3 * Copyright (c) 2011, Microsoft Corporation.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
16 * Place - Suite 330, Boston, MA 02111-1307 USA.
19 * Haiyang Zhang <haiyangz@microsoft.com>
20 * Hank Janssen <hjanssen@microsoft.com>
21 * K. Y. Srinivasan <kys@microsoft.com>
25 #ifndef _UAPI_HYPERV_H
26 #define _UAPI_HYPERV_H
28 #include <linux/uuid.h>
31 * Framework version for util services.
33 #define UTIL_FW_MINOR 0
35 #define UTIL_WS2K8_FW_MAJOR 1
36 #define UTIL_WS2K8_FW_VERSION (UTIL_WS2K8_FW_MAJOR << 16 | UTIL_FW_MINOR)
38 #define UTIL_FW_MAJOR 3
39 #define UTIL_FW_VERSION (UTIL_FW_MAJOR << 16 | UTIL_FW_MINOR)
43 * Implementation of host controlled snapshot of the guest.
46 #define VSS_OP_REGISTER 128
49 Daemon code with full handshake support.
51 #define VSS_OP_REGISTER1 129
60 * Following operations are only supported with IC version >= 5.0
62 VSS_OP_FREEZE
, /* Freeze the file systems in the VM */
63 VSS_OP_THAW
, /* Unfreeze the file systems */
65 VSS_OP_COUNT
/* Number of operations, must be last */
70 * Header for all VSS messages.
75 } __attribute__((packed
));
79 * Flag values for the hv_vss_check_feature. Linux supports only
82 #define VSS_HBU_NO_AUTO_RECOVERY 0x00000005
84 struct hv_vss_check_feature
{
86 } __attribute__((packed
));
88 struct hv_vss_check_dm_info
{
90 } __attribute__((packed
));
94 struct hv_vss_hdr vss_hdr
;
98 struct hv_vss_check_feature vss_cf
;
99 struct hv_vss_check_dm_info dm_info
;
101 } __attribute__((packed
));
104 * Implementation of a host to guest copy facility.
107 #define FCOPY_VERSION_0 0
108 #define FCOPY_VERSION_1 1
109 #define FCOPY_CURRENT_VERSION FCOPY_VERSION_1
110 #define W_MAX_PATH 260
119 struct hv_fcopy_hdr
{
121 uuid_le service_id0
; /* currently unused */
122 uuid_le service_id1
; /* currently unused */
123 } __attribute__((packed
));
125 #define OVER_WRITE 0x1
126 #define CREATE_PATH 0x2
128 struct hv_start_fcopy
{
129 struct hv_fcopy_hdr hdr
;
130 __u16 file_name
[W_MAX_PATH
];
131 __u16 path_name
[W_MAX_PATH
];
134 } __attribute__((packed
));
137 * The file is chunked into fragments.
139 #define DATA_FRAGMENT (6 * 1024)
142 struct hv_fcopy_hdr hdr
;
146 __u8 data
[DATA_FRAGMENT
];
147 } __attribute__((packed
));
150 * An implementation of HyperV key value pair (KVP) functionality for Linux.
153 * Copyright (C) 2010, Novell, Inc.
154 * Author : K. Y. Srinivasan <ksrinivasan@novell.com>
159 * Maximum value size - used for both key names and value data, and includes
160 * any applicable NULL terminators.
162 * Note: This limit is somewhat arbitrary, but falls easily within what is
163 * supported for all native guests (back to Win 2000) and what is reasonable
164 * for the IC KVP exchange functionality. Note that Windows Me/98/95 are
165 * limited to 255 character key names.
167 * MSDN recommends not storing data values larger than 2048 bytes in the
170 * Note: This value is used in defining the KVP exchange message - this value
171 * cannot be modified without affecting the message size and compatibility.
175 * bytes, including any null terminators
177 #define HV_KVP_EXCHANGE_MAX_VALUE_SIZE (2048)
181 * Maximum key size - the registry limit for the length of an entry name
182 * is 256 characters, including the null terminator
185 #define HV_KVP_EXCHANGE_MAX_KEY_SIZE (512)
188 * In Linux, we implement the KVP functionality in two components:
189 * 1) The kernel component which is packaged as part of the hv_utils driver
190 * is responsible for communicating with the host and responsible for
191 * implementing the host/guest protocol. 2) A user level daemon that is
192 * responsible for data gathering.
194 * Host/Guest Protocol: The host iterates over an index and expects the guest
195 * to assign a key name to the index and also return the value corresponding to
196 * the key. The host will have atmost one KVP transaction outstanding at any
197 * given point in time. The host side iteration stops when the guest returns
198 * an error. Microsoft has specified the following mapping of key names to
199 * host specified index:
202 * 0 FullyQualifiedDomainName
203 * 1 IntegrationServicesVersion
204 * 2 NetworkAddressIPv4
205 * 3 NetworkAddressIPv6
211 * 9 ProcessorArchitecture
213 * The Windows host expects the Key Name and Key Value to be encoded in utf16.
215 * Guest Kernel/KVP Daemon Protocol: As noted earlier, we implement all of the
216 * data gathering functionality in a user mode daemon. The user level daemon
217 * is also responsible for binding the key name to the index as well. The
218 * kernel and user-level daemon communicate using a connector channel.
220 * The user mode component first registers with the
221 * the kernel component. Subsequently, the kernel component requests, data
222 * for the specified keys. In response to this message the user mode component
223 * fills in the value corresponding to the specified key. We overload the
224 * sequence field in the cn_msg header to define our KVP message types.
227 * The kernel component simply acts as a conduit for communication between the
228 * Windows host and the user-level daemon. The kernel component passes up the
229 * index received from the Host to the user-level daemon. If the index is
230 * valid (supported), the corresponding key as well as its
231 * value (both are strings) is returned. If the index is invalid
232 * (not supported), a NULL key string is returned.
237 * Registry value types.
245 * As we look at expanding the KVP functionality to include
246 * IP injection functionality, we need to maintain binary
247 * compatibility with older daemons.
249 * The KVP opcodes are defined by the host and it was unfortunate
250 * that I chose to treat the registration operation as part of the
251 * KVP operations defined by the host.
252 * Here is the level of compatibility
253 * (between the user level daemon and the kernel KVP driver) that we
256 * An older daemon will always be supported on a newer driver.
257 * A given user level daemon will require a minimal version of the
259 * If we cannot handle the version differences, we will fail gracefully
260 * (this can happen when we have a user level daemon that is more
261 * advanced than the KVP driver.
263 * We will use values used in this handshake for determining if we have
264 * workable user level daemon and the kernel driver. We begin by taking the
265 * registration opcode out of the KVP opcode namespace. We will however,
266 * maintain compatibility with the existing user-level daemon code.
270 * Daemon code not supporting IP injection (legacy daemon).
273 #define KVP_OP_REGISTER 4
276 * Daemon code supporting IP injection.
277 * The KVP opcode field is used to communicate the
278 * registration information; so define a namespace that
279 * will be distinct from the host defined KVP opcode.
282 #define KVP_OP_REGISTER1 100
284 enum hv_kvp_exchg_op
{
291 KVP_OP_COUNT
/* Number of operations, must be last. */
294 enum hv_kvp_exchg_pool
{
295 KVP_POOL_EXTERNAL
= 0,
298 KVP_POOL_AUTO_EXTERNAL
,
299 KVP_POOL_AUTO_INTERNAL
,
300 KVP_POOL_COUNT
/* Number of pools, must be last. */
304 * Some Hyper-V status codes.
307 #define HV_S_OK 0x00000000
308 #define HV_E_FAIL 0x80004005
309 #define HV_S_CONT 0x80070103
310 #define HV_ERROR_NOT_SUPPORTED 0x80070032
311 #define HV_ERROR_MACHINE_LOCKED 0x800704F7
312 #define HV_ERROR_DEVICE_NOT_CONNECTED 0x8007048F
313 #define HV_INVALIDARG 0x80070057
314 #define HV_GUID_NOTFOUND 0x80041002
315 #define HV_ERROR_ALREADY_EXISTS 0x80070050
316 #define HV_ERROR_DISK_FULL 0x80070070
318 #define ADDR_FAMILY_NONE 0x00
319 #define ADDR_FAMILY_IPV4 0x01
320 #define ADDR_FAMILY_IPV6 0x02
322 #define MAX_ADAPTER_ID_SIZE 128
323 #define MAX_IP_ADDR_SIZE 1024
324 #define MAX_GATEWAY_SIZE 512
327 struct hv_kvp_ipaddr_value
{
328 __u16 adapter_id
[MAX_ADAPTER_ID_SIZE
];
331 __u16 ip_addr
[MAX_IP_ADDR_SIZE
];
332 __u16 sub_net
[MAX_IP_ADDR_SIZE
];
333 __u16 gate_way
[MAX_GATEWAY_SIZE
];
334 __u16 dns_addr
[MAX_IP_ADDR_SIZE
];
335 } __attribute__((packed
));
342 } __attribute__((packed
));
344 struct hv_kvp_exchg_msg_value
{
348 __u8 key
[HV_KVP_EXCHANGE_MAX_KEY_SIZE
];
350 __u8 value
[HV_KVP_EXCHANGE_MAX_VALUE_SIZE
];
354 } __attribute__((packed
));
356 struct hv_kvp_msg_enumerate
{
358 struct hv_kvp_exchg_msg_value data
;
359 } __attribute__((packed
));
361 struct hv_kvp_msg_get
{
362 struct hv_kvp_exchg_msg_value data
;
365 struct hv_kvp_msg_set
{
366 struct hv_kvp_exchg_msg_value data
;
369 struct hv_kvp_msg_delete
{
371 __u8 key
[HV_KVP_EXCHANGE_MAX_KEY_SIZE
];
374 struct hv_kvp_register
{
375 __u8 version
[HV_KVP_EXCHANGE_MAX_KEY_SIZE
];
380 struct hv_kvp_hdr kvp_hdr
;
384 struct hv_kvp_msg_get kvp_get
;
385 struct hv_kvp_msg_set kvp_set
;
386 struct hv_kvp_msg_delete kvp_delete
;
387 struct hv_kvp_msg_enumerate kvp_enum_data
;
388 struct hv_kvp_ipaddr_value kvp_ip_val
;
389 struct hv_kvp_register kvp_register
;
391 } __attribute__((packed
));
393 struct hv_kvp_ip_msg
{
396 struct hv_kvp_ipaddr_value kvp_ip_val
;
397 } __attribute__((packed
));
399 #endif /* _UAPI_HYPERV_H */