct nvme_rdma_queue
*queue
= hctx
->driver_data
;
1401 struct request
*rq
= bd
->rq
;
1402 struct nvme_rdma_request
*req
= blk_mq_rq_to_pdu(rq
);
1403 struct nvme_rdma_qe
*sqe
= &req
->sqe
;
1404 struct nvme_command
*c
= sqe
->data
;
1406 struct ib_device
*dev
;
1407 unsigned int map_len
;
1410 WARN_ON_ONCE(rq
->tag
< 0);
1412 dev
= queue
->device
->dev
;
1413 ib_dma_sync_single_for_cpu(dev
, sqe
->dma
,
1414 sizeof(struct nvme_command
), DMA_TO_DEVICE
);
1416 ret
= nvme_setup_cmd(ns
, rq
, c
);
1420 c
->common
.command_id
= rq
->tag
;
1421 blk_mq_start_request(rq
);
1423 map_len
= nvme_map_len(rq
);
1424 ret
= nvme_rdma_map_data(queue
, rq
, map_len
, c
);
1426 dev_err(queue
->ctrl
->ctrl
.device
,
1427 "Failed to map data (%d)\n", ret
);
1428 nvme_cleanup_cmd(rq
);
1432 ib_dma_sync_single_for_device(dev
, sqe
->dma
,
1433 sizeof(struct nvme_command
), DMA_TO_DEVICE
);
1435 if (rq
->cmd_type
== REQ_TYPE_FS
&& req_op(rq
) == REQ_OP_FLUSH
)
1437 ret
= nvme_rdma_post_send(queue
, sqe
, req
->sge
, req
->num_sge
,
1438 req
->mr
->need_inval
? &req
->reg_wr
.wr
: NULL
, flush
);
1440 nvme_rdma_unmap_data(queue
, rq
);
1444 return BLK_MQ_RQ_QUEUE_OK
;
1446 return (ret
== -ENOMEM
|| ret
== -EAGAIN
) ?
1447 BLK_MQ_RQ_QUEUE_BUSY
: BLK_MQ_RQ_QUEUE_ERROR
;
1450 static int nvme_rdma_poll(struct blk_mq_hw_ctx
*hctx
, unsigned int tag
)
1452 struct nvme_rdma_queue
*queue
= hctx
->driver_data
;
1453 struct ib_cq
*cq
= queue
->ib_cq
;
1457 ib_req_notify_cq(cq
, IB_CQ_NEXT_COMP
);
1458 while (ib_poll_cq(cq
, 1, &wc
) > 0) {
1459 struct ib_cqe
*cqe
= wc
.wr_cqe
;
1462 if (cqe
->done
== nvme_rdma_recv_done
)
1463 found
|= __nvme_rdma_recv_done(cq
, &wc
, tag
);
1472 static void nvme_rdma_complete_rq(struct request
*rq
)
1474 struct nvme_rdma_request
*req
= blk_mq_rq_to_pdu(rq
);
1475 struct nvme_rdma_queue
*queue
= req
->queue
;
1478 nvme_rdma_unmap_data(queue
, rq
);
1480 if (unlikely(rq
->errors
)) {
1481 if (nvme_req_needs_retry(rq
, rq
->errors
)) {
1482 nvme_requeue_req(rq
);
1486 if (rq
->cmd_type
== REQ_TYPE_DRV_PRIV
)
1489 error
= nvme_error_status(rq
->errors
);
1492 blk_mq_end_request(rq
, error
);
1495 static struct blk_mq_ops nvme_rdma_mq_ops
= {
1496 .queue_rq
= nvme_rdma_queue_rq
,
1497 .complete
= nvme_rdma_complete_rq
,
1498 .map_queue
= blk_mq_map_queue
,
1499 .init_request
= nvme_rdma_init_request
,
1500 .exit_request
= nvme_rdma_exit_request
,
1501 .reinit_request
= nvme_rdma_reinit_request
,
1502 .init_hctx
= nvme_rdma_init_hctx
,
1503 .poll
= nvme_rdma_poll
,
1504 .timeout
= nvme_rdma_timeout
,
1507 static struct blk_mq_ops nvme_rdma_admin_mq_ops
= {
1508 .queue_rq
= nvme_rdma_queue_rq
,
1509 .complete
= nvme_rdma_complete_rq
,
1510 .map_queue
= blk_mq_map_queue
,
1511 .init_request
= nvme_rdma_init_admin_request
,
1512 .exit_request
= nvme_rdma_exit_admin_request
,
1513 .reinit_request
= nvme_rdma_reinit_request
,
1514 .init_hctx
= nvme_rdma_init_admin_hctx
,
1515 .timeout
= nvme_rdma_timeout
,
1518 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl
*ctrl
)
1522 error
= nvme_rdma_init_queue(ctrl
, 0, NVMF_AQ_DEPTH
);
1526 ctrl
->device
= ctrl
->queues
[0].device
;
1529 * We need a reference on the device as long as the tag_set is alive,
1530 * as the MRs in the request structures need a valid ib_device.
1533 if (!nvme_rdma_dev_get(ctrl
->device
))
1534 goto out_free_queue
;
1536 ctrl
->max_fr_pages
= min_t(u32
, NVME_RDMA_MAX_SEGMENTS
,
1537 ctrl
->device
->dev
->attrs
.max_fast_reg_page_list_len
);
1539 memset(&ctrl
->admin_tag_set
, 0, sizeof(ctrl
->admin_tag_set
));
1540 ctrl
->admin_tag_set
.ops
= &nvme_rdma_admin_mq_ops
;
1541 ctrl
->admin_tag_set
.queue_depth
= NVME_RDMA_AQ_BLKMQ_DEPTH
;
1542 ctrl
->admin_tag_set
.reserved_tags
= 2; /* connect + keep-alive */
1543 ctrl
->admin_tag_set
.numa_node
= NUMA_NO_NODE
;
1544 ctrl
->admin_tag_set
.cmd_size
= sizeof(struct nvme_rdma_request
) +
1545 SG_CHUNK_SIZE
* sizeof(struct scatterlist
);
1546 ctrl
->admin_tag_set
.driver_data
= ctrl
;
1547 ctrl
->admin_tag_set
.nr_hw_queues
= 1;
1548 ctrl
->admin_tag_set
.timeout
= ADMIN_TIMEOUT
;
1550 error
= blk_mq_alloc_tag_set(&ctrl
->admin_tag_set
);
1554 ctrl
->ctrl
.admin_q
= blk_mq_init_queue(&ctrl
->admin_tag_set
);
1555 if (IS_ERR(ctrl
->ctrl
.admin_q
)) {
1556 error
= PTR_ERR(ctrl
->ctrl
.admin_q
);
1557 goto out_free_tagset
;
1560 error
= nvmf_connect_admin_queue(&ctrl
->ctrl
);
1562 goto out_cleanup_queue
;
1564 error
= nvmf_reg_read64(&ctrl
->ctrl
, NVME_REG_CAP
, &ctrl
->cap
);
1566 dev_err(ctrl
->ctrl
.device
,
1567 "prop_get NVME_REG_CAP failed\n");
1568 goto out_cleanup_queue
;
1572 min_t(int, NVME_CAP_MQES(ctrl
->cap
) + 1, ctrl
->ctrl
.sqsize
);
1574 error
= nvme_enable_ctrl(&ctrl
->ctrl
, ctrl
->cap
);
1576 goto out_cleanup_queue
;
1578 ctrl
->ctrl
.max_hw_sectors
=
1579 (ctrl
->max_fr_pages
- 1) << (PAGE_SHIFT
- 9);
1581 error
= nvme_init_identify(&ctrl
->ctrl
);
1583 goto out_cleanup_queue
;
1585 error
= nvme_rdma_alloc_qe(ctrl
->queues
[0].device
->dev
,
1586 &ctrl
->async_event_sqe
, sizeof(struct nvme_command
),
1589 goto out_cleanup_queue
;
1591 nvme_start_keep_alive(&ctrl
->ctrl
);
1596 blk_cleanup_queue(ctrl
->ctrl
.admin_q
);
1598 /* disconnect and drain the queue before freeing the tagset */
1599 nvme_rdma_stop_queue(&ctrl
->queues
[0]);
1600 blk_mq_free_tag_set(&ctrl
->admin_tag_set
);
1602 nvme_rdma_dev_put(ctrl
->device
);
1604 nvme_rdma_free_queue(&ctrl
->queues
[0]);
1608 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl
*ctrl
)
1610 nvme_stop_keep_alive(&ctrl
->ctrl
);
1611 cancel_work_sync(&ctrl
->err_work
);
1612 cancel_delayed_work_sync(&ctrl
->reconnect_work
);
1614 if (ctrl
->queue_count
> 1) {
1615 nvme_stop_queues(&ctrl
->ctrl
);
1616 blk_mq_tagset_busy_iter(&ctrl
->tag_set
,
1617 nvme_cancel_request
, &ctrl
->ctrl
);
1618 nvme_rdma_free_io_queues(ctrl
);
1621 if (test_bit(NVME_RDMA_Q_CONNECTED
, &ctrl
->queues
[0].flags
))
1622 nvme_shutdown_ctrl(&ctrl
->ctrl
);
1624 blk_mq_stop_hw_queues(ctrl
->ctrl
.admin_q
);
1625 blk_mq_tagset_busy_iter(&ctrl
->admin_tag_set
,
1626 nvme_cancel_request
, &ctrl
->ctrl
);
1627 nvme_rdma_destroy_admin_queue(ctrl
);
1630 static void __nvme_rdma_remove_ctrl(struct nvme_rdma_ctrl
*ctrl
, bool shutdown
)
1632 nvme_uninit_ctrl(&ctrl
->ctrl
);
1634 nvme_rdma_shutdown_ctrl(ctrl
);
1636 if (ctrl
->ctrl
.tagset
) {
1637 blk_cleanup_queue(ctrl
->ctrl
.connect_q
);
1638 blk_mq_free_tag_set(&ctrl
->tag_set
);
1639 nvme_rdma_dev_put(ctrl
->device
);
1642 nvme_put_ctrl(&ctrl
->ctrl
);
1645 static void nvme_rdma_del_ctrl_work(struct work_struct
*work
)
1647 struct nvme_rdma_ctrl
*ctrl
= container_of(work
,
1648 struct nvme_rdma_ctrl
, delete_work
);
1650 __nvme_rdma_remove_ctrl(ctrl
, true);
1653 static int __nvme_rdma_del_ctrl(struct nvme_rdma_ctrl
*ctrl
)
1655 if (!nvme_change_ctrl_state(&ctrl
->ctrl
, NVME_CTRL_DELETING
))
1658 if (!queue_work(nvme_rdma_wq
, &ctrl
->delete_work
))
1664 static int nvme_rdma_del_ctrl(struct nvme_ctrl
*nctrl
)
1666 struct nvme_rdma_ctrl
*ctrl
= to_rdma_ctrl(nctrl
);
1670 * Keep a reference until all work is flushed since
1671 * __nvme_rdma_del_ctrl can free the ctrl mem
1673 if (!kref_get_unless_zero(&ctrl
->ctrl
.kref
))
1675 ret
= __nvme_rdma_del_ctrl(ctrl
);
1677 flush_work(&ctrl
->delete_work
);
1678 nvme_put_ctrl(&ctrl
->ctrl
);
1682 static void nvme_rdma_remove_ctrl_work(struct work_struct
*work
)
1684 struct nvme_rdma_ctrl
*ctrl
= container_of(work
,
1685 struct nvme_rdma_ctrl
, delete_work
);
1687 __nvme_rdma_remove_ctrl(ctrl
, false);
1690 static void nvme_rdma_reset_ctrl_work(struct work_struct
*work
)
1692 struct nvme_rdma_ctrl
*ctrl
= container_of(work
,
1693 struct nvme_rdma_ctrl
, reset_work
);
1697 nvme_rdma_shutdown_ctrl(ctrl
);
1699 ret
= nvme_rdma_configure_admin_queue(ctrl
);
1701 /* ctrl is already shutdown, just remove the ctrl */
1702 INIT_WORK(&ctrl
->delete_work
, nvme_rdma_remove_ctrl_work
);
1706 if (ctrl
->queue_count
> 1) {
1707 ret
= blk_mq_reinit_tagset(&ctrl
->tag_set
);
1711 ret
= nvme_rdma_init_io_queues(ctrl
);
1715 ret
= nvme_rdma_connect_io_queues(ctrl
);
1720 changed
= nvme_change_ctrl_state(&ctrl
->ctrl
, NVME_CTRL_LIVE
);
1721 WARN_ON_ONCE(!changed
);
1723 if (ctrl
->queue_count
> 1) {
1724 nvme_start_queues(&ctrl
->ctrl
);
1725 nvme_queue_scan(&ctrl
->ctrl
);
1726 nvme_queue_async_events(&ctrl
->ctrl
);
1732 /* Deleting this dead controller... */
1733 dev_warn(ctrl
->ctrl
.device
, "Removing after reset failure\n");
1734 WARN_ON(!queue_work(nvme_rdma_wq
, &ctrl
->delete_work
));
1737 static int nvme_rdma_reset_ctrl(struct nvme_ctrl
*nctrl
)
1739 struct nvme_rdma_ctrl
*ctrl
= to_rdma_ctrl(nctrl
);
1741 if (!nvme_change_ctrl_state(&ctrl
->ctrl
, NVME_CTRL_RESETTING
))
1744 if (!queue_work(nvme_rdma_wq
, &ctrl
->reset_work
))
1747 flush_work(&ctrl
->reset_work
);
1752 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops
= {
1754 .module
= THIS_MODULE
,
1756 .reg_read32
= nvmf_reg_read32
,
1757 .reg_read64
= nvmf_reg_read64
,
1758 .reg_write32
= nvmf_reg_write32
,
1759 .reset_ctrl
= nvme_rdma_reset_ctrl
,
1760 .free_ctrl
= nvme_rdma_free_ctrl
,
1761 .submit_async_event
= nvme_rdma_submit_async_event
,
1762 .delete_ctrl
= nvme_rdma_del_ctrl
,
1763 .get_subsysnqn
= nvmf_get_subsysnqn
,
1764 .get_address
= nvmf_get_address
,
1767 static int nvme_rdma_create_io_queues(struct nvme_rdma_ctrl
*ctrl
)
1769 struct nvmf_ctrl_options
*opts
= ctrl
->ctrl
.opts
;
1772 ret
= nvme_set_queue_count(&ctrl
->ctrl
, &opts
->nr_io_queues
);
1776 ctrl
->queue_count
= opts
->nr_io_queues
+ 1;
1777 if (ctrl
->queue_count
< 2)
1780 dev_info(ctrl
->ctrl
.device
,
1781 "creating %d I/O queues.\n", opts
->nr_io_queues
);
1783 ret
= nvme_rdma_init_io_queues(ctrl
);
1788 * We need a reference on the device as long as the tag_set is alive,
1789 * as the MRs in the request structures need a valid ib_device.
1792 if (!nvme_rdma_dev_get(ctrl
->device
))
1793 goto out_free_io_queues
;
1795 memset(&ctrl
->tag_set
, 0, sizeof(ctrl
->tag_set
));
1796 ctrl
->tag_set
.ops
= &nvme_rdma_mq_ops
;
1797 ctrl
->tag_set
.queue_depth
= ctrl
->ctrl
.opts
->queue_size
;
1798 ctrl
->tag_set
.reserved_tags
= 1; /* fabric connect */
1799 ctrl
->tag_set
.numa_node
= NUMA_NO_NODE
;
1800 ctrl
->tag_set
.flags
= BLK_MQ_F_SHOULD_MERGE
;
1801 ctrl
->tag_set
.cmd_size
= sizeof(struct nvme_rdma_request
) +
1802 SG_CHUNK_SIZE
* sizeof(struct scatterlist
);
1803 ctrl
->tag_set
.driver_data
= ctrl
;
1804 ctrl
->tag_set
.nr_hw_queues
= ctrl
->queue_count
- 1;
1805 ctrl
->tag_set
.timeout
= NVME_IO_TIMEOUT
;
1807 ret
= blk_mq_alloc_tag_set(&ctrl
->tag_set
);
1810 ctrl
->ctrl
.tagset
= &ctrl
->tag_set
;
1812 ctrl
->ctrl
.connect_q
= blk_mq_init_queue(&ctrl
->tag_set
);
1813 if (IS_ERR(ctrl
->ctrl
.connect_q
)) {
1814 ret
= PTR_ERR(ctrl
->ctrl
.connect_q
);
1815 goto out_free_tag_set
;
1818 ret
= nvme_rdma_connect_io_queues(ctrl
);
1820 goto out_cleanup_connect_q
;
1824 out_cleanup_connect_q
:
1825 blk_cleanup_queue(ctrl
->ctrl
.connect_q
);
1827 blk_mq_free_tag_set(&ctrl
->tag_set
);
1829 nvme_rdma_dev_put(ctrl
->device
);
1831 nvme_rdma_free_io_queues(ctrl
);
1835 static int nvme_rdma_parse_ipaddr(struct sockaddr_in
*in_addr
, char *p
)
1837 u8
*addr
= (u8
*)&in_addr
->sin_addr
.s_addr
;
1838 size_t buflen
= strlen(p
);
1840 /* XXX: handle IPv6 addresses */
1842 if (buflen
> INET_ADDRSTRLEN
)
1844 if (in4_pton(p
, buflen
, addr
, '\0', NULL
) == 0)
1846 in_addr
->sin_family
= AF_INET
;
1850 static struct nvme_ctrl
*nvme_rdma_create_ctrl(struct device
*dev
,
1851 struct nvmf_ctrl_options
*opts
)
1853 struct nvme_rdma_ctrl
*ctrl
;
1857 ctrl
= kzalloc(sizeof(*ctrl
), GFP_KERNEL
);
1859 return ERR_PTR(-ENOMEM
);
1860 ctrl
->ctrl
.opts
= opts
;
1861 INIT_LIST_HEAD(&ctrl
->list
);
1863 ret
= nvme_rdma_parse_ipaddr(&ctrl
->addr_in
, opts
->traddr
);
1865 pr_err("malformed IP address passed: %s\n", opts
->traddr
);
1869 if (opts
->mask
& NVMF_OPT_TRSVCID
) {
1872 ret
= kstrtou16(opts
->trsvcid
, 0, &port
);
1876 ctrl
->addr_in
.sin_port
= cpu_to_be16(port
);
1878 ctrl
->addr_in
.sin_port
= cpu_to_be16(NVME_RDMA_IP_PORT
);
1881 ret
= nvme_init_ctrl(&ctrl
->ctrl
, dev
, &nvme_rdma_ctrl_ops
,
1882 0 /* no quirks, we're perfect! */);
1886 ctrl
->reconnect_delay
= opts
->reconnect_delay
;
1887 INIT_DELAYED_WORK(&ctrl
->reconnect_work
,
1888 nvme_rdma_reconnect_ctrl_work
);
1889 INIT_WORK(&ctrl
->err_work
, nvme_rdma_error_recovery_work
);
1890 INIT_WORK(&ctrl
->delete_work
, nvme_rdma_del_ctrl_work
);
1891 INIT_WORK(&ctrl
->reset_work
, nvme_rdma_reset_ctrl_work
);
1892 spin_lock_init(&ctrl
->lock
);
1894 ctrl
->queue_count
= opts
->nr_io_queues
+ 1; /* +1 for admin queue */
1895 ctrl
->ctrl
.sqsize
= opts
->queue_size
- 1;
1896 ctrl
->ctrl
.kato
= opts
->kato
;
1899 ctrl
->queues
= kcalloc(ctrl
->queue_count
, sizeof(*ctrl
->queues
),
1902 goto out_uninit_ctrl
;
1904 ret
= nvme_rdma_configure_admin_queue(ctrl
);
1906 goto out_kfree_queues
;
1908 /* sanity check icdoff */
1909 if (ctrl
->ctrl
.icdoff
) {
1910 dev_err(ctrl
->ctrl
.device
, "icdoff is not supported!\n");
1911 goto out_remove_admin_queue
;
1914 /* sanity check keyed sgls */
1915 if (!(ctrl
->ctrl
.sgls
& (1 << 20))) {
1916 dev_err(ctrl
->ctrl
.device
, "Mandatory keyed sgls are not support\n");
1917 goto out_remove_admin_queue
;
1920 if (opts
->queue_size
> ctrl
->ctrl
.maxcmd
) {
1921 /* warn if maxcmd is lower than queue_size */
1922 dev_warn(ctrl
->ctrl
.device
,
1923 "queue_size %zu > ctrl maxcmd %u, clamping down\n",
1924 opts
->queue_size
, ctrl
->ctrl
.maxcmd
);
1925 opts
->queue_size
= ctrl
->ctrl
.maxcmd
;
1928 if (opts
->nr_io_queues
) {
1929 ret
= nvme_rdma_create_io_queues(ctrl
);
1931 goto out_remove_admin_queue
;
1934 changed
= nvme_change_ctrl_state(&ctrl
->ctrl
, NVME_CTRL_LIVE
);
1935 WARN_ON_ONCE(!changed
);
1937 dev_info(ctrl
->ctrl
.device
, "new ctrl: NQN \"%s\", addr %pISp\n",
1938 ctrl
->ctrl
.opts
->subsysnqn
, &ctrl
->addr
);
1940 kref_get(&ctrl
->ctrl
.kref
);
1942 mutex_lock(&nvme_rdma_ctrl_mutex
);
1943 list_add_tail(&ctrl
->list
, &nvme_rdma_ctrl_list
);
1944 mutex_unlock(&nvme_rdma_ctrl_mutex
);
1946 if (opts
->nr_io_queues
) {
1947 nvme_queue_scan(&ctrl
->ctrl
);
1948 nvme_queue_async_events(&ctrl
->ctrl
);
1953 out_remove_admin_queue
:
1954 nvme_stop_keep_alive(&ctrl
->ctrl
);
1955 nvme_rdma_destroy_admin_queue(ctrl
);
1957 kfree(ctrl
->queues
);
1959 nvme_uninit_ctrl(&ctrl
->ctrl
);
1960 nvme_put_ctrl(&ctrl
->ctrl
);
1963 return ERR_PTR(ret
);
1966 return ERR_PTR(ret
);
1969 static struct nvmf_transport_ops nvme_rdma_transport
= {
1971 .required_opts
= NVMF_OPT_TRADDR
,
1972 .allowed_opts
= NVMF_OPT_TRSVCID
| NVMF_OPT_RECONNECT_DELAY
,
1973 .create_ctrl
= nvme_rdma_create_ctrl
,
1976 static void nvme_rdma_add_one(struct ib_device
*ib_device
)
1980 static void nvme_rdma_remove_one(struct ib_device
*ib_device
, void *client_data
)
1982 struct nvme_rdma_ctrl
*ctrl
;
1984 /* Delete all controllers using this device */
1985 mutex_lock(&nvme_rdma_ctrl_mutex
);
1986 list_for_each_entry(ctrl
, &nvme_rdma_ctrl_list
, list
) {
1987 if (ctrl
->device
->dev
!= ib_device
)
1989 dev_info(ctrl
->ctrl
.device
,
1990 "Removing ctrl: NQN \"%s\", addr %pISp\n",
1991 ctrl
->ctrl
.opts
->subsysnqn
, &ctrl
->addr
);
1992 __nvme_rdma_del_ctrl(ctrl
);
1994 mutex_unlock(&nvme_rdma_ctrl_mutex
);
1996 flush_workqueue(nvme_rdma_wq
);
1999 static struct ib_client nvme_rdma_ib_client
= {
2000 .name
= "nvme_rdma",
2001 .add
= nvme_rdma_add_one
,
2002 .remove
= nvme_rdma_remove_one
2005 static int __init
nvme_rdma_init_module(void)
2009 nvme_rdma_wq
= create_workqueue("nvme_rdma_wq");
2013 ret
= ib_register_client(&nvme_rdma_ib_client
);
2015 destroy_workqueue(nvme_rdma_wq
);
2019 nvmf_register_transport(&nvme_rdma_transport
);
2023 static void __exit
nvme_rdma_cleanup_module(void)
2025 nvmf_unregister_transport(&nvme_rdma_transport
);
2026 ib_unregister_client(&nvme_rdma_ib_client
);
2027 destroy_workqueue(nvme_rdma_wq
);
2030 module_init(nvme_rdma_init_module
);
2031 module_exit(nvme_rdma_cleanup_module
);
2033 MODULE_LICENSE("GPL v2");