Merge branch 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[cris-mirror.git] / drivers / vme / vme.c
blob37ac0a58e59a8cd56013ebdb33ddb7fee643d3ba
1 /*
2 * VME Bridge Framework
4 * Author: Martyn Welch <martyn.welch@ge.com>
5 * Copyright 2008 GE Intelligent Platforms Embedded Systems, Inc.
7 * Based on work by Tom Armistead and Ajit Prem
8 * Copyright 2004 Motorola Inc.
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the
12 * Free Software Foundation; either version 2 of the License, or (at your
13 * option) any later version.
16 #include <linux/module.h>
17 #include <linux/moduleparam.h>
18 #include <linux/mm.h>
19 #include <linux/types.h>
20 #include <linux/kernel.h>
21 #include <linux/errno.h>
22 #include <linux/pci.h>
23 #include <linux/poll.h>
24 #include <linux/highmem.h>
25 #include <linux/interrupt.h>
26 #include <linux/pagemap.h>
27 #include <linux/device.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/syscalls.h>
30 #include <linux/mutex.h>
31 #include <linux/spinlock.h>
32 #include <linux/slab.h>
33 #include <linux/vme.h>
35 #include "vme_bridge.h"
37 /* Bitmask and list of registered buses both protected by common mutex */
38 static unsigned int vme_bus_numbers;
39 static LIST_HEAD(vme_bus_list);
40 static DEFINE_MUTEX(vme_buses_lock);
42 static void __exit vme_exit(void);
43 static int __init vme_init(void);
45 static struct vme_dev *dev_to_vme_dev(struct device *dev)
47 return container_of(dev, struct vme_dev, dev);
51 * Find the bridge that the resource is associated with.
53 static struct vme_bridge *find_bridge(struct vme_resource *resource)
55 /* Get list to search */
56 switch (resource->type) {
57 case VME_MASTER:
58 return list_entry(resource->entry, struct vme_master_resource,
59 list)->parent;
60 break;
61 case VME_SLAVE:
62 return list_entry(resource->entry, struct vme_slave_resource,
63 list)->parent;
64 break;
65 case VME_DMA:
66 return list_entry(resource->entry, struct vme_dma_resource,
67 list)->parent;
68 break;
69 case VME_LM:
70 return list_entry(resource->entry, struct vme_lm_resource,
71 list)->parent;
72 break;
73 default:
74 printk(KERN_ERR "Unknown resource type\n");
75 return NULL;
76 break;
81 * Allocate a contiguous block of memory for use by the driver. This is used to
82 * create the buffers for the slave windows.
84 void *vme_alloc_consistent(struct vme_resource *resource, size_t size,
85 dma_addr_t *dma)
87 struct vme_bridge *bridge;
89 if (resource == NULL) {
90 printk(KERN_ERR "No resource\n");
91 return NULL;
94 bridge = find_bridge(resource);
95 if (bridge == NULL) {
96 printk(KERN_ERR "Can't find bridge\n");
97 return NULL;
100 if (bridge->parent == NULL) {
101 printk(KERN_ERR "Dev entry NULL for bridge %s\n", bridge->name);
102 return NULL;
105 if (bridge->alloc_consistent == NULL) {
106 printk(KERN_ERR "alloc_consistent not supported by bridge %s\n",
107 bridge->name);
108 return NULL;
111 return bridge->alloc_consistent(bridge->parent, size, dma);
113 EXPORT_SYMBOL(vme_alloc_consistent);
116 * Free previously allocated contiguous block of memory.
118 void vme_free_consistent(struct vme_resource *resource, size_t size,
119 void *vaddr, dma_addr_t dma)
121 struct vme_bridge *bridge;
123 if (resource == NULL) {
124 printk(KERN_ERR "No resource\n");
125 return;
128 bridge = find_bridge(resource);
129 if (bridge == NULL) {
130 printk(KERN_ERR "Can't find bridge\n");
131 return;
134 if (bridge->parent == NULL) {
135 printk(KERN_ERR "Dev entry NULL for bridge %s\n", bridge->name);
136 return;
139 if (bridge->free_consistent == NULL) {
140 printk(KERN_ERR "free_consistent not supported by bridge %s\n",
141 bridge->name);
142 return;
145 bridge->free_consistent(bridge->parent, size, vaddr, dma);
147 EXPORT_SYMBOL(vme_free_consistent);
149 size_t vme_get_size(struct vme_resource *resource)
151 int enabled, retval;
152 unsigned long long base, size;
153 dma_addr_t buf_base;
154 u32 aspace, cycle, dwidth;
156 switch (resource->type) {
157 case VME_MASTER:
158 retval = vme_master_get(resource, &enabled, &base, &size,
159 &aspace, &cycle, &dwidth);
161 return size;
162 break;
163 case VME_SLAVE:
164 retval = vme_slave_get(resource, &enabled, &base, &size,
165 &buf_base, &aspace, &cycle);
167 return size;
168 break;
169 case VME_DMA:
170 return 0;
171 break;
172 default:
173 printk(KERN_ERR "Unknown resource type\n");
174 return 0;
175 break;
178 EXPORT_SYMBOL(vme_get_size);
180 int vme_check_window(u32 aspace, unsigned long long vme_base,
181 unsigned long long size)
183 int retval = 0;
185 switch (aspace) {
186 case VME_A16:
187 if (((vme_base + size) > VME_A16_MAX) ||
188 (vme_base > VME_A16_MAX))
189 retval = -EFAULT;
190 break;
191 case VME_A24:
192 if (((vme_base + size) > VME_A24_MAX) ||
193 (vme_base > VME_A24_MAX))
194 retval = -EFAULT;
195 break;
196 case VME_A32:
197 if (((vme_base + size) > VME_A32_MAX) ||
198 (vme_base > VME_A32_MAX))
199 retval = -EFAULT;
200 break;
201 case VME_A64:
202 if ((size != 0) && (vme_base > U64_MAX + 1 - size))
203 retval = -EFAULT;
204 break;
205 case VME_CRCSR:
206 if (((vme_base + size) > VME_CRCSR_MAX) ||
207 (vme_base > VME_CRCSR_MAX))
208 retval = -EFAULT;
209 break;
210 case VME_USER1:
211 case VME_USER2:
212 case VME_USER3:
213 case VME_USER4:
214 /* User Defined */
215 break;
216 default:
217 printk(KERN_ERR "Invalid address space\n");
218 retval = -EINVAL;
219 break;
222 return retval;
224 EXPORT_SYMBOL(vme_check_window);
226 static u32 vme_get_aspace(int am)
228 switch (am) {
229 case 0x29:
230 case 0x2D:
231 return VME_A16;
232 case 0x38:
233 case 0x39:
234 case 0x3A:
235 case 0x3B:
236 case 0x3C:
237 case 0x3D:
238 case 0x3E:
239 case 0x3F:
240 return VME_A24;
241 case 0x8:
242 case 0x9:
243 case 0xA:
244 case 0xB:
245 case 0xC:
246 case 0xD:
247 case 0xE:
248 case 0xF:
249 return VME_A32;
250 case 0x0:
251 case 0x1:
252 case 0x3:
253 return VME_A64;
256 return 0;
260 * Request a slave image with specific attributes, return some unique
261 * identifier.
263 struct vme_resource *vme_slave_request(struct vme_dev *vdev, u32 address,
264 u32 cycle)
266 struct vme_bridge *bridge;
267 struct list_head *slave_pos = NULL;
268 struct vme_slave_resource *allocated_image = NULL;
269 struct vme_slave_resource *slave_image = NULL;
270 struct vme_resource *resource = NULL;
272 bridge = vdev->bridge;
273 if (bridge == NULL) {
274 printk(KERN_ERR "Can't find VME bus\n");
275 goto err_bus;
278 /* Loop through slave resources */
279 list_for_each(slave_pos, &bridge->slave_resources) {
280 slave_image = list_entry(slave_pos,
281 struct vme_slave_resource, list);
283 if (slave_image == NULL) {
284 printk(KERN_ERR "Registered NULL Slave resource\n");
285 continue;
288 /* Find an unlocked and compatible image */
289 mutex_lock(&slave_image->mtx);
290 if (((slave_image->address_attr & address) == address) &&
291 ((slave_image->cycle_attr & cycle) == cycle) &&
292 (slave_image->locked == 0)) {
294 slave_image->locked = 1;
295 mutex_unlock(&slave_image->mtx);
296 allocated_image = slave_image;
297 break;
299 mutex_unlock(&slave_image->mtx);
302 /* No free image */
303 if (allocated_image == NULL)
304 goto err_image;
306 resource = kmalloc(sizeof(struct vme_resource), GFP_KERNEL);
307 if (resource == NULL) {
308 printk(KERN_WARNING "Unable to allocate resource structure\n");
309 goto err_alloc;
311 resource->type = VME_SLAVE;
312 resource->entry = &allocated_image->list;
314 return resource;
316 err_alloc:
317 /* Unlock image */
318 mutex_lock(&slave_image->mtx);
319 slave_image->locked = 0;
320 mutex_unlock(&slave_image->mtx);
321 err_image:
322 err_bus:
323 return NULL;
325 EXPORT_SYMBOL(vme_slave_request);
327 int vme_slave_set(struct vme_resource *resource, int enabled,
328 unsigned long long vme_base, unsigned long long size,
329 dma_addr_t buf_base, u32 aspace, u32 cycle)
331 struct vme_bridge *bridge = find_bridge(resource);
332 struct vme_slave_resource *image;
333 int retval;
335 if (resource->type != VME_SLAVE) {
336 printk(KERN_ERR "Not a slave resource\n");
337 return -EINVAL;
340 image = list_entry(resource->entry, struct vme_slave_resource, list);
342 if (bridge->slave_set == NULL) {
343 printk(KERN_ERR "Function not supported\n");
344 return -ENOSYS;
347 if (!(((image->address_attr & aspace) == aspace) &&
348 ((image->cycle_attr & cycle) == cycle))) {
349 printk(KERN_ERR "Invalid attributes\n");
350 return -EINVAL;
353 retval = vme_check_window(aspace, vme_base, size);
354 if (retval)
355 return retval;
357 return bridge->slave_set(image, enabled, vme_base, size, buf_base,
358 aspace, cycle);
360 EXPORT_SYMBOL(vme_slave_set);
362 int vme_slave_get(struct vme_resource *resource, int *enabled,
363 unsigned long long *vme_base, unsigned long long *size,
364 dma_addr_t *buf_base, u32 *aspace, u32 *cycle)
366 struct vme_bridge *bridge = find_bridge(resource);
367 struct vme_slave_resource *image;
369 if (resource->type != VME_SLAVE) {
370 printk(KERN_ERR "Not a slave resource\n");
371 return -EINVAL;
374 image = list_entry(resource->entry, struct vme_slave_resource, list);
376 if (bridge->slave_get == NULL) {
377 printk(KERN_ERR "vme_slave_get not supported\n");
378 return -EINVAL;
381 return bridge->slave_get(image, enabled, vme_base, size, buf_base,
382 aspace, cycle);
384 EXPORT_SYMBOL(vme_slave_get);
386 void vme_slave_free(struct vme_resource *resource)
388 struct vme_slave_resource *slave_image;
390 if (resource->type != VME_SLAVE) {
391 printk(KERN_ERR "Not a slave resource\n");
392 return;
395 slave_image = list_entry(resource->entry, struct vme_slave_resource,
396 list);
397 if (slave_image == NULL) {
398 printk(KERN_ERR "Can't find slave resource\n");
399 return;
402 /* Unlock image */
403 mutex_lock(&slave_image->mtx);
404 if (slave_image->locked == 0)
405 printk(KERN_ERR "Image is already free\n");
407 slave_image->locked = 0;
408 mutex_unlock(&slave_image->mtx);
410 /* Free up resource memory */
411 kfree(resource);
413 EXPORT_SYMBOL(vme_slave_free);
416 * Request a master image with specific attributes, return some unique
417 * identifier.
419 struct vme_resource *vme_master_request(struct vme_dev *vdev, u32 address,
420 u32 cycle, u32 dwidth)
422 struct vme_bridge *bridge;
423 struct list_head *master_pos = NULL;
424 struct vme_master_resource *allocated_image = NULL;
425 struct vme_master_resource *master_image = NULL;
426 struct vme_resource *resource = NULL;
428 bridge = vdev->bridge;
429 if (bridge == NULL) {
430 printk(KERN_ERR "Can't find VME bus\n");
431 goto err_bus;
434 /* Loop through master resources */
435 list_for_each(master_pos, &bridge->master_resources) {
436 master_image = list_entry(master_pos,
437 struct vme_master_resource, list);
439 if (master_image == NULL) {
440 printk(KERN_WARNING "Registered NULL master resource\n");
441 continue;
444 /* Find an unlocked and compatible image */
445 spin_lock(&master_image->lock);
446 if (((master_image->address_attr & address) == address) &&
447 ((master_image->cycle_attr & cycle) == cycle) &&
448 ((master_image->width_attr & dwidth) == dwidth) &&
449 (master_image->locked == 0)) {
451 master_image->locked = 1;
452 spin_unlock(&master_image->lock);
453 allocated_image = master_image;
454 break;
456 spin_unlock(&master_image->lock);
459 /* Check to see if we found a resource */
460 if (allocated_image == NULL) {
461 printk(KERN_ERR "Can't find a suitable resource\n");
462 goto err_image;
465 resource = kmalloc(sizeof(struct vme_resource), GFP_KERNEL);
466 if (resource == NULL) {
467 printk(KERN_ERR "Unable to allocate resource structure\n");
468 goto err_alloc;
470 resource->type = VME_MASTER;
471 resource->entry = &allocated_image->list;
473 return resource;
475 err_alloc:
476 /* Unlock image */
477 spin_lock(&master_image->lock);
478 master_image->locked = 0;
479 spin_unlock(&master_image->lock);
480 err_image:
481 err_bus:
482 return NULL;
484 EXPORT_SYMBOL(vme_master_request);
486 int vme_master_set(struct vme_resource *resource, int enabled,
487 unsigned long long vme_base, unsigned long long size, u32 aspace,
488 u32 cycle, u32 dwidth)
490 struct vme_bridge *bridge = find_bridge(resource);
491 struct vme_master_resource *image;
492 int retval;
494 if (resource->type != VME_MASTER) {
495 printk(KERN_ERR "Not a master resource\n");
496 return -EINVAL;
499 image = list_entry(resource->entry, struct vme_master_resource, list);
501 if (bridge->master_set == NULL) {
502 printk(KERN_WARNING "vme_master_set not supported\n");
503 return -EINVAL;
506 if (!(((image->address_attr & aspace) == aspace) &&
507 ((image->cycle_attr & cycle) == cycle) &&
508 ((image->width_attr & dwidth) == dwidth))) {
509 printk(KERN_WARNING "Invalid attributes\n");
510 return -EINVAL;
513 retval = vme_check_window(aspace, vme_base, size);
514 if (retval)
515 return retval;
517 return bridge->master_set(image, enabled, vme_base, size, aspace,
518 cycle, dwidth);
520 EXPORT_SYMBOL(vme_master_set);
522 int vme_master_get(struct vme_resource *resource, int *enabled,
523 unsigned long long *vme_base, unsigned long long *size, u32 *aspace,
524 u32 *cycle, u32 *dwidth)
526 struct vme_bridge *bridge = find_bridge(resource);
527 struct vme_master_resource *image;
529 if (resource->type != VME_MASTER) {
530 printk(KERN_ERR "Not a master resource\n");
531 return -EINVAL;
534 image = list_entry(resource->entry, struct vme_master_resource, list);
536 if (bridge->master_get == NULL) {
537 printk(KERN_WARNING "%s not supported\n", __func__);
538 return -EINVAL;
541 return bridge->master_get(image, enabled, vme_base, size, aspace,
542 cycle, dwidth);
544 EXPORT_SYMBOL(vme_master_get);
547 * Read data out of VME space into a buffer.
549 ssize_t vme_master_read(struct vme_resource *resource, void *buf, size_t count,
550 loff_t offset)
552 struct vme_bridge *bridge = find_bridge(resource);
553 struct vme_master_resource *image;
554 size_t length;
556 if (bridge->master_read == NULL) {
557 printk(KERN_WARNING "Reading from resource not supported\n");
558 return -EINVAL;
561 if (resource->type != VME_MASTER) {
562 printk(KERN_ERR "Not a master resource\n");
563 return -EINVAL;
566 image = list_entry(resource->entry, struct vme_master_resource, list);
568 length = vme_get_size(resource);
570 if (offset > length) {
571 printk(KERN_WARNING "Invalid Offset\n");
572 return -EFAULT;
575 if ((offset + count) > length)
576 count = length - offset;
578 return bridge->master_read(image, buf, count, offset);
581 EXPORT_SYMBOL(vme_master_read);
584 * Write data out to VME space from a buffer.
586 ssize_t vme_master_write(struct vme_resource *resource, void *buf,
587 size_t count, loff_t offset)
589 struct vme_bridge *bridge = find_bridge(resource);
590 struct vme_master_resource *image;
591 size_t length;
593 if (bridge->master_write == NULL) {
594 printk(KERN_WARNING "Writing to resource not supported\n");
595 return -EINVAL;
598 if (resource->type != VME_MASTER) {
599 printk(KERN_ERR "Not a master resource\n");
600 return -EINVAL;
603 image = list_entry(resource->entry, struct vme_master_resource, list);
605 length = vme_get_size(resource);
607 if (offset > length) {
608 printk(KERN_WARNING "Invalid Offset\n");
609 return -EFAULT;
612 if ((offset + count) > length)
613 count = length - offset;
615 return bridge->master_write(image, buf, count, offset);
617 EXPORT_SYMBOL(vme_master_write);
620 * Perform RMW cycle to provided location.
622 unsigned int vme_master_rmw(struct vme_resource *resource, unsigned int mask,
623 unsigned int compare, unsigned int swap, loff_t offset)
625 struct vme_bridge *bridge = find_bridge(resource);
626 struct vme_master_resource *image;
628 if (bridge->master_rmw == NULL) {
629 printk(KERN_WARNING "Writing to resource not supported\n");
630 return -EINVAL;
633 if (resource->type != VME_MASTER) {
634 printk(KERN_ERR "Not a master resource\n");
635 return -EINVAL;
638 image = list_entry(resource->entry, struct vme_master_resource, list);
640 return bridge->master_rmw(image, mask, compare, swap, offset);
642 EXPORT_SYMBOL(vme_master_rmw);
644 int vme_master_mmap(struct vme_resource *resource, struct vm_area_struct *vma)
646 struct vme_master_resource *image;
647 phys_addr_t phys_addr;
648 unsigned long vma_size;
650 if (resource->type != VME_MASTER) {
651 pr_err("Not a master resource\n");
652 return -EINVAL;
655 image = list_entry(resource->entry, struct vme_master_resource, list);
656 phys_addr = image->bus_resource.start + (vma->vm_pgoff << PAGE_SHIFT);
657 vma_size = vma->vm_end - vma->vm_start;
659 if (phys_addr + vma_size > image->bus_resource.end + 1) {
660 pr_err("Map size cannot exceed the window size\n");
661 return -EFAULT;
664 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
666 return vm_iomap_memory(vma, phys_addr, vma->vm_end - vma->vm_start);
668 EXPORT_SYMBOL(vme_master_mmap);
670 void vme_master_free(struct vme_resource *resource)
672 struct vme_master_resource *master_image;
674 if (resource->type != VME_MASTER) {
675 printk(KERN_ERR "Not a master resource\n");
676 return;
679 master_image = list_entry(resource->entry, struct vme_master_resource,
680 list);
681 if (master_image == NULL) {
682 printk(KERN_ERR "Can't find master resource\n");
683 return;
686 /* Unlock image */
687 spin_lock(&master_image->lock);
688 if (master_image->locked == 0)
689 printk(KERN_ERR "Image is already free\n");
691 master_image->locked = 0;
692 spin_unlock(&master_image->lock);
694 /* Free up resource memory */
695 kfree(resource);
697 EXPORT_SYMBOL(vme_master_free);
700 * Request a DMA controller with specific attributes, return some unique
701 * identifier.
703 struct vme_resource *vme_dma_request(struct vme_dev *vdev, u32 route)
705 struct vme_bridge *bridge;
706 struct list_head *dma_pos = NULL;
707 struct vme_dma_resource *allocated_ctrlr = NULL;
708 struct vme_dma_resource *dma_ctrlr = NULL;
709 struct vme_resource *resource = NULL;
711 /* XXX Not checking resource attributes */
712 printk(KERN_ERR "No VME resource Attribute tests done\n");
714 bridge = vdev->bridge;
715 if (bridge == NULL) {
716 printk(KERN_ERR "Can't find VME bus\n");
717 goto err_bus;
720 /* Loop through DMA resources */
721 list_for_each(dma_pos, &bridge->dma_resources) {
722 dma_ctrlr = list_entry(dma_pos,
723 struct vme_dma_resource, list);
725 if (dma_ctrlr == NULL) {
726 printk(KERN_ERR "Registered NULL DMA resource\n");
727 continue;
730 /* Find an unlocked and compatible controller */
731 mutex_lock(&dma_ctrlr->mtx);
732 if (((dma_ctrlr->route_attr & route) == route) &&
733 (dma_ctrlr->locked == 0)) {
735 dma_ctrlr->locked = 1;
736 mutex_unlock(&dma_ctrlr->mtx);
737 allocated_ctrlr = dma_ctrlr;
738 break;
740 mutex_unlock(&dma_ctrlr->mtx);
743 /* Check to see if we found a resource */
744 if (allocated_ctrlr == NULL)
745 goto err_ctrlr;
747 resource = kmalloc(sizeof(struct vme_resource), GFP_KERNEL);
748 if (resource == NULL) {
749 printk(KERN_WARNING "Unable to allocate resource structure\n");
750 goto err_alloc;
752 resource->type = VME_DMA;
753 resource->entry = &allocated_ctrlr->list;
755 return resource;
757 err_alloc:
758 /* Unlock image */
759 mutex_lock(&dma_ctrlr->mtx);
760 dma_ctrlr->locked = 0;
761 mutex_unlock(&dma_ctrlr->mtx);
762 err_ctrlr:
763 err_bus:
764 return NULL;
766 EXPORT_SYMBOL(vme_dma_request);
769 * Start new list
771 struct vme_dma_list *vme_new_dma_list(struct vme_resource *resource)
773 struct vme_dma_resource *ctrlr;
774 struct vme_dma_list *dma_list;
776 if (resource->type != VME_DMA) {
777 printk(KERN_ERR "Not a DMA resource\n");
778 return NULL;
781 ctrlr = list_entry(resource->entry, struct vme_dma_resource, list);
783 dma_list = kmalloc(sizeof(struct vme_dma_list), GFP_KERNEL);
784 if (dma_list == NULL) {
785 printk(KERN_ERR "Unable to allocate memory for new DMA list\n");
786 return NULL;
788 INIT_LIST_HEAD(&dma_list->entries);
789 dma_list->parent = ctrlr;
790 mutex_init(&dma_list->mtx);
792 return dma_list;
794 EXPORT_SYMBOL(vme_new_dma_list);
797 * Create "Pattern" type attributes
799 struct vme_dma_attr *vme_dma_pattern_attribute(u32 pattern, u32 type)
801 struct vme_dma_attr *attributes;
802 struct vme_dma_pattern *pattern_attr;
804 attributes = kmalloc(sizeof(struct vme_dma_attr), GFP_KERNEL);
805 if (attributes == NULL) {
806 printk(KERN_ERR "Unable to allocate memory for attributes structure\n");
807 goto err_attr;
810 pattern_attr = kmalloc(sizeof(struct vme_dma_pattern), GFP_KERNEL);
811 if (pattern_attr == NULL) {
812 printk(KERN_ERR "Unable to allocate memory for pattern attributes\n");
813 goto err_pat;
816 attributes->type = VME_DMA_PATTERN;
817 attributes->private = (void *)pattern_attr;
819 pattern_attr->pattern = pattern;
820 pattern_attr->type = type;
822 return attributes;
824 err_pat:
825 kfree(attributes);
826 err_attr:
827 return NULL;
829 EXPORT_SYMBOL(vme_dma_pattern_attribute);
832 * Create "PCI" type attributes
834 struct vme_dma_attr *vme_dma_pci_attribute(dma_addr_t address)
836 struct vme_dma_attr *attributes;
837 struct vme_dma_pci *pci_attr;
839 /* XXX Run some sanity checks here */
841 attributes = kmalloc(sizeof(struct vme_dma_attr), GFP_KERNEL);
842 if (attributes == NULL) {
843 printk(KERN_ERR "Unable to allocate memory for attributes structure\n");
844 goto err_attr;
847 pci_attr = kmalloc(sizeof(struct vme_dma_pci), GFP_KERNEL);
848 if (pci_attr == NULL) {
849 printk(KERN_ERR "Unable to allocate memory for PCI attributes\n");
850 goto err_pci;
855 attributes->type = VME_DMA_PCI;
856 attributes->private = (void *)pci_attr;
858 pci_attr->address = address;
860 return attributes;
862 err_pci:
863 kfree(attributes);
864 err_attr:
865 return NULL;
867 EXPORT_SYMBOL(vme_dma_pci_attribute);
870 * Create "VME" type attributes
872 struct vme_dma_attr *vme_dma_vme_attribute(unsigned long long address,
873 u32 aspace, u32 cycle, u32 dwidth)
875 struct vme_dma_attr *attributes;
876 struct vme_dma_vme *vme_attr;
878 attributes = kmalloc(
879 sizeof(struct vme_dma_attr), GFP_KERNEL);
880 if (attributes == NULL) {
881 printk(KERN_ERR "Unable to allocate memory for attributes structure\n");
882 goto err_attr;
885 vme_attr = kmalloc(sizeof(struct vme_dma_vme), GFP_KERNEL);
886 if (vme_attr == NULL) {
887 printk(KERN_ERR "Unable to allocate memory for VME attributes\n");
888 goto err_vme;
891 attributes->type = VME_DMA_VME;
892 attributes->private = (void *)vme_attr;
894 vme_attr->address = address;
895 vme_attr->aspace = aspace;
896 vme_attr->cycle = cycle;
897 vme_attr->dwidth = dwidth;
899 return attributes;
901 err_vme:
902 kfree(attributes);
903 err_attr:
904 return NULL;
906 EXPORT_SYMBOL(vme_dma_vme_attribute);
909 * Free attribute
911 void vme_dma_free_attribute(struct vme_dma_attr *attributes)
913 kfree(attributes->private);
914 kfree(attributes);
916 EXPORT_SYMBOL(vme_dma_free_attribute);
918 int vme_dma_list_add(struct vme_dma_list *list, struct vme_dma_attr *src,
919 struct vme_dma_attr *dest, size_t count)
921 struct vme_bridge *bridge = list->parent->parent;
922 int retval;
924 if (bridge->dma_list_add == NULL) {
925 printk(KERN_WARNING "Link List DMA generation not supported\n");
926 return -EINVAL;
929 if (!mutex_trylock(&list->mtx)) {
930 printk(KERN_ERR "Link List already submitted\n");
931 return -EINVAL;
934 retval = bridge->dma_list_add(list, src, dest, count);
936 mutex_unlock(&list->mtx);
938 return retval;
940 EXPORT_SYMBOL(vme_dma_list_add);
942 int vme_dma_list_exec(struct vme_dma_list *list)
944 struct vme_bridge *bridge = list->parent->parent;
945 int retval;
947 if (bridge->dma_list_exec == NULL) {
948 printk(KERN_ERR "Link List DMA execution not supported\n");
949 return -EINVAL;
952 mutex_lock(&list->mtx);
954 retval = bridge->dma_list_exec(list);
956 mutex_unlock(&list->mtx);
958 return retval;
960 EXPORT_SYMBOL(vme_dma_list_exec);
962 int vme_dma_list_free(struct vme_dma_list *list)
964 struct vme_bridge *bridge = list->parent->parent;
965 int retval;
967 if (bridge->dma_list_empty == NULL) {
968 printk(KERN_WARNING "Emptying of Link Lists not supported\n");
969 return -EINVAL;
972 if (!mutex_trylock(&list->mtx)) {
973 printk(KERN_ERR "Link List in use\n");
974 return -EINVAL;
978 * Empty out all of the entries from the DMA list. We need to go to the
979 * low level driver as DMA entries are driver specific.
981 retval = bridge->dma_list_empty(list);
982 if (retval) {
983 printk(KERN_ERR "Unable to empty link-list entries\n");
984 mutex_unlock(&list->mtx);
985 return retval;
987 mutex_unlock(&list->mtx);
988 kfree(list);
990 return retval;
992 EXPORT_SYMBOL(vme_dma_list_free);
994 int vme_dma_free(struct vme_resource *resource)
996 struct vme_dma_resource *ctrlr;
998 if (resource->type != VME_DMA) {
999 printk(KERN_ERR "Not a DMA resource\n");
1000 return -EINVAL;
1003 ctrlr = list_entry(resource->entry, struct vme_dma_resource, list);
1005 if (!mutex_trylock(&ctrlr->mtx)) {
1006 printk(KERN_ERR "Resource busy, can't free\n");
1007 return -EBUSY;
1010 if (!(list_empty(&ctrlr->pending) && list_empty(&ctrlr->running))) {
1011 printk(KERN_WARNING "Resource still processing transfers\n");
1012 mutex_unlock(&ctrlr->mtx);
1013 return -EBUSY;
1016 ctrlr->locked = 0;
1018 mutex_unlock(&ctrlr->mtx);
1020 kfree(resource);
1022 return 0;
1024 EXPORT_SYMBOL(vme_dma_free);
1026 void vme_bus_error_handler(struct vme_bridge *bridge,
1027 unsigned long long address, int am)
1029 struct list_head *handler_pos = NULL;
1030 struct vme_error_handler *handler;
1031 int handler_triggered = 0;
1032 u32 aspace = vme_get_aspace(am);
1034 list_for_each(handler_pos, &bridge->vme_error_handlers) {
1035 handler = list_entry(handler_pos, struct vme_error_handler,
1036 list);
1037 if ((aspace == handler->aspace) &&
1038 (address >= handler->start) &&
1039 (address < handler->end)) {
1040 if (!handler->num_errors)
1041 handler->first_error = address;
1042 if (handler->num_errors != UINT_MAX)
1043 handler->num_errors++;
1044 handler_triggered = 1;
1048 if (!handler_triggered)
1049 dev_err(bridge->parent,
1050 "Unhandled VME access error at address 0x%llx\n",
1051 address);
1053 EXPORT_SYMBOL(vme_bus_error_handler);
1055 struct vme_error_handler *vme_register_error_handler(
1056 struct vme_bridge *bridge, u32 aspace,
1057 unsigned long long address, size_t len)
1059 struct vme_error_handler *handler;
1061 handler = kmalloc(sizeof(*handler), GFP_KERNEL);
1062 if (!handler)
1063 return NULL;
1065 handler->aspace = aspace;
1066 handler->start = address;
1067 handler->end = address + len;
1068 handler->num_errors = 0;
1069 handler->first_error = 0;
1070 list_add_tail(&handler->list, &bridge->vme_error_handlers);
1072 return handler;
1074 EXPORT_SYMBOL(vme_register_error_handler);
1076 void vme_unregister_error_handler(struct vme_error_handler *handler)
1078 list_del(&handler->list);
1079 kfree(handler);
1081 EXPORT_SYMBOL(vme_unregister_error_handler);
1083 void vme_irq_handler(struct vme_bridge *bridge, int level, int statid)
1085 void (*call)(int, int, void *);
1086 void *priv_data;
1088 call = bridge->irq[level - 1].callback[statid].func;
1089 priv_data = bridge->irq[level - 1].callback[statid].priv_data;
1091 if (call != NULL)
1092 call(level, statid, priv_data);
1093 else
1094 printk(KERN_WARNING "Spurious VME interrupt, level:%x, vector:%x\n",
1095 level, statid);
1097 EXPORT_SYMBOL(vme_irq_handler);
1099 int vme_irq_request(struct vme_dev *vdev, int level, int statid,
1100 void (*callback)(int, int, void *),
1101 void *priv_data)
1103 struct vme_bridge *bridge;
1105 bridge = vdev->bridge;
1106 if (bridge == NULL) {
1107 printk(KERN_ERR "Can't find VME bus\n");
1108 return -EINVAL;
1111 if ((level < 1) || (level > 7)) {
1112 printk(KERN_ERR "Invalid interrupt level\n");
1113 return -EINVAL;
1116 if (bridge->irq_set == NULL) {
1117 printk(KERN_ERR "Configuring interrupts not supported\n");
1118 return -EINVAL;
1121 mutex_lock(&bridge->irq_mtx);
1123 if (bridge->irq[level - 1].callback[statid].func) {
1124 mutex_unlock(&bridge->irq_mtx);
1125 printk(KERN_WARNING "VME Interrupt already taken\n");
1126 return -EBUSY;
1129 bridge->irq[level - 1].count++;
1130 bridge->irq[level - 1].callback[statid].priv_data = priv_data;
1131 bridge->irq[level - 1].callback[statid].func = callback;
1133 /* Enable IRQ level */
1134 bridge->irq_set(bridge, level, 1, 1);
1136 mutex_unlock(&bridge->irq_mtx);
1138 return 0;
1140 EXPORT_SYMBOL(vme_irq_request);
1142 void vme_irq_free(struct vme_dev *vdev, int level, int statid)
1144 struct vme_bridge *bridge;
1146 bridge = vdev->bridge;
1147 if (bridge == NULL) {
1148 printk(KERN_ERR "Can't find VME bus\n");
1149 return;
1152 if ((level < 1) || (level > 7)) {
1153 printk(KERN_ERR "Invalid interrupt level\n");
1154 return;
1157 if (bridge->irq_set == NULL) {
1158 printk(KERN_ERR "Configuring interrupts not supported\n");
1159 return;
1162 mutex_lock(&bridge->irq_mtx);
1164 bridge->irq[level - 1].count--;
1166 /* Disable IRQ level if no more interrupts attached at this level*/
1167 if (bridge->irq[level - 1].count == 0)
1168 bridge->irq_set(bridge, level, 0, 1);
1170 bridge->irq[level - 1].callback[statid].func = NULL;
1171 bridge->irq[level - 1].callback[statid].priv_data = NULL;
1173 mutex_unlock(&bridge->irq_mtx);
1175 EXPORT_SYMBOL(vme_irq_free);
1177 int vme_irq_generate(struct vme_dev *vdev, int level, int statid)
1179 struct vme_bridge *bridge;
1181 bridge = vdev->bridge;
1182 if (bridge == NULL) {
1183 printk(KERN_ERR "Can't find VME bus\n");
1184 return -EINVAL;
1187 if ((level < 1) || (level > 7)) {
1188 printk(KERN_WARNING "Invalid interrupt level\n");
1189 return -EINVAL;
1192 if (bridge->irq_generate == NULL) {
1193 printk(KERN_WARNING "Interrupt generation not supported\n");
1194 return -EINVAL;
1197 return bridge->irq_generate(bridge, level, statid);
1199 EXPORT_SYMBOL(vme_irq_generate);
1202 * Request the location monitor, return resource or NULL
1204 struct vme_resource *vme_lm_request(struct vme_dev *vdev)
1206 struct vme_bridge *bridge;
1207 struct list_head *lm_pos = NULL;
1208 struct vme_lm_resource *allocated_lm = NULL;
1209 struct vme_lm_resource *lm = NULL;
1210 struct vme_resource *resource = NULL;
1212 bridge = vdev->bridge;
1213 if (bridge == NULL) {
1214 printk(KERN_ERR "Can't find VME bus\n");
1215 goto err_bus;
1218 /* Loop through DMA resources */
1219 list_for_each(lm_pos, &bridge->lm_resources) {
1220 lm = list_entry(lm_pos,
1221 struct vme_lm_resource, list);
1223 if (lm == NULL) {
1224 printk(KERN_ERR "Registered NULL Location Monitor resource\n");
1225 continue;
1228 /* Find an unlocked controller */
1229 mutex_lock(&lm->mtx);
1230 if (lm->locked == 0) {
1231 lm->locked = 1;
1232 mutex_unlock(&lm->mtx);
1233 allocated_lm = lm;
1234 break;
1236 mutex_unlock(&lm->mtx);
1239 /* Check to see if we found a resource */
1240 if (allocated_lm == NULL)
1241 goto err_lm;
1243 resource = kmalloc(sizeof(struct vme_resource), GFP_KERNEL);
1244 if (resource == NULL) {
1245 printk(KERN_ERR "Unable to allocate resource structure\n");
1246 goto err_alloc;
1248 resource->type = VME_LM;
1249 resource->entry = &allocated_lm->list;
1251 return resource;
1253 err_alloc:
1254 /* Unlock image */
1255 mutex_lock(&lm->mtx);
1256 lm->locked = 0;
1257 mutex_unlock(&lm->mtx);
1258 err_lm:
1259 err_bus:
1260 return NULL;
1262 EXPORT_SYMBOL(vme_lm_request);
1264 int vme_lm_count(struct vme_resource *resource)
1266 struct vme_lm_resource *lm;
1268 if (resource->type != VME_LM) {
1269 printk(KERN_ERR "Not a Location Monitor resource\n");
1270 return -EINVAL;
1273 lm = list_entry(resource->entry, struct vme_lm_resource, list);
1275 return lm->monitors;
1277 EXPORT_SYMBOL(vme_lm_count);
1279 int vme_lm_set(struct vme_resource *resource, unsigned long long lm_base,
1280 u32 aspace, u32 cycle)
1282 struct vme_bridge *bridge = find_bridge(resource);
1283 struct vme_lm_resource *lm;
1285 if (resource->type != VME_LM) {
1286 printk(KERN_ERR "Not a Location Monitor resource\n");
1287 return -EINVAL;
1290 lm = list_entry(resource->entry, struct vme_lm_resource, list);
1292 if (bridge->lm_set == NULL) {
1293 printk(KERN_ERR "vme_lm_set not supported\n");
1294 return -EINVAL;
1297 return bridge->lm_set(lm, lm_base, aspace, cycle);
1299 EXPORT_SYMBOL(vme_lm_set);
1301 int vme_lm_get(struct vme_resource *resource, unsigned long long *lm_base,
1302 u32 *aspace, u32 *cycle)
1304 struct vme_bridge *bridge = find_bridge(resource);
1305 struct vme_lm_resource *lm;
1307 if (resource->type != VME_LM) {
1308 printk(KERN_ERR "Not a Location Monitor resource\n");
1309 return -EINVAL;
1312 lm = list_entry(resource->entry, struct vme_lm_resource, list);
1314 if (bridge->lm_get == NULL) {
1315 printk(KERN_ERR "vme_lm_get not supported\n");
1316 return -EINVAL;
1319 return bridge->lm_get(lm, lm_base, aspace, cycle);
1321 EXPORT_SYMBOL(vme_lm_get);
1323 int vme_lm_attach(struct vme_resource *resource, int monitor,
1324 void (*callback)(int))
1326 struct vme_bridge *bridge = find_bridge(resource);
1327 struct vme_lm_resource *lm;
1329 if (resource->type != VME_LM) {
1330 printk(KERN_ERR "Not a Location Monitor resource\n");
1331 return -EINVAL;
1334 lm = list_entry(resource->entry, struct vme_lm_resource, list);
1336 if (bridge->lm_attach == NULL) {
1337 printk(KERN_ERR "vme_lm_attach not supported\n");
1338 return -EINVAL;
1341 return bridge->lm_attach(lm, monitor, callback);
1343 EXPORT_SYMBOL(vme_lm_attach);
1345 int vme_lm_detach(struct vme_resource *resource, int monitor)
1347 struct vme_bridge *bridge = find_bridge(resource);
1348 struct vme_lm_resource *lm;
1350 if (resource->type != VME_LM) {
1351 printk(KERN_ERR "Not a Location Monitor resource\n");
1352 return -EINVAL;
1355 lm = list_entry(resource->entry, struct vme_lm_resource, list);
1357 if (bridge->lm_detach == NULL) {
1358 printk(KERN_ERR "vme_lm_detach not supported\n");
1359 return -EINVAL;
1362 return bridge->lm_detach(lm, monitor);
1364 EXPORT_SYMBOL(vme_lm_detach);
1366 void vme_lm_free(struct vme_resource *resource)
1368 struct vme_lm_resource *lm;
1370 if (resource->type != VME_LM) {
1371 printk(KERN_ERR "Not a Location Monitor resource\n");
1372 return;
1375 lm = list_entry(resource->entry, struct vme_lm_resource, list);
1377 mutex_lock(&lm->mtx);
1379 /* XXX
1380 * Check to see that there aren't any callbacks still attached, if
1381 * there are we should probably be detaching them!
1384 lm->locked = 0;
1386 mutex_unlock(&lm->mtx);
1388 kfree(resource);
1390 EXPORT_SYMBOL(vme_lm_free);
1392 int vme_slot_num(struct vme_dev *vdev)
1394 struct vme_bridge *bridge;
1396 bridge = vdev->bridge;
1397 if (bridge == NULL) {
1398 printk(KERN_ERR "Can't find VME bus\n");
1399 return -EINVAL;
1402 if (bridge->slot_get == NULL) {
1403 printk(KERN_WARNING "vme_slot_num not supported\n");
1404 return -EINVAL;
1407 return bridge->slot_get(bridge);
1409 EXPORT_SYMBOL(vme_slot_num);
1411 int vme_bus_num(struct vme_dev *vdev)
1413 struct vme_bridge *bridge;
1415 bridge = vdev->bridge;
1416 if (bridge == NULL) {
1417 pr_err("Can't find VME bus\n");
1418 return -EINVAL;
1421 return bridge->num;
1423 EXPORT_SYMBOL(vme_bus_num);
1425 /* - Bridge Registration --------------------------------------------------- */
1427 static void vme_dev_release(struct device *dev)
1429 kfree(dev_to_vme_dev(dev));
1432 /* Common bridge initialization */
1433 struct vme_bridge *vme_init_bridge(struct vme_bridge *bridge)
1435 INIT_LIST_HEAD(&bridge->vme_error_handlers);
1436 INIT_LIST_HEAD(&bridge->master_resources);
1437 INIT_LIST_HEAD(&bridge->slave_resources);
1438 INIT_LIST_HEAD(&bridge->dma_resources);
1439 INIT_LIST_HEAD(&bridge->lm_resources);
1440 mutex_init(&bridge->irq_mtx);
1442 return bridge;
1444 EXPORT_SYMBOL(vme_init_bridge);
1446 int vme_register_bridge(struct vme_bridge *bridge)
1448 int i;
1449 int ret = -1;
1451 mutex_lock(&vme_buses_lock);
1452 for (i = 0; i < sizeof(vme_bus_numbers) * 8; i++) {
1453 if ((vme_bus_numbers & (1 << i)) == 0) {
1454 vme_bus_numbers |= (1 << i);
1455 bridge->num = i;
1456 INIT_LIST_HEAD(&bridge->devices);
1457 list_add_tail(&bridge->bus_list, &vme_bus_list);
1458 ret = 0;
1459 break;
1462 mutex_unlock(&vme_buses_lock);
1464 return ret;
1466 EXPORT_SYMBOL(vme_register_bridge);
1468 void vme_unregister_bridge(struct vme_bridge *bridge)
1470 struct vme_dev *vdev;
1471 struct vme_dev *tmp;
1473 mutex_lock(&vme_buses_lock);
1474 vme_bus_numbers &= ~(1 << bridge->num);
1475 list_for_each_entry_safe(vdev, tmp, &bridge->devices, bridge_list) {
1476 list_del(&vdev->drv_list);
1477 list_del(&vdev->bridge_list);
1478 device_unregister(&vdev->dev);
1480 list_del(&bridge->bus_list);
1481 mutex_unlock(&vme_buses_lock);
1483 EXPORT_SYMBOL(vme_unregister_bridge);
1485 /* - Driver Registration --------------------------------------------------- */
1487 static int __vme_register_driver_bus(struct vme_driver *drv,
1488 struct vme_bridge *bridge, unsigned int ndevs)
1490 int err;
1491 unsigned int i;
1492 struct vme_dev *vdev;
1493 struct vme_dev *tmp;
1495 for (i = 0; i < ndevs; i++) {
1496 vdev = kzalloc(sizeof(struct vme_dev), GFP_KERNEL);
1497 if (!vdev) {
1498 err = -ENOMEM;
1499 goto err_devalloc;
1501 vdev->num = i;
1502 vdev->bridge = bridge;
1503 vdev->dev.platform_data = drv;
1504 vdev->dev.release = vme_dev_release;
1505 vdev->dev.parent = bridge->parent;
1506 vdev->dev.bus = &vme_bus_type;
1507 dev_set_name(&vdev->dev, "%s.%u-%u", drv->name, bridge->num,
1508 vdev->num);
1510 err = device_register(&vdev->dev);
1511 if (err)
1512 goto err_reg;
1514 if (vdev->dev.platform_data) {
1515 list_add_tail(&vdev->drv_list, &drv->devices);
1516 list_add_tail(&vdev->bridge_list, &bridge->devices);
1517 } else
1518 device_unregister(&vdev->dev);
1520 return 0;
1522 err_reg:
1523 put_device(&vdev->dev);
1524 kfree(vdev);
1525 err_devalloc:
1526 list_for_each_entry_safe(vdev, tmp, &drv->devices, drv_list) {
1527 list_del(&vdev->drv_list);
1528 list_del(&vdev->bridge_list);
1529 device_unregister(&vdev->dev);
1531 return err;
1534 static int __vme_register_driver(struct vme_driver *drv, unsigned int ndevs)
1536 struct vme_bridge *bridge;
1537 int err = 0;
1539 mutex_lock(&vme_buses_lock);
1540 list_for_each_entry(bridge, &vme_bus_list, bus_list) {
1542 * This cannot cause trouble as we already have vme_buses_lock
1543 * and if the bridge is removed, it will have to go through
1544 * vme_unregister_bridge() to do it (which calls remove() on
1545 * the bridge which in turn tries to acquire vme_buses_lock and
1546 * will have to wait).
1548 err = __vme_register_driver_bus(drv, bridge, ndevs);
1549 if (err)
1550 break;
1552 mutex_unlock(&vme_buses_lock);
1553 return err;
1556 int vme_register_driver(struct vme_driver *drv, unsigned int ndevs)
1558 int err;
1560 drv->driver.name = drv->name;
1561 drv->driver.bus = &vme_bus_type;
1562 INIT_LIST_HEAD(&drv->devices);
1564 err = driver_register(&drv->driver);
1565 if (err)
1566 return err;
1568 err = __vme_register_driver(drv, ndevs);
1569 if (err)
1570 driver_unregister(&drv->driver);
1572 return err;
1574 EXPORT_SYMBOL(vme_register_driver);
1576 void vme_unregister_driver(struct vme_driver *drv)
1578 struct vme_dev *dev, *dev_tmp;
1580 mutex_lock(&vme_buses_lock);
1581 list_for_each_entry_safe(dev, dev_tmp, &drv->devices, drv_list) {
1582 list_del(&dev->drv_list);
1583 list_del(&dev->bridge_list);
1584 device_unregister(&dev->dev);
1586 mutex_unlock(&vme_buses_lock);
1588 driver_unregister(&drv->driver);
1590 EXPORT_SYMBOL(vme_unregister_driver);
1592 /* - Bus Registration ------------------------------------------------------ */
1594 static int vme_bus_match(struct device *dev, struct device_driver *drv)
1596 struct vme_driver *vme_drv;
1598 vme_drv = container_of(drv, struct vme_driver, driver);
1600 if (dev->platform_data == vme_drv) {
1601 struct vme_dev *vdev = dev_to_vme_dev(dev);
1603 if (vme_drv->match && vme_drv->match(vdev))
1604 return 1;
1606 dev->platform_data = NULL;
1608 return 0;
1611 static int vme_bus_probe(struct device *dev)
1613 int retval = -ENODEV;
1614 struct vme_driver *driver;
1615 struct vme_dev *vdev = dev_to_vme_dev(dev);
1617 driver = dev->platform_data;
1619 if (driver->probe != NULL)
1620 retval = driver->probe(vdev);
1622 return retval;
1625 static int vme_bus_remove(struct device *dev)
1627 int retval = -ENODEV;
1628 struct vme_driver *driver;
1629 struct vme_dev *vdev = dev_to_vme_dev(dev);
1631 driver = dev->platform_data;
1633 if (driver->remove != NULL)
1634 retval = driver->remove(vdev);
1636 return retval;
1639 struct bus_type vme_bus_type = {
1640 .name = "vme",
1641 .match = vme_bus_match,
1642 .probe = vme_bus_probe,
1643 .remove = vme_bus_remove,
1645 EXPORT_SYMBOL(vme_bus_type);
1647 static int __init vme_init(void)
1649 return bus_register(&vme_bus_type);
1652 static void __exit vme_exit(void)
1654 bus_unregister(&vme_bus_type);
1657 subsys_initcall(vme_init);
1658 module_exit(vme_exit);