Merge branch 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[cris-mirror.git] / kernel / auditsc.c
blob5abf1dc1f91c578ccea84478c1f7fe53cde27afd
1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
7 * All Rights Reserved.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
47 #include <linux/init.h>
48 #include <asm/types.h>
49 #include <linux/atomic.h>
50 #include <linux/fs.h>
51 #include <linux/namei.h>
52 #include <linux/mm.h>
53 #include <linux/export.h>
54 #include <linux/slab.h>
55 #include <linux/mount.h>
56 #include <linux/socket.h>
57 #include <linux/mqueue.h>
58 #include <linux/audit.h>
59 #include <linux/personality.h>
60 #include <linux/time.h>
61 #include <linux/netlink.h>
62 #include <linux/compiler.h>
63 #include <asm/unistd.h>
64 #include <linux/security.h>
65 #include <linux/list.h>
66 #include <linux/binfmts.h>
67 #include <linux/highmem.h>
68 #include <linux/syscalls.h>
69 #include <asm/syscall.h>
70 #include <linux/capability.h>
71 #include <linux/fs_struct.h>
72 #include <linux/compat.h>
73 #include <linux/ctype.h>
74 #include <linux/string.h>
75 #include <linux/uaccess.h>
76 #include <uapi/linux/limits.h>
78 #include "audit.h"
80 /* flags stating the success for a syscall */
81 #define AUDITSC_INVALID 0
82 #define AUDITSC_SUCCESS 1
83 #define AUDITSC_FAILURE 2
85 /* no execve audit message should be longer than this (userspace limits),
86 * see the note near the top of audit_log_execve_info() about this value */
87 #define MAX_EXECVE_AUDIT_LEN 7500
89 /* max length to print of cmdline/proctitle value during audit */
90 #define MAX_PROCTITLE_AUDIT_LEN 128
92 /* number of audit rules */
93 int audit_n_rules;
95 /* determines whether we collect data for signals sent */
96 int audit_signals;
98 struct audit_aux_data {
99 struct audit_aux_data *next;
100 int type;
103 #define AUDIT_AUX_IPCPERM 0
105 /* Number of target pids per aux struct. */
106 #define AUDIT_AUX_PIDS 16
108 struct audit_aux_data_pids {
109 struct audit_aux_data d;
110 pid_t target_pid[AUDIT_AUX_PIDS];
111 kuid_t target_auid[AUDIT_AUX_PIDS];
112 kuid_t target_uid[AUDIT_AUX_PIDS];
113 unsigned int target_sessionid[AUDIT_AUX_PIDS];
114 u32 target_sid[AUDIT_AUX_PIDS];
115 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
116 int pid_count;
119 struct audit_aux_data_bprm_fcaps {
120 struct audit_aux_data d;
121 struct audit_cap_data fcap;
122 unsigned int fcap_ver;
123 struct audit_cap_data old_pcap;
124 struct audit_cap_data new_pcap;
127 struct audit_tree_refs {
128 struct audit_tree_refs *next;
129 struct audit_chunk *c[31];
132 static int audit_match_perm(struct audit_context *ctx, int mask)
134 unsigned n;
135 if (unlikely(!ctx))
136 return 0;
137 n = ctx->major;
139 switch (audit_classify_syscall(ctx->arch, n)) {
140 case 0: /* native */
141 if ((mask & AUDIT_PERM_WRITE) &&
142 audit_match_class(AUDIT_CLASS_WRITE, n))
143 return 1;
144 if ((mask & AUDIT_PERM_READ) &&
145 audit_match_class(AUDIT_CLASS_READ, n))
146 return 1;
147 if ((mask & AUDIT_PERM_ATTR) &&
148 audit_match_class(AUDIT_CLASS_CHATTR, n))
149 return 1;
150 return 0;
151 case 1: /* 32bit on biarch */
152 if ((mask & AUDIT_PERM_WRITE) &&
153 audit_match_class(AUDIT_CLASS_WRITE_32, n))
154 return 1;
155 if ((mask & AUDIT_PERM_READ) &&
156 audit_match_class(AUDIT_CLASS_READ_32, n))
157 return 1;
158 if ((mask & AUDIT_PERM_ATTR) &&
159 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
160 return 1;
161 return 0;
162 case 2: /* open */
163 return mask & ACC_MODE(ctx->argv[1]);
164 case 3: /* openat */
165 return mask & ACC_MODE(ctx->argv[2]);
166 case 4: /* socketcall */
167 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
168 case 5: /* execve */
169 return mask & AUDIT_PERM_EXEC;
170 default:
171 return 0;
175 static int audit_match_filetype(struct audit_context *ctx, int val)
177 struct audit_names *n;
178 umode_t mode = (umode_t)val;
180 if (unlikely(!ctx))
181 return 0;
183 list_for_each_entry(n, &ctx->names_list, list) {
184 if ((n->ino != AUDIT_INO_UNSET) &&
185 ((n->mode & S_IFMT) == mode))
186 return 1;
189 return 0;
193 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
194 * ->first_trees points to its beginning, ->trees - to the current end of data.
195 * ->tree_count is the number of free entries in array pointed to by ->trees.
196 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
197 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
198 * it's going to remain 1-element for almost any setup) until we free context itself.
199 * References in it _are_ dropped - at the same time we free/drop aux stuff.
202 #ifdef CONFIG_AUDIT_TREE
203 static void audit_set_auditable(struct audit_context *ctx)
205 if (!ctx->prio) {
206 ctx->prio = 1;
207 ctx->current_state = AUDIT_RECORD_CONTEXT;
211 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
213 struct audit_tree_refs *p = ctx->trees;
214 int left = ctx->tree_count;
215 if (likely(left)) {
216 p->c[--left] = chunk;
217 ctx->tree_count = left;
218 return 1;
220 if (!p)
221 return 0;
222 p = p->next;
223 if (p) {
224 p->c[30] = chunk;
225 ctx->trees = p;
226 ctx->tree_count = 30;
227 return 1;
229 return 0;
232 static int grow_tree_refs(struct audit_context *ctx)
234 struct audit_tree_refs *p = ctx->trees;
235 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
236 if (!ctx->trees) {
237 ctx->trees = p;
238 return 0;
240 if (p)
241 p->next = ctx->trees;
242 else
243 ctx->first_trees = ctx->trees;
244 ctx->tree_count = 31;
245 return 1;
247 #endif
249 static void unroll_tree_refs(struct audit_context *ctx,
250 struct audit_tree_refs *p, int count)
252 #ifdef CONFIG_AUDIT_TREE
253 struct audit_tree_refs *q;
254 int n;
255 if (!p) {
256 /* we started with empty chain */
257 p = ctx->first_trees;
258 count = 31;
259 /* if the very first allocation has failed, nothing to do */
260 if (!p)
261 return;
263 n = count;
264 for (q = p; q != ctx->trees; q = q->next, n = 31) {
265 while (n--) {
266 audit_put_chunk(q->c[n]);
267 q->c[n] = NULL;
270 while (n-- > ctx->tree_count) {
271 audit_put_chunk(q->c[n]);
272 q->c[n] = NULL;
274 ctx->trees = p;
275 ctx->tree_count = count;
276 #endif
279 static void free_tree_refs(struct audit_context *ctx)
281 struct audit_tree_refs *p, *q;
282 for (p = ctx->first_trees; p; p = q) {
283 q = p->next;
284 kfree(p);
288 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
290 #ifdef CONFIG_AUDIT_TREE
291 struct audit_tree_refs *p;
292 int n;
293 if (!tree)
294 return 0;
295 /* full ones */
296 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
297 for (n = 0; n < 31; n++)
298 if (audit_tree_match(p->c[n], tree))
299 return 1;
301 /* partial */
302 if (p) {
303 for (n = ctx->tree_count; n < 31; n++)
304 if (audit_tree_match(p->c[n], tree))
305 return 1;
307 #endif
308 return 0;
311 static int audit_compare_uid(kuid_t uid,
312 struct audit_names *name,
313 struct audit_field *f,
314 struct audit_context *ctx)
316 struct audit_names *n;
317 int rc;
319 if (name) {
320 rc = audit_uid_comparator(uid, f->op, name->uid);
321 if (rc)
322 return rc;
325 if (ctx) {
326 list_for_each_entry(n, &ctx->names_list, list) {
327 rc = audit_uid_comparator(uid, f->op, n->uid);
328 if (rc)
329 return rc;
332 return 0;
335 static int audit_compare_gid(kgid_t gid,
336 struct audit_names *name,
337 struct audit_field *f,
338 struct audit_context *ctx)
340 struct audit_names *n;
341 int rc;
343 if (name) {
344 rc = audit_gid_comparator(gid, f->op, name->gid);
345 if (rc)
346 return rc;
349 if (ctx) {
350 list_for_each_entry(n, &ctx->names_list, list) {
351 rc = audit_gid_comparator(gid, f->op, n->gid);
352 if (rc)
353 return rc;
356 return 0;
359 static int audit_field_compare(struct task_struct *tsk,
360 const struct cred *cred,
361 struct audit_field *f,
362 struct audit_context *ctx,
363 struct audit_names *name)
365 switch (f->val) {
366 /* process to file object comparisons */
367 case AUDIT_COMPARE_UID_TO_OBJ_UID:
368 return audit_compare_uid(cred->uid, name, f, ctx);
369 case AUDIT_COMPARE_GID_TO_OBJ_GID:
370 return audit_compare_gid(cred->gid, name, f, ctx);
371 case AUDIT_COMPARE_EUID_TO_OBJ_UID:
372 return audit_compare_uid(cred->euid, name, f, ctx);
373 case AUDIT_COMPARE_EGID_TO_OBJ_GID:
374 return audit_compare_gid(cred->egid, name, f, ctx);
375 case AUDIT_COMPARE_AUID_TO_OBJ_UID:
376 return audit_compare_uid(tsk->loginuid, name, f, ctx);
377 case AUDIT_COMPARE_SUID_TO_OBJ_UID:
378 return audit_compare_uid(cred->suid, name, f, ctx);
379 case AUDIT_COMPARE_SGID_TO_OBJ_GID:
380 return audit_compare_gid(cred->sgid, name, f, ctx);
381 case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
382 return audit_compare_uid(cred->fsuid, name, f, ctx);
383 case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
384 return audit_compare_gid(cred->fsgid, name, f, ctx);
385 /* uid comparisons */
386 case AUDIT_COMPARE_UID_TO_AUID:
387 return audit_uid_comparator(cred->uid, f->op, tsk->loginuid);
388 case AUDIT_COMPARE_UID_TO_EUID:
389 return audit_uid_comparator(cred->uid, f->op, cred->euid);
390 case AUDIT_COMPARE_UID_TO_SUID:
391 return audit_uid_comparator(cred->uid, f->op, cred->suid);
392 case AUDIT_COMPARE_UID_TO_FSUID:
393 return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
394 /* auid comparisons */
395 case AUDIT_COMPARE_AUID_TO_EUID:
396 return audit_uid_comparator(tsk->loginuid, f->op, cred->euid);
397 case AUDIT_COMPARE_AUID_TO_SUID:
398 return audit_uid_comparator(tsk->loginuid, f->op, cred->suid);
399 case AUDIT_COMPARE_AUID_TO_FSUID:
400 return audit_uid_comparator(tsk->loginuid, f->op, cred->fsuid);
401 /* euid comparisons */
402 case AUDIT_COMPARE_EUID_TO_SUID:
403 return audit_uid_comparator(cred->euid, f->op, cred->suid);
404 case AUDIT_COMPARE_EUID_TO_FSUID:
405 return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
406 /* suid comparisons */
407 case AUDIT_COMPARE_SUID_TO_FSUID:
408 return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
409 /* gid comparisons */
410 case AUDIT_COMPARE_GID_TO_EGID:
411 return audit_gid_comparator(cred->gid, f->op, cred->egid);
412 case AUDIT_COMPARE_GID_TO_SGID:
413 return audit_gid_comparator(cred->gid, f->op, cred->sgid);
414 case AUDIT_COMPARE_GID_TO_FSGID:
415 return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
416 /* egid comparisons */
417 case AUDIT_COMPARE_EGID_TO_SGID:
418 return audit_gid_comparator(cred->egid, f->op, cred->sgid);
419 case AUDIT_COMPARE_EGID_TO_FSGID:
420 return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
421 /* sgid comparison */
422 case AUDIT_COMPARE_SGID_TO_FSGID:
423 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
424 default:
425 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
426 return 0;
428 return 0;
431 /* Determine if any context name data matches a rule's watch data */
432 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
433 * otherwise.
435 * If task_creation is true, this is an explicit indication that we are
436 * filtering a task rule at task creation time. This and tsk == current are
437 * the only situations where tsk->cred may be accessed without an rcu read lock.
439 static int audit_filter_rules(struct task_struct *tsk,
440 struct audit_krule *rule,
441 struct audit_context *ctx,
442 struct audit_names *name,
443 enum audit_state *state,
444 bool task_creation)
446 const struct cred *cred;
447 int i, need_sid = 1;
448 u32 sid;
450 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
452 for (i = 0; i < rule->field_count; i++) {
453 struct audit_field *f = &rule->fields[i];
454 struct audit_names *n;
455 int result = 0;
456 pid_t pid;
458 switch (f->type) {
459 case AUDIT_PID:
460 pid = task_pid_nr(tsk);
461 result = audit_comparator(pid, f->op, f->val);
462 break;
463 case AUDIT_PPID:
464 if (ctx) {
465 if (!ctx->ppid)
466 ctx->ppid = task_ppid_nr(tsk);
467 result = audit_comparator(ctx->ppid, f->op, f->val);
469 break;
470 case AUDIT_EXE:
471 result = audit_exe_compare(tsk, rule->exe);
472 break;
473 case AUDIT_UID:
474 result = audit_uid_comparator(cred->uid, f->op, f->uid);
475 break;
476 case AUDIT_EUID:
477 result = audit_uid_comparator(cred->euid, f->op, f->uid);
478 break;
479 case AUDIT_SUID:
480 result = audit_uid_comparator(cred->suid, f->op, f->uid);
481 break;
482 case AUDIT_FSUID:
483 result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
484 break;
485 case AUDIT_GID:
486 result = audit_gid_comparator(cred->gid, f->op, f->gid);
487 if (f->op == Audit_equal) {
488 if (!result)
489 result = in_group_p(f->gid);
490 } else if (f->op == Audit_not_equal) {
491 if (result)
492 result = !in_group_p(f->gid);
494 break;
495 case AUDIT_EGID:
496 result = audit_gid_comparator(cred->egid, f->op, f->gid);
497 if (f->op == Audit_equal) {
498 if (!result)
499 result = in_egroup_p(f->gid);
500 } else if (f->op == Audit_not_equal) {
501 if (result)
502 result = !in_egroup_p(f->gid);
504 break;
505 case AUDIT_SGID:
506 result = audit_gid_comparator(cred->sgid, f->op, f->gid);
507 break;
508 case AUDIT_FSGID:
509 result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
510 break;
511 case AUDIT_PERS:
512 result = audit_comparator(tsk->personality, f->op, f->val);
513 break;
514 case AUDIT_ARCH:
515 if (ctx)
516 result = audit_comparator(ctx->arch, f->op, f->val);
517 break;
519 case AUDIT_EXIT:
520 if (ctx && ctx->return_valid)
521 result = audit_comparator(ctx->return_code, f->op, f->val);
522 break;
523 case AUDIT_SUCCESS:
524 if (ctx && ctx->return_valid) {
525 if (f->val)
526 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
527 else
528 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
530 break;
531 case AUDIT_DEVMAJOR:
532 if (name) {
533 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
534 audit_comparator(MAJOR(name->rdev), f->op, f->val))
535 ++result;
536 } else if (ctx) {
537 list_for_each_entry(n, &ctx->names_list, list) {
538 if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
539 audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
540 ++result;
541 break;
545 break;
546 case AUDIT_DEVMINOR:
547 if (name) {
548 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
549 audit_comparator(MINOR(name->rdev), f->op, f->val))
550 ++result;
551 } else if (ctx) {
552 list_for_each_entry(n, &ctx->names_list, list) {
553 if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
554 audit_comparator(MINOR(n->rdev), f->op, f->val)) {
555 ++result;
556 break;
560 break;
561 case AUDIT_INODE:
562 if (name)
563 result = audit_comparator(name->ino, f->op, f->val);
564 else if (ctx) {
565 list_for_each_entry(n, &ctx->names_list, list) {
566 if (audit_comparator(n->ino, f->op, f->val)) {
567 ++result;
568 break;
572 break;
573 case AUDIT_OBJ_UID:
574 if (name) {
575 result = audit_uid_comparator(name->uid, f->op, f->uid);
576 } else if (ctx) {
577 list_for_each_entry(n, &ctx->names_list, list) {
578 if (audit_uid_comparator(n->uid, f->op, f->uid)) {
579 ++result;
580 break;
584 break;
585 case AUDIT_OBJ_GID:
586 if (name) {
587 result = audit_gid_comparator(name->gid, f->op, f->gid);
588 } else if (ctx) {
589 list_for_each_entry(n, &ctx->names_list, list) {
590 if (audit_gid_comparator(n->gid, f->op, f->gid)) {
591 ++result;
592 break;
596 break;
597 case AUDIT_WATCH:
598 if (name)
599 result = audit_watch_compare(rule->watch, name->ino, name->dev);
600 break;
601 case AUDIT_DIR:
602 if (ctx)
603 result = match_tree_refs(ctx, rule->tree);
604 break;
605 case AUDIT_LOGINUID:
606 result = audit_uid_comparator(tsk->loginuid, f->op, f->uid);
607 break;
608 case AUDIT_LOGINUID_SET:
609 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
610 break;
611 case AUDIT_SUBJ_USER:
612 case AUDIT_SUBJ_ROLE:
613 case AUDIT_SUBJ_TYPE:
614 case AUDIT_SUBJ_SEN:
615 case AUDIT_SUBJ_CLR:
616 /* NOTE: this may return negative values indicating
617 a temporary error. We simply treat this as a
618 match for now to avoid losing information that
619 may be wanted. An error message will also be
620 logged upon error */
621 if (f->lsm_rule) {
622 if (need_sid) {
623 security_task_getsecid(tsk, &sid);
624 need_sid = 0;
626 result = security_audit_rule_match(sid, f->type,
627 f->op,
628 f->lsm_rule,
629 ctx);
631 break;
632 case AUDIT_OBJ_USER:
633 case AUDIT_OBJ_ROLE:
634 case AUDIT_OBJ_TYPE:
635 case AUDIT_OBJ_LEV_LOW:
636 case AUDIT_OBJ_LEV_HIGH:
637 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
638 also applies here */
639 if (f->lsm_rule) {
640 /* Find files that match */
641 if (name) {
642 result = security_audit_rule_match(
643 name->osid, f->type, f->op,
644 f->lsm_rule, ctx);
645 } else if (ctx) {
646 list_for_each_entry(n, &ctx->names_list, list) {
647 if (security_audit_rule_match(n->osid, f->type,
648 f->op, f->lsm_rule,
649 ctx)) {
650 ++result;
651 break;
655 /* Find ipc objects that match */
656 if (!ctx || ctx->type != AUDIT_IPC)
657 break;
658 if (security_audit_rule_match(ctx->ipc.osid,
659 f->type, f->op,
660 f->lsm_rule, ctx))
661 ++result;
663 break;
664 case AUDIT_ARG0:
665 case AUDIT_ARG1:
666 case AUDIT_ARG2:
667 case AUDIT_ARG3:
668 if (ctx)
669 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
670 break;
671 case AUDIT_FILTERKEY:
672 /* ignore this field for filtering */
673 result = 1;
674 break;
675 case AUDIT_PERM:
676 result = audit_match_perm(ctx, f->val);
677 break;
678 case AUDIT_FILETYPE:
679 result = audit_match_filetype(ctx, f->val);
680 break;
681 case AUDIT_FIELD_COMPARE:
682 result = audit_field_compare(tsk, cred, f, ctx, name);
683 break;
685 if (!result)
686 return 0;
689 if (ctx) {
690 if (rule->prio <= ctx->prio)
691 return 0;
692 if (rule->filterkey) {
693 kfree(ctx->filterkey);
694 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
696 ctx->prio = rule->prio;
698 switch (rule->action) {
699 case AUDIT_NEVER:
700 *state = AUDIT_DISABLED;
701 break;
702 case AUDIT_ALWAYS:
703 *state = AUDIT_RECORD_CONTEXT;
704 break;
706 return 1;
709 /* At process creation time, we can determine if system-call auditing is
710 * completely disabled for this task. Since we only have the task
711 * structure at this point, we can only check uid and gid.
713 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
715 struct audit_entry *e;
716 enum audit_state state;
718 rcu_read_lock();
719 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
720 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
721 &state, true)) {
722 if (state == AUDIT_RECORD_CONTEXT)
723 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
724 rcu_read_unlock();
725 return state;
728 rcu_read_unlock();
729 return AUDIT_BUILD_CONTEXT;
732 static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
734 int word, bit;
736 if (val > 0xffffffff)
737 return false;
739 word = AUDIT_WORD(val);
740 if (word >= AUDIT_BITMASK_SIZE)
741 return false;
743 bit = AUDIT_BIT(val);
745 return rule->mask[word] & bit;
748 /* At syscall entry and exit time, this filter is called if the
749 * audit_state is not low enough that auditing cannot take place, but is
750 * also not high enough that we already know we have to write an audit
751 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
753 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
754 struct audit_context *ctx,
755 struct list_head *list)
757 struct audit_entry *e;
758 enum audit_state state;
760 if (audit_pid && tsk->tgid == audit_pid)
761 return AUDIT_DISABLED;
763 rcu_read_lock();
764 if (!list_empty(list)) {
765 list_for_each_entry_rcu(e, list, list) {
766 if (audit_in_mask(&e->rule, ctx->major) &&
767 audit_filter_rules(tsk, &e->rule, ctx, NULL,
768 &state, false)) {
769 rcu_read_unlock();
770 ctx->current_state = state;
771 return state;
775 rcu_read_unlock();
776 return AUDIT_BUILD_CONTEXT;
780 * Given an audit_name check the inode hash table to see if they match.
781 * Called holding the rcu read lock to protect the use of audit_inode_hash
783 static int audit_filter_inode_name(struct task_struct *tsk,
784 struct audit_names *n,
785 struct audit_context *ctx) {
786 int h = audit_hash_ino((u32)n->ino);
787 struct list_head *list = &audit_inode_hash[h];
788 struct audit_entry *e;
789 enum audit_state state;
791 if (list_empty(list))
792 return 0;
794 list_for_each_entry_rcu(e, list, list) {
795 if (audit_in_mask(&e->rule, ctx->major) &&
796 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
797 ctx->current_state = state;
798 return 1;
802 return 0;
805 /* At syscall exit time, this filter is called if any audit_names have been
806 * collected during syscall processing. We only check rules in sublists at hash
807 * buckets applicable to the inode numbers in audit_names.
808 * Regarding audit_state, same rules apply as for audit_filter_syscall().
810 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
812 struct audit_names *n;
814 if (audit_pid && tsk->tgid == audit_pid)
815 return;
817 rcu_read_lock();
819 list_for_each_entry(n, &ctx->names_list, list) {
820 if (audit_filter_inode_name(tsk, n, ctx))
821 break;
823 rcu_read_unlock();
826 /* Transfer the audit context pointer to the caller, clearing it in the tsk's struct */
827 static inline struct audit_context *audit_take_context(struct task_struct *tsk,
828 int return_valid,
829 long return_code)
831 struct audit_context *context = tsk->audit_context;
833 if (!context)
834 return NULL;
835 context->return_valid = return_valid;
838 * we need to fix up the return code in the audit logs if the actual
839 * return codes are later going to be fixed up by the arch specific
840 * signal handlers
842 * This is actually a test for:
843 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
844 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
846 * but is faster than a bunch of ||
848 if (unlikely(return_code <= -ERESTARTSYS) &&
849 (return_code >= -ERESTART_RESTARTBLOCK) &&
850 (return_code != -ENOIOCTLCMD))
851 context->return_code = -EINTR;
852 else
853 context->return_code = return_code;
855 if (context->in_syscall && !context->dummy) {
856 audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
857 audit_filter_inodes(tsk, context);
860 tsk->audit_context = NULL;
861 return context;
864 static inline void audit_proctitle_free(struct audit_context *context)
866 kfree(context->proctitle.value);
867 context->proctitle.value = NULL;
868 context->proctitle.len = 0;
871 static inline void audit_free_names(struct audit_context *context)
873 struct audit_names *n, *next;
875 list_for_each_entry_safe(n, next, &context->names_list, list) {
876 list_del(&n->list);
877 if (n->name)
878 putname(n->name);
879 if (n->should_free)
880 kfree(n);
882 context->name_count = 0;
883 path_put(&context->pwd);
884 context->pwd.dentry = NULL;
885 context->pwd.mnt = NULL;
888 static inline void audit_free_aux(struct audit_context *context)
890 struct audit_aux_data *aux;
892 while ((aux = context->aux)) {
893 context->aux = aux->next;
894 kfree(aux);
896 while ((aux = context->aux_pids)) {
897 context->aux_pids = aux->next;
898 kfree(aux);
902 static inline struct audit_context *audit_alloc_context(enum audit_state state)
904 struct audit_context *context;
906 context = kzalloc(sizeof(*context), GFP_KERNEL);
907 if (!context)
908 return NULL;
909 context->state = state;
910 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
911 INIT_LIST_HEAD(&context->killed_trees);
912 INIT_LIST_HEAD(&context->names_list);
913 return context;
917 * audit_alloc - allocate an audit context block for a task
918 * @tsk: task
920 * Filter on the task information and allocate a per-task audit context
921 * if necessary. Doing so turns on system call auditing for the
922 * specified task. This is called from copy_process, so no lock is
923 * needed.
925 int audit_alloc(struct task_struct *tsk)
927 struct audit_context *context;
928 enum audit_state state;
929 char *key = NULL;
931 if (likely(!audit_ever_enabled))
932 return 0; /* Return if not auditing. */
934 state = audit_filter_task(tsk, &key);
935 if (state == AUDIT_DISABLED) {
936 clear_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
937 return 0;
940 if (!(context = audit_alloc_context(state))) {
941 kfree(key);
942 audit_log_lost("out of memory in audit_alloc");
943 return -ENOMEM;
945 context->filterkey = key;
947 tsk->audit_context = context;
948 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
949 return 0;
952 static inline void audit_free_context(struct audit_context *context)
954 audit_free_names(context);
955 unroll_tree_refs(context, NULL, 0);
956 free_tree_refs(context);
957 audit_free_aux(context);
958 kfree(context->filterkey);
959 kfree(context->sockaddr);
960 audit_proctitle_free(context);
961 kfree(context);
964 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
965 kuid_t auid, kuid_t uid, unsigned int sessionid,
966 u32 sid, char *comm)
968 struct audit_buffer *ab;
969 char *ctx = NULL;
970 u32 len;
971 int rc = 0;
973 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
974 if (!ab)
975 return rc;
977 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
978 from_kuid(&init_user_ns, auid),
979 from_kuid(&init_user_ns, uid), sessionid);
980 if (sid) {
981 if (security_secid_to_secctx(sid, &ctx, &len)) {
982 audit_log_format(ab, " obj=(none)");
983 rc = 1;
984 } else {
985 audit_log_format(ab, " obj=%s", ctx);
986 security_release_secctx(ctx, len);
989 audit_log_format(ab, " ocomm=");
990 audit_log_untrustedstring(ab, comm);
991 audit_log_end(ab);
993 return rc;
996 static void audit_log_execve_info(struct audit_context *context,
997 struct audit_buffer **ab)
999 long len_max;
1000 long len_rem;
1001 long len_full;
1002 long len_buf;
1003 long len_abuf;
1004 long len_tmp;
1005 bool require_data;
1006 bool encode;
1007 unsigned int iter;
1008 unsigned int arg;
1009 char *buf_head;
1010 char *buf;
1011 const char __user *p = (const char __user *)current->mm->arg_start;
1013 /* NOTE: this buffer needs to be large enough to hold all the non-arg
1014 * data we put in the audit record for this argument (see the
1015 * code below) ... at this point in time 96 is plenty */
1016 char abuf[96];
1018 /* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
1019 * current value of 7500 is not as important as the fact that it
1020 * is less than 8k, a setting of 7500 gives us plenty of wiggle
1021 * room if we go over a little bit in the logging below */
1022 WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500);
1023 len_max = MAX_EXECVE_AUDIT_LEN;
1025 /* scratch buffer to hold the userspace args */
1026 buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1027 if (!buf_head) {
1028 audit_panic("out of memory for argv string");
1029 return;
1031 buf = buf_head;
1033 audit_log_format(*ab, "argc=%d", context->execve.argc);
1035 len_rem = len_max;
1036 len_buf = 0;
1037 len_full = 0;
1038 require_data = true;
1039 encode = false;
1040 iter = 0;
1041 arg = 0;
1042 do {
1043 /* NOTE: we don't ever want to trust this value for anything
1044 * serious, but the audit record format insists we
1045 * provide an argument length for really long arguments,
1046 * e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
1047 * to use strncpy_from_user() to obtain this value for
1048 * recording in the log, although we don't use it
1049 * anywhere here to avoid a double-fetch problem */
1050 if (len_full == 0)
1051 len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1053 /* read more data from userspace */
1054 if (require_data) {
1055 /* can we make more room in the buffer? */
1056 if (buf != buf_head) {
1057 memmove(buf_head, buf, len_buf);
1058 buf = buf_head;
1061 /* fetch as much as we can of the argument */
1062 len_tmp = strncpy_from_user(&buf_head[len_buf], p,
1063 len_max - len_buf);
1064 if (len_tmp == -EFAULT) {
1065 /* unable to copy from userspace */
1066 send_sig(SIGKILL, current, 0);
1067 goto out;
1068 } else if (len_tmp == (len_max - len_buf)) {
1069 /* buffer is not large enough */
1070 require_data = true;
1071 /* NOTE: if we are going to span multiple
1072 * buffers force the encoding so we stand
1073 * a chance at a sane len_full value and
1074 * consistent record encoding */
1075 encode = true;
1076 len_full = len_full * 2;
1077 p += len_tmp;
1078 } else {
1079 require_data = false;
1080 if (!encode)
1081 encode = audit_string_contains_control(
1082 buf, len_tmp);
1083 /* try to use a trusted value for len_full */
1084 if (len_full < len_max)
1085 len_full = (encode ?
1086 len_tmp * 2 : len_tmp);
1087 p += len_tmp + 1;
1089 len_buf += len_tmp;
1090 buf_head[len_buf] = '\0';
1092 /* length of the buffer in the audit record? */
1093 len_abuf = (encode ? len_buf * 2 : len_buf + 2);
1096 /* write as much as we can to the audit log */
1097 if (len_buf > 0) {
1098 /* NOTE: some magic numbers here - basically if we
1099 * can't fit a reasonable amount of data into the
1100 * existing audit buffer, flush it and start with
1101 * a new buffer */
1102 if ((sizeof(abuf) + 8) > len_rem) {
1103 len_rem = len_max;
1104 audit_log_end(*ab);
1105 *ab = audit_log_start(context,
1106 GFP_KERNEL, AUDIT_EXECVE);
1107 if (!*ab)
1108 goto out;
1111 /* create the non-arg portion of the arg record */
1112 len_tmp = 0;
1113 if (require_data || (iter > 0) ||
1114 ((len_abuf + sizeof(abuf)) > len_rem)) {
1115 if (iter == 0) {
1116 len_tmp += snprintf(&abuf[len_tmp],
1117 sizeof(abuf) - len_tmp,
1118 " a%d_len=%lu",
1119 arg, len_full);
1121 len_tmp += snprintf(&abuf[len_tmp],
1122 sizeof(abuf) - len_tmp,
1123 " a%d[%d]=", arg, iter++);
1124 } else
1125 len_tmp += snprintf(&abuf[len_tmp],
1126 sizeof(abuf) - len_tmp,
1127 " a%d=", arg);
1128 WARN_ON(len_tmp >= sizeof(abuf));
1129 abuf[sizeof(abuf) - 1] = '\0';
1131 /* log the arg in the audit record */
1132 audit_log_format(*ab, "%s", abuf);
1133 len_rem -= len_tmp;
1134 len_tmp = len_buf;
1135 if (encode) {
1136 if (len_abuf > len_rem)
1137 len_tmp = len_rem / 2; /* encoding */
1138 audit_log_n_hex(*ab, buf, len_tmp);
1139 len_rem -= len_tmp * 2;
1140 len_abuf -= len_tmp * 2;
1141 } else {
1142 if (len_abuf > len_rem)
1143 len_tmp = len_rem - 2; /* quotes */
1144 audit_log_n_string(*ab, buf, len_tmp);
1145 len_rem -= len_tmp + 2;
1146 /* don't subtract the "2" because we still need
1147 * to add quotes to the remaining string */
1148 len_abuf -= len_tmp;
1150 len_buf -= len_tmp;
1151 buf += len_tmp;
1154 /* ready to move to the next argument? */
1155 if ((len_buf == 0) && !require_data) {
1156 arg++;
1157 iter = 0;
1158 len_full = 0;
1159 require_data = true;
1160 encode = false;
1162 } while (arg < context->execve.argc);
1164 /* NOTE: the caller handles the final audit_log_end() call */
1166 out:
1167 kfree(buf_head);
1170 static void show_special(struct audit_context *context, int *call_panic)
1172 struct audit_buffer *ab;
1173 int i;
1175 ab = audit_log_start(context, GFP_KERNEL, context->type);
1176 if (!ab)
1177 return;
1179 switch (context->type) {
1180 case AUDIT_SOCKETCALL: {
1181 int nargs = context->socketcall.nargs;
1182 audit_log_format(ab, "nargs=%d", nargs);
1183 for (i = 0; i < nargs; i++)
1184 audit_log_format(ab, " a%d=%lx", i,
1185 context->socketcall.args[i]);
1186 break; }
1187 case AUDIT_IPC: {
1188 u32 osid = context->ipc.osid;
1190 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1191 from_kuid(&init_user_ns, context->ipc.uid),
1192 from_kgid(&init_user_ns, context->ipc.gid),
1193 context->ipc.mode);
1194 if (osid) {
1195 char *ctx = NULL;
1196 u32 len;
1197 if (security_secid_to_secctx(osid, &ctx, &len)) {
1198 audit_log_format(ab, " osid=%u", osid);
1199 *call_panic = 1;
1200 } else {
1201 audit_log_format(ab, " obj=%s", ctx);
1202 security_release_secctx(ctx, len);
1205 if (context->ipc.has_perm) {
1206 audit_log_end(ab);
1207 ab = audit_log_start(context, GFP_KERNEL,
1208 AUDIT_IPC_SET_PERM);
1209 if (unlikely(!ab))
1210 return;
1211 audit_log_format(ab,
1212 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1213 context->ipc.qbytes,
1214 context->ipc.perm_uid,
1215 context->ipc.perm_gid,
1216 context->ipc.perm_mode);
1218 break; }
1219 case AUDIT_MQ_OPEN: {
1220 audit_log_format(ab,
1221 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1222 "mq_msgsize=%ld mq_curmsgs=%ld",
1223 context->mq_open.oflag, context->mq_open.mode,
1224 context->mq_open.attr.mq_flags,
1225 context->mq_open.attr.mq_maxmsg,
1226 context->mq_open.attr.mq_msgsize,
1227 context->mq_open.attr.mq_curmsgs);
1228 break; }
1229 case AUDIT_MQ_SENDRECV: {
1230 audit_log_format(ab,
1231 "mqdes=%d msg_len=%zd msg_prio=%u "
1232 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1233 context->mq_sendrecv.mqdes,
1234 context->mq_sendrecv.msg_len,
1235 context->mq_sendrecv.msg_prio,
1236 context->mq_sendrecv.abs_timeout.tv_sec,
1237 context->mq_sendrecv.abs_timeout.tv_nsec);
1238 break; }
1239 case AUDIT_MQ_NOTIFY: {
1240 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1241 context->mq_notify.mqdes,
1242 context->mq_notify.sigev_signo);
1243 break; }
1244 case AUDIT_MQ_GETSETATTR: {
1245 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1246 audit_log_format(ab,
1247 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1248 "mq_curmsgs=%ld ",
1249 context->mq_getsetattr.mqdes,
1250 attr->mq_flags, attr->mq_maxmsg,
1251 attr->mq_msgsize, attr->mq_curmsgs);
1252 break; }
1253 case AUDIT_CAPSET: {
1254 audit_log_format(ab, "pid=%d", context->capset.pid);
1255 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1256 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1257 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1258 break; }
1259 case AUDIT_MMAP: {
1260 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1261 context->mmap.flags);
1262 break; }
1263 case AUDIT_EXECVE: {
1264 audit_log_execve_info(context, &ab);
1265 break; }
1267 audit_log_end(ab);
1270 static inline int audit_proctitle_rtrim(char *proctitle, int len)
1272 char *end = proctitle + len - 1;
1273 while (end > proctitle && !isprint(*end))
1274 end--;
1276 /* catch the case where proctitle is only 1 non-print character */
1277 len = end - proctitle + 1;
1278 len -= isprint(proctitle[len-1]) == 0;
1279 return len;
1282 static void audit_log_proctitle(struct task_struct *tsk,
1283 struct audit_context *context)
1285 int res;
1286 char *buf;
1287 char *msg = "(null)";
1288 int len = strlen(msg);
1289 struct audit_buffer *ab;
1291 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1292 if (!ab)
1293 return; /* audit_panic or being filtered */
1295 audit_log_format(ab, "proctitle=");
1297 /* Not cached */
1298 if (!context->proctitle.value) {
1299 buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1300 if (!buf)
1301 goto out;
1302 /* Historically called this from procfs naming */
1303 res = get_cmdline(tsk, buf, MAX_PROCTITLE_AUDIT_LEN);
1304 if (res == 0) {
1305 kfree(buf);
1306 goto out;
1308 res = audit_proctitle_rtrim(buf, res);
1309 if (res == 0) {
1310 kfree(buf);
1311 goto out;
1313 context->proctitle.value = buf;
1314 context->proctitle.len = res;
1316 msg = context->proctitle.value;
1317 len = context->proctitle.len;
1318 out:
1319 audit_log_n_untrustedstring(ab, msg, len);
1320 audit_log_end(ab);
1323 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1325 int i, call_panic = 0;
1326 struct audit_buffer *ab;
1327 struct audit_aux_data *aux;
1328 struct audit_names *n;
1330 /* tsk == current */
1331 context->personality = tsk->personality;
1333 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1334 if (!ab)
1335 return; /* audit_panic has been called */
1336 audit_log_format(ab, "arch=%x syscall=%d",
1337 context->arch, context->major);
1338 if (context->personality != PER_LINUX)
1339 audit_log_format(ab, " per=%lx", context->personality);
1340 if (context->return_valid)
1341 audit_log_format(ab, " success=%s exit=%ld",
1342 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1343 context->return_code);
1345 audit_log_format(ab,
1346 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1347 context->argv[0],
1348 context->argv[1],
1349 context->argv[2],
1350 context->argv[3],
1351 context->name_count);
1353 audit_log_task_info(ab, tsk);
1354 audit_log_key(ab, context->filterkey);
1355 audit_log_end(ab);
1357 for (aux = context->aux; aux; aux = aux->next) {
1359 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1360 if (!ab)
1361 continue; /* audit_panic has been called */
1363 switch (aux->type) {
1365 case AUDIT_BPRM_FCAPS: {
1366 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1367 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1368 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1369 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1370 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1371 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1372 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1373 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1374 audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1375 audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1376 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1377 break; }
1380 audit_log_end(ab);
1383 if (context->type)
1384 show_special(context, &call_panic);
1386 if (context->fds[0] >= 0) {
1387 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1388 if (ab) {
1389 audit_log_format(ab, "fd0=%d fd1=%d",
1390 context->fds[0], context->fds[1]);
1391 audit_log_end(ab);
1395 if (context->sockaddr_len) {
1396 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1397 if (ab) {
1398 audit_log_format(ab, "saddr=");
1399 audit_log_n_hex(ab, (void *)context->sockaddr,
1400 context->sockaddr_len);
1401 audit_log_end(ab);
1405 for (aux = context->aux_pids; aux; aux = aux->next) {
1406 struct audit_aux_data_pids *axs = (void *)aux;
1408 for (i = 0; i < axs->pid_count; i++)
1409 if (audit_log_pid_context(context, axs->target_pid[i],
1410 axs->target_auid[i],
1411 axs->target_uid[i],
1412 axs->target_sessionid[i],
1413 axs->target_sid[i],
1414 axs->target_comm[i]))
1415 call_panic = 1;
1418 if (context->target_pid &&
1419 audit_log_pid_context(context, context->target_pid,
1420 context->target_auid, context->target_uid,
1421 context->target_sessionid,
1422 context->target_sid, context->target_comm))
1423 call_panic = 1;
1425 if (context->pwd.dentry && context->pwd.mnt) {
1426 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1427 if (ab) {
1428 audit_log_d_path(ab, "cwd=", &context->pwd);
1429 audit_log_end(ab);
1433 i = 0;
1434 list_for_each_entry(n, &context->names_list, list) {
1435 if (n->hidden)
1436 continue;
1437 audit_log_name(context, n, NULL, i++, &call_panic);
1440 audit_log_proctitle(tsk, context);
1442 /* Send end of event record to help user space know we are finished */
1443 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1444 if (ab)
1445 audit_log_end(ab);
1446 if (call_panic)
1447 audit_panic("error converting sid to string");
1451 * audit_free - free a per-task audit context
1452 * @tsk: task whose audit context block to free
1454 * Called from copy_process and do_exit
1456 void __audit_free(struct task_struct *tsk)
1458 struct audit_context *context;
1460 context = audit_take_context(tsk, 0, 0);
1461 if (!context)
1462 return;
1464 /* Check for system calls that do not go through the exit
1465 * function (e.g., exit_group), then free context block.
1466 * We use GFP_ATOMIC here because we might be doing this
1467 * in the context of the idle thread */
1468 /* that can happen only if we are called from do_exit() */
1469 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1470 audit_log_exit(context, tsk);
1471 if (!list_empty(&context->killed_trees))
1472 audit_kill_trees(&context->killed_trees);
1474 audit_free_context(context);
1478 * audit_syscall_entry - fill in an audit record at syscall entry
1479 * @major: major syscall type (function)
1480 * @a1: additional syscall register 1
1481 * @a2: additional syscall register 2
1482 * @a3: additional syscall register 3
1483 * @a4: additional syscall register 4
1485 * Fill in audit context at syscall entry. This only happens if the
1486 * audit context was created when the task was created and the state or
1487 * filters demand the audit context be built. If the state from the
1488 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1489 * then the record will be written at syscall exit time (otherwise, it
1490 * will only be written if another part of the kernel requests that it
1491 * be written).
1493 void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
1494 unsigned long a3, unsigned long a4)
1496 struct task_struct *tsk = current;
1497 struct audit_context *context = tsk->audit_context;
1498 enum audit_state state;
1500 if (!context)
1501 return;
1503 BUG_ON(context->in_syscall || context->name_count);
1505 if (!audit_enabled)
1506 return;
1508 context->arch = syscall_get_arch();
1509 context->major = major;
1510 context->argv[0] = a1;
1511 context->argv[1] = a2;
1512 context->argv[2] = a3;
1513 context->argv[3] = a4;
1515 state = context->state;
1516 context->dummy = !audit_n_rules;
1517 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1518 context->prio = 0;
1519 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1521 if (state == AUDIT_DISABLED)
1522 return;
1524 context->serial = 0;
1525 context->ctime = CURRENT_TIME;
1526 context->in_syscall = 1;
1527 context->current_state = state;
1528 context->ppid = 0;
1532 * audit_syscall_exit - deallocate audit context after a system call
1533 * @success: success value of the syscall
1534 * @return_code: return value of the syscall
1536 * Tear down after system call. If the audit context has been marked as
1537 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1538 * filtering, or because some other part of the kernel wrote an audit
1539 * message), then write out the syscall information. In call cases,
1540 * free the names stored from getname().
1542 void __audit_syscall_exit(int success, long return_code)
1544 struct task_struct *tsk = current;
1545 struct audit_context *context;
1547 if (success)
1548 success = AUDITSC_SUCCESS;
1549 else
1550 success = AUDITSC_FAILURE;
1552 context = audit_take_context(tsk, success, return_code);
1553 if (!context)
1554 return;
1556 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1557 audit_log_exit(context, tsk);
1559 context->in_syscall = 0;
1560 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1562 if (!list_empty(&context->killed_trees))
1563 audit_kill_trees(&context->killed_trees);
1565 audit_free_names(context);
1566 unroll_tree_refs(context, NULL, 0);
1567 audit_free_aux(context);
1568 context->aux = NULL;
1569 context->aux_pids = NULL;
1570 context->target_pid = 0;
1571 context->target_sid = 0;
1572 context->sockaddr_len = 0;
1573 context->type = 0;
1574 context->fds[0] = -1;
1575 if (context->state != AUDIT_RECORD_CONTEXT) {
1576 kfree(context->filterkey);
1577 context->filterkey = NULL;
1579 tsk->audit_context = context;
1582 static inline void handle_one(const struct inode *inode)
1584 #ifdef CONFIG_AUDIT_TREE
1585 struct audit_context *context;
1586 struct audit_tree_refs *p;
1587 struct audit_chunk *chunk;
1588 int count;
1589 if (likely(hlist_empty(&inode->i_fsnotify_marks)))
1590 return;
1591 context = current->audit_context;
1592 p = context->trees;
1593 count = context->tree_count;
1594 rcu_read_lock();
1595 chunk = audit_tree_lookup(inode);
1596 rcu_read_unlock();
1597 if (!chunk)
1598 return;
1599 if (likely(put_tree_ref(context, chunk)))
1600 return;
1601 if (unlikely(!grow_tree_refs(context))) {
1602 pr_warn("out of memory, audit has lost a tree reference\n");
1603 audit_set_auditable(context);
1604 audit_put_chunk(chunk);
1605 unroll_tree_refs(context, p, count);
1606 return;
1608 put_tree_ref(context, chunk);
1609 #endif
1612 static void handle_path(const struct dentry *dentry)
1614 #ifdef CONFIG_AUDIT_TREE
1615 struct audit_context *context;
1616 struct audit_tree_refs *p;
1617 const struct dentry *d, *parent;
1618 struct audit_chunk *drop;
1619 unsigned long seq;
1620 int count;
1622 context = current->audit_context;
1623 p = context->trees;
1624 count = context->tree_count;
1625 retry:
1626 drop = NULL;
1627 d = dentry;
1628 rcu_read_lock();
1629 seq = read_seqbegin(&rename_lock);
1630 for(;;) {
1631 struct inode *inode = d_backing_inode(d);
1632 if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
1633 struct audit_chunk *chunk;
1634 chunk = audit_tree_lookup(inode);
1635 if (chunk) {
1636 if (unlikely(!put_tree_ref(context, chunk))) {
1637 drop = chunk;
1638 break;
1642 parent = d->d_parent;
1643 if (parent == d)
1644 break;
1645 d = parent;
1647 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1648 rcu_read_unlock();
1649 if (!drop) {
1650 /* just a race with rename */
1651 unroll_tree_refs(context, p, count);
1652 goto retry;
1654 audit_put_chunk(drop);
1655 if (grow_tree_refs(context)) {
1656 /* OK, got more space */
1657 unroll_tree_refs(context, p, count);
1658 goto retry;
1660 /* too bad */
1661 pr_warn("out of memory, audit has lost a tree reference\n");
1662 unroll_tree_refs(context, p, count);
1663 audit_set_auditable(context);
1664 return;
1666 rcu_read_unlock();
1667 #endif
1670 static struct audit_names *audit_alloc_name(struct audit_context *context,
1671 unsigned char type)
1673 struct audit_names *aname;
1675 if (context->name_count < AUDIT_NAMES) {
1676 aname = &context->preallocated_names[context->name_count];
1677 memset(aname, 0, sizeof(*aname));
1678 } else {
1679 aname = kzalloc(sizeof(*aname), GFP_NOFS);
1680 if (!aname)
1681 return NULL;
1682 aname->should_free = true;
1685 aname->ino = AUDIT_INO_UNSET;
1686 aname->type = type;
1687 list_add_tail(&aname->list, &context->names_list);
1689 context->name_count++;
1690 return aname;
1694 * audit_reusename - fill out filename with info from existing entry
1695 * @uptr: userland ptr to pathname
1697 * Search the audit_names list for the current audit context. If there is an
1698 * existing entry with a matching "uptr" then return the filename
1699 * associated with that audit_name. If not, return NULL.
1701 struct filename *
1702 __audit_reusename(const __user char *uptr)
1704 struct audit_context *context = current->audit_context;
1705 struct audit_names *n;
1707 list_for_each_entry(n, &context->names_list, list) {
1708 if (!n->name)
1709 continue;
1710 if (n->name->uptr == uptr) {
1711 n->name->refcnt++;
1712 return n->name;
1715 return NULL;
1719 * audit_getname - add a name to the list
1720 * @name: name to add
1722 * Add a name to the list of audit names for this context.
1723 * Called from fs/namei.c:getname().
1725 void __audit_getname(struct filename *name)
1727 struct audit_context *context = current->audit_context;
1728 struct audit_names *n;
1730 if (!context->in_syscall)
1731 return;
1733 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1734 if (!n)
1735 return;
1737 n->name = name;
1738 n->name_len = AUDIT_NAME_FULL;
1739 name->aname = n;
1740 name->refcnt++;
1742 if (!context->pwd.dentry)
1743 get_fs_pwd(current->fs, &context->pwd);
1747 * __audit_inode - store the inode and device from a lookup
1748 * @name: name being audited
1749 * @dentry: dentry being audited
1750 * @flags: attributes for this particular entry
1752 void __audit_inode(struct filename *name, const struct dentry *dentry,
1753 unsigned int flags)
1755 struct audit_context *context = current->audit_context;
1756 struct inode *inode = d_backing_inode(dentry);
1757 struct audit_names *n;
1758 bool parent = flags & AUDIT_INODE_PARENT;
1760 if (!context->in_syscall)
1761 return;
1763 if (!name)
1764 goto out_alloc;
1767 * If we have a pointer to an audit_names entry already, then we can
1768 * just use it directly if the type is correct.
1770 n = name->aname;
1771 if (n) {
1772 if (parent) {
1773 if (n->type == AUDIT_TYPE_PARENT ||
1774 n->type == AUDIT_TYPE_UNKNOWN)
1775 goto out;
1776 } else {
1777 if (n->type != AUDIT_TYPE_PARENT)
1778 goto out;
1782 list_for_each_entry_reverse(n, &context->names_list, list) {
1783 if (n->ino) {
1784 /* valid inode number, use that for the comparison */
1785 if (n->ino != inode->i_ino ||
1786 n->dev != inode->i_sb->s_dev)
1787 continue;
1788 } else if (n->name) {
1789 /* inode number has not been set, check the name */
1790 if (strcmp(n->name->name, name->name))
1791 continue;
1792 } else
1793 /* no inode and no name (?!) ... this is odd ... */
1794 continue;
1796 /* match the correct record type */
1797 if (parent) {
1798 if (n->type == AUDIT_TYPE_PARENT ||
1799 n->type == AUDIT_TYPE_UNKNOWN)
1800 goto out;
1801 } else {
1802 if (n->type != AUDIT_TYPE_PARENT)
1803 goto out;
1807 out_alloc:
1808 /* unable to find an entry with both a matching name and type */
1809 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1810 if (!n)
1811 return;
1812 if (name) {
1813 n->name = name;
1814 name->refcnt++;
1817 out:
1818 if (parent) {
1819 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
1820 n->type = AUDIT_TYPE_PARENT;
1821 if (flags & AUDIT_INODE_HIDDEN)
1822 n->hidden = true;
1823 } else {
1824 n->name_len = AUDIT_NAME_FULL;
1825 n->type = AUDIT_TYPE_NORMAL;
1827 handle_path(dentry);
1828 audit_copy_inode(n, dentry, inode);
1831 void __audit_file(const struct file *file)
1833 __audit_inode(NULL, file->f_path.dentry, 0);
1837 * __audit_inode_child - collect inode info for created/removed objects
1838 * @parent: inode of dentry parent
1839 * @dentry: dentry being audited
1840 * @type: AUDIT_TYPE_* value that we're looking for
1842 * For syscalls that create or remove filesystem objects, audit_inode
1843 * can only collect information for the filesystem object's parent.
1844 * This call updates the audit context with the child's information.
1845 * Syscalls that create a new filesystem object must be hooked after
1846 * the object is created. Syscalls that remove a filesystem object
1847 * must be hooked prior, in order to capture the target inode during
1848 * unsuccessful attempts.
1850 void __audit_inode_child(struct inode *parent,
1851 const struct dentry *dentry,
1852 const unsigned char type)
1854 struct audit_context *context = current->audit_context;
1855 struct inode *inode = d_backing_inode(dentry);
1856 const char *dname = dentry->d_name.name;
1857 struct audit_names *n, *found_parent = NULL, *found_child = NULL;
1859 if (!context->in_syscall)
1860 return;
1862 if (inode)
1863 handle_one(inode);
1865 /* look for a parent entry first */
1866 list_for_each_entry(n, &context->names_list, list) {
1867 if (!n->name ||
1868 (n->type != AUDIT_TYPE_PARENT &&
1869 n->type != AUDIT_TYPE_UNKNOWN))
1870 continue;
1872 if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
1873 !audit_compare_dname_path(dname,
1874 n->name->name, n->name_len)) {
1875 if (n->type == AUDIT_TYPE_UNKNOWN)
1876 n->type = AUDIT_TYPE_PARENT;
1877 found_parent = n;
1878 break;
1882 /* is there a matching child entry? */
1883 list_for_each_entry(n, &context->names_list, list) {
1884 /* can only match entries that have a name */
1885 if (!n->name ||
1886 (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
1887 continue;
1889 if (!strcmp(dname, n->name->name) ||
1890 !audit_compare_dname_path(dname, n->name->name,
1891 found_parent ?
1892 found_parent->name_len :
1893 AUDIT_NAME_FULL)) {
1894 if (n->type == AUDIT_TYPE_UNKNOWN)
1895 n->type = type;
1896 found_child = n;
1897 break;
1901 if (!found_parent) {
1902 /* create a new, "anonymous" parent record */
1903 n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
1904 if (!n)
1905 return;
1906 audit_copy_inode(n, NULL, parent);
1909 if (!found_child) {
1910 found_child = audit_alloc_name(context, type);
1911 if (!found_child)
1912 return;
1914 /* Re-use the name belonging to the slot for a matching parent
1915 * directory. All names for this context are relinquished in
1916 * audit_free_names() */
1917 if (found_parent) {
1918 found_child->name = found_parent->name;
1919 found_child->name_len = AUDIT_NAME_FULL;
1920 found_child->name->refcnt++;
1924 if (inode)
1925 audit_copy_inode(found_child, dentry, inode);
1926 else
1927 found_child->ino = AUDIT_INO_UNSET;
1929 EXPORT_SYMBOL_GPL(__audit_inode_child);
1932 * auditsc_get_stamp - get local copies of audit_context values
1933 * @ctx: audit_context for the task
1934 * @t: timespec to store time recorded in the audit_context
1935 * @serial: serial value that is recorded in the audit_context
1937 * Also sets the context as auditable.
1939 int auditsc_get_stamp(struct audit_context *ctx,
1940 struct timespec *t, unsigned int *serial)
1942 if (!ctx->in_syscall)
1943 return 0;
1944 if (!ctx->serial)
1945 ctx->serial = audit_serial();
1946 t->tv_sec = ctx->ctime.tv_sec;
1947 t->tv_nsec = ctx->ctime.tv_nsec;
1948 *serial = ctx->serial;
1949 if (!ctx->prio) {
1950 ctx->prio = 1;
1951 ctx->current_state = AUDIT_RECORD_CONTEXT;
1953 return 1;
1956 /* global counter which is incremented every time something logs in */
1957 static atomic_t session_id = ATOMIC_INIT(0);
1959 static int audit_set_loginuid_perm(kuid_t loginuid)
1961 /* if we are unset, we don't need privs */
1962 if (!audit_loginuid_set(current))
1963 return 0;
1964 /* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/
1965 if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE))
1966 return -EPERM;
1967 /* it is set, you need permission */
1968 if (!capable(CAP_AUDIT_CONTROL))
1969 return -EPERM;
1970 /* reject if this is not an unset and we don't allow that */
1971 if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID) && uid_valid(loginuid))
1972 return -EPERM;
1973 return 0;
1976 static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid,
1977 unsigned int oldsessionid, unsigned int sessionid,
1978 int rc)
1980 struct audit_buffer *ab;
1981 uid_t uid, oldloginuid, loginuid;
1982 struct tty_struct *tty;
1984 if (!audit_enabled)
1985 return;
1987 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
1988 if (!ab)
1989 return;
1991 uid = from_kuid(&init_user_ns, task_uid(current));
1992 oldloginuid = from_kuid(&init_user_ns, koldloginuid);
1993 loginuid = from_kuid(&init_user_ns, kloginuid),
1994 tty = audit_get_tty(current);
1996 audit_log_format(ab, "pid=%d uid=%u", task_pid_nr(current), uid);
1997 audit_log_task_context(ab);
1998 audit_log_format(ab, " old-auid=%u auid=%u tty=%s old-ses=%u ses=%u res=%d",
1999 oldloginuid, loginuid, tty ? tty_name(tty) : "(none)",
2000 oldsessionid, sessionid, !rc);
2001 audit_put_tty(tty);
2002 audit_log_end(ab);
2006 * audit_set_loginuid - set current task's audit_context loginuid
2007 * @loginuid: loginuid value
2009 * Returns 0.
2011 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2013 int audit_set_loginuid(kuid_t loginuid)
2015 struct task_struct *task = current;
2016 unsigned int oldsessionid, sessionid = (unsigned int)-1;
2017 kuid_t oldloginuid;
2018 int rc;
2020 oldloginuid = audit_get_loginuid(current);
2021 oldsessionid = audit_get_sessionid(current);
2023 rc = audit_set_loginuid_perm(loginuid);
2024 if (rc)
2025 goto out;
2027 /* are we setting or clearing? */
2028 if (uid_valid(loginuid))
2029 sessionid = (unsigned int)atomic_inc_return(&session_id);
2031 task->sessionid = sessionid;
2032 task->loginuid = loginuid;
2033 out:
2034 audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc);
2035 return rc;
2039 * __audit_mq_open - record audit data for a POSIX MQ open
2040 * @oflag: open flag
2041 * @mode: mode bits
2042 * @attr: queue attributes
2045 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2047 struct audit_context *context = current->audit_context;
2049 if (attr)
2050 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2051 else
2052 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2054 context->mq_open.oflag = oflag;
2055 context->mq_open.mode = mode;
2057 context->type = AUDIT_MQ_OPEN;
2061 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2062 * @mqdes: MQ descriptor
2063 * @msg_len: Message length
2064 * @msg_prio: Message priority
2065 * @abs_timeout: Message timeout in absolute time
2068 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2069 const struct timespec *abs_timeout)
2071 struct audit_context *context = current->audit_context;
2072 struct timespec *p = &context->mq_sendrecv.abs_timeout;
2074 if (abs_timeout)
2075 memcpy(p, abs_timeout, sizeof(struct timespec));
2076 else
2077 memset(p, 0, sizeof(struct timespec));
2079 context->mq_sendrecv.mqdes = mqdes;
2080 context->mq_sendrecv.msg_len = msg_len;
2081 context->mq_sendrecv.msg_prio = msg_prio;
2083 context->type = AUDIT_MQ_SENDRECV;
2087 * __audit_mq_notify - record audit data for a POSIX MQ notify
2088 * @mqdes: MQ descriptor
2089 * @notification: Notification event
2093 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2095 struct audit_context *context = current->audit_context;
2097 if (notification)
2098 context->mq_notify.sigev_signo = notification->sigev_signo;
2099 else
2100 context->mq_notify.sigev_signo = 0;
2102 context->mq_notify.mqdes = mqdes;
2103 context->type = AUDIT_MQ_NOTIFY;
2107 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2108 * @mqdes: MQ descriptor
2109 * @mqstat: MQ flags
2112 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2114 struct audit_context *context = current->audit_context;
2115 context->mq_getsetattr.mqdes = mqdes;
2116 context->mq_getsetattr.mqstat = *mqstat;
2117 context->type = AUDIT_MQ_GETSETATTR;
2121 * audit_ipc_obj - record audit data for ipc object
2122 * @ipcp: ipc permissions
2125 void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2127 struct audit_context *context = current->audit_context;
2128 context->ipc.uid = ipcp->uid;
2129 context->ipc.gid = ipcp->gid;
2130 context->ipc.mode = ipcp->mode;
2131 context->ipc.has_perm = 0;
2132 security_ipc_getsecid(ipcp, &context->ipc.osid);
2133 context->type = AUDIT_IPC;
2137 * audit_ipc_set_perm - record audit data for new ipc permissions
2138 * @qbytes: msgq bytes
2139 * @uid: msgq user id
2140 * @gid: msgq group id
2141 * @mode: msgq mode (permissions)
2143 * Called only after audit_ipc_obj().
2145 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2147 struct audit_context *context = current->audit_context;
2149 context->ipc.qbytes = qbytes;
2150 context->ipc.perm_uid = uid;
2151 context->ipc.perm_gid = gid;
2152 context->ipc.perm_mode = mode;
2153 context->ipc.has_perm = 1;
2156 void __audit_bprm(struct linux_binprm *bprm)
2158 struct audit_context *context = current->audit_context;
2160 context->type = AUDIT_EXECVE;
2161 context->execve.argc = bprm->argc;
2166 * audit_socketcall - record audit data for sys_socketcall
2167 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2168 * @args: args array
2171 int __audit_socketcall(int nargs, unsigned long *args)
2173 struct audit_context *context = current->audit_context;
2175 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2176 return -EINVAL;
2177 context->type = AUDIT_SOCKETCALL;
2178 context->socketcall.nargs = nargs;
2179 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2180 return 0;
2184 * __audit_fd_pair - record audit data for pipe and socketpair
2185 * @fd1: the first file descriptor
2186 * @fd2: the second file descriptor
2189 void __audit_fd_pair(int fd1, int fd2)
2191 struct audit_context *context = current->audit_context;
2192 context->fds[0] = fd1;
2193 context->fds[1] = fd2;
2197 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2198 * @len: data length in user space
2199 * @a: data address in kernel space
2201 * Returns 0 for success or NULL context or < 0 on error.
2203 int __audit_sockaddr(int len, void *a)
2205 struct audit_context *context = current->audit_context;
2207 if (!context->sockaddr) {
2208 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2209 if (!p)
2210 return -ENOMEM;
2211 context->sockaddr = p;
2214 context->sockaddr_len = len;
2215 memcpy(context->sockaddr, a, len);
2216 return 0;
2219 void __audit_ptrace(struct task_struct *t)
2221 struct audit_context *context = current->audit_context;
2223 context->target_pid = task_pid_nr(t);
2224 context->target_auid = audit_get_loginuid(t);
2225 context->target_uid = task_uid(t);
2226 context->target_sessionid = audit_get_sessionid(t);
2227 security_task_getsecid(t, &context->target_sid);
2228 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2232 * audit_signal_info - record signal info for shutting down audit subsystem
2233 * @sig: signal value
2234 * @t: task being signaled
2236 * If the audit subsystem is being terminated, record the task (pid)
2237 * and uid that is doing that.
2239 int __audit_signal_info(int sig, struct task_struct *t)
2241 struct audit_aux_data_pids *axp;
2242 struct task_struct *tsk = current;
2243 struct audit_context *ctx = tsk->audit_context;
2244 kuid_t uid = current_uid(), t_uid = task_uid(t);
2246 if (audit_pid && t->tgid == audit_pid) {
2247 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
2248 audit_sig_pid = task_pid_nr(tsk);
2249 if (uid_valid(tsk->loginuid))
2250 audit_sig_uid = tsk->loginuid;
2251 else
2252 audit_sig_uid = uid;
2253 security_task_getsecid(tsk, &audit_sig_sid);
2255 if (!audit_signals || audit_dummy_context())
2256 return 0;
2259 /* optimize the common case by putting first signal recipient directly
2260 * in audit_context */
2261 if (!ctx->target_pid) {
2262 ctx->target_pid = task_tgid_nr(t);
2263 ctx->target_auid = audit_get_loginuid(t);
2264 ctx->target_uid = t_uid;
2265 ctx->target_sessionid = audit_get_sessionid(t);
2266 security_task_getsecid(t, &ctx->target_sid);
2267 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2268 return 0;
2271 axp = (void *)ctx->aux_pids;
2272 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2273 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2274 if (!axp)
2275 return -ENOMEM;
2277 axp->d.type = AUDIT_OBJ_PID;
2278 axp->d.next = ctx->aux_pids;
2279 ctx->aux_pids = (void *)axp;
2281 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2283 axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2284 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2285 axp->target_uid[axp->pid_count] = t_uid;
2286 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2287 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2288 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2289 axp->pid_count++;
2291 return 0;
2295 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2296 * @bprm: pointer to the bprm being processed
2297 * @new: the proposed new credentials
2298 * @old: the old credentials
2300 * Simply check if the proc already has the caps given by the file and if not
2301 * store the priv escalation info for later auditing at the end of the syscall
2303 * -Eric
2305 int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2306 const struct cred *new, const struct cred *old)
2308 struct audit_aux_data_bprm_fcaps *ax;
2309 struct audit_context *context = current->audit_context;
2310 struct cpu_vfs_cap_data vcaps;
2312 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2313 if (!ax)
2314 return -ENOMEM;
2316 ax->d.type = AUDIT_BPRM_FCAPS;
2317 ax->d.next = context->aux;
2318 context->aux = (void *)ax;
2320 get_vfs_caps_from_disk(bprm->file->f_path.dentry, &vcaps);
2322 ax->fcap.permitted = vcaps.permitted;
2323 ax->fcap.inheritable = vcaps.inheritable;
2324 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2325 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2327 ax->old_pcap.permitted = old->cap_permitted;
2328 ax->old_pcap.inheritable = old->cap_inheritable;
2329 ax->old_pcap.effective = old->cap_effective;
2331 ax->new_pcap.permitted = new->cap_permitted;
2332 ax->new_pcap.inheritable = new->cap_inheritable;
2333 ax->new_pcap.effective = new->cap_effective;
2334 return 0;
2338 * __audit_log_capset - store information about the arguments to the capset syscall
2339 * @new: the new credentials
2340 * @old: the old (current) credentials
2342 * Record the arguments userspace sent to sys_capset for later printing by the
2343 * audit system if applicable
2345 void __audit_log_capset(const struct cred *new, const struct cred *old)
2347 struct audit_context *context = current->audit_context;
2348 context->capset.pid = task_pid_nr(current);
2349 context->capset.cap.effective = new->cap_effective;
2350 context->capset.cap.inheritable = new->cap_effective;
2351 context->capset.cap.permitted = new->cap_permitted;
2352 context->type = AUDIT_CAPSET;
2355 void __audit_mmap_fd(int fd, int flags)
2357 struct audit_context *context = current->audit_context;
2358 context->mmap.fd = fd;
2359 context->mmap.flags = flags;
2360 context->type = AUDIT_MMAP;
2363 static void audit_log_task(struct audit_buffer *ab)
2365 kuid_t auid, uid;
2366 kgid_t gid;
2367 unsigned int sessionid;
2368 char comm[sizeof(current->comm)];
2370 auid = audit_get_loginuid(current);
2371 sessionid = audit_get_sessionid(current);
2372 current_uid_gid(&uid, &gid);
2374 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2375 from_kuid(&init_user_ns, auid),
2376 from_kuid(&init_user_ns, uid),
2377 from_kgid(&init_user_ns, gid),
2378 sessionid);
2379 audit_log_task_context(ab);
2380 audit_log_format(ab, " pid=%d comm=", task_pid_nr(current));
2381 audit_log_untrustedstring(ab, get_task_comm(comm, current));
2382 audit_log_d_path_exe(ab, current->mm);
2386 * audit_core_dumps - record information about processes that end abnormally
2387 * @signr: signal value
2389 * If a process ends with a core dump, something fishy is going on and we
2390 * should record the event for investigation.
2392 void audit_core_dumps(long signr)
2394 struct audit_buffer *ab;
2396 if (!audit_enabled)
2397 return;
2399 if (signr == SIGQUIT) /* don't care for those */
2400 return;
2402 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2403 if (unlikely(!ab))
2404 return;
2405 audit_log_task(ab);
2406 audit_log_format(ab, " sig=%ld", signr);
2407 audit_log_end(ab);
2410 void __audit_seccomp(unsigned long syscall, long signr, int code)
2412 struct audit_buffer *ab;
2414 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_SECCOMP);
2415 if (unlikely(!ab))
2416 return;
2417 audit_log_task(ab);
2418 audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
2419 signr, syscall_get_arch(), syscall,
2420 in_compat_syscall(), KSTK_EIP(current), code);
2421 audit_log_end(ab);
2424 struct list_head *audit_killed_trees(void)
2426 struct audit_context *ctx = current->audit_context;
2427 if (likely(!ctx || !ctx->in_syscall))
2428 return NULL;
2429 return &ctx->killed_trees;