2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
31 #include "print-tree.h"
35 #include "free-space-cache.h"
36 #include "free-space-tree.h"
41 #undef SCRAMBLE_DELAYED_REFS
44 * control flags for do_chunk_alloc's force field
45 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
46 * if we really need one.
48 * CHUNK_ALLOC_LIMITED means to only try and allocate one
49 * if we have very few chunks already allocated. This is
50 * used as part of the clustering code to help make sure
51 * we have a good pool of storage to cluster in, without
52 * filling the FS with empty chunks
54 * CHUNK_ALLOC_FORCE means it must try to allocate one
58 CHUNK_ALLOC_NO_FORCE
= 0,
59 CHUNK_ALLOC_LIMITED
= 1,
60 CHUNK_ALLOC_FORCE
= 2,
63 static int update_block_group(struct btrfs_trans_handle
*trans
,
64 struct btrfs_root
*root
, u64 bytenr
,
65 u64 num_bytes
, int alloc
);
66 static int __btrfs_free_extent(struct btrfs_trans_handle
*trans
,
67 struct btrfs_root
*root
,
68 struct btrfs_delayed_ref_node
*node
, u64 parent
,
69 u64 root_objectid
, u64 owner_objectid
,
70 u64 owner_offset
, int refs_to_drop
,
71 struct btrfs_delayed_extent_op
*extra_op
);
72 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op
*extent_op
,
73 struct extent_buffer
*leaf
,
74 struct btrfs_extent_item
*ei
);
75 static int alloc_reserved_file_extent(struct btrfs_trans_handle
*trans
,
76 struct btrfs_root
*root
,
77 u64 parent
, u64 root_objectid
,
78 u64 flags
, u64 owner
, u64 offset
,
79 struct btrfs_key
*ins
, int ref_mod
);
80 static int alloc_reserved_tree_block(struct btrfs_trans_handle
*trans
,
81 struct btrfs_root
*root
,
82 u64 parent
, u64 root_objectid
,
83 u64 flags
, struct btrfs_disk_key
*key
,
84 int level
, struct btrfs_key
*ins
);
85 static int do_chunk_alloc(struct btrfs_trans_handle
*trans
,
86 struct btrfs_root
*extent_root
, u64 flags
,
88 static int find_next_key(struct btrfs_path
*path
, int level
,
89 struct btrfs_key
*key
);
90 static void dump_space_info(struct btrfs_space_info
*info
, u64 bytes
,
91 int dump_block_groups
);
92 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache
*cache
,
93 u64 ram_bytes
, u64 num_bytes
, int delalloc
);
94 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache
*cache
,
95 u64 num_bytes
, int delalloc
);
96 static int block_rsv_use_bytes(struct btrfs_block_rsv
*block_rsv
,
98 int btrfs_pin_extent(struct btrfs_root
*root
,
99 u64 bytenr
, u64 num_bytes
, int reserved
);
100 static int __reserve_metadata_bytes(struct btrfs_root
*root
,
101 struct btrfs_space_info
*space_info
,
103 enum btrfs_reserve_flush_enum flush
);
104 static void space_info_add_new_bytes(struct btrfs_fs_info
*fs_info
,
105 struct btrfs_space_info
*space_info
,
107 static void space_info_add_old_bytes(struct btrfs_fs_info
*fs_info
,
108 struct btrfs_space_info
*space_info
,
112 block_group_cache_done(struct btrfs_block_group_cache
*cache
)
115 return cache
->cached
== BTRFS_CACHE_FINISHED
||
116 cache
->cached
== BTRFS_CACHE_ERROR
;
119 static int block_group_bits(struct btrfs_block_group_cache
*cache
, u64 bits
)
121 return (cache
->flags
& bits
) == bits
;
124 void btrfs_get_block_group(struct btrfs_block_group_cache
*cache
)
126 atomic_inc(&cache
->count
);
129 void btrfs_put_block_group(struct btrfs_block_group_cache
*cache
)
131 if (atomic_dec_and_test(&cache
->count
)) {
132 WARN_ON(cache
->pinned
> 0);
133 WARN_ON(cache
->reserved
> 0);
134 kfree(cache
->free_space_ctl
);
140 * this adds the block group to the fs_info rb tree for the block group
143 static int btrfs_add_block_group_cache(struct btrfs_fs_info
*info
,
144 struct btrfs_block_group_cache
*block_group
)
147 struct rb_node
*parent
= NULL
;
148 struct btrfs_block_group_cache
*cache
;
150 spin_lock(&info
->block_group_cache_lock
);
151 p
= &info
->block_group_cache_tree
.rb_node
;
155 cache
= rb_entry(parent
, struct btrfs_block_group_cache
,
157 if (block_group
->key
.objectid
< cache
->key
.objectid
) {
159 } else if (block_group
->key
.objectid
> cache
->key
.objectid
) {
162 spin_unlock(&info
->block_group_cache_lock
);
167 rb_link_node(&block_group
->cache_node
, parent
, p
);
168 rb_insert_color(&block_group
->cache_node
,
169 &info
->block_group_cache_tree
);
171 if (info
->first_logical_byte
> block_group
->key
.objectid
)
172 info
->first_logical_byte
= block_group
->key
.objectid
;
174 spin_unlock(&info
->block_group_cache_lock
);
180 * This will return the block group at or after bytenr if contains is 0, else
181 * it will return the block group that contains the bytenr
183 static struct btrfs_block_group_cache
*
184 block_group_cache_tree_search(struct btrfs_fs_info
*info
, u64 bytenr
,
187 struct btrfs_block_group_cache
*cache
, *ret
= NULL
;
191 spin_lock(&info
->block_group_cache_lock
);
192 n
= info
->block_group_cache_tree
.rb_node
;
195 cache
= rb_entry(n
, struct btrfs_block_group_cache
,
197 end
= cache
->key
.objectid
+ cache
->key
.offset
- 1;
198 start
= cache
->key
.objectid
;
200 if (bytenr
< start
) {
201 if (!contains
&& (!ret
|| start
< ret
->key
.objectid
))
204 } else if (bytenr
> start
) {
205 if (contains
&& bytenr
<= end
) {
216 btrfs_get_block_group(ret
);
217 if (bytenr
== 0 && info
->first_logical_byte
> ret
->key
.objectid
)
218 info
->first_logical_byte
= ret
->key
.objectid
;
220 spin_unlock(&info
->block_group_cache_lock
);
225 static int add_excluded_extent(struct btrfs_root
*root
,
226 u64 start
, u64 num_bytes
)
228 u64 end
= start
+ num_bytes
- 1;
229 set_extent_bits(&root
->fs_info
->freed_extents
[0],
230 start
, end
, EXTENT_UPTODATE
);
231 set_extent_bits(&root
->fs_info
->freed_extents
[1],
232 start
, end
, EXTENT_UPTODATE
);
236 static void free_excluded_extents(struct btrfs_root
*root
,
237 struct btrfs_block_group_cache
*cache
)
241 start
= cache
->key
.objectid
;
242 end
= start
+ cache
->key
.offset
- 1;
244 clear_extent_bits(&root
->fs_info
->freed_extents
[0],
245 start
, end
, EXTENT_UPTODATE
);
246 clear_extent_bits(&root
->fs_info
->freed_extents
[1],
247 start
, end
, EXTENT_UPTODATE
);
250 static int exclude_super_stripes(struct btrfs_root
*root
,
251 struct btrfs_block_group_cache
*cache
)
258 if (cache
->key
.objectid
< BTRFS_SUPER_INFO_OFFSET
) {
259 stripe_len
= BTRFS_SUPER_INFO_OFFSET
- cache
->key
.objectid
;
260 cache
->bytes_super
+= stripe_len
;
261 ret
= add_excluded_extent(root
, cache
->key
.objectid
,
267 for (i
= 0; i
< BTRFS_SUPER_MIRROR_MAX
; i
++) {
268 bytenr
= btrfs_sb_offset(i
);
269 ret
= btrfs_rmap_block(&root
->fs_info
->mapping_tree
,
270 cache
->key
.objectid
, bytenr
,
271 0, &logical
, &nr
, &stripe_len
);
278 if (logical
[nr
] > cache
->key
.objectid
+
282 if (logical
[nr
] + stripe_len
<= cache
->key
.objectid
)
286 if (start
< cache
->key
.objectid
) {
287 start
= cache
->key
.objectid
;
288 len
= (logical
[nr
] + stripe_len
) - start
;
290 len
= min_t(u64
, stripe_len
,
291 cache
->key
.objectid
+
292 cache
->key
.offset
- start
);
295 cache
->bytes_super
+= len
;
296 ret
= add_excluded_extent(root
, start
, len
);
308 static struct btrfs_caching_control
*
309 get_caching_control(struct btrfs_block_group_cache
*cache
)
311 struct btrfs_caching_control
*ctl
;
313 spin_lock(&cache
->lock
);
314 if (!cache
->caching_ctl
) {
315 spin_unlock(&cache
->lock
);
319 ctl
= cache
->caching_ctl
;
320 atomic_inc(&ctl
->count
);
321 spin_unlock(&cache
->lock
);
325 static void put_caching_control(struct btrfs_caching_control
*ctl
)
327 if (atomic_dec_and_test(&ctl
->count
))
331 #ifdef CONFIG_BTRFS_DEBUG
332 static void fragment_free_space(struct btrfs_root
*root
,
333 struct btrfs_block_group_cache
*block_group
)
335 u64 start
= block_group
->key
.objectid
;
336 u64 len
= block_group
->key
.offset
;
337 u64 chunk
= block_group
->flags
& BTRFS_BLOCK_GROUP_METADATA
?
338 root
->nodesize
: root
->sectorsize
;
339 u64 step
= chunk
<< 1;
341 while (len
> chunk
) {
342 btrfs_remove_free_space(block_group
, start
, chunk
);
353 * this is only called by cache_block_group, since we could have freed extents
354 * we need to check the pinned_extents for any extents that can't be used yet
355 * since their free space will be released as soon as the transaction commits.
357 u64
add_new_free_space(struct btrfs_block_group_cache
*block_group
,
358 struct btrfs_fs_info
*info
, u64 start
, u64 end
)
360 u64 extent_start
, extent_end
, size
, total_added
= 0;
363 while (start
< end
) {
364 ret
= find_first_extent_bit(info
->pinned_extents
, start
,
365 &extent_start
, &extent_end
,
366 EXTENT_DIRTY
| EXTENT_UPTODATE
,
371 if (extent_start
<= start
) {
372 start
= extent_end
+ 1;
373 } else if (extent_start
> start
&& extent_start
< end
) {
374 size
= extent_start
- start
;
376 ret
= btrfs_add_free_space(block_group
, start
,
378 BUG_ON(ret
); /* -ENOMEM or logic error */
379 start
= extent_end
+ 1;
388 ret
= btrfs_add_free_space(block_group
, start
, size
);
389 BUG_ON(ret
); /* -ENOMEM or logic error */
395 static int load_extent_tree_free(struct btrfs_caching_control
*caching_ctl
)
397 struct btrfs_block_group_cache
*block_group
;
398 struct btrfs_fs_info
*fs_info
;
399 struct btrfs_root
*extent_root
;
400 struct btrfs_path
*path
;
401 struct extent_buffer
*leaf
;
402 struct btrfs_key key
;
409 block_group
= caching_ctl
->block_group
;
410 fs_info
= block_group
->fs_info
;
411 extent_root
= fs_info
->extent_root
;
413 path
= btrfs_alloc_path();
417 last
= max_t(u64
, block_group
->key
.objectid
, BTRFS_SUPER_INFO_OFFSET
);
419 #ifdef CONFIG_BTRFS_DEBUG
421 * If we're fragmenting we don't want to make anybody think we can
422 * allocate from this block group until we've had a chance to fragment
425 if (btrfs_should_fragment_free_space(extent_root
, block_group
))
429 * We don't want to deadlock with somebody trying to allocate a new
430 * extent for the extent root while also trying to search the extent
431 * root to add free space. So we skip locking and search the commit
432 * root, since its read-only
434 path
->skip_locking
= 1;
435 path
->search_commit_root
= 1;
436 path
->reada
= READA_FORWARD
;
440 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
443 ret
= btrfs_search_slot(NULL
, extent_root
, &key
, path
, 0, 0);
447 leaf
= path
->nodes
[0];
448 nritems
= btrfs_header_nritems(leaf
);
451 if (btrfs_fs_closing(fs_info
) > 1) {
456 if (path
->slots
[0] < nritems
) {
457 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
459 ret
= find_next_key(path
, 0, &key
);
463 if (need_resched() ||
464 rwsem_is_contended(&fs_info
->commit_root_sem
)) {
466 caching_ctl
->progress
= last
;
467 btrfs_release_path(path
);
468 up_read(&fs_info
->commit_root_sem
);
469 mutex_unlock(&caching_ctl
->mutex
);
471 mutex_lock(&caching_ctl
->mutex
);
472 down_read(&fs_info
->commit_root_sem
);
476 ret
= btrfs_next_leaf(extent_root
, path
);
481 leaf
= path
->nodes
[0];
482 nritems
= btrfs_header_nritems(leaf
);
486 if (key
.objectid
< last
) {
489 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
492 caching_ctl
->progress
= last
;
493 btrfs_release_path(path
);
497 if (key
.objectid
< block_group
->key
.objectid
) {
502 if (key
.objectid
>= block_group
->key
.objectid
+
503 block_group
->key
.offset
)
506 if (key
.type
== BTRFS_EXTENT_ITEM_KEY
||
507 key
.type
== BTRFS_METADATA_ITEM_KEY
) {
508 total_found
+= add_new_free_space(block_group
,
511 if (key
.type
== BTRFS_METADATA_ITEM_KEY
)
512 last
= key
.objectid
+
513 fs_info
->tree_root
->nodesize
;
515 last
= key
.objectid
+ key
.offset
;
517 if (total_found
> CACHING_CTL_WAKE_UP
) {
520 wake_up(&caching_ctl
->wait
);
527 total_found
+= add_new_free_space(block_group
, fs_info
, last
,
528 block_group
->key
.objectid
+
529 block_group
->key
.offset
);
530 caching_ctl
->progress
= (u64
)-1;
533 btrfs_free_path(path
);
537 static noinline
void caching_thread(struct btrfs_work
*work
)
539 struct btrfs_block_group_cache
*block_group
;
540 struct btrfs_fs_info
*fs_info
;
541 struct btrfs_caching_control
*caching_ctl
;
542 struct btrfs_root
*extent_root
;
545 caching_ctl
= container_of(work
, struct btrfs_caching_control
, work
);
546 block_group
= caching_ctl
->block_group
;
547 fs_info
= block_group
->fs_info
;
548 extent_root
= fs_info
->extent_root
;
550 mutex_lock(&caching_ctl
->mutex
);
551 down_read(&fs_info
->commit_root_sem
);
553 if (btrfs_fs_compat_ro(fs_info
, FREE_SPACE_TREE
))
554 ret
= load_free_space_tree(caching_ctl
);
556 ret
= load_extent_tree_free(caching_ctl
);
558 spin_lock(&block_group
->lock
);
559 block_group
->caching_ctl
= NULL
;
560 block_group
->cached
= ret
? BTRFS_CACHE_ERROR
: BTRFS_CACHE_FINISHED
;
561 spin_unlock(&block_group
->lock
);
563 #ifdef CONFIG_BTRFS_DEBUG
564 if (btrfs_should_fragment_free_space(extent_root
, block_group
)) {
567 spin_lock(&block_group
->space_info
->lock
);
568 spin_lock(&block_group
->lock
);
569 bytes_used
= block_group
->key
.offset
-
570 btrfs_block_group_used(&block_group
->item
);
571 block_group
->space_info
->bytes_used
+= bytes_used
>> 1;
572 spin_unlock(&block_group
->lock
);
573 spin_unlock(&block_group
->space_info
->lock
);
574 fragment_free_space(extent_root
, block_group
);
578 caching_ctl
->progress
= (u64
)-1;
580 up_read(&fs_info
->commit_root_sem
);
581 free_excluded_extents(fs_info
->extent_root
, block_group
);
582 mutex_unlock(&caching_ctl
->mutex
);
584 wake_up(&caching_ctl
->wait
);
586 put_caching_control(caching_ctl
);
587 btrfs_put_block_group(block_group
);
590 static int cache_block_group(struct btrfs_block_group_cache
*cache
,
594 struct btrfs_fs_info
*fs_info
= cache
->fs_info
;
595 struct btrfs_caching_control
*caching_ctl
;
598 caching_ctl
= kzalloc(sizeof(*caching_ctl
), GFP_NOFS
);
602 INIT_LIST_HEAD(&caching_ctl
->list
);
603 mutex_init(&caching_ctl
->mutex
);
604 init_waitqueue_head(&caching_ctl
->wait
);
605 caching_ctl
->block_group
= cache
;
606 caching_ctl
->progress
= cache
->key
.objectid
;
607 atomic_set(&caching_ctl
->count
, 1);
608 btrfs_init_work(&caching_ctl
->work
, btrfs_cache_helper
,
609 caching_thread
, NULL
, NULL
);
611 spin_lock(&cache
->lock
);
613 * This should be a rare occasion, but this could happen I think in the
614 * case where one thread starts to load the space cache info, and then
615 * some other thread starts a transaction commit which tries to do an
616 * allocation while the other thread is still loading the space cache
617 * info. The previous loop should have kept us from choosing this block
618 * group, but if we've moved to the state where we will wait on caching
619 * block groups we need to first check if we're doing a fast load here,
620 * so we can wait for it to finish, otherwise we could end up allocating
621 * from a block group who's cache gets evicted for one reason or
624 while (cache
->cached
== BTRFS_CACHE_FAST
) {
625 struct btrfs_caching_control
*ctl
;
627 ctl
= cache
->caching_ctl
;
628 atomic_inc(&ctl
->count
);
629 prepare_to_wait(&ctl
->wait
, &wait
, TASK_UNINTERRUPTIBLE
);
630 spin_unlock(&cache
->lock
);
634 finish_wait(&ctl
->wait
, &wait
);
635 put_caching_control(ctl
);
636 spin_lock(&cache
->lock
);
639 if (cache
->cached
!= BTRFS_CACHE_NO
) {
640 spin_unlock(&cache
->lock
);
644 WARN_ON(cache
->caching_ctl
);
645 cache
->caching_ctl
= caching_ctl
;
646 cache
->cached
= BTRFS_CACHE_FAST
;
647 spin_unlock(&cache
->lock
);
649 if (fs_info
->mount_opt
& BTRFS_MOUNT_SPACE_CACHE
) {
650 mutex_lock(&caching_ctl
->mutex
);
651 ret
= load_free_space_cache(fs_info
, cache
);
653 spin_lock(&cache
->lock
);
655 cache
->caching_ctl
= NULL
;
656 cache
->cached
= BTRFS_CACHE_FINISHED
;
657 cache
->last_byte_to_unpin
= (u64
)-1;
658 caching_ctl
->progress
= (u64
)-1;
660 if (load_cache_only
) {
661 cache
->caching_ctl
= NULL
;
662 cache
->cached
= BTRFS_CACHE_NO
;
664 cache
->cached
= BTRFS_CACHE_STARTED
;
665 cache
->has_caching_ctl
= 1;
668 spin_unlock(&cache
->lock
);
669 #ifdef CONFIG_BTRFS_DEBUG
671 btrfs_should_fragment_free_space(fs_info
->extent_root
,
675 spin_lock(&cache
->space_info
->lock
);
676 spin_lock(&cache
->lock
);
677 bytes_used
= cache
->key
.offset
-
678 btrfs_block_group_used(&cache
->item
);
679 cache
->space_info
->bytes_used
+= bytes_used
>> 1;
680 spin_unlock(&cache
->lock
);
681 spin_unlock(&cache
->space_info
->lock
);
682 fragment_free_space(fs_info
->extent_root
, cache
);
685 mutex_unlock(&caching_ctl
->mutex
);
687 wake_up(&caching_ctl
->wait
);
689 put_caching_control(caching_ctl
);
690 free_excluded_extents(fs_info
->extent_root
, cache
);
695 * We're either using the free space tree or no caching at all.
696 * Set cached to the appropriate value and wakeup any waiters.
698 spin_lock(&cache
->lock
);
699 if (load_cache_only
) {
700 cache
->caching_ctl
= NULL
;
701 cache
->cached
= BTRFS_CACHE_NO
;
703 cache
->cached
= BTRFS_CACHE_STARTED
;
704 cache
->has_caching_ctl
= 1;
706 spin_unlock(&cache
->lock
);
707 wake_up(&caching_ctl
->wait
);
710 if (load_cache_only
) {
711 put_caching_control(caching_ctl
);
715 down_write(&fs_info
->commit_root_sem
);
716 atomic_inc(&caching_ctl
->count
);
717 list_add_tail(&caching_ctl
->list
, &fs_info
->caching_block_groups
);
718 up_write(&fs_info
->commit_root_sem
);
720 btrfs_get_block_group(cache
);
722 btrfs_queue_work(fs_info
->caching_workers
, &caching_ctl
->work
);
728 * return the block group that starts at or after bytenr
730 static struct btrfs_block_group_cache
*
731 btrfs_lookup_first_block_group(struct btrfs_fs_info
*info
, u64 bytenr
)
733 struct btrfs_block_group_cache
*cache
;
735 cache
= block_group_cache_tree_search(info
, bytenr
, 0);
741 * return the block group that contains the given bytenr
743 struct btrfs_block_group_cache
*btrfs_lookup_block_group(
744 struct btrfs_fs_info
*info
,
747 struct btrfs_block_group_cache
*cache
;
749 cache
= block_group_cache_tree_search(info
, bytenr
, 1);
754 static struct btrfs_space_info
*__find_space_info(struct btrfs_fs_info
*info
,
757 struct list_head
*head
= &info
->space_info
;
758 struct btrfs_space_info
*found
;
760 flags
&= BTRFS_BLOCK_GROUP_TYPE_MASK
;
763 list_for_each_entry_rcu(found
, head
, list
) {
764 if (found
->flags
& flags
) {
774 * after adding space to the filesystem, we need to clear the full flags
775 * on all the space infos.
777 void btrfs_clear_space_info_full(struct btrfs_fs_info
*info
)
779 struct list_head
*head
= &info
->space_info
;
780 struct btrfs_space_info
*found
;
783 list_for_each_entry_rcu(found
, head
, list
)
788 /* simple helper to search for an existing data extent at a given offset */
789 int btrfs_lookup_data_extent(struct btrfs_root
*root
, u64 start
, u64 len
)
792 struct btrfs_key key
;
793 struct btrfs_path
*path
;
795 path
= btrfs_alloc_path();
799 key
.objectid
= start
;
801 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
802 ret
= btrfs_search_slot(NULL
, root
->fs_info
->extent_root
, &key
, path
,
804 btrfs_free_path(path
);
809 * helper function to lookup reference count and flags of a tree block.
811 * the head node for delayed ref is used to store the sum of all the
812 * reference count modifications queued up in the rbtree. the head
813 * node may also store the extent flags to set. This way you can check
814 * to see what the reference count and extent flags would be if all of
815 * the delayed refs are not processed.
817 int btrfs_lookup_extent_info(struct btrfs_trans_handle
*trans
,
818 struct btrfs_root
*root
, u64 bytenr
,
819 u64 offset
, int metadata
, u64
*refs
, u64
*flags
)
821 struct btrfs_delayed_ref_head
*head
;
822 struct btrfs_delayed_ref_root
*delayed_refs
;
823 struct btrfs_path
*path
;
824 struct btrfs_extent_item
*ei
;
825 struct extent_buffer
*leaf
;
826 struct btrfs_key key
;
833 * If we don't have skinny metadata, don't bother doing anything
836 if (metadata
&& !btrfs_fs_incompat(root
->fs_info
, SKINNY_METADATA
)) {
837 offset
= root
->nodesize
;
841 path
= btrfs_alloc_path();
846 path
->skip_locking
= 1;
847 path
->search_commit_root
= 1;
851 key
.objectid
= bytenr
;
854 key
.type
= BTRFS_METADATA_ITEM_KEY
;
856 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
858 ret
= btrfs_search_slot(trans
, root
->fs_info
->extent_root
,
863 if (ret
> 0 && metadata
&& key
.type
== BTRFS_METADATA_ITEM_KEY
) {
864 if (path
->slots
[0]) {
866 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
868 if (key
.objectid
== bytenr
&&
869 key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
870 key
.offset
== root
->nodesize
)
876 leaf
= path
->nodes
[0];
877 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
878 if (item_size
>= sizeof(*ei
)) {
879 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
880 struct btrfs_extent_item
);
881 num_refs
= btrfs_extent_refs(leaf
, ei
);
882 extent_flags
= btrfs_extent_flags(leaf
, ei
);
884 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
885 struct btrfs_extent_item_v0
*ei0
;
886 BUG_ON(item_size
!= sizeof(*ei0
));
887 ei0
= btrfs_item_ptr(leaf
, path
->slots
[0],
888 struct btrfs_extent_item_v0
);
889 num_refs
= btrfs_extent_refs_v0(leaf
, ei0
);
890 /* FIXME: this isn't correct for data */
891 extent_flags
= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
896 BUG_ON(num_refs
== 0);
906 delayed_refs
= &trans
->transaction
->delayed_refs
;
907 spin_lock(&delayed_refs
->lock
);
908 head
= btrfs_find_delayed_ref_head(trans
, bytenr
);
910 if (!mutex_trylock(&head
->mutex
)) {
911 atomic_inc(&head
->node
.refs
);
912 spin_unlock(&delayed_refs
->lock
);
914 btrfs_release_path(path
);
917 * Mutex was contended, block until it's released and try
920 mutex_lock(&head
->mutex
);
921 mutex_unlock(&head
->mutex
);
922 btrfs_put_delayed_ref(&head
->node
);
925 spin_lock(&head
->lock
);
926 if (head
->extent_op
&& head
->extent_op
->update_flags
)
927 extent_flags
|= head
->extent_op
->flags_to_set
;
929 BUG_ON(num_refs
== 0);
931 num_refs
+= head
->node
.ref_mod
;
932 spin_unlock(&head
->lock
);
933 mutex_unlock(&head
->mutex
);
935 spin_unlock(&delayed_refs
->lock
);
937 WARN_ON(num_refs
== 0);
941 *flags
= extent_flags
;
943 btrfs_free_path(path
);
948 * Back reference rules. Back refs have three main goals:
950 * 1) differentiate between all holders of references to an extent so that
951 * when a reference is dropped we can make sure it was a valid reference
952 * before freeing the extent.
954 * 2) Provide enough information to quickly find the holders of an extent
955 * if we notice a given block is corrupted or bad.
957 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
958 * maintenance. This is actually the same as #2, but with a slightly
959 * different use case.
961 * There are two kinds of back refs. The implicit back refs is optimized
962 * for pointers in non-shared tree blocks. For a given pointer in a block,
963 * back refs of this kind provide information about the block's owner tree
964 * and the pointer's key. These information allow us to find the block by
965 * b-tree searching. The full back refs is for pointers in tree blocks not
966 * referenced by their owner trees. The location of tree block is recorded
967 * in the back refs. Actually the full back refs is generic, and can be
968 * used in all cases the implicit back refs is used. The major shortcoming
969 * of the full back refs is its overhead. Every time a tree block gets
970 * COWed, we have to update back refs entry for all pointers in it.
972 * For a newly allocated tree block, we use implicit back refs for
973 * pointers in it. This means most tree related operations only involve
974 * implicit back refs. For a tree block created in old transaction, the
975 * only way to drop a reference to it is COW it. So we can detect the
976 * event that tree block loses its owner tree's reference and do the
977 * back refs conversion.
979 * When a tree block is COWed through a tree, there are four cases:
981 * The reference count of the block is one and the tree is the block's
982 * owner tree. Nothing to do in this case.
984 * The reference count of the block is one and the tree is not the
985 * block's owner tree. In this case, full back refs is used for pointers
986 * in the block. Remove these full back refs, add implicit back refs for
987 * every pointers in the new block.
989 * The reference count of the block is greater than one and the tree is
990 * the block's owner tree. In this case, implicit back refs is used for
991 * pointers in the block. Add full back refs for every pointers in the
992 * block, increase lower level extents' reference counts. The original
993 * implicit back refs are entailed to the new block.
995 * The reference count of the block is greater than one and the tree is
996 * not the block's owner tree. Add implicit back refs for every pointer in
997 * the new block, increase lower level extents' reference count.
999 * Back Reference Key composing:
1001 * The key objectid corresponds to the first byte in the extent,
1002 * The key type is used to differentiate between types of back refs.
1003 * There are different meanings of the key offset for different types
1006 * File extents can be referenced by:
1008 * - multiple snapshots, subvolumes, or different generations in one subvol
1009 * - different files inside a single subvolume
1010 * - different offsets inside a file (bookend extents in file.c)
1012 * The extent ref structure for the implicit back refs has fields for:
1014 * - Objectid of the subvolume root
1015 * - objectid of the file holding the reference
1016 * - original offset in the file
1017 * - how many bookend extents
1019 * The key offset for the implicit back refs is hash of the first
1022 * The extent ref structure for the full back refs has field for:
1024 * - number of pointers in the tree leaf
1026 * The key offset for the implicit back refs is the first byte of
1029 * When a file extent is allocated, The implicit back refs is used.
1030 * the fields are filled in:
1032 * (root_key.objectid, inode objectid, offset in file, 1)
1034 * When a file extent is removed file truncation, we find the
1035 * corresponding implicit back refs and check the following fields:
1037 * (btrfs_header_owner(leaf), inode objectid, offset in file)
1039 * Btree extents can be referenced by:
1041 * - Different subvolumes
1043 * Both the implicit back refs and the full back refs for tree blocks
1044 * only consist of key. The key offset for the implicit back refs is
1045 * objectid of block's owner tree. The key offset for the full back refs
1046 * is the first byte of parent block.
1048 * When implicit back refs is used, information about the lowest key and
1049 * level of the tree block are required. These information are stored in
1050 * tree block info structure.
1053 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1054 static int convert_extent_item_v0(struct btrfs_trans_handle
*trans
,
1055 struct btrfs_root
*root
,
1056 struct btrfs_path
*path
,
1057 u64 owner
, u32 extra_size
)
1059 struct btrfs_extent_item
*item
;
1060 struct btrfs_extent_item_v0
*ei0
;
1061 struct btrfs_extent_ref_v0
*ref0
;
1062 struct btrfs_tree_block_info
*bi
;
1063 struct extent_buffer
*leaf
;
1064 struct btrfs_key key
;
1065 struct btrfs_key found_key
;
1066 u32 new_size
= sizeof(*item
);
1070 leaf
= path
->nodes
[0];
1071 BUG_ON(btrfs_item_size_nr(leaf
, path
->slots
[0]) != sizeof(*ei0
));
1073 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1074 ei0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1075 struct btrfs_extent_item_v0
);
1076 refs
= btrfs_extent_refs_v0(leaf
, ei0
);
1078 if (owner
== (u64
)-1) {
1080 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
1081 ret
= btrfs_next_leaf(root
, path
);
1084 BUG_ON(ret
> 0); /* Corruption */
1085 leaf
= path
->nodes
[0];
1087 btrfs_item_key_to_cpu(leaf
, &found_key
,
1089 BUG_ON(key
.objectid
!= found_key
.objectid
);
1090 if (found_key
.type
!= BTRFS_EXTENT_REF_V0_KEY
) {
1094 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1095 struct btrfs_extent_ref_v0
);
1096 owner
= btrfs_ref_objectid_v0(leaf
, ref0
);
1100 btrfs_release_path(path
);
1102 if (owner
< BTRFS_FIRST_FREE_OBJECTID
)
1103 new_size
+= sizeof(*bi
);
1105 new_size
-= sizeof(*ei0
);
1106 ret
= btrfs_search_slot(trans
, root
, &key
, path
,
1107 new_size
+ extra_size
, 1);
1110 BUG_ON(ret
); /* Corruption */
1112 btrfs_extend_item(root
, path
, new_size
);
1114 leaf
= path
->nodes
[0];
1115 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1116 btrfs_set_extent_refs(leaf
, item
, refs
);
1117 /* FIXME: get real generation */
1118 btrfs_set_extent_generation(leaf
, item
, 0);
1119 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1120 btrfs_set_extent_flags(leaf
, item
,
1121 BTRFS_EXTENT_FLAG_TREE_BLOCK
|
1122 BTRFS_BLOCK_FLAG_FULL_BACKREF
);
1123 bi
= (struct btrfs_tree_block_info
*)(item
+ 1);
1124 /* FIXME: get first key of the block */
1125 memset_extent_buffer(leaf
, 0, (unsigned long)bi
, sizeof(*bi
));
1126 btrfs_set_tree_block_level(leaf
, bi
, (int)owner
);
1128 btrfs_set_extent_flags(leaf
, item
, BTRFS_EXTENT_FLAG_DATA
);
1130 btrfs_mark_buffer_dirty(leaf
);
1135 static u64
hash_extent_data_ref(u64 root_objectid
, u64 owner
, u64 offset
)
1137 u32 high_crc
= ~(u32
)0;
1138 u32 low_crc
= ~(u32
)0;
1141 lenum
= cpu_to_le64(root_objectid
);
1142 high_crc
= btrfs_crc32c(high_crc
, &lenum
, sizeof(lenum
));
1143 lenum
= cpu_to_le64(owner
);
1144 low_crc
= btrfs_crc32c(low_crc
, &lenum
, sizeof(lenum
));
1145 lenum
= cpu_to_le64(offset
);
1146 low_crc
= btrfs_crc32c(low_crc
, &lenum
, sizeof(lenum
));
1148 return ((u64
)high_crc
<< 31) ^ (u64
)low_crc
;
1151 static u64
hash_extent_data_ref_item(struct extent_buffer
*leaf
,
1152 struct btrfs_extent_data_ref
*ref
)
1154 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf
, ref
),
1155 btrfs_extent_data_ref_objectid(leaf
, ref
),
1156 btrfs_extent_data_ref_offset(leaf
, ref
));
1159 static int match_extent_data_ref(struct extent_buffer
*leaf
,
1160 struct btrfs_extent_data_ref
*ref
,
1161 u64 root_objectid
, u64 owner
, u64 offset
)
1163 if (btrfs_extent_data_ref_root(leaf
, ref
) != root_objectid
||
1164 btrfs_extent_data_ref_objectid(leaf
, ref
) != owner
||
1165 btrfs_extent_data_ref_offset(leaf
, ref
) != offset
)
1170 static noinline
int lookup_extent_data_ref(struct btrfs_trans_handle
*trans
,
1171 struct btrfs_root
*root
,
1172 struct btrfs_path
*path
,
1173 u64 bytenr
, u64 parent
,
1175 u64 owner
, u64 offset
)
1177 struct btrfs_key key
;
1178 struct btrfs_extent_data_ref
*ref
;
1179 struct extent_buffer
*leaf
;
1185 key
.objectid
= bytenr
;
1187 key
.type
= BTRFS_SHARED_DATA_REF_KEY
;
1188 key
.offset
= parent
;
1190 key
.type
= BTRFS_EXTENT_DATA_REF_KEY
;
1191 key
.offset
= hash_extent_data_ref(root_objectid
,
1196 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1205 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1206 key
.type
= BTRFS_EXTENT_REF_V0_KEY
;
1207 btrfs_release_path(path
);
1208 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1219 leaf
= path
->nodes
[0];
1220 nritems
= btrfs_header_nritems(leaf
);
1222 if (path
->slots
[0] >= nritems
) {
1223 ret
= btrfs_next_leaf(root
, path
);
1229 leaf
= path
->nodes
[0];
1230 nritems
= btrfs_header_nritems(leaf
);
1234 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1235 if (key
.objectid
!= bytenr
||
1236 key
.type
!= BTRFS_EXTENT_DATA_REF_KEY
)
1239 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1240 struct btrfs_extent_data_ref
);
1242 if (match_extent_data_ref(leaf
, ref
, root_objectid
,
1245 btrfs_release_path(path
);
1257 static noinline
int insert_extent_data_ref(struct btrfs_trans_handle
*trans
,
1258 struct btrfs_root
*root
,
1259 struct btrfs_path
*path
,
1260 u64 bytenr
, u64 parent
,
1261 u64 root_objectid
, u64 owner
,
1262 u64 offset
, int refs_to_add
)
1264 struct btrfs_key key
;
1265 struct extent_buffer
*leaf
;
1270 key
.objectid
= bytenr
;
1272 key
.type
= BTRFS_SHARED_DATA_REF_KEY
;
1273 key
.offset
= parent
;
1274 size
= sizeof(struct btrfs_shared_data_ref
);
1276 key
.type
= BTRFS_EXTENT_DATA_REF_KEY
;
1277 key
.offset
= hash_extent_data_ref(root_objectid
,
1279 size
= sizeof(struct btrfs_extent_data_ref
);
1282 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
, size
);
1283 if (ret
&& ret
!= -EEXIST
)
1286 leaf
= path
->nodes
[0];
1288 struct btrfs_shared_data_ref
*ref
;
1289 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1290 struct btrfs_shared_data_ref
);
1292 btrfs_set_shared_data_ref_count(leaf
, ref
, refs_to_add
);
1294 num_refs
= btrfs_shared_data_ref_count(leaf
, ref
);
1295 num_refs
+= refs_to_add
;
1296 btrfs_set_shared_data_ref_count(leaf
, ref
, num_refs
);
1299 struct btrfs_extent_data_ref
*ref
;
1300 while (ret
== -EEXIST
) {
1301 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1302 struct btrfs_extent_data_ref
);
1303 if (match_extent_data_ref(leaf
, ref
, root_objectid
,
1306 btrfs_release_path(path
);
1308 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
1310 if (ret
&& ret
!= -EEXIST
)
1313 leaf
= path
->nodes
[0];
1315 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1316 struct btrfs_extent_data_ref
);
1318 btrfs_set_extent_data_ref_root(leaf
, ref
,
1320 btrfs_set_extent_data_ref_objectid(leaf
, ref
, owner
);
1321 btrfs_set_extent_data_ref_offset(leaf
, ref
, offset
);
1322 btrfs_set_extent_data_ref_count(leaf
, ref
, refs_to_add
);
1324 num_refs
= btrfs_extent_data_ref_count(leaf
, ref
);
1325 num_refs
+= refs_to_add
;
1326 btrfs_set_extent_data_ref_count(leaf
, ref
, num_refs
);
1329 btrfs_mark_buffer_dirty(leaf
);
1332 btrfs_release_path(path
);
1336 static noinline
int remove_extent_data_ref(struct btrfs_trans_handle
*trans
,
1337 struct btrfs_root
*root
,
1338 struct btrfs_path
*path
,
1339 int refs_to_drop
, int *last_ref
)
1341 struct btrfs_key key
;
1342 struct btrfs_extent_data_ref
*ref1
= NULL
;
1343 struct btrfs_shared_data_ref
*ref2
= NULL
;
1344 struct extent_buffer
*leaf
;
1348 leaf
= path
->nodes
[0];
1349 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1351 if (key
.type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1352 ref1
= btrfs_item_ptr(leaf
, path
->slots
[0],
1353 struct btrfs_extent_data_ref
);
1354 num_refs
= btrfs_extent_data_ref_count(leaf
, ref1
);
1355 } else if (key
.type
== BTRFS_SHARED_DATA_REF_KEY
) {
1356 ref2
= btrfs_item_ptr(leaf
, path
->slots
[0],
1357 struct btrfs_shared_data_ref
);
1358 num_refs
= btrfs_shared_data_ref_count(leaf
, ref2
);
1359 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1360 } else if (key
.type
== BTRFS_EXTENT_REF_V0_KEY
) {
1361 struct btrfs_extent_ref_v0
*ref0
;
1362 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1363 struct btrfs_extent_ref_v0
);
1364 num_refs
= btrfs_ref_count_v0(leaf
, ref0
);
1370 BUG_ON(num_refs
< refs_to_drop
);
1371 num_refs
-= refs_to_drop
;
1373 if (num_refs
== 0) {
1374 ret
= btrfs_del_item(trans
, root
, path
);
1377 if (key
.type
== BTRFS_EXTENT_DATA_REF_KEY
)
1378 btrfs_set_extent_data_ref_count(leaf
, ref1
, num_refs
);
1379 else if (key
.type
== BTRFS_SHARED_DATA_REF_KEY
)
1380 btrfs_set_shared_data_ref_count(leaf
, ref2
, num_refs
);
1381 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1383 struct btrfs_extent_ref_v0
*ref0
;
1384 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1385 struct btrfs_extent_ref_v0
);
1386 btrfs_set_ref_count_v0(leaf
, ref0
, num_refs
);
1389 btrfs_mark_buffer_dirty(leaf
);
1394 static noinline u32
extent_data_ref_count(struct btrfs_path
*path
,
1395 struct btrfs_extent_inline_ref
*iref
)
1397 struct btrfs_key key
;
1398 struct extent_buffer
*leaf
;
1399 struct btrfs_extent_data_ref
*ref1
;
1400 struct btrfs_shared_data_ref
*ref2
;
1403 leaf
= path
->nodes
[0];
1404 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1406 if (btrfs_extent_inline_ref_type(leaf
, iref
) ==
1407 BTRFS_EXTENT_DATA_REF_KEY
) {
1408 ref1
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1409 num_refs
= btrfs_extent_data_ref_count(leaf
, ref1
);
1411 ref2
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
1412 num_refs
= btrfs_shared_data_ref_count(leaf
, ref2
);
1414 } else if (key
.type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1415 ref1
= btrfs_item_ptr(leaf
, path
->slots
[0],
1416 struct btrfs_extent_data_ref
);
1417 num_refs
= btrfs_extent_data_ref_count(leaf
, ref1
);
1418 } else if (key
.type
== BTRFS_SHARED_DATA_REF_KEY
) {
1419 ref2
= btrfs_item_ptr(leaf
, path
->slots
[0],
1420 struct btrfs_shared_data_ref
);
1421 num_refs
= btrfs_shared_data_ref_count(leaf
, ref2
);
1422 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1423 } else if (key
.type
== BTRFS_EXTENT_REF_V0_KEY
) {
1424 struct btrfs_extent_ref_v0
*ref0
;
1425 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1426 struct btrfs_extent_ref_v0
);
1427 num_refs
= btrfs_ref_count_v0(leaf
, ref0
);
1435 static noinline
int lookup_tree_block_ref(struct btrfs_trans_handle
*trans
,
1436 struct btrfs_root
*root
,
1437 struct btrfs_path
*path
,
1438 u64 bytenr
, u64 parent
,
1441 struct btrfs_key key
;
1444 key
.objectid
= bytenr
;
1446 key
.type
= BTRFS_SHARED_BLOCK_REF_KEY
;
1447 key
.offset
= parent
;
1449 key
.type
= BTRFS_TREE_BLOCK_REF_KEY
;
1450 key
.offset
= root_objectid
;
1453 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1456 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1457 if (ret
== -ENOENT
&& parent
) {
1458 btrfs_release_path(path
);
1459 key
.type
= BTRFS_EXTENT_REF_V0_KEY
;
1460 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1468 static noinline
int insert_tree_block_ref(struct btrfs_trans_handle
*trans
,
1469 struct btrfs_root
*root
,
1470 struct btrfs_path
*path
,
1471 u64 bytenr
, u64 parent
,
1474 struct btrfs_key key
;
1477 key
.objectid
= bytenr
;
1479 key
.type
= BTRFS_SHARED_BLOCK_REF_KEY
;
1480 key
.offset
= parent
;
1482 key
.type
= BTRFS_TREE_BLOCK_REF_KEY
;
1483 key
.offset
= root_objectid
;
1486 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
, 0);
1487 btrfs_release_path(path
);
1491 static inline int extent_ref_type(u64 parent
, u64 owner
)
1494 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1496 type
= BTRFS_SHARED_BLOCK_REF_KEY
;
1498 type
= BTRFS_TREE_BLOCK_REF_KEY
;
1501 type
= BTRFS_SHARED_DATA_REF_KEY
;
1503 type
= BTRFS_EXTENT_DATA_REF_KEY
;
1508 static int find_next_key(struct btrfs_path
*path
, int level
,
1509 struct btrfs_key
*key
)
1512 for (; level
< BTRFS_MAX_LEVEL
; level
++) {
1513 if (!path
->nodes
[level
])
1515 if (path
->slots
[level
] + 1 >=
1516 btrfs_header_nritems(path
->nodes
[level
]))
1519 btrfs_item_key_to_cpu(path
->nodes
[level
], key
,
1520 path
->slots
[level
] + 1);
1522 btrfs_node_key_to_cpu(path
->nodes
[level
], key
,
1523 path
->slots
[level
] + 1);
1530 * look for inline back ref. if back ref is found, *ref_ret is set
1531 * to the address of inline back ref, and 0 is returned.
1533 * if back ref isn't found, *ref_ret is set to the address where it
1534 * should be inserted, and -ENOENT is returned.
1536 * if insert is true and there are too many inline back refs, the path
1537 * points to the extent item, and -EAGAIN is returned.
1539 * NOTE: inline back refs are ordered in the same way that back ref
1540 * items in the tree are ordered.
1542 static noinline_for_stack
1543 int lookup_inline_extent_backref(struct btrfs_trans_handle
*trans
,
1544 struct btrfs_root
*root
,
1545 struct btrfs_path
*path
,
1546 struct btrfs_extent_inline_ref
**ref_ret
,
1547 u64 bytenr
, u64 num_bytes
,
1548 u64 parent
, u64 root_objectid
,
1549 u64 owner
, u64 offset
, int insert
)
1551 struct btrfs_key key
;
1552 struct extent_buffer
*leaf
;
1553 struct btrfs_extent_item
*ei
;
1554 struct btrfs_extent_inline_ref
*iref
;
1564 bool skinny_metadata
= btrfs_fs_incompat(root
->fs_info
,
1567 key
.objectid
= bytenr
;
1568 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
1569 key
.offset
= num_bytes
;
1571 want
= extent_ref_type(parent
, owner
);
1573 extra_size
= btrfs_extent_inline_ref_size(want
);
1574 path
->keep_locks
= 1;
1579 * Owner is our parent level, so we can just add one to get the level
1580 * for the block we are interested in.
1582 if (skinny_metadata
&& owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1583 key
.type
= BTRFS_METADATA_ITEM_KEY
;
1588 ret
= btrfs_search_slot(trans
, root
, &key
, path
, extra_size
, 1);
1595 * We may be a newly converted file system which still has the old fat
1596 * extent entries for metadata, so try and see if we have one of those.
1598 if (ret
> 0 && skinny_metadata
) {
1599 skinny_metadata
= false;
1600 if (path
->slots
[0]) {
1602 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
1604 if (key
.objectid
== bytenr
&&
1605 key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
1606 key
.offset
== num_bytes
)
1610 key
.objectid
= bytenr
;
1611 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
1612 key
.offset
= num_bytes
;
1613 btrfs_release_path(path
);
1618 if (ret
&& !insert
) {
1621 } else if (WARN_ON(ret
)) {
1626 leaf
= path
->nodes
[0];
1627 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1628 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1629 if (item_size
< sizeof(*ei
)) {
1634 ret
= convert_extent_item_v0(trans
, root
, path
, owner
,
1640 leaf
= path
->nodes
[0];
1641 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1644 BUG_ON(item_size
< sizeof(*ei
));
1646 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1647 flags
= btrfs_extent_flags(leaf
, ei
);
1649 ptr
= (unsigned long)(ei
+ 1);
1650 end
= (unsigned long)ei
+ item_size
;
1652 if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
&& !skinny_metadata
) {
1653 ptr
+= sizeof(struct btrfs_tree_block_info
);
1663 iref
= (struct btrfs_extent_inline_ref
*)ptr
;
1664 type
= btrfs_extent_inline_ref_type(leaf
, iref
);
1668 ptr
+= btrfs_extent_inline_ref_size(type
);
1672 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1673 struct btrfs_extent_data_ref
*dref
;
1674 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1675 if (match_extent_data_ref(leaf
, dref
, root_objectid
,
1680 if (hash_extent_data_ref_item(leaf
, dref
) <
1681 hash_extent_data_ref(root_objectid
, owner
, offset
))
1685 ref_offset
= btrfs_extent_inline_ref_offset(leaf
, iref
);
1687 if (parent
== ref_offset
) {
1691 if (ref_offset
< parent
)
1694 if (root_objectid
== ref_offset
) {
1698 if (ref_offset
< root_objectid
)
1702 ptr
+= btrfs_extent_inline_ref_size(type
);
1704 if (err
== -ENOENT
&& insert
) {
1705 if (item_size
+ extra_size
>=
1706 BTRFS_MAX_EXTENT_ITEM_SIZE(root
)) {
1711 * To add new inline back ref, we have to make sure
1712 * there is no corresponding back ref item.
1713 * For simplicity, we just do not add new inline back
1714 * ref if there is any kind of item for this block
1716 if (find_next_key(path
, 0, &key
) == 0 &&
1717 key
.objectid
== bytenr
&&
1718 key
.type
< BTRFS_BLOCK_GROUP_ITEM_KEY
) {
1723 *ref_ret
= (struct btrfs_extent_inline_ref
*)ptr
;
1726 path
->keep_locks
= 0;
1727 btrfs_unlock_up_safe(path
, 1);
1733 * helper to add new inline back ref
1735 static noinline_for_stack
1736 void setup_inline_extent_backref(struct btrfs_root
*root
,
1737 struct btrfs_path
*path
,
1738 struct btrfs_extent_inline_ref
*iref
,
1739 u64 parent
, u64 root_objectid
,
1740 u64 owner
, u64 offset
, int refs_to_add
,
1741 struct btrfs_delayed_extent_op
*extent_op
)
1743 struct extent_buffer
*leaf
;
1744 struct btrfs_extent_item
*ei
;
1747 unsigned long item_offset
;
1752 leaf
= path
->nodes
[0];
1753 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1754 item_offset
= (unsigned long)iref
- (unsigned long)ei
;
1756 type
= extent_ref_type(parent
, owner
);
1757 size
= btrfs_extent_inline_ref_size(type
);
1759 btrfs_extend_item(root
, path
, size
);
1761 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1762 refs
= btrfs_extent_refs(leaf
, ei
);
1763 refs
+= refs_to_add
;
1764 btrfs_set_extent_refs(leaf
, ei
, refs
);
1766 __run_delayed_extent_op(extent_op
, leaf
, ei
);
1768 ptr
= (unsigned long)ei
+ item_offset
;
1769 end
= (unsigned long)ei
+ btrfs_item_size_nr(leaf
, path
->slots
[0]);
1770 if (ptr
< end
- size
)
1771 memmove_extent_buffer(leaf
, ptr
+ size
, ptr
,
1774 iref
= (struct btrfs_extent_inline_ref
*)ptr
;
1775 btrfs_set_extent_inline_ref_type(leaf
, iref
, type
);
1776 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1777 struct btrfs_extent_data_ref
*dref
;
1778 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1779 btrfs_set_extent_data_ref_root(leaf
, dref
, root_objectid
);
1780 btrfs_set_extent_data_ref_objectid(leaf
, dref
, owner
);
1781 btrfs_set_extent_data_ref_offset(leaf
, dref
, offset
);
1782 btrfs_set_extent_data_ref_count(leaf
, dref
, refs_to_add
);
1783 } else if (type
== BTRFS_SHARED_DATA_REF_KEY
) {
1784 struct btrfs_shared_data_ref
*sref
;
1785 sref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
1786 btrfs_set_shared_data_ref_count(leaf
, sref
, refs_to_add
);
1787 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
1788 } else if (type
== BTRFS_SHARED_BLOCK_REF_KEY
) {
1789 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
1791 btrfs_set_extent_inline_ref_offset(leaf
, iref
, root_objectid
);
1793 btrfs_mark_buffer_dirty(leaf
);
1796 static int lookup_extent_backref(struct btrfs_trans_handle
*trans
,
1797 struct btrfs_root
*root
,
1798 struct btrfs_path
*path
,
1799 struct btrfs_extent_inline_ref
**ref_ret
,
1800 u64 bytenr
, u64 num_bytes
, u64 parent
,
1801 u64 root_objectid
, u64 owner
, u64 offset
)
1805 ret
= lookup_inline_extent_backref(trans
, root
, path
, ref_ret
,
1806 bytenr
, num_bytes
, parent
,
1807 root_objectid
, owner
, offset
, 0);
1811 btrfs_release_path(path
);
1814 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1815 ret
= lookup_tree_block_ref(trans
, root
, path
, bytenr
, parent
,
1818 ret
= lookup_extent_data_ref(trans
, root
, path
, bytenr
, parent
,
1819 root_objectid
, owner
, offset
);
1825 * helper to update/remove inline back ref
1827 static noinline_for_stack
1828 void update_inline_extent_backref(struct btrfs_root
*root
,
1829 struct btrfs_path
*path
,
1830 struct btrfs_extent_inline_ref
*iref
,
1832 struct btrfs_delayed_extent_op
*extent_op
,
1835 struct extent_buffer
*leaf
;
1836 struct btrfs_extent_item
*ei
;
1837 struct btrfs_extent_data_ref
*dref
= NULL
;
1838 struct btrfs_shared_data_ref
*sref
= NULL
;
1846 leaf
= path
->nodes
[0];
1847 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1848 refs
= btrfs_extent_refs(leaf
, ei
);
1849 WARN_ON(refs_to_mod
< 0 && refs
+ refs_to_mod
<= 0);
1850 refs
+= refs_to_mod
;
1851 btrfs_set_extent_refs(leaf
, ei
, refs
);
1853 __run_delayed_extent_op(extent_op
, leaf
, ei
);
1855 type
= btrfs_extent_inline_ref_type(leaf
, iref
);
1857 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1858 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1859 refs
= btrfs_extent_data_ref_count(leaf
, dref
);
1860 } else if (type
== BTRFS_SHARED_DATA_REF_KEY
) {
1861 sref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
1862 refs
= btrfs_shared_data_ref_count(leaf
, sref
);
1865 BUG_ON(refs_to_mod
!= -1);
1868 BUG_ON(refs_to_mod
< 0 && refs
< -refs_to_mod
);
1869 refs
+= refs_to_mod
;
1872 if (type
== BTRFS_EXTENT_DATA_REF_KEY
)
1873 btrfs_set_extent_data_ref_count(leaf
, dref
, refs
);
1875 btrfs_set_shared_data_ref_count(leaf
, sref
, refs
);
1878 size
= btrfs_extent_inline_ref_size(type
);
1879 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1880 ptr
= (unsigned long)iref
;
1881 end
= (unsigned long)ei
+ item_size
;
1882 if (ptr
+ size
< end
)
1883 memmove_extent_buffer(leaf
, ptr
, ptr
+ size
,
1886 btrfs_truncate_item(root
, path
, item_size
, 1);
1888 btrfs_mark_buffer_dirty(leaf
);
1891 static noinline_for_stack
1892 int insert_inline_extent_backref(struct btrfs_trans_handle
*trans
,
1893 struct btrfs_root
*root
,
1894 struct btrfs_path
*path
,
1895 u64 bytenr
, u64 num_bytes
, u64 parent
,
1896 u64 root_objectid
, u64 owner
,
1897 u64 offset
, int refs_to_add
,
1898 struct btrfs_delayed_extent_op
*extent_op
)
1900 struct btrfs_extent_inline_ref
*iref
;
1903 ret
= lookup_inline_extent_backref(trans
, root
, path
, &iref
,
1904 bytenr
, num_bytes
, parent
,
1905 root_objectid
, owner
, offset
, 1);
1907 BUG_ON(owner
< BTRFS_FIRST_FREE_OBJECTID
);
1908 update_inline_extent_backref(root
, path
, iref
,
1909 refs_to_add
, extent_op
, NULL
);
1910 } else if (ret
== -ENOENT
) {
1911 setup_inline_extent_backref(root
, path
, iref
, parent
,
1912 root_objectid
, owner
, offset
,
1913 refs_to_add
, extent_op
);
1919 static int insert_extent_backref(struct btrfs_trans_handle
*trans
,
1920 struct btrfs_root
*root
,
1921 struct btrfs_path
*path
,
1922 u64 bytenr
, u64 parent
, u64 root_objectid
,
1923 u64 owner
, u64 offset
, int refs_to_add
)
1926 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1927 BUG_ON(refs_to_add
!= 1);
1928 ret
= insert_tree_block_ref(trans
, root
, path
, bytenr
,
1929 parent
, root_objectid
);
1931 ret
= insert_extent_data_ref(trans
, root
, path
, bytenr
,
1932 parent
, root_objectid
,
1933 owner
, offset
, refs_to_add
);
1938 static int remove_extent_backref(struct btrfs_trans_handle
*trans
,
1939 struct btrfs_root
*root
,
1940 struct btrfs_path
*path
,
1941 struct btrfs_extent_inline_ref
*iref
,
1942 int refs_to_drop
, int is_data
, int *last_ref
)
1946 BUG_ON(!is_data
&& refs_to_drop
!= 1);
1948 update_inline_extent_backref(root
, path
, iref
,
1949 -refs_to_drop
, NULL
, last_ref
);
1950 } else if (is_data
) {
1951 ret
= remove_extent_data_ref(trans
, root
, path
, refs_to_drop
,
1955 ret
= btrfs_del_item(trans
, root
, path
);
1960 #define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
1961 static int btrfs_issue_discard(struct block_device
*bdev
, u64 start
, u64 len
,
1962 u64
*discarded_bytes
)
1965 u64 bytes_left
, end
;
1966 u64 aligned_start
= ALIGN(start
, 1 << 9);
1968 if (WARN_ON(start
!= aligned_start
)) {
1969 len
-= aligned_start
- start
;
1970 len
= round_down(len
, 1 << 9);
1971 start
= aligned_start
;
1974 *discarded_bytes
= 0;
1982 /* Skip any superblocks on this device. */
1983 for (j
= 0; j
< BTRFS_SUPER_MIRROR_MAX
; j
++) {
1984 u64 sb_start
= btrfs_sb_offset(j
);
1985 u64 sb_end
= sb_start
+ BTRFS_SUPER_INFO_SIZE
;
1986 u64 size
= sb_start
- start
;
1988 if (!in_range(sb_start
, start
, bytes_left
) &&
1989 !in_range(sb_end
, start
, bytes_left
) &&
1990 !in_range(start
, sb_start
, BTRFS_SUPER_INFO_SIZE
))
1994 * Superblock spans beginning of range. Adjust start and
1997 if (sb_start
<= start
) {
1998 start
+= sb_end
- start
;
2003 bytes_left
= end
- start
;
2008 ret
= blkdev_issue_discard(bdev
, start
>> 9, size
>> 9,
2011 *discarded_bytes
+= size
;
2012 else if (ret
!= -EOPNOTSUPP
)
2021 bytes_left
= end
- start
;
2025 ret
= blkdev_issue_discard(bdev
, start
>> 9, bytes_left
>> 9,
2028 *discarded_bytes
+= bytes_left
;
2033 int btrfs_discard_extent(struct btrfs_root
*root
, u64 bytenr
,
2034 u64 num_bytes
, u64
*actual_bytes
)
2037 u64 discarded_bytes
= 0;
2038 struct btrfs_bio
*bbio
= NULL
;
2042 * Avoid races with device replace and make sure our bbio has devices
2043 * associated to its stripes that don't go away while we are discarding.
2045 btrfs_bio_counter_inc_blocked(root
->fs_info
);
2046 /* Tell the block device(s) that the sectors can be discarded */
2047 ret
= btrfs_map_block(root
->fs_info
, REQ_OP_DISCARD
,
2048 bytenr
, &num_bytes
, &bbio
, 0);
2049 /* Error condition is -ENOMEM */
2051 struct btrfs_bio_stripe
*stripe
= bbio
->stripes
;
2055 for (i
= 0; i
< bbio
->num_stripes
; i
++, stripe
++) {
2057 if (!stripe
->dev
->can_discard
)
2060 ret
= btrfs_issue_discard(stripe
->dev
->bdev
,
2065 discarded_bytes
+= bytes
;
2066 else if (ret
!= -EOPNOTSUPP
)
2067 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2070 * Just in case we get back EOPNOTSUPP for some reason,
2071 * just ignore the return value so we don't screw up
2072 * people calling discard_extent.
2076 btrfs_put_bbio(bbio
);
2078 btrfs_bio_counter_dec(root
->fs_info
);
2081 *actual_bytes
= discarded_bytes
;
2084 if (ret
== -EOPNOTSUPP
)
2089 /* Can return -ENOMEM */
2090 int btrfs_inc_extent_ref(struct btrfs_trans_handle
*trans
,
2091 struct btrfs_root
*root
,
2092 u64 bytenr
, u64 num_bytes
, u64 parent
,
2093 u64 root_objectid
, u64 owner
, u64 offset
)
2096 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2098 BUG_ON(owner
< BTRFS_FIRST_FREE_OBJECTID
&&
2099 root_objectid
== BTRFS_TREE_LOG_OBJECTID
);
2101 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
2102 ret
= btrfs_add_delayed_tree_ref(fs_info
, trans
, bytenr
,
2104 parent
, root_objectid
, (int)owner
,
2105 BTRFS_ADD_DELAYED_REF
, NULL
);
2107 ret
= btrfs_add_delayed_data_ref(fs_info
, trans
, bytenr
,
2108 num_bytes
, parent
, root_objectid
,
2110 BTRFS_ADD_DELAYED_REF
, NULL
);
2115 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle
*trans
,
2116 struct btrfs_root
*root
,
2117 struct btrfs_delayed_ref_node
*node
,
2118 u64 parent
, u64 root_objectid
,
2119 u64 owner
, u64 offset
, int refs_to_add
,
2120 struct btrfs_delayed_extent_op
*extent_op
)
2122 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2123 struct btrfs_path
*path
;
2124 struct extent_buffer
*leaf
;
2125 struct btrfs_extent_item
*item
;
2126 struct btrfs_key key
;
2127 u64 bytenr
= node
->bytenr
;
2128 u64 num_bytes
= node
->num_bytes
;
2132 path
= btrfs_alloc_path();
2136 path
->reada
= READA_FORWARD
;
2137 path
->leave_spinning
= 1;
2138 /* this will setup the path even if it fails to insert the back ref */
2139 ret
= insert_inline_extent_backref(trans
, fs_info
->extent_root
, path
,
2140 bytenr
, num_bytes
, parent
,
2141 root_objectid
, owner
, offset
,
2142 refs_to_add
, extent_op
);
2143 if ((ret
< 0 && ret
!= -EAGAIN
) || !ret
)
2147 * Ok we had -EAGAIN which means we didn't have space to insert and
2148 * inline extent ref, so just update the reference count and add a
2151 leaf
= path
->nodes
[0];
2152 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2153 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
2154 refs
= btrfs_extent_refs(leaf
, item
);
2155 btrfs_set_extent_refs(leaf
, item
, refs
+ refs_to_add
);
2157 __run_delayed_extent_op(extent_op
, leaf
, item
);
2159 btrfs_mark_buffer_dirty(leaf
);
2160 btrfs_release_path(path
);
2162 path
->reada
= READA_FORWARD
;
2163 path
->leave_spinning
= 1;
2164 /* now insert the actual backref */
2165 ret
= insert_extent_backref(trans
, root
->fs_info
->extent_root
,
2166 path
, bytenr
, parent
, root_objectid
,
2167 owner
, offset
, refs_to_add
);
2169 btrfs_abort_transaction(trans
, ret
);
2171 btrfs_free_path(path
);
2175 static int run_delayed_data_ref(struct btrfs_trans_handle
*trans
,
2176 struct btrfs_root
*root
,
2177 struct btrfs_delayed_ref_node
*node
,
2178 struct btrfs_delayed_extent_op
*extent_op
,
2179 int insert_reserved
)
2182 struct btrfs_delayed_data_ref
*ref
;
2183 struct btrfs_key ins
;
2188 ins
.objectid
= node
->bytenr
;
2189 ins
.offset
= node
->num_bytes
;
2190 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
2192 ref
= btrfs_delayed_node_to_data_ref(node
);
2193 trace_run_delayed_data_ref(root
->fs_info
, node
, ref
, node
->action
);
2195 if (node
->type
== BTRFS_SHARED_DATA_REF_KEY
)
2196 parent
= ref
->parent
;
2197 ref_root
= ref
->root
;
2199 if (node
->action
== BTRFS_ADD_DELAYED_REF
&& insert_reserved
) {
2201 flags
|= extent_op
->flags_to_set
;
2202 ret
= alloc_reserved_file_extent(trans
, root
,
2203 parent
, ref_root
, flags
,
2204 ref
->objectid
, ref
->offset
,
2205 &ins
, node
->ref_mod
);
2206 } else if (node
->action
== BTRFS_ADD_DELAYED_REF
) {
2207 ret
= __btrfs_inc_extent_ref(trans
, root
, node
, parent
,
2208 ref_root
, ref
->objectid
,
2209 ref
->offset
, node
->ref_mod
,
2211 } else if (node
->action
== BTRFS_DROP_DELAYED_REF
) {
2212 ret
= __btrfs_free_extent(trans
, root
, node
, parent
,
2213 ref_root
, ref
->objectid
,
2214 ref
->offset
, node
->ref_mod
,
2222 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op
*extent_op
,
2223 struct extent_buffer
*leaf
,
2224 struct btrfs_extent_item
*ei
)
2226 u64 flags
= btrfs_extent_flags(leaf
, ei
);
2227 if (extent_op
->update_flags
) {
2228 flags
|= extent_op
->flags_to_set
;
2229 btrfs_set_extent_flags(leaf
, ei
, flags
);
2232 if (extent_op
->update_key
) {
2233 struct btrfs_tree_block_info
*bi
;
2234 BUG_ON(!(flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
));
2235 bi
= (struct btrfs_tree_block_info
*)(ei
+ 1);
2236 btrfs_set_tree_block_key(leaf
, bi
, &extent_op
->key
);
2240 static int run_delayed_extent_op(struct btrfs_trans_handle
*trans
,
2241 struct btrfs_root
*root
,
2242 struct btrfs_delayed_ref_node
*node
,
2243 struct btrfs_delayed_extent_op
*extent_op
)
2245 struct btrfs_key key
;
2246 struct btrfs_path
*path
;
2247 struct btrfs_extent_item
*ei
;
2248 struct extent_buffer
*leaf
;
2252 int metadata
= !extent_op
->is_data
;
2257 if (metadata
&& !btrfs_fs_incompat(root
->fs_info
, SKINNY_METADATA
))
2260 path
= btrfs_alloc_path();
2264 key
.objectid
= node
->bytenr
;
2267 key
.type
= BTRFS_METADATA_ITEM_KEY
;
2268 key
.offset
= extent_op
->level
;
2270 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
2271 key
.offset
= node
->num_bytes
;
2275 path
->reada
= READA_FORWARD
;
2276 path
->leave_spinning
= 1;
2277 ret
= btrfs_search_slot(trans
, root
->fs_info
->extent_root
, &key
,
2285 if (path
->slots
[0] > 0) {
2287 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
2289 if (key
.objectid
== node
->bytenr
&&
2290 key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
2291 key
.offset
== node
->num_bytes
)
2295 btrfs_release_path(path
);
2298 key
.objectid
= node
->bytenr
;
2299 key
.offset
= node
->num_bytes
;
2300 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
2309 leaf
= path
->nodes
[0];
2310 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
2311 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2312 if (item_size
< sizeof(*ei
)) {
2313 ret
= convert_extent_item_v0(trans
, root
->fs_info
->extent_root
,
2319 leaf
= path
->nodes
[0];
2320 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
2323 BUG_ON(item_size
< sizeof(*ei
));
2324 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
2325 __run_delayed_extent_op(extent_op
, leaf
, ei
);
2327 btrfs_mark_buffer_dirty(leaf
);
2329 btrfs_free_path(path
);
2333 static int run_delayed_tree_ref(struct btrfs_trans_handle
*trans
,
2334 struct btrfs_root
*root
,
2335 struct btrfs_delayed_ref_node
*node
,
2336 struct btrfs_delayed_extent_op
*extent_op
,
2337 int insert_reserved
)
2340 struct btrfs_delayed_tree_ref
*ref
;
2341 struct btrfs_key ins
;
2344 bool skinny_metadata
= btrfs_fs_incompat(root
->fs_info
,
2347 ref
= btrfs_delayed_node_to_tree_ref(node
);
2348 trace_run_delayed_tree_ref(root
->fs_info
, node
, ref
, node
->action
);
2350 if (node
->type
== BTRFS_SHARED_BLOCK_REF_KEY
)
2351 parent
= ref
->parent
;
2352 ref_root
= ref
->root
;
2354 ins
.objectid
= node
->bytenr
;
2355 if (skinny_metadata
) {
2356 ins
.offset
= ref
->level
;
2357 ins
.type
= BTRFS_METADATA_ITEM_KEY
;
2359 ins
.offset
= node
->num_bytes
;
2360 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
2363 BUG_ON(node
->ref_mod
!= 1);
2364 if (node
->action
== BTRFS_ADD_DELAYED_REF
&& insert_reserved
) {
2365 BUG_ON(!extent_op
|| !extent_op
->update_flags
);
2366 ret
= alloc_reserved_tree_block(trans
, root
,
2368 extent_op
->flags_to_set
,
2371 } else if (node
->action
== BTRFS_ADD_DELAYED_REF
) {
2372 ret
= __btrfs_inc_extent_ref(trans
, root
, node
,
2376 } else if (node
->action
== BTRFS_DROP_DELAYED_REF
) {
2377 ret
= __btrfs_free_extent(trans
, root
, node
,
2379 ref
->level
, 0, 1, extent_op
);
2386 /* helper function to actually process a single delayed ref entry */
2387 static int run_one_delayed_ref(struct btrfs_trans_handle
*trans
,
2388 struct btrfs_root
*root
,
2389 struct btrfs_delayed_ref_node
*node
,
2390 struct btrfs_delayed_extent_op
*extent_op
,
2391 int insert_reserved
)
2395 if (trans
->aborted
) {
2396 if (insert_reserved
)
2397 btrfs_pin_extent(root
, node
->bytenr
,
2398 node
->num_bytes
, 1);
2402 if (btrfs_delayed_ref_is_head(node
)) {
2403 struct btrfs_delayed_ref_head
*head
;
2405 * we've hit the end of the chain and we were supposed
2406 * to insert this extent into the tree. But, it got
2407 * deleted before we ever needed to insert it, so all
2408 * we have to do is clean up the accounting
2411 head
= btrfs_delayed_node_to_head(node
);
2412 trace_run_delayed_ref_head(root
->fs_info
, node
, head
,
2415 if (insert_reserved
) {
2416 btrfs_pin_extent(root
, node
->bytenr
,
2417 node
->num_bytes
, 1);
2418 if (head
->is_data
) {
2419 ret
= btrfs_del_csums(trans
, root
,
2425 /* Also free its reserved qgroup space */
2426 btrfs_qgroup_free_delayed_ref(root
->fs_info
,
2427 head
->qgroup_ref_root
,
2428 head
->qgroup_reserved
);
2432 if (node
->type
== BTRFS_TREE_BLOCK_REF_KEY
||
2433 node
->type
== BTRFS_SHARED_BLOCK_REF_KEY
)
2434 ret
= run_delayed_tree_ref(trans
, root
, node
, extent_op
,
2436 else if (node
->type
== BTRFS_EXTENT_DATA_REF_KEY
||
2437 node
->type
== BTRFS_SHARED_DATA_REF_KEY
)
2438 ret
= run_delayed_data_ref(trans
, root
, node
, extent_op
,
2445 static inline struct btrfs_delayed_ref_node
*
2446 select_delayed_ref(struct btrfs_delayed_ref_head
*head
)
2448 struct btrfs_delayed_ref_node
*ref
;
2450 if (list_empty(&head
->ref_list
))
2454 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2455 * This is to prevent a ref count from going down to zero, which deletes
2456 * the extent item from the extent tree, when there still are references
2457 * to add, which would fail because they would not find the extent item.
2459 list_for_each_entry(ref
, &head
->ref_list
, list
) {
2460 if (ref
->action
== BTRFS_ADD_DELAYED_REF
)
2464 return list_entry(head
->ref_list
.next
, struct btrfs_delayed_ref_node
,
2469 * Returns 0 on success or if called with an already aborted transaction.
2470 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2472 static noinline
int __btrfs_run_delayed_refs(struct btrfs_trans_handle
*trans
,
2473 struct btrfs_root
*root
,
2476 struct btrfs_delayed_ref_root
*delayed_refs
;
2477 struct btrfs_delayed_ref_node
*ref
;
2478 struct btrfs_delayed_ref_head
*locked_ref
= NULL
;
2479 struct btrfs_delayed_extent_op
*extent_op
;
2480 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2481 ktime_t start
= ktime_get();
2483 unsigned long count
= 0;
2484 unsigned long actual_count
= 0;
2485 int must_insert_reserved
= 0;
2487 delayed_refs
= &trans
->transaction
->delayed_refs
;
2493 spin_lock(&delayed_refs
->lock
);
2494 locked_ref
= btrfs_select_ref_head(trans
);
2496 spin_unlock(&delayed_refs
->lock
);
2500 /* grab the lock that says we are going to process
2501 * all the refs for this head */
2502 ret
= btrfs_delayed_ref_lock(trans
, locked_ref
);
2503 spin_unlock(&delayed_refs
->lock
);
2505 * we may have dropped the spin lock to get the head
2506 * mutex lock, and that might have given someone else
2507 * time to free the head. If that's true, it has been
2508 * removed from our list and we can move on.
2510 if (ret
== -EAGAIN
) {
2518 * We need to try and merge add/drops of the same ref since we
2519 * can run into issues with relocate dropping the implicit ref
2520 * and then it being added back again before the drop can
2521 * finish. If we merged anything we need to re-loop so we can
2523 * Or we can get node references of the same type that weren't
2524 * merged when created due to bumps in the tree mod seq, and
2525 * we need to merge them to prevent adding an inline extent
2526 * backref before dropping it (triggering a BUG_ON at
2527 * insert_inline_extent_backref()).
2529 spin_lock(&locked_ref
->lock
);
2530 btrfs_merge_delayed_refs(trans
, fs_info
, delayed_refs
,
2534 * locked_ref is the head node, so we have to go one
2535 * node back for any delayed ref updates
2537 ref
= select_delayed_ref(locked_ref
);
2539 if (ref
&& ref
->seq
&&
2540 btrfs_check_delayed_seq(fs_info
, delayed_refs
, ref
->seq
)) {
2541 spin_unlock(&locked_ref
->lock
);
2542 btrfs_delayed_ref_unlock(locked_ref
);
2543 spin_lock(&delayed_refs
->lock
);
2544 locked_ref
->processing
= 0;
2545 delayed_refs
->num_heads_ready
++;
2546 spin_unlock(&delayed_refs
->lock
);
2554 * record the must insert reserved flag before we
2555 * drop the spin lock.
2557 must_insert_reserved
= locked_ref
->must_insert_reserved
;
2558 locked_ref
->must_insert_reserved
= 0;
2560 extent_op
= locked_ref
->extent_op
;
2561 locked_ref
->extent_op
= NULL
;
2566 /* All delayed refs have been processed, Go ahead
2567 * and send the head node to run_one_delayed_ref,
2568 * so that any accounting fixes can happen
2570 ref
= &locked_ref
->node
;
2572 if (extent_op
&& must_insert_reserved
) {
2573 btrfs_free_delayed_extent_op(extent_op
);
2578 spin_unlock(&locked_ref
->lock
);
2579 ret
= run_delayed_extent_op(trans
, root
,
2581 btrfs_free_delayed_extent_op(extent_op
);
2585 * Need to reset must_insert_reserved if
2586 * there was an error so the abort stuff
2587 * can cleanup the reserved space
2590 if (must_insert_reserved
)
2591 locked_ref
->must_insert_reserved
= 1;
2592 locked_ref
->processing
= 0;
2593 btrfs_debug(fs_info
, "run_delayed_extent_op returned %d", ret
);
2594 btrfs_delayed_ref_unlock(locked_ref
);
2601 * Need to drop our head ref lock and re-acquire the
2602 * delayed ref lock and then re-check to make sure
2605 spin_unlock(&locked_ref
->lock
);
2606 spin_lock(&delayed_refs
->lock
);
2607 spin_lock(&locked_ref
->lock
);
2608 if (!list_empty(&locked_ref
->ref_list
) ||
2609 locked_ref
->extent_op
) {
2610 spin_unlock(&locked_ref
->lock
);
2611 spin_unlock(&delayed_refs
->lock
);
2615 delayed_refs
->num_heads
--;
2616 rb_erase(&locked_ref
->href_node
,
2617 &delayed_refs
->href_root
);
2618 spin_unlock(&delayed_refs
->lock
);
2622 list_del(&ref
->list
);
2624 atomic_dec(&delayed_refs
->num_entries
);
2626 if (!btrfs_delayed_ref_is_head(ref
)) {
2628 * when we play the delayed ref, also correct the
2631 switch (ref
->action
) {
2632 case BTRFS_ADD_DELAYED_REF
:
2633 case BTRFS_ADD_DELAYED_EXTENT
:
2634 locked_ref
->node
.ref_mod
-= ref
->ref_mod
;
2636 case BTRFS_DROP_DELAYED_REF
:
2637 locked_ref
->node
.ref_mod
+= ref
->ref_mod
;
2643 spin_unlock(&locked_ref
->lock
);
2645 ret
= run_one_delayed_ref(trans
, root
, ref
, extent_op
,
2646 must_insert_reserved
);
2648 btrfs_free_delayed_extent_op(extent_op
);
2650 locked_ref
->processing
= 0;
2651 btrfs_delayed_ref_unlock(locked_ref
);
2652 btrfs_put_delayed_ref(ref
);
2653 btrfs_debug(fs_info
, "run_one_delayed_ref returned %d", ret
);
2658 * If this node is a head, that means all the refs in this head
2659 * have been dealt with, and we will pick the next head to deal
2660 * with, so we must unlock the head and drop it from the cluster
2661 * list before we release it.
2663 if (btrfs_delayed_ref_is_head(ref
)) {
2664 if (locked_ref
->is_data
&&
2665 locked_ref
->total_ref_mod
< 0) {
2666 spin_lock(&delayed_refs
->lock
);
2667 delayed_refs
->pending_csums
-= ref
->num_bytes
;
2668 spin_unlock(&delayed_refs
->lock
);
2670 btrfs_delayed_ref_unlock(locked_ref
);
2673 btrfs_put_delayed_ref(ref
);
2679 * We don't want to include ref heads since we can have empty ref heads
2680 * and those will drastically skew our runtime down since we just do
2681 * accounting, no actual extent tree updates.
2683 if (actual_count
> 0) {
2684 u64 runtime
= ktime_to_ns(ktime_sub(ktime_get(), start
));
2688 * We weigh the current average higher than our current runtime
2689 * to avoid large swings in the average.
2691 spin_lock(&delayed_refs
->lock
);
2692 avg
= fs_info
->avg_delayed_ref_runtime
* 3 + runtime
;
2693 fs_info
->avg_delayed_ref_runtime
= avg
>> 2; /* div by 4 */
2694 spin_unlock(&delayed_refs
->lock
);
2699 #ifdef SCRAMBLE_DELAYED_REFS
2701 * Normally delayed refs get processed in ascending bytenr order. This
2702 * correlates in most cases to the order added. To expose dependencies on this
2703 * order, we start to process the tree in the middle instead of the beginning
2705 static u64
find_middle(struct rb_root
*root
)
2707 struct rb_node
*n
= root
->rb_node
;
2708 struct btrfs_delayed_ref_node
*entry
;
2711 u64 first
= 0, last
= 0;
2715 entry
= rb_entry(n
, struct btrfs_delayed_ref_node
, rb_node
);
2716 first
= entry
->bytenr
;
2720 entry
= rb_entry(n
, struct btrfs_delayed_ref_node
, rb_node
);
2721 last
= entry
->bytenr
;
2726 entry
= rb_entry(n
, struct btrfs_delayed_ref_node
, rb_node
);
2727 WARN_ON(!entry
->in_tree
);
2729 middle
= entry
->bytenr
;
2742 static inline u64
heads_to_leaves(struct btrfs_root
*root
, u64 heads
)
2746 num_bytes
= heads
* (sizeof(struct btrfs_extent_item
) +
2747 sizeof(struct btrfs_extent_inline_ref
));
2748 if (!btrfs_fs_incompat(root
->fs_info
, SKINNY_METADATA
))
2749 num_bytes
+= heads
* sizeof(struct btrfs_tree_block_info
);
2752 * We don't ever fill up leaves all the way so multiply by 2 just to be
2753 * closer to what we're really going to want to use.
2755 return div_u64(num_bytes
, BTRFS_LEAF_DATA_SIZE(root
));
2759 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2760 * would require to store the csums for that many bytes.
2762 u64
btrfs_csum_bytes_to_leaves(struct btrfs_root
*root
, u64 csum_bytes
)
2765 u64 num_csums_per_leaf
;
2768 csum_size
= BTRFS_MAX_ITEM_SIZE(root
);
2769 num_csums_per_leaf
= div64_u64(csum_size
,
2770 (u64
)btrfs_super_csum_size(root
->fs_info
->super_copy
));
2771 num_csums
= div64_u64(csum_bytes
, root
->sectorsize
);
2772 num_csums
+= num_csums_per_leaf
- 1;
2773 num_csums
= div64_u64(num_csums
, num_csums_per_leaf
);
2777 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle
*trans
,
2778 struct btrfs_root
*root
)
2780 struct btrfs_block_rsv
*global_rsv
;
2781 u64 num_heads
= trans
->transaction
->delayed_refs
.num_heads_ready
;
2782 u64 csum_bytes
= trans
->transaction
->delayed_refs
.pending_csums
;
2783 u64 num_dirty_bgs
= trans
->transaction
->num_dirty_bgs
;
2784 u64 num_bytes
, num_dirty_bgs_bytes
;
2787 num_bytes
= btrfs_calc_trans_metadata_size(root
, 1);
2788 num_heads
= heads_to_leaves(root
, num_heads
);
2790 num_bytes
+= (num_heads
- 1) * root
->nodesize
;
2792 num_bytes
+= btrfs_csum_bytes_to_leaves(root
, csum_bytes
) * root
->nodesize
;
2793 num_dirty_bgs_bytes
= btrfs_calc_trans_metadata_size(root
,
2795 global_rsv
= &root
->fs_info
->global_block_rsv
;
2798 * If we can't allocate any more chunks lets make sure we have _lots_ of
2799 * wiggle room since running delayed refs can create more delayed refs.
2801 if (global_rsv
->space_info
->full
) {
2802 num_dirty_bgs_bytes
<<= 1;
2806 spin_lock(&global_rsv
->lock
);
2807 if (global_rsv
->reserved
<= num_bytes
+ num_dirty_bgs_bytes
)
2809 spin_unlock(&global_rsv
->lock
);
2813 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle
*trans
,
2814 struct btrfs_root
*root
)
2816 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2818 atomic_read(&trans
->transaction
->delayed_refs
.num_entries
);
2823 avg_runtime
= fs_info
->avg_delayed_ref_runtime
;
2824 val
= num_entries
* avg_runtime
;
2825 if (num_entries
* avg_runtime
>= NSEC_PER_SEC
)
2827 if (val
>= NSEC_PER_SEC
/ 2)
2830 return btrfs_check_space_for_delayed_refs(trans
, root
);
2833 struct async_delayed_refs
{
2834 struct btrfs_root
*root
;
2839 struct completion wait
;
2840 struct btrfs_work work
;
2843 static void delayed_ref_async_start(struct btrfs_work
*work
)
2845 struct async_delayed_refs
*async
;
2846 struct btrfs_trans_handle
*trans
;
2849 async
= container_of(work
, struct async_delayed_refs
, work
);
2851 /* if the commit is already started, we don't need to wait here */
2852 if (btrfs_transaction_blocked(async
->root
->fs_info
))
2855 trans
= btrfs_join_transaction(async
->root
);
2856 if (IS_ERR(trans
)) {
2857 async
->error
= PTR_ERR(trans
);
2862 * trans->sync means that when we call end_transaction, we won't
2863 * wait on delayed refs
2867 /* Don't bother flushing if we got into a different transaction */
2868 if (trans
->transid
> async
->transid
)
2871 ret
= btrfs_run_delayed_refs(trans
, async
->root
, async
->count
);
2875 ret
= btrfs_end_transaction(trans
, async
->root
);
2876 if (ret
&& !async
->error
)
2880 complete(&async
->wait
);
2885 int btrfs_async_run_delayed_refs(struct btrfs_root
*root
,
2886 unsigned long count
, u64 transid
, int wait
)
2888 struct async_delayed_refs
*async
;
2891 async
= kmalloc(sizeof(*async
), GFP_NOFS
);
2895 async
->root
= root
->fs_info
->tree_root
;
2896 async
->count
= count
;
2898 async
->transid
= transid
;
2903 init_completion(&async
->wait
);
2905 btrfs_init_work(&async
->work
, btrfs_extent_refs_helper
,
2906 delayed_ref_async_start
, NULL
, NULL
);
2908 btrfs_queue_work(root
->fs_info
->extent_workers
, &async
->work
);
2911 wait_for_completion(&async
->wait
);
2920 * this starts processing the delayed reference count updates and
2921 * extent insertions we have queued up so far. count can be
2922 * 0, which means to process everything in the tree at the start
2923 * of the run (but not newly added entries), or it can be some target
2924 * number you'd like to process.
2926 * Returns 0 on success or if called with an aborted transaction
2927 * Returns <0 on error and aborts the transaction
2929 int btrfs_run_delayed_refs(struct btrfs_trans_handle
*trans
,
2930 struct btrfs_root
*root
, unsigned long count
)
2932 struct rb_node
*node
;
2933 struct btrfs_delayed_ref_root
*delayed_refs
;
2934 struct btrfs_delayed_ref_head
*head
;
2936 int run_all
= count
== (unsigned long)-1;
2937 bool can_flush_pending_bgs
= trans
->can_flush_pending_bgs
;
2939 /* We'll clean this up in btrfs_cleanup_transaction */
2943 if (root
->fs_info
->creating_free_space_tree
)
2946 if (root
== root
->fs_info
->extent_root
)
2947 root
= root
->fs_info
->tree_root
;
2949 delayed_refs
= &trans
->transaction
->delayed_refs
;
2951 count
= atomic_read(&delayed_refs
->num_entries
) * 2;
2954 #ifdef SCRAMBLE_DELAYED_REFS
2955 delayed_refs
->run_delayed_start
= find_middle(&delayed_refs
->root
);
2957 trans
->can_flush_pending_bgs
= false;
2958 ret
= __btrfs_run_delayed_refs(trans
, root
, count
);
2960 btrfs_abort_transaction(trans
, ret
);
2965 if (!list_empty(&trans
->new_bgs
))
2966 btrfs_create_pending_block_groups(trans
, root
);
2968 spin_lock(&delayed_refs
->lock
);
2969 node
= rb_first(&delayed_refs
->href_root
);
2971 spin_unlock(&delayed_refs
->lock
);
2974 count
= (unsigned long)-1;
2977 head
= rb_entry(node
, struct btrfs_delayed_ref_head
,
2979 if (btrfs_delayed_ref_is_head(&head
->node
)) {
2980 struct btrfs_delayed_ref_node
*ref
;
2983 atomic_inc(&ref
->refs
);
2985 spin_unlock(&delayed_refs
->lock
);
2987 * Mutex was contended, block until it's
2988 * released and try again
2990 mutex_lock(&head
->mutex
);
2991 mutex_unlock(&head
->mutex
);
2993 btrfs_put_delayed_ref(ref
);
2999 node
= rb_next(node
);
3001 spin_unlock(&delayed_refs
->lock
);
3006 assert_qgroups_uptodate(trans
);
3007 trans
->can_flush_pending_bgs
= can_flush_pending_bgs
;
3011 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle
*trans
,
3012 struct btrfs_root
*root
,
3013 u64 bytenr
, u64 num_bytes
, u64 flags
,
3014 int level
, int is_data
)
3016 struct btrfs_delayed_extent_op
*extent_op
;
3019 extent_op
= btrfs_alloc_delayed_extent_op();
3023 extent_op
->flags_to_set
= flags
;
3024 extent_op
->update_flags
= true;
3025 extent_op
->update_key
= false;
3026 extent_op
->is_data
= is_data
? true : false;
3027 extent_op
->level
= level
;
3029 ret
= btrfs_add_delayed_extent_op(root
->fs_info
, trans
, bytenr
,
3030 num_bytes
, extent_op
);
3032 btrfs_free_delayed_extent_op(extent_op
);
3036 static noinline
int check_delayed_ref(struct btrfs_trans_handle
*trans
,
3037 struct btrfs_root
*root
,
3038 struct btrfs_path
*path
,
3039 u64 objectid
, u64 offset
, u64 bytenr
)
3041 struct btrfs_delayed_ref_head
*head
;
3042 struct btrfs_delayed_ref_node
*ref
;
3043 struct btrfs_delayed_data_ref
*data_ref
;
3044 struct btrfs_delayed_ref_root
*delayed_refs
;
3047 delayed_refs
= &trans
->transaction
->delayed_refs
;
3048 spin_lock(&delayed_refs
->lock
);
3049 head
= btrfs_find_delayed_ref_head(trans
, bytenr
);
3051 spin_unlock(&delayed_refs
->lock
);
3055 if (!mutex_trylock(&head
->mutex
)) {
3056 atomic_inc(&head
->node
.refs
);
3057 spin_unlock(&delayed_refs
->lock
);
3059 btrfs_release_path(path
);
3062 * Mutex was contended, block until it's released and let
3065 mutex_lock(&head
->mutex
);
3066 mutex_unlock(&head
->mutex
);
3067 btrfs_put_delayed_ref(&head
->node
);
3070 spin_unlock(&delayed_refs
->lock
);
3072 spin_lock(&head
->lock
);
3073 list_for_each_entry(ref
, &head
->ref_list
, list
) {
3074 /* If it's a shared ref we know a cross reference exists */
3075 if (ref
->type
!= BTRFS_EXTENT_DATA_REF_KEY
) {
3080 data_ref
= btrfs_delayed_node_to_data_ref(ref
);
3083 * If our ref doesn't match the one we're currently looking at
3084 * then we have a cross reference.
3086 if (data_ref
->root
!= root
->root_key
.objectid
||
3087 data_ref
->objectid
!= objectid
||
3088 data_ref
->offset
!= offset
) {
3093 spin_unlock(&head
->lock
);
3094 mutex_unlock(&head
->mutex
);
3098 static noinline
int check_committed_ref(struct btrfs_trans_handle
*trans
,
3099 struct btrfs_root
*root
,
3100 struct btrfs_path
*path
,
3101 u64 objectid
, u64 offset
, u64 bytenr
)
3103 struct btrfs_root
*extent_root
= root
->fs_info
->extent_root
;
3104 struct extent_buffer
*leaf
;
3105 struct btrfs_extent_data_ref
*ref
;
3106 struct btrfs_extent_inline_ref
*iref
;
3107 struct btrfs_extent_item
*ei
;
3108 struct btrfs_key key
;
3112 key
.objectid
= bytenr
;
3113 key
.offset
= (u64
)-1;
3114 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
3116 ret
= btrfs_search_slot(NULL
, extent_root
, &key
, path
, 0, 0);
3119 BUG_ON(ret
== 0); /* Corruption */
3122 if (path
->slots
[0] == 0)
3126 leaf
= path
->nodes
[0];
3127 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
3129 if (key
.objectid
!= bytenr
|| key
.type
!= BTRFS_EXTENT_ITEM_KEY
)
3133 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
3134 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3135 if (item_size
< sizeof(*ei
)) {
3136 WARN_ON(item_size
!= sizeof(struct btrfs_extent_item_v0
));
3140 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
3142 if (item_size
!= sizeof(*ei
) +
3143 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY
))
3146 if (btrfs_extent_generation(leaf
, ei
) <=
3147 btrfs_root_last_snapshot(&root
->root_item
))
3150 iref
= (struct btrfs_extent_inline_ref
*)(ei
+ 1);
3151 if (btrfs_extent_inline_ref_type(leaf
, iref
) !=
3152 BTRFS_EXTENT_DATA_REF_KEY
)
3155 ref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
3156 if (btrfs_extent_refs(leaf
, ei
) !=
3157 btrfs_extent_data_ref_count(leaf
, ref
) ||
3158 btrfs_extent_data_ref_root(leaf
, ref
) !=
3159 root
->root_key
.objectid
||
3160 btrfs_extent_data_ref_objectid(leaf
, ref
) != objectid
||
3161 btrfs_extent_data_ref_offset(leaf
, ref
) != offset
)
3169 int btrfs_cross_ref_exist(struct btrfs_trans_handle
*trans
,
3170 struct btrfs_root
*root
,
3171 u64 objectid
, u64 offset
, u64 bytenr
)
3173 struct btrfs_path
*path
;
3177 path
= btrfs_alloc_path();
3182 ret
= check_committed_ref(trans
, root
, path
, objectid
,
3184 if (ret
&& ret
!= -ENOENT
)
3187 ret2
= check_delayed_ref(trans
, root
, path
, objectid
,
3189 } while (ret2
== -EAGAIN
);
3191 if (ret2
&& ret2
!= -ENOENT
) {
3196 if (ret
!= -ENOENT
|| ret2
!= -ENOENT
)
3199 btrfs_free_path(path
);
3200 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
)
3205 static int __btrfs_mod_ref(struct btrfs_trans_handle
*trans
,
3206 struct btrfs_root
*root
,
3207 struct extent_buffer
*buf
,
3208 int full_backref
, int inc
)
3215 struct btrfs_key key
;
3216 struct btrfs_file_extent_item
*fi
;
3220 int (*process_func
)(struct btrfs_trans_handle
*, struct btrfs_root
*,
3221 u64
, u64
, u64
, u64
, u64
, u64
);
3224 if (btrfs_is_testing(root
->fs_info
))
3227 ref_root
= btrfs_header_owner(buf
);
3228 nritems
= btrfs_header_nritems(buf
);
3229 level
= btrfs_header_level(buf
);
3231 if (!test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) && level
== 0)
3235 process_func
= btrfs_inc_extent_ref
;
3237 process_func
= btrfs_free_extent
;
3240 parent
= buf
->start
;
3244 for (i
= 0; i
< nritems
; i
++) {
3246 btrfs_item_key_to_cpu(buf
, &key
, i
);
3247 if (key
.type
!= BTRFS_EXTENT_DATA_KEY
)
3249 fi
= btrfs_item_ptr(buf
, i
,
3250 struct btrfs_file_extent_item
);
3251 if (btrfs_file_extent_type(buf
, fi
) ==
3252 BTRFS_FILE_EXTENT_INLINE
)
3254 bytenr
= btrfs_file_extent_disk_bytenr(buf
, fi
);
3258 num_bytes
= btrfs_file_extent_disk_num_bytes(buf
, fi
);
3259 key
.offset
-= btrfs_file_extent_offset(buf
, fi
);
3260 ret
= process_func(trans
, root
, bytenr
, num_bytes
,
3261 parent
, ref_root
, key
.objectid
,
3266 bytenr
= btrfs_node_blockptr(buf
, i
);
3267 num_bytes
= root
->nodesize
;
3268 ret
= process_func(trans
, root
, bytenr
, num_bytes
,
3269 parent
, ref_root
, level
- 1, 0);
3279 int btrfs_inc_ref(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
3280 struct extent_buffer
*buf
, int full_backref
)
3282 return __btrfs_mod_ref(trans
, root
, buf
, full_backref
, 1);
3285 int btrfs_dec_ref(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
3286 struct extent_buffer
*buf
, int full_backref
)
3288 return __btrfs_mod_ref(trans
, root
, buf
, full_backref
, 0);
3291 static int write_one_cache_group(struct btrfs_trans_handle
*trans
,
3292 struct btrfs_root
*root
,
3293 struct btrfs_path
*path
,
3294 struct btrfs_block_group_cache
*cache
)
3297 struct btrfs_root
*extent_root
= root
->fs_info
->extent_root
;
3299 struct extent_buffer
*leaf
;
3301 ret
= btrfs_search_slot(trans
, extent_root
, &cache
->key
, path
, 0, 1);
3308 leaf
= path
->nodes
[0];
3309 bi
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
3310 write_extent_buffer(leaf
, &cache
->item
, bi
, sizeof(cache
->item
));
3311 btrfs_mark_buffer_dirty(leaf
);
3313 btrfs_release_path(path
);
3318 static struct btrfs_block_group_cache
*
3319 next_block_group(struct btrfs_root
*root
,
3320 struct btrfs_block_group_cache
*cache
)
3322 struct rb_node
*node
;
3324 spin_lock(&root
->fs_info
->block_group_cache_lock
);
3326 /* If our block group was removed, we need a full search. */
3327 if (RB_EMPTY_NODE(&cache
->cache_node
)) {
3328 const u64 next_bytenr
= cache
->key
.objectid
+ cache
->key
.offset
;
3330 spin_unlock(&root
->fs_info
->block_group_cache_lock
);
3331 btrfs_put_block_group(cache
);
3332 cache
= btrfs_lookup_first_block_group(root
->fs_info
,
3336 node
= rb_next(&cache
->cache_node
);
3337 btrfs_put_block_group(cache
);
3339 cache
= rb_entry(node
, struct btrfs_block_group_cache
,
3341 btrfs_get_block_group(cache
);
3344 spin_unlock(&root
->fs_info
->block_group_cache_lock
);
3348 static int cache_save_setup(struct btrfs_block_group_cache
*block_group
,
3349 struct btrfs_trans_handle
*trans
,
3350 struct btrfs_path
*path
)
3352 struct btrfs_root
*root
= block_group
->fs_info
->tree_root
;
3353 struct inode
*inode
= NULL
;
3355 int dcs
= BTRFS_DC_ERROR
;
3361 * If this block group is smaller than 100 megs don't bother caching the
3364 if (block_group
->key
.offset
< (100 * SZ_1M
)) {
3365 spin_lock(&block_group
->lock
);
3366 block_group
->disk_cache_state
= BTRFS_DC_WRITTEN
;
3367 spin_unlock(&block_group
->lock
);
3374 inode
= lookup_free_space_inode(root
, block_group
, path
);
3375 if (IS_ERR(inode
) && PTR_ERR(inode
) != -ENOENT
) {
3376 ret
= PTR_ERR(inode
);
3377 btrfs_release_path(path
);
3381 if (IS_ERR(inode
)) {
3385 if (block_group
->ro
)
3388 ret
= create_free_space_inode(root
, trans
, block_group
, path
);
3394 /* We've already setup this transaction, go ahead and exit */
3395 if (block_group
->cache_generation
== trans
->transid
&&
3396 i_size_read(inode
)) {
3397 dcs
= BTRFS_DC_SETUP
;
3402 * We want to set the generation to 0, that way if anything goes wrong
3403 * from here on out we know not to trust this cache when we load up next
3406 BTRFS_I(inode
)->generation
= 0;
3407 ret
= btrfs_update_inode(trans
, root
, inode
);
3410 * So theoretically we could recover from this, simply set the
3411 * super cache generation to 0 so we know to invalidate the
3412 * cache, but then we'd have to keep track of the block groups
3413 * that fail this way so we know we _have_ to reset this cache
3414 * before the next commit or risk reading stale cache. So to
3415 * limit our exposure to horrible edge cases lets just abort the
3416 * transaction, this only happens in really bad situations
3419 btrfs_abort_transaction(trans
, ret
);
3424 if (i_size_read(inode
) > 0) {
3425 ret
= btrfs_check_trunc_cache_free_space(root
,
3426 &root
->fs_info
->global_block_rsv
);
3430 ret
= btrfs_truncate_free_space_cache(root
, trans
, NULL
, inode
);
3435 spin_lock(&block_group
->lock
);
3436 if (block_group
->cached
!= BTRFS_CACHE_FINISHED
||
3437 !btrfs_test_opt(root
->fs_info
, SPACE_CACHE
)) {
3439 * don't bother trying to write stuff out _if_
3440 * a) we're not cached,
3441 * b) we're with nospace_cache mount option.
3443 dcs
= BTRFS_DC_WRITTEN
;
3444 spin_unlock(&block_group
->lock
);
3447 spin_unlock(&block_group
->lock
);
3450 * We hit an ENOSPC when setting up the cache in this transaction, just
3451 * skip doing the setup, we've already cleared the cache so we're safe.
3453 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC
, &trans
->transaction
->flags
)) {
3459 * Try to preallocate enough space based on how big the block group is.
3460 * Keep in mind this has to include any pinned space which could end up
3461 * taking up quite a bit since it's not folded into the other space
3464 num_pages
= div_u64(block_group
->key
.offset
, SZ_256M
);
3469 num_pages
*= PAGE_SIZE
;
3471 ret
= btrfs_check_data_free_space(inode
, 0, num_pages
);
3475 ret
= btrfs_prealloc_file_range_trans(inode
, trans
, 0, 0, num_pages
,
3476 num_pages
, num_pages
,
3479 * Our cache requires contiguous chunks so that we don't modify a bunch
3480 * of metadata or split extents when writing the cache out, which means
3481 * we can enospc if we are heavily fragmented in addition to just normal
3482 * out of space conditions. So if we hit this just skip setting up any
3483 * other block groups for this transaction, maybe we'll unpin enough
3484 * space the next time around.
3487 dcs
= BTRFS_DC_SETUP
;
3488 else if (ret
== -ENOSPC
)
3489 set_bit(BTRFS_TRANS_CACHE_ENOSPC
, &trans
->transaction
->flags
);
3494 btrfs_release_path(path
);
3496 spin_lock(&block_group
->lock
);
3497 if (!ret
&& dcs
== BTRFS_DC_SETUP
)
3498 block_group
->cache_generation
= trans
->transid
;
3499 block_group
->disk_cache_state
= dcs
;
3500 spin_unlock(&block_group
->lock
);
3505 int btrfs_setup_space_cache(struct btrfs_trans_handle
*trans
,
3506 struct btrfs_root
*root
)
3508 struct btrfs_block_group_cache
*cache
, *tmp
;
3509 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
3510 struct btrfs_path
*path
;
3512 if (list_empty(&cur_trans
->dirty_bgs
) ||
3513 !btrfs_test_opt(root
->fs_info
, SPACE_CACHE
))
3516 path
= btrfs_alloc_path();
3520 /* Could add new block groups, use _safe just in case */
3521 list_for_each_entry_safe(cache
, tmp
, &cur_trans
->dirty_bgs
,
3523 if (cache
->disk_cache_state
== BTRFS_DC_CLEAR
)
3524 cache_save_setup(cache
, trans
, path
);
3527 btrfs_free_path(path
);
3532 * transaction commit does final block group cache writeback during a
3533 * critical section where nothing is allowed to change the FS. This is
3534 * required in order for the cache to actually match the block group,
3535 * but can introduce a lot of latency into the commit.
3537 * So, btrfs_start_dirty_block_groups is here to kick off block group
3538 * cache IO. There's a chance we'll have to redo some of it if the
3539 * block group changes again during the commit, but it greatly reduces
3540 * the commit latency by getting rid of the easy block groups while
3541 * we're still allowing others to join the commit.
3543 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle
*trans
,
3544 struct btrfs_root
*root
)
3546 struct btrfs_block_group_cache
*cache
;
3547 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
3550 struct btrfs_path
*path
= NULL
;
3552 struct list_head
*io
= &cur_trans
->io_bgs
;
3553 int num_started
= 0;
3556 spin_lock(&cur_trans
->dirty_bgs_lock
);
3557 if (list_empty(&cur_trans
->dirty_bgs
)) {
3558 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3561 list_splice_init(&cur_trans
->dirty_bgs
, &dirty
);
3562 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3566 * make sure all the block groups on our dirty list actually
3569 btrfs_create_pending_block_groups(trans
, root
);
3572 path
= btrfs_alloc_path();
3578 * cache_write_mutex is here only to save us from balance or automatic
3579 * removal of empty block groups deleting this block group while we are
3580 * writing out the cache
3582 mutex_lock(&trans
->transaction
->cache_write_mutex
);
3583 while (!list_empty(&dirty
)) {
3584 cache
= list_first_entry(&dirty
,
3585 struct btrfs_block_group_cache
,
3588 * this can happen if something re-dirties a block
3589 * group that is already under IO. Just wait for it to
3590 * finish and then do it all again
3592 if (!list_empty(&cache
->io_list
)) {
3593 list_del_init(&cache
->io_list
);
3594 btrfs_wait_cache_io(root
, trans
, cache
,
3595 &cache
->io_ctl
, path
,
3596 cache
->key
.objectid
);
3597 btrfs_put_block_group(cache
);
3602 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3603 * if it should update the cache_state. Don't delete
3604 * until after we wait.
3606 * Since we're not running in the commit critical section
3607 * we need the dirty_bgs_lock to protect from update_block_group
3609 spin_lock(&cur_trans
->dirty_bgs_lock
);
3610 list_del_init(&cache
->dirty_list
);
3611 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3615 cache_save_setup(cache
, trans
, path
);
3617 if (cache
->disk_cache_state
== BTRFS_DC_SETUP
) {
3618 cache
->io_ctl
.inode
= NULL
;
3619 ret
= btrfs_write_out_cache(root
, trans
, cache
, path
);
3620 if (ret
== 0 && cache
->io_ctl
.inode
) {
3625 * the cache_write_mutex is protecting
3628 list_add_tail(&cache
->io_list
, io
);
3631 * if we failed to write the cache, the
3632 * generation will be bad and life goes on
3638 ret
= write_one_cache_group(trans
, root
, path
, cache
);
3640 * Our block group might still be attached to the list
3641 * of new block groups in the transaction handle of some
3642 * other task (struct btrfs_trans_handle->new_bgs). This
3643 * means its block group item isn't yet in the extent
3644 * tree. If this happens ignore the error, as we will
3645 * try again later in the critical section of the
3646 * transaction commit.
3648 if (ret
== -ENOENT
) {
3650 spin_lock(&cur_trans
->dirty_bgs_lock
);
3651 if (list_empty(&cache
->dirty_list
)) {
3652 list_add_tail(&cache
->dirty_list
,
3653 &cur_trans
->dirty_bgs
);
3654 btrfs_get_block_group(cache
);
3656 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3658 btrfs_abort_transaction(trans
, ret
);
3662 /* if its not on the io list, we need to put the block group */
3664 btrfs_put_block_group(cache
);
3670 * Avoid blocking other tasks for too long. It might even save
3671 * us from writing caches for block groups that are going to be
3674 mutex_unlock(&trans
->transaction
->cache_write_mutex
);
3675 mutex_lock(&trans
->transaction
->cache_write_mutex
);
3677 mutex_unlock(&trans
->transaction
->cache_write_mutex
);
3680 * go through delayed refs for all the stuff we've just kicked off
3681 * and then loop back (just once)
3683 ret
= btrfs_run_delayed_refs(trans
, root
, 0);
3684 if (!ret
&& loops
== 0) {
3686 spin_lock(&cur_trans
->dirty_bgs_lock
);
3687 list_splice_init(&cur_trans
->dirty_bgs
, &dirty
);
3689 * dirty_bgs_lock protects us from concurrent block group
3690 * deletes too (not just cache_write_mutex).
3692 if (!list_empty(&dirty
)) {
3693 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3696 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3699 btrfs_free_path(path
);
3703 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle
*trans
,
3704 struct btrfs_root
*root
)
3706 struct btrfs_block_group_cache
*cache
;
3707 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
3710 struct btrfs_path
*path
;
3711 struct list_head
*io
= &cur_trans
->io_bgs
;
3712 int num_started
= 0;
3714 path
= btrfs_alloc_path();
3719 * Even though we are in the critical section of the transaction commit,
3720 * we can still have concurrent tasks adding elements to this
3721 * transaction's list of dirty block groups. These tasks correspond to
3722 * endio free space workers started when writeback finishes for a
3723 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3724 * allocate new block groups as a result of COWing nodes of the root
3725 * tree when updating the free space inode. The writeback for the space
3726 * caches is triggered by an earlier call to
3727 * btrfs_start_dirty_block_groups() and iterations of the following
3729 * Also we want to do the cache_save_setup first and then run the
3730 * delayed refs to make sure we have the best chance at doing this all
3733 spin_lock(&cur_trans
->dirty_bgs_lock
);
3734 while (!list_empty(&cur_trans
->dirty_bgs
)) {
3735 cache
= list_first_entry(&cur_trans
->dirty_bgs
,
3736 struct btrfs_block_group_cache
,
3740 * this can happen if cache_save_setup re-dirties a block
3741 * group that is already under IO. Just wait for it to
3742 * finish and then do it all again
3744 if (!list_empty(&cache
->io_list
)) {
3745 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3746 list_del_init(&cache
->io_list
);
3747 btrfs_wait_cache_io(root
, trans
, cache
,
3748 &cache
->io_ctl
, path
,
3749 cache
->key
.objectid
);
3750 btrfs_put_block_group(cache
);
3751 spin_lock(&cur_trans
->dirty_bgs_lock
);
3755 * don't remove from the dirty list until after we've waited
3758 list_del_init(&cache
->dirty_list
);
3759 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3762 cache_save_setup(cache
, trans
, path
);
3765 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long) -1);
3767 if (!ret
&& cache
->disk_cache_state
== BTRFS_DC_SETUP
) {
3768 cache
->io_ctl
.inode
= NULL
;
3769 ret
= btrfs_write_out_cache(root
, trans
, cache
, path
);
3770 if (ret
== 0 && cache
->io_ctl
.inode
) {
3773 list_add_tail(&cache
->io_list
, io
);
3776 * if we failed to write the cache, the
3777 * generation will be bad and life goes on
3783 ret
= write_one_cache_group(trans
, root
, path
, cache
);
3785 * One of the free space endio workers might have
3786 * created a new block group while updating a free space
3787 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3788 * and hasn't released its transaction handle yet, in
3789 * which case the new block group is still attached to
3790 * its transaction handle and its creation has not
3791 * finished yet (no block group item in the extent tree
3792 * yet, etc). If this is the case, wait for all free
3793 * space endio workers to finish and retry. This is a
3794 * a very rare case so no need for a more efficient and
3797 if (ret
== -ENOENT
) {
3798 wait_event(cur_trans
->writer_wait
,
3799 atomic_read(&cur_trans
->num_writers
) == 1);
3800 ret
= write_one_cache_group(trans
, root
, path
,
3804 btrfs_abort_transaction(trans
, ret
);
3807 /* if its not on the io list, we need to put the block group */
3809 btrfs_put_block_group(cache
);
3810 spin_lock(&cur_trans
->dirty_bgs_lock
);
3812 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3814 while (!list_empty(io
)) {
3815 cache
= list_first_entry(io
, struct btrfs_block_group_cache
,
3817 list_del_init(&cache
->io_list
);
3818 btrfs_wait_cache_io(root
, trans
, cache
,
3819 &cache
->io_ctl
, path
, cache
->key
.objectid
);
3820 btrfs_put_block_group(cache
);
3823 btrfs_free_path(path
);
3827 int btrfs_extent_readonly(struct btrfs_root
*root
, u64 bytenr
)
3829 struct btrfs_block_group_cache
*block_group
;
3832 block_group
= btrfs_lookup_block_group(root
->fs_info
, bytenr
);
3833 if (!block_group
|| block_group
->ro
)
3836 btrfs_put_block_group(block_group
);
3840 bool btrfs_inc_nocow_writers(struct btrfs_fs_info
*fs_info
, u64 bytenr
)
3842 struct btrfs_block_group_cache
*bg
;
3845 bg
= btrfs_lookup_block_group(fs_info
, bytenr
);
3849 spin_lock(&bg
->lock
);
3853 atomic_inc(&bg
->nocow_writers
);
3854 spin_unlock(&bg
->lock
);
3856 /* no put on block group, done by btrfs_dec_nocow_writers */
3858 btrfs_put_block_group(bg
);
3864 void btrfs_dec_nocow_writers(struct btrfs_fs_info
*fs_info
, u64 bytenr
)
3866 struct btrfs_block_group_cache
*bg
;
3868 bg
= btrfs_lookup_block_group(fs_info
, bytenr
);
3870 if (atomic_dec_and_test(&bg
->nocow_writers
))
3871 wake_up_atomic_t(&bg
->nocow_writers
);
3873 * Once for our lookup and once for the lookup done by a previous call
3874 * to btrfs_inc_nocow_writers()
3876 btrfs_put_block_group(bg
);
3877 btrfs_put_block_group(bg
);
3880 static int btrfs_wait_nocow_writers_atomic_t(atomic_t
*a
)
3886 void btrfs_wait_nocow_writers(struct btrfs_block_group_cache
*bg
)
3888 wait_on_atomic_t(&bg
->nocow_writers
,
3889 btrfs_wait_nocow_writers_atomic_t
,
3890 TASK_UNINTERRUPTIBLE
);
3893 static const char *alloc_name(u64 flags
)
3896 case BTRFS_BLOCK_GROUP_METADATA
|BTRFS_BLOCK_GROUP_DATA
:
3898 case BTRFS_BLOCK_GROUP_METADATA
:
3900 case BTRFS_BLOCK_GROUP_DATA
:
3902 case BTRFS_BLOCK_GROUP_SYSTEM
:
3906 return "invalid-combination";
3910 static int update_space_info(struct btrfs_fs_info
*info
, u64 flags
,
3911 u64 total_bytes
, u64 bytes_used
,
3913 struct btrfs_space_info
**space_info
)
3915 struct btrfs_space_info
*found
;
3920 if (flags
& (BTRFS_BLOCK_GROUP_DUP
| BTRFS_BLOCK_GROUP_RAID1
|
3921 BTRFS_BLOCK_GROUP_RAID10
))
3926 found
= __find_space_info(info
, flags
);
3928 spin_lock(&found
->lock
);
3929 found
->total_bytes
+= total_bytes
;
3930 found
->disk_total
+= total_bytes
* factor
;
3931 found
->bytes_used
+= bytes_used
;
3932 found
->disk_used
+= bytes_used
* factor
;
3933 found
->bytes_readonly
+= bytes_readonly
;
3934 if (total_bytes
> 0)
3936 space_info_add_new_bytes(info
, found
, total_bytes
-
3937 bytes_used
- bytes_readonly
);
3938 spin_unlock(&found
->lock
);
3939 *space_info
= found
;
3942 found
= kzalloc(sizeof(*found
), GFP_NOFS
);
3946 ret
= percpu_counter_init(&found
->total_bytes_pinned
, 0, GFP_KERNEL
);
3952 for (i
= 0; i
< BTRFS_NR_RAID_TYPES
; i
++)
3953 INIT_LIST_HEAD(&found
->block_groups
[i
]);
3954 init_rwsem(&found
->groups_sem
);
3955 spin_lock_init(&found
->lock
);
3956 found
->flags
= flags
& BTRFS_BLOCK_GROUP_TYPE_MASK
;
3957 found
->total_bytes
= total_bytes
;
3958 found
->disk_total
= total_bytes
* factor
;
3959 found
->bytes_used
= bytes_used
;
3960 found
->disk_used
= bytes_used
* factor
;
3961 found
->bytes_pinned
= 0;
3962 found
->bytes_reserved
= 0;
3963 found
->bytes_readonly
= bytes_readonly
;
3964 found
->bytes_may_use
= 0;
3966 found
->max_extent_size
= 0;
3967 found
->force_alloc
= CHUNK_ALLOC_NO_FORCE
;
3968 found
->chunk_alloc
= 0;
3970 init_waitqueue_head(&found
->wait
);
3971 INIT_LIST_HEAD(&found
->ro_bgs
);
3972 INIT_LIST_HEAD(&found
->tickets
);
3973 INIT_LIST_HEAD(&found
->priority_tickets
);
3975 ret
= kobject_init_and_add(&found
->kobj
, &space_info_ktype
,
3976 info
->space_info_kobj
, "%s",
3977 alloc_name(found
->flags
));
3983 *space_info
= found
;
3984 list_add_rcu(&found
->list
, &info
->space_info
);
3985 if (flags
& BTRFS_BLOCK_GROUP_DATA
)
3986 info
->data_sinfo
= found
;
3991 static void set_avail_alloc_bits(struct btrfs_fs_info
*fs_info
, u64 flags
)
3993 u64 extra_flags
= chunk_to_extended(flags
) &
3994 BTRFS_EXTENDED_PROFILE_MASK
;
3996 write_seqlock(&fs_info
->profiles_lock
);
3997 if (flags
& BTRFS_BLOCK_GROUP_DATA
)
3998 fs_info
->avail_data_alloc_bits
|= extra_flags
;
3999 if (flags
& BTRFS_BLOCK_GROUP_METADATA
)
4000 fs_info
->avail_metadata_alloc_bits
|= extra_flags
;
4001 if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
)
4002 fs_info
->avail_system_alloc_bits
|= extra_flags
;
4003 write_sequnlock(&fs_info
->profiles_lock
);
4007 * returns target flags in extended format or 0 if restripe for this
4008 * chunk_type is not in progress
4010 * should be called with either volume_mutex or balance_lock held
4012 static u64
get_restripe_target(struct btrfs_fs_info
*fs_info
, u64 flags
)
4014 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
4020 if (flags
& BTRFS_BLOCK_GROUP_DATA
&&
4021 bctl
->data
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) {
4022 target
= BTRFS_BLOCK_GROUP_DATA
| bctl
->data
.target
;
4023 } else if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
&&
4024 bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) {
4025 target
= BTRFS_BLOCK_GROUP_SYSTEM
| bctl
->sys
.target
;
4026 } else if (flags
& BTRFS_BLOCK_GROUP_METADATA
&&
4027 bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) {
4028 target
= BTRFS_BLOCK_GROUP_METADATA
| bctl
->meta
.target
;
4035 * @flags: available profiles in extended format (see ctree.h)
4037 * Returns reduced profile in chunk format. If profile changing is in
4038 * progress (either running or paused) picks the target profile (if it's
4039 * already available), otherwise falls back to plain reducing.
4041 static u64
btrfs_reduce_alloc_profile(struct btrfs_root
*root
, u64 flags
)
4043 u64 num_devices
= root
->fs_info
->fs_devices
->rw_devices
;
4049 * see if restripe for this chunk_type is in progress, if so
4050 * try to reduce to the target profile
4052 spin_lock(&root
->fs_info
->balance_lock
);
4053 target
= get_restripe_target(root
->fs_info
, flags
);
4055 /* pick target profile only if it's already available */
4056 if ((flags
& target
) & BTRFS_EXTENDED_PROFILE_MASK
) {
4057 spin_unlock(&root
->fs_info
->balance_lock
);
4058 return extended_to_chunk(target
);
4061 spin_unlock(&root
->fs_info
->balance_lock
);
4063 /* First, mask out the RAID levels which aren't possible */
4064 for (raid_type
= 0; raid_type
< BTRFS_NR_RAID_TYPES
; raid_type
++) {
4065 if (num_devices
>= btrfs_raid_array
[raid_type
].devs_min
)
4066 allowed
|= btrfs_raid_group
[raid_type
];
4070 if (allowed
& BTRFS_BLOCK_GROUP_RAID6
)
4071 allowed
= BTRFS_BLOCK_GROUP_RAID6
;
4072 else if (allowed
& BTRFS_BLOCK_GROUP_RAID5
)
4073 allowed
= BTRFS_BLOCK_GROUP_RAID5
;
4074 else if (allowed
& BTRFS_BLOCK_GROUP_RAID10
)
4075 allowed
= BTRFS_BLOCK_GROUP_RAID10
;
4076 else if (allowed
& BTRFS_BLOCK_GROUP_RAID1
)
4077 allowed
= BTRFS_BLOCK_GROUP_RAID1
;
4078 else if (allowed
& BTRFS_BLOCK_GROUP_RAID0
)
4079 allowed
= BTRFS_BLOCK_GROUP_RAID0
;
4081 flags
&= ~BTRFS_BLOCK_GROUP_PROFILE_MASK
;
4083 return extended_to_chunk(flags
| allowed
);
4086 static u64
get_alloc_profile(struct btrfs_root
*root
, u64 orig_flags
)
4093 seq
= read_seqbegin(&root
->fs_info
->profiles_lock
);
4095 if (flags
& BTRFS_BLOCK_GROUP_DATA
)
4096 flags
|= root
->fs_info
->avail_data_alloc_bits
;
4097 else if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
)
4098 flags
|= root
->fs_info
->avail_system_alloc_bits
;
4099 else if (flags
& BTRFS_BLOCK_GROUP_METADATA
)
4100 flags
|= root
->fs_info
->avail_metadata_alloc_bits
;
4101 } while (read_seqretry(&root
->fs_info
->profiles_lock
, seq
));
4103 return btrfs_reduce_alloc_profile(root
, flags
);
4106 u64
btrfs_get_alloc_profile(struct btrfs_root
*root
, int data
)
4112 flags
= BTRFS_BLOCK_GROUP_DATA
;
4113 else if (root
== root
->fs_info
->chunk_root
)
4114 flags
= BTRFS_BLOCK_GROUP_SYSTEM
;
4116 flags
= BTRFS_BLOCK_GROUP_METADATA
;
4118 ret
= get_alloc_profile(root
, flags
);
4122 int btrfs_alloc_data_chunk_ondemand(struct inode
*inode
, u64 bytes
)
4124 struct btrfs_space_info
*data_sinfo
;
4125 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4126 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4129 int need_commit
= 2;
4130 int have_pinned_space
;
4132 /* make sure bytes are sectorsize aligned */
4133 bytes
= ALIGN(bytes
, root
->sectorsize
);
4135 if (btrfs_is_free_space_inode(inode
)) {
4137 ASSERT(current
->journal_info
);
4140 data_sinfo
= fs_info
->data_sinfo
;
4145 /* make sure we have enough space to handle the data first */
4146 spin_lock(&data_sinfo
->lock
);
4147 used
= data_sinfo
->bytes_used
+ data_sinfo
->bytes_reserved
+
4148 data_sinfo
->bytes_pinned
+ data_sinfo
->bytes_readonly
+
4149 data_sinfo
->bytes_may_use
;
4151 if (used
+ bytes
> data_sinfo
->total_bytes
) {
4152 struct btrfs_trans_handle
*trans
;
4155 * if we don't have enough free bytes in this space then we need
4156 * to alloc a new chunk.
4158 if (!data_sinfo
->full
) {
4161 data_sinfo
->force_alloc
= CHUNK_ALLOC_FORCE
;
4162 spin_unlock(&data_sinfo
->lock
);
4164 alloc_target
= btrfs_get_alloc_profile(root
, 1);
4166 * It is ugly that we don't call nolock join
4167 * transaction for the free space inode case here.
4168 * But it is safe because we only do the data space
4169 * reservation for the free space cache in the
4170 * transaction context, the common join transaction
4171 * just increase the counter of the current transaction
4172 * handler, doesn't try to acquire the trans_lock of
4175 trans
= btrfs_join_transaction(root
);
4177 return PTR_ERR(trans
);
4179 ret
= do_chunk_alloc(trans
, root
->fs_info
->extent_root
,
4181 CHUNK_ALLOC_NO_FORCE
);
4182 btrfs_end_transaction(trans
, root
);
4187 have_pinned_space
= 1;
4193 data_sinfo
= fs_info
->data_sinfo
;
4199 * If we don't have enough pinned space to deal with this
4200 * allocation, and no removed chunk in current transaction,
4201 * don't bother committing the transaction.
4203 have_pinned_space
= percpu_counter_compare(
4204 &data_sinfo
->total_bytes_pinned
,
4205 used
+ bytes
- data_sinfo
->total_bytes
);
4206 spin_unlock(&data_sinfo
->lock
);
4208 /* commit the current transaction and try again */
4211 !atomic_read(&root
->fs_info
->open_ioctl_trans
)) {
4214 if (need_commit
> 0) {
4215 btrfs_start_delalloc_roots(fs_info
, 0, -1);
4216 btrfs_wait_ordered_roots(fs_info
, -1, 0, (u64
)-1);
4219 trans
= btrfs_join_transaction(root
);
4221 return PTR_ERR(trans
);
4222 if (have_pinned_space
>= 0 ||
4223 test_bit(BTRFS_TRANS_HAVE_FREE_BGS
,
4224 &trans
->transaction
->flags
) ||
4226 ret
= btrfs_commit_transaction(trans
, root
);
4230 * The cleaner kthread might still be doing iput
4231 * operations. Wait for it to finish so that
4232 * more space is released.
4234 mutex_lock(&root
->fs_info
->cleaner_delayed_iput_mutex
);
4235 mutex_unlock(&root
->fs_info
->cleaner_delayed_iput_mutex
);
4238 btrfs_end_transaction(trans
, root
);
4242 trace_btrfs_space_reservation(root
->fs_info
,
4243 "space_info:enospc",
4244 data_sinfo
->flags
, bytes
, 1);
4247 data_sinfo
->bytes_may_use
+= bytes
;
4248 trace_btrfs_space_reservation(root
->fs_info
, "space_info",
4249 data_sinfo
->flags
, bytes
, 1);
4250 spin_unlock(&data_sinfo
->lock
);
4256 * New check_data_free_space() with ability for precious data reservation
4257 * Will replace old btrfs_check_data_free_space(), but for patch split,
4258 * add a new function first and then replace it.
4260 int btrfs_check_data_free_space(struct inode
*inode
, u64 start
, u64 len
)
4262 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4265 /* align the range */
4266 len
= round_up(start
+ len
, root
->sectorsize
) -
4267 round_down(start
, root
->sectorsize
);
4268 start
= round_down(start
, root
->sectorsize
);
4270 ret
= btrfs_alloc_data_chunk_ondemand(inode
, len
);
4275 * Use new btrfs_qgroup_reserve_data to reserve precious data space
4277 * TODO: Find a good method to avoid reserve data space for NOCOW
4278 * range, but don't impact performance on quota disable case.
4280 ret
= btrfs_qgroup_reserve_data(inode
, start
, len
);
4285 * Called if we need to clear a data reservation for this inode
4286 * Normally in a error case.
4288 * This one will *NOT* use accurate qgroup reserved space API, just for case
4289 * which we can't sleep and is sure it won't affect qgroup reserved space.
4290 * Like clear_bit_hook().
4292 void btrfs_free_reserved_data_space_noquota(struct inode
*inode
, u64 start
,
4295 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4296 struct btrfs_space_info
*data_sinfo
;
4298 /* Make sure the range is aligned to sectorsize */
4299 len
= round_up(start
+ len
, root
->sectorsize
) -
4300 round_down(start
, root
->sectorsize
);
4301 start
= round_down(start
, root
->sectorsize
);
4303 data_sinfo
= root
->fs_info
->data_sinfo
;
4304 spin_lock(&data_sinfo
->lock
);
4305 if (WARN_ON(data_sinfo
->bytes_may_use
< len
))
4306 data_sinfo
->bytes_may_use
= 0;
4308 data_sinfo
->bytes_may_use
-= len
;
4309 trace_btrfs_space_reservation(root
->fs_info
, "space_info",
4310 data_sinfo
->flags
, len
, 0);
4311 spin_unlock(&data_sinfo
->lock
);
4315 * Called if we need to clear a data reservation for this inode
4316 * Normally in a error case.
4318 * This one will handle the per-inode data rsv map for accurate reserved
4321 void btrfs_free_reserved_data_space(struct inode
*inode
, u64 start
, u64 len
)
4323 btrfs_free_reserved_data_space_noquota(inode
, start
, len
);
4324 btrfs_qgroup_free_data(inode
, start
, len
);
4327 static void force_metadata_allocation(struct btrfs_fs_info
*info
)
4329 struct list_head
*head
= &info
->space_info
;
4330 struct btrfs_space_info
*found
;
4333 list_for_each_entry_rcu(found
, head
, list
) {
4334 if (found
->flags
& BTRFS_BLOCK_GROUP_METADATA
)
4335 found
->force_alloc
= CHUNK_ALLOC_FORCE
;
4340 static inline u64
calc_global_rsv_need_space(struct btrfs_block_rsv
*global
)
4342 return (global
->size
<< 1);
4345 static int should_alloc_chunk(struct btrfs_root
*root
,
4346 struct btrfs_space_info
*sinfo
, int force
)
4348 struct btrfs_block_rsv
*global_rsv
= &root
->fs_info
->global_block_rsv
;
4349 u64 num_bytes
= sinfo
->total_bytes
- sinfo
->bytes_readonly
;
4350 u64 num_allocated
= sinfo
->bytes_used
+ sinfo
->bytes_reserved
;
4353 if (force
== CHUNK_ALLOC_FORCE
)
4357 * We need to take into account the global rsv because for all intents
4358 * and purposes it's used space. Don't worry about locking the
4359 * global_rsv, it doesn't change except when the transaction commits.
4361 if (sinfo
->flags
& BTRFS_BLOCK_GROUP_METADATA
)
4362 num_allocated
+= calc_global_rsv_need_space(global_rsv
);
4365 * in limited mode, we want to have some free space up to
4366 * about 1% of the FS size.
4368 if (force
== CHUNK_ALLOC_LIMITED
) {
4369 thresh
= btrfs_super_total_bytes(root
->fs_info
->super_copy
);
4370 thresh
= max_t(u64
, SZ_64M
, div_factor_fine(thresh
, 1));
4372 if (num_bytes
- num_allocated
< thresh
)
4376 if (num_allocated
+ SZ_2M
< div_factor(num_bytes
, 8))
4381 static u64
get_profile_num_devs(struct btrfs_root
*root
, u64 type
)
4385 if (type
& (BTRFS_BLOCK_GROUP_RAID10
|
4386 BTRFS_BLOCK_GROUP_RAID0
|
4387 BTRFS_BLOCK_GROUP_RAID5
|
4388 BTRFS_BLOCK_GROUP_RAID6
))
4389 num_dev
= root
->fs_info
->fs_devices
->rw_devices
;
4390 else if (type
& BTRFS_BLOCK_GROUP_RAID1
)
4393 num_dev
= 1; /* DUP or single */
4399 * If @is_allocation is true, reserve space in the system space info necessary
4400 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4403 void check_system_chunk(struct btrfs_trans_handle
*trans
,
4404 struct btrfs_root
*root
,
4407 struct btrfs_space_info
*info
;
4414 * Needed because we can end up allocating a system chunk and for an
4415 * atomic and race free space reservation in the chunk block reserve.
4417 ASSERT(mutex_is_locked(&root
->fs_info
->chunk_mutex
));
4419 info
= __find_space_info(root
->fs_info
, BTRFS_BLOCK_GROUP_SYSTEM
);
4420 spin_lock(&info
->lock
);
4421 left
= info
->total_bytes
- info
->bytes_used
- info
->bytes_pinned
-
4422 info
->bytes_reserved
- info
->bytes_readonly
-
4423 info
->bytes_may_use
;
4424 spin_unlock(&info
->lock
);
4426 num_devs
= get_profile_num_devs(root
, type
);
4428 /* num_devs device items to update and 1 chunk item to add or remove */
4429 thresh
= btrfs_calc_trunc_metadata_size(root
, num_devs
) +
4430 btrfs_calc_trans_metadata_size(root
, 1);
4432 if (left
< thresh
&& btrfs_test_opt(root
->fs_info
, ENOSPC_DEBUG
)) {
4433 btrfs_info(root
->fs_info
, "left=%llu, need=%llu, flags=%llu",
4434 left
, thresh
, type
);
4435 dump_space_info(info
, 0, 0);
4438 if (left
< thresh
) {
4441 flags
= btrfs_get_alloc_profile(root
->fs_info
->chunk_root
, 0);
4443 * Ignore failure to create system chunk. We might end up not
4444 * needing it, as we might not need to COW all nodes/leafs from
4445 * the paths we visit in the chunk tree (they were already COWed
4446 * or created in the current transaction for example).
4448 ret
= btrfs_alloc_chunk(trans
, root
, flags
);
4452 ret
= btrfs_block_rsv_add(root
->fs_info
->chunk_root
,
4453 &root
->fs_info
->chunk_block_rsv
,
4454 thresh
, BTRFS_RESERVE_NO_FLUSH
);
4456 trans
->chunk_bytes_reserved
+= thresh
;
4461 * If force is CHUNK_ALLOC_FORCE:
4462 * - return 1 if it successfully allocates a chunk,
4463 * - return errors including -ENOSPC otherwise.
4464 * If force is NOT CHUNK_ALLOC_FORCE:
4465 * - return 0 if it doesn't need to allocate a new chunk,
4466 * - return 1 if it successfully allocates a chunk,
4467 * - return errors including -ENOSPC otherwise.
4469 static int do_chunk_alloc(struct btrfs_trans_handle
*trans
,
4470 struct btrfs_root
*extent_root
, u64 flags
, int force
)
4472 struct btrfs_space_info
*space_info
;
4473 struct btrfs_fs_info
*fs_info
= extent_root
->fs_info
;
4474 int wait_for_alloc
= 0;
4477 /* Don't re-enter if we're already allocating a chunk */
4478 if (trans
->allocating_chunk
)
4481 space_info
= __find_space_info(extent_root
->fs_info
, flags
);
4483 ret
= update_space_info(extent_root
->fs_info
, flags
,
4484 0, 0, 0, &space_info
);
4485 BUG_ON(ret
); /* -ENOMEM */
4487 BUG_ON(!space_info
); /* Logic error */
4490 spin_lock(&space_info
->lock
);
4491 if (force
< space_info
->force_alloc
)
4492 force
= space_info
->force_alloc
;
4493 if (space_info
->full
) {
4494 if (should_alloc_chunk(extent_root
, space_info
, force
))
4498 spin_unlock(&space_info
->lock
);
4502 if (!should_alloc_chunk(extent_root
, space_info
, force
)) {
4503 spin_unlock(&space_info
->lock
);
4505 } else if (space_info
->chunk_alloc
) {
4508 space_info
->chunk_alloc
= 1;
4511 spin_unlock(&space_info
->lock
);
4513 mutex_lock(&fs_info
->chunk_mutex
);
4516 * The chunk_mutex is held throughout the entirety of a chunk
4517 * allocation, so once we've acquired the chunk_mutex we know that the
4518 * other guy is done and we need to recheck and see if we should
4521 if (wait_for_alloc
) {
4522 mutex_unlock(&fs_info
->chunk_mutex
);
4527 trans
->allocating_chunk
= true;
4530 * If we have mixed data/metadata chunks we want to make sure we keep
4531 * allocating mixed chunks instead of individual chunks.
4533 if (btrfs_mixed_space_info(space_info
))
4534 flags
|= (BTRFS_BLOCK_GROUP_DATA
| BTRFS_BLOCK_GROUP_METADATA
);
4537 * if we're doing a data chunk, go ahead and make sure that
4538 * we keep a reasonable number of metadata chunks allocated in the
4541 if (flags
& BTRFS_BLOCK_GROUP_DATA
&& fs_info
->metadata_ratio
) {
4542 fs_info
->data_chunk_allocations
++;
4543 if (!(fs_info
->data_chunk_allocations
%
4544 fs_info
->metadata_ratio
))
4545 force_metadata_allocation(fs_info
);
4549 * Check if we have enough space in SYSTEM chunk because we may need
4550 * to update devices.
4552 check_system_chunk(trans
, extent_root
, flags
);
4554 ret
= btrfs_alloc_chunk(trans
, extent_root
, flags
);
4555 trans
->allocating_chunk
= false;
4557 spin_lock(&space_info
->lock
);
4558 if (ret
< 0 && ret
!= -ENOSPC
)
4561 space_info
->full
= 1;
4565 space_info
->force_alloc
= CHUNK_ALLOC_NO_FORCE
;
4567 space_info
->chunk_alloc
= 0;
4568 spin_unlock(&space_info
->lock
);
4569 mutex_unlock(&fs_info
->chunk_mutex
);
4571 * When we allocate a new chunk we reserve space in the chunk block
4572 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4573 * add new nodes/leafs to it if we end up needing to do it when
4574 * inserting the chunk item and updating device items as part of the
4575 * second phase of chunk allocation, performed by
4576 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4577 * large number of new block groups to create in our transaction
4578 * handle's new_bgs list to avoid exhausting the chunk block reserve
4579 * in extreme cases - like having a single transaction create many new
4580 * block groups when starting to write out the free space caches of all
4581 * the block groups that were made dirty during the lifetime of the
4584 if (trans
->can_flush_pending_bgs
&&
4585 trans
->chunk_bytes_reserved
>= (u64
)SZ_2M
) {
4586 btrfs_create_pending_block_groups(trans
, extent_root
);
4587 btrfs_trans_release_chunk_metadata(trans
);
4592 static int can_overcommit(struct btrfs_root
*root
,
4593 struct btrfs_space_info
*space_info
, u64 bytes
,
4594 enum btrfs_reserve_flush_enum flush
)
4596 struct btrfs_block_rsv
*global_rsv
;
4602 /* Don't overcommit when in mixed mode. */
4603 if (space_info
->flags
& BTRFS_BLOCK_GROUP_DATA
)
4606 BUG_ON(root
->fs_info
== NULL
);
4607 global_rsv
= &root
->fs_info
->global_block_rsv
;
4608 profile
= btrfs_get_alloc_profile(root
, 0);
4609 used
= space_info
->bytes_used
+ space_info
->bytes_reserved
+
4610 space_info
->bytes_pinned
+ space_info
->bytes_readonly
;
4613 * We only want to allow over committing if we have lots of actual space
4614 * free, but if we don't have enough space to handle the global reserve
4615 * space then we could end up having a real enospc problem when trying
4616 * to allocate a chunk or some other such important allocation.
4618 spin_lock(&global_rsv
->lock
);
4619 space_size
= calc_global_rsv_need_space(global_rsv
);
4620 spin_unlock(&global_rsv
->lock
);
4621 if (used
+ space_size
>= space_info
->total_bytes
)
4624 used
+= space_info
->bytes_may_use
;
4626 spin_lock(&root
->fs_info
->free_chunk_lock
);
4627 avail
= root
->fs_info
->free_chunk_space
;
4628 spin_unlock(&root
->fs_info
->free_chunk_lock
);
4631 * If we have dup, raid1 or raid10 then only half of the free
4632 * space is actually useable. For raid56, the space info used
4633 * doesn't include the parity drive, so we don't have to
4636 if (profile
& (BTRFS_BLOCK_GROUP_DUP
|
4637 BTRFS_BLOCK_GROUP_RAID1
|
4638 BTRFS_BLOCK_GROUP_RAID10
))
4642 * If we aren't flushing all things, let us overcommit up to
4643 * 1/2th of the space. If we can flush, don't let us overcommit
4644 * too much, let it overcommit up to 1/8 of the space.
4646 if (flush
== BTRFS_RESERVE_FLUSH_ALL
)
4651 if (used
+ bytes
< space_info
->total_bytes
+ avail
)
4656 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root
*root
,
4657 unsigned long nr_pages
, int nr_items
)
4659 struct super_block
*sb
= root
->fs_info
->sb
;
4661 if (down_read_trylock(&sb
->s_umount
)) {
4662 writeback_inodes_sb_nr(sb
, nr_pages
, WB_REASON_FS_FREE_SPACE
);
4663 up_read(&sb
->s_umount
);
4666 * We needn't worry the filesystem going from r/w to r/o though
4667 * we don't acquire ->s_umount mutex, because the filesystem
4668 * should guarantee the delalloc inodes list be empty after
4669 * the filesystem is readonly(all dirty pages are written to
4672 btrfs_start_delalloc_roots(root
->fs_info
, 0, nr_items
);
4673 if (!current
->journal_info
)
4674 btrfs_wait_ordered_roots(root
->fs_info
, nr_items
,
4679 static inline int calc_reclaim_items_nr(struct btrfs_root
*root
, u64 to_reclaim
)
4684 bytes
= btrfs_calc_trans_metadata_size(root
, 1);
4685 nr
= (int)div64_u64(to_reclaim
, bytes
);
4691 #define EXTENT_SIZE_PER_ITEM SZ_256K
4694 * shrink metadata reservation for delalloc
4696 static void shrink_delalloc(struct btrfs_root
*root
, u64 to_reclaim
, u64 orig
,
4699 struct btrfs_block_rsv
*block_rsv
;
4700 struct btrfs_space_info
*space_info
;
4701 struct btrfs_trans_handle
*trans
;
4705 unsigned long nr_pages
;
4708 enum btrfs_reserve_flush_enum flush
;
4710 /* Calc the number of the pages we need flush for space reservation */
4711 items
= calc_reclaim_items_nr(root
, to_reclaim
);
4712 to_reclaim
= (u64
)items
* EXTENT_SIZE_PER_ITEM
;
4714 trans
= (struct btrfs_trans_handle
*)current
->journal_info
;
4715 block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
4716 space_info
= block_rsv
->space_info
;
4718 delalloc_bytes
= percpu_counter_sum_positive(
4719 &root
->fs_info
->delalloc_bytes
);
4720 if (delalloc_bytes
== 0) {
4724 btrfs_wait_ordered_roots(root
->fs_info
, items
,
4730 while (delalloc_bytes
&& loops
< 3) {
4731 max_reclaim
= min(delalloc_bytes
, to_reclaim
);
4732 nr_pages
= max_reclaim
>> PAGE_SHIFT
;
4733 btrfs_writeback_inodes_sb_nr(root
, nr_pages
, items
);
4735 * We need to wait for the async pages to actually start before
4738 max_reclaim
= atomic_read(&root
->fs_info
->async_delalloc_pages
);
4742 if (max_reclaim
<= nr_pages
)
4745 max_reclaim
-= nr_pages
;
4747 wait_event(root
->fs_info
->async_submit_wait
,
4748 atomic_read(&root
->fs_info
->async_delalloc_pages
) <=
4752 flush
= BTRFS_RESERVE_FLUSH_ALL
;
4754 flush
= BTRFS_RESERVE_NO_FLUSH
;
4755 spin_lock(&space_info
->lock
);
4756 if (can_overcommit(root
, space_info
, orig
, flush
)) {
4757 spin_unlock(&space_info
->lock
);
4760 if (list_empty(&space_info
->tickets
) &&
4761 list_empty(&space_info
->priority_tickets
)) {
4762 spin_unlock(&space_info
->lock
);
4765 spin_unlock(&space_info
->lock
);
4768 if (wait_ordered
&& !trans
) {
4769 btrfs_wait_ordered_roots(root
->fs_info
, items
,
4772 time_left
= schedule_timeout_killable(1);
4776 delalloc_bytes
= percpu_counter_sum_positive(
4777 &root
->fs_info
->delalloc_bytes
);
4782 * maybe_commit_transaction - possibly commit the transaction if its ok to
4783 * @root - the root we're allocating for
4784 * @bytes - the number of bytes we want to reserve
4785 * @force - force the commit
4787 * This will check to make sure that committing the transaction will actually
4788 * get us somewhere and then commit the transaction if it does. Otherwise it
4789 * will return -ENOSPC.
4791 static int may_commit_transaction(struct btrfs_root
*root
,
4792 struct btrfs_space_info
*space_info
,
4793 u64 bytes
, int force
)
4795 struct btrfs_block_rsv
*delayed_rsv
= &root
->fs_info
->delayed_block_rsv
;
4796 struct btrfs_trans_handle
*trans
;
4798 trans
= (struct btrfs_trans_handle
*)current
->journal_info
;
4805 /* See if there is enough pinned space to make this reservation */
4806 if (percpu_counter_compare(&space_info
->total_bytes_pinned
,
4811 * See if there is some space in the delayed insertion reservation for
4814 if (space_info
!= delayed_rsv
->space_info
)
4817 spin_lock(&delayed_rsv
->lock
);
4818 if (percpu_counter_compare(&space_info
->total_bytes_pinned
,
4819 bytes
- delayed_rsv
->size
) >= 0) {
4820 spin_unlock(&delayed_rsv
->lock
);
4823 spin_unlock(&delayed_rsv
->lock
);
4826 trans
= btrfs_join_transaction(root
);
4830 return btrfs_commit_transaction(trans
, root
);
4833 struct reserve_ticket
{
4836 struct list_head list
;
4837 wait_queue_head_t wait
;
4840 static int flush_space(struct btrfs_root
*root
,
4841 struct btrfs_space_info
*space_info
, u64 num_bytes
,
4842 u64 orig_bytes
, int state
)
4844 struct btrfs_trans_handle
*trans
;
4849 case FLUSH_DELAYED_ITEMS_NR
:
4850 case FLUSH_DELAYED_ITEMS
:
4851 if (state
== FLUSH_DELAYED_ITEMS_NR
)
4852 nr
= calc_reclaim_items_nr(root
, num_bytes
) * 2;
4856 trans
= btrfs_join_transaction(root
);
4857 if (IS_ERR(trans
)) {
4858 ret
= PTR_ERR(trans
);
4861 ret
= btrfs_run_delayed_items_nr(trans
, root
, nr
);
4862 btrfs_end_transaction(trans
, root
);
4864 case FLUSH_DELALLOC
:
4865 case FLUSH_DELALLOC_WAIT
:
4866 shrink_delalloc(root
, num_bytes
* 2, orig_bytes
,
4867 state
== FLUSH_DELALLOC_WAIT
);
4870 trans
= btrfs_join_transaction(root
);
4871 if (IS_ERR(trans
)) {
4872 ret
= PTR_ERR(trans
);
4875 ret
= do_chunk_alloc(trans
, root
->fs_info
->extent_root
,
4876 btrfs_get_alloc_profile(root
, 0),
4877 CHUNK_ALLOC_NO_FORCE
);
4878 btrfs_end_transaction(trans
, root
);
4879 if (ret
> 0 || ret
== -ENOSPC
)
4883 ret
= may_commit_transaction(root
, space_info
, orig_bytes
, 0);
4890 trace_btrfs_flush_space(root
->fs_info
, space_info
->flags
, num_bytes
,
4891 orig_bytes
, state
, ret
);
4896 btrfs_calc_reclaim_metadata_size(struct btrfs_root
*root
,
4897 struct btrfs_space_info
*space_info
)
4899 struct reserve_ticket
*ticket
;
4904 list_for_each_entry(ticket
, &space_info
->tickets
, list
)
4905 to_reclaim
+= ticket
->bytes
;
4906 list_for_each_entry(ticket
, &space_info
->priority_tickets
, list
)
4907 to_reclaim
+= ticket
->bytes
;
4911 to_reclaim
= min_t(u64
, num_online_cpus() * SZ_1M
, SZ_16M
);
4912 if (can_overcommit(root
, space_info
, to_reclaim
,
4913 BTRFS_RESERVE_FLUSH_ALL
))
4916 used
= space_info
->bytes_used
+ space_info
->bytes_reserved
+
4917 space_info
->bytes_pinned
+ space_info
->bytes_readonly
+
4918 space_info
->bytes_may_use
;
4919 if (can_overcommit(root
, space_info
, SZ_1M
, BTRFS_RESERVE_FLUSH_ALL
))
4920 expected
= div_factor_fine(space_info
->total_bytes
, 95);
4922 expected
= div_factor_fine(space_info
->total_bytes
, 90);
4924 if (used
> expected
)
4925 to_reclaim
= used
- expected
;
4928 to_reclaim
= min(to_reclaim
, space_info
->bytes_may_use
+
4929 space_info
->bytes_reserved
);
4933 static inline int need_do_async_reclaim(struct btrfs_space_info
*space_info
,
4934 struct btrfs_root
*root
, u64 used
)
4936 u64 thresh
= div_factor_fine(space_info
->total_bytes
, 98);
4938 /* If we're just plain full then async reclaim just slows us down. */
4939 if ((space_info
->bytes_used
+ space_info
->bytes_reserved
) >= thresh
)
4942 if (!btrfs_calc_reclaim_metadata_size(root
, space_info
))
4945 return (used
>= thresh
&& !btrfs_fs_closing(root
->fs_info
) &&
4946 !test_bit(BTRFS_FS_STATE_REMOUNTING
,
4947 &root
->fs_info
->fs_state
));
4950 static void wake_all_tickets(struct list_head
*head
)
4952 struct reserve_ticket
*ticket
;
4954 while (!list_empty(head
)) {
4955 ticket
= list_first_entry(head
, struct reserve_ticket
, list
);
4956 list_del_init(&ticket
->list
);
4957 ticket
->error
= -ENOSPC
;
4958 wake_up(&ticket
->wait
);
4963 * This is for normal flushers, we can wait all goddamned day if we want to. We
4964 * will loop and continuously try to flush as long as we are making progress.
4965 * We count progress as clearing off tickets each time we have to loop.
4967 static void btrfs_async_reclaim_metadata_space(struct work_struct
*work
)
4969 struct btrfs_fs_info
*fs_info
;
4970 struct btrfs_space_info
*space_info
;
4973 int commit_cycles
= 0;
4974 u64 last_tickets_id
;
4976 fs_info
= container_of(work
, struct btrfs_fs_info
, async_reclaim_work
);
4977 space_info
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_METADATA
);
4979 spin_lock(&space_info
->lock
);
4980 to_reclaim
= btrfs_calc_reclaim_metadata_size(fs_info
->fs_root
,
4983 space_info
->flush
= 0;
4984 spin_unlock(&space_info
->lock
);
4987 last_tickets_id
= space_info
->tickets_id
;
4988 spin_unlock(&space_info
->lock
);
4990 flush_state
= FLUSH_DELAYED_ITEMS_NR
;
4992 struct reserve_ticket
*ticket
;
4995 ret
= flush_space(fs_info
->fs_root
, space_info
, to_reclaim
,
4996 to_reclaim
, flush_state
);
4997 spin_lock(&space_info
->lock
);
4998 if (list_empty(&space_info
->tickets
)) {
4999 space_info
->flush
= 0;
5000 spin_unlock(&space_info
->lock
);
5003 to_reclaim
= btrfs_calc_reclaim_metadata_size(fs_info
->fs_root
,
5005 ticket
= list_first_entry(&space_info
->tickets
,
5006 struct reserve_ticket
, list
);
5007 if (last_tickets_id
== space_info
->tickets_id
) {
5010 last_tickets_id
= space_info
->tickets_id
;
5011 flush_state
= FLUSH_DELAYED_ITEMS_NR
;
5016 if (flush_state
> COMMIT_TRANS
) {
5018 if (commit_cycles
> 2) {
5019 wake_all_tickets(&space_info
->tickets
);
5020 space_info
->flush
= 0;
5022 flush_state
= FLUSH_DELAYED_ITEMS_NR
;
5025 spin_unlock(&space_info
->lock
);
5026 } while (flush_state
<= COMMIT_TRANS
);
5029 void btrfs_init_async_reclaim_work(struct work_struct
*work
)
5031 INIT_WORK(work
, btrfs_async_reclaim_metadata_space
);
5034 static void priority_reclaim_metadata_space(struct btrfs_fs_info
*fs_info
,
5035 struct btrfs_space_info
*space_info
,
5036 struct reserve_ticket
*ticket
)
5039 int flush_state
= FLUSH_DELAYED_ITEMS_NR
;
5041 spin_lock(&space_info
->lock
);
5042 to_reclaim
= btrfs_calc_reclaim_metadata_size(fs_info
->fs_root
,
5045 spin_unlock(&space_info
->lock
);
5048 spin_unlock(&space_info
->lock
);
5051 flush_space(fs_info
->fs_root
, space_info
, to_reclaim
,
5052 to_reclaim
, flush_state
);
5054 spin_lock(&space_info
->lock
);
5055 if (ticket
->bytes
== 0) {
5056 spin_unlock(&space_info
->lock
);
5059 spin_unlock(&space_info
->lock
);
5062 * Priority flushers can't wait on delalloc without
5065 if (flush_state
== FLUSH_DELALLOC
||
5066 flush_state
== FLUSH_DELALLOC_WAIT
)
5067 flush_state
= ALLOC_CHUNK
;
5068 } while (flush_state
< COMMIT_TRANS
);
5071 static int wait_reserve_ticket(struct btrfs_fs_info
*fs_info
,
5072 struct btrfs_space_info
*space_info
,
5073 struct reserve_ticket
*ticket
, u64 orig_bytes
)
5079 spin_lock(&space_info
->lock
);
5080 while (ticket
->bytes
> 0 && ticket
->error
== 0) {
5081 ret
= prepare_to_wait_event(&ticket
->wait
, &wait
, TASK_KILLABLE
);
5086 spin_unlock(&space_info
->lock
);
5090 finish_wait(&ticket
->wait
, &wait
);
5091 spin_lock(&space_info
->lock
);
5094 ret
= ticket
->error
;
5095 if (!list_empty(&ticket
->list
))
5096 list_del_init(&ticket
->list
);
5097 if (ticket
->bytes
&& ticket
->bytes
< orig_bytes
) {
5098 u64 num_bytes
= orig_bytes
- ticket
->bytes
;
5099 space_info
->bytes_may_use
-= num_bytes
;
5100 trace_btrfs_space_reservation(fs_info
, "space_info",
5101 space_info
->flags
, num_bytes
, 0);
5103 spin_unlock(&space_info
->lock
);
5109 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5110 * @root - the root we're allocating for
5111 * @space_info - the space info we want to allocate from
5112 * @orig_bytes - the number of bytes we want
5113 * @flush - whether or not we can flush to make our reservation
5115 * This will reserve orig_bytes number of bytes from the space info associated
5116 * with the block_rsv. If there is not enough space it will make an attempt to
5117 * flush out space to make room. It will do this by flushing delalloc if
5118 * possible or committing the transaction. If flush is 0 then no attempts to
5119 * regain reservations will be made and this will fail if there is not enough
5122 static int __reserve_metadata_bytes(struct btrfs_root
*root
,
5123 struct btrfs_space_info
*space_info
,
5125 enum btrfs_reserve_flush_enum flush
)
5127 struct reserve_ticket ticket
;
5132 ASSERT(!current
->journal_info
|| flush
!= BTRFS_RESERVE_FLUSH_ALL
);
5134 spin_lock(&space_info
->lock
);
5136 used
= space_info
->bytes_used
+ space_info
->bytes_reserved
+
5137 space_info
->bytes_pinned
+ space_info
->bytes_readonly
+
5138 space_info
->bytes_may_use
;
5141 * If we have enough space then hooray, make our reservation and carry
5142 * on. If not see if we can overcommit, and if we can, hooray carry on.
5143 * If not things get more complicated.
5145 if (used
+ orig_bytes
<= space_info
->total_bytes
) {
5146 space_info
->bytes_may_use
+= orig_bytes
;
5147 trace_btrfs_space_reservation(root
->fs_info
, "space_info",
5148 space_info
->flags
, orig_bytes
,
5151 } else if (can_overcommit(root
, space_info
, orig_bytes
, flush
)) {
5152 space_info
->bytes_may_use
+= orig_bytes
;
5153 trace_btrfs_space_reservation(root
->fs_info
, "space_info",
5154 space_info
->flags
, orig_bytes
,
5160 * If we couldn't make a reservation then setup our reservation ticket
5161 * and kick the async worker if it's not already running.
5163 * If we are a priority flusher then we just need to add our ticket to
5164 * the list and we will do our own flushing further down.
5166 if (ret
&& flush
!= BTRFS_RESERVE_NO_FLUSH
) {
5167 ticket
.bytes
= orig_bytes
;
5169 init_waitqueue_head(&ticket
.wait
);
5170 if (flush
== BTRFS_RESERVE_FLUSH_ALL
) {
5171 list_add_tail(&ticket
.list
, &space_info
->tickets
);
5172 if (!space_info
->flush
) {
5173 space_info
->flush
= 1;
5174 trace_btrfs_trigger_flush(root
->fs_info
,
5178 queue_work(system_unbound_wq
,
5179 &root
->fs_info
->async_reclaim_work
);
5182 list_add_tail(&ticket
.list
,
5183 &space_info
->priority_tickets
);
5185 } else if (!ret
&& space_info
->flags
& BTRFS_BLOCK_GROUP_METADATA
) {
5188 * We will do the space reservation dance during log replay,
5189 * which means we won't have fs_info->fs_root set, so don't do
5190 * the async reclaim as we will panic.
5192 if (!root
->fs_info
->log_root_recovering
&&
5193 need_do_async_reclaim(space_info
, root
, used
) &&
5194 !work_busy(&root
->fs_info
->async_reclaim_work
)) {
5195 trace_btrfs_trigger_flush(root
->fs_info
,
5199 queue_work(system_unbound_wq
,
5200 &root
->fs_info
->async_reclaim_work
);
5203 spin_unlock(&space_info
->lock
);
5204 if (!ret
|| flush
== BTRFS_RESERVE_NO_FLUSH
)
5207 if (flush
== BTRFS_RESERVE_FLUSH_ALL
)
5208 return wait_reserve_ticket(root
->fs_info
, space_info
, &ticket
,
5212 priority_reclaim_metadata_space(root
->fs_info
, space_info
, &ticket
);
5213 spin_lock(&space_info
->lock
);
5215 if (ticket
.bytes
< orig_bytes
) {
5216 u64 num_bytes
= orig_bytes
- ticket
.bytes
;
5217 space_info
->bytes_may_use
-= num_bytes
;
5218 trace_btrfs_space_reservation(root
->fs_info
,
5219 "space_info", space_info
->flags
,
5223 list_del_init(&ticket
.list
);
5226 spin_unlock(&space_info
->lock
);
5227 ASSERT(list_empty(&ticket
.list
));
5232 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5233 * @root - the root we're allocating for
5234 * @block_rsv - the block_rsv we're allocating for
5235 * @orig_bytes - the number of bytes we want
5236 * @flush - whether or not we can flush to make our reservation
5238 * This will reserve orgi_bytes number of bytes from the space info associated
5239 * with the block_rsv. If there is not enough space it will make an attempt to
5240 * flush out space to make room. It will do this by flushing delalloc if
5241 * possible or committing the transaction. If flush is 0 then no attempts to
5242 * regain reservations will be made and this will fail if there is not enough
5245 static int reserve_metadata_bytes(struct btrfs_root
*root
,
5246 struct btrfs_block_rsv
*block_rsv
,
5248 enum btrfs_reserve_flush_enum flush
)
5252 ret
= __reserve_metadata_bytes(root
, block_rsv
->space_info
, orig_bytes
,
5254 if (ret
== -ENOSPC
&&
5255 unlikely(root
->orphan_cleanup_state
== ORPHAN_CLEANUP_STARTED
)) {
5256 struct btrfs_block_rsv
*global_rsv
=
5257 &root
->fs_info
->global_block_rsv
;
5259 if (block_rsv
!= global_rsv
&&
5260 !block_rsv_use_bytes(global_rsv
, orig_bytes
))
5264 trace_btrfs_space_reservation(root
->fs_info
,
5265 "space_info:enospc",
5266 block_rsv
->space_info
->flags
,
5271 static struct btrfs_block_rsv
*get_block_rsv(
5272 const struct btrfs_trans_handle
*trans
,
5273 const struct btrfs_root
*root
)
5275 struct btrfs_block_rsv
*block_rsv
= NULL
;
5277 if (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) ||
5278 (root
== root
->fs_info
->csum_root
&& trans
->adding_csums
) ||
5279 (root
== root
->fs_info
->uuid_root
))
5280 block_rsv
= trans
->block_rsv
;
5283 block_rsv
= root
->block_rsv
;
5286 block_rsv
= &root
->fs_info
->empty_block_rsv
;
5291 static int block_rsv_use_bytes(struct btrfs_block_rsv
*block_rsv
,
5295 spin_lock(&block_rsv
->lock
);
5296 if (block_rsv
->reserved
>= num_bytes
) {
5297 block_rsv
->reserved
-= num_bytes
;
5298 if (block_rsv
->reserved
< block_rsv
->size
)
5299 block_rsv
->full
= 0;
5302 spin_unlock(&block_rsv
->lock
);
5306 static void block_rsv_add_bytes(struct btrfs_block_rsv
*block_rsv
,
5307 u64 num_bytes
, int update_size
)
5309 spin_lock(&block_rsv
->lock
);
5310 block_rsv
->reserved
+= num_bytes
;
5312 block_rsv
->size
+= num_bytes
;
5313 else if (block_rsv
->reserved
>= block_rsv
->size
)
5314 block_rsv
->full
= 1;
5315 spin_unlock(&block_rsv
->lock
);
5318 int btrfs_cond_migrate_bytes(struct btrfs_fs_info
*fs_info
,
5319 struct btrfs_block_rsv
*dest
, u64 num_bytes
,
5322 struct btrfs_block_rsv
*global_rsv
= &fs_info
->global_block_rsv
;
5325 if (global_rsv
->space_info
!= dest
->space_info
)
5328 spin_lock(&global_rsv
->lock
);
5329 min_bytes
= div_factor(global_rsv
->size
, min_factor
);
5330 if (global_rsv
->reserved
< min_bytes
+ num_bytes
) {
5331 spin_unlock(&global_rsv
->lock
);
5334 global_rsv
->reserved
-= num_bytes
;
5335 if (global_rsv
->reserved
< global_rsv
->size
)
5336 global_rsv
->full
= 0;
5337 spin_unlock(&global_rsv
->lock
);
5339 block_rsv_add_bytes(dest
, num_bytes
, 1);
5344 * This is for space we already have accounted in space_info->bytes_may_use, so
5345 * basically when we're returning space from block_rsv's.
5347 static void space_info_add_old_bytes(struct btrfs_fs_info
*fs_info
,
5348 struct btrfs_space_info
*space_info
,
5351 struct reserve_ticket
*ticket
;
5352 struct list_head
*head
;
5354 enum btrfs_reserve_flush_enum flush
= BTRFS_RESERVE_NO_FLUSH
;
5355 bool check_overcommit
= false;
5357 spin_lock(&space_info
->lock
);
5358 head
= &space_info
->priority_tickets
;
5361 * If we are over our limit then we need to check and see if we can
5362 * overcommit, and if we can't then we just need to free up our space
5363 * and not satisfy any requests.
5365 used
= space_info
->bytes_used
+ space_info
->bytes_reserved
+
5366 space_info
->bytes_pinned
+ space_info
->bytes_readonly
+
5367 space_info
->bytes_may_use
;
5368 if (used
- num_bytes
>= space_info
->total_bytes
)
5369 check_overcommit
= true;
5371 while (!list_empty(head
) && num_bytes
) {
5372 ticket
= list_first_entry(head
, struct reserve_ticket
,
5375 * We use 0 bytes because this space is already reserved, so
5376 * adding the ticket space would be a double count.
5378 if (check_overcommit
&&
5379 !can_overcommit(fs_info
->extent_root
, space_info
, 0,
5382 if (num_bytes
>= ticket
->bytes
) {
5383 list_del_init(&ticket
->list
);
5384 num_bytes
-= ticket
->bytes
;
5386 space_info
->tickets_id
++;
5387 wake_up(&ticket
->wait
);
5389 ticket
->bytes
-= num_bytes
;
5394 if (num_bytes
&& head
== &space_info
->priority_tickets
) {
5395 head
= &space_info
->tickets
;
5396 flush
= BTRFS_RESERVE_FLUSH_ALL
;
5399 space_info
->bytes_may_use
-= num_bytes
;
5400 trace_btrfs_space_reservation(fs_info
, "space_info",
5401 space_info
->flags
, num_bytes
, 0);
5402 spin_unlock(&space_info
->lock
);
5406 * This is for newly allocated space that isn't accounted in
5407 * space_info->bytes_may_use yet. So if we allocate a chunk or unpin an extent
5408 * we use this helper.
5410 static void space_info_add_new_bytes(struct btrfs_fs_info
*fs_info
,
5411 struct btrfs_space_info
*space_info
,
5414 struct reserve_ticket
*ticket
;
5415 struct list_head
*head
= &space_info
->priority_tickets
;
5418 while (!list_empty(head
) && num_bytes
) {
5419 ticket
= list_first_entry(head
, struct reserve_ticket
,
5421 if (num_bytes
>= ticket
->bytes
) {
5422 trace_btrfs_space_reservation(fs_info
, "space_info",
5425 list_del_init(&ticket
->list
);
5426 num_bytes
-= ticket
->bytes
;
5427 space_info
->bytes_may_use
+= ticket
->bytes
;
5429 space_info
->tickets_id
++;
5430 wake_up(&ticket
->wait
);
5432 trace_btrfs_space_reservation(fs_info
, "space_info",
5435 space_info
->bytes_may_use
+= num_bytes
;
5436 ticket
->bytes
-= num_bytes
;
5441 if (num_bytes
&& head
== &space_info
->priority_tickets
) {
5442 head
= &space_info
->tickets
;
5447 static void block_rsv_release_bytes(struct btrfs_fs_info
*fs_info
,
5448 struct btrfs_block_rsv
*block_rsv
,
5449 struct btrfs_block_rsv
*dest
, u64 num_bytes
)
5451 struct btrfs_space_info
*space_info
= block_rsv
->space_info
;
5453 spin_lock(&block_rsv
->lock
);
5454 if (num_bytes
== (u64
)-1)
5455 num_bytes
= block_rsv
->size
;
5456 block_rsv
->size
-= num_bytes
;
5457 if (block_rsv
->reserved
>= block_rsv
->size
) {
5458 num_bytes
= block_rsv
->reserved
- block_rsv
->size
;
5459 block_rsv
->reserved
= block_rsv
->size
;
5460 block_rsv
->full
= 1;
5464 spin_unlock(&block_rsv
->lock
);
5466 if (num_bytes
> 0) {
5468 spin_lock(&dest
->lock
);
5472 bytes_to_add
= dest
->size
- dest
->reserved
;
5473 bytes_to_add
= min(num_bytes
, bytes_to_add
);
5474 dest
->reserved
+= bytes_to_add
;
5475 if (dest
->reserved
>= dest
->size
)
5477 num_bytes
-= bytes_to_add
;
5479 spin_unlock(&dest
->lock
);
5482 space_info_add_old_bytes(fs_info
, space_info
,
5487 int btrfs_block_rsv_migrate(struct btrfs_block_rsv
*src
,
5488 struct btrfs_block_rsv
*dst
, u64 num_bytes
,
5493 ret
= block_rsv_use_bytes(src
, num_bytes
);
5497 block_rsv_add_bytes(dst
, num_bytes
, update_size
);
5501 void btrfs_init_block_rsv(struct btrfs_block_rsv
*rsv
, unsigned short type
)
5503 memset(rsv
, 0, sizeof(*rsv
));
5504 spin_lock_init(&rsv
->lock
);
5508 struct btrfs_block_rsv
*btrfs_alloc_block_rsv(struct btrfs_root
*root
,
5509 unsigned short type
)
5511 struct btrfs_block_rsv
*block_rsv
;
5512 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5514 block_rsv
= kmalloc(sizeof(*block_rsv
), GFP_NOFS
);
5518 btrfs_init_block_rsv(block_rsv
, type
);
5519 block_rsv
->space_info
= __find_space_info(fs_info
,
5520 BTRFS_BLOCK_GROUP_METADATA
);
5524 void btrfs_free_block_rsv(struct btrfs_root
*root
,
5525 struct btrfs_block_rsv
*rsv
)
5529 btrfs_block_rsv_release(root
, rsv
, (u64
)-1);
5533 void __btrfs_free_block_rsv(struct btrfs_block_rsv
*rsv
)
5538 int btrfs_block_rsv_add(struct btrfs_root
*root
,
5539 struct btrfs_block_rsv
*block_rsv
, u64 num_bytes
,
5540 enum btrfs_reserve_flush_enum flush
)
5547 ret
= reserve_metadata_bytes(root
, block_rsv
, num_bytes
, flush
);
5549 block_rsv_add_bytes(block_rsv
, num_bytes
, 1);
5556 int btrfs_block_rsv_check(struct btrfs_root
*root
,
5557 struct btrfs_block_rsv
*block_rsv
, int min_factor
)
5565 spin_lock(&block_rsv
->lock
);
5566 num_bytes
= div_factor(block_rsv
->size
, min_factor
);
5567 if (block_rsv
->reserved
>= num_bytes
)
5569 spin_unlock(&block_rsv
->lock
);
5574 int btrfs_block_rsv_refill(struct btrfs_root
*root
,
5575 struct btrfs_block_rsv
*block_rsv
, u64 min_reserved
,
5576 enum btrfs_reserve_flush_enum flush
)
5584 spin_lock(&block_rsv
->lock
);
5585 num_bytes
= min_reserved
;
5586 if (block_rsv
->reserved
>= num_bytes
)
5589 num_bytes
-= block_rsv
->reserved
;
5590 spin_unlock(&block_rsv
->lock
);
5595 ret
= reserve_metadata_bytes(root
, block_rsv
, num_bytes
, flush
);
5597 block_rsv_add_bytes(block_rsv
, num_bytes
, 0);
5604 void btrfs_block_rsv_release(struct btrfs_root
*root
,
5605 struct btrfs_block_rsv
*block_rsv
,
5608 struct btrfs_block_rsv
*global_rsv
= &root
->fs_info
->global_block_rsv
;
5609 if (global_rsv
== block_rsv
||
5610 block_rsv
->space_info
!= global_rsv
->space_info
)
5612 block_rsv_release_bytes(root
->fs_info
, block_rsv
, global_rsv
,
5616 static void update_global_block_rsv(struct btrfs_fs_info
*fs_info
)
5618 struct btrfs_block_rsv
*block_rsv
= &fs_info
->global_block_rsv
;
5619 struct btrfs_space_info
*sinfo
= block_rsv
->space_info
;
5623 * The global block rsv is based on the size of the extent tree, the
5624 * checksum tree and the root tree. If the fs is empty we want to set
5625 * it to a minimal amount for safety.
5627 num_bytes
= btrfs_root_used(&fs_info
->extent_root
->root_item
) +
5628 btrfs_root_used(&fs_info
->csum_root
->root_item
) +
5629 btrfs_root_used(&fs_info
->tree_root
->root_item
);
5630 num_bytes
= max_t(u64
, num_bytes
, SZ_16M
);
5632 spin_lock(&sinfo
->lock
);
5633 spin_lock(&block_rsv
->lock
);
5635 block_rsv
->size
= min_t(u64
, num_bytes
, SZ_512M
);
5637 if (block_rsv
->reserved
< block_rsv
->size
) {
5638 num_bytes
= sinfo
->bytes_used
+ sinfo
->bytes_pinned
+
5639 sinfo
->bytes_reserved
+ sinfo
->bytes_readonly
+
5640 sinfo
->bytes_may_use
;
5641 if (sinfo
->total_bytes
> num_bytes
) {
5642 num_bytes
= sinfo
->total_bytes
- num_bytes
;
5643 num_bytes
= min(num_bytes
,
5644 block_rsv
->size
- block_rsv
->reserved
);
5645 block_rsv
->reserved
+= num_bytes
;
5646 sinfo
->bytes_may_use
+= num_bytes
;
5647 trace_btrfs_space_reservation(fs_info
, "space_info",
5648 sinfo
->flags
, num_bytes
,
5651 } else if (block_rsv
->reserved
> block_rsv
->size
) {
5652 num_bytes
= block_rsv
->reserved
- block_rsv
->size
;
5653 sinfo
->bytes_may_use
-= num_bytes
;
5654 trace_btrfs_space_reservation(fs_info
, "space_info",
5655 sinfo
->flags
, num_bytes
, 0);
5656 block_rsv
->reserved
= block_rsv
->size
;
5659 if (block_rsv
->reserved
== block_rsv
->size
)
5660 block_rsv
->full
= 1;
5662 block_rsv
->full
= 0;
5664 spin_unlock(&block_rsv
->lock
);
5665 spin_unlock(&sinfo
->lock
);
5668 static void init_global_block_rsv(struct btrfs_fs_info
*fs_info
)
5670 struct btrfs_space_info
*space_info
;
5672 space_info
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_SYSTEM
);
5673 fs_info
->chunk_block_rsv
.space_info
= space_info
;
5675 space_info
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_METADATA
);
5676 fs_info
->global_block_rsv
.space_info
= space_info
;
5677 fs_info
->delalloc_block_rsv
.space_info
= space_info
;
5678 fs_info
->trans_block_rsv
.space_info
= space_info
;
5679 fs_info
->empty_block_rsv
.space_info
= space_info
;
5680 fs_info
->delayed_block_rsv
.space_info
= space_info
;
5682 fs_info
->extent_root
->block_rsv
= &fs_info
->global_block_rsv
;
5683 fs_info
->csum_root
->block_rsv
= &fs_info
->global_block_rsv
;
5684 fs_info
->dev_root
->block_rsv
= &fs_info
->global_block_rsv
;
5685 fs_info
->tree_root
->block_rsv
= &fs_info
->global_block_rsv
;
5686 if (fs_info
->quota_root
)
5687 fs_info
->quota_root
->block_rsv
= &fs_info
->global_block_rsv
;
5688 fs_info
->chunk_root
->block_rsv
= &fs_info
->chunk_block_rsv
;
5690 update_global_block_rsv(fs_info
);
5693 static void release_global_block_rsv(struct btrfs_fs_info
*fs_info
)
5695 block_rsv_release_bytes(fs_info
, &fs_info
->global_block_rsv
, NULL
,
5697 WARN_ON(fs_info
->delalloc_block_rsv
.size
> 0);
5698 WARN_ON(fs_info
->delalloc_block_rsv
.reserved
> 0);
5699 WARN_ON(fs_info
->trans_block_rsv
.size
> 0);
5700 WARN_ON(fs_info
->trans_block_rsv
.reserved
> 0);
5701 WARN_ON(fs_info
->chunk_block_rsv
.size
> 0);
5702 WARN_ON(fs_info
->chunk_block_rsv
.reserved
> 0);
5703 WARN_ON(fs_info
->delayed_block_rsv
.size
> 0);
5704 WARN_ON(fs_info
->delayed_block_rsv
.reserved
> 0);
5707 void btrfs_trans_release_metadata(struct btrfs_trans_handle
*trans
,
5708 struct btrfs_root
*root
)
5710 if (!trans
->block_rsv
)
5713 if (!trans
->bytes_reserved
)
5716 trace_btrfs_space_reservation(root
->fs_info
, "transaction",
5717 trans
->transid
, trans
->bytes_reserved
, 0);
5718 btrfs_block_rsv_release(root
, trans
->block_rsv
, trans
->bytes_reserved
);
5719 trans
->bytes_reserved
= 0;
5723 * To be called after all the new block groups attached to the transaction
5724 * handle have been created (btrfs_create_pending_block_groups()).
5726 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle
*trans
)
5728 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
5730 if (!trans
->chunk_bytes_reserved
)
5733 WARN_ON_ONCE(!list_empty(&trans
->new_bgs
));
5735 block_rsv_release_bytes(fs_info
, &fs_info
->chunk_block_rsv
, NULL
,
5736 trans
->chunk_bytes_reserved
);
5737 trans
->chunk_bytes_reserved
= 0;
5740 /* Can only return 0 or -ENOSPC */
5741 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle
*trans
,
5742 struct inode
*inode
)
5744 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5746 * We always use trans->block_rsv here as we will have reserved space
5747 * for our orphan when starting the transaction, using get_block_rsv()
5748 * here will sometimes make us choose the wrong block rsv as we could be
5749 * doing a reloc inode for a non refcounted root.
5751 struct btrfs_block_rsv
*src_rsv
= trans
->block_rsv
;
5752 struct btrfs_block_rsv
*dst_rsv
= root
->orphan_block_rsv
;
5755 * We need to hold space in order to delete our orphan item once we've
5756 * added it, so this takes the reservation so we can release it later
5757 * when we are truly done with the orphan item.
5759 u64 num_bytes
= btrfs_calc_trans_metadata_size(root
, 1);
5760 trace_btrfs_space_reservation(root
->fs_info
, "orphan",
5761 btrfs_ino(inode
), num_bytes
, 1);
5762 return btrfs_block_rsv_migrate(src_rsv
, dst_rsv
, num_bytes
, 1);
5765 void btrfs_orphan_release_metadata(struct inode
*inode
)
5767 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5768 u64 num_bytes
= btrfs_calc_trans_metadata_size(root
, 1);
5769 trace_btrfs_space_reservation(root
->fs_info
, "orphan",
5770 btrfs_ino(inode
), num_bytes
, 0);
5771 btrfs_block_rsv_release(root
, root
->orphan_block_rsv
, num_bytes
);
5775 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5776 * root: the root of the parent directory
5777 * rsv: block reservation
5778 * items: the number of items that we need do reservation
5779 * qgroup_reserved: used to return the reserved size in qgroup
5781 * This function is used to reserve the space for snapshot/subvolume
5782 * creation and deletion. Those operations are different with the
5783 * common file/directory operations, they change two fs/file trees
5784 * and root tree, the number of items that the qgroup reserves is
5785 * different with the free space reservation. So we can not use
5786 * the space reservation mechanism in start_transaction().
5788 int btrfs_subvolume_reserve_metadata(struct btrfs_root
*root
,
5789 struct btrfs_block_rsv
*rsv
,
5791 u64
*qgroup_reserved
,
5792 bool use_global_rsv
)
5796 struct btrfs_block_rsv
*global_rsv
= &root
->fs_info
->global_block_rsv
;
5798 if (root
->fs_info
->quota_enabled
) {
5799 /* One for parent inode, two for dir entries */
5800 num_bytes
= 3 * root
->nodesize
;
5801 ret
= btrfs_qgroup_reserve_meta(root
, num_bytes
);
5808 *qgroup_reserved
= num_bytes
;
5810 num_bytes
= btrfs_calc_trans_metadata_size(root
, items
);
5811 rsv
->space_info
= __find_space_info(root
->fs_info
,
5812 BTRFS_BLOCK_GROUP_METADATA
);
5813 ret
= btrfs_block_rsv_add(root
, rsv
, num_bytes
,
5814 BTRFS_RESERVE_FLUSH_ALL
);
5816 if (ret
== -ENOSPC
&& use_global_rsv
)
5817 ret
= btrfs_block_rsv_migrate(global_rsv
, rsv
, num_bytes
, 1);
5819 if (ret
&& *qgroup_reserved
)
5820 btrfs_qgroup_free_meta(root
, *qgroup_reserved
);
5825 void btrfs_subvolume_release_metadata(struct btrfs_root
*root
,
5826 struct btrfs_block_rsv
*rsv
,
5827 u64 qgroup_reserved
)
5829 btrfs_block_rsv_release(root
, rsv
, (u64
)-1);
5833 * drop_outstanding_extent - drop an outstanding extent
5834 * @inode: the inode we're dropping the extent for
5835 * @num_bytes: the number of bytes we're releasing.
5837 * This is called when we are freeing up an outstanding extent, either called
5838 * after an error or after an extent is written. This will return the number of
5839 * reserved extents that need to be freed. This must be called with
5840 * BTRFS_I(inode)->lock held.
5842 static unsigned drop_outstanding_extent(struct inode
*inode
, u64 num_bytes
)
5844 unsigned drop_inode_space
= 0;
5845 unsigned dropped_extents
= 0;
5846 unsigned num_extents
= 0;
5848 num_extents
= (unsigned)div64_u64(num_bytes
+
5849 BTRFS_MAX_EXTENT_SIZE
- 1,
5850 BTRFS_MAX_EXTENT_SIZE
);
5851 ASSERT(num_extents
);
5852 ASSERT(BTRFS_I(inode
)->outstanding_extents
>= num_extents
);
5853 BTRFS_I(inode
)->outstanding_extents
-= num_extents
;
5855 if (BTRFS_I(inode
)->outstanding_extents
== 0 &&
5856 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED
,
5857 &BTRFS_I(inode
)->runtime_flags
))
5858 drop_inode_space
= 1;
5861 * If we have more or the same amount of outstanding extents than we have
5862 * reserved then we need to leave the reserved extents count alone.
5864 if (BTRFS_I(inode
)->outstanding_extents
>=
5865 BTRFS_I(inode
)->reserved_extents
)
5866 return drop_inode_space
;
5868 dropped_extents
= BTRFS_I(inode
)->reserved_extents
-
5869 BTRFS_I(inode
)->outstanding_extents
;
5870 BTRFS_I(inode
)->reserved_extents
-= dropped_extents
;
5871 return dropped_extents
+ drop_inode_space
;
5875 * calc_csum_metadata_size - return the amount of metadata space that must be
5876 * reserved/freed for the given bytes.
5877 * @inode: the inode we're manipulating
5878 * @num_bytes: the number of bytes in question
5879 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5881 * This adjusts the number of csum_bytes in the inode and then returns the
5882 * correct amount of metadata that must either be reserved or freed. We
5883 * calculate how many checksums we can fit into one leaf and then divide the
5884 * number of bytes that will need to be checksumed by this value to figure out
5885 * how many checksums will be required. If we are adding bytes then the number
5886 * may go up and we will return the number of additional bytes that must be
5887 * reserved. If it is going down we will return the number of bytes that must
5890 * This must be called with BTRFS_I(inode)->lock held.
5892 static u64
calc_csum_metadata_size(struct inode
*inode
, u64 num_bytes
,
5895 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5896 u64 old_csums
, num_csums
;
5898 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
&&
5899 BTRFS_I(inode
)->csum_bytes
== 0)
5902 old_csums
= btrfs_csum_bytes_to_leaves(root
, BTRFS_I(inode
)->csum_bytes
);
5904 BTRFS_I(inode
)->csum_bytes
+= num_bytes
;
5906 BTRFS_I(inode
)->csum_bytes
-= num_bytes
;
5907 num_csums
= btrfs_csum_bytes_to_leaves(root
, BTRFS_I(inode
)->csum_bytes
);
5909 /* No change, no need to reserve more */
5910 if (old_csums
== num_csums
)
5914 return btrfs_calc_trans_metadata_size(root
,
5915 num_csums
- old_csums
);
5917 return btrfs_calc_trans_metadata_size(root
, old_csums
- num_csums
);
5920 int btrfs_delalloc_reserve_metadata(struct inode
*inode
, u64 num_bytes
)
5922 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5923 struct btrfs_block_rsv
*block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
5926 unsigned nr_extents
= 0;
5927 enum btrfs_reserve_flush_enum flush
= BTRFS_RESERVE_FLUSH_ALL
;
5929 bool delalloc_lock
= true;
5932 bool release_extra
= false;
5934 /* If we are a free space inode we need to not flush since we will be in
5935 * the middle of a transaction commit. We also don't need the delalloc
5936 * mutex since we won't race with anybody. We need this mostly to make
5937 * lockdep shut its filthy mouth.
5939 * If we have a transaction open (can happen if we call truncate_block
5940 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
5942 if (btrfs_is_free_space_inode(inode
)) {
5943 flush
= BTRFS_RESERVE_NO_FLUSH
;
5944 delalloc_lock
= false;
5945 } else if (current
->journal_info
) {
5946 flush
= BTRFS_RESERVE_FLUSH_LIMIT
;
5949 if (flush
!= BTRFS_RESERVE_NO_FLUSH
&&
5950 btrfs_transaction_in_commit(root
->fs_info
))
5951 schedule_timeout(1);
5954 mutex_lock(&BTRFS_I(inode
)->delalloc_mutex
);
5956 num_bytes
= ALIGN(num_bytes
, root
->sectorsize
);
5958 spin_lock(&BTRFS_I(inode
)->lock
);
5959 nr_extents
= (unsigned)div64_u64(num_bytes
+
5960 BTRFS_MAX_EXTENT_SIZE
- 1,
5961 BTRFS_MAX_EXTENT_SIZE
);
5962 BTRFS_I(inode
)->outstanding_extents
+= nr_extents
;
5965 if (BTRFS_I(inode
)->outstanding_extents
>
5966 BTRFS_I(inode
)->reserved_extents
)
5967 nr_extents
+= BTRFS_I(inode
)->outstanding_extents
-
5968 BTRFS_I(inode
)->reserved_extents
;
5970 /* We always want to reserve a slot for updating the inode. */
5971 to_reserve
= btrfs_calc_trans_metadata_size(root
, nr_extents
+ 1);
5972 to_reserve
+= calc_csum_metadata_size(inode
, num_bytes
, 1);
5973 csum_bytes
= BTRFS_I(inode
)->csum_bytes
;
5974 spin_unlock(&BTRFS_I(inode
)->lock
);
5976 if (root
->fs_info
->quota_enabled
) {
5977 ret
= btrfs_qgroup_reserve_meta(root
,
5978 nr_extents
* root
->nodesize
);
5983 ret
= btrfs_block_rsv_add(root
, block_rsv
, to_reserve
, flush
);
5984 if (unlikely(ret
)) {
5985 btrfs_qgroup_free_meta(root
, nr_extents
* root
->nodesize
);
5989 spin_lock(&BTRFS_I(inode
)->lock
);
5990 if (test_and_set_bit(BTRFS_INODE_DELALLOC_META_RESERVED
,
5991 &BTRFS_I(inode
)->runtime_flags
)) {
5992 to_reserve
-= btrfs_calc_trans_metadata_size(root
, 1);
5993 release_extra
= true;
5995 BTRFS_I(inode
)->reserved_extents
+= nr_extents
;
5996 spin_unlock(&BTRFS_I(inode
)->lock
);
5999 mutex_unlock(&BTRFS_I(inode
)->delalloc_mutex
);
6002 trace_btrfs_space_reservation(root
->fs_info
, "delalloc",
6003 btrfs_ino(inode
), to_reserve
, 1);
6005 btrfs_block_rsv_release(root
, block_rsv
,
6006 btrfs_calc_trans_metadata_size(root
,
6011 spin_lock(&BTRFS_I(inode
)->lock
);
6012 dropped
= drop_outstanding_extent(inode
, num_bytes
);
6014 * If the inodes csum_bytes is the same as the original
6015 * csum_bytes then we know we haven't raced with any free()ers
6016 * so we can just reduce our inodes csum bytes and carry on.
6018 if (BTRFS_I(inode
)->csum_bytes
== csum_bytes
) {
6019 calc_csum_metadata_size(inode
, num_bytes
, 0);
6021 u64 orig_csum_bytes
= BTRFS_I(inode
)->csum_bytes
;
6025 * This is tricky, but first we need to figure out how much we
6026 * freed from any free-ers that occurred during this
6027 * reservation, so we reset ->csum_bytes to the csum_bytes
6028 * before we dropped our lock, and then call the free for the
6029 * number of bytes that were freed while we were trying our
6032 bytes
= csum_bytes
- BTRFS_I(inode
)->csum_bytes
;
6033 BTRFS_I(inode
)->csum_bytes
= csum_bytes
;
6034 to_free
= calc_csum_metadata_size(inode
, bytes
, 0);
6038 * Now we need to see how much we would have freed had we not
6039 * been making this reservation and our ->csum_bytes were not
6040 * artificially inflated.
6042 BTRFS_I(inode
)->csum_bytes
= csum_bytes
- num_bytes
;
6043 bytes
= csum_bytes
- orig_csum_bytes
;
6044 bytes
= calc_csum_metadata_size(inode
, bytes
, 0);
6047 * Now reset ->csum_bytes to what it should be. If bytes is
6048 * more than to_free then we would have freed more space had we
6049 * not had an artificially high ->csum_bytes, so we need to free
6050 * the remainder. If bytes is the same or less then we don't
6051 * need to do anything, the other free-ers did the correct
6054 BTRFS_I(inode
)->csum_bytes
= orig_csum_bytes
- num_bytes
;
6055 if (bytes
> to_free
)
6056 to_free
= bytes
- to_free
;
6060 spin_unlock(&BTRFS_I(inode
)->lock
);
6062 to_free
+= btrfs_calc_trans_metadata_size(root
, dropped
);
6065 btrfs_block_rsv_release(root
, block_rsv
, to_free
);
6066 trace_btrfs_space_reservation(root
->fs_info
, "delalloc",
6067 btrfs_ino(inode
), to_free
, 0);
6070 mutex_unlock(&BTRFS_I(inode
)->delalloc_mutex
);
6075 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
6076 * @inode: the inode to release the reservation for
6077 * @num_bytes: the number of bytes we're releasing
6079 * This will release the metadata reservation for an inode. This can be called
6080 * once we complete IO for a given set of bytes to release their metadata
6083 void btrfs_delalloc_release_metadata(struct inode
*inode
, u64 num_bytes
)
6085 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6089 num_bytes
= ALIGN(num_bytes
, root
->sectorsize
);
6090 spin_lock(&BTRFS_I(inode
)->lock
);
6091 dropped
= drop_outstanding_extent(inode
, num_bytes
);
6094 to_free
= calc_csum_metadata_size(inode
, num_bytes
, 0);
6095 spin_unlock(&BTRFS_I(inode
)->lock
);
6097 to_free
+= btrfs_calc_trans_metadata_size(root
, dropped
);
6099 if (btrfs_is_testing(root
->fs_info
))
6102 trace_btrfs_space_reservation(root
->fs_info
, "delalloc",
6103 btrfs_ino(inode
), to_free
, 0);
6105 btrfs_block_rsv_release(root
, &root
->fs_info
->delalloc_block_rsv
,
6110 * btrfs_delalloc_reserve_space - reserve data and metadata space for
6112 * @inode: inode we're writing to
6113 * @start: start range we are writing to
6114 * @len: how long the range we are writing to
6116 * TODO: This function will finally replace old btrfs_delalloc_reserve_space()
6118 * This will do the following things
6120 * o reserve space in data space info for num bytes
6121 * and reserve precious corresponding qgroup space
6122 * (Done in check_data_free_space)
6124 * o reserve space for metadata space, based on the number of outstanding
6125 * extents and how much csums will be needed
6126 * also reserve metadata space in a per root over-reserve method.
6127 * o add to the inodes->delalloc_bytes
6128 * o add it to the fs_info's delalloc inodes list.
6129 * (Above 3 all done in delalloc_reserve_metadata)
6131 * Return 0 for success
6132 * Return <0 for error(-ENOSPC or -EQUOT)
6134 int btrfs_delalloc_reserve_space(struct inode
*inode
, u64 start
, u64 len
)
6138 ret
= btrfs_check_data_free_space(inode
, start
, len
);
6141 ret
= btrfs_delalloc_reserve_metadata(inode
, len
);
6143 btrfs_free_reserved_data_space(inode
, start
, len
);
6148 * btrfs_delalloc_release_space - release data and metadata space for delalloc
6149 * @inode: inode we're releasing space for
6150 * @start: start position of the space already reserved
6151 * @len: the len of the space already reserved
6153 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
6154 * called in the case that we don't need the metadata AND data reservations
6155 * anymore. So if there is an error or we insert an inline extent.
6157 * This function will release the metadata space that was not used and will
6158 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6159 * list if there are no delalloc bytes left.
6160 * Also it will handle the qgroup reserved space.
6162 void btrfs_delalloc_release_space(struct inode
*inode
, u64 start
, u64 len
)
6164 btrfs_delalloc_release_metadata(inode
, len
);
6165 btrfs_free_reserved_data_space(inode
, start
, len
);
6168 static int update_block_group(struct btrfs_trans_handle
*trans
,
6169 struct btrfs_root
*root
, u64 bytenr
,
6170 u64 num_bytes
, int alloc
)
6172 struct btrfs_block_group_cache
*cache
= NULL
;
6173 struct btrfs_fs_info
*info
= root
->fs_info
;
6174 u64 total
= num_bytes
;
6179 /* block accounting for super block */
6180 spin_lock(&info
->delalloc_root_lock
);
6181 old_val
= btrfs_super_bytes_used(info
->super_copy
);
6183 old_val
+= num_bytes
;
6185 old_val
-= num_bytes
;
6186 btrfs_set_super_bytes_used(info
->super_copy
, old_val
);
6187 spin_unlock(&info
->delalloc_root_lock
);
6190 cache
= btrfs_lookup_block_group(info
, bytenr
);
6193 if (cache
->flags
& (BTRFS_BLOCK_GROUP_DUP
|
6194 BTRFS_BLOCK_GROUP_RAID1
|
6195 BTRFS_BLOCK_GROUP_RAID10
))
6200 * If this block group has free space cache written out, we
6201 * need to make sure to load it if we are removing space. This
6202 * is because we need the unpinning stage to actually add the
6203 * space back to the block group, otherwise we will leak space.
6205 if (!alloc
&& cache
->cached
== BTRFS_CACHE_NO
)
6206 cache_block_group(cache
, 1);
6208 byte_in_group
= bytenr
- cache
->key
.objectid
;
6209 WARN_ON(byte_in_group
> cache
->key
.offset
);
6211 spin_lock(&cache
->space_info
->lock
);
6212 spin_lock(&cache
->lock
);
6214 if (btrfs_test_opt(root
->fs_info
, SPACE_CACHE
) &&
6215 cache
->disk_cache_state
< BTRFS_DC_CLEAR
)
6216 cache
->disk_cache_state
= BTRFS_DC_CLEAR
;
6218 old_val
= btrfs_block_group_used(&cache
->item
);
6219 num_bytes
= min(total
, cache
->key
.offset
- byte_in_group
);
6221 old_val
+= num_bytes
;
6222 btrfs_set_block_group_used(&cache
->item
, old_val
);
6223 cache
->reserved
-= num_bytes
;
6224 cache
->space_info
->bytes_reserved
-= num_bytes
;
6225 cache
->space_info
->bytes_used
+= num_bytes
;
6226 cache
->space_info
->disk_used
+= num_bytes
* factor
;
6227 spin_unlock(&cache
->lock
);
6228 spin_unlock(&cache
->space_info
->lock
);
6230 old_val
-= num_bytes
;
6231 btrfs_set_block_group_used(&cache
->item
, old_val
);
6232 cache
->pinned
+= num_bytes
;
6233 cache
->space_info
->bytes_pinned
+= num_bytes
;
6234 cache
->space_info
->bytes_used
-= num_bytes
;
6235 cache
->space_info
->disk_used
-= num_bytes
* factor
;
6236 spin_unlock(&cache
->lock
);
6237 spin_unlock(&cache
->space_info
->lock
);
6239 trace_btrfs_space_reservation(root
->fs_info
, "pinned",
6240 cache
->space_info
->flags
,
6242 set_extent_dirty(info
->pinned_extents
,
6243 bytenr
, bytenr
+ num_bytes
- 1,
6244 GFP_NOFS
| __GFP_NOFAIL
);
6247 spin_lock(&trans
->transaction
->dirty_bgs_lock
);
6248 if (list_empty(&cache
->dirty_list
)) {
6249 list_add_tail(&cache
->dirty_list
,
6250 &trans
->transaction
->dirty_bgs
);
6251 trans
->transaction
->num_dirty_bgs
++;
6252 btrfs_get_block_group(cache
);
6254 spin_unlock(&trans
->transaction
->dirty_bgs_lock
);
6257 * No longer have used bytes in this block group, queue it for
6258 * deletion. We do this after adding the block group to the
6259 * dirty list to avoid races between cleaner kthread and space
6262 if (!alloc
&& old_val
== 0) {
6263 spin_lock(&info
->unused_bgs_lock
);
6264 if (list_empty(&cache
->bg_list
)) {
6265 btrfs_get_block_group(cache
);
6266 list_add_tail(&cache
->bg_list
,
6269 spin_unlock(&info
->unused_bgs_lock
);
6272 btrfs_put_block_group(cache
);
6274 bytenr
+= num_bytes
;
6279 static u64
first_logical_byte(struct btrfs_root
*root
, u64 search_start
)
6281 struct btrfs_block_group_cache
*cache
;
6284 spin_lock(&root
->fs_info
->block_group_cache_lock
);
6285 bytenr
= root
->fs_info
->first_logical_byte
;
6286 spin_unlock(&root
->fs_info
->block_group_cache_lock
);
6288 if (bytenr
< (u64
)-1)
6291 cache
= btrfs_lookup_first_block_group(root
->fs_info
, search_start
);
6295 bytenr
= cache
->key
.objectid
;
6296 btrfs_put_block_group(cache
);
6301 static int pin_down_extent(struct btrfs_root
*root
,
6302 struct btrfs_block_group_cache
*cache
,
6303 u64 bytenr
, u64 num_bytes
, int reserved
)
6305 spin_lock(&cache
->space_info
->lock
);
6306 spin_lock(&cache
->lock
);
6307 cache
->pinned
+= num_bytes
;
6308 cache
->space_info
->bytes_pinned
+= num_bytes
;
6310 cache
->reserved
-= num_bytes
;
6311 cache
->space_info
->bytes_reserved
-= num_bytes
;
6313 spin_unlock(&cache
->lock
);
6314 spin_unlock(&cache
->space_info
->lock
);
6316 trace_btrfs_space_reservation(root
->fs_info
, "pinned",
6317 cache
->space_info
->flags
, num_bytes
, 1);
6318 set_extent_dirty(root
->fs_info
->pinned_extents
, bytenr
,
6319 bytenr
+ num_bytes
- 1, GFP_NOFS
| __GFP_NOFAIL
);
6324 * this function must be called within transaction
6326 int btrfs_pin_extent(struct btrfs_root
*root
,
6327 u64 bytenr
, u64 num_bytes
, int reserved
)
6329 struct btrfs_block_group_cache
*cache
;
6331 cache
= btrfs_lookup_block_group(root
->fs_info
, bytenr
);
6332 BUG_ON(!cache
); /* Logic error */
6334 pin_down_extent(root
, cache
, bytenr
, num_bytes
, reserved
);
6336 btrfs_put_block_group(cache
);
6341 * this function must be called within transaction
6343 int btrfs_pin_extent_for_log_replay(struct btrfs_root
*root
,
6344 u64 bytenr
, u64 num_bytes
)
6346 struct btrfs_block_group_cache
*cache
;
6349 cache
= btrfs_lookup_block_group(root
->fs_info
, bytenr
);
6354 * pull in the free space cache (if any) so that our pin
6355 * removes the free space from the cache. We have load_only set
6356 * to one because the slow code to read in the free extents does check
6357 * the pinned extents.
6359 cache_block_group(cache
, 1);
6361 pin_down_extent(root
, cache
, bytenr
, num_bytes
, 0);
6363 /* remove us from the free space cache (if we're there at all) */
6364 ret
= btrfs_remove_free_space(cache
, bytenr
, num_bytes
);
6365 btrfs_put_block_group(cache
);
6369 static int __exclude_logged_extent(struct btrfs_root
*root
, u64 start
, u64 num_bytes
)
6372 struct btrfs_block_group_cache
*block_group
;
6373 struct btrfs_caching_control
*caching_ctl
;
6375 block_group
= btrfs_lookup_block_group(root
->fs_info
, start
);
6379 cache_block_group(block_group
, 0);
6380 caching_ctl
= get_caching_control(block_group
);
6384 BUG_ON(!block_group_cache_done(block_group
));
6385 ret
= btrfs_remove_free_space(block_group
, start
, num_bytes
);
6387 mutex_lock(&caching_ctl
->mutex
);
6389 if (start
>= caching_ctl
->progress
) {
6390 ret
= add_excluded_extent(root
, start
, num_bytes
);
6391 } else if (start
+ num_bytes
<= caching_ctl
->progress
) {
6392 ret
= btrfs_remove_free_space(block_group
,
6395 num_bytes
= caching_ctl
->progress
- start
;
6396 ret
= btrfs_remove_free_space(block_group
,
6401 num_bytes
= (start
+ num_bytes
) -
6402 caching_ctl
->progress
;
6403 start
= caching_ctl
->progress
;
6404 ret
= add_excluded_extent(root
, start
, num_bytes
);
6407 mutex_unlock(&caching_ctl
->mutex
);
6408 put_caching_control(caching_ctl
);
6410 btrfs_put_block_group(block_group
);
6414 int btrfs_exclude_logged_extents(struct btrfs_root
*log
,
6415 struct extent_buffer
*eb
)
6417 struct btrfs_file_extent_item
*item
;
6418 struct btrfs_key key
;
6422 if (!btrfs_fs_incompat(log
->fs_info
, MIXED_GROUPS
))
6425 for (i
= 0; i
< btrfs_header_nritems(eb
); i
++) {
6426 btrfs_item_key_to_cpu(eb
, &key
, i
);
6427 if (key
.type
!= BTRFS_EXTENT_DATA_KEY
)
6429 item
= btrfs_item_ptr(eb
, i
, struct btrfs_file_extent_item
);
6430 found_type
= btrfs_file_extent_type(eb
, item
);
6431 if (found_type
== BTRFS_FILE_EXTENT_INLINE
)
6433 if (btrfs_file_extent_disk_bytenr(eb
, item
) == 0)
6435 key
.objectid
= btrfs_file_extent_disk_bytenr(eb
, item
);
6436 key
.offset
= btrfs_file_extent_disk_num_bytes(eb
, item
);
6437 __exclude_logged_extent(log
, key
.objectid
, key
.offset
);
6444 btrfs_inc_block_group_reservations(struct btrfs_block_group_cache
*bg
)
6446 atomic_inc(&bg
->reservations
);
6449 void btrfs_dec_block_group_reservations(struct btrfs_fs_info
*fs_info
,
6452 struct btrfs_block_group_cache
*bg
;
6454 bg
= btrfs_lookup_block_group(fs_info
, start
);
6456 if (atomic_dec_and_test(&bg
->reservations
))
6457 wake_up_atomic_t(&bg
->reservations
);
6458 btrfs_put_block_group(bg
);
6461 static int btrfs_wait_bg_reservations_atomic_t(atomic_t
*a
)
6467 void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache
*bg
)
6469 struct btrfs_space_info
*space_info
= bg
->space_info
;
6473 if (!(bg
->flags
& BTRFS_BLOCK_GROUP_DATA
))
6477 * Our block group is read only but before we set it to read only,
6478 * some task might have had allocated an extent from it already, but it
6479 * has not yet created a respective ordered extent (and added it to a
6480 * root's list of ordered extents).
6481 * Therefore wait for any task currently allocating extents, since the
6482 * block group's reservations counter is incremented while a read lock
6483 * on the groups' semaphore is held and decremented after releasing
6484 * the read access on that semaphore and creating the ordered extent.
6486 down_write(&space_info
->groups_sem
);
6487 up_write(&space_info
->groups_sem
);
6489 wait_on_atomic_t(&bg
->reservations
,
6490 btrfs_wait_bg_reservations_atomic_t
,
6491 TASK_UNINTERRUPTIBLE
);
6495 * btrfs_add_reserved_bytes - update the block_group and space info counters
6496 * @cache: The cache we are manipulating
6497 * @ram_bytes: The number of bytes of file content, and will be same to
6498 * @num_bytes except for the compress path.
6499 * @num_bytes: The number of bytes in question
6500 * @delalloc: The blocks are allocated for the delalloc write
6502 * This is called by the allocator when it reserves space. Metadata
6503 * reservations should be called with RESERVE_ALLOC so we do the proper
6504 * ENOSPC accounting. For data we handle the reservation through clearing the
6505 * delalloc bits in the io_tree. We have to do this since we could end up
6506 * allocating less disk space for the amount of data we have reserved in the
6507 * case of compression.
6509 * If this is a reservation and the block group has become read only we cannot
6510 * make the reservation and return -EAGAIN, otherwise this function always
6513 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache
*cache
,
6514 u64 ram_bytes
, u64 num_bytes
, int delalloc
)
6516 struct btrfs_space_info
*space_info
= cache
->space_info
;
6519 spin_lock(&space_info
->lock
);
6520 spin_lock(&cache
->lock
);
6524 cache
->reserved
+= num_bytes
;
6525 space_info
->bytes_reserved
+= num_bytes
;
6527 trace_btrfs_space_reservation(cache
->fs_info
,
6528 "space_info", space_info
->flags
,
6530 space_info
->bytes_may_use
-= ram_bytes
;
6532 cache
->delalloc_bytes
+= num_bytes
;
6534 spin_unlock(&cache
->lock
);
6535 spin_unlock(&space_info
->lock
);
6540 * btrfs_free_reserved_bytes - update the block_group and space info counters
6541 * @cache: The cache we are manipulating
6542 * @num_bytes: The number of bytes in question
6543 * @delalloc: The blocks are allocated for the delalloc write
6545 * This is called by somebody who is freeing space that was never actually used
6546 * on disk. For example if you reserve some space for a new leaf in transaction
6547 * A and before transaction A commits you free that leaf, you call this with
6548 * reserve set to 0 in order to clear the reservation.
6551 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache
*cache
,
6552 u64 num_bytes
, int delalloc
)
6554 struct btrfs_space_info
*space_info
= cache
->space_info
;
6557 spin_lock(&space_info
->lock
);
6558 spin_lock(&cache
->lock
);
6560 space_info
->bytes_readonly
+= num_bytes
;
6561 cache
->reserved
-= num_bytes
;
6562 space_info
->bytes_reserved
-= num_bytes
;
6565 cache
->delalloc_bytes
-= num_bytes
;
6566 spin_unlock(&cache
->lock
);
6567 spin_unlock(&space_info
->lock
);
6570 void btrfs_prepare_extent_commit(struct btrfs_trans_handle
*trans
,
6571 struct btrfs_root
*root
)
6573 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
6574 struct btrfs_caching_control
*next
;
6575 struct btrfs_caching_control
*caching_ctl
;
6576 struct btrfs_block_group_cache
*cache
;
6578 down_write(&fs_info
->commit_root_sem
);
6580 list_for_each_entry_safe(caching_ctl
, next
,
6581 &fs_info
->caching_block_groups
, list
) {
6582 cache
= caching_ctl
->block_group
;
6583 if (block_group_cache_done(cache
)) {
6584 cache
->last_byte_to_unpin
= (u64
)-1;
6585 list_del_init(&caching_ctl
->list
);
6586 put_caching_control(caching_ctl
);
6588 cache
->last_byte_to_unpin
= caching_ctl
->progress
;
6592 if (fs_info
->pinned_extents
== &fs_info
->freed_extents
[0])
6593 fs_info
->pinned_extents
= &fs_info
->freed_extents
[1];
6595 fs_info
->pinned_extents
= &fs_info
->freed_extents
[0];
6597 up_write(&fs_info
->commit_root_sem
);
6599 update_global_block_rsv(fs_info
);
6603 * Returns the free cluster for the given space info and sets empty_cluster to
6604 * what it should be based on the mount options.
6606 static struct btrfs_free_cluster
*
6607 fetch_cluster_info(struct btrfs_root
*root
, struct btrfs_space_info
*space_info
,
6610 struct btrfs_free_cluster
*ret
= NULL
;
6611 bool ssd
= btrfs_test_opt(root
->fs_info
, SSD
);
6614 if (btrfs_mixed_space_info(space_info
))
6618 *empty_cluster
= SZ_2M
;
6619 if (space_info
->flags
& BTRFS_BLOCK_GROUP_METADATA
) {
6620 ret
= &root
->fs_info
->meta_alloc_cluster
;
6622 *empty_cluster
= SZ_64K
;
6623 } else if ((space_info
->flags
& BTRFS_BLOCK_GROUP_DATA
) && ssd
) {
6624 ret
= &root
->fs_info
->data_alloc_cluster
;
6630 static int unpin_extent_range(struct btrfs_root
*root
, u64 start
, u64 end
,
6631 const bool return_free_space
)
6633 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
6634 struct btrfs_block_group_cache
*cache
= NULL
;
6635 struct btrfs_space_info
*space_info
;
6636 struct btrfs_block_rsv
*global_rsv
= &fs_info
->global_block_rsv
;
6637 struct btrfs_free_cluster
*cluster
= NULL
;
6639 u64 total_unpinned
= 0;
6640 u64 empty_cluster
= 0;
6643 while (start
<= end
) {
6646 start
>= cache
->key
.objectid
+ cache
->key
.offset
) {
6648 btrfs_put_block_group(cache
);
6650 cache
= btrfs_lookup_block_group(fs_info
, start
);
6651 BUG_ON(!cache
); /* Logic error */
6653 cluster
= fetch_cluster_info(root
,
6656 empty_cluster
<<= 1;
6659 len
= cache
->key
.objectid
+ cache
->key
.offset
- start
;
6660 len
= min(len
, end
+ 1 - start
);
6662 if (start
< cache
->last_byte_to_unpin
) {
6663 len
= min(len
, cache
->last_byte_to_unpin
- start
);
6664 if (return_free_space
)
6665 btrfs_add_free_space(cache
, start
, len
);
6669 total_unpinned
+= len
;
6670 space_info
= cache
->space_info
;
6673 * If this space cluster has been marked as fragmented and we've
6674 * unpinned enough in this block group to potentially allow a
6675 * cluster to be created inside of it go ahead and clear the
6678 if (cluster
&& cluster
->fragmented
&&
6679 total_unpinned
> empty_cluster
) {
6680 spin_lock(&cluster
->lock
);
6681 cluster
->fragmented
= 0;
6682 spin_unlock(&cluster
->lock
);
6685 spin_lock(&space_info
->lock
);
6686 spin_lock(&cache
->lock
);
6687 cache
->pinned
-= len
;
6688 space_info
->bytes_pinned
-= len
;
6690 trace_btrfs_space_reservation(fs_info
, "pinned",
6691 space_info
->flags
, len
, 0);
6692 space_info
->max_extent_size
= 0;
6693 percpu_counter_add(&space_info
->total_bytes_pinned
, -len
);
6695 space_info
->bytes_readonly
+= len
;
6698 spin_unlock(&cache
->lock
);
6699 if (!readonly
&& return_free_space
&&
6700 global_rsv
->space_info
== space_info
) {
6702 WARN_ON(!return_free_space
);
6703 spin_lock(&global_rsv
->lock
);
6704 if (!global_rsv
->full
) {
6705 to_add
= min(len
, global_rsv
->size
-
6706 global_rsv
->reserved
);
6707 global_rsv
->reserved
+= to_add
;
6708 space_info
->bytes_may_use
+= to_add
;
6709 if (global_rsv
->reserved
>= global_rsv
->size
)
6710 global_rsv
->full
= 1;
6711 trace_btrfs_space_reservation(fs_info
,
6717 spin_unlock(&global_rsv
->lock
);
6718 /* Add to any tickets we may have */
6720 space_info_add_new_bytes(fs_info
, space_info
,
6723 spin_unlock(&space_info
->lock
);
6727 btrfs_put_block_group(cache
);
6731 int btrfs_finish_extent_commit(struct btrfs_trans_handle
*trans
,
6732 struct btrfs_root
*root
)
6734 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
6735 struct btrfs_block_group_cache
*block_group
, *tmp
;
6736 struct list_head
*deleted_bgs
;
6737 struct extent_io_tree
*unpin
;
6742 if (fs_info
->pinned_extents
== &fs_info
->freed_extents
[0])
6743 unpin
= &fs_info
->freed_extents
[1];
6745 unpin
= &fs_info
->freed_extents
[0];
6747 while (!trans
->aborted
) {
6748 mutex_lock(&fs_info
->unused_bg_unpin_mutex
);
6749 ret
= find_first_extent_bit(unpin
, 0, &start
, &end
,
6750 EXTENT_DIRTY
, NULL
);
6752 mutex_unlock(&fs_info
->unused_bg_unpin_mutex
);
6756 if (btrfs_test_opt(root
->fs_info
, DISCARD
))
6757 ret
= btrfs_discard_extent(root
, start
,
6758 end
+ 1 - start
, NULL
);
6760 clear_extent_dirty(unpin
, start
, end
);
6761 unpin_extent_range(root
, start
, end
, true);
6762 mutex_unlock(&fs_info
->unused_bg_unpin_mutex
);
6767 * Transaction is finished. We don't need the lock anymore. We
6768 * do need to clean up the block groups in case of a transaction
6771 deleted_bgs
= &trans
->transaction
->deleted_bgs
;
6772 list_for_each_entry_safe(block_group
, tmp
, deleted_bgs
, bg_list
) {
6776 if (!trans
->aborted
)
6777 ret
= btrfs_discard_extent(root
,
6778 block_group
->key
.objectid
,
6779 block_group
->key
.offset
,
6782 list_del_init(&block_group
->bg_list
);
6783 btrfs_put_block_group_trimming(block_group
);
6784 btrfs_put_block_group(block_group
);
6787 const char *errstr
= btrfs_decode_error(ret
);
6789 "Discard failed while removing blockgroup: errno=%d %s\n",
6797 static void add_pinned_bytes(struct btrfs_fs_info
*fs_info
, u64 num_bytes
,
6798 u64 owner
, u64 root_objectid
)
6800 struct btrfs_space_info
*space_info
;
6803 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
6804 if (root_objectid
== BTRFS_CHUNK_TREE_OBJECTID
)
6805 flags
= BTRFS_BLOCK_GROUP_SYSTEM
;
6807 flags
= BTRFS_BLOCK_GROUP_METADATA
;
6809 flags
= BTRFS_BLOCK_GROUP_DATA
;
6812 space_info
= __find_space_info(fs_info
, flags
);
6813 BUG_ON(!space_info
); /* Logic bug */
6814 percpu_counter_add(&space_info
->total_bytes_pinned
, num_bytes
);
6818 static int __btrfs_free_extent(struct btrfs_trans_handle
*trans
,
6819 struct btrfs_root
*root
,
6820 struct btrfs_delayed_ref_node
*node
, u64 parent
,
6821 u64 root_objectid
, u64 owner_objectid
,
6822 u64 owner_offset
, int refs_to_drop
,
6823 struct btrfs_delayed_extent_op
*extent_op
)
6825 struct btrfs_key key
;
6826 struct btrfs_path
*path
;
6827 struct btrfs_fs_info
*info
= root
->fs_info
;
6828 struct btrfs_root
*extent_root
= info
->extent_root
;
6829 struct extent_buffer
*leaf
;
6830 struct btrfs_extent_item
*ei
;
6831 struct btrfs_extent_inline_ref
*iref
;
6834 int extent_slot
= 0;
6835 int found_extent
= 0;
6839 u64 bytenr
= node
->bytenr
;
6840 u64 num_bytes
= node
->num_bytes
;
6842 bool skinny_metadata
= btrfs_fs_incompat(root
->fs_info
,
6845 path
= btrfs_alloc_path();
6849 path
->reada
= READA_FORWARD
;
6850 path
->leave_spinning
= 1;
6852 is_data
= owner_objectid
>= BTRFS_FIRST_FREE_OBJECTID
;
6853 BUG_ON(!is_data
&& refs_to_drop
!= 1);
6856 skinny_metadata
= 0;
6858 ret
= lookup_extent_backref(trans
, extent_root
, path
, &iref
,
6859 bytenr
, num_bytes
, parent
,
6860 root_objectid
, owner_objectid
,
6863 extent_slot
= path
->slots
[0];
6864 while (extent_slot
>= 0) {
6865 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
6867 if (key
.objectid
!= bytenr
)
6869 if (key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
6870 key
.offset
== num_bytes
) {
6874 if (key
.type
== BTRFS_METADATA_ITEM_KEY
&&
6875 key
.offset
== owner_objectid
) {
6879 if (path
->slots
[0] - extent_slot
> 5)
6883 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6884 item_size
= btrfs_item_size_nr(path
->nodes
[0], extent_slot
);
6885 if (found_extent
&& item_size
< sizeof(*ei
))
6888 if (!found_extent
) {
6890 ret
= remove_extent_backref(trans
, extent_root
, path
,
6892 is_data
, &last_ref
);
6894 btrfs_abort_transaction(trans
, ret
);
6897 btrfs_release_path(path
);
6898 path
->leave_spinning
= 1;
6900 key
.objectid
= bytenr
;
6901 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
6902 key
.offset
= num_bytes
;
6904 if (!is_data
&& skinny_metadata
) {
6905 key
.type
= BTRFS_METADATA_ITEM_KEY
;
6906 key
.offset
= owner_objectid
;
6909 ret
= btrfs_search_slot(trans
, extent_root
,
6911 if (ret
> 0 && skinny_metadata
&& path
->slots
[0]) {
6913 * Couldn't find our skinny metadata item,
6914 * see if we have ye olde extent item.
6917 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
6919 if (key
.objectid
== bytenr
&&
6920 key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
6921 key
.offset
== num_bytes
)
6925 if (ret
> 0 && skinny_metadata
) {
6926 skinny_metadata
= false;
6927 key
.objectid
= bytenr
;
6928 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
6929 key
.offset
= num_bytes
;
6930 btrfs_release_path(path
);
6931 ret
= btrfs_search_slot(trans
, extent_root
,
6936 btrfs_err(info
, "umm, got %d back from search, was looking for %llu",
6939 btrfs_print_leaf(extent_root
,
6943 btrfs_abort_transaction(trans
, ret
);
6946 extent_slot
= path
->slots
[0];
6948 } else if (WARN_ON(ret
== -ENOENT
)) {
6949 btrfs_print_leaf(extent_root
, path
->nodes
[0]);
6951 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
6952 bytenr
, parent
, root_objectid
, owner_objectid
,
6954 btrfs_abort_transaction(trans
, ret
);
6957 btrfs_abort_transaction(trans
, ret
);
6961 leaf
= path
->nodes
[0];
6962 item_size
= btrfs_item_size_nr(leaf
, extent_slot
);
6963 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6964 if (item_size
< sizeof(*ei
)) {
6965 BUG_ON(found_extent
|| extent_slot
!= path
->slots
[0]);
6966 ret
= convert_extent_item_v0(trans
, extent_root
, path
,
6969 btrfs_abort_transaction(trans
, ret
);
6973 btrfs_release_path(path
);
6974 path
->leave_spinning
= 1;
6976 key
.objectid
= bytenr
;
6977 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
6978 key
.offset
= num_bytes
;
6980 ret
= btrfs_search_slot(trans
, extent_root
, &key
, path
,
6983 btrfs_err(info
, "umm, got %d back from search, was looking for %llu",
6985 btrfs_print_leaf(extent_root
, path
->nodes
[0]);
6988 btrfs_abort_transaction(trans
, ret
);
6992 extent_slot
= path
->slots
[0];
6993 leaf
= path
->nodes
[0];
6994 item_size
= btrfs_item_size_nr(leaf
, extent_slot
);
6997 BUG_ON(item_size
< sizeof(*ei
));
6998 ei
= btrfs_item_ptr(leaf
, extent_slot
,
6999 struct btrfs_extent_item
);
7000 if (owner_objectid
< BTRFS_FIRST_FREE_OBJECTID
&&
7001 key
.type
== BTRFS_EXTENT_ITEM_KEY
) {
7002 struct btrfs_tree_block_info
*bi
;
7003 BUG_ON(item_size
< sizeof(*ei
) + sizeof(*bi
));
7004 bi
= (struct btrfs_tree_block_info
*)(ei
+ 1);
7005 WARN_ON(owner_objectid
!= btrfs_tree_block_level(leaf
, bi
));
7008 refs
= btrfs_extent_refs(leaf
, ei
);
7009 if (refs
< refs_to_drop
) {
7010 btrfs_err(info
, "trying to drop %d refs but we only have %Lu "
7011 "for bytenr %Lu", refs_to_drop
, refs
, bytenr
);
7013 btrfs_abort_transaction(trans
, ret
);
7016 refs
-= refs_to_drop
;
7020 __run_delayed_extent_op(extent_op
, leaf
, ei
);
7022 * In the case of inline back ref, reference count will
7023 * be updated by remove_extent_backref
7026 BUG_ON(!found_extent
);
7028 btrfs_set_extent_refs(leaf
, ei
, refs
);
7029 btrfs_mark_buffer_dirty(leaf
);
7032 ret
= remove_extent_backref(trans
, extent_root
, path
,
7034 is_data
, &last_ref
);
7036 btrfs_abort_transaction(trans
, ret
);
7040 add_pinned_bytes(root
->fs_info
, -num_bytes
, owner_objectid
,
7044 BUG_ON(is_data
&& refs_to_drop
!=
7045 extent_data_ref_count(path
, iref
));
7047 BUG_ON(path
->slots
[0] != extent_slot
);
7049 BUG_ON(path
->slots
[0] != extent_slot
+ 1);
7050 path
->slots
[0] = extent_slot
;
7056 ret
= btrfs_del_items(trans
, extent_root
, path
, path
->slots
[0],
7059 btrfs_abort_transaction(trans
, ret
);
7062 btrfs_release_path(path
);
7065 ret
= btrfs_del_csums(trans
, root
, bytenr
, num_bytes
);
7067 btrfs_abort_transaction(trans
, ret
);
7072 ret
= add_to_free_space_tree(trans
, root
->fs_info
, bytenr
,
7075 btrfs_abort_transaction(trans
, ret
);
7079 ret
= update_block_group(trans
, root
, bytenr
, num_bytes
, 0);
7081 btrfs_abort_transaction(trans
, ret
);
7085 btrfs_release_path(path
);
7088 btrfs_free_path(path
);
7093 * when we free an block, it is possible (and likely) that we free the last
7094 * delayed ref for that extent as well. This searches the delayed ref tree for
7095 * a given extent, and if there are no other delayed refs to be processed, it
7096 * removes it from the tree.
7098 static noinline
int check_ref_cleanup(struct btrfs_trans_handle
*trans
,
7099 struct btrfs_root
*root
, u64 bytenr
)
7101 struct btrfs_delayed_ref_head
*head
;
7102 struct btrfs_delayed_ref_root
*delayed_refs
;
7105 delayed_refs
= &trans
->transaction
->delayed_refs
;
7106 spin_lock(&delayed_refs
->lock
);
7107 head
= btrfs_find_delayed_ref_head(trans
, bytenr
);
7109 goto out_delayed_unlock
;
7111 spin_lock(&head
->lock
);
7112 if (!list_empty(&head
->ref_list
))
7115 if (head
->extent_op
) {
7116 if (!head
->must_insert_reserved
)
7118 btrfs_free_delayed_extent_op(head
->extent_op
);
7119 head
->extent_op
= NULL
;
7123 * waiting for the lock here would deadlock. If someone else has it
7124 * locked they are already in the process of dropping it anyway
7126 if (!mutex_trylock(&head
->mutex
))
7130 * at this point we have a head with no other entries. Go
7131 * ahead and process it.
7133 head
->node
.in_tree
= 0;
7134 rb_erase(&head
->href_node
, &delayed_refs
->href_root
);
7136 atomic_dec(&delayed_refs
->num_entries
);
7139 * we don't take a ref on the node because we're removing it from the
7140 * tree, so we just steal the ref the tree was holding.
7142 delayed_refs
->num_heads
--;
7143 if (head
->processing
== 0)
7144 delayed_refs
->num_heads_ready
--;
7145 head
->processing
= 0;
7146 spin_unlock(&head
->lock
);
7147 spin_unlock(&delayed_refs
->lock
);
7149 BUG_ON(head
->extent_op
);
7150 if (head
->must_insert_reserved
)
7153 mutex_unlock(&head
->mutex
);
7154 btrfs_put_delayed_ref(&head
->node
);
7157 spin_unlock(&head
->lock
);
7160 spin_unlock(&delayed_refs
->lock
);
7164 void btrfs_free_tree_block(struct btrfs_trans_handle
*trans
,
7165 struct btrfs_root
*root
,
7166 struct extent_buffer
*buf
,
7167 u64 parent
, int last_ref
)
7172 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
7173 ret
= btrfs_add_delayed_tree_ref(root
->fs_info
, trans
,
7174 buf
->start
, buf
->len
,
7175 parent
, root
->root_key
.objectid
,
7176 btrfs_header_level(buf
),
7177 BTRFS_DROP_DELAYED_REF
, NULL
);
7178 BUG_ON(ret
); /* -ENOMEM */
7184 if (btrfs_header_generation(buf
) == trans
->transid
) {
7185 struct btrfs_block_group_cache
*cache
;
7187 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
7188 ret
= check_ref_cleanup(trans
, root
, buf
->start
);
7193 cache
= btrfs_lookup_block_group(root
->fs_info
, buf
->start
);
7195 if (btrfs_header_flag(buf
, BTRFS_HEADER_FLAG_WRITTEN
)) {
7196 pin_down_extent(root
, cache
, buf
->start
, buf
->len
, 1);
7197 btrfs_put_block_group(cache
);
7201 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY
, &buf
->bflags
));
7203 btrfs_add_free_space(cache
, buf
->start
, buf
->len
);
7204 btrfs_free_reserved_bytes(cache
, buf
->len
, 0);
7205 btrfs_put_block_group(cache
);
7206 trace_btrfs_reserved_extent_free(root
, buf
->start
, buf
->len
);
7211 add_pinned_bytes(root
->fs_info
, buf
->len
,
7212 btrfs_header_level(buf
),
7213 root
->root_key
.objectid
);
7216 * Deleting the buffer, clear the corrupt flag since it doesn't matter
7219 clear_bit(EXTENT_BUFFER_CORRUPT
, &buf
->bflags
);
7222 /* Can return -ENOMEM */
7223 int btrfs_free_extent(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
7224 u64 bytenr
, u64 num_bytes
, u64 parent
, u64 root_objectid
,
7225 u64 owner
, u64 offset
)
7228 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
7230 if (btrfs_is_testing(fs_info
))
7233 add_pinned_bytes(root
->fs_info
, num_bytes
, owner
, root_objectid
);
7236 * tree log blocks never actually go into the extent allocation
7237 * tree, just update pinning info and exit early.
7239 if (root_objectid
== BTRFS_TREE_LOG_OBJECTID
) {
7240 WARN_ON(owner
>= BTRFS_FIRST_FREE_OBJECTID
);
7241 /* unlocks the pinned mutex */
7242 btrfs_pin_extent(root
, bytenr
, num_bytes
, 1);
7244 } else if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
7245 ret
= btrfs_add_delayed_tree_ref(fs_info
, trans
, bytenr
,
7247 parent
, root_objectid
, (int)owner
,
7248 BTRFS_DROP_DELAYED_REF
, NULL
);
7250 ret
= btrfs_add_delayed_data_ref(fs_info
, trans
, bytenr
,
7252 parent
, root_objectid
, owner
,
7254 BTRFS_DROP_DELAYED_REF
, NULL
);
7260 * when we wait for progress in the block group caching, its because
7261 * our allocation attempt failed at least once. So, we must sleep
7262 * and let some progress happen before we try again.
7264 * This function will sleep at least once waiting for new free space to
7265 * show up, and then it will check the block group free space numbers
7266 * for our min num_bytes. Another option is to have it go ahead
7267 * and look in the rbtree for a free extent of a given size, but this
7270 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7271 * any of the information in this block group.
7273 static noinline
void
7274 wait_block_group_cache_progress(struct btrfs_block_group_cache
*cache
,
7277 struct btrfs_caching_control
*caching_ctl
;
7279 caching_ctl
= get_caching_control(cache
);
7283 wait_event(caching_ctl
->wait
, block_group_cache_done(cache
) ||
7284 (cache
->free_space_ctl
->free_space
>= num_bytes
));
7286 put_caching_control(caching_ctl
);
7290 wait_block_group_cache_done(struct btrfs_block_group_cache
*cache
)
7292 struct btrfs_caching_control
*caching_ctl
;
7295 caching_ctl
= get_caching_control(cache
);
7297 return (cache
->cached
== BTRFS_CACHE_ERROR
) ? -EIO
: 0;
7299 wait_event(caching_ctl
->wait
, block_group_cache_done(cache
));
7300 if (cache
->cached
== BTRFS_CACHE_ERROR
)
7302 put_caching_control(caching_ctl
);
7306 int __get_raid_index(u64 flags
)
7308 if (flags
& BTRFS_BLOCK_GROUP_RAID10
)
7309 return BTRFS_RAID_RAID10
;
7310 else if (flags
& BTRFS_BLOCK_GROUP_RAID1
)
7311 return BTRFS_RAID_RAID1
;
7312 else if (flags
& BTRFS_BLOCK_GROUP_DUP
)
7313 return BTRFS_RAID_DUP
;
7314 else if (flags
& BTRFS_BLOCK_GROUP_RAID0
)
7315 return BTRFS_RAID_RAID0
;
7316 else if (flags
& BTRFS_BLOCK_GROUP_RAID5
)
7317 return BTRFS_RAID_RAID5
;
7318 else if (flags
& BTRFS_BLOCK_GROUP_RAID6
)
7319 return BTRFS_RAID_RAID6
;
7321 return BTRFS_RAID_SINGLE
; /* BTRFS_BLOCK_GROUP_SINGLE */
7324 int get_block_group_index(struct btrfs_block_group_cache
*cache
)
7326 return __get_raid_index(cache
->flags
);
7329 static const char *btrfs_raid_type_names
[BTRFS_NR_RAID_TYPES
] = {
7330 [BTRFS_RAID_RAID10
] = "raid10",
7331 [BTRFS_RAID_RAID1
] = "raid1",
7332 [BTRFS_RAID_DUP
] = "dup",
7333 [BTRFS_RAID_RAID0
] = "raid0",
7334 [BTRFS_RAID_SINGLE
] = "single",
7335 [BTRFS_RAID_RAID5
] = "raid5",
7336 [BTRFS_RAID_RAID6
] = "raid6",
7339 static const char *get_raid_name(enum btrfs_raid_types type
)
7341 if (type
>= BTRFS_NR_RAID_TYPES
)
7344 return btrfs_raid_type_names
[type
];
7347 enum btrfs_loop_type
{
7348 LOOP_CACHING_NOWAIT
= 0,
7349 LOOP_CACHING_WAIT
= 1,
7350 LOOP_ALLOC_CHUNK
= 2,
7351 LOOP_NO_EMPTY_SIZE
= 3,
7355 btrfs_lock_block_group(struct btrfs_block_group_cache
*cache
,
7359 down_read(&cache
->data_rwsem
);
7363 btrfs_grab_block_group(struct btrfs_block_group_cache
*cache
,
7366 btrfs_get_block_group(cache
);
7368 down_read(&cache
->data_rwsem
);
7371 static struct btrfs_block_group_cache
*
7372 btrfs_lock_cluster(struct btrfs_block_group_cache
*block_group
,
7373 struct btrfs_free_cluster
*cluster
,
7376 struct btrfs_block_group_cache
*used_bg
= NULL
;
7378 spin_lock(&cluster
->refill_lock
);
7380 used_bg
= cluster
->block_group
;
7384 if (used_bg
== block_group
)
7387 btrfs_get_block_group(used_bg
);
7392 if (down_read_trylock(&used_bg
->data_rwsem
))
7395 spin_unlock(&cluster
->refill_lock
);
7397 down_read(&used_bg
->data_rwsem
);
7399 spin_lock(&cluster
->refill_lock
);
7400 if (used_bg
== cluster
->block_group
)
7403 up_read(&used_bg
->data_rwsem
);
7404 btrfs_put_block_group(used_bg
);
7409 btrfs_release_block_group(struct btrfs_block_group_cache
*cache
,
7413 up_read(&cache
->data_rwsem
);
7414 btrfs_put_block_group(cache
);
7418 * walks the btree of allocated extents and find a hole of a given size.
7419 * The key ins is changed to record the hole:
7420 * ins->objectid == start position
7421 * ins->flags = BTRFS_EXTENT_ITEM_KEY
7422 * ins->offset == the size of the hole.
7423 * Any available blocks before search_start are skipped.
7425 * If there is no suitable free space, we will record the max size of
7426 * the free space extent currently.
7428 static noinline
int find_free_extent(struct btrfs_root
*orig_root
,
7429 u64 ram_bytes
, u64 num_bytes
, u64 empty_size
,
7430 u64 hint_byte
, struct btrfs_key
*ins
,
7431 u64 flags
, int delalloc
)
7434 struct btrfs_root
*root
= orig_root
->fs_info
->extent_root
;
7435 struct btrfs_free_cluster
*last_ptr
= NULL
;
7436 struct btrfs_block_group_cache
*block_group
= NULL
;
7437 u64 search_start
= 0;
7438 u64 max_extent_size
= 0;
7439 u64 empty_cluster
= 0;
7440 struct btrfs_space_info
*space_info
;
7442 int index
= __get_raid_index(flags
);
7443 bool failed_cluster_refill
= false;
7444 bool failed_alloc
= false;
7445 bool use_cluster
= true;
7446 bool have_caching_bg
= false;
7447 bool orig_have_caching_bg
= false;
7448 bool full_search
= false;
7450 WARN_ON(num_bytes
< root
->sectorsize
);
7451 ins
->type
= BTRFS_EXTENT_ITEM_KEY
;
7455 trace_find_free_extent(orig_root
, num_bytes
, empty_size
, flags
);
7457 space_info
= __find_space_info(root
->fs_info
, flags
);
7459 btrfs_err(root
->fs_info
, "No space info for %llu", flags
);
7464 * If our free space is heavily fragmented we may not be able to make
7465 * big contiguous allocations, so instead of doing the expensive search
7466 * for free space, simply return ENOSPC with our max_extent_size so we
7467 * can go ahead and search for a more manageable chunk.
7469 * If our max_extent_size is large enough for our allocation simply
7470 * disable clustering since we will likely not be able to find enough
7471 * space to create a cluster and induce latency trying.
7473 if (unlikely(space_info
->max_extent_size
)) {
7474 spin_lock(&space_info
->lock
);
7475 if (space_info
->max_extent_size
&&
7476 num_bytes
> space_info
->max_extent_size
) {
7477 ins
->offset
= space_info
->max_extent_size
;
7478 spin_unlock(&space_info
->lock
);
7480 } else if (space_info
->max_extent_size
) {
7481 use_cluster
= false;
7483 spin_unlock(&space_info
->lock
);
7486 last_ptr
= fetch_cluster_info(orig_root
, space_info
, &empty_cluster
);
7488 spin_lock(&last_ptr
->lock
);
7489 if (last_ptr
->block_group
)
7490 hint_byte
= last_ptr
->window_start
;
7491 if (last_ptr
->fragmented
) {
7493 * We still set window_start so we can keep track of the
7494 * last place we found an allocation to try and save
7497 hint_byte
= last_ptr
->window_start
;
7498 use_cluster
= false;
7500 spin_unlock(&last_ptr
->lock
);
7503 search_start
= max(search_start
, first_logical_byte(root
, 0));
7504 search_start
= max(search_start
, hint_byte
);
7505 if (search_start
== hint_byte
) {
7506 block_group
= btrfs_lookup_block_group(root
->fs_info
,
7509 * we don't want to use the block group if it doesn't match our
7510 * allocation bits, or if its not cached.
7512 * However if we are re-searching with an ideal block group
7513 * picked out then we don't care that the block group is cached.
7515 if (block_group
&& block_group_bits(block_group
, flags
) &&
7516 block_group
->cached
!= BTRFS_CACHE_NO
) {
7517 down_read(&space_info
->groups_sem
);
7518 if (list_empty(&block_group
->list
) ||
7521 * someone is removing this block group,
7522 * we can't jump into the have_block_group
7523 * target because our list pointers are not
7526 btrfs_put_block_group(block_group
);
7527 up_read(&space_info
->groups_sem
);
7529 index
= get_block_group_index(block_group
);
7530 btrfs_lock_block_group(block_group
, delalloc
);
7531 goto have_block_group
;
7533 } else if (block_group
) {
7534 btrfs_put_block_group(block_group
);
7538 have_caching_bg
= false;
7539 if (index
== 0 || index
== __get_raid_index(flags
))
7541 down_read(&space_info
->groups_sem
);
7542 list_for_each_entry(block_group
, &space_info
->block_groups
[index
],
7547 btrfs_grab_block_group(block_group
, delalloc
);
7548 search_start
= block_group
->key
.objectid
;
7551 * this can happen if we end up cycling through all the
7552 * raid types, but we want to make sure we only allocate
7553 * for the proper type.
7555 if (!block_group_bits(block_group
, flags
)) {
7556 u64 extra
= BTRFS_BLOCK_GROUP_DUP
|
7557 BTRFS_BLOCK_GROUP_RAID1
|
7558 BTRFS_BLOCK_GROUP_RAID5
|
7559 BTRFS_BLOCK_GROUP_RAID6
|
7560 BTRFS_BLOCK_GROUP_RAID10
;
7563 * if they asked for extra copies and this block group
7564 * doesn't provide them, bail. This does allow us to
7565 * fill raid0 from raid1.
7567 if ((flags
& extra
) && !(block_group
->flags
& extra
))
7572 cached
= block_group_cache_done(block_group
);
7573 if (unlikely(!cached
)) {
7574 have_caching_bg
= true;
7575 ret
= cache_block_group(block_group
, 0);
7580 if (unlikely(block_group
->cached
== BTRFS_CACHE_ERROR
))
7582 if (unlikely(block_group
->ro
))
7586 * Ok we want to try and use the cluster allocator, so
7589 if (last_ptr
&& use_cluster
) {
7590 struct btrfs_block_group_cache
*used_block_group
;
7591 unsigned long aligned_cluster
;
7593 * the refill lock keeps out other
7594 * people trying to start a new cluster
7596 used_block_group
= btrfs_lock_cluster(block_group
,
7599 if (!used_block_group
)
7600 goto refill_cluster
;
7602 if (used_block_group
!= block_group
&&
7603 (used_block_group
->ro
||
7604 !block_group_bits(used_block_group
, flags
)))
7605 goto release_cluster
;
7607 offset
= btrfs_alloc_from_cluster(used_block_group
,
7610 used_block_group
->key
.objectid
,
7613 /* we have a block, we're done */
7614 spin_unlock(&last_ptr
->refill_lock
);
7615 trace_btrfs_reserve_extent_cluster(root
,
7617 search_start
, num_bytes
);
7618 if (used_block_group
!= block_group
) {
7619 btrfs_release_block_group(block_group
,
7621 block_group
= used_block_group
;
7626 WARN_ON(last_ptr
->block_group
!= used_block_group
);
7628 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7629 * set up a new clusters, so lets just skip it
7630 * and let the allocator find whatever block
7631 * it can find. If we reach this point, we
7632 * will have tried the cluster allocator
7633 * plenty of times and not have found
7634 * anything, so we are likely way too
7635 * fragmented for the clustering stuff to find
7638 * However, if the cluster is taken from the
7639 * current block group, release the cluster
7640 * first, so that we stand a better chance of
7641 * succeeding in the unclustered
7643 if (loop
>= LOOP_NO_EMPTY_SIZE
&&
7644 used_block_group
!= block_group
) {
7645 spin_unlock(&last_ptr
->refill_lock
);
7646 btrfs_release_block_group(used_block_group
,
7648 goto unclustered_alloc
;
7652 * this cluster didn't work out, free it and
7655 btrfs_return_cluster_to_free_space(NULL
, last_ptr
);
7657 if (used_block_group
!= block_group
)
7658 btrfs_release_block_group(used_block_group
,
7661 if (loop
>= LOOP_NO_EMPTY_SIZE
) {
7662 spin_unlock(&last_ptr
->refill_lock
);
7663 goto unclustered_alloc
;
7666 aligned_cluster
= max_t(unsigned long,
7667 empty_cluster
+ empty_size
,
7668 block_group
->full_stripe_len
);
7670 /* allocate a cluster in this block group */
7671 ret
= btrfs_find_space_cluster(root
, block_group
,
7672 last_ptr
, search_start
,
7677 * now pull our allocation out of this
7680 offset
= btrfs_alloc_from_cluster(block_group
,
7686 /* we found one, proceed */
7687 spin_unlock(&last_ptr
->refill_lock
);
7688 trace_btrfs_reserve_extent_cluster(root
,
7689 block_group
, search_start
,
7693 } else if (!cached
&& loop
> LOOP_CACHING_NOWAIT
7694 && !failed_cluster_refill
) {
7695 spin_unlock(&last_ptr
->refill_lock
);
7697 failed_cluster_refill
= true;
7698 wait_block_group_cache_progress(block_group
,
7699 num_bytes
+ empty_cluster
+ empty_size
);
7700 goto have_block_group
;
7704 * at this point we either didn't find a cluster
7705 * or we weren't able to allocate a block from our
7706 * cluster. Free the cluster we've been trying
7707 * to use, and go to the next block group
7709 btrfs_return_cluster_to_free_space(NULL
, last_ptr
);
7710 spin_unlock(&last_ptr
->refill_lock
);
7716 * We are doing an unclustered alloc, set the fragmented flag so
7717 * we don't bother trying to setup a cluster again until we get
7720 if (unlikely(last_ptr
)) {
7721 spin_lock(&last_ptr
->lock
);
7722 last_ptr
->fragmented
= 1;
7723 spin_unlock(&last_ptr
->lock
);
7725 spin_lock(&block_group
->free_space_ctl
->tree_lock
);
7727 block_group
->free_space_ctl
->free_space
<
7728 num_bytes
+ empty_cluster
+ empty_size
) {
7729 if (block_group
->free_space_ctl
->free_space
>
7732 block_group
->free_space_ctl
->free_space
;
7733 spin_unlock(&block_group
->free_space_ctl
->tree_lock
);
7736 spin_unlock(&block_group
->free_space_ctl
->tree_lock
);
7738 offset
= btrfs_find_space_for_alloc(block_group
, search_start
,
7739 num_bytes
, empty_size
,
7742 * If we didn't find a chunk, and we haven't failed on this
7743 * block group before, and this block group is in the middle of
7744 * caching and we are ok with waiting, then go ahead and wait
7745 * for progress to be made, and set failed_alloc to true.
7747 * If failed_alloc is true then we've already waited on this
7748 * block group once and should move on to the next block group.
7750 if (!offset
&& !failed_alloc
&& !cached
&&
7751 loop
> LOOP_CACHING_NOWAIT
) {
7752 wait_block_group_cache_progress(block_group
,
7753 num_bytes
+ empty_size
);
7754 failed_alloc
= true;
7755 goto have_block_group
;
7756 } else if (!offset
) {
7760 search_start
= ALIGN(offset
, root
->stripesize
);
7762 /* move on to the next group */
7763 if (search_start
+ num_bytes
>
7764 block_group
->key
.objectid
+ block_group
->key
.offset
) {
7765 btrfs_add_free_space(block_group
, offset
, num_bytes
);
7769 if (offset
< search_start
)
7770 btrfs_add_free_space(block_group
, offset
,
7771 search_start
- offset
);
7772 BUG_ON(offset
> search_start
);
7774 ret
= btrfs_add_reserved_bytes(block_group
, ram_bytes
,
7775 num_bytes
, delalloc
);
7776 if (ret
== -EAGAIN
) {
7777 btrfs_add_free_space(block_group
, offset
, num_bytes
);
7780 btrfs_inc_block_group_reservations(block_group
);
7782 /* we are all good, lets return */
7783 ins
->objectid
= search_start
;
7784 ins
->offset
= num_bytes
;
7786 trace_btrfs_reserve_extent(orig_root
, block_group
,
7787 search_start
, num_bytes
);
7788 btrfs_release_block_group(block_group
, delalloc
);
7791 failed_cluster_refill
= false;
7792 failed_alloc
= false;
7793 BUG_ON(index
!= get_block_group_index(block_group
));
7794 btrfs_release_block_group(block_group
, delalloc
);
7796 up_read(&space_info
->groups_sem
);
7798 if ((loop
== LOOP_CACHING_NOWAIT
) && have_caching_bg
7799 && !orig_have_caching_bg
)
7800 orig_have_caching_bg
= true;
7802 if (!ins
->objectid
&& loop
>= LOOP_CACHING_WAIT
&& have_caching_bg
)
7805 if (!ins
->objectid
&& ++index
< BTRFS_NR_RAID_TYPES
)
7809 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7810 * caching kthreads as we move along
7811 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7812 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7813 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7816 if (!ins
->objectid
&& loop
< LOOP_NO_EMPTY_SIZE
) {
7818 if (loop
== LOOP_CACHING_NOWAIT
) {
7820 * We want to skip the LOOP_CACHING_WAIT step if we
7821 * don't have any uncached bgs and we've already done a
7822 * full search through.
7824 if (orig_have_caching_bg
|| !full_search
)
7825 loop
= LOOP_CACHING_WAIT
;
7827 loop
= LOOP_ALLOC_CHUNK
;
7832 if (loop
== LOOP_ALLOC_CHUNK
) {
7833 struct btrfs_trans_handle
*trans
;
7836 trans
= current
->journal_info
;
7840 trans
= btrfs_join_transaction(root
);
7842 if (IS_ERR(trans
)) {
7843 ret
= PTR_ERR(trans
);
7847 ret
= do_chunk_alloc(trans
, root
, flags
,
7851 * If we can't allocate a new chunk we've already looped
7852 * through at least once, move on to the NO_EMPTY_SIZE
7856 loop
= LOOP_NO_EMPTY_SIZE
;
7859 * Do not bail out on ENOSPC since we
7860 * can do more things.
7862 if (ret
< 0 && ret
!= -ENOSPC
)
7863 btrfs_abort_transaction(trans
, ret
);
7867 btrfs_end_transaction(trans
, root
);
7872 if (loop
== LOOP_NO_EMPTY_SIZE
) {
7874 * Don't loop again if we already have no empty_size and
7877 if (empty_size
== 0 &&
7878 empty_cluster
== 0) {
7887 } else if (!ins
->objectid
) {
7889 } else if (ins
->objectid
) {
7890 if (!use_cluster
&& last_ptr
) {
7891 spin_lock(&last_ptr
->lock
);
7892 last_ptr
->window_start
= ins
->objectid
;
7893 spin_unlock(&last_ptr
->lock
);
7898 if (ret
== -ENOSPC
) {
7899 spin_lock(&space_info
->lock
);
7900 space_info
->max_extent_size
= max_extent_size
;
7901 spin_unlock(&space_info
->lock
);
7902 ins
->offset
= max_extent_size
;
7907 static void dump_space_info(struct btrfs_space_info
*info
, u64 bytes
,
7908 int dump_block_groups
)
7910 struct btrfs_block_group_cache
*cache
;
7913 spin_lock(&info
->lock
);
7914 printk(KERN_INFO
"BTRFS: space_info %llu has %llu free, is %sfull\n",
7916 info
->total_bytes
- info
->bytes_used
- info
->bytes_pinned
-
7917 info
->bytes_reserved
- info
->bytes_readonly
-
7918 info
->bytes_may_use
, (info
->full
) ? "" : "not ");
7919 printk(KERN_INFO
"BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
7920 "reserved=%llu, may_use=%llu, readonly=%llu\n",
7921 info
->total_bytes
, info
->bytes_used
, info
->bytes_pinned
,
7922 info
->bytes_reserved
, info
->bytes_may_use
,
7923 info
->bytes_readonly
);
7924 spin_unlock(&info
->lock
);
7926 if (!dump_block_groups
)
7929 down_read(&info
->groups_sem
);
7931 list_for_each_entry(cache
, &info
->block_groups
[index
], list
) {
7932 spin_lock(&cache
->lock
);
7933 printk(KERN_INFO
"BTRFS: "
7934 "block group %llu has %llu bytes, "
7935 "%llu used %llu pinned %llu reserved %s\n",
7936 cache
->key
.objectid
, cache
->key
.offset
,
7937 btrfs_block_group_used(&cache
->item
), cache
->pinned
,
7938 cache
->reserved
, cache
->ro
? "[readonly]" : "");
7939 btrfs_dump_free_space(cache
, bytes
);
7940 spin_unlock(&cache
->lock
);
7942 if (++index
< BTRFS_NR_RAID_TYPES
)
7944 up_read(&info
->groups_sem
);
7947 int btrfs_reserve_extent(struct btrfs_root
*root
, u64 ram_bytes
,
7948 u64 num_bytes
, u64 min_alloc_size
,
7949 u64 empty_size
, u64 hint_byte
,
7950 struct btrfs_key
*ins
, int is_data
, int delalloc
)
7952 bool final_tried
= num_bytes
== min_alloc_size
;
7956 flags
= btrfs_get_alloc_profile(root
, is_data
);
7958 WARN_ON(num_bytes
< root
->sectorsize
);
7959 ret
= find_free_extent(root
, ram_bytes
, num_bytes
, empty_size
,
7960 hint_byte
, ins
, flags
, delalloc
);
7961 if (!ret
&& !is_data
) {
7962 btrfs_dec_block_group_reservations(root
->fs_info
,
7964 } else if (ret
== -ENOSPC
) {
7965 if (!final_tried
&& ins
->offset
) {
7966 num_bytes
= min(num_bytes
>> 1, ins
->offset
);
7967 num_bytes
= round_down(num_bytes
, root
->sectorsize
);
7968 num_bytes
= max(num_bytes
, min_alloc_size
);
7969 ram_bytes
= num_bytes
;
7970 if (num_bytes
== min_alloc_size
)
7973 } else if (btrfs_test_opt(root
->fs_info
, ENOSPC_DEBUG
)) {
7974 struct btrfs_space_info
*sinfo
;
7976 sinfo
= __find_space_info(root
->fs_info
, flags
);
7977 btrfs_err(root
->fs_info
, "allocation failed flags %llu, wanted %llu",
7980 dump_space_info(sinfo
, num_bytes
, 1);
7987 static int __btrfs_free_reserved_extent(struct btrfs_root
*root
,
7989 int pin
, int delalloc
)
7991 struct btrfs_block_group_cache
*cache
;
7994 cache
= btrfs_lookup_block_group(root
->fs_info
, start
);
7996 btrfs_err(root
->fs_info
, "Unable to find block group for %llu",
8002 pin_down_extent(root
, cache
, start
, len
, 1);
8004 if (btrfs_test_opt(root
->fs_info
, DISCARD
))
8005 ret
= btrfs_discard_extent(root
, start
, len
, NULL
);
8006 btrfs_add_free_space(cache
, start
, len
);
8007 btrfs_free_reserved_bytes(cache
, len
, delalloc
);
8008 trace_btrfs_reserved_extent_free(root
, start
, len
);
8011 btrfs_put_block_group(cache
);
8015 int btrfs_free_reserved_extent(struct btrfs_root
*root
,
8016 u64 start
, u64 len
, int delalloc
)
8018 return __btrfs_free_reserved_extent(root
, start
, len
, 0, delalloc
);
8021 int btrfs_free_and_pin_reserved_extent(struct btrfs_root
*root
,
8024 return __btrfs_free_reserved_extent(root
, start
, len
, 1, 0);
8027 static int alloc_reserved_file_extent(struct btrfs_trans_handle
*trans
,
8028 struct btrfs_root
*root
,
8029 u64 parent
, u64 root_objectid
,
8030 u64 flags
, u64 owner
, u64 offset
,
8031 struct btrfs_key
*ins
, int ref_mod
)
8034 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
8035 struct btrfs_extent_item
*extent_item
;
8036 struct btrfs_extent_inline_ref
*iref
;
8037 struct btrfs_path
*path
;
8038 struct extent_buffer
*leaf
;
8043 type
= BTRFS_SHARED_DATA_REF_KEY
;
8045 type
= BTRFS_EXTENT_DATA_REF_KEY
;
8047 size
= sizeof(*extent_item
) + btrfs_extent_inline_ref_size(type
);
8049 path
= btrfs_alloc_path();
8053 path
->leave_spinning
= 1;
8054 ret
= btrfs_insert_empty_item(trans
, fs_info
->extent_root
, path
,
8057 btrfs_free_path(path
);
8061 leaf
= path
->nodes
[0];
8062 extent_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
8063 struct btrfs_extent_item
);
8064 btrfs_set_extent_refs(leaf
, extent_item
, ref_mod
);
8065 btrfs_set_extent_generation(leaf
, extent_item
, trans
->transid
);
8066 btrfs_set_extent_flags(leaf
, extent_item
,
8067 flags
| BTRFS_EXTENT_FLAG_DATA
);
8069 iref
= (struct btrfs_extent_inline_ref
*)(extent_item
+ 1);
8070 btrfs_set_extent_inline_ref_type(leaf
, iref
, type
);
8072 struct btrfs_shared_data_ref
*ref
;
8073 ref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
8074 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
8075 btrfs_set_shared_data_ref_count(leaf
, ref
, ref_mod
);
8077 struct btrfs_extent_data_ref
*ref
;
8078 ref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
8079 btrfs_set_extent_data_ref_root(leaf
, ref
, root_objectid
);
8080 btrfs_set_extent_data_ref_objectid(leaf
, ref
, owner
);
8081 btrfs_set_extent_data_ref_offset(leaf
, ref
, offset
);
8082 btrfs_set_extent_data_ref_count(leaf
, ref
, ref_mod
);
8085 btrfs_mark_buffer_dirty(path
->nodes
[0]);
8086 btrfs_free_path(path
);
8088 ret
= remove_from_free_space_tree(trans
, fs_info
, ins
->objectid
,
8093 ret
= update_block_group(trans
, root
, ins
->objectid
, ins
->offset
, 1);
8094 if (ret
) { /* -ENOENT, logic error */
8095 btrfs_err(fs_info
, "update block group failed for %llu %llu",
8096 ins
->objectid
, ins
->offset
);
8099 trace_btrfs_reserved_extent_alloc(root
, ins
->objectid
, ins
->offset
);
8103 static int alloc_reserved_tree_block(struct btrfs_trans_handle
*trans
,
8104 struct btrfs_root
*root
,
8105 u64 parent
, u64 root_objectid
,
8106 u64 flags
, struct btrfs_disk_key
*key
,
8107 int level
, struct btrfs_key
*ins
)
8110 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
8111 struct btrfs_extent_item
*extent_item
;
8112 struct btrfs_tree_block_info
*block_info
;
8113 struct btrfs_extent_inline_ref
*iref
;
8114 struct btrfs_path
*path
;
8115 struct extent_buffer
*leaf
;
8116 u32 size
= sizeof(*extent_item
) + sizeof(*iref
);
8117 u64 num_bytes
= ins
->offset
;
8118 bool skinny_metadata
= btrfs_fs_incompat(root
->fs_info
,
8121 if (!skinny_metadata
)
8122 size
+= sizeof(*block_info
);
8124 path
= btrfs_alloc_path();
8126 btrfs_free_and_pin_reserved_extent(root
, ins
->objectid
,
8131 path
->leave_spinning
= 1;
8132 ret
= btrfs_insert_empty_item(trans
, fs_info
->extent_root
, path
,
8135 btrfs_free_path(path
);
8136 btrfs_free_and_pin_reserved_extent(root
, ins
->objectid
,
8141 leaf
= path
->nodes
[0];
8142 extent_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
8143 struct btrfs_extent_item
);
8144 btrfs_set_extent_refs(leaf
, extent_item
, 1);
8145 btrfs_set_extent_generation(leaf
, extent_item
, trans
->transid
);
8146 btrfs_set_extent_flags(leaf
, extent_item
,
8147 flags
| BTRFS_EXTENT_FLAG_TREE_BLOCK
);
8149 if (skinny_metadata
) {
8150 iref
= (struct btrfs_extent_inline_ref
*)(extent_item
+ 1);
8151 num_bytes
= root
->nodesize
;
8153 block_info
= (struct btrfs_tree_block_info
*)(extent_item
+ 1);
8154 btrfs_set_tree_block_key(leaf
, block_info
, key
);
8155 btrfs_set_tree_block_level(leaf
, block_info
, level
);
8156 iref
= (struct btrfs_extent_inline_ref
*)(block_info
+ 1);
8160 BUG_ON(!(flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
));
8161 btrfs_set_extent_inline_ref_type(leaf
, iref
,
8162 BTRFS_SHARED_BLOCK_REF_KEY
);
8163 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
8165 btrfs_set_extent_inline_ref_type(leaf
, iref
,
8166 BTRFS_TREE_BLOCK_REF_KEY
);
8167 btrfs_set_extent_inline_ref_offset(leaf
, iref
, root_objectid
);
8170 btrfs_mark_buffer_dirty(leaf
);
8171 btrfs_free_path(path
);
8173 ret
= remove_from_free_space_tree(trans
, fs_info
, ins
->objectid
,
8178 ret
= update_block_group(trans
, root
, ins
->objectid
, root
->nodesize
,
8180 if (ret
) { /* -ENOENT, logic error */
8181 btrfs_err(fs_info
, "update block group failed for %llu %llu",
8182 ins
->objectid
, ins
->offset
);
8186 trace_btrfs_reserved_extent_alloc(root
, ins
->objectid
, root
->nodesize
);
8190 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle
*trans
,
8191 struct btrfs_root
*root
,
8192 u64 root_objectid
, u64 owner
,
8193 u64 offset
, u64 ram_bytes
,
8194 struct btrfs_key
*ins
)
8198 BUG_ON(root_objectid
== BTRFS_TREE_LOG_OBJECTID
);
8200 ret
= btrfs_add_delayed_data_ref(root
->fs_info
, trans
, ins
->objectid
,
8202 root_objectid
, owner
, offset
,
8203 ram_bytes
, BTRFS_ADD_DELAYED_EXTENT
,
8209 * this is used by the tree logging recovery code. It records that
8210 * an extent has been allocated and makes sure to clear the free
8211 * space cache bits as well
8213 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle
*trans
,
8214 struct btrfs_root
*root
,
8215 u64 root_objectid
, u64 owner
, u64 offset
,
8216 struct btrfs_key
*ins
)
8219 struct btrfs_block_group_cache
*block_group
;
8220 struct btrfs_space_info
*space_info
;
8223 * Mixed block groups will exclude before processing the log so we only
8224 * need to do the exclude dance if this fs isn't mixed.
8226 if (!btrfs_fs_incompat(root
->fs_info
, MIXED_GROUPS
)) {
8227 ret
= __exclude_logged_extent(root
, ins
->objectid
, ins
->offset
);
8232 block_group
= btrfs_lookup_block_group(root
->fs_info
, ins
->objectid
);
8236 space_info
= block_group
->space_info
;
8237 spin_lock(&space_info
->lock
);
8238 spin_lock(&block_group
->lock
);
8239 space_info
->bytes_reserved
+= ins
->offset
;
8240 block_group
->reserved
+= ins
->offset
;
8241 spin_unlock(&block_group
->lock
);
8242 spin_unlock(&space_info
->lock
);
8244 ret
= alloc_reserved_file_extent(trans
, root
, 0, root_objectid
,
8245 0, owner
, offset
, ins
, 1);
8246 btrfs_put_block_group(block_group
);
8250 static struct extent_buffer
*
8251 btrfs_init_new_buffer(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
8252 u64 bytenr
, int level
)
8254 struct extent_buffer
*buf
;
8256 buf
= btrfs_find_create_tree_block(root
, bytenr
);
8260 btrfs_set_header_generation(buf
, trans
->transid
);
8261 btrfs_set_buffer_lockdep_class(root
->root_key
.objectid
, buf
, level
);
8262 btrfs_tree_lock(buf
);
8263 clean_tree_block(trans
, root
->fs_info
, buf
);
8264 clear_bit(EXTENT_BUFFER_STALE
, &buf
->bflags
);
8266 btrfs_set_lock_blocking(buf
);
8267 set_extent_buffer_uptodate(buf
);
8269 if (root
->root_key
.objectid
== BTRFS_TREE_LOG_OBJECTID
) {
8270 buf
->log_index
= root
->log_transid
% 2;
8272 * we allow two log transactions at a time, use different
8273 * EXENT bit to differentiate dirty pages.
8275 if (buf
->log_index
== 0)
8276 set_extent_dirty(&root
->dirty_log_pages
, buf
->start
,
8277 buf
->start
+ buf
->len
- 1, GFP_NOFS
);
8279 set_extent_new(&root
->dirty_log_pages
, buf
->start
,
8280 buf
->start
+ buf
->len
- 1);
8282 buf
->log_index
= -1;
8283 set_extent_dirty(&trans
->transaction
->dirty_pages
, buf
->start
,
8284 buf
->start
+ buf
->len
- 1, GFP_NOFS
);
8286 trans
->dirty
= true;
8287 /* this returns a buffer locked for blocking */
8291 static struct btrfs_block_rsv
*
8292 use_block_rsv(struct btrfs_trans_handle
*trans
,
8293 struct btrfs_root
*root
, u32 blocksize
)
8295 struct btrfs_block_rsv
*block_rsv
;
8296 struct btrfs_block_rsv
*global_rsv
= &root
->fs_info
->global_block_rsv
;
8298 bool global_updated
= false;
8300 block_rsv
= get_block_rsv(trans
, root
);
8302 if (unlikely(block_rsv
->size
== 0))
8305 ret
= block_rsv_use_bytes(block_rsv
, blocksize
);
8309 if (block_rsv
->failfast
)
8310 return ERR_PTR(ret
);
8312 if (block_rsv
->type
== BTRFS_BLOCK_RSV_GLOBAL
&& !global_updated
) {
8313 global_updated
= true;
8314 update_global_block_rsv(root
->fs_info
);
8318 if (btrfs_test_opt(root
->fs_info
, ENOSPC_DEBUG
)) {
8319 static DEFINE_RATELIMIT_STATE(_rs
,
8320 DEFAULT_RATELIMIT_INTERVAL
* 10,
8321 /*DEFAULT_RATELIMIT_BURST*/ 1);
8322 if (__ratelimit(&_rs
))
8324 "BTRFS: block rsv returned %d\n", ret
);
8327 ret
= reserve_metadata_bytes(root
, block_rsv
, blocksize
,
8328 BTRFS_RESERVE_NO_FLUSH
);
8332 * If we couldn't reserve metadata bytes try and use some from
8333 * the global reserve if its space type is the same as the global
8336 if (block_rsv
->type
!= BTRFS_BLOCK_RSV_GLOBAL
&&
8337 block_rsv
->space_info
== global_rsv
->space_info
) {
8338 ret
= block_rsv_use_bytes(global_rsv
, blocksize
);
8342 return ERR_PTR(ret
);
8345 static void unuse_block_rsv(struct btrfs_fs_info
*fs_info
,
8346 struct btrfs_block_rsv
*block_rsv
, u32 blocksize
)
8348 block_rsv_add_bytes(block_rsv
, blocksize
, 0);
8349 block_rsv_release_bytes(fs_info
, block_rsv
, NULL
, 0);
8353 * finds a free extent and does all the dirty work required for allocation
8354 * returns the tree buffer or an ERR_PTR on error.
8356 struct extent_buffer
*btrfs_alloc_tree_block(struct btrfs_trans_handle
*trans
,
8357 struct btrfs_root
*root
,
8358 u64 parent
, u64 root_objectid
,
8359 struct btrfs_disk_key
*key
, int level
,
8360 u64 hint
, u64 empty_size
)
8362 struct btrfs_key ins
;
8363 struct btrfs_block_rsv
*block_rsv
;
8364 struct extent_buffer
*buf
;
8365 struct btrfs_delayed_extent_op
*extent_op
;
8368 u32 blocksize
= root
->nodesize
;
8369 bool skinny_metadata
= btrfs_fs_incompat(root
->fs_info
,
8372 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8373 if (btrfs_is_testing(root
->fs_info
)) {
8374 buf
= btrfs_init_new_buffer(trans
, root
, root
->alloc_bytenr
,
8377 root
->alloc_bytenr
+= blocksize
;
8382 block_rsv
= use_block_rsv(trans
, root
, blocksize
);
8383 if (IS_ERR(block_rsv
))
8384 return ERR_CAST(block_rsv
);
8386 ret
= btrfs_reserve_extent(root
, blocksize
, blocksize
, blocksize
,
8387 empty_size
, hint
, &ins
, 0, 0);
8391 buf
= btrfs_init_new_buffer(trans
, root
, ins
.objectid
, level
);
8394 goto out_free_reserved
;
8397 if (root_objectid
== BTRFS_TREE_RELOC_OBJECTID
) {
8399 parent
= ins
.objectid
;
8400 flags
|= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
8404 if (root_objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
8405 extent_op
= btrfs_alloc_delayed_extent_op();
8411 memcpy(&extent_op
->key
, key
, sizeof(extent_op
->key
));
8413 memset(&extent_op
->key
, 0, sizeof(extent_op
->key
));
8414 extent_op
->flags_to_set
= flags
;
8415 extent_op
->update_key
= skinny_metadata
? false : true;
8416 extent_op
->update_flags
= true;
8417 extent_op
->is_data
= false;
8418 extent_op
->level
= level
;
8420 ret
= btrfs_add_delayed_tree_ref(root
->fs_info
, trans
,
8421 ins
.objectid
, ins
.offset
,
8422 parent
, root_objectid
, level
,
8423 BTRFS_ADD_DELAYED_EXTENT
,
8426 goto out_free_delayed
;
8431 btrfs_free_delayed_extent_op(extent_op
);
8433 free_extent_buffer(buf
);
8435 btrfs_free_reserved_extent(root
, ins
.objectid
, ins
.offset
, 0);
8437 unuse_block_rsv(root
->fs_info
, block_rsv
, blocksize
);
8438 return ERR_PTR(ret
);
8441 struct walk_control
{
8442 u64 refs
[BTRFS_MAX_LEVEL
];
8443 u64 flags
[BTRFS_MAX_LEVEL
];
8444 struct btrfs_key update_progress
;
8455 #define DROP_REFERENCE 1
8456 #define UPDATE_BACKREF 2
8458 static noinline
void reada_walk_down(struct btrfs_trans_handle
*trans
,
8459 struct btrfs_root
*root
,
8460 struct walk_control
*wc
,
8461 struct btrfs_path
*path
)
8469 struct btrfs_key key
;
8470 struct extent_buffer
*eb
;
8475 if (path
->slots
[wc
->level
] < wc
->reada_slot
) {
8476 wc
->reada_count
= wc
->reada_count
* 2 / 3;
8477 wc
->reada_count
= max(wc
->reada_count
, 2);
8479 wc
->reada_count
= wc
->reada_count
* 3 / 2;
8480 wc
->reada_count
= min_t(int, wc
->reada_count
,
8481 BTRFS_NODEPTRS_PER_BLOCK(root
));
8484 eb
= path
->nodes
[wc
->level
];
8485 nritems
= btrfs_header_nritems(eb
);
8486 blocksize
= root
->nodesize
;
8488 for (slot
= path
->slots
[wc
->level
]; slot
< nritems
; slot
++) {
8489 if (nread
>= wc
->reada_count
)
8493 bytenr
= btrfs_node_blockptr(eb
, slot
);
8494 generation
= btrfs_node_ptr_generation(eb
, slot
);
8496 if (slot
== path
->slots
[wc
->level
])
8499 if (wc
->stage
== UPDATE_BACKREF
&&
8500 generation
<= root
->root_key
.offset
)
8503 /* We don't lock the tree block, it's OK to be racy here */
8504 ret
= btrfs_lookup_extent_info(trans
, root
, bytenr
,
8505 wc
->level
- 1, 1, &refs
,
8507 /* We don't care about errors in readahead. */
8512 if (wc
->stage
== DROP_REFERENCE
) {
8516 if (wc
->level
== 1 &&
8517 (flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
))
8519 if (!wc
->update_ref
||
8520 generation
<= root
->root_key
.offset
)
8522 btrfs_node_key_to_cpu(eb
, &key
, slot
);
8523 ret
= btrfs_comp_cpu_keys(&key
,
8524 &wc
->update_progress
);
8528 if (wc
->level
== 1 &&
8529 (flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
))
8533 readahead_tree_block(root
, bytenr
);
8536 wc
->reada_slot
= slot
;
8539 static int account_leaf_items(struct btrfs_trans_handle
*trans
,
8540 struct btrfs_root
*root
,
8541 struct extent_buffer
*eb
)
8543 int nr
= btrfs_header_nritems(eb
);
8544 int i
, extent_type
, ret
;
8545 struct btrfs_key key
;
8546 struct btrfs_file_extent_item
*fi
;
8547 u64 bytenr
, num_bytes
;
8549 /* We can be called directly from walk_up_proc() */
8550 if (!root
->fs_info
->quota_enabled
)
8553 for (i
= 0; i
< nr
; i
++) {
8554 btrfs_item_key_to_cpu(eb
, &key
, i
);
8556 if (key
.type
!= BTRFS_EXTENT_DATA_KEY
)
8559 fi
= btrfs_item_ptr(eb
, i
, struct btrfs_file_extent_item
);
8560 /* filter out non qgroup-accountable extents */
8561 extent_type
= btrfs_file_extent_type(eb
, fi
);
8563 if (extent_type
== BTRFS_FILE_EXTENT_INLINE
)
8566 bytenr
= btrfs_file_extent_disk_bytenr(eb
, fi
);
8570 num_bytes
= btrfs_file_extent_disk_num_bytes(eb
, fi
);
8572 ret
= btrfs_qgroup_insert_dirty_extent(trans
, root
->fs_info
,
8573 bytenr
, num_bytes
, GFP_NOFS
);
8581 * Walk up the tree from the bottom, freeing leaves and any interior
8582 * nodes which have had all slots visited. If a node (leaf or
8583 * interior) is freed, the node above it will have it's slot
8584 * incremented. The root node will never be freed.
8586 * At the end of this function, we should have a path which has all
8587 * slots incremented to the next position for a search. If we need to
8588 * read a new node it will be NULL and the node above it will have the
8589 * correct slot selected for a later read.
8591 * If we increment the root nodes slot counter past the number of
8592 * elements, 1 is returned to signal completion of the search.
8594 static int adjust_slots_upwards(struct btrfs_root
*root
,
8595 struct btrfs_path
*path
, int root_level
)
8599 struct extent_buffer
*eb
;
8601 if (root_level
== 0)
8604 while (level
<= root_level
) {
8605 eb
= path
->nodes
[level
];
8606 nr
= btrfs_header_nritems(eb
);
8607 path
->slots
[level
]++;
8608 slot
= path
->slots
[level
];
8609 if (slot
>= nr
|| level
== 0) {
8611 * Don't free the root - we will detect this
8612 * condition after our loop and return a
8613 * positive value for caller to stop walking the tree.
8615 if (level
!= root_level
) {
8616 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
8617 path
->locks
[level
] = 0;
8619 free_extent_buffer(eb
);
8620 path
->nodes
[level
] = NULL
;
8621 path
->slots
[level
] = 0;
8625 * We have a valid slot to walk back down
8626 * from. Stop here so caller can process these
8635 eb
= path
->nodes
[root_level
];
8636 if (path
->slots
[root_level
] >= btrfs_header_nritems(eb
))
8643 * root_eb is the subtree root and is locked before this function is called.
8645 static int account_shared_subtree(struct btrfs_trans_handle
*trans
,
8646 struct btrfs_root
*root
,
8647 struct extent_buffer
*root_eb
,
8653 struct extent_buffer
*eb
= root_eb
;
8654 struct btrfs_path
*path
= NULL
;
8656 BUG_ON(root_level
< 0 || root_level
> BTRFS_MAX_LEVEL
);
8657 BUG_ON(root_eb
== NULL
);
8659 if (!root
->fs_info
->quota_enabled
)
8662 if (!extent_buffer_uptodate(root_eb
)) {
8663 ret
= btrfs_read_buffer(root_eb
, root_gen
);
8668 if (root_level
== 0) {
8669 ret
= account_leaf_items(trans
, root
, root_eb
);
8673 path
= btrfs_alloc_path();
8678 * Walk down the tree. Missing extent blocks are filled in as
8679 * we go. Metadata is accounted every time we read a new
8682 * When we reach a leaf, we account for file extent items in it,
8683 * walk back up the tree (adjusting slot pointers as we go)
8684 * and restart the search process.
8686 extent_buffer_get(root_eb
); /* For path */
8687 path
->nodes
[root_level
] = root_eb
;
8688 path
->slots
[root_level
] = 0;
8689 path
->locks
[root_level
] = 0; /* so release_path doesn't try to unlock */
8692 while (level
>= 0) {
8693 if (path
->nodes
[level
] == NULL
) {
8698 /* We need to get child blockptr/gen from
8699 * parent before we can read it. */
8700 eb
= path
->nodes
[level
+ 1];
8701 parent_slot
= path
->slots
[level
+ 1];
8702 child_bytenr
= btrfs_node_blockptr(eb
, parent_slot
);
8703 child_gen
= btrfs_node_ptr_generation(eb
, parent_slot
);
8705 eb
= read_tree_block(root
, child_bytenr
, child_gen
);
8709 } else if (!extent_buffer_uptodate(eb
)) {
8710 free_extent_buffer(eb
);
8715 path
->nodes
[level
] = eb
;
8716 path
->slots
[level
] = 0;
8718 btrfs_tree_read_lock(eb
);
8719 btrfs_set_lock_blocking_rw(eb
, BTRFS_READ_LOCK
);
8720 path
->locks
[level
] = BTRFS_READ_LOCK_BLOCKING
;
8722 ret
= btrfs_qgroup_insert_dirty_extent(trans
,
8723 root
->fs_info
, child_bytenr
,
8724 root
->nodesize
, GFP_NOFS
);
8730 ret
= account_leaf_items(trans
, root
, path
->nodes
[level
]);
8734 /* Nonzero return here means we completed our search */
8735 ret
= adjust_slots_upwards(root
, path
, root_level
);
8739 /* Restart search with new slots */
8748 btrfs_free_path(path
);
8754 * helper to process tree block while walking down the tree.
8756 * when wc->stage == UPDATE_BACKREF, this function updates
8757 * back refs for pointers in the block.
8759 * NOTE: return value 1 means we should stop walking down.
8761 static noinline
int walk_down_proc(struct btrfs_trans_handle
*trans
,
8762 struct btrfs_root
*root
,
8763 struct btrfs_path
*path
,
8764 struct walk_control
*wc
, int lookup_info
)
8766 int level
= wc
->level
;
8767 struct extent_buffer
*eb
= path
->nodes
[level
];
8768 u64 flag
= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
8771 if (wc
->stage
== UPDATE_BACKREF
&&
8772 btrfs_header_owner(eb
) != root
->root_key
.objectid
)
8776 * when reference count of tree block is 1, it won't increase
8777 * again. once full backref flag is set, we never clear it.
8780 ((wc
->stage
== DROP_REFERENCE
&& wc
->refs
[level
] != 1) ||
8781 (wc
->stage
== UPDATE_BACKREF
&& !(wc
->flags
[level
] & flag
)))) {
8782 BUG_ON(!path
->locks
[level
]);
8783 ret
= btrfs_lookup_extent_info(trans
, root
,
8784 eb
->start
, level
, 1,
8787 BUG_ON(ret
== -ENOMEM
);
8790 BUG_ON(wc
->refs
[level
] == 0);
8793 if (wc
->stage
== DROP_REFERENCE
) {
8794 if (wc
->refs
[level
] > 1)
8797 if (path
->locks
[level
] && !wc
->keep_locks
) {
8798 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
8799 path
->locks
[level
] = 0;
8804 /* wc->stage == UPDATE_BACKREF */
8805 if (!(wc
->flags
[level
] & flag
)) {
8806 BUG_ON(!path
->locks
[level
]);
8807 ret
= btrfs_inc_ref(trans
, root
, eb
, 1);
8808 BUG_ON(ret
); /* -ENOMEM */
8809 ret
= btrfs_dec_ref(trans
, root
, eb
, 0);
8810 BUG_ON(ret
); /* -ENOMEM */
8811 ret
= btrfs_set_disk_extent_flags(trans
, root
, eb
->start
,
8813 btrfs_header_level(eb
), 0);
8814 BUG_ON(ret
); /* -ENOMEM */
8815 wc
->flags
[level
] |= flag
;
8819 * the block is shared by multiple trees, so it's not good to
8820 * keep the tree lock
8822 if (path
->locks
[level
] && level
> 0) {
8823 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
8824 path
->locks
[level
] = 0;
8830 * helper to process tree block pointer.
8832 * when wc->stage == DROP_REFERENCE, this function checks
8833 * reference count of the block pointed to. if the block
8834 * is shared and we need update back refs for the subtree
8835 * rooted at the block, this function changes wc->stage to
8836 * UPDATE_BACKREF. if the block is shared and there is no
8837 * need to update back, this function drops the reference
8840 * NOTE: return value 1 means we should stop walking down.
8842 static noinline
int do_walk_down(struct btrfs_trans_handle
*trans
,
8843 struct btrfs_root
*root
,
8844 struct btrfs_path
*path
,
8845 struct walk_control
*wc
, int *lookup_info
)
8851 struct btrfs_key key
;
8852 struct extent_buffer
*next
;
8853 int level
= wc
->level
;
8856 bool need_account
= false;
8858 generation
= btrfs_node_ptr_generation(path
->nodes
[level
],
8859 path
->slots
[level
]);
8861 * if the lower level block was created before the snapshot
8862 * was created, we know there is no need to update back refs
8865 if (wc
->stage
== UPDATE_BACKREF
&&
8866 generation
<= root
->root_key
.offset
) {
8871 bytenr
= btrfs_node_blockptr(path
->nodes
[level
], path
->slots
[level
]);
8872 blocksize
= root
->nodesize
;
8874 next
= btrfs_find_tree_block(root
->fs_info
, bytenr
);
8876 next
= btrfs_find_create_tree_block(root
, bytenr
);
8878 return PTR_ERR(next
);
8880 btrfs_set_buffer_lockdep_class(root
->root_key
.objectid
, next
,
8884 btrfs_tree_lock(next
);
8885 btrfs_set_lock_blocking(next
);
8887 ret
= btrfs_lookup_extent_info(trans
, root
, bytenr
, level
- 1, 1,
8888 &wc
->refs
[level
- 1],
8889 &wc
->flags
[level
- 1]);
8891 btrfs_tree_unlock(next
);
8895 if (unlikely(wc
->refs
[level
- 1] == 0)) {
8896 btrfs_err(root
->fs_info
, "Missing references.");
8901 if (wc
->stage
== DROP_REFERENCE
) {
8902 if (wc
->refs
[level
- 1] > 1) {
8903 need_account
= true;
8905 (wc
->flags
[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF
))
8908 if (!wc
->update_ref
||
8909 generation
<= root
->root_key
.offset
)
8912 btrfs_node_key_to_cpu(path
->nodes
[level
], &key
,
8913 path
->slots
[level
]);
8914 ret
= btrfs_comp_cpu_keys(&key
, &wc
->update_progress
);
8918 wc
->stage
= UPDATE_BACKREF
;
8919 wc
->shared_level
= level
- 1;
8923 (wc
->flags
[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF
))
8927 if (!btrfs_buffer_uptodate(next
, generation
, 0)) {
8928 btrfs_tree_unlock(next
);
8929 free_extent_buffer(next
);
8935 if (reada
&& level
== 1)
8936 reada_walk_down(trans
, root
, wc
, path
);
8937 next
= read_tree_block(root
, bytenr
, generation
);
8939 return PTR_ERR(next
);
8940 } else if (!extent_buffer_uptodate(next
)) {
8941 free_extent_buffer(next
);
8944 btrfs_tree_lock(next
);
8945 btrfs_set_lock_blocking(next
);
8949 BUG_ON(level
!= btrfs_header_level(next
));
8950 path
->nodes
[level
] = next
;
8951 path
->slots
[level
] = 0;
8952 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
8958 wc
->refs
[level
- 1] = 0;
8959 wc
->flags
[level
- 1] = 0;
8960 if (wc
->stage
== DROP_REFERENCE
) {
8961 if (wc
->flags
[level
] & BTRFS_BLOCK_FLAG_FULL_BACKREF
) {
8962 parent
= path
->nodes
[level
]->start
;
8964 BUG_ON(root
->root_key
.objectid
!=
8965 btrfs_header_owner(path
->nodes
[level
]));
8970 ret
= account_shared_subtree(trans
, root
, next
,
8971 generation
, level
- 1);
8973 btrfs_err_rl(root
->fs_info
,
8975 "%d accounting shared subtree. Quota "
8976 "is out of sync, rescan required.",
8980 ret
= btrfs_free_extent(trans
, root
, bytenr
, blocksize
, parent
,
8981 root
->root_key
.objectid
, level
- 1, 0);
8982 BUG_ON(ret
); /* -ENOMEM */
8984 btrfs_tree_unlock(next
);
8985 free_extent_buffer(next
);
8991 * helper to process tree block while walking up the tree.
8993 * when wc->stage == DROP_REFERENCE, this function drops
8994 * reference count on the block.
8996 * when wc->stage == UPDATE_BACKREF, this function changes
8997 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8998 * to UPDATE_BACKREF previously while processing the block.
9000 * NOTE: return value 1 means we should stop walking up.
9002 static noinline
int walk_up_proc(struct btrfs_trans_handle
*trans
,
9003 struct btrfs_root
*root
,
9004 struct btrfs_path
*path
,
9005 struct walk_control
*wc
)
9008 int level
= wc
->level
;
9009 struct extent_buffer
*eb
= path
->nodes
[level
];
9012 if (wc
->stage
== UPDATE_BACKREF
) {
9013 BUG_ON(wc
->shared_level
< level
);
9014 if (level
< wc
->shared_level
)
9017 ret
= find_next_key(path
, level
+ 1, &wc
->update_progress
);
9021 wc
->stage
= DROP_REFERENCE
;
9022 wc
->shared_level
= -1;
9023 path
->slots
[level
] = 0;
9026 * check reference count again if the block isn't locked.
9027 * we should start walking down the tree again if reference
9030 if (!path
->locks
[level
]) {
9032 btrfs_tree_lock(eb
);
9033 btrfs_set_lock_blocking(eb
);
9034 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
9036 ret
= btrfs_lookup_extent_info(trans
, root
,
9037 eb
->start
, level
, 1,
9041 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
9042 path
->locks
[level
] = 0;
9045 BUG_ON(wc
->refs
[level
] == 0);
9046 if (wc
->refs
[level
] == 1) {
9047 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
9048 path
->locks
[level
] = 0;
9054 /* wc->stage == DROP_REFERENCE */
9055 BUG_ON(wc
->refs
[level
] > 1 && !path
->locks
[level
]);
9057 if (wc
->refs
[level
] == 1) {
9059 if (wc
->flags
[level
] & BTRFS_BLOCK_FLAG_FULL_BACKREF
)
9060 ret
= btrfs_dec_ref(trans
, root
, eb
, 1);
9062 ret
= btrfs_dec_ref(trans
, root
, eb
, 0);
9063 BUG_ON(ret
); /* -ENOMEM */
9064 ret
= account_leaf_items(trans
, root
, eb
);
9066 btrfs_err_rl(root
->fs_info
,
9068 "%d accounting leaf items. Quota "
9069 "is out of sync, rescan required.",
9073 /* make block locked assertion in clean_tree_block happy */
9074 if (!path
->locks
[level
] &&
9075 btrfs_header_generation(eb
) == trans
->transid
) {
9076 btrfs_tree_lock(eb
);
9077 btrfs_set_lock_blocking(eb
);
9078 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
9080 clean_tree_block(trans
, root
->fs_info
, eb
);
9083 if (eb
== root
->node
) {
9084 if (wc
->flags
[level
] & BTRFS_BLOCK_FLAG_FULL_BACKREF
)
9087 BUG_ON(root
->root_key
.objectid
!=
9088 btrfs_header_owner(eb
));
9090 if (wc
->flags
[level
+ 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF
)
9091 parent
= path
->nodes
[level
+ 1]->start
;
9093 BUG_ON(root
->root_key
.objectid
!=
9094 btrfs_header_owner(path
->nodes
[level
+ 1]));
9097 btrfs_free_tree_block(trans
, root
, eb
, parent
, wc
->refs
[level
] == 1);
9099 wc
->refs
[level
] = 0;
9100 wc
->flags
[level
] = 0;
9104 static noinline
int walk_down_tree(struct btrfs_trans_handle
*trans
,
9105 struct btrfs_root
*root
,
9106 struct btrfs_path
*path
,
9107 struct walk_control
*wc
)
9109 int level
= wc
->level
;
9110 int lookup_info
= 1;
9113 while (level
>= 0) {
9114 ret
= walk_down_proc(trans
, root
, path
, wc
, lookup_info
);
9121 if (path
->slots
[level
] >=
9122 btrfs_header_nritems(path
->nodes
[level
]))
9125 ret
= do_walk_down(trans
, root
, path
, wc
, &lookup_info
);
9127 path
->slots
[level
]++;
9136 static noinline
int walk_up_tree(struct btrfs_trans_handle
*trans
,
9137 struct btrfs_root
*root
,
9138 struct btrfs_path
*path
,
9139 struct walk_control
*wc
, int max_level
)
9141 int level
= wc
->level
;
9144 path
->slots
[level
] = btrfs_header_nritems(path
->nodes
[level
]);
9145 while (level
< max_level
&& path
->nodes
[level
]) {
9147 if (path
->slots
[level
] + 1 <
9148 btrfs_header_nritems(path
->nodes
[level
])) {
9149 path
->slots
[level
]++;
9152 ret
= walk_up_proc(trans
, root
, path
, wc
);
9156 if (path
->locks
[level
]) {
9157 btrfs_tree_unlock_rw(path
->nodes
[level
],
9158 path
->locks
[level
]);
9159 path
->locks
[level
] = 0;
9161 free_extent_buffer(path
->nodes
[level
]);
9162 path
->nodes
[level
] = NULL
;
9170 * drop a subvolume tree.
9172 * this function traverses the tree freeing any blocks that only
9173 * referenced by the tree.
9175 * when a shared tree block is found. this function decreases its
9176 * reference count by one. if update_ref is true, this function
9177 * also make sure backrefs for the shared block and all lower level
9178 * blocks are properly updated.
9180 * If called with for_reloc == 0, may exit early with -EAGAIN
9182 int btrfs_drop_snapshot(struct btrfs_root
*root
,
9183 struct btrfs_block_rsv
*block_rsv
, int update_ref
,
9186 struct btrfs_path
*path
;
9187 struct btrfs_trans_handle
*trans
;
9188 struct btrfs_root
*tree_root
= root
->fs_info
->tree_root
;
9189 struct btrfs_root_item
*root_item
= &root
->root_item
;
9190 struct walk_control
*wc
;
9191 struct btrfs_key key
;
9195 bool root_dropped
= false;
9197 btrfs_debug(root
->fs_info
, "Drop subvolume %llu", root
->objectid
);
9199 path
= btrfs_alloc_path();
9205 wc
= kzalloc(sizeof(*wc
), GFP_NOFS
);
9207 btrfs_free_path(path
);
9212 trans
= btrfs_start_transaction(tree_root
, 0);
9213 if (IS_ERR(trans
)) {
9214 err
= PTR_ERR(trans
);
9219 trans
->block_rsv
= block_rsv
;
9221 if (btrfs_disk_key_objectid(&root_item
->drop_progress
) == 0) {
9222 level
= btrfs_header_level(root
->node
);
9223 path
->nodes
[level
] = btrfs_lock_root_node(root
);
9224 btrfs_set_lock_blocking(path
->nodes
[level
]);
9225 path
->slots
[level
] = 0;
9226 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
9227 memset(&wc
->update_progress
, 0,
9228 sizeof(wc
->update_progress
));
9230 btrfs_disk_key_to_cpu(&key
, &root_item
->drop_progress
);
9231 memcpy(&wc
->update_progress
, &key
,
9232 sizeof(wc
->update_progress
));
9234 level
= root_item
->drop_level
;
9236 path
->lowest_level
= level
;
9237 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
9238 path
->lowest_level
= 0;
9246 * unlock our path, this is safe because only this
9247 * function is allowed to delete this snapshot
9249 btrfs_unlock_up_safe(path
, 0);
9251 level
= btrfs_header_level(root
->node
);
9253 btrfs_tree_lock(path
->nodes
[level
]);
9254 btrfs_set_lock_blocking(path
->nodes
[level
]);
9255 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
9257 ret
= btrfs_lookup_extent_info(trans
, root
,
9258 path
->nodes
[level
]->start
,
9259 level
, 1, &wc
->refs
[level
],
9265 BUG_ON(wc
->refs
[level
] == 0);
9267 if (level
== root_item
->drop_level
)
9270 btrfs_tree_unlock(path
->nodes
[level
]);
9271 path
->locks
[level
] = 0;
9272 WARN_ON(wc
->refs
[level
] != 1);
9278 wc
->shared_level
= -1;
9279 wc
->stage
= DROP_REFERENCE
;
9280 wc
->update_ref
= update_ref
;
9282 wc
->for_reloc
= for_reloc
;
9283 wc
->reada_count
= BTRFS_NODEPTRS_PER_BLOCK(root
);
9287 ret
= walk_down_tree(trans
, root
, path
, wc
);
9293 ret
= walk_up_tree(trans
, root
, path
, wc
, BTRFS_MAX_LEVEL
);
9300 BUG_ON(wc
->stage
!= DROP_REFERENCE
);
9304 if (wc
->stage
== DROP_REFERENCE
) {
9306 btrfs_node_key(path
->nodes
[level
],
9307 &root_item
->drop_progress
,
9308 path
->slots
[level
]);
9309 root_item
->drop_level
= level
;
9312 BUG_ON(wc
->level
== 0);
9313 if (btrfs_should_end_transaction(trans
, tree_root
) ||
9314 (!for_reloc
&& btrfs_need_cleaner_sleep(root
))) {
9315 ret
= btrfs_update_root(trans
, tree_root
,
9319 btrfs_abort_transaction(trans
, ret
);
9324 btrfs_end_transaction_throttle(trans
, tree_root
);
9325 if (!for_reloc
&& btrfs_need_cleaner_sleep(root
)) {
9326 pr_debug("BTRFS: drop snapshot early exit\n");
9331 trans
= btrfs_start_transaction(tree_root
, 0);
9332 if (IS_ERR(trans
)) {
9333 err
= PTR_ERR(trans
);
9337 trans
->block_rsv
= block_rsv
;
9340 btrfs_release_path(path
);
9344 ret
= btrfs_del_root(trans
, tree_root
, &root
->root_key
);
9346 btrfs_abort_transaction(trans
, ret
);
9350 if (root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
) {
9351 ret
= btrfs_find_root(tree_root
, &root
->root_key
, path
,
9354 btrfs_abort_transaction(trans
, ret
);
9357 } else if (ret
> 0) {
9358 /* if we fail to delete the orphan item this time
9359 * around, it'll get picked up the next time.
9361 * The most common failure here is just -ENOENT.
9363 btrfs_del_orphan_item(trans
, tree_root
,
9364 root
->root_key
.objectid
);
9368 if (test_bit(BTRFS_ROOT_IN_RADIX
, &root
->state
)) {
9369 btrfs_add_dropped_root(trans
, root
);
9371 free_extent_buffer(root
->node
);
9372 free_extent_buffer(root
->commit_root
);
9373 btrfs_put_fs_root(root
);
9375 root_dropped
= true;
9377 btrfs_end_transaction_throttle(trans
, tree_root
);
9380 btrfs_free_path(path
);
9383 * So if we need to stop dropping the snapshot for whatever reason we
9384 * need to make sure to add it back to the dead root list so that we
9385 * keep trying to do the work later. This also cleans up roots if we
9386 * don't have it in the radix (like when we recover after a power fail
9387 * or unmount) so we don't leak memory.
9389 if (!for_reloc
&& root_dropped
== false)
9390 btrfs_add_dead_root(root
);
9391 if (err
&& err
!= -EAGAIN
)
9392 btrfs_handle_fs_error(root
->fs_info
, err
, NULL
);
9397 * drop subtree rooted at tree block 'node'.
9399 * NOTE: this function will unlock and release tree block 'node'
9400 * only used by relocation code
9402 int btrfs_drop_subtree(struct btrfs_trans_handle
*trans
,
9403 struct btrfs_root
*root
,
9404 struct extent_buffer
*node
,
9405 struct extent_buffer
*parent
)
9407 struct btrfs_path
*path
;
9408 struct walk_control
*wc
;
9414 BUG_ON(root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
);
9416 path
= btrfs_alloc_path();
9420 wc
= kzalloc(sizeof(*wc
), GFP_NOFS
);
9422 btrfs_free_path(path
);
9426 btrfs_assert_tree_locked(parent
);
9427 parent_level
= btrfs_header_level(parent
);
9428 extent_buffer_get(parent
);
9429 path
->nodes
[parent_level
] = parent
;
9430 path
->slots
[parent_level
] = btrfs_header_nritems(parent
);
9432 btrfs_assert_tree_locked(node
);
9433 level
= btrfs_header_level(node
);
9434 path
->nodes
[level
] = node
;
9435 path
->slots
[level
] = 0;
9436 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
9438 wc
->refs
[parent_level
] = 1;
9439 wc
->flags
[parent_level
] = BTRFS_BLOCK_FLAG_FULL_BACKREF
;
9441 wc
->shared_level
= -1;
9442 wc
->stage
= DROP_REFERENCE
;
9446 wc
->reada_count
= BTRFS_NODEPTRS_PER_BLOCK(root
);
9449 wret
= walk_down_tree(trans
, root
, path
, wc
);
9455 wret
= walk_up_tree(trans
, root
, path
, wc
, parent_level
);
9463 btrfs_free_path(path
);
9467 static u64
update_block_group_flags(struct btrfs_root
*root
, u64 flags
)
9473 * if restripe for this chunk_type is on pick target profile and
9474 * return, otherwise do the usual balance
9476 stripped
= get_restripe_target(root
->fs_info
, flags
);
9478 return extended_to_chunk(stripped
);
9480 num_devices
= root
->fs_info
->fs_devices
->rw_devices
;
9482 stripped
= BTRFS_BLOCK_GROUP_RAID0
|
9483 BTRFS_BLOCK_GROUP_RAID5
| BTRFS_BLOCK_GROUP_RAID6
|
9484 BTRFS_BLOCK_GROUP_RAID1
| BTRFS_BLOCK_GROUP_RAID10
;
9486 if (num_devices
== 1) {
9487 stripped
|= BTRFS_BLOCK_GROUP_DUP
;
9488 stripped
= flags
& ~stripped
;
9490 /* turn raid0 into single device chunks */
9491 if (flags
& BTRFS_BLOCK_GROUP_RAID0
)
9494 /* turn mirroring into duplication */
9495 if (flags
& (BTRFS_BLOCK_GROUP_RAID1
|
9496 BTRFS_BLOCK_GROUP_RAID10
))
9497 return stripped
| BTRFS_BLOCK_GROUP_DUP
;
9499 /* they already had raid on here, just return */
9500 if (flags
& stripped
)
9503 stripped
|= BTRFS_BLOCK_GROUP_DUP
;
9504 stripped
= flags
& ~stripped
;
9506 /* switch duplicated blocks with raid1 */
9507 if (flags
& BTRFS_BLOCK_GROUP_DUP
)
9508 return stripped
| BTRFS_BLOCK_GROUP_RAID1
;
9510 /* this is drive concat, leave it alone */
9516 static int inc_block_group_ro(struct btrfs_block_group_cache
*cache
, int force
)
9518 struct btrfs_space_info
*sinfo
= cache
->space_info
;
9520 u64 min_allocable_bytes
;
9524 * We need some metadata space and system metadata space for
9525 * allocating chunks in some corner cases until we force to set
9526 * it to be readonly.
9529 (BTRFS_BLOCK_GROUP_SYSTEM
| BTRFS_BLOCK_GROUP_METADATA
)) &&
9531 min_allocable_bytes
= SZ_1M
;
9533 min_allocable_bytes
= 0;
9535 spin_lock(&sinfo
->lock
);
9536 spin_lock(&cache
->lock
);
9544 num_bytes
= cache
->key
.offset
- cache
->reserved
- cache
->pinned
-
9545 cache
->bytes_super
- btrfs_block_group_used(&cache
->item
);
9547 if (sinfo
->bytes_used
+ sinfo
->bytes_reserved
+ sinfo
->bytes_pinned
+
9548 sinfo
->bytes_may_use
+ sinfo
->bytes_readonly
+ num_bytes
+
9549 min_allocable_bytes
<= sinfo
->total_bytes
) {
9550 sinfo
->bytes_readonly
+= num_bytes
;
9552 list_add_tail(&cache
->ro_list
, &sinfo
->ro_bgs
);
9556 spin_unlock(&cache
->lock
);
9557 spin_unlock(&sinfo
->lock
);
9561 int btrfs_inc_block_group_ro(struct btrfs_root
*root
,
9562 struct btrfs_block_group_cache
*cache
)
9565 struct btrfs_trans_handle
*trans
;
9570 trans
= btrfs_join_transaction(root
);
9572 return PTR_ERR(trans
);
9575 * we're not allowed to set block groups readonly after the dirty
9576 * block groups cache has started writing. If it already started,
9577 * back off and let this transaction commit
9579 mutex_lock(&root
->fs_info
->ro_block_group_mutex
);
9580 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN
, &trans
->transaction
->flags
)) {
9581 u64 transid
= trans
->transid
;
9583 mutex_unlock(&root
->fs_info
->ro_block_group_mutex
);
9584 btrfs_end_transaction(trans
, root
);
9586 ret
= btrfs_wait_for_commit(root
, transid
);
9593 * if we are changing raid levels, try to allocate a corresponding
9594 * block group with the new raid level.
9596 alloc_flags
= update_block_group_flags(root
, cache
->flags
);
9597 if (alloc_flags
!= cache
->flags
) {
9598 ret
= do_chunk_alloc(trans
, root
, alloc_flags
,
9601 * ENOSPC is allowed here, we may have enough space
9602 * already allocated at the new raid level to
9611 ret
= inc_block_group_ro(cache
, 0);
9614 alloc_flags
= get_alloc_profile(root
, cache
->space_info
->flags
);
9615 ret
= do_chunk_alloc(trans
, root
, alloc_flags
,
9619 ret
= inc_block_group_ro(cache
, 0);
9621 if (cache
->flags
& BTRFS_BLOCK_GROUP_SYSTEM
) {
9622 alloc_flags
= update_block_group_flags(root
, cache
->flags
);
9623 lock_chunks(root
->fs_info
->chunk_root
);
9624 check_system_chunk(trans
, root
, alloc_flags
);
9625 unlock_chunks(root
->fs_info
->chunk_root
);
9627 mutex_unlock(&root
->fs_info
->ro_block_group_mutex
);
9629 btrfs_end_transaction(trans
, root
);
9633 int btrfs_force_chunk_alloc(struct btrfs_trans_handle
*trans
,
9634 struct btrfs_root
*root
, u64 type
)
9636 u64 alloc_flags
= get_alloc_profile(root
, type
);
9637 return do_chunk_alloc(trans
, root
, alloc_flags
,
9642 * helper to account the unused space of all the readonly block group in the
9643 * space_info. takes mirrors into account.
9645 u64
btrfs_account_ro_block_groups_free_space(struct btrfs_space_info
*sinfo
)
9647 struct btrfs_block_group_cache
*block_group
;
9651 /* It's df, we don't care if it's racy */
9652 if (list_empty(&sinfo
->ro_bgs
))
9655 spin_lock(&sinfo
->lock
);
9656 list_for_each_entry(block_group
, &sinfo
->ro_bgs
, ro_list
) {
9657 spin_lock(&block_group
->lock
);
9659 if (!block_group
->ro
) {
9660 spin_unlock(&block_group
->lock
);
9664 if (block_group
->flags
& (BTRFS_BLOCK_GROUP_RAID1
|
9665 BTRFS_BLOCK_GROUP_RAID10
|
9666 BTRFS_BLOCK_GROUP_DUP
))
9671 free_bytes
+= (block_group
->key
.offset
-
9672 btrfs_block_group_used(&block_group
->item
)) *
9675 spin_unlock(&block_group
->lock
);
9677 spin_unlock(&sinfo
->lock
);
9682 void btrfs_dec_block_group_ro(struct btrfs_root
*root
,
9683 struct btrfs_block_group_cache
*cache
)
9685 struct btrfs_space_info
*sinfo
= cache
->space_info
;
9690 spin_lock(&sinfo
->lock
);
9691 spin_lock(&cache
->lock
);
9693 num_bytes
= cache
->key
.offset
- cache
->reserved
-
9694 cache
->pinned
- cache
->bytes_super
-
9695 btrfs_block_group_used(&cache
->item
);
9696 sinfo
->bytes_readonly
-= num_bytes
;
9697 list_del_init(&cache
->ro_list
);
9699 spin_unlock(&cache
->lock
);
9700 spin_unlock(&sinfo
->lock
);
9704 * checks to see if its even possible to relocate this block group.
9706 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9707 * ok to go ahead and try.
9709 int btrfs_can_relocate(struct btrfs_root
*root
, u64 bytenr
)
9711 struct btrfs_block_group_cache
*block_group
;
9712 struct btrfs_space_info
*space_info
;
9713 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
9714 struct btrfs_device
*device
;
9715 struct btrfs_trans_handle
*trans
;
9725 debug
= btrfs_test_opt(root
->fs_info
, ENOSPC_DEBUG
);
9727 block_group
= btrfs_lookup_block_group(root
->fs_info
, bytenr
);
9729 /* odd, couldn't find the block group, leave it alone */
9732 btrfs_warn(root
->fs_info
,
9733 "can't find block group for bytenr %llu",
9738 min_free
= btrfs_block_group_used(&block_group
->item
);
9740 /* no bytes used, we're good */
9744 space_info
= block_group
->space_info
;
9745 spin_lock(&space_info
->lock
);
9747 full
= space_info
->full
;
9750 * if this is the last block group we have in this space, we can't
9751 * relocate it unless we're able to allocate a new chunk below.
9753 * Otherwise, we need to make sure we have room in the space to handle
9754 * all of the extents from this block group. If we can, we're good
9756 if ((space_info
->total_bytes
!= block_group
->key
.offset
) &&
9757 (space_info
->bytes_used
+ space_info
->bytes_reserved
+
9758 space_info
->bytes_pinned
+ space_info
->bytes_readonly
+
9759 min_free
< space_info
->total_bytes
)) {
9760 spin_unlock(&space_info
->lock
);
9763 spin_unlock(&space_info
->lock
);
9766 * ok we don't have enough space, but maybe we have free space on our
9767 * devices to allocate new chunks for relocation, so loop through our
9768 * alloc devices and guess if we have enough space. if this block
9769 * group is going to be restriped, run checks against the target
9770 * profile instead of the current one.
9782 target
= get_restripe_target(root
->fs_info
, block_group
->flags
);
9784 index
= __get_raid_index(extended_to_chunk(target
));
9787 * this is just a balance, so if we were marked as full
9788 * we know there is no space for a new chunk
9792 btrfs_warn(root
->fs_info
,
9793 "no space to alloc new chunk for block group %llu",
9794 block_group
->key
.objectid
);
9798 index
= get_block_group_index(block_group
);
9801 if (index
== BTRFS_RAID_RAID10
) {
9805 } else if (index
== BTRFS_RAID_RAID1
) {
9807 } else if (index
== BTRFS_RAID_DUP
) {
9810 } else if (index
== BTRFS_RAID_RAID0
) {
9811 dev_min
= fs_devices
->rw_devices
;
9812 min_free
= div64_u64(min_free
, dev_min
);
9815 /* We need to do this so that we can look at pending chunks */
9816 trans
= btrfs_join_transaction(root
);
9817 if (IS_ERR(trans
)) {
9818 ret
= PTR_ERR(trans
);
9822 mutex_lock(&root
->fs_info
->chunk_mutex
);
9823 list_for_each_entry(device
, &fs_devices
->alloc_list
, dev_alloc_list
) {
9827 * check to make sure we can actually find a chunk with enough
9828 * space to fit our block group in.
9830 if (device
->total_bytes
> device
->bytes_used
+ min_free
&&
9831 !device
->is_tgtdev_for_dev_replace
) {
9832 ret
= find_free_dev_extent(trans
, device
, min_free
,
9837 if (dev_nr
>= dev_min
)
9843 if (debug
&& ret
== -1)
9844 btrfs_warn(root
->fs_info
,
9845 "no space to allocate a new chunk for block group %llu",
9846 block_group
->key
.objectid
);
9847 mutex_unlock(&root
->fs_info
->chunk_mutex
);
9848 btrfs_end_transaction(trans
, root
);
9850 btrfs_put_block_group(block_group
);
9854 static int find_first_block_group(struct btrfs_root
*root
,
9855 struct btrfs_path
*path
, struct btrfs_key
*key
)
9858 struct btrfs_key found_key
;
9859 struct extent_buffer
*leaf
;
9862 ret
= btrfs_search_slot(NULL
, root
, key
, path
, 0, 0);
9867 slot
= path
->slots
[0];
9868 leaf
= path
->nodes
[0];
9869 if (slot
>= btrfs_header_nritems(leaf
)) {
9870 ret
= btrfs_next_leaf(root
, path
);
9877 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
9879 if (found_key
.objectid
>= key
->objectid
&&
9880 found_key
.type
== BTRFS_BLOCK_GROUP_ITEM_KEY
) {
9881 struct extent_map_tree
*em_tree
;
9882 struct extent_map
*em
;
9884 em_tree
= &root
->fs_info
->mapping_tree
.map_tree
;
9885 read_lock(&em_tree
->lock
);
9886 em
= lookup_extent_mapping(em_tree
, found_key
.objectid
,
9888 read_unlock(&em_tree
->lock
);
9890 btrfs_err(root
->fs_info
,
9891 "logical %llu len %llu found bg but no related chunk",
9892 found_key
.objectid
, found_key
.offset
);
9897 free_extent_map(em
);
9906 void btrfs_put_block_group_cache(struct btrfs_fs_info
*info
)
9908 struct btrfs_block_group_cache
*block_group
;
9912 struct inode
*inode
;
9914 block_group
= btrfs_lookup_first_block_group(info
, last
);
9915 while (block_group
) {
9916 spin_lock(&block_group
->lock
);
9917 if (block_group
->iref
)
9919 spin_unlock(&block_group
->lock
);
9920 block_group
= next_block_group(info
->tree_root
,
9930 inode
= block_group
->inode
;
9931 block_group
->iref
= 0;
9932 block_group
->inode
= NULL
;
9933 spin_unlock(&block_group
->lock
);
9934 ASSERT(block_group
->io_ctl
.inode
== NULL
);
9936 last
= block_group
->key
.objectid
+ block_group
->key
.offset
;
9937 btrfs_put_block_group(block_group
);
9941 int btrfs_free_block_groups(struct btrfs_fs_info
*info
)
9943 struct btrfs_block_group_cache
*block_group
;
9944 struct btrfs_space_info
*space_info
;
9945 struct btrfs_caching_control
*caching_ctl
;
9948 down_write(&info
->commit_root_sem
);
9949 while (!list_empty(&info
->caching_block_groups
)) {
9950 caching_ctl
= list_entry(info
->caching_block_groups
.next
,
9951 struct btrfs_caching_control
, list
);
9952 list_del(&caching_ctl
->list
);
9953 put_caching_control(caching_ctl
);
9955 up_write(&info
->commit_root_sem
);
9957 spin_lock(&info
->unused_bgs_lock
);
9958 while (!list_empty(&info
->unused_bgs
)) {
9959 block_group
= list_first_entry(&info
->unused_bgs
,
9960 struct btrfs_block_group_cache
,
9962 list_del_init(&block_group
->bg_list
);
9963 btrfs_put_block_group(block_group
);
9965 spin_unlock(&info
->unused_bgs_lock
);
9967 spin_lock(&info
->block_group_cache_lock
);
9968 while ((n
= rb_last(&info
->block_group_cache_tree
)) != NULL
) {
9969 block_group
= rb_entry(n
, struct btrfs_block_group_cache
,
9971 rb_erase(&block_group
->cache_node
,
9972 &info
->block_group_cache_tree
);
9973 RB_CLEAR_NODE(&block_group
->cache_node
);
9974 spin_unlock(&info
->block_group_cache_lock
);
9976 down_write(&block_group
->space_info
->groups_sem
);
9977 list_del(&block_group
->list
);
9978 up_write(&block_group
->space_info
->groups_sem
);
9980 if (block_group
->cached
== BTRFS_CACHE_STARTED
)
9981 wait_block_group_cache_done(block_group
);
9984 * We haven't cached this block group, which means we could
9985 * possibly have excluded extents on this block group.
9987 if (block_group
->cached
== BTRFS_CACHE_NO
||
9988 block_group
->cached
== BTRFS_CACHE_ERROR
)
9989 free_excluded_extents(info
->extent_root
, block_group
);
9991 btrfs_remove_free_space_cache(block_group
);
9992 ASSERT(list_empty(&block_group
->dirty_list
));
9993 ASSERT(list_empty(&block_group
->io_list
));
9994 ASSERT(list_empty(&block_group
->bg_list
));
9995 ASSERT(atomic_read(&block_group
->count
) == 1);
9996 btrfs_put_block_group(block_group
);
9998 spin_lock(&info
->block_group_cache_lock
);
10000 spin_unlock(&info
->block_group_cache_lock
);
10002 /* now that all the block groups are freed, go through and
10003 * free all the space_info structs. This is only called during
10004 * the final stages of unmount, and so we know nobody is
10005 * using them. We call synchronize_rcu() once before we start,
10006 * just to be on the safe side.
10010 release_global_block_rsv(info
);
10012 while (!list_empty(&info
->space_info
)) {
10015 space_info
= list_entry(info
->space_info
.next
,
10016 struct btrfs_space_info
,
10020 * Do not hide this behind enospc_debug, this is actually
10021 * important and indicates a real bug if this happens.
10023 if (WARN_ON(space_info
->bytes_pinned
> 0 ||
10024 space_info
->bytes_reserved
> 0 ||
10025 space_info
->bytes_may_use
> 0))
10026 dump_space_info(space_info
, 0, 0);
10027 list_del(&space_info
->list
);
10028 for (i
= 0; i
< BTRFS_NR_RAID_TYPES
; i
++) {
10029 struct kobject
*kobj
;
10030 kobj
= space_info
->block_group_kobjs
[i
];
10031 space_info
->block_group_kobjs
[i
] = NULL
;
10037 kobject_del(&space_info
->kobj
);
10038 kobject_put(&space_info
->kobj
);
10043 static void __link_block_group(struct btrfs_space_info
*space_info
,
10044 struct btrfs_block_group_cache
*cache
)
10046 int index
= get_block_group_index(cache
);
10047 bool first
= false;
10049 down_write(&space_info
->groups_sem
);
10050 if (list_empty(&space_info
->block_groups
[index
]))
10052 list_add_tail(&cache
->list
, &space_info
->block_groups
[index
]);
10053 up_write(&space_info
->groups_sem
);
10056 struct raid_kobject
*rkobj
;
10059 rkobj
= kzalloc(sizeof(*rkobj
), GFP_NOFS
);
10062 rkobj
->raid_type
= index
;
10063 kobject_init(&rkobj
->kobj
, &btrfs_raid_ktype
);
10064 ret
= kobject_add(&rkobj
->kobj
, &space_info
->kobj
,
10065 "%s", get_raid_name(index
));
10067 kobject_put(&rkobj
->kobj
);
10070 space_info
->block_group_kobjs
[index
] = &rkobj
->kobj
;
10075 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
10078 static struct btrfs_block_group_cache
*
10079 btrfs_create_block_group_cache(struct btrfs_root
*root
, u64 start
, u64 size
)
10081 struct btrfs_block_group_cache
*cache
;
10083 cache
= kzalloc(sizeof(*cache
), GFP_NOFS
);
10087 cache
->free_space_ctl
= kzalloc(sizeof(*cache
->free_space_ctl
),
10089 if (!cache
->free_space_ctl
) {
10094 cache
->key
.objectid
= start
;
10095 cache
->key
.offset
= size
;
10096 cache
->key
.type
= BTRFS_BLOCK_GROUP_ITEM_KEY
;
10098 cache
->sectorsize
= root
->sectorsize
;
10099 cache
->fs_info
= root
->fs_info
;
10100 cache
->full_stripe_len
= btrfs_full_stripe_len(root
,
10101 &root
->fs_info
->mapping_tree
,
10103 set_free_space_tree_thresholds(cache
);
10105 atomic_set(&cache
->count
, 1);
10106 spin_lock_init(&cache
->lock
);
10107 init_rwsem(&cache
->data_rwsem
);
10108 INIT_LIST_HEAD(&cache
->list
);
10109 INIT_LIST_HEAD(&cache
->cluster_list
);
10110 INIT_LIST_HEAD(&cache
->bg_list
);
10111 INIT_LIST_HEAD(&cache
->ro_list
);
10112 INIT_LIST_HEAD(&cache
->dirty_list
);
10113 INIT_LIST_HEAD(&cache
->io_list
);
10114 btrfs_init_free_space_ctl(cache
);
10115 atomic_set(&cache
->trimming
, 0);
10116 mutex_init(&cache
->free_space_lock
);
10121 int btrfs_read_block_groups(struct btrfs_root
*root
)
10123 struct btrfs_path
*path
;
10125 struct btrfs_block_group_cache
*cache
;
10126 struct btrfs_fs_info
*info
= root
->fs_info
;
10127 struct btrfs_space_info
*space_info
;
10128 struct btrfs_key key
;
10129 struct btrfs_key found_key
;
10130 struct extent_buffer
*leaf
;
10131 int need_clear
= 0;
10134 root
= info
->extent_root
;
10137 key
.type
= BTRFS_BLOCK_GROUP_ITEM_KEY
;
10138 path
= btrfs_alloc_path();
10141 path
->reada
= READA_FORWARD
;
10143 cache_gen
= btrfs_super_cache_generation(root
->fs_info
->super_copy
);
10144 if (btrfs_test_opt(root
->fs_info
, SPACE_CACHE
) &&
10145 btrfs_super_generation(root
->fs_info
->super_copy
) != cache_gen
)
10147 if (btrfs_test_opt(root
->fs_info
, CLEAR_CACHE
))
10151 ret
= find_first_block_group(root
, path
, &key
);
10157 leaf
= path
->nodes
[0];
10158 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
10160 cache
= btrfs_create_block_group_cache(root
, found_key
.objectid
,
10169 * When we mount with old space cache, we need to
10170 * set BTRFS_DC_CLEAR and set dirty flag.
10172 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
10173 * truncate the old free space cache inode and
10175 * b) Setting 'dirty flag' makes sure that we flush
10176 * the new space cache info onto disk.
10178 if (btrfs_test_opt(root
->fs_info
, SPACE_CACHE
))
10179 cache
->disk_cache_state
= BTRFS_DC_CLEAR
;
10182 read_extent_buffer(leaf
, &cache
->item
,
10183 btrfs_item_ptr_offset(leaf
, path
->slots
[0]),
10184 sizeof(cache
->item
));
10185 cache
->flags
= btrfs_block_group_flags(&cache
->item
);
10187 key
.objectid
= found_key
.objectid
+ found_key
.offset
;
10188 btrfs_release_path(path
);
10191 * We need to exclude the super stripes now so that the space
10192 * info has super bytes accounted for, otherwise we'll think
10193 * we have more space than we actually do.
10195 ret
= exclude_super_stripes(root
, cache
);
10198 * We may have excluded something, so call this just in
10201 free_excluded_extents(root
, cache
);
10202 btrfs_put_block_group(cache
);
10207 * check for two cases, either we are full, and therefore
10208 * don't need to bother with the caching work since we won't
10209 * find any space, or we are empty, and we can just add all
10210 * the space in and be done with it. This saves us _alot_ of
10211 * time, particularly in the full case.
10213 if (found_key
.offset
== btrfs_block_group_used(&cache
->item
)) {
10214 cache
->last_byte_to_unpin
= (u64
)-1;
10215 cache
->cached
= BTRFS_CACHE_FINISHED
;
10216 free_excluded_extents(root
, cache
);
10217 } else if (btrfs_block_group_used(&cache
->item
) == 0) {
10218 cache
->last_byte_to_unpin
= (u64
)-1;
10219 cache
->cached
= BTRFS_CACHE_FINISHED
;
10220 add_new_free_space(cache
, root
->fs_info
,
10221 found_key
.objectid
,
10222 found_key
.objectid
+
10224 free_excluded_extents(root
, cache
);
10227 ret
= btrfs_add_block_group_cache(root
->fs_info
, cache
);
10229 btrfs_remove_free_space_cache(cache
);
10230 btrfs_put_block_group(cache
);
10234 trace_btrfs_add_block_group(root
->fs_info
, cache
, 0);
10235 ret
= update_space_info(info
, cache
->flags
, found_key
.offset
,
10236 btrfs_block_group_used(&cache
->item
),
10237 cache
->bytes_super
, &space_info
);
10239 btrfs_remove_free_space_cache(cache
);
10240 spin_lock(&info
->block_group_cache_lock
);
10241 rb_erase(&cache
->cache_node
,
10242 &info
->block_group_cache_tree
);
10243 RB_CLEAR_NODE(&cache
->cache_node
);
10244 spin_unlock(&info
->block_group_cache_lock
);
10245 btrfs_put_block_group(cache
);
10249 cache
->space_info
= space_info
;
10251 __link_block_group(space_info
, cache
);
10253 set_avail_alloc_bits(root
->fs_info
, cache
->flags
);
10254 if (btrfs_chunk_readonly(root
, cache
->key
.objectid
)) {
10255 inc_block_group_ro(cache
, 1);
10256 } else if (btrfs_block_group_used(&cache
->item
) == 0) {
10257 spin_lock(&info
->unused_bgs_lock
);
10258 /* Should always be true but just in case. */
10259 if (list_empty(&cache
->bg_list
)) {
10260 btrfs_get_block_group(cache
);
10261 list_add_tail(&cache
->bg_list
,
10262 &info
->unused_bgs
);
10264 spin_unlock(&info
->unused_bgs_lock
);
10268 list_for_each_entry_rcu(space_info
, &root
->fs_info
->space_info
, list
) {
10269 if (!(get_alloc_profile(root
, space_info
->flags
) &
10270 (BTRFS_BLOCK_GROUP_RAID10
|
10271 BTRFS_BLOCK_GROUP_RAID1
|
10272 BTRFS_BLOCK_GROUP_RAID5
|
10273 BTRFS_BLOCK_GROUP_RAID6
|
10274 BTRFS_BLOCK_GROUP_DUP
)))
10277 * avoid allocating from un-mirrored block group if there are
10278 * mirrored block groups.
10280 list_for_each_entry(cache
,
10281 &space_info
->block_groups
[BTRFS_RAID_RAID0
],
10283 inc_block_group_ro(cache
, 1);
10284 list_for_each_entry(cache
,
10285 &space_info
->block_groups
[BTRFS_RAID_SINGLE
],
10287 inc_block_group_ro(cache
, 1);
10290 init_global_block_rsv(info
);
10293 btrfs_free_path(path
);
10297 void btrfs_create_pending_block_groups(struct btrfs_trans_handle
*trans
,
10298 struct btrfs_root
*root
)
10300 struct btrfs_block_group_cache
*block_group
, *tmp
;
10301 struct btrfs_root
*extent_root
= root
->fs_info
->extent_root
;
10302 struct btrfs_block_group_item item
;
10303 struct btrfs_key key
;
10305 bool can_flush_pending_bgs
= trans
->can_flush_pending_bgs
;
10307 trans
->can_flush_pending_bgs
= false;
10308 list_for_each_entry_safe(block_group
, tmp
, &trans
->new_bgs
, bg_list
) {
10312 spin_lock(&block_group
->lock
);
10313 memcpy(&item
, &block_group
->item
, sizeof(item
));
10314 memcpy(&key
, &block_group
->key
, sizeof(key
));
10315 spin_unlock(&block_group
->lock
);
10317 ret
= btrfs_insert_item(trans
, extent_root
, &key
, &item
,
10320 btrfs_abort_transaction(trans
, ret
);
10321 ret
= btrfs_finish_chunk_alloc(trans
, extent_root
,
10322 key
.objectid
, key
.offset
);
10324 btrfs_abort_transaction(trans
, ret
);
10325 add_block_group_free_space(trans
, root
->fs_info
, block_group
);
10326 /* already aborted the transaction if it failed. */
10328 list_del_init(&block_group
->bg_list
);
10330 trans
->can_flush_pending_bgs
= can_flush_pending_bgs
;
10333 int btrfs_make_block_group(struct btrfs_trans_handle
*trans
,
10334 struct btrfs_root
*root
, u64 bytes_used
,
10335 u64 type
, u64 chunk_objectid
, u64 chunk_offset
,
10339 struct btrfs_root
*extent_root
;
10340 struct btrfs_block_group_cache
*cache
;
10341 extent_root
= root
->fs_info
->extent_root
;
10343 btrfs_set_log_full_commit(root
->fs_info
, trans
);
10345 cache
= btrfs_create_block_group_cache(root
, chunk_offset
, size
);
10349 btrfs_set_block_group_used(&cache
->item
, bytes_used
);
10350 btrfs_set_block_group_chunk_objectid(&cache
->item
, chunk_objectid
);
10351 btrfs_set_block_group_flags(&cache
->item
, type
);
10353 cache
->flags
= type
;
10354 cache
->last_byte_to_unpin
= (u64
)-1;
10355 cache
->cached
= BTRFS_CACHE_FINISHED
;
10356 cache
->needs_free_space
= 1;
10357 ret
= exclude_super_stripes(root
, cache
);
10360 * We may have excluded something, so call this just in
10363 free_excluded_extents(root
, cache
);
10364 btrfs_put_block_group(cache
);
10368 add_new_free_space(cache
, root
->fs_info
, chunk_offset
,
10369 chunk_offset
+ size
);
10371 free_excluded_extents(root
, cache
);
10373 #ifdef CONFIG_BTRFS_DEBUG
10374 if (btrfs_should_fragment_free_space(root
, cache
)) {
10375 u64 new_bytes_used
= size
- bytes_used
;
10377 bytes_used
+= new_bytes_used
>> 1;
10378 fragment_free_space(root
, cache
);
10382 * Call to ensure the corresponding space_info object is created and
10383 * assigned to our block group, but don't update its counters just yet.
10384 * We want our bg to be added to the rbtree with its ->space_info set.
10386 ret
= update_space_info(root
->fs_info
, cache
->flags
, 0, 0, 0,
10387 &cache
->space_info
);
10389 btrfs_remove_free_space_cache(cache
);
10390 btrfs_put_block_group(cache
);
10394 ret
= btrfs_add_block_group_cache(root
->fs_info
, cache
);
10396 btrfs_remove_free_space_cache(cache
);
10397 btrfs_put_block_group(cache
);
10402 * Now that our block group has its ->space_info set and is inserted in
10403 * the rbtree, update the space info's counters.
10405 trace_btrfs_add_block_group(root
->fs_info
, cache
, 1);
10406 ret
= update_space_info(root
->fs_info
, cache
->flags
, size
, bytes_used
,
10407 cache
->bytes_super
, &cache
->space_info
);
10409 btrfs_remove_free_space_cache(cache
);
10410 spin_lock(&root
->fs_info
->block_group_cache_lock
);
10411 rb_erase(&cache
->cache_node
,
10412 &root
->fs_info
->block_group_cache_tree
);
10413 RB_CLEAR_NODE(&cache
->cache_node
);
10414 spin_unlock(&root
->fs_info
->block_group_cache_lock
);
10415 btrfs_put_block_group(cache
);
10418 update_global_block_rsv(root
->fs_info
);
10420 __link_block_group(cache
->space_info
, cache
);
10422 list_add_tail(&cache
->bg_list
, &trans
->new_bgs
);
10424 set_avail_alloc_bits(extent_root
->fs_info
, type
);
10428 static void clear_avail_alloc_bits(struct btrfs_fs_info
*fs_info
, u64 flags
)
10430 u64 extra_flags
= chunk_to_extended(flags
) &
10431 BTRFS_EXTENDED_PROFILE_MASK
;
10433 write_seqlock(&fs_info
->profiles_lock
);
10434 if (flags
& BTRFS_BLOCK_GROUP_DATA
)
10435 fs_info
->avail_data_alloc_bits
&= ~extra_flags
;
10436 if (flags
& BTRFS_BLOCK_GROUP_METADATA
)
10437 fs_info
->avail_metadata_alloc_bits
&= ~extra_flags
;
10438 if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
)
10439 fs_info
->avail_system_alloc_bits
&= ~extra_flags
;
10440 write_sequnlock(&fs_info
->profiles_lock
);
10443 int btrfs_remove_block_group(struct btrfs_trans_handle
*trans
,
10444 struct btrfs_root
*root
, u64 group_start
,
10445 struct extent_map
*em
)
10447 struct btrfs_path
*path
;
10448 struct btrfs_block_group_cache
*block_group
;
10449 struct btrfs_free_cluster
*cluster
;
10450 struct btrfs_root
*tree_root
= root
->fs_info
->tree_root
;
10451 struct btrfs_key key
;
10452 struct inode
*inode
;
10453 struct kobject
*kobj
= NULL
;
10457 struct btrfs_caching_control
*caching_ctl
= NULL
;
10460 root
= root
->fs_info
->extent_root
;
10462 block_group
= btrfs_lookup_block_group(root
->fs_info
, group_start
);
10463 BUG_ON(!block_group
);
10464 BUG_ON(!block_group
->ro
);
10467 * Free the reserved super bytes from this block group before
10470 free_excluded_extents(root
, block_group
);
10472 memcpy(&key
, &block_group
->key
, sizeof(key
));
10473 index
= get_block_group_index(block_group
);
10474 if (block_group
->flags
& (BTRFS_BLOCK_GROUP_DUP
|
10475 BTRFS_BLOCK_GROUP_RAID1
|
10476 BTRFS_BLOCK_GROUP_RAID10
))
10481 /* make sure this block group isn't part of an allocation cluster */
10482 cluster
= &root
->fs_info
->data_alloc_cluster
;
10483 spin_lock(&cluster
->refill_lock
);
10484 btrfs_return_cluster_to_free_space(block_group
, cluster
);
10485 spin_unlock(&cluster
->refill_lock
);
10488 * make sure this block group isn't part of a metadata
10489 * allocation cluster
10491 cluster
= &root
->fs_info
->meta_alloc_cluster
;
10492 spin_lock(&cluster
->refill_lock
);
10493 btrfs_return_cluster_to_free_space(block_group
, cluster
);
10494 spin_unlock(&cluster
->refill_lock
);
10496 path
= btrfs_alloc_path();
10503 * get the inode first so any iput calls done for the io_list
10504 * aren't the final iput (no unlinks allowed now)
10506 inode
= lookup_free_space_inode(tree_root
, block_group
, path
);
10508 mutex_lock(&trans
->transaction
->cache_write_mutex
);
10510 * make sure our free spache cache IO is done before remove the
10513 spin_lock(&trans
->transaction
->dirty_bgs_lock
);
10514 if (!list_empty(&block_group
->io_list
)) {
10515 list_del_init(&block_group
->io_list
);
10517 WARN_ON(!IS_ERR(inode
) && inode
!= block_group
->io_ctl
.inode
);
10519 spin_unlock(&trans
->transaction
->dirty_bgs_lock
);
10520 btrfs_wait_cache_io(root
, trans
, block_group
,
10521 &block_group
->io_ctl
, path
,
10522 block_group
->key
.objectid
);
10523 btrfs_put_block_group(block_group
);
10524 spin_lock(&trans
->transaction
->dirty_bgs_lock
);
10527 if (!list_empty(&block_group
->dirty_list
)) {
10528 list_del_init(&block_group
->dirty_list
);
10529 btrfs_put_block_group(block_group
);
10531 spin_unlock(&trans
->transaction
->dirty_bgs_lock
);
10532 mutex_unlock(&trans
->transaction
->cache_write_mutex
);
10534 if (!IS_ERR(inode
)) {
10535 ret
= btrfs_orphan_add(trans
, inode
);
10537 btrfs_add_delayed_iput(inode
);
10540 clear_nlink(inode
);
10541 /* One for the block groups ref */
10542 spin_lock(&block_group
->lock
);
10543 if (block_group
->iref
) {
10544 block_group
->iref
= 0;
10545 block_group
->inode
= NULL
;
10546 spin_unlock(&block_group
->lock
);
10549 spin_unlock(&block_group
->lock
);
10551 /* One for our lookup ref */
10552 btrfs_add_delayed_iput(inode
);
10555 key
.objectid
= BTRFS_FREE_SPACE_OBJECTID
;
10556 key
.offset
= block_group
->key
.objectid
;
10559 ret
= btrfs_search_slot(trans
, tree_root
, &key
, path
, -1, 1);
10563 btrfs_release_path(path
);
10565 ret
= btrfs_del_item(trans
, tree_root
, path
);
10568 btrfs_release_path(path
);
10571 spin_lock(&root
->fs_info
->block_group_cache_lock
);
10572 rb_erase(&block_group
->cache_node
,
10573 &root
->fs_info
->block_group_cache_tree
);
10574 RB_CLEAR_NODE(&block_group
->cache_node
);
10576 if (root
->fs_info
->first_logical_byte
== block_group
->key
.objectid
)
10577 root
->fs_info
->first_logical_byte
= (u64
)-1;
10578 spin_unlock(&root
->fs_info
->block_group_cache_lock
);
10580 down_write(&block_group
->space_info
->groups_sem
);
10582 * we must use list_del_init so people can check to see if they
10583 * are still on the list after taking the semaphore
10585 list_del_init(&block_group
->list
);
10586 if (list_empty(&block_group
->space_info
->block_groups
[index
])) {
10587 kobj
= block_group
->space_info
->block_group_kobjs
[index
];
10588 block_group
->space_info
->block_group_kobjs
[index
] = NULL
;
10589 clear_avail_alloc_bits(root
->fs_info
, block_group
->flags
);
10591 up_write(&block_group
->space_info
->groups_sem
);
10597 if (block_group
->has_caching_ctl
)
10598 caching_ctl
= get_caching_control(block_group
);
10599 if (block_group
->cached
== BTRFS_CACHE_STARTED
)
10600 wait_block_group_cache_done(block_group
);
10601 if (block_group
->has_caching_ctl
) {
10602 down_write(&root
->fs_info
->commit_root_sem
);
10603 if (!caching_ctl
) {
10604 struct btrfs_caching_control
*ctl
;
10606 list_for_each_entry(ctl
,
10607 &root
->fs_info
->caching_block_groups
, list
)
10608 if (ctl
->block_group
== block_group
) {
10610 atomic_inc(&caching_ctl
->count
);
10615 list_del_init(&caching_ctl
->list
);
10616 up_write(&root
->fs_info
->commit_root_sem
);
10618 /* Once for the caching bgs list and once for us. */
10619 put_caching_control(caching_ctl
);
10620 put_caching_control(caching_ctl
);
10624 spin_lock(&trans
->transaction
->dirty_bgs_lock
);
10625 if (!list_empty(&block_group
->dirty_list
)) {
10628 if (!list_empty(&block_group
->io_list
)) {
10631 spin_unlock(&trans
->transaction
->dirty_bgs_lock
);
10632 btrfs_remove_free_space_cache(block_group
);
10634 spin_lock(&block_group
->space_info
->lock
);
10635 list_del_init(&block_group
->ro_list
);
10637 if (btrfs_test_opt(root
->fs_info
, ENOSPC_DEBUG
)) {
10638 WARN_ON(block_group
->space_info
->total_bytes
10639 < block_group
->key
.offset
);
10640 WARN_ON(block_group
->space_info
->bytes_readonly
10641 < block_group
->key
.offset
);
10642 WARN_ON(block_group
->space_info
->disk_total
10643 < block_group
->key
.offset
* factor
);
10645 block_group
->space_info
->total_bytes
-= block_group
->key
.offset
;
10646 block_group
->space_info
->bytes_readonly
-= block_group
->key
.offset
;
10647 block_group
->space_info
->disk_total
-= block_group
->key
.offset
* factor
;
10649 spin_unlock(&block_group
->space_info
->lock
);
10651 memcpy(&key
, &block_group
->key
, sizeof(key
));
10654 if (!list_empty(&em
->list
)) {
10655 /* We're in the transaction->pending_chunks list. */
10656 free_extent_map(em
);
10658 spin_lock(&block_group
->lock
);
10659 block_group
->removed
= 1;
10661 * At this point trimming can't start on this block group, because we
10662 * removed the block group from the tree fs_info->block_group_cache_tree
10663 * so no one can't find it anymore and even if someone already got this
10664 * block group before we removed it from the rbtree, they have already
10665 * incremented block_group->trimming - if they didn't, they won't find
10666 * any free space entries because we already removed them all when we
10667 * called btrfs_remove_free_space_cache().
10669 * And we must not remove the extent map from the fs_info->mapping_tree
10670 * to prevent the same logical address range and physical device space
10671 * ranges from being reused for a new block group. This is because our
10672 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10673 * completely transactionless, so while it is trimming a range the
10674 * currently running transaction might finish and a new one start,
10675 * allowing for new block groups to be created that can reuse the same
10676 * physical device locations unless we take this special care.
10678 * There may also be an implicit trim operation if the file system
10679 * is mounted with -odiscard. The same protections must remain
10680 * in place until the extents have been discarded completely when
10681 * the transaction commit has completed.
10683 remove_em
= (atomic_read(&block_group
->trimming
) == 0);
10685 * Make sure a trimmer task always sees the em in the pinned_chunks list
10686 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10687 * before checking block_group->removed).
10691 * Our em might be in trans->transaction->pending_chunks which
10692 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10693 * and so is the fs_info->pinned_chunks list.
10695 * So at this point we must be holding the chunk_mutex to avoid
10696 * any races with chunk allocation (more specifically at
10697 * volumes.c:contains_pending_extent()), to ensure it always
10698 * sees the em, either in the pending_chunks list or in the
10699 * pinned_chunks list.
10701 list_move_tail(&em
->list
, &root
->fs_info
->pinned_chunks
);
10703 spin_unlock(&block_group
->lock
);
10706 struct extent_map_tree
*em_tree
;
10708 em_tree
= &root
->fs_info
->mapping_tree
.map_tree
;
10709 write_lock(&em_tree
->lock
);
10711 * The em might be in the pending_chunks list, so make sure the
10712 * chunk mutex is locked, since remove_extent_mapping() will
10713 * delete us from that list.
10715 remove_extent_mapping(em_tree
, em
);
10716 write_unlock(&em_tree
->lock
);
10717 /* once for the tree */
10718 free_extent_map(em
);
10721 unlock_chunks(root
);
10723 ret
= remove_block_group_free_space(trans
, root
->fs_info
, block_group
);
10727 btrfs_put_block_group(block_group
);
10728 btrfs_put_block_group(block_group
);
10730 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
10736 ret
= btrfs_del_item(trans
, root
, path
);
10738 btrfs_free_path(path
);
10742 struct btrfs_trans_handle
*
10743 btrfs_start_trans_remove_block_group(struct btrfs_fs_info
*fs_info
,
10744 const u64 chunk_offset
)
10746 struct extent_map_tree
*em_tree
= &fs_info
->mapping_tree
.map_tree
;
10747 struct extent_map
*em
;
10748 struct map_lookup
*map
;
10749 unsigned int num_items
;
10751 read_lock(&em_tree
->lock
);
10752 em
= lookup_extent_mapping(em_tree
, chunk_offset
, 1);
10753 read_unlock(&em_tree
->lock
);
10754 ASSERT(em
&& em
->start
== chunk_offset
);
10757 * We need to reserve 3 + N units from the metadata space info in order
10758 * to remove a block group (done at btrfs_remove_chunk() and at
10759 * btrfs_remove_block_group()), which are used for:
10761 * 1 unit for adding the free space inode's orphan (located in the tree
10763 * 1 unit for deleting the block group item (located in the extent
10765 * 1 unit for deleting the free space item (located in tree of tree
10767 * N units for deleting N device extent items corresponding to each
10768 * stripe (located in the device tree).
10770 * In order to remove a block group we also need to reserve units in the
10771 * system space info in order to update the chunk tree (update one or
10772 * more device items and remove one chunk item), but this is done at
10773 * btrfs_remove_chunk() through a call to check_system_chunk().
10775 map
= em
->map_lookup
;
10776 num_items
= 3 + map
->num_stripes
;
10777 free_extent_map(em
);
10779 return btrfs_start_transaction_fallback_global_rsv(fs_info
->extent_root
,
10784 * Process the unused_bgs list and remove any that don't have any allocated
10785 * space inside of them.
10787 void btrfs_delete_unused_bgs(struct btrfs_fs_info
*fs_info
)
10789 struct btrfs_block_group_cache
*block_group
;
10790 struct btrfs_space_info
*space_info
;
10791 struct btrfs_root
*root
= fs_info
->extent_root
;
10792 struct btrfs_trans_handle
*trans
;
10795 if (!fs_info
->open
)
10798 spin_lock(&fs_info
->unused_bgs_lock
);
10799 while (!list_empty(&fs_info
->unused_bgs
)) {
10803 block_group
= list_first_entry(&fs_info
->unused_bgs
,
10804 struct btrfs_block_group_cache
,
10806 list_del_init(&block_group
->bg_list
);
10808 space_info
= block_group
->space_info
;
10810 if (ret
|| btrfs_mixed_space_info(space_info
)) {
10811 btrfs_put_block_group(block_group
);
10814 spin_unlock(&fs_info
->unused_bgs_lock
);
10816 mutex_lock(&fs_info
->delete_unused_bgs_mutex
);
10818 /* Don't want to race with allocators so take the groups_sem */
10819 down_write(&space_info
->groups_sem
);
10820 spin_lock(&block_group
->lock
);
10821 if (block_group
->reserved
||
10822 btrfs_block_group_used(&block_group
->item
) ||
10824 list_is_singular(&block_group
->list
)) {
10826 * We want to bail if we made new allocations or have
10827 * outstanding allocations in this block group. We do
10828 * the ro check in case balance is currently acting on
10829 * this block group.
10831 spin_unlock(&block_group
->lock
);
10832 up_write(&space_info
->groups_sem
);
10835 spin_unlock(&block_group
->lock
);
10837 /* We don't want to force the issue, only flip if it's ok. */
10838 ret
= inc_block_group_ro(block_group
, 0);
10839 up_write(&space_info
->groups_sem
);
10846 * Want to do this before we do anything else so we can recover
10847 * properly if we fail to join the transaction.
10849 trans
= btrfs_start_trans_remove_block_group(fs_info
,
10850 block_group
->key
.objectid
);
10851 if (IS_ERR(trans
)) {
10852 btrfs_dec_block_group_ro(root
, block_group
);
10853 ret
= PTR_ERR(trans
);
10858 * We could have pending pinned extents for this block group,
10859 * just delete them, we don't care about them anymore.
10861 start
= block_group
->key
.objectid
;
10862 end
= start
+ block_group
->key
.offset
- 1;
10864 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10865 * btrfs_finish_extent_commit(). If we are at transaction N,
10866 * another task might be running finish_extent_commit() for the
10867 * previous transaction N - 1, and have seen a range belonging
10868 * to the block group in freed_extents[] before we were able to
10869 * clear the whole block group range from freed_extents[]. This
10870 * means that task can lookup for the block group after we
10871 * unpinned it from freed_extents[] and removed it, leading to
10872 * a BUG_ON() at btrfs_unpin_extent_range().
10874 mutex_lock(&fs_info
->unused_bg_unpin_mutex
);
10875 ret
= clear_extent_bits(&fs_info
->freed_extents
[0], start
, end
,
10878 mutex_unlock(&fs_info
->unused_bg_unpin_mutex
);
10879 btrfs_dec_block_group_ro(root
, block_group
);
10882 ret
= clear_extent_bits(&fs_info
->freed_extents
[1], start
, end
,
10885 mutex_unlock(&fs_info
->unused_bg_unpin_mutex
);
10886 btrfs_dec_block_group_ro(root
, block_group
);
10889 mutex_unlock(&fs_info
->unused_bg_unpin_mutex
);
10891 /* Reset pinned so btrfs_put_block_group doesn't complain */
10892 spin_lock(&space_info
->lock
);
10893 spin_lock(&block_group
->lock
);
10895 space_info
->bytes_pinned
-= block_group
->pinned
;
10896 space_info
->bytes_readonly
+= block_group
->pinned
;
10897 percpu_counter_add(&space_info
->total_bytes_pinned
,
10898 -block_group
->pinned
);
10899 block_group
->pinned
= 0;
10901 spin_unlock(&block_group
->lock
);
10902 spin_unlock(&space_info
->lock
);
10904 /* DISCARD can flip during remount */
10905 trimming
= btrfs_test_opt(root
->fs_info
, DISCARD
);
10907 /* Implicit trim during transaction commit. */
10909 btrfs_get_block_group_trimming(block_group
);
10912 * Btrfs_remove_chunk will abort the transaction if things go
10915 ret
= btrfs_remove_chunk(trans
, root
,
10916 block_group
->key
.objectid
);
10920 btrfs_put_block_group_trimming(block_group
);
10925 * If we're not mounted with -odiscard, we can just forget
10926 * about this block group. Otherwise we'll need to wait
10927 * until transaction commit to do the actual discard.
10930 spin_lock(&fs_info
->unused_bgs_lock
);
10932 * A concurrent scrub might have added us to the list
10933 * fs_info->unused_bgs, so use a list_move operation
10934 * to add the block group to the deleted_bgs list.
10936 list_move(&block_group
->bg_list
,
10937 &trans
->transaction
->deleted_bgs
);
10938 spin_unlock(&fs_info
->unused_bgs_lock
);
10939 btrfs_get_block_group(block_group
);
10942 btrfs_end_transaction(trans
, root
);
10944 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
10945 btrfs_put_block_group(block_group
);
10946 spin_lock(&fs_info
->unused_bgs_lock
);
10948 spin_unlock(&fs_info
->unused_bgs_lock
);
10951 int btrfs_init_space_info(struct btrfs_fs_info
*fs_info
)
10953 struct btrfs_space_info
*space_info
;
10954 struct btrfs_super_block
*disk_super
;
10960 disk_super
= fs_info
->super_copy
;
10961 if (!btrfs_super_root(disk_super
))
10964 features
= btrfs_super_incompat_flags(disk_super
);
10965 if (features
& BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS
)
10968 flags
= BTRFS_BLOCK_GROUP_SYSTEM
;
10969 ret
= update_space_info(fs_info
, flags
, 0, 0, 0, &space_info
);
10974 flags
= BTRFS_BLOCK_GROUP_METADATA
| BTRFS_BLOCK_GROUP_DATA
;
10975 ret
= update_space_info(fs_info
, flags
, 0, 0, 0, &space_info
);
10977 flags
= BTRFS_BLOCK_GROUP_METADATA
;
10978 ret
= update_space_info(fs_info
, flags
, 0, 0, 0, &space_info
);
10982 flags
= BTRFS_BLOCK_GROUP_DATA
;
10983 ret
= update_space_info(fs_info
, flags
, 0, 0, 0, &space_info
);
10989 int btrfs_error_unpin_extent_range(struct btrfs_root
*root
, u64 start
, u64 end
)
10991 return unpin_extent_range(root
, start
, end
, false);
10995 * It used to be that old block groups would be left around forever.
10996 * Iterating over them would be enough to trim unused space. Since we
10997 * now automatically remove them, we also need to iterate over unallocated
11000 * We don't want a transaction for this since the discard may take a
11001 * substantial amount of time. We don't require that a transaction be
11002 * running, but we do need to take a running transaction into account
11003 * to ensure that we're not discarding chunks that were released in
11004 * the current transaction.
11006 * Holding the chunks lock will prevent other threads from allocating
11007 * or releasing chunks, but it won't prevent a running transaction
11008 * from committing and releasing the memory that the pending chunks
11009 * list head uses. For that, we need to take a reference to the
11012 static int btrfs_trim_free_extents(struct btrfs_device
*device
,
11013 u64 minlen
, u64
*trimmed
)
11015 u64 start
= 0, len
= 0;
11020 /* Not writeable = nothing to do. */
11021 if (!device
->writeable
)
11024 /* No free space = nothing to do. */
11025 if (device
->total_bytes
<= device
->bytes_used
)
11031 struct btrfs_fs_info
*fs_info
= device
->dev_root
->fs_info
;
11032 struct btrfs_transaction
*trans
;
11035 ret
= mutex_lock_interruptible(&fs_info
->chunk_mutex
);
11039 down_read(&fs_info
->commit_root_sem
);
11041 spin_lock(&fs_info
->trans_lock
);
11042 trans
= fs_info
->running_transaction
;
11044 atomic_inc(&trans
->use_count
);
11045 spin_unlock(&fs_info
->trans_lock
);
11047 ret
= find_free_dev_extent_start(trans
, device
, minlen
, start
,
11050 btrfs_put_transaction(trans
);
11053 up_read(&fs_info
->commit_root_sem
);
11054 mutex_unlock(&fs_info
->chunk_mutex
);
11055 if (ret
== -ENOSPC
)
11060 ret
= btrfs_issue_discard(device
->bdev
, start
, len
, &bytes
);
11061 up_read(&fs_info
->commit_root_sem
);
11062 mutex_unlock(&fs_info
->chunk_mutex
);
11070 if (fatal_signal_pending(current
)) {
11071 ret
= -ERESTARTSYS
;
11081 int btrfs_trim_fs(struct btrfs_root
*root
, struct fstrim_range
*range
)
11083 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
11084 struct btrfs_block_group_cache
*cache
= NULL
;
11085 struct btrfs_device
*device
;
11086 struct list_head
*devices
;
11091 u64 total_bytes
= btrfs_super_total_bytes(fs_info
->super_copy
);
11095 * try to trim all FS space, our block group may start from non-zero.
11097 if (range
->len
== total_bytes
)
11098 cache
= btrfs_lookup_first_block_group(fs_info
, range
->start
);
11100 cache
= btrfs_lookup_block_group(fs_info
, range
->start
);
11103 if (cache
->key
.objectid
>= (range
->start
+ range
->len
)) {
11104 btrfs_put_block_group(cache
);
11108 start
= max(range
->start
, cache
->key
.objectid
);
11109 end
= min(range
->start
+ range
->len
,
11110 cache
->key
.objectid
+ cache
->key
.offset
);
11112 if (end
- start
>= range
->minlen
) {
11113 if (!block_group_cache_done(cache
)) {
11114 ret
= cache_block_group(cache
, 0);
11116 btrfs_put_block_group(cache
);
11119 ret
= wait_block_group_cache_done(cache
);
11121 btrfs_put_block_group(cache
);
11125 ret
= btrfs_trim_block_group(cache
,
11131 trimmed
+= group_trimmed
;
11133 btrfs_put_block_group(cache
);
11138 cache
= next_block_group(fs_info
->tree_root
, cache
);
11141 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
11142 devices
= &root
->fs_info
->fs_devices
->alloc_list
;
11143 list_for_each_entry(device
, devices
, dev_alloc_list
) {
11144 ret
= btrfs_trim_free_extents(device
, range
->minlen
,
11149 trimmed
+= group_trimmed
;
11151 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
11153 range
->len
= trimmed
;
11158 * btrfs_{start,end}_write_no_snapshoting() are similar to
11159 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
11160 * data into the page cache through nocow before the subvolume is snapshoted,
11161 * but flush the data into disk after the snapshot creation, or to prevent
11162 * operations while snapshoting is ongoing and that cause the snapshot to be
11163 * inconsistent (writes followed by expanding truncates for example).
11165 void btrfs_end_write_no_snapshoting(struct btrfs_root
*root
)
11167 percpu_counter_dec(&root
->subv_writers
->counter
);
11169 * Make sure counter is updated before we wake up waiters.
11172 if (waitqueue_active(&root
->subv_writers
->wait
))
11173 wake_up(&root
->subv_writers
->wait
);
11176 int btrfs_start_write_no_snapshoting(struct btrfs_root
*root
)
11178 if (atomic_read(&root
->will_be_snapshoted
))
11181 percpu_counter_inc(&root
->subv_writers
->counter
);
11183 * Make sure counter is updated before we check for snapshot creation.
11186 if (atomic_read(&root
->will_be_snapshoted
)) {
11187 btrfs_end_write_no_snapshoting(root
);
11193 static int wait_snapshoting_atomic_t(atomic_t
*a
)
11199 void btrfs_wait_for_snapshot_creation(struct btrfs_root
*root
)
11204 ret
= btrfs_start_write_no_snapshoting(root
);
11207 wait_on_atomic_t(&root
->will_be_snapshoted
,
11208 wait_snapshoting_atomic_t
,
11209 TASK_UNINTERRUPTIBLE
);