Merge branch 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[cris-mirror.git] / include / crypto / skcipher.h
blobcc4d98a7892e253ad1b925ca401ce41947b9a590
1 /*
2 * Symmetric key ciphers.
3 *
4 * Copyright (c) 2007-2015 Herbert Xu <herbert@gondor.apana.org.au>
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the Free
8 * Software Foundation; either version 2 of the License, or (at your option)
9 * any later version.
13 #ifndef _CRYPTO_SKCIPHER_H
14 #define _CRYPTO_SKCIPHER_H
16 #include <linux/crypto.h>
17 #include <linux/kernel.h>
18 #include <linux/slab.h>
20 /**
21 * struct skcipher_request - Symmetric key cipher request
22 * @cryptlen: Number of bytes to encrypt or decrypt
23 * @iv: Initialisation Vector
24 * @src: Source SG list
25 * @dst: Destination SG list
26 * @base: Underlying async request request
27 * @__ctx: Start of private context data
29 struct skcipher_request {
30 unsigned int cryptlen;
32 u8 *iv;
34 struct scatterlist *src;
35 struct scatterlist *dst;
37 struct crypto_async_request base;
39 void *__ctx[] CRYPTO_MINALIGN_ATTR;
42 /**
43 * struct skcipher_givcrypt_request - Crypto request with IV generation
44 * @seq: Sequence number for IV generation
45 * @giv: Space for generated IV
46 * @creq: The crypto request itself
48 struct skcipher_givcrypt_request {
49 u64 seq;
50 u8 *giv;
52 struct ablkcipher_request creq;
55 struct crypto_skcipher {
56 int (*setkey)(struct crypto_skcipher *tfm, const u8 *key,
57 unsigned int keylen);
58 int (*encrypt)(struct skcipher_request *req);
59 int (*decrypt)(struct skcipher_request *req);
61 unsigned int ivsize;
62 unsigned int reqsize;
63 unsigned int keysize;
65 struct crypto_tfm base;
68 /**
69 * struct skcipher_alg - symmetric key cipher definition
70 * @min_keysize: Minimum key size supported by the transformation. This is the
71 * smallest key length supported by this transformation algorithm.
72 * This must be set to one of the pre-defined values as this is
73 * not hardware specific. Possible values for this field can be
74 * found via git grep "_MIN_KEY_SIZE" include/crypto/
75 * @max_keysize: Maximum key size supported by the transformation. This is the
76 * largest key length supported by this transformation algorithm.
77 * This must be set to one of the pre-defined values as this is
78 * not hardware specific. Possible values for this field can be
79 * found via git grep "_MAX_KEY_SIZE" include/crypto/
80 * @setkey: Set key for the transformation. This function is used to either
81 * program a supplied key into the hardware or store the key in the
82 * transformation context for programming it later. Note that this
83 * function does modify the transformation context. This function can
84 * be called multiple times during the existence of the transformation
85 * object, so one must make sure the key is properly reprogrammed into
86 * the hardware. This function is also responsible for checking the key
87 * length for validity. In case a software fallback was put in place in
88 * the @cra_init call, this function might need to use the fallback if
89 * the algorithm doesn't support all of the key sizes.
90 * @encrypt: Encrypt a scatterlist of blocks. This function is used to encrypt
91 * the supplied scatterlist containing the blocks of data. The crypto
92 * API consumer is responsible for aligning the entries of the
93 * scatterlist properly and making sure the chunks are correctly
94 * sized. In case a software fallback was put in place in the
95 * @cra_init call, this function might need to use the fallback if
96 * the algorithm doesn't support all of the key sizes. In case the
97 * key was stored in transformation context, the key might need to be
98 * re-programmed into the hardware in this function. This function
99 * shall not modify the transformation context, as this function may
100 * be called in parallel with the same transformation object.
101 * @decrypt: Decrypt a single block. This is a reverse counterpart to @encrypt
102 * and the conditions are exactly the same.
103 * @init: Initialize the cryptographic transformation object. This function
104 * is used to initialize the cryptographic transformation object.
105 * This function is called only once at the instantiation time, right
106 * after the transformation context was allocated. In case the
107 * cryptographic hardware has some special requirements which need to
108 * be handled by software, this function shall check for the precise
109 * requirement of the transformation and put any software fallbacks
110 * in place.
111 * @exit: Deinitialize the cryptographic transformation object. This is a
112 * counterpart to @init, used to remove various changes set in
113 * @init.
114 * @ivsize: IV size applicable for transformation. The consumer must provide an
115 * IV of exactly that size to perform the encrypt or decrypt operation.
116 * @chunksize: Equal to the block size except for stream ciphers such as
117 * CTR where it is set to the underlying block size.
118 * @base: Definition of a generic crypto algorithm.
120 * All fields except @ivsize are mandatory and must be filled.
122 struct skcipher_alg {
123 int (*setkey)(struct crypto_skcipher *tfm, const u8 *key,
124 unsigned int keylen);
125 int (*encrypt)(struct skcipher_request *req);
126 int (*decrypt)(struct skcipher_request *req);
127 int (*init)(struct crypto_skcipher *tfm);
128 void (*exit)(struct crypto_skcipher *tfm);
130 unsigned int min_keysize;
131 unsigned int max_keysize;
132 unsigned int ivsize;
133 unsigned int chunksize;
135 struct crypto_alg base;
138 #define SKCIPHER_REQUEST_ON_STACK(name, tfm) \
139 char __##name##_desc[sizeof(struct skcipher_request) + \
140 crypto_skcipher_reqsize(tfm)] CRYPTO_MINALIGN_ATTR; \
141 struct skcipher_request *name = (void *)__##name##_desc
144 * DOC: Symmetric Key Cipher API
146 * Symmetric key cipher API is used with the ciphers of type
147 * CRYPTO_ALG_TYPE_SKCIPHER (listed as type "skcipher" in /proc/crypto).
149 * Asynchronous cipher operations imply that the function invocation for a
150 * cipher request returns immediately before the completion of the operation.
151 * The cipher request is scheduled as a separate kernel thread and therefore
152 * load-balanced on the different CPUs via the process scheduler. To allow
153 * the kernel crypto API to inform the caller about the completion of a cipher
154 * request, the caller must provide a callback function. That function is
155 * invoked with the cipher handle when the request completes.
157 * To support the asynchronous operation, additional information than just the
158 * cipher handle must be supplied to the kernel crypto API. That additional
159 * information is given by filling in the skcipher_request data structure.
161 * For the symmetric key cipher API, the state is maintained with the tfm
162 * cipher handle. A single tfm can be used across multiple calls and in
163 * parallel. For asynchronous block cipher calls, context data supplied and
164 * only used by the caller can be referenced the request data structure in
165 * addition to the IV used for the cipher request. The maintenance of such
166 * state information would be important for a crypto driver implementer to
167 * have, because when calling the callback function upon completion of the
168 * cipher operation, that callback function may need some information about
169 * which operation just finished if it invoked multiple in parallel. This
170 * state information is unused by the kernel crypto API.
173 static inline struct crypto_skcipher *__crypto_skcipher_cast(
174 struct crypto_tfm *tfm)
176 return container_of(tfm, struct crypto_skcipher, base);
180 * crypto_alloc_skcipher() - allocate symmetric key cipher handle
181 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
182 * skcipher cipher
183 * @type: specifies the type of the cipher
184 * @mask: specifies the mask for the cipher
186 * Allocate a cipher handle for an skcipher. The returned struct
187 * crypto_skcipher is the cipher handle that is required for any subsequent
188 * API invocation for that skcipher.
190 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
191 * of an error, PTR_ERR() returns the error code.
193 struct crypto_skcipher *crypto_alloc_skcipher(const char *alg_name,
194 u32 type, u32 mask);
196 static inline struct crypto_tfm *crypto_skcipher_tfm(
197 struct crypto_skcipher *tfm)
199 return &tfm->base;
203 * crypto_free_skcipher() - zeroize and free cipher handle
204 * @tfm: cipher handle to be freed
206 static inline void crypto_free_skcipher(struct crypto_skcipher *tfm)
208 crypto_destroy_tfm(tfm, crypto_skcipher_tfm(tfm));
212 * crypto_has_skcipher() - Search for the availability of an skcipher.
213 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
214 * skcipher
215 * @type: specifies the type of the cipher
216 * @mask: specifies the mask for the cipher
218 * Return: true when the skcipher is known to the kernel crypto API; false
219 * otherwise
221 static inline int crypto_has_skcipher(const char *alg_name, u32 type,
222 u32 mask)
224 return crypto_has_alg(alg_name, crypto_skcipher_type(type),
225 crypto_skcipher_mask(mask));
229 * crypto_has_skcipher2() - Search for the availability of an skcipher.
230 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
231 * skcipher
232 * @type: specifies the type of the skcipher
233 * @mask: specifies the mask for the skcipher
235 * Return: true when the skcipher is known to the kernel crypto API; false
236 * otherwise
238 int crypto_has_skcipher2(const char *alg_name, u32 type, u32 mask);
240 static inline const char *crypto_skcipher_driver_name(
241 struct crypto_skcipher *tfm)
243 return crypto_tfm_alg_driver_name(crypto_skcipher_tfm(tfm));
246 static inline struct skcipher_alg *crypto_skcipher_alg(
247 struct crypto_skcipher *tfm)
249 return container_of(crypto_skcipher_tfm(tfm)->__crt_alg,
250 struct skcipher_alg, base);
253 static inline unsigned int crypto_skcipher_alg_ivsize(struct skcipher_alg *alg)
255 if ((alg->base.cra_flags & CRYPTO_ALG_TYPE_MASK) ==
256 CRYPTO_ALG_TYPE_BLKCIPHER)
257 return alg->base.cra_blkcipher.ivsize;
259 if (alg->base.cra_ablkcipher.encrypt)
260 return alg->base.cra_ablkcipher.ivsize;
262 return alg->ivsize;
266 * crypto_skcipher_ivsize() - obtain IV size
267 * @tfm: cipher handle
269 * The size of the IV for the skcipher referenced by the cipher handle is
270 * returned. This IV size may be zero if the cipher does not need an IV.
272 * Return: IV size in bytes
274 static inline unsigned int crypto_skcipher_ivsize(struct crypto_skcipher *tfm)
276 return tfm->ivsize;
279 static inline unsigned int crypto_skcipher_alg_chunksize(
280 struct skcipher_alg *alg)
282 if ((alg->base.cra_flags & CRYPTO_ALG_TYPE_MASK) ==
283 CRYPTO_ALG_TYPE_BLKCIPHER)
284 return alg->base.cra_blocksize;
286 if (alg->base.cra_ablkcipher.encrypt)
287 return alg->base.cra_blocksize;
289 return alg->chunksize;
293 * crypto_skcipher_chunksize() - obtain chunk size
294 * @tfm: cipher handle
296 * The block size is set to one for ciphers such as CTR. However,
297 * you still need to provide incremental updates in multiples of
298 * the underlying block size as the IV does not have sub-block
299 * granularity. This is known in this API as the chunk size.
301 * Return: chunk size in bytes
303 static inline unsigned int crypto_skcipher_chunksize(
304 struct crypto_skcipher *tfm)
306 return crypto_skcipher_alg_chunksize(crypto_skcipher_alg(tfm));
310 * crypto_skcipher_blocksize() - obtain block size of cipher
311 * @tfm: cipher handle
313 * The block size for the skcipher referenced with the cipher handle is
314 * returned. The caller may use that information to allocate appropriate
315 * memory for the data returned by the encryption or decryption operation
317 * Return: block size of cipher
319 static inline unsigned int crypto_skcipher_blocksize(
320 struct crypto_skcipher *tfm)
322 return crypto_tfm_alg_blocksize(crypto_skcipher_tfm(tfm));
325 static inline unsigned int crypto_skcipher_alignmask(
326 struct crypto_skcipher *tfm)
328 return crypto_tfm_alg_alignmask(crypto_skcipher_tfm(tfm));
331 static inline u32 crypto_skcipher_get_flags(struct crypto_skcipher *tfm)
333 return crypto_tfm_get_flags(crypto_skcipher_tfm(tfm));
336 static inline void crypto_skcipher_set_flags(struct crypto_skcipher *tfm,
337 u32 flags)
339 crypto_tfm_set_flags(crypto_skcipher_tfm(tfm), flags);
342 static inline void crypto_skcipher_clear_flags(struct crypto_skcipher *tfm,
343 u32 flags)
345 crypto_tfm_clear_flags(crypto_skcipher_tfm(tfm), flags);
349 * crypto_skcipher_setkey() - set key for cipher
350 * @tfm: cipher handle
351 * @key: buffer holding the key
352 * @keylen: length of the key in bytes
354 * The caller provided key is set for the skcipher referenced by the cipher
355 * handle.
357 * Note, the key length determines the cipher type. Many block ciphers implement
358 * different cipher modes depending on the key size, such as AES-128 vs AES-192
359 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
360 * is performed.
362 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
364 static inline int crypto_skcipher_setkey(struct crypto_skcipher *tfm,
365 const u8 *key, unsigned int keylen)
367 return tfm->setkey(tfm, key, keylen);
370 static inline bool crypto_skcipher_has_setkey(struct crypto_skcipher *tfm)
372 return tfm->keysize;
375 static inline unsigned int crypto_skcipher_default_keysize(
376 struct crypto_skcipher *tfm)
378 return tfm->keysize;
382 * crypto_skcipher_reqtfm() - obtain cipher handle from request
383 * @req: skcipher_request out of which the cipher handle is to be obtained
385 * Return the crypto_skcipher handle when furnishing an skcipher_request
386 * data structure.
388 * Return: crypto_skcipher handle
390 static inline struct crypto_skcipher *crypto_skcipher_reqtfm(
391 struct skcipher_request *req)
393 return __crypto_skcipher_cast(req->base.tfm);
397 * crypto_skcipher_encrypt() - encrypt plaintext
398 * @req: reference to the skcipher_request handle that holds all information
399 * needed to perform the cipher operation
401 * Encrypt plaintext data using the skcipher_request handle. That data
402 * structure and how it is filled with data is discussed with the
403 * skcipher_request_* functions.
405 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
407 static inline int crypto_skcipher_encrypt(struct skcipher_request *req)
409 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
411 return tfm->encrypt(req);
415 * crypto_skcipher_decrypt() - decrypt ciphertext
416 * @req: reference to the skcipher_request handle that holds all information
417 * needed to perform the cipher operation
419 * Decrypt ciphertext data using the skcipher_request handle. That data
420 * structure and how it is filled with data is discussed with the
421 * skcipher_request_* functions.
423 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
425 static inline int crypto_skcipher_decrypt(struct skcipher_request *req)
427 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
429 return tfm->decrypt(req);
433 * DOC: Symmetric Key Cipher Request Handle
435 * The skcipher_request data structure contains all pointers to data
436 * required for the symmetric key cipher operation. This includes the cipher
437 * handle (which can be used by multiple skcipher_request instances), pointer
438 * to plaintext and ciphertext, asynchronous callback function, etc. It acts
439 * as a handle to the skcipher_request_* API calls in a similar way as
440 * skcipher handle to the crypto_skcipher_* API calls.
444 * crypto_skcipher_reqsize() - obtain size of the request data structure
445 * @tfm: cipher handle
447 * Return: number of bytes
449 static inline unsigned int crypto_skcipher_reqsize(struct crypto_skcipher *tfm)
451 return tfm->reqsize;
455 * skcipher_request_set_tfm() - update cipher handle reference in request
456 * @req: request handle to be modified
457 * @tfm: cipher handle that shall be added to the request handle
459 * Allow the caller to replace the existing skcipher handle in the request
460 * data structure with a different one.
462 static inline void skcipher_request_set_tfm(struct skcipher_request *req,
463 struct crypto_skcipher *tfm)
465 req->base.tfm = crypto_skcipher_tfm(tfm);
468 static inline struct skcipher_request *skcipher_request_cast(
469 struct crypto_async_request *req)
471 return container_of(req, struct skcipher_request, base);
475 * skcipher_request_alloc() - allocate request data structure
476 * @tfm: cipher handle to be registered with the request
477 * @gfp: memory allocation flag that is handed to kmalloc by the API call.
479 * Allocate the request data structure that must be used with the skcipher
480 * encrypt and decrypt API calls. During the allocation, the provided skcipher
481 * handle is registered in the request data structure.
483 * Return: allocated request handle in case of success, or NULL if out of memory
485 static inline struct skcipher_request *skcipher_request_alloc(
486 struct crypto_skcipher *tfm, gfp_t gfp)
488 struct skcipher_request *req;
490 req = kmalloc(sizeof(struct skcipher_request) +
491 crypto_skcipher_reqsize(tfm), gfp);
493 if (likely(req))
494 skcipher_request_set_tfm(req, tfm);
496 return req;
500 * skcipher_request_free() - zeroize and free request data structure
501 * @req: request data structure cipher handle to be freed
503 static inline void skcipher_request_free(struct skcipher_request *req)
505 kzfree(req);
508 static inline void skcipher_request_zero(struct skcipher_request *req)
510 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
512 memzero_explicit(req, sizeof(*req) + crypto_skcipher_reqsize(tfm));
516 * skcipher_request_set_callback() - set asynchronous callback function
517 * @req: request handle
518 * @flags: specify zero or an ORing of the flags
519 * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
520 * increase the wait queue beyond the initial maximum size;
521 * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
522 * @compl: callback function pointer to be registered with the request handle
523 * @data: The data pointer refers to memory that is not used by the kernel
524 * crypto API, but provided to the callback function for it to use. Here,
525 * the caller can provide a reference to memory the callback function can
526 * operate on. As the callback function is invoked asynchronously to the
527 * related functionality, it may need to access data structures of the
528 * related functionality which can be referenced using this pointer. The
529 * callback function can access the memory via the "data" field in the
530 * crypto_async_request data structure provided to the callback function.
532 * This function allows setting the callback function that is triggered once the
533 * cipher operation completes.
535 * The callback function is registered with the skcipher_request handle and
536 * must comply with the following template
538 * void callback_function(struct crypto_async_request *req, int error)
540 static inline void skcipher_request_set_callback(struct skcipher_request *req,
541 u32 flags,
542 crypto_completion_t compl,
543 void *data)
545 req->base.complete = compl;
546 req->base.data = data;
547 req->base.flags = flags;
551 * skcipher_request_set_crypt() - set data buffers
552 * @req: request handle
553 * @src: source scatter / gather list
554 * @dst: destination scatter / gather list
555 * @cryptlen: number of bytes to process from @src
556 * @iv: IV for the cipher operation which must comply with the IV size defined
557 * by crypto_skcipher_ivsize
559 * This function allows setting of the source data and destination data
560 * scatter / gather lists.
562 * For encryption, the source is treated as the plaintext and the
563 * destination is the ciphertext. For a decryption operation, the use is
564 * reversed - the source is the ciphertext and the destination is the plaintext.
566 static inline void skcipher_request_set_crypt(
567 struct skcipher_request *req,
568 struct scatterlist *src, struct scatterlist *dst,
569 unsigned int cryptlen, void *iv)
571 req->src = src;
572 req->dst = dst;
573 req->cryptlen = cryptlen;
574 req->iv = iv;
577 #endif /* _CRYPTO_SKCIPHER_H */