2 * User-space Probes (UProbes)
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * Copyright (C) IBM Corporation, 2008-2012
22 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra
25 #include <linux/kernel.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h> /* read_mapping_page */
28 #include <linux/slab.h>
29 #include <linux/sched.h>
30 #include <linux/export.h>
31 #include <linux/rmap.h> /* anon_vma_prepare */
32 #include <linux/mmu_notifier.h> /* set_pte_at_notify */
33 #include <linux/swap.h> /* try_to_free_swap */
34 #include <linux/ptrace.h> /* user_enable_single_step */
35 #include <linux/kdebug.h> /* notifier mechanism */
36 #include "../../mm/internal.h" /* munlock_vma_page */
37 #include <linux/percpu-rwsem.h>
38 #include <linux/task_work.h>
39 #include <linux/shmem_fs.h>
41 #include <linux/uprobes.h>
43 #define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
44 #define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE
46 static struct rb_root uprobes_tree
= RB_ROOT
;
48 * allows us to skip the uprobe_mmap if there are no uprobe events active
49 * at this time. Probably a fine grained per inode count is better?
51 #define no_uprobe_events() RB_EMPTY_ROOT(&uprobes_tree)
53 static DEFINE_SPINLOCK(uprobes_treelock
); /* serialize rbtree access */
55 #define UPROBES_HASH_SZ 13
56 /* serialize uprobe->pending_list */
57 static struct mutex uprobes_mmap_mutex
[UPROBES_HASH_SZ
];
58 #define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
60 static struct percpu_rw_semaphore dup_mmap_sem
;
62 /* Have a copy of original instruction */
63 #define UPROBE_COPY_INSN 0
66 struct rb_node rb_node
; /* node in the rb tree */
68 struct rw_semaphore register_rwsem
;
69 struct rw_semaphore consumer_rwsem
;
70 struct list_head pending_list
;
71 struct uprobe_consumer
*consumers
;
72 struct inode
*inode
; /* Also hold a ref to inode */
77 * The generic code assumes that it has two members of unknown type
78 * owned by the arch-specific code:
80 * insn - copy_insn() saves the original instruction here for
81 * arch_uprobe_analyze_insn().
83 * ixol - potentially modified instruction to execute out of
84 * line, copied to xol_area by xol_get_insn_slot().
86 struct arch_uprobe arch
;
90 * Execute out of line area: anonymous executable mapping installed
91 * by the probed task to execute the copy of the original instruction
92 * mangled by set_swbp().
94 * On a breakpoint hit, thread contests for a slot. It frees the
95 * slot after singlestep. Currently a fixed number of slots are
99 wait_queue_head_t wq
; /* if all slots are busy */
100 atomic_t slot_count
; /* number of in-use slots */
101 unsigned long *bitmap
; /* 0 = free slot */
103 struct vm_special_mapping xol_mapping
;
104 struct page
*pages
[2];
106 * We keep the vma's vm_start rather than a pointer to the vma
107 * itself. The probed process or a naughty kernel module could make
108 * the vma go away, and we must handle that reasonably gracefully.
110 unsigned long vaddr
; /* Page(s) of instruction slots */
114 * valid_vma: Verify if the specified vma is an executable vma
115 * Relax restrictions while unregistering: vm_flags might have
116 * changed after breakpoint was inserted.
117 * - is_register: indicates if we are in register context.
118 * - Return 1 if the specified virtual address is in an
121 static bool valid_vma(struct vm_area_struct
*vma
, bool is_register
)
123 vm_flags_t flags
= VM_HUGETLB
| VM_MAYEXEC
| VM_MAYSHARE
;
128 return vma
->vm_file
&& (vma
->vm_flags
& flags
) == VM_MAYEXEC
;
131 static unsigned long offset_to_vaddr(struct vm_area_struct
*vma
, loff_t offset
)
133 return vma
->vm_start
+ offset
- ((loff_t
)vma
->vm_pgoff
<< PAGE_SHIFT
);
136 static loff_t
vaddr_to_offset(struct vm_area_struct
*vma
, unsigned long vaddr
)
138 return ((loff_t
)vma
->vm_pgoff
<< PAGE_SHIFT
) + (vaddr
- vma
->vm_start
);
142 * __replace_page - replace page in vma by new page.
143 * based on replace_page in mm/ksm.c
145 * @vma: vma that holds the pte pointing to page
146 * @addr: address the old @page is mapped at
147 * @page: the cowed page we are replacing by kpage
148 * @kpage: the modified page we replace page by
150 * Returns 0 on success, -EFAULT on failure.
152 static int __replace_page(struct vm_area_struct
*vma
, unsigned long addr
,
153 struct page
*page
, struct page
*kpage
)
155 struct mm_struct
*mm
= vma
->vm_mm
;
159 /* For mmu_notifiers */
160 const unsigned long mmun_start
= addr
;
161 const unsigned long mmun_end
= addr
+ PAGE_SIZE
;
162 struct mem_cgroup
*memcg
;
164 err
= mem_cgroup_try_charge(kpage
, vma
->vm_mm
, GFP_KERNEL
, &memcg
,
169 /* For try_to_free_swap() and munlock_vma_page() below */
172 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
174 ptep
= page_check_address(page
, mm
, addr
, &ptl
, 0);
176 mem_cgroup_cancel_charge(kpage
, memcg
, false);
181 page_add_new_anon_rmap(kpage
, vma
, addr
, false);
182 mem_cgroup_commit_charge(kpage
, memcg
, false, false);
183 lru_cache_add_active_or_unevictable(kpage
, vma
);
185 if (!PageAnon(page
)) {
186 dec_mm_counter(mm
, mm_counter_file(page
));
187 inc_mm_counter(mm
, MM_ANONPAGES
);
190 flush_cache_page(vma
, addr
, pte_pfn(*ptep
));
191 ptep_clear_flush_notify(vma
, addr
, ptep
);
192 set_pte_at_notify(mm
, addr
, ptep
, mk_pte(kpage
, vma
->vm_page_prot
));
194 page_remove_rmap(page
, false);
195 if (!page_mapped(page
))
196 try_to_free_swap(page
);
197 pte_unmap_unlock(ptep
, ptl
);
199 if (vma
->vm_flags
& VM_LOCKED
)
200 munlock_vma_page(page
);
205 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
211 * is_swbp_insn - check if instruction is breakpoint instruction.
212 * @insn: instruction to be checked.
213 * Default implementation of is_swbp_insn
214 * Returns true if @insn is a breakpoint instruction.
216 bool __weak
is_swbp_insn(uprobe_opcode_t
*insn
)
218 return *insn
== UPROBE_SWBP_INSN
;
222 * is_trap_insn - check if instruction is breakpoint instruction.
223 * @insn: instruction to be checked.
224 * Default implementation of is_trap_insn
225 * Returns true if @insn is a breakpoint instruction.
227 * This function is needed for the case where an architecture has multiple
228 * trap instructions (like powerpc).
230 bool __weak
is_trap_insn(uprobe_opcode_t
*insn
)
232 return is_swbp_insn(insn
);
235 static void copy_from_page(struct page
*page
, unsigned long vaddr
, void *dst
, int len
)
237 void *kaddr
= kmap_atomic(page
);
238 memcpy(dst
, kaddr
+ (vaddr
& ~PAGE_MASK
), len
);
239 kunmap_atomic(kaddr
);
242 static void copy_to_page(struct page
*page
, unsigned long vaddr
, const void *src
, int len
)
244 void *kaddr
= kmap_atomic(page
);
245 memcpy(kaddr
+ (vaddr
& ~PAGE_MASK
), src
, len
);
246 kunmap_atomic(kaddr
);
249 static int verify_opcode(struct page
*page
, unsigned long vaddr
, uprobe_opcode_t
*new_opcode
)
251 uprobe_opcode_t old_opcode
;
255 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
256 * We do not check if it is any other 'trap variant' which could
257 * be conditional trap instruction such as the one powerpc supports.
259 * The logic is that we do not care if the underlying instruction
260 * is a trap variant; uprobes always wins over any other (gdb)
263 copy_from_page(page
, vaddr
, &old_opcode
, UPROBE_SWBP_INSN_SIZE
);
264 is_swbp
= is_swbp_insn(&old_opcode
);
266 if (is_swbp_insn(new_opcode
)) {
267 if (is_swbp
) /* register: already installed? */
270 if (!is_swbp
) /* unregister: was it changed by us? */
279 * Expect the breakpoint instruction to be the smallest size instruction for
280 * the architecture. If an arch has variable length instruction and the
281 * breakpoint instruction is not of the smallest length instruction
282 * supported by that architecture then we need to modify is_trap_at_addr and
283 * uprobe_write_opcode accordingly. This would never be a problem for archs
284 * that have fixed length instructions.
286 * uprobe_write_opcode - write the opcode at a given virtual address.
287 * @mm: the probed process address space.
288 * @vaddr: the virtual address to store the opcode.
289 * @opcode: opcode to be written at @vaddr.
291 * Called with mm->mmap_sem held for write.
292 * Return 0 (success) or a negative errno.
294 int uprobe_write_opcode(struct mm_struct
*mm
, unsigned long vaddr
,
295 uprobe_opcode_t opcode
)
297 struct page
*old_page
, *new_page
;
298 struct vm_area_struct
*vma
;
302 /* Read the page with vaddr into memory */
303 ret
= get_user_pages_remote(NULL
, mm
, vaddr
, 1, 0, 1, &old_page
, &vma
);
307 ret
= verify_opcode(old_page
, vaddr
, &opcode
);
311 ret
= anon_vma_prepare(vma
);
316 new_page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
, vaddr
);
320 __SetPageUptodate(new_page
);
321 copy_highpage(new_page
, old_page
);
322 copy_to_page(new_page
, vaddr
, &opcode
, UPROBE_SWBP_INSN_SIZE
);
324 ret
= __replace_page(vma
, vaddr
, old_page
, new_page
);
329 if (unlikely(ret
== -EAGAIN
))
335 * set_swbp - store breakpoint at a given address.
336 * @auprobe: arch specific probepoint information.
337 * @mm: the probed process address space.
338 * @vaddr: the virtual address to insert the opcode.
340 * For mm @mm, store the breakpoint instruction at @vaddr.
341 * Return 0 (success) or a negative errno.
343 int __weak
set_swbp(struct arch_uprobe
*auprobe
, struct mm_struct
*mm
, unsigned long vaddr
)
345 return uprobe_write_opcode(mm
, vaddr
, UPROBE_SWBP_INSN
);
349 * set_orig_insn - Restore the original instruction.
350 * @mm: the probed process address space.
351 * @auprobe: arch specific probepoint information.
352 * @vaddr: the virtual address to insert the opcode.
354 * For mm @mm, restore the original opcode (opcode) at @vaddr.
355 * Return 0 (success) or a negative errno.
358 set_orig_insn(struct arch_uprobe
*auprobe
, struct mm_struct
*mm
, unsigned long vaddr
)
360 return uprobe_write_opcode(mm
, vaddr
, *(uprobe_opcode_t
*)&auprobe
->insn
);
363 static struct uprobe
*get_uprobe(struct uprobe
*uprobe
)
365 atomic_inc(&uprobe
->ref
);
369 static void put_uprobe(struct uprobe
*uprobe
)
371 if (atomic_dec_and_test(&uprobe
->ref
))
375 static int match_uprobe(struct uprobe
*l
, struct uprobe
*r
)
377 if (l
->inode
< r
->inode
)
380 if (l
->inode
> r
->inode
)
383 if (l
->offset
< r
->offset
)
386 if (l
->offset
> r
->offset
)
392 static struct uprobe
*__find_uprobe(struct inode
*inode
, loff_t offset
)
394 struct uprobe u
= { .inode
= inode
, .offset
= offset
};
395 struct rb_node
*n
= uprobes_tree
.rb_node
;
396 struct uprobe
*uprobe
;
400 uprobe
= rb_entry(n
, struct uprobe
, rb_node
);
401 match
= match_uprobe(&u
, uprobe
);
403 return get_uprobe(uprobe
);
414 * Find a uprobe corresponding to a given inode:offset
415 * Acquires uprobes_treelock
417 static struct uprobe
*find_uprobe(struct inode
*inode
, loff_t offset
)
419 struct uprobe
*uprobe
;
421 spin_lock(&uprobes_treelock
);
422 uprobe
= __find_uprobe(inode
, offset
);
423 spin_unlock(&uprobes_treelock
);
428 static struct uprobe
*__insert_uprobe(struct uprobe
*uprobe
)
430 struct rb_node
**p
= &uprobes_tree
.rb_node
;
431 struct rb_node
*parent
= NULL
;
437 u
= rb_entry(parent
, struct uprobe
, rb_node
);
438 match
= match_uprobe(uprobe
, u
);
440 return get_uprobe(u
);
443 p
= &parent
->rb_left
;
445 p
= &parent
->rb_right
;
450 rb_link_node(&uprobe
->rb_node
, parent
, p
);
451 rb_insert_color(&uprobe
->rb_node
, &uprobes_tree
);
452 /* get access + creation ref */
453 atomic_set(&uprobe
->ref
, 2);
459 * Acquire uprobes_treelock.
460 * Matching uprobe already exists in rbtree;
461 * increment (access refcount) and return the matching uprobe.
463 * No matching uprobe; insert the uprobe in rb_tree;
464 * get a double refcount (access + creation) and return NULL.
466 static struct uprobe
*insert_uprobe(struct uprobe
*uprobe
)
470 spin_lock(&uprobes_treelock
);
471 u
= __insert_uprobe(uprobe
);
472 spin_unlock(&uprobes_treelock
);
477 static struct uprobe
*alloc_uprobe(struct inode
*inode
, loff_t offset
)
479 struct uprobe
*uprobe
, *cur_uprobe
;
481 uprobe
= kzalloc(sizeof(struct uprobe
), GFP_KERNEL
);
485 uprobe
->inode
= igrab(inode
);
486 uprobe
->offset
= offset
;
487 init_rwsem(&uprobe
->register_rwsem
);
488 init_rwsem(&uprobe
->consumer_rwsem
);
490 /* add to uprobes_tree, sorted on inode:offset */
491 cur_uprobe
= insert_uprobe(uprobe
);
492 /* a uprobe exists for this inode:offset combination */
502 static void consumer_add(struct uprobe
*uprobe
, struct uprobe_consumer
*uc
)
504 down_write(&uprobe
->consumer_rwsem
);
505 uc
->next
= uprobe
->consumers
;
506 uprobe
->consumers
= uc
;
507 up_write(&uprobe
->consumer_rwsem
);
511 * For uprobe @uprobe, delete the consumer @uc.
512 * Return true if the @uc is deleted successfully
515 static bool consumer_del(struct uprobe
*uprobe
, struct uprobe_consumer
*uc
)
517 struct uprobe_consumer
**con
;
520 down_write(&uprobe
->consumer_rwsem
);
521 for (con
= &uprobe
->consumers
; *con
; con
= &(*con
)->next
) {
528 up_write(&uprobe
->consumer_rwsem
);
533 static int __copy_insn(struct address_space
*mapping
, struct file
*filp
,
534 void *insn
, int nbytes
, loff_t offset
)
538 * Ensure that the page that has the original instruction is populated
539 * and in page-cache. If ->readpage == NULL it must be shmem_mapping(),
540 * see uprobe_register().
542 if (mapping
->a_ops
->readpage
)
543 page
= read_mapping_page(mapping
, offset
>> PAGE_SHIFT
, filp
);
545 page
= shmem_read_mapping_page(mapping
, offset
>> PAGE_SHIFT
);
547 return PTR_ERR(page
);
549 copy_from_page(page
, offset
, insn
, nbytes
);
555 static int copy_insn(struct uprobe
*uprobe
, struct file
*filp
)
557 struct address_space
*mapping
= uprobe
->inode
->i_mapping
;
558 loff_t offs
= uprobe
->offset
;
559 void *insn
= &uprobe
->arch
.insn
;
560 int size
= sizeof(uprobe
->arch
.insn
);
563 /* Copy only available bytes, -EIO if nothing was read */
565 if (offs
>= i_size_read(uprobe
->inode
))
568 len
= min_t(int, size
, PAGE_SIZE
- (offs
& ~PAGE_MASK
));
569 err
= __copy_insn(mapping
, filp
, insn
, len
, offs
);
581 static int prepare_uprobe(struct uprobe
*uprobe
, struct file
*file
,
582 struct mm_struct
*mm
, unsigned long vaddr
)
586 if (test_bit(UPROBE_COPY_INSN
, &uprobe
->flags
))
589 /* TODO: move this into _register, until then we abuse this sem. */
590 down_write(&uprobe
->consumer_rwsem
);
591 if (test_bit(UPROBE_COPY_INSN
, &uprobe
->flags
))
594 ret
= copy_insn(uprobe
, file
);
599 if (is_trap_insn((uprobe_opcode_t
*)&uprobe
->arch
.insn
))
602 ret
= arch_uprobe_analyze_insn(&uprobe
->arch
, mm
, vaddr
);
606 /* uprobe_write_opcode() assumes we don't cross page boundary */
607 BUG_ON((uprobe
->offset
& ~PAGE_MASK
) +
608 UPROBE_SWBP_INSN_SIZE
> PAGE_SIZE
);
610 smp_wmb(); /* pairs with rmb() in find_active_uprobe() */
611 set_bit(UPROBE_COPY_INSN
, &uprobe
->flags
);
614 up_write(&uprobe
->consumer_rwsem
);
619 static inline bool consumer_filter(struct uprobe_consumer
*uc
,
620 enum uprobe_filter_ctx ctx
, struct mm_struct
*mm
)
622 return !uc
->filter
|| uc
->filter(uc
, ctx
, mm
);
625 static bool filter_chain(struct uprobe
*uprobe
,
626 enum uprobe_filter_ctx ctx
, struct mm_struct
*mm
)
628 struct uprobe_consumer
*uc
;
631 down_read(&uprobe
->consumer_rwsem
);
632 for (uc
= uprobe
->consumers
; uc
; uc
= uc
->next
) {
633 ret
= consumer_filter(uc
, ctx
, mm
);
637 up_read(&uprobe
->consumer_rwsem
);
643 install_breakpoint(struct uprobe
*uprobe
, struct mm_struct
*mm
,
644 struct vm_area_struct
*vma
, unsigned long vaddr
)
649 ret
= prepare_uprobe(uprobe
, vma
->vm_file
, mm
, vaddr
);
654 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
655 * the task can hit this breakpoint right after __replace_page().
657 first_uprobe
= !test_bit(MMF_HAS_UPROBES
, &mm
->flags
);
659 set_bit(MMF_HAS_UPROBES
, &mm
->flags
);
661 ret
= set_swbp(&uprobe
->arch
, mm
, vaddr
);
663 clear_bit(MMF_RECALC_UPROBES
, &mm
->flags
);
664 else if (first_uprobe
)
665 clear_bit(MMF_HAS_UPROBES
, &mm
->flags
);
671 remove_breakpoint(struct uprobe
*uprobe
, struct mm_struct
*mm
, unsigned long vaddr
)
673 set_bit(MMF_RECALC_UPROBES
, &mm
->flags
);
674 return set_orig_insn(&uprobe
->arch
, mm
, vaddr
);
677 static inline bool uprobe_is_active(struct uprobe
*uprobe
)
679 return !RB_EMPTY_NODE(&uprobe
->rb_node
);
682 * There could be threads that have already hit the breakpoint. They
683 * will recheck the current insn and restart if find_uprobe() fails.
684 * See find_active_uprobe().
686 static void delete_uprobe(struct uprobe
*uprobe
)
688 if (WARN_ON(!uprobe_is_active(uprobe
)))
691 spin_lock(&uprobes_treelock
);
692 rb_erase(&uprobe
->rb_node
, &uprobes_tree
);
693 spin_unlock(&uprobes_treelock
);
694 RB_CLEAR_NODE(&uprobe
->rb_node
); /* for uprobe_is_active() */
700 struct map_info
*next
;
701 struct mm_struct
*mm
;
705 static inline struct map_info
*free_map_info(struct map_info
*info
)
707 struct map_info
*next
= info
->next
;
712 static struct map_info
*
713 build_map_info(struct address_space
*mapping
, loff_t offset
, bool is_register
)
715 unsigned long pgoff
= offset
>> PAGE_SHIFT
;
716 struct vm_area_struct
*vma
;
717 struct map_info
*curr
= NULL
;
718 struct map_info
*prev
= NULL
;
719 struct map_info
*info
;
723 i_mmap_lock_read(mapping
);
724 vma_interval_tree_foreach(vma
, &mapping
->i_mmap
, pgoff
, pgoff
) {
725 if (!valid_vma(vma
, is_register
))
728 if (!prev
&& !more
) {
730 * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through
731 * reclaim. This is optimistic, no harm done if it fails.
733 prev
= kmalloc(sizeof(struct map_info
),
734 GFP_NOWAIT
| __GFP_NOMEMALLOC
| __GFP_NOWARN
);
743 if (!atomic_inc_not_zero(&vma
->vm_mm
->mm_users
))
751 info
->mm
= vma
->vm_mm
;
752 info
->vaddr
= offset_to_vaddr(vma
, offset
);
754 i_mmap_unlock_read(mapping
);
766 info
= kmalloc(sizeof(struct map_info
), GFP_KERNEL
);
768 curr
= ERR_PTR(-ENOMEM
);
778 prev
= free_map_info(prev
);
783 register_for_each_vma(struct uprobe
*uprobe
, struct uprobe_consumer
*new)
785 bool is_register
= !!new;
786 struct map_info
*info
;
789 percpu_down_write(&dup_mmap_sem
);
790 info
= build_map_info(uprobe
->inode
->i_mapping
,
791 uprobe
->offset
, is_register
);
798 struct mm_struct
*mm
= info
->mm
;
799 struct vm_area_struct
*vma
;
801 if (err
&& is_register
)
804 down_write(&mm
->mmap_sem
);
805 vma
= find_vma(mm
, info
->vaddr
);
806 if (!vma
|| !valid_vma(vma
, is_register
) ||
807 file_inode(vma
->vm_file
) != uprobe
->inode
)
810 if (vma
->vm_start
> info
->vaddr
||
811 vaddr_to_offset(vma
, info
->vaddr
) != uprobe
->offset
)
815 /* consult only the "caller", new consumer. */
816 if (consumer_filter(new,
817 UPROBE_FILTER_REGISTER
, mm
))
818 err
= install_breakpoint(uprobe
, mm
, vma
, info
->vaddr
);
819 } else if (test_bit(MMF_HAS_UPROBES
, &mm
->flags
)) {
820 if (!filter_chain(uprobe
,
821 UPROBE_FILTER_UNREGISTER
, mm
))
822 err
|= remove_breakpoint(uprobe
, mm
, info
->vaddr
);
826 up_write(&mm
->mmap_sem
);
829 info
= free_map_info(info
);
832 percpu_up_write(&dup_mmap_sem
);
836 static int __uprobe_register(struct uprobe
*uprobe
, struct uprobe_consumer
*uc
)
838 consumer_add(uprobe
, uc
);
839 return register_for_each_vma(uprobe
, uc
);
842 static void __uprobe_unregister(struct uprobe
*uprobe
, struct uprobe_consumer
*uc
)
846 if (WARN_ON(!consumer_del(uprobe
, uc
)))
849 err
= register_for_each_vma(uprobe
, NULL
);
850 /* TODO : cant unregister? schedule a worker thread */
851 if (!uprobe
->consumers
&& !err
)
852 delete_uprobe(uprobe
);
856 * uprobe_register - register a probe
857 * @inode: the file in which the probe has to be placed.
858 * @offset: offset from the start of the file.
859 * @uc: information on howto handle the probe..
861 * Apart from the access refcount, uprobe_register() takes a creation
862 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
863 * inserted into the rbtree (i.e first consumer for a @inode:@offset
864 * tuple). Creation refcount stops uprobe_unregister from freeing the
865 * @uprobe even before the register operation is complete. Creation
866 * refcount is released when the last @uc for the @uprobe
869 * Return errno if it cannot successully install probes
870 * else return 0 (success)
872 int uprobe_register(struct inode
*inode
, loff_t offset
, struct uprobe_consumer
*uc
)
874 struct uprobe
*uprobe
;
877 /* Uprobe must have at least one set consumer */
878 if (!uc
->handler
&& !uc
->ret_handler
)
881 /* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */
882 if (!inode
->i_mapping
->a_ops
->readpage
&& !shmem_mapping(inode
->i_mapping
))
884 /* Racy, just to catch the obvious mistakes */
885 if (offset
> i_size_read(inode
))
889 uprobe
= alloc_uprobe(inode
, offset
);
893 * We can race with uprobe_unregister()->delete_uprobe().
894 * Check uprobe_is_active() and retry if it is false.
896 down_write(&uprobe
->register_rwsem
);
898 if (likely(uprobe_is_active(uprobe
))) {
899 ret
= __uprobe_register(uprobe
, uc
);
901 __uprobe_unregister(uprobe
, uc
);
903 up_write(&uprobe
->register_rwsem
);
906 if (unlikely(ret
== -EAGAIN
))
910 EXPORT_SYMBOL_GPL(uprobe_register
);
913 * uprobe_apply - unregister a already registered probe.
914 * @inode: the file in which the probe has to be removed.
915 * @offset: offset from the start of the file.
916 * @uc: consumer which wants to add more or remove some breakpoints
917 * @add: add or remove the breakpoints
919 int uprobe_apply(struct inode
*inode
, loff_t offset
,
920 struct uprobe_consumer
*uc
, bool add
)
922 struct uprobe
*uprobe
;
923 struct uprobe_consumer
*con
;
926 uprobe
= find_uprobe(inode
, offset
);
927 if (WARN_ON(!uprobe
))
930 down_write(&uprobe
->register_rwsem
);
931 for (con
= uprobe
->consumers
; con
&& con
!= uc
; con
= con
->next
)
934 ret
= register_for_each_vma(uprobe
, add
? uc
: NULL
);
935 up_write(&uprobe
->register_rwsem
);
942 * uprobe_unregister - unregister a already registered probe.
943 * @inode: the file in which the probe has to be removed.
944 * @offset: offset from the start of the file.
945 * @uc: identify which probe if multiple probes are colocated.
947 void uprobe_unregister(struct inode
*inode
, loff_t offset
, struct uprobe_consumer
*uc
)
949 struct uprobe
*uprobe
;
951 uprobe
= find_uprobe(inode
, offset
);
952 if (WARN_ON(!uprobe
))
955 down_write(&uprobe
->register_rwsem
);
956 __uprobe_unregister(uprobe
, uc
);
957 up_write(&uprobe
->register_rwsem
);
960 EXPORT_SYMBOL_GPL(uprobe_unregister
);
962 static int unapply_uprobe(struct uprobe
*uprobe
, struct mm_struct
*mm
)
964 struct vm_area_struct
*vma
;
967 down_read(&mm
->mmap_sem
);
968 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
972 if (!valid_vma(vma
, false) ||
973 file_inode(vma
->vm_file
) != uprobe
->inode
)
976 offset
= (loff_t
)vma
->vm_pgoff
<< PAGE_SHIFT
;
977 if (uprobe
->offset
< offset
||
978 uprobe
->offset
>= offset
+ vma
->vm_end
- vma
->vm_start
)
981 vaddr
= offset_to_vaddr(vma
, uprobe
->offset
);
982 err
|= remove_breakpoint(uprobe
, mm
, vaddr
);
984 up_read(&mm
->mmap_sem
);
989 static struct rb_node
*
990 find_node_in_range(struct inode
*inode
, loff_t min
, loff_t max
)
992 struct rb_node
*n
= uprobes_tree
.rb_node
;
995 struct uprobe
*u
= rb_entry(n
, struct uprobe
, rb_node
);
997 if (inode
< u
->inode
) {
999 } else if (inode
> u
->inode
) {
1002 if (max
< u
->offset
)
1004 else if (min
> u
->offset
)
1015 * For a given range in vma, build a list of probes that need to be inserted.
1017 static void build_probe_list(struct inode
*inode
,
1018 struct vm_area_struct
*vma
,
1019 unsigned long start
, unsigned long end
,
1020 struct list_head
*head
)
1023 struct rb_node
*n
, *t
;
1026 INIT_LIST_HEAD(head
);
1027 min
= vaddr_to_offset(vma
, start
);
1028 max
= min
+ (end
- start
) - 1;
1030 spin_lock(&uprobes_treelock
);
1031 n
= find_node_in_range(inode
, min
, max
);
1033 for (t
= n
; t
; t
= rb_prev(t
)) {
1034 u
= rb_entry(t
, struct uprobe
, rb_node
);
1035 if (u
->inode
!= inode
|| u
->offset
< min
)
1037 list_add(&u
->pending_list
, head
);
1040 for (t
= n
; (t
= rb_next(t
)); ) {
1041 u
= rb_entry(t
, struct uprobe
, rb_node
);
1042 if (u
->inode
!= inode
|| u
->offset
> max
)
1044 list_add(&u
->pending_list
, head
);
1048 spin_unlock(&uprobes_treelock
);
1052 * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
1054 * Currently we ignore all errors and always return 0, the callers
1055 * can't handle the failure anyway.
1057 int uprobe_mmap(struct vm_area_struct
*vma
)
1059 struct list_head tmp_list
;
1060 struct uprobe
*uprobe
, *u
;
1061 struct inode
*inode
;
1063 if (no_uprobe_events() || !valid_vma(vma
, true))
1066 inode
= file_inode(vma
->vm_file
);
1070 mutex_lock(uprobes_mmap_hash(inode
));
1071 build_probe_list(inode
, vma
, vma
->vm_start
, vma
->vm_end
, &tmp_list
);
1073 * We can race with uprobe_unregister(), this uprobe can be already
1074 * removed. But in this case filter_chain() must return false, all
1075 * consumers have gone away.
1077 list_for_each_entry_safe(uprobe
, u
, &tmp_list
, pending_list
) {
1078 if (!fatal_signal_pending(current
) &&
1079 filter_chain(uprobe
, UPROBE_FILTER_MMAP
, vma
->vm_mm
)) {
1080 unsigned long vaddr
= offset_to_vaddr(vma
, uprobe
->offset
);
1081 install_breakpoint(uprobe
, vma
->vm_mm
, vma
, vaddr
);
1085 mutex_unlock(uprobes_mmap_hash(inode
));
1091 vma_has_uprobes(struct vm_area_struct
*vma
, unsigned long start
, unsigned long end
)
1094 struct inode
*inode
;
1097 inode
= file_inode(vma
->vm_file
);
1099 min
= vaddr_to_offset(vma
, start
);
1100 max
= min
+ (end
- start
) - 1;
1102 spin_lock(&uprobes_treelock
);
1103 n
= find_node_in_range(inode
, min
, max
);
1104 spin_unlock(&uprobes_treelock
);
1110 * Called in context of a munmap of a vma.
1112 void uprobe_munmap(struct vm_area_struct
*vma
, unsigned long start
, unsigned long end
)
1114 if (no_uprobe_events() || !valid_vma(vma
, false))
1117 if (!atomic_read(&vma
->vm_mm
->mm_users
)) /* called by mmput() ? */
1120 if (!test_bit(MMF_HAS_UPROBES
, &vma
->vm_mm
->flags
) ||
1121 test_bit(MMF_RECALC_UPROBES
, &vma
->vm_mm
->flags
))
1124 if (vma_has_uprobes(vma
, start
, end
))
1125 set_bit(MMF_RECALC_UPROBES
, &vma
->vm_mm
->flags
);
1128 /* Slot allocation for XOL */
1129 static int xol_add_vma(struct mm_struct
*mm
, struct xol_area
*area
)
1131 struct vm_area_struct
*vma
;
1134 if (down_write_killable(&mm
->mmap_sem
))
1137 if (mm
->uprobes_state
.xol_area
) {
1143 /* Try to map as high as possible, this is only a hint. */
1144 area
->vaddr
= get_unmapped_area(NULL
, TASK_SIZE
- PAGE_SIZE
,
1146 if (area
->vaddr
& ~PAGE_MASK
) {
1152 vma
= _install_special_mapping(mm
, area
->vaddr
, PAGE_SIZE
,
1153 VM_EXEC
|VM_MAYEXEC
|VM_DONTCOPY
|VM_IO
,
1154 &area
->xol_mapping
);
1161 smp_wmb(); /* pairs with get_xol_area() */
1162 mm
->uprobes_state
.xol_area
= area
;
1164 up_write(&mm
->mmap_sem
);
1169 static struct xol_area
*__create_xol_area(unsigned long vaddr
)
1171 struct mm_struct
*mm
= current
->mm
;
1172 uprobe_opcode_t insn
= UPROBE_SWBP_INSN
;
1173 struct xol_area
*area
;
1175 area
= kmalloc(sizeof(*area
), GFP_KERNEL
);
1176 if (unlikely(!area
))
1179 area
->bitmap
= kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE
) * sizeof(long), GFP_KERNEL
);
1183 area
->xol_mapping
.name
= "[uprobes]";
1184 area
->xol_mapping
.fault
= NULL
;
1185 area
->xol_mapping
.pages
= area
->pages
;
1186 area
->pages
[0] = alloc_page(GFP_HIGHUSER
);
1187 if (!area
->pages
[0])
1189 area
->pages
[1] = NULL
;
1191 area
->vaddr
= vaddr
;
1192 init_waitqueue_head(&area
->wq
);
1193 /* Reserve the 1st slot for get_trampoline_vaddr() */
1194 set_bit(0, area
->bitmap
);
1195 atomic_set(&area
->slot_count
, 1);
1196 copy_to_page(area
->pages
[0], 0, &insn
, UPROBE_SWBP_INSN_SIZE
);
1198 if (!xol_add_vma(mm
, area
))
1201 __free_page(area
->pages
[0]);
1203 kfree(area
->bitmap
);
1211 * get_xol_area - Allocate process's xol_area if necessary.
1212 * This area will be used for storing instructions for execution out of line.
1214 * Returns the allocated area or NULL.
1216 static struct xol_area
*get_xol_area(void)
1218 struct mm_struct
*mm
= current
->mm
;
1219 struct xol_area
*area
;
1221 if (!mm
->uprobes_state
.xol_area
)
1222 __create_xol_area(0);
1224 area
= mm
->uprobes_state
.xol_area
;
1225 smp_read_barrier_depends(); /* pairs with wmb in xol_add_vma() */
1230 * uprobe_clear_state - Free the area allocated for slots.
1232 void uprobe_clear_state(struct mm_struct
*mm
)
1234 struct xol_area
*area
= mm
->uprobes_state
.xol_area
;
1239 put_page(area
->pages
[0]);
1240 kfree(area
->bitmap
);
1244 void uprobe_start_dup_mmap(void)
1246 percpu_down_read(&dup_mmap_sem
);
1249 void uprobe_end_dup_mmap(void)
1251 percpu_up_read(&dup_mmap_sem
);
1254 void uprobe_dup_mmap(struct mm_struct
*oldmm
, struct mm_struct
*newmm
)
1256 newmm
->uprobes_state
.xol_area
= NULL
;
1258 if (test_bit(MMF_HAS_UPROBES
, &oldmm
->flags
)) {
1259 set_bit(MMF_HAS_UPROBES
, &newmm
->flags
);
1260 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1261 set_bit(MMF_RECALC_UPROBES
, &newmm
->flags
);
1266 * - search for a free slot.
1268 static unsigned long xol_take_insn_slot(struct xol_area
*area
)
1270 unsigned long slot_addr
;
1274 slot_nr
= find_first_zero_bit(area
->bitmap
, UINSNS_PER_PAGE
);
1275 if (slot_nr
< UINSNS_PER_PAGE
) {
1276 if (!test_and_set_bit(slot_nr
, area
->bitmap
))
1279 slot_nr
= UINSNS_PER_PAGE
;
1282 wait_event(area
->wq
, (atomic_read(&area
->slot_count
) < UINSNS_PER_PAGE
));
1283 } while (slot_nr
>= UINSNS_PER_PAGE
);
1285 slot_addr
= area
->vaddr
+ (slot_nr
* UPROBE_XOL_SLOT_BYTES
);
1286 atomic_inc(&area
->slot_count
);
1292 * xol_get_insn_slot - allocate a slot for xol.
1293 * Returns the allocated slot address or 0.
1295 static unsigned long xol_get_insn_slot(struct uprobe
*uprobe
)
1297 struct xol_area
*area
;
1298 unsigned long xol_vaddr
;
1300 area
= get_xol_area();
1304 xol_vaddr
= xol_take_insn_slot(area
);
1305 if (unlikely(!xol_vaddr
))
1308 arch_uprobe_copy_ixol(area
->pages
[0], xol_vaddr
,
1309 &uprobe
->arch
.ixol
, sizeof(uprobe
->arch
.ixol
));
1315 * xol_free_insn_slot - If slot was earlier allocated by
1316 * @xol_get_insn_slot(), make the slot available for
1317 * subsequent requests.
1319 static void xol_free_insn_slot(struct task_struct
*tsk
)
1321 struct xol_area
*area
;
1322 unsigned long vma_end
;
1323 unsigned long slot_addr
;
1325 if (!tsk
->mm
|| !tsk
->mm
->uprobes_state
.xol_area
|| !tsk
->utask
)
1328 slot_addr
= tsk
->utask
->xol_vaddr
;
1329 if (unlikely(!slot_addr
))
1332 area
= tsk
->mm
->uprobes_state
.xol_area
;
1333 vma_end
= area
->vaddr
+ PAGE_SIZE
;
1334 if (area
->vaddr
<= slot_addr
&& slot_addr
< vma_end
) {
1335 unsigned long offset
;
1338 offset
= slot_addr
- area
->vaddr
;
1339 slot_nr
= offset
/ UPROBE_XOL_SLOT_BYTES
;
1340 if (slot_nr
>= UINSNS_PER_PAGE
)
1343 clear_bit(slot_nr
, area
->bitmap
);
1344 atomic_dec(&area
->slot_count
);
1345 smp_mb__after_atomic(); /* pairs with prepare_to_wait() */
1346 if (waitqueue_active(&area
->wq
))
1349 tsk
->utask
->xol_vaddr
= 0;
1353 void __weak
arch_uprobe_copy_ixol(struct page
*page
, unsigned long vaddr
,
1354 void *src
, unsigned long len
)
1356 /* Initialize the slot */
1357 copy_to_page(page
, vaddr
, src
, len
);
1360 * We probably need flush_icache_user_range() but it needs vma.
1361 * This should work on most of architectures by default. If
1362 * architecture needs to do something different it can define
1363 * its own version of the function.
1365 flush_dcache_page(page
);
1369 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1370 * @regs: Reflects the saved state of the task after it has hit a breakpoint
1372 * Return the address of the breakpoint instruction.
1374 unsigned long __weak
uprobe_get_swbp_addr(struct pt_regs
*regs
)
1376 return instruction_pointer(regs
) - UPROBE_SWBP_INSN_SIZE
;
1379 unsigned long uprobe_get_trap_addr(struct pt_regs
*regs
)
1381 struct uprobe_task
*utask
= current
->utask
;
1383 if (unlikely(utask
&& utask
->active_uprobe
))
1384 return utask
->vaddr
;
1386 return instruction_pointer(regs
);
1389 static struct return_instance
*free_ret_instance(struct return_instance
*ri
)
1391 struct return_instance
*next
= ri
->next
;
1392 put_uprobe(ri
->uprobe
);
1398 * Called with no locks held.
1399 * Called in context of a exiting or a exec-ing thread.
1401 void uprobe_free_utask(struct task_struct
*t
)
1403 struct uprobe_task
*utask
= t
->utask
;
1404 struct return_instance
*ri
;
1409 if (utask
->active_uprobe
)
1410 put_uprobe(utask
->active_uprobe
);
1412 ri
= utask
->return_instances
;
1414 ri
= free_ret_instance(ri
);
1416 xol_free_insn_slot(t
);
1422 * Allocate a uprobe_task object for the task if if necessary.
1423 * Called when the thread hits a breakpoint.
1426 * - pointer to new uprobe_task on success
1429 static struct uprobe_task
*get_utask(void)
1431 if (!current
->utask
)
1432 current
->utask
= kzalloc(sizeof(struct uprobe_task
), GFP_KERNEL
);
1433 return current
->utask
;
1436 static int dup_utask(struct task_struct
*t
, struct uprobe_task
*o_utask
)
1438 struct uprobe_task
*n_utask
;
1439 struct return_instance
**p
, *o
, *n
;
1441 n_utask
= kzalloc(sizeof(struct uprobe_task
), GFP_KERNEL
);
1446 p
= &n_utask
->return_instances
;
1447 for (o
= o_utask
->return_instances
; o
; o
= o
->next
) {
1448 n
= kmalloc(sizeof(struct return_instance
), GFP_KERNEL
);
1453 get_uprobe(n
->uprobe
);
1464 static void uprobe_warn(struct task_struct
*t
, const char *msg
)
1466 pr_warn("uprobe: %s:%d failed to %s\n",
1467 current
->comm
, current
->pid
, msg
);
1470 static void dup_xol_work(struct callback_head
*work
)
1472 if (current
->flags
& PF_EXITING
)
1475 if (!__create_xol_area(current
->utask
->dup_xol_addr
) &&
1476 !fatal_signal_pending(current
))
1477 uprobe_warn(current
, "dup xol area");
1481 * Called in context of a new clone/fork from copy_process.
1483 void uprobe_copy_process(struct task_struct
*t
, unsigned long flags
)
1485 struct uprobe_task
*utask
= current
->utask
;
1486 struct mm_struct
*mm
= current
->mm
;
1487 struct xol_area
*area
;
1491 if (!utask
|| !utask
->return_instances
)
1494 if (mm
== t
->mm
&& !(flags
& CLONE_VFORK
))
1497 if (dup_utask(t
, utask
))
1498 return uprobe_warn(t
, "dup ret instances");
1500 /* The task can fork() after dup_xol_work() fails */
1501 area
= mm
->uprobes_state
.xol_area
;
1503 return uprobe_warn(t
, "dup xol area");
1508 t
->utask
->dup_xol_addr
= area
->vaddr
;
1509 init_task_work(&t
->utask
->dup_xol_work
, dup_xol_work
);
1510 task_work_add(t
, &t
->utask
->dup_xol_work
, true);
1514 * Current area->vaddr notion assume the trampoline address is always
1515 * equal area->vaddr.
1517 * Returns -1 in case the xol_area is not allocated.
1519 static unsigned long get_trampoline_vaddr(void)
1521 struct xol_area
*area
;
1522 unsigned long trampoline_vaddr
= -1;
1524 area
= current
->mm
->uprobes_state
.xol_area
;
1525 smp_read_barrier_depends();
1527 trampoline_vaddr
= area
->vaddr
;
1529 return trampoline_vaddr
;
1532 static void cleanup_return_instances(struct uprobe_task
*utask
, bool chained
,
1533 struct pt_regs
*regs
)
1535 struct return_instance
*ri
= utask
->return_instances
;
1536 enum rp_check ctx
= chained
? RP_CHECK_CHAIN_CALL
: RP_CHECK_CALL
;
1538 while (ri
&& !arch_uretprobe_is_alive(ri
, ctx
, regs
)) {
1539 ri
= free_ret_instance(ri
);
1542 utask
->return_instances
= ri
;
1545 static void prepare_uretprobe(struct uprobe
*uprobe
, struct pt_regs
*regs
)
1547 struct return_instance
*ri
;
1548 struct uprobe_task
*utask
;
1549 unsigned long orig_ret_vaddr
, trampoline_vaddr
;
1552 if (!get_xol_area())
1555 utask
= get_utask();
1559 if (utask
->depth
>= MAX_URETPROBE_DEPTH
) {
1560 printk_ratelimited(KERN_INFO
"uprobe: omit uretprobe due to"
1561 " nestedness limit pid/tgid=%d/%d\n",
1562 current
->pid
, current
->tgid
);
1566 ri
= kmalloc(sizeof(struct return_instance
), GFP_KERNEL
);
1570 trampoline_vaddr
= get_trampoline_vaddr();
1571 orig_ret_vaddr
= arch_uretprobe_hijack_return_addr(trampoline_vaddr
, regs
);
1572 if (orig_ret_vaddr
== -1)
1575 /* drop the entries invalidated by longjmp() */
1576 chained
= (orig_ret_vaddr
== trampoline_vaddr
);
1577 cleanup_return_instances(utask
, chained
, regs
);
1580 * We don't want to keep trampoline address in stack, rather keep the
1581 * original return address of first caller thru all the consequent
1582 * instances. This also makes breakpoint unwrapping easier.
1585 if (!utask
->return_instances
) {
1587 * This situation is not possible. Likely we have an
1588 * attack from user-space.
1590 uprobe_warn(current
, "handle tail call");
1593 orig_ret_vaddr
= utask
->return_instances
->orig_ret_vaddr
;
1596 ri
->uprobe
= get_uprobe(uprobe
);
1597 ri
->func
= instruction_pointer(regs
);
1598 ri
->stack
= user_stack_pointer(regs
);
1599 ri
->orig_ret_vaddr
= orig_ret_vaddr
;
1600 ri
->chained
= chained
;
1603 ri
->next
= utask
->return_instances
;
1604 utask
->return_instances
= ri
;
1611 /* Prepare to single-step probed instruction out of line. */
1613 pre_ssout(struct uprobe
*uprobe
, struct pt_regs
*regs
, unsigned long bp_vaddr
)
1615 struct uprobe_task
*utask
;
1616 unsigned long xol_vaddr
;
1619 utask
= get_utask();
1623 xol_vaddr
= xol_get_insn_slot(uprobe
);
1627 utask
->xol_vaddr
= xol_vaddr
;
1628 utask
->vaddr
= bp_vaddr
;
1630 err
= arch_uprobe_pre_xol(&uprobe
->arch
, regs
);
1631 if (unlikely(err
)) {
1632 xol_free_insn_slot(current
);
1636 utask
->active_uprobe
= uprobe
;
1637 utask
->state
= UTASK_SSTEP
;
1642 * If we are singlestepping, then ensure this thread is not connected to
1643 * non-fatal signals until completion of singlestep. When xol insn itself
1644 * triggers the signal, restart the original insn even if the task is
1645 * already SIGKILL'ed (since coredump should report the correct ip). This
1646 * is even more important if the task has a handler for SIGSEGV/etc, The
1647 * _same_ instruction should be repeated again after return from the signal
1648 * handler, and SSTEP can never finish in this case.
1650 bool uprobe_deny_signal(void)
1652 struct task_struct
*t
= current
;
1653 struct uprobe_task
*utask
= t
->utask
;
1655 if (likely(!utask
|| !utask
->active_uprobe
))
1658 WARN_ON_ONCE(utask
->state
!= UTASK_SSTEP
);
1660 if (signal_pending(t
)) {
1661 spin_lock_irq(&t
->sighand
->siglock
);
1662 clear_tsk_thread_flag(t
, TIF_SIGPENDING
);
1663 spin_unlock_irq(&t
->sighand
->siglock
);
1665 if (__fatal_signal_pending(t
) || arch_uprobe_xol_was_trapped(t
)) {
1666 utask
->state
= UTASK_SSTEP_TRAPPED
;
1667 set_tsk_thread_flag(t
, TIF_UPROBE
);
1674 static void mmf_recalc_uprobes(struct mm_struct
*mm
)
1676 struct vm_area_struct
*vma
;
1678 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
1679 if (!valid_vma(vma
, false))
1682 * This is not strictly accurate, we can race with
1683 * uprobe_unregister() and see the already removed
1684 * uprobe if delete_uprobe() was not yet called.
1685 * Or this uprobe can be filtered out.
1687 if (vma_has_uprobes(vma
, vma
->vm_start
, vma
->vm_end
))
1691 clear_bit(MMF_HAS_UPROBES
, &mm
->flags
);
1694 static int is_trap_at_addr(struct mm_struct
*mm
, unsigned long vaddr
)
1697 uprobe_opcode_t opcode
;
1700 pagefault_disable();
1701 result
= __get_user(opcode
, (uprobe_opcode_t __user
*)vaddr
);
1704 if (likely(result
== 0))
1708 * The NULL 'tsk' here ensures that any faults that occur here
1709 * will not be accounted to the task. 'mm' *is* current->mm,
1710 * but we treat this as a 'remote' access since it is
1711 * essentially a kernel access to the memory.
1713 result
= get_user_pages_remote(NULL
, mm
, vaddr
, 1, 0, 1, &page
, NULL
);
1717 copy_from_page(page
, vaddr
, &opcode
, UPROBE_SWBP_INSN_SIZE
);
1720 /* This needs to return true for any variant of the trap insn */
1721 return is_trap_insn(&opcode
);
1724 static struct uprobe
*find_active_uprobe(unsigned long bp_vaddr
, int *is_swbp
)
1726 struct mm_struct
*mm
= current
->mm
;
1727 struct uprobe
*uprobe
= NULL
;
1728 struct vm_area_struct
*vma
;
1730 down_read(&mm
->mmap_sem
);
1731 vma
= find_vma(mm
, bp_vaddr
);
1732 if (vma
&& vma
->vm_start
<= bp_vaddr
) {
1733 if (valid_vma(vma
, false)) {
1734 struct inode
*inode
= file_inode(vma
->vm_file
);
1735 loff_t offset
= vaddr_to_offset(vma
, bp_vaddr
);
1737 uprobe
= find_uprobe(inode
, offset
);
1741 *is_swbp
= is_trap_at_addr(mm
, bp_vaddr
);
1746 if (!uprobe
&& test_and_clear_bit(MMF_RECALC_UPROBES
, &mm
->flags
))
1747 mmf_recalc_uprobes(mm
);
1748 up_read(&mm
->mmap_sem
);
1753 static void handler_chain(struct uprobe
*uprobe
, struct pt_regs
*regs
)
1755 struct uprobe_consumer
*uc
;
1756 int remove
= UPROBE_HANDLER_REMOVE
;
1757 bool need_prep
= false; /* prepare return uprobe, when needed */
1759 down_read(&uprobe
->register_rwsem
);
1760 for (uc
= uprobe
->consumers
; uc
; uc
= uc
->next
) {
1764 rc
= uc
->handler(uc
, regs
);
1765 WARN(rc
& ~UPROBE_HANDLER_MASK
,
1766 "bad rc=0x%x from %pf()\n", rc
, uc
->handler
);
1769 if (uc
->ret_handler
)
1775 if (need_prep
&& !remove
)
1776 prepare_uretprobe(uprobe
, regs
); /* put bp at return */
1778 if (remove
&& uprobe
->consumers
) {
1779 WARN_ON(!uprobe_is_active(uprobe
));
1780 unapply_uprobe(uprobe
, current
->mm
);
1782 up_read(&uprobe
->register_rwsem
);
1786 handle_uretprobe_chain(struct return_instance
*ri
, struct pt_regs
*regs
)
1788 struct uprobe
*uprobe
= ri
->uprobe
;
1789 struct uprobe_consumer
*uc
;
1791 down_read(&uprobe
->register_rwsem
);
1792 for (uc
= uprobe
->consumers
; uc
; uc
= uc
->next
) {
1793 if (uc
->ret_handler
)
1794 uc
->ret_handler(uc
, ri
->func
, regs
);
1796 up_read(&uprobe
->register_rwsem
);
1799 static struct return_instance
*find_next_ret_chain(struct return_instance
*ri
)
1804 chained
= ri
->chained
;
1805 ri
= ri
->next
; /* can't be NULL if chained */
1811 static void handle_trampoline(struct pt_regs
*regs
)
1813 struct uprobe_task
*utask
;
1814 struct return_instance
*ri
, *next
;
1817 utask
= current
->utask
;
1821 ri
= utask
->return_instances
;
1827 * We should throw out the frames invalidated by longjmp().
1828 * If this chain is valid, then the next one should be alive
1829 * or NULL; the latter case means that nobody but ri->func
1830 * could hit this trampoline on return. TODO: sigaltstack().
1832 next
= find_next_ret_chain(ri
);
1833 valid
= !next
|| arch_uretprobe_is_alive(next
, RP_CHECK_RET
, regs
);
1835 instruction_pointer_set(regs
, ri
->orig_ret_vaddr
);
1838 handle_uretprobe_chain(ri
, regs
);
1839 ri
= free_ret_instance(ri
);
1841 } while (ri
!= next
);
1844 utask
->return_instances
= ri
;
1848 uprobe_warn(current
, "handle uretprobe, sending SIGILL.");
1849 force_sig_info(SIGILL
, SEND_SIG_FORCED
, current
);
1853 bool __weak
arch_uprobe_ignore(struct arch_uprobe
*aup
, struct pt_regs
*regs
)
1858 bool __weak
arch_uretprobe_is_alive(struct return_instance
*ret
, enum rp_check ctx
,
1859 struct pt_regs
*regs
)
1865 * Run handler and ask thread to singlestep.
1866 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1868 static void handle_swbp(struct pt_regs
*regs
)
1870 struct uprobe
*uprobe
;
1871 unsigned long bp_vaddr
;
1872 int uninitialized_var(is_swbp
);
1874 bp_vaddr
= uprobe_get_swbp_addr(regs
);
1875 if (bp_vaddr
== get_trampoline_vaddr())
1876 return handle_trampoline(regs
);
1878 uprobe
= find_active_uprobe(bp_vaddr
, &is_swbp
);
1881 /* No matching uprobe; signal SIGTRAP. */
1882 send_sig(SIGTRAP
, current
, 0);
1885 * Either we raced with uprobe_unregister() or we can't
1886 * access this memory. The latter is only possible if
1887 * another thread plays with our ->mm. In both cases
1888 * we can simply restart. If this vma was unmapped we
1889 * can pretend this insn was not executed yet and get
1890 * the (correct) SIGSEGV after restart.
1892 instruction_pointer_set(regs
, bp_vaddr
);
1897 /* change it in advance for ->handler() and restart */
1898 instruction_pointer_set(regs
, bp_vaddr
);
1901 * TODO: move copy_insn/etc into _register and remove this hack.
1902 * After we hit the bp, _unregister + _register can install the
1903 * new and not-yet-analyzed uprobe at the same address, restart.
1905 smp_rmb(); /* pairs with wmb() in install_breakpoint() */
1906 if (unlikely(!test_bit(UPROBE_COPY_INSN
, &uprobe
->flags
)))
1909 /* Tracing handlers use ->utask to communicate with fetch methods */
1913 if (arch_uprobe_ignore(&uprobe
->arch
, regs
))
1916 handler_chain(uprobe
, regs
);
1918 if (arch_uprobe_skip_sstep(&uprobe
->arch
, regs
))
1921 if (!pre_ssout(uprobe
, regs
, bp_vaddr
))
1924 /* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
1930 * Perform required fix-ups and disable singlestep.
1931 * Allow pending signals to take effect.
1933 static void handle_singlestep(struct uprobe_task
*utask
, struct pt_regs
*regs
)
1935 struct uprobe
*uprobe
;
1938 uprobe
= utask
->active_uprobe
;
1939 if (utask
->state
== UTASK_SSTEP_ACK
)
1940 err
= arch_uprobe_post_xol(&uprobe
->arch
, regs
);
1941 else if (utask
->state
== UTASK_SSTEP_TRAPPED
)
1942 arch_uprobe_abort_xol(&uprobe
->arch
, regs
);
1947 utask
->active_uprobe
= NULL
;
1948 utask
->state
= UTASK_RUNNING
;
1949 xol_free_insn_slot(current
);
1951 spin_lock_irq(¤t
->sighand
->siglock
);
1952 recalc_sigpending(); /* see uprobe_deny_signal() */
1953 spin_unlock_irq(¤t
->sighand
->siglock
);
1955 if (unlikely(err
)) {
1956 uprobe_warn(current
, "execute the probed insn, sending SIGILL.");
1957 force_sig_info(SIGILL
, SEND_SIG_FORCED
, current
);
1962 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
1963 * allows the thread to return from interrupt. After that handle_swbp()
1964 * sets utask->active_uprobe.
1966 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
1967 * and allows the thread to return from interrupt.
1969 * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1970 * uprobe_notify_resume().
1972 void uprobe_notify_resume(struct pt_regs
*regs
)
1974 struct uprobe_task
*utask
;
1976 clear_thread_flag(TIF_UPROBE
);
1978 utask
= current
->utask
;
1979 if (utask
&& utask
->active_uprobe
)
1980 handle_singlestep(utask
, regs
);
1986 * uprobe_pre_sstep_notifier gets called from interrupt context as part of
1987 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
1989 int uprobe_pre_sstep_notifier(struct pt_regs
*regs
)
1994 if (!test_bit(MMF_HAS_UPROBES
, ¤t
->mm
->flags
) &&
1995 (!current
->utask
|| !current
->utask
->return_instances
))
1998 set_thread_flag(TIF_UPROBE
);
2003 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
2004 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
2006 int uprobe_post_sstep_notifier(struct pt_regs
*regs
)
2008 struct uprobe_task
*utask
= current
->utask
;
2010 if (!current
->mm
|| !utask
|| !utask
->active_uprobe
)
2011 /* task is currently not uprobed */
2014 utask
->state
= UTASK_SSTEP_ACK
;
2015 set_thread_flag(TIF_UPROBE
);
2019 static struct notifier_block uprobe_exception_nb
= {
2020 .notifier_call
= arch_uprobe_exception_notify
,
2021 .priority
= INT_MAX
-1, /* notified after kprobes, kgdb */
2024 static int __init
init_uprobes(void)
2028 for (i
= 0; i
< UPROBES_HASH_SZ
; i
++)
2029 mutex_init(&uprobes_mmap_mutex
[i
]);
2031 if (percpu_init_rwsem(&dup_mmap_sem
))
2034 return register_die_notifier(&uprobe_exception_nb
);
2036 __initcall(init_uprobes
);