4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
32 #include <linux/vmacache.h>
33 #include <linux/nsproxy.h>
34 #include <linux/capability.h>
35 #include <linux/cpu.h>
36 #include <linux/cgroup.h>
37 #include <linux/security.h>
38 #include <linux/hugetlb.h>
39 #include <linux/seccomp.h>
40 #include <linux/swap.h>
41 #include <linux/syscalls.h>
42 #include <linux/jiffies.h>
43 #include <linux/futex.h>
44 #include <linux/compat.h>
45 #include <linux/kthread.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/rcupdate.h>
48 #include <linux/ptrace.h>
49 #include <linux/mount.h>
50 #include <linux/audit.h>
51 #include <linux/memcontrol.h>
52 #include <linux/ftrace.h>
53 #include <linux/proc_fs.h>
54 #include <linux/profile.h>
55 #include <linux/rmap.h>
56 #include <linux/ksm.h>
57 #include <linux/acct.h>
58 #include <linux/tsacct_kern.h>
59 #include <linux/cn_proc.h>
60 #include <linux/freezer.h>
61 #include <linux/delayacct.h>
62 #include <linux/taskstats_kern.h>
63 #include <linux/random.h>
64 #include <linux/tty.h>
65 #include <linux/blkdev.h>
66 #include <linux/fs_struct.h>
67 #include <linux/magic.h>
68 #include <linux/perf_event.h>
69 #include <linux/posix-timers.h>
70 #include <linux/user-return-notifier.h>
71 #include <linux/oom.h>
72 #include <linux/khugepaged.h>
73 #include <linux/signalfd.h>
74 #include <linux/uprobes.h>
75 #include <linux/aio.h>
76 #include <linux/compiler.h>
77 #include <linux/sysctl.h>
78 #include <linux/kcov.h>
80 #include <asm/pgtable.h>
81 #include <asm/pgalloc.h>
82 #include <asm/uaccess.h>
83 #include <asm/mmu_context.h>
84 #include <asm/cacheflush.h>
85 #include <asm/tlbflush.h>
87 #include <trace/events/sched.h>
89 #define CREATE_TRACE_POINTS
90 #include <trace/events/task.h>
93 * Minimum number of threads to boot the kernel
95 #define MIN_THREADS 20
98 * Maximum number of threads
100 #define MAX_THREADS FUTEX_TID_MASK
103 * Protected counters by write_lock_irq(&tasklist_lock)
105 unsigned long total_forks
; /* Handle normal Linux uptimes. */
106 int nr_threads
; /* The idle threads do not count.. */
108 int max_threads
; /* tunable limit on nr_threads */
110 DEFINE_PER_CPU(unsigned long, process_counts
) = 0;
112 __cacheline_aligned
DEFINE_RWLOCK(tasklist_lock
); /* outer */
114 #ifdef CONFIG_PROVE_RCU
115 int lockdep_tasklist_lock_is_held(void)
117 return lockdep_is_held(&tasklist_lock
);
119 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held
);
120 #endif /* #ifdef CONFIG_PROVE_RCU */
122 int nr_processes(void)
127 for_each_possible_cpu(cpu
)
128 total
+= per_cpu(process_counts
, cpu
);
133 void __weak
arch_release_task_struct(struct task_struct
*tsk
)
137 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
138 static struct kmem_cache
*task_struct_cachep
;
140 static inline struct task_struct
*alloc_task_struct_node(int node
)
142 return kmem_cache_alloc_node(task_struct_cachep
, GFP_KERNEL
, node
);
145 static inline void free_task_struct(struct task_struct
*tsk
)
147 kmem_cache_free(task_struct_cachep
, tsk
);
151 void __weak
arch_release_thread_stack(unsigned long *stack
)
155 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
158 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
159 * kmemcache based allocator.
161 # if THREAD_SIZE >= PAGE_SIZE
162 static unsigned long *alloc_thread_stack_node(struct task_struct
*tsk
,
165 struct page
*page
= alloc_pages_node(node
, THREADINFO_GFP
,
168 return page
? page_address(page
) : NULL
;
171 static inline void free_thread_stack(unsigned long *stack
)
173 __free_pages(virt_to_page(stack
), THREAD_SIZE_ORDER
);
176 static struct kmem_cache
*thread_stack_cache
;
178 static unsigned long *alloc_thread_stack_node(struct task_struct
*tsk
,
181 return kmem_cache_alloc_node(thread_stack_cache
, THREADINFO_GFP
, node
);
184 static void free_thread_stack(unsigned long *stack
)
186 kmem_cache_free(thread_stack_cache
, stack
);
189 void thread_stack_cache_init(void)
191 thread_stack_cache
= kmem_cache_create("thread_stack", THREAD_SIZE
,
192 THREAD_SIZE
, 0, NULL
);
193 BUG_ON(thread_stack_cache
== NULL
);
198 /* SLAB cache for signal_struct structures (tsk->signal) */
199 static struct kmem_cache
*signal_cachep
;
201 /* SLAB cache for sighand_struct structures (tsk->sighand) */
202 struct kmem_cache
*sighand_cachep
;
204 /* SLAB cache for files_struct structures (tsk->files) */
205 struct kmem_cache
*files_cachep
;
207 /* SLAB cache for fs_struct structures (tsk->fs) */
208 struct kmem_cache
*fs_cachep
;
210 /* SLAB cache for vm_area_struct structures */
211 struct kmem_cache
*vm_area_cachep
;
213 /* SLAB cache for mm_struct structures (tsk->mm) */
214 static struct kmem_cache
*mm_cachep
;
216 static void account_kernel_stack(unsigned long *stack
, int account
)
218 /* All stack pages are in the same zone and belong to the same memcg. */
219 struct page
*first_page
= virt_to_page(stack
);
221 mod_zone_page_state(page_zone(first_page
), NR_KERNEL_STACK_KB
,
222 THREAD_SIZE
/ 1024 * account
);
224 memcg_kmem_update_page_stat(
225 first_page
, MEMCG_KERNEL_STACK_KB
,
226 account
* (THREAD_SIZE
/ 1024));
229 void free_task(struct task_struct
*tsk
)
231 account_kernel_stack(tsk
->stack
, -1);
232 arch_release_thread_stack(tsk
->stack
);
233 free_thread_stack(tsk
->stack
);
234 rt_mutex_debug_task_free(tsk
);
235 ftrace_graph_exit_task(tsk
);
236 put_seccomp_filter(tsk
);
237 arch_release_task_struct(tsk
);
238 free_task_struct(tsk
);
240 EXPORT_SYMBOL(free_task
);
242 static inline void free_signal_struct(struct signal_struct
*sig
)
244 taskstats_tgid_free(sig
);
245 sched_autogroup_exit(sig
);
246 kmem_cache_free(signal_cachep
, sig
);
249 static inline void put_signal_struct(struct signal_struct
*sig
)
251 if (atomic_dec_and_test(&sig
->sigcnt
))
252 free_signal_struct(sig
);
255 void __put_task_struct(struct task_struct
*tsk
)
257 WARN_ON(!tsk
->exit_state
);
258 WARN_ON(atomic_read(&tsk
->usage
));
259 WARN_ON(tsk
== current
);
263 security_task_free(tsk
);
265 delayacct_tsk_free(tsk
);
266 put_signal_struct(tsk
->signal
);
268 if (!profile_handoff_task(tsk
))
271 EXPORT_SYMBOL_GPL(__put_task_struct
);
273 void __init __weak
arch_task_cache_init(void) { }
278 static void set_max_threads(unsigned int max_threads_suggested
)
283 * The number of threads shall be limited such that the thread
284 * structures may only consume a small part of the available memory.
286 if (fls64(totalram_pages
) + fls64(PAGE_SIZE
) > 64)
287 threads
= MAX_THREADS
;
289 threads
= div64_u64((u64
) totalram_pages
* (u64
) PAGE_SIZE
,
290 (u64
) THREAD_SIZE
* 8UL);
292 if (threads
> max_threads_suggested
)
293 threads
= max_threads_suggested
;
295 max_threads
= clamp_t(u64
, threads
, MIN_THREADS
, MAX_THREADS
);
298 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
299 /* Initialized by the architecture: */
300 int arch_task_struct_size __read_mostly
;
303 void __init
fork_init(void)
305 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
306 #ifndef ARCH_MIN_TASKALIGN
307 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
309 /* create a slab on which task_structs can be allocated */
310 task_struct_cachep
= kmem_cache_create("task_struct",
311 arch_task_struct_size
, ARCH_MIN_TASKALIGN
,
312 SLAB_PANIC
|SLAB_NOTRACK
|SLAB_ACCOUNT
, NULL
);
315 /* do the arch specific task caches init */
316 arch_task_cache_init();
318 set_max_threads(MAX_THREADS
);
320 init_task
.signal
->rlim
[RLIMIT_NPROC
].rlim_cur
= max_threads
/2;
321 init_task
.signal
->rlim
[RLIMIT_NPROC
].rlim_max
= max_threads
/2;
322 init_task
.signal
->rlim
[RLIMIT_SIGPENDING
] =
323 init_task
.signal
->rlim
[RLIMIT_NPROC
];
326 int __weak
arch_dup_task_struct(struct task_struct
*dst
,
327 struct task_struct
*src
)
333 void set_task_stack_end_magic(struct task_struct
*tsk
)
335 unsigned long *stackend
;
337 stackend
= end_of_stack(tsk
);
338 *stackend
= STACK_END_MAGIC
; /* for overflow detection */
341 static struct task_struct
*dup_task_struct(struct task_struct
*orig
, int node
)
343 struct task_struct
*tsk
;
344 unsigned long *stack
;
347 if (node
== NUMA_NO_NODE
)
348 node
= tsk_fork_get_node(orig
);
349 tsk
= alloc_task_struct_node(node
);
353 stack
= alloc_thread_stack_node(tsk
, node
);
357 err
= arch_dup_task_struct(tsk
, orig
);
362 #ifdef CONFIG_SECCOMP
364 * We must handle setting up seccomp filters once we're under
365 * the sighand lock in case orig has changed between now and
366 * then. Until then, filter must be NULL to avoid messing up
367 * the usage counts on the error path calling free_task.
369 tsk
->seccomp
.filter
= NULL
;
372 setup_thread_stack(tsk
, orig
);
373 clear_user_return_notifier(tsk
);
374 clear_tsk_need_resched(tsk
);
375 set_task_stack_end_magic(tsk
);
377 #ifdef CONFIG_CC_STACKPROTECTOR
378 tsk
->stack_canary
= get_random_int();
382 * One for us, one for whoever does the "release_task()" (usually
385 atomic_set(&tsk
->usage
, 2);
386 #ifdef CONFIG_BLK_DEV_IO_TRACE
389 tsk
->splice_pipe
= NULL
;
390 tsk
->task_frag
.page
= NULL
;
391 tsk
->wake_q
.next
= NULL
;
393 account_kernel_stack(stack
, 1);
400 free_thread_stack(stack
);
402 free_task_struct(tsk
);
407 static int dup_mmap(struct mm_struct
*mm
, struct mm_struct
*oldmm
)
409 struct vm_area_struct
*mpnt
, *tmp
, *prev
, **pprev
;
410 struct rb_node
**rb_link
, *rb_parent
;
412 unsigned long charge
;
414 uprobe_start_dup_mmap();
415 if (down_write_killable(&oldmm
->mmap_sem
)) {
417 goto fail_uprobe_end
;
419 flush_cache_dup_mm(oldmm
);
420 uprobe_dup_mmap(oldmm
, mm
);
422 * Not linked in yet - no deadlock potential:
424 down_write_nested(&mm
->mmap_sem
, SINGLE_DEPTH_NESTING
);
426 /* No ordering required: file already has been exposed. */
427 RCU_INIT_POINTER(mm
->exe_file
, get_mm_exe_file(oldmm
));
429 mm
->total_vm
= oldmm
->total_vm
;
430 mm
->data_vm
= oldmm
->data_vm
;
431 mm
->exec_vm
= oldmm
->exec_vm
;
432 mm
->stack_vm
= oldmm
->stack_vm
;
434 rb_link
= &mm
->mm_rb
.rb_node
;
437 retval
= ksm_fork(mm
, oldmm
);
440 retval
= khugepaged_fork(mm
, oldmm
);
445 for (mpnt
= oldmm
->mmap
; mpnt
; mpnt
= mpnt
->vm_next
) {
448 if (mpnt
->vm_flags
& VM_DONTCOPY
) {
449 vm_stat_account(mm
, mpnt
->vm_flags
, -vma_pages(mpnt
));
453 if (mpnt
->vm_flags
& VM_ACCOUNT
) {
454 unsigned long len
= vma_pages(mpnt
);
456 if (security_vm_enough_memory_mm(oldmm
, len
)) /* sic */
460 tmp
= kmem_cache_alloc(vm_area_cachep
, GFP_KERNEL
);
464 INIT_LIST_HEAD(&tmp
->anon_vma_chain
);
465 retval
= vma_dup_policy(mpnt
, tmp
);
467 goto fail_nomem_policy
;
469 if (anon_vma_fork(tmp
, mpnt
))
470 goto fail_nomem_anon_vma_fork
;
472 ~(VM_LOCKED
|VM_LOCKONFAULT
|VM_UFFD_MISSING
|VM_UFFD_WP
);
473 tmp
->vm_next
= tmp
->vm_prev
= NULL
;
474 tmp
->vm_userfaultfd_ctx
= NULL_VM_UFFD_CTX
;
477 struct inode
*inode
= file_inode(file
);
478 struct address_space
*mapping
= file
->f_mapping
;
481 if (tmp
->vm_flags
& VM_DENYWRITE
)
482 atomic_dec(&inode
->i_writecount
);
483 i_mmap_lock_write(mapping
);
484 if (tmp
->vm_flags
& VM_SHARED
)
485 atomic_inc(&mapping
->i_mmap_writable
);
486 flush_dcache_mmap_lock(mapping
);
487 /* insert tmp into the share list, just after mpnt */
488 vma_interval_tree_insert_after(tmp
, mpnt
,
490 flush_dcache_mmap_unlock(mapping
);
491 i_mmap_unlock_write(mapping
);
495 * Clear hugetlb-related page reserves for children. This only
496 * affects MAP_PRIVATE mappings. Faults generated by the child
497 * are not guaranteed to succeed, even if read-only
499 if (is_vm_hugetlb_page(tmp
))
500 reset_vma_resv_huge_pages(tmp
);
503 * Link in the new vma and copy the page table entries.
506 pprev
= &tmp
->vm_next
;
510 __vma_link_rb(mm
, tmp
, rb_link
, rb_parent
);
511 rb_link
= &tmp
->vm_rb
.rb_right
;
512 rb_parent
= &tmp
->vm_rb
;
515 retval
= copy_page_range(mm
, oldmm
, mpnt
);
517 if (tmp
->vm_ops
&& tmp
->vm_ops
->open
)
518 tmp
->vm_ops
->open(tmp
);
523 /* a new mm has just been created */
524 arch_dup_mmap(oldmm
, mm
);
527 up_write(&mm
->mmap_sem
);
529 up_write(&oldmm
->mmap_sem
);
531 uprobe_end_dup_mmap();
533 fail_nomem_anon_vma_fork
:
534 mpol_put(vma_policy(tmp
));
536 kmem_cache_free(vm_area_cachep
, tmp
);
539 vm_unacct_memory(charge
);
543 static inline int mm_alloc_pgd(struct mm_struct
*mm
)
545 mm
->pgd
= pgd_alloc(mm
);
546 if (unlikely(!mm
->pgd
))
551 static inline void mm_free_pgd(struct mm_struct
*mm
)
553 pgd_free(mm
, mm
->pgd
);
556 static int dup_mmap(struct mm_struct
*mm
, struct mm_struct
*oldmm
)
558 down_write(&oldmm
->mmap_sem
);
559 RCU_INIT_POINTER(mm
->exe_file
, get_mm_exe_file(oldmm
));
560 up_write(&oldmm
->mmap_sem
);
563 #define mm_alloc_pgd(mm) (0)
564 #define mm_free_pgd(mm)
565 #endif /* CONFIG_MMU */
567 __cacheline_aligned_in_smp
DEFINE_SPINLOCK(mmlist_lock
);
569 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
570 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
572 static unsigned long default_dump_filter
= MMF_DUMP_FILTER_DEFAULT
;
574 static int __init
coredump_filter_setup(char *s
)
576 default_dump_filter
=
577 (simple_strtoul(s
, NULL
, 0) << MMF_DUMP_FILTER_SHIFT
) &
578 MMF_DUMP_FILTER_MASK
;
582 __setup("coredump_filter=", coredump_filter_setup
);
584 #include <linux/init_task.h>
586 static void mm_init_aio(struct mm_struct
*mm
)
589 spin_lock_init(&mm
->ioctx_lock
);
590 mm
->ioctx_table
= NULL
;
594 static void mm_init_owner(struct mm_struct
*mm
, struct task_struct
*p
)
601 static struct mm_struct
*mm_init(struct mm_struct
*mm
, struct task_struct
*p
)
605 mm
->vmacache_seqnum
= 0;
606 atomic_set(&mm
->mm_users
, 1);
607 atomic_set(&mm
->mm_count
, 1);
608 init_rwsem(&mm
->mmap_sem
);
609 INIT_LIST_HEAD(&mm
->mmlist
);
610 mm
->core_state
= NULL
;
611 atomic_long_set(&mm
->nr_ptes
, 0);
616 memset(&mm
->rss_stat
, 0, sizeof(mm
->rss_stat
));
617 spin_lock_init(&mm
->page_table_lock
);
620 mm_init_owner(mm
, p
);
621 mmu_notifier_mm_init(mm
);
622 clear_tlb_flush_pending(mm
);
623 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
624 mm
->pmd_huge_pte
= NULL
;
628 mm
->flags
= current
->mm
->flags
& MMF_INIT_MASK
;
629 mm
->def_flags
= current
->mm
->def_flags
& VM_INIT_DEF_MASK
;
631 mm
->flags
= default_dump_filter
;
635 if (mm_alloc_pgd(mm
))
638 if (init_new_context(p
, mm
))
650 static void check_mm(struct mm_struct
*mm
)
654 for (i
= 0; i
< NR_MM_COUNTERS
; i
++) {
655 long x
= atomic_long_read(&mm
->rss_stat
.count
[i
]);
658 printk(KERN_ALERT
"BUG: Bad rss-counter state "
659 "mm:%p idx:%d val:%ld\n", mm
, i
, x
);
662 if (atomic_long_read(&mm
->nr_ptes
))
663 pr_alert("BUG: non-zero nr_ptes on freeing mm: %ld\n",
664 atomic_long_read(&mm
->nr_ptes
));
666 pr_alert("BUG: non-zero nr_pmds on freeing mm: %ld\n",
669 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
670 VM_BUG_ON_MM(mm
->pmd_huge_pte
, mm
);
675 * Allocate and initialize an mm_struct.
677 struct mm_struct
*mm_alloc(void)
679 struct mm_struct
*mm
;
685 memset(mm
, 0, sizeof(*mm
));
686 return mm_init(mm
, current
);
690 * Called when the last reference to the mm
691 * is dropped: either by a lazy thread or by
692 * mmput. Free the page directory and the mm.
694 void __mmdrop(struct mm_struct
*mm
)
696 BUG_ON(mm
== &init_mm
);
699 mmu_notifier_mm_destroy(mm
);
703 EXPORT_SYMBOL_GPL(__mmdrop
);
705 static inline void __mmput(struct mm_struct
*mm
)
707 VM_BUG_ON(atomic_read(&mm
->mm_users
));
709 uprobe_clear_state(mm
);
712 khugepaged_exit(mm
); /* must run before exit_mmap */
714 set_mm_exe_file(mm
, NULL
);
715 if (!list_empty(&mm
->mmlist
)) {
716 spin_lock(&mmlist_lock
);
717 list_del(&mm
->mmlist
);
718 spin_unlock(&mmlist_lock
);
721 module_put(mm
->binfmt
->module
);
726 * Decrement the use count and release all resources for an mm.
728 void mmput(struct mm_struct
*mm
)
732 if (atomic_dec_and_test(&mm
->mm_users
))
735 EXPORT_SYMBOL_GPL(mmput
);
738 static void mmput_async_fn(struct work_struct
*work
)
740 struct mm_struct
*mm
= container_of(work
, struct mm_struct
, async_put_work
);
744 void mmput_async(struct mm_struct
*mm
)
746 if (atomic_dec_and_test(&mm
->mm_users
)) {
747 INIT_WORK(&mm
->async_put_work
, mmput_async_fn
);
748 schedule_work(&mm
->async_put_work
);
754 * set_mm_exe_file - change a reference to the mm's executable file
756 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
758 * Main users are mmput() and sys_execve(). Callers prevent concurrent
759 * invocations: in mmput() nobody alive left, in execve task is single
760 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
761 * mm->exe_file, but does so without using set_mm_exe_file() in order
762 * to do avoid the need for any locks.
764 void set_mm_exe_file(struct mm_struct
*mm
, struct file
*new_exe_file
)
766 struct file
*old_exe_file
;
769 * It is safe to dereference the exe_file without RCU as
770 * this function is only called if nobody else can access
771 * this mm -- see comment above for justification.
773 old_exe_file
= rcu_dereference_raw(mm
->exe_file
);
776 get_file(new_exe_file
);
777 rcu_assign_pointer(mm
->exe_file
, new_exe_file
);
783 * get_mm_exe_file - acquire a reference to the mm's executable file
785 * Returns %NULL if mm has no associated executable file.
786 * User must release file via fput().
788 struct file
*get_mm_exe_file(struct mm_struct
*mm
)
790 struct file
*exe_file
;
793 exe_file
= rcu_dereference(mm
->exe_file
);
794 if (exe_file
&& !get_file_rcu(exe_file
))
799 EXPORT_SYMBOL(get_mm_exe_file
);
802 * get_task_exe_file - acquire a reference to the task's executable file
804 * Returns %NULL if task's mm (if any) has no associated executable file or
805 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
806 * User must release file via fput().
808 struct file
*get_task_exe_file(struct task_struct
*task
)
810 struct file
*exe_file
= NULL
;
811 struct mm_struct
*mm
;
816 if (!(task
->flags
& PF_KTHREAD
))
817 exe_file
= get_mm_exe_file(mm
);
822 EXPORT_SYMBOL(get_task_exe_file
);
825 * get_task_mm - acquire a reference to the task's mm
827 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
828 * this kernel workthread has transiently adopted a user mm with use_mm,
829 * to do its AIO) is not set and if so returns a reference to it, after
830 * bumping up the use count. User must release the mm via mmput()
831 * after use. Typically used by /proc and ptrace.
833 struct mm_struct
*get_task_mm(struct task_struct
*task
)
835 struct mm_struct
*mm
;
840 if (task
->flags
& PF_KTHREAD
)
843 atomic_inc(&mm
->mm_users
);
848 EXPORT_SYMBOL_GPL(get_task_mm
);
850 struct mm_struct
*mm_access(struct task_struct
*task
, unsigned int mode
)
852 struct mm_struct
*mm
;
855 err
= mutex_lock_killable(&task
->signal
->cred_guard_mutex
);
859 mm
= get_task_mm(task
);
860 if (mm
&& mm
!= current
->mm
&&
861 !ptrace_may_access(task
, mode
)) {
863 mm
= ERR_PTR(-EACCES
);
865 mutex_unlock(&task
->signal
->cred_guard_mutex
);
870 static void complete_vfork_done(struct task_struct
*tsk
)
872 struct completion
*vfork
;
875 vfork
= tsk
->vfork_done
;
877 tsk
->vfork_done
= NULL
;
883 static int wait_for_vfork_done(struct task_struct
*child
,
884 struct completion
*vfork
)
888 freezer_do_not_count();
889 killed
= wait_for_completion_killable(vfork
);
894 child
->vfork_done
= NULL
;
898 put_task_struct(child
);
902 /* Please note the differences between mmput and mm_release.
903 * mmput is called whenever we stop holding onto a mm_struct,
904 * error success whatever.
906 * mm_release is called after a mm_struct has been removed
907 * from the current process.
909 * This difference is important for error handling, when we
910 * only half set up a mm_struct for a new process and need to restore
911 * the old one. Because we mmput the new mm_struct before
912 * restoring the old one. . .
913 * Eric Biederman 10 January 1998
915 void mm_release(struct task_struct
*tsk
, struct mm_struct
*mm
)
917 /* Get rid of any futexes when releasing the mm */
919 if (unlikely(tsk
->robust_list
)) {
920 exit_robust_list(tsk
);
921 tsk
->robust_list
= NULL
;
924 if (unlikely(tsk
->compat_robust_list
)) {
925 compat_exit_robust_list(tsk
);
926 tsk
->compat_robust_list
= NULL
;
929 if (unlikely(!list_empty(&tsk
->pi_state_list
)))
930 exit_pi_state_list(tsk
);
933 uprobe_free_utask(tsk
);
935 /* Get rid of any cached register state */
936 deactivate_mm(tsk
, mm
);
939 * Signal userspace if we're not exiting with a core dump
940 * because we want to leave the value intact for debugging
943 if (tsk
->clear_child_tid
) {
944 if (!(tsk
->signal
->flags
& SIGNAL_GROUP_COREDUMP
) &&
945 atomic_read(&mm
->mm_users
) > 1) {
947 * We don't check the error code - if userspace has
948 * not set up a proper pointer then tough luck.
950 put_user(0, tsk
->clear_child_tid
);
951 sys_futex(tsk
->clear_child_tid
, FUTEX_WAKE
,
954 tsk
->clear_child_tid
= NULL
;
958 * All done, finally we can wake up parent and return this mm to him.
959 * Also kthread_stop() uses this completion for synchronization.
962 complete_vfork_done(tsk
);
966 * Allocate a new mm structure and copy contents from the
967 * mm structure of the passed in task structure.
969 static struct mm_struct
*dup_mm(struct task_struct
*tsk
)
971 struct mm_struct
*mm
, *oldmm
= current
->mm
;
978 memcpy(mm
, oldmm
, sizeof(*mm
));
980 if (!mm_init(mm
, tsk
))
983 err
= dup_mmap(mm
, oldmm
);
987 mm
->hiwater_rss
= get_mm_rss(mm
);
988 mm
->hiwater_vm
= mm
->total_vm
;
990 if (mm
->binfmt
&& !try_module_get(mm
->binfmt
->module
))
996 /* don't put binfmt in mmput, we haven't got module yet */
1004 static int copy_mm(unsigned long clone_flags
, struct task_struct
*tsk
)
1006 struct mm_struct
*mm
, *oldmm
;
1009 tsk
->min_flt
= tsk
->maj_flt
= 0;
1010 tsk
->nvcsw
= tsk
->nivcsw
= 0;
1011 #ifdef CONFIG_DETECT_HUNG_TASK
1012 tsk
->last_switch_count
= tsk
->nvcsw
+ tsk
->nivcsw
;
1016 tsk
->active_mm
= NULL
;
1019 * Are we cloning a kernel thread?
1021 * We need to steal a active VM for that..
1023 oldmm
= current
->mm
;
1027 /* initialize the new vmacache entries */
1028 vmacache_flush(tsk
);
1030 if (clone_flags
& CLONE_VM
) {
1031 atomic_inc(&oldmm
->mm_users
);
1043 tsk
->active_mm
= mm
;
1050 static int copy_fs(unsigned long clone_flags
, struct task_struct
*tsk
)
1052 struct fs_struct
*fs
= current
->fs
;
1053 if (clone_flags
& CLONE_FS
) {
1054 /* tsk->fs is already what we want */
1055 spin_lock(&fs
->lock
);
1057 spin_unlock(&fs
->lock
);
1061 spin_unlock(&fs
->lock
);
1064 tsk
->fs
= copy_fs_struct(fs
);
1070 static int copy_files(unsigned long clone_flags
, struct task_struct
*tsk
)
1072 struct files_struct
*oldf
, *newf
;
1076 * A background process may not have any files ...
1078 oldf
= current
->files
;
1082 if (clone_flags
& CLONE_FILES
) {
1083 atomic_inc(&oldf
->count
);
1087 newf
= dup_fd(oldf
, &error
);
1097 static int copy_io(unsigned long clone_flags
, struct task_struct
*tsk
)
1100 struct io_context
*ioc
= current
->io_context
;
1101 struct io_context
*new_ioc
;
1106 * Share io context with parent, if CLONE_IO is set
1108 if (clone_flags
& CLONE_IO
) {
1110 tsk
->io_context
= ioc
;
1111 } else if (ioprio_valid(ioc
->ioprio
)) {
1112 new_ioc
= get_task_io_context(tsk
, GFP_KERNEL
, NUMA_NO_NODE
);
1113 if (unlikely(!new_ioc
))
1116 new_ioc
->ioprio
= ioc
->ioprio
;
1117 put_io_context(new_ioc
);
1123 static int copy_sighand(unsigned long clone_flags
, struct task_struct
*tsk
)
1125 struct sighand_struct
*sig
;
1127 if (clone_flags
& CLONE_SIGHAND
) {
1128 atomic_inc(¤t
->sighand
->count
);
1131 sig
= kmem_cache_alloc(sighand_cachep
, GFP_KERNEL
);
1132 rcu_assign_pointer(tsk
->sighand
, sig
);
1136 atomic_set(&sig
->count
, 1);
1137 memcpy(sig
->action
, current
->sighand
->action
, sizeof(sig
->action
));
1141 void __cleanup_sighand(struct sighand_struct
*sighand
)
1143 if (atomic_dec_and_test(&sighand
->count
)) {
1144 signalfd_cleanup(sighand
);
1146 * sighand_cachep is SLAB_DESTROY_BY_RCU so we can free it
1147 * without an RCU grace period, see __lock_task_sighand().
1149 kmem_cache_free(sighand_cachep
, sighand
);
1154 * Initialize POSIX timer handling for a thread group.
1156 static void posix_cpu_timers_init_group(struct signal_struct
*sig
)
1158 unsigned long cpu_limit
;
1160 cpu_limit
= READ_ONCE(sig
->rlim
[RLIMIT_CPU
].rlim_cur
);
1161 if (cpu_limit
!= RLIM_INFINITY
) {
1162 sig
->cputime_expires
.prof_exp
= secs_to_cputime(cpu_limit
);
1163 sig
->cputimer
.running
= true;
1166 /* The timer lists. */
1167 INIT_LIST_HEAD(&sig
->cpu_timers
[0]);
1168 INIT_LIST_HEAD(&sig
->cpu_timers
[1]);
1169 INIT_LIST_HEAD(&sig
->cpu_timers
[2]);
1172 static int copy_signal(unsigned long clone_flags
, struct task_struct
*tsk
)
1174 struct signal_struct
*sig
;
1176 if (clone_flags
& CLONE_THREAD
)
1179 sig
= kmem_cache_zalloc(signal_cachep
, GFP_KERNEL
);
1184 sig
->nr_threads
= 1;
1185 atomic_set(&sig
->live
, 1);
1186 atomic_set(&sig
->sigcnt
, 1);
1188 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1189 sig
->thread_head
= (struct list_head
)LIST_HEAD_INIT(tsk
->thread_node
);
1190 tsk
->thread_node
= (struct list_head
)LIST_HEAD_INIT(sig
->thread_head
);
1192 init_waitqueue_head(&sig
->wait_chldexit
);
1193 sig
->curr_target
= tsk
;
1194 init_sigpending(&sig
->shared_pending
);
1195 INIT_LIST_HEAD(&sig
->posix_timers
);
1196 seqlock_init(&sig
->stats_lock
);
1197 prev_cputime_init(&sig
->prev_cputime
);
1199 hrtimer_init(&sig
->real_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
1200 sig
->real_timer
.function
= it_real_fn
;
1202 task_lock(current
->group_leader
);
1203 memcpy(sig
->rlim
, current
->signal
->rlim
, sizeof sig
->rlim
);
1204 task_unlock(current
->group_leader
);
1206 posix_cpu_timers_init_group(sig
);
1208 tty_audit_fork(sig
);
1209 sched_autogroup_fork(sig
);
1211 sig
->oom_score_adj
= current
->signal
->oom_score_adj
;
1212 sig
->oom_score_adj_min
= current
->signal
->oom_score_adj_min
;
1214 sig
->has_child_subreaper
= current
->signal
->has_child_subreaper
||
1215 current
->signal
->is_child_subreaper
;
1217 mutex_init(&sig
->cred_guard_mutex
);
1222 static void copy_seccomp(struct task_struct
*p
)
1224 #ifdef CONFIG_SECCOMP
1226 * Must be called with sighand->lock held, which is common to
1227 * all threads in the group. Holding cred_guard_mutex is not
1228 * needed because this new task is not yet running and cannot
1231 assert_spin_locked(¤t
->sighand
->siglock
);
1233 /* Ref-count the new filter user, and assign it. */
1234 get_seccomp_filter(current
);
1235 p
->seccomp
= current
->seccomp
;
1238 * Explicitly enable no_new_privs here in case it got set
1239 * between the task_struct being duplicated and holding the
1240 * sighand lock. The seccomp state and nnp must be in sync.
1242 if (task_no_new_privs(current
))
1243 task_set_no_new_privs(p
);
1246 * If the parent gained a seccomp mode after copying thread
1247 * flags and between before we held the sighand lock, we have
1248 * to manually enable the seccomp thread flag here.
1250 if (p
->seccomp
.mode
!= SECCOMP_MODE_DISABLED
)
1251 set_tsk_thread_flag(p
, TIF_SECCOMP
);
1255 SYSCALL_DEFINE1(set_tid_address
, int __user
*, tidptr
)
1257 current
->clear_child_tid
= tidptr
;
1259 return task_pid_vnr(current
);
1262 static void rt_mutex_init_task(struct task_struct
*p
)
1264 raw_spin_lock_init(&p
->pi_lock
);
1265 #ifdef CONFIG_RT_MUTEXES
1266 p
->pi_waiters
= RB_ROOT
;
1267 p
->pi_waiters_leftmost
= NULL
;
1268 p
->pi_blocked_on
= NULL
;
1273 * Initialize POSIX timer handling for a single task.
1275 static void posix_cpu_timers_init(struct task_struct
*tsk
)
1277 tsk
->cputime_expires
.prof_exp
= 0;
1278 tsk
->cputime_expires
.virt_exp
= 0;
1279 tsk
->cputime_expires
.sched_exp
= 0;
1280 INIT_LIST_HEAD(&tsk
->cpu_timers
[0]);
1281 INIT_LIST_HEAD(&tsk
->cpu_timers
[1]);
1282 INIT_LIST_HEAD(&tsk
->cpu_timers
[2]);
1286 init_task_pid(struct task_struct
*task
, enum pid_type type
, struct pid
*pid
)
1288 task
->pids
[type
].pid
= pid
;
1292 * This creates a new process as a copy of the old one,
1293 * but does not actually start it yet.
1295 * It copies the registers, and all the appropriate
1296 * parts of the process environment (as per the clone
1297 * flags). The actual kick-off is left to the caller.
1299 static struct task_struct
*copy_process(unsigned long clone_flags
,
1300 unsigned long stack_start
,
1301 unsigned long stack_size
,
1302 int __user
*child_tidptr
,
1309 struct task_struct
*p
;
1311 if ((clone_flags
& (CLONE_NEWNS
|CLONE_FS
)) == (CLONE_NEWNS
|CLONE_FS
))
1312 return ERR_PTR(-EINVAL
);
1314 if ((clone_flags
& (CLONE_NEWUSER
|CLONE_FS
)) == (CLONE_NEWUSER
|CLONE_FS
))
1315 return ERR_PTR(-EINVAL
);
1318 * Thread groups must share signals as well, and detached threads
1319 * can only be started up within the thread group.
1321 if ((clone_flags
& CLONE_THREAD
) && !(clone_flags
& CLONE_SIGHAND
))
1322 return ERR_PTR(-EINVAL
);
1325 * Shared signal handlers imply shared VM. By way of the above,
1326 * thread groups also imply shared VM. Blocking this case allows
1327 * for various simplifications in other code.
1329 if ((clone_flags
& CLONE_SIGHAND
) && !(clone_flags
& CLONE_VM
))
1330 return ERR_PTR(-EINVAL
);
1333 * Siblings of global init remain as zombies on exit since they are
1334 * not reaped by their parent (swapper). To solve this and to avoid
1335 * multi-rooted process trees, prevent global and container-inits
1336 * from creating siblings.
1338 if ((clone_flags
& CLONE_PARENT
) &&
1339 current
->signal
->flags
& SIGNAL_UNKILLABLE
)
1340 return ERR_PTR(-EINVAL
);
1343 * If the new process will be in a different pid or user namespace
1344 * do not allow it to share a thread group with the forking task.
1346 if (clone_flags
& CLONE_THREAD
) {
1347 if ((clone_flags
& (CLONE_NEWUSER
| CLONE_NEWPID
)) ||
1348 (task_active_pid_ns(current
) !=
1349 current
->nsproxy
->pid_ns_for_children
))
1350 return ERR_PTR(-EINVAL
);
1353 retval
= security_task_create(clone_flags
);
1358 p
= dup_task_struct(current
, node
);
1362 ftrace_graph_init_task(p
);
1364 rt_mutex_init_task(p
);
1366 #ifdef CONFIG_PROVE_LOCKING
1367 DEBUG_LOCKS_WARN_ON(!p
->hardirqs_enabled
);
1368 DEBUG_LOCKS_WARN_ON(!p
->softirqs_enabled
);
1371 if (atomic_read(&p
->real_cred
->user
->processes
) >=
1372 task_rlimit(p
, RLIMIT_NPROC
)) {
1373 if (p
->real_cred
->user
!= INIT_USER
&&
1374 !capable(CAP_SYS_RESOURCE
) && !capable(CAP_SYS_ADMIN
))
1377 current
->flags
&= ~PF_NPROC_EXCEEDED
;
1379 retval
= copy_creds(p
, clone_flags
);
1384 * If multiple threads are within copy_process(), then this check
1385 * triggers too late. This doesn't hurt, the check is only there
1386 * to stop root fork bombs.
1389 if (nr_threads
>= max_threads
)
1390 goto bad_fork_cleanup_count
;
1392 delayacct_tsk_init(p
); /* Must remain after dup_task_struct() */
1393 p
->flags
&= ~(PF_SUPERPRIV
| PF_WQ_WORKER
);
1394 p
->flags
|= PF_FORKNOEXEC
;
1395 INIT_LIST_HEAD(&p
->children
);
1396 INIT_LIST_HEAD(&p
->sibling
);
1397 rcu_copy_process(p
);
1398 p
->vfork_done
= NULL
;
1399 spin_lock_init(&p
->alloc_lock
);
1401 init_sigpending(&p
->pending
);
1403 p
->utime
= p
->stime
= p
->gtime
= 0;
1404 p
->utimescaled
= p
->stimescaled
= 0;
1405 prev_cputime_init(&p
->prev_cputime
);
1407 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1408 seqcount_init(&p
->vtime_seqcount
);
1410 p
->vtime_snap_whence
= VTIME_INACTIVE
;
1413 #if defined(SPLIT_RSS_COUNTING)
1414 memset(&p
->rss_stat
, 0, sizeof(p
->rss_stat
));
1417 p
->default_timer_slack_ns
= current
->timer_slack_ns
;
1419 task_io_accounting_init(&p
->ioac
);
1420 acct_clear_integrals(p
);
1422 posix_cpu_timers_init(p
);
1424 p
->start_time
= ktime_get_ns();
1425 p
->real_start_time
= ktime_get_boot_ns();
1426 p
->io_context
= NULL
;
1427 p
->audit_context
= NULL
;
1430 p
->mempolicy
= mpol_dup(p
->mempolicy
);
1431 if (IS_ERR(p
->mempolicy
)) {
1432 retval
= PTR_ERR(p
->mempolicy
);
1433 p
->mempolicy
= NULL
;
1434 goto bad_fork_cleanup_threadgroup_lock
;
1437 #ifdef CONFIG_CPUSETS
1438 p
->cpuset_mem_spread_rotor
= NUMA_NO_NODE
;
1439 p
->cpuset_slab_spread_rotor
= NUMA_NO_NODE
;
1440 seqcount_init(&p
->mems_allowed_seq
);
1442 #ifdef CONFIG_TRACE_IRQFLAGS
1444 p
->hardirqs_enabled
= 0;
1445 p
->hardirq_enable_ip
= 0;
1446 p
->hardirq_enable_event
= 0;
1447 p
->hardirq_disable_ip
= _THIS_IP_
;
1448 p
->hardirq_disable_event
= 0;
1449 p
->softirqs_enabled
= 1;
1450 p
->softirq_enable_ip
= _THIS_IP_
;
1451 p
->softirq_enable_event
= 0;
1452 p
->softirq_disable_ip
= 0;
1453 p
->softirq_disable_event
= 0;
1454 p
->hardirq_context
= 0;
1455 p
->softirq_context
= 0;
1458 p
->pagefault_disabled
= 0;
1460 #ifdef CONFIG_LOCKDEP
1461 p
->lockdep_depth
= 0; /* no locks held yet */
1462 p
->curr_chain_key
= 0;
1463 p
->lockdep_recursion
= 0;
1466 #ifdef CONFIG_DEBUG_MUTEXES
1467 p
->blocked_on
= NULL
; /* not blocked yet */
1469 #ifdef CONFIG_BCACHE
1470 p
->sequential_io
= 0;
1471 p
->sequential_io_avg
= 0;
1474 /* Perform scheduler related setup. Assign this task to a CPU. */
1475 retval
= sched_fork(clone_flags
, p
);
1477 goto bad_fork_cleanup_policy
;
1479 retval
= perf_event_init_task(p
);
1481 goto bad_fork_cleanup_policy
;
1482 retval
= audit_alloc(p
);
1484 goto bad_fork_cleanup_perf
;
1485 /* copy all the process information */
1487 retval
= copy_semundo(clone_flags
, p
);
1489 goto bad_fork_cleanup_audit
;
1490 retval
= copy_files(clone_flags
, p
);
1492 goto bad_fork_cleanup_semundo
;
1493 retval
= copy_fs(clone_flags
, p
);
1495 goto bad_fork_cleanup_files
;
1496 retval
= copy_sighand(clone_flags
, p
);
1498 goto bad_fork_cleanup_fs
;
1499 retval
= copy_signal(clone_flags
, p
);
1501 goto bad_fork_cleanup_sighand
;
1502 retval
= copy_mm(clone_flags
, p
);
1504 goto bad_fork_cleanup_signal
;
1505 retval
= copy_namespaces(clone_flags
, p
);
1507 goto bad_fork_cleanup_mm
;
1508 retval
= copy_io(clone_flags
, p
);
1510 goto bad_fork_cleanup_namespaces
;
1511 retval
= copy_thread_tls(clone_flags
, stack_start
, stack_size
, p
, tls
);
1513 goto bad_fork_cleanup_io
;
1515 if (pid
!= &init_struct_pid
) {
1516 pid
= alloc_pid(p
->nsproxy
->pid_ns_for_children
);
1518 retval
= PTR_ERR(pid
);
1519 goto bad_fork_cleanup_thread
;
1523 p
->set_child_tid
= (clone_flags
& CLONE_CHILD_SETTID
) ? child_tidptr
: NULL
;
1525 * Clear TID on mm_release()?
1527 p
->clear_child_tid
= (clone_flags
& CLONE_CHILD_CLEARTID
) ? child_tidptr
: NULL
;
1532 p
->robust_list
= NULL
;
1533 #ifdef CONFIG_COMPAT
1534 p
->compat_robust_list
= NULL
;
1536 INIT_LIST_HEAD(&p
->pi_state_list
);
1537 p
->pi_state_cache
= NULL
;
1540 * sigaltstack should be cleared when sharing the same VM
1542 if ((clone_flags
& (CLONE_VM
|CLONE_VFORK
)) == CLONE_VM
)
1546 * Syscall tracing and stepping should be turned off in the
1547 * child regardless of CLONE_PTRACE.
1549 user_disable_single_step(p
);
1550 clear_tsk_thread_flag(p
, TIF_SYSCALL_TRACE
);
1551 #ifdef TIF_SYSCALL_EMU
1552 clear_tsk_thread_flag(p
, TIF_SYSCALL_EMU
);
1554 clear_all_latency_tracing(p
);
1556 /* ok, now we should be set up.. */
1557 p
->pid
= pid_nr(pid
);
1558 if (clone_flags
& CLONE_THREAD
) {
1559 p
->exit_signal
= -1;
1560 p
->group_leader
= current
->group_leader
;
1561 p
->tgid
= current
->tgid
;
1563 if (clone_flags
& CLONE_PARENT
)
1564 p
->exit_signal
= current
->group_leader
->exit_signal
;
1566 p
->exit_signal
= (clone_flags
& CSIGNAL
);
1567 p
->group_leader
= p
;
1572 p
->nr_dirtied_pause
= 128 >> (PAGE_SHIFT
- 10);
1573 p
->dirty_paused_when
= 0;
1575 p
->pdeath_signal
= 0;
1576 INIT_LIST_HEAD(&p
->thread_group
);
1577 p
->task_works
= NULL
;
1579 threadgroup_change_begin(current
);
1581 * Ensure that the cgroup subsystem policies allow the new process to be
1582 * forked. It should be noted the the new process's css_set can be changed
1583 * between here and cgroup_post_fork() if an organisation operation is in
1586 retval
= cgroup_can_fork(p
);
1588 goto bad_fork_free_pid
;
1591 * Make it visible to the rest of the system, but dont wake it up yet.
1592 * Need tasklist lock for parent etc handling!
1594 write_lock_irq(&tasklist_lock
);
1596 /* CLONE_PARENT re-uses the old parent */
1597 if (clone_flags
& (CLONE_PARENT
|CLONE_THREAD
)) {
1598 p
->real_parent
= current
->real_parent
;
1599 p
->parent_exec_id
= current
->parent_exec_id
;
1601 p
->real_parent
= current
;
1602 p
->parent_exec_id
= current
->self_exec_id
;
1605 spin_lock(¤t
->sighand
->siglock
);
1608 * Copy seccomp details explicitly here, in case they were changed
1609 * before holding sighand lock.
1614 * Process group and session signals need to be delivered to just the
1615 * parent before the fork or both the parent and the child after the
1616 * fork. Restart if a signal comes in before we add the new process to
1617 * it's process group.
1618 * A fatal signal pending means that current will exit, so the new
1619 * thread can't slip out of an OOM kill (or normal SIGKILL).
1621 recalc_sigpending();
1622 if (signal_pending(current
)) {
1623 spin_unlock(¤t
->sighand
->siglock
);
1624 write_unlock_irq(&tasklist_lock
);
1625 retval
= -ERESTARTNOINTR
;
1626 goto bad_fork_cancel_cgroup
;
1629 if (likely(p
->pid
)) {
1630 ptrace_init_task(p
, (clone_flags
& CLONE_PTRACE
) || trace
);
1632 init_task_pid(p
, PIDTYPE_PID
, pid
);
1633 if (thread_group_leader(p
)) {
1634 init_task_pid(p
, PIDTYPE_PGID
, task_pgrp(current
));
1635 init_task_pid(p
, PIDTYPE_SID
, task_session(current
));
1637 if (is_child_reaper(pid
)) {
1638 ns_of_pid(pid
)->child_reaper
= p
;
1639 p
->signal
->flags
|= SIGNAL_UNKILLABLE
;
1642 p
->signal
->leader_pid
= pid
;
1643 p
->signal
->tty
= tty_kref_get(current
->signal
->tty
);
1644 list_add_tail(&p
->sibling
, &p
->real_parent
->children
);
1645 list_add_tail_rcu(&p
->tasks
, &init_task
.tasks
);
1646 attach_pid(p
, PIDTYPE_PGID
);
1647 attach_pid(p
, PIDTYPE_SID
);
1648 __this_cpu_inc(process_counts
);
1650 current
->signal
->nr_threads
++;
1651 atomic_inc(¤t
->signal
->live
);
1652 atomic_inc(¤t
->signal
->sigcnt
);
1653 list_add_tail_rcu(&p
->thread_group
,
1654 &p
->group_leader
->thread_group
);
1655 list_add_tail_rcu(&p
->thread_node
,
1656 &p
->signal
->thread_head
);
1658 attach_pid(p
, PIDTYPE_PID
);
1663 spin_unlock(¤t
->sighand
->siglock
);
1664 syscall_tracepoint_update(p
);
1665 write_unlock_irq(&tasklist_lock
);
1667 proc_fork_connector(p
);
1668 cgroup_post_fork(p
);
1669 threadgroup_change_end(current
);
1672 trace_task_newtask(p
, clone_flags
);
1673 uprobe_copy_process(p
, clone_flags
);
1677 bad_fork_cancel_cgroup
:
1678 cgroup_cancel_fork(p
);
1680 threadgroup_change_end(current
);
1681 if (pid
!= &init_struct_pid
)
1683 bad_fork_cleanup_thread
:
1685 bad_fork_cleanup_io
:
1688 bad_fork_cleanup_namespaces
:
1689 exit_task_namespaces(p
);
1690 bad_fork_cleanup_mm
:
1693 bad_fork_cleanup_signal
:
1694 if (!(clone_flags
& CLONE_THREAD
))
1695 free_signal_struct(p
->signal
);
1696 bad_fork_cleanup_sighand
:
1697 __cleanup_sighand(p
->sighand
);
1698 bad_fork_cleanup_fs
:
1699 exit_fs(p
); /* blocking */
1700 bad_fork_cleanup_files
:
1701 exit_files(p
); /* blocking */
1702 bad_fork_cleanup_semundo
:
1704 bad_fork_cleanup_audit
:
1706 bad_fork_cleanup_perf
:
1707 perf_event_free_task(p
);
1708 bad_fork_cleanup_policy
:
1710 mpol_put(p
->mempolicy
);
1711 bad_fork_cleanup_threadgroup_lock
:
1713 delayacct_tsk_free(p
);
1714 bad_fork_cleanup_count
:
1715 atomic_dec(&p
->cred
->user
->processes
);
1720 return ERR_PTR(retval
);
1723 static inline void init_idle_pids(struct pid_link
*links
)
1727 for (type
= PIDTYPE_PID
; type
< PIDTYPE_MAX
; ++type
) {
1728 INIT_HLIST_NODE(&links
[type
].node
); /* not really needed */
1729 links
[type
].pid
= &init_struct_pid
;
1733 struct task_struct
*fork_idle(int cpu
)
1735 struct task_struct
*task
;
1736 task
= copy_process(CLONE_VM
, 0, 0, NULL
, &init_struct_pid
, 0, 0,
1738 if (!IS_ERR(task
)) {
1739 init_idle_pids(task
->pids
);
1740 init_idle(task
, cpu
);
1747 * Ok, this is the main fork-routine.
1749 * It copies the process, and if successful kick-starts
1750 * it and waits for it to finish using the VM if required.
1752 long _do_fork(unsigned long clone_flags
,
1753 unsigned long stack_start
,
1754 unsigned long stack_size
,
1755 int __user
*parent_tidptr
,
1756 int __user
*child_tidptr
,
1759 struct task_struct
*p
;
1764 * Determine whether and which event to report to ptracer. When
1765 * called from kernel_thread or CLONE_UNTRACED is explicitly
1766 * requested, no event is reported; otherwise, report if the event
1767 * for the type of forking is enabled.
1769 if (!(clone_flags
& CLONE_UNTRACED
)) {
1770 if (clone_flags
& CLONE_VFORK
)
1771 trace
= PTRACE_EVENT_VFORK
;
1772 else if ((clone_flags
& CSIGNAL
) != SIGCHLD
)
1773 trace
= PTRACE_EVENT_CLONE
;
1775 trace
= PTRACE_EVENT_FORK
;
1777 if (likely(!ptrace_event_enabled(current
, trace
)))
1781 p
= copy_process(clone_flags
, stack_start
, stack_size
,
1782 child_tidptr
, NULL
, trace
, tls
, NUMA_NO_NODE
);
1784 * Do this prior waking up the new thread - the thread pointer
1785 * might get invalid after that point, if the thread exits quickly.
1788 struct completion vfork
;
1791 trace_sched_process_fork(current
, p
);
1793 pid
= get_task_pid(p
, PIDTYPE_PID
);
1796 if (clone_flags
& CLONE_PARENT_SETTID
)
1797 put_user(nr
, parent_tidptr
);
1799 if (clone_flags
& CLONE_VFORK
) {
1800 p
->vfork_done
= &vfork
;
1801 init_completion(&vfork
);
1805 wake_up_new_task(p
);
1807 /* forking complete and child started to run, tell ptracer */
1808 if (unlikely(trace
))
1809 ptrace_event_pid(trace
, pid
);
1811 if (clone_flags
& CLONE_VFORK
) {
1812 if (!wait_for_vfork_done(p
, &vfork
))
1813 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE
, pid
);
1823 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
1824 /* For compatibility with architectures that call do_fork directly rather than
1825 * using the syscall entry points below. */
1826 long do_fork(unsigned long clone_flags
,
1827 unsigned long stack_start
,
1828 unsigned long stack_size
,
1829 int __user
*parent_tidptr
,
1830 int __user
*child_tidptr
)
1832 return _do_fork(clone_flags
, stack_start
, stack_size
,
1833 parent_tidptr
, child_tidptr
, 0);
1838 * Create a kernel thread.
1840 pid_t
kernel_thread(int (*fn
)(void *), void *arg
, unsigned long flags
)
1842 return _do_fork(flags
|CLONE_VM
|CLONE_UNTRACED
, (unsigned long)fn
,
1843 (unsigned long)arg
, NULL
, NULL
, 0);
1846 #ifdef __ARCH_WANT_SYS_FORK
1847 SYSCALL_DEFINE0(fork
)
1850 return _do_fork(SIGCHLD
, 0, 0, NULL
, NULL
, 0);
1852 /* can not support in nommu mode */
1858 #ifdef __ARCH_WANT_SYS_VFORK
1859 SYSCALL_DEFINE0(vfork
)
1861 return _do_fork(CLONE_VFORK
| CLONE_VM
| SIGCHLD
, 0,
1866 #ifdef __ARCH_WANT_SYS_CLONE
1867 #ifdef CONFIG_CLONE_BACKWARDS
1868 SYSCALL_DEFINE5(clone
, unsigned long, clone_flags
, unsigned long, newsp
,
1869 int __user
*, parent_tidptr
,
1871 int __user
*, child_tidptr
)
1872 #elif defined(CONFIG_CLONE_BACKWARDS2)
1873 SYSCALL_DEFINE5(clone
, unsigned long, newsp
, unsigned long, clone_flags
,
1874 int __user
*, parent_tidptr
,
1875 int __user
*, child_tidptr
,
1877 #elif defined(CONFIG_CLONE_BACKWARDS3)
1878 SYSCALL_DEFINE6(clone
, unsigned long, clone_flags
, unsigned long, newsp
,
1880 int __user
*, parent_tidptr
,
1881 int __user
*, child_tidptr
,
1884 SYSCALL_DEFINE5(clone
, unsigned long, clone_flags
, unsigned long, newsp
,
1885 int __user
*, parent_tidptr
,
1886 int __user
*, child_tidptr
,
1890 return _do_fork(clone_flags
, newsp
, 0, parent_tidptr
, child_tidptr
, tls
);
1894 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1895 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1898 static void sighand_ctor(void *data
)
1900 struct sighand_struct
*sighand
= data
;
1902 spin_lock_init(&sighand
->siglock
);
1903 init_waitqueue_head(&sighand
->signalfd_wqh
);
1906 void __init
proc_caches_init(void)
1908 sighand_cachep
= kmem_cache_create("sighand_cache",
1909 sizeof(struct sighand_struct
), 0,
1910 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
|SLAB_DESTROY_BY_RCU
|
1911 SLAB_NOTRACK
|SLAB_ACCOUNT
, sighand_ctor
);
1912 signal_cachep
= kmem_cache_create("signal_cache",
1913 sizeof(struct signal_struct
), 0,
1914 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
|SLAB_NOTRACK
|SLAB_ACCOUNT
,
1916 files_cachep
= kmem_cache_create("files_cache",
1917 sizeof(struct files_struct
), 0,
1918 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
|SLAB_NOTRACK
|SLAB_ACCOUNT
,
1920 fs_cachep
= kmem_cache_create("fs_cache",
1921 sizeof(struct fs_struct
), 0,
1922 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
|SLAB_NOTRACK
|SLAB_ACCOUNT
,
1925 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1926 * whole struct cpumask for the OFFSTACK case. We could change
1927 * this to *only* allocate as much of it as required by the
1928 * maximum number of CPU's we can ever have. The cpumask_allocation
1929 * is at the end of the structure, exactly for that reason.
1931 mm_cachep
= kmem_cache_create("mm_struct",
1932 sizeof(struct mm_struct
), ARCH_MIN_MMSTRUCT_ALIGN
,
1933 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
|SLAB_NOTRACK
|SLAB_ACCOUNT
,
1935 vm_area_cachep
= KMEM_CACHE(vm_area_struct
, SLAB_PANIC
|SLAB_ACCOUNT
);
1937 nsproxy_cache_init();
1941 * Check constraints on flags passed to the unshare system call.
1943 static int check_unshare_flags(unsigned long unshare_flags
)
1945 if (unshare_flags
& ~(CLONE_THREAD
|CLONE_FS
|CLONE_NEWNS
|CLONE_SIGHAND
|
1946 CLONE_VM
|CLONE_FILES
|CLONE_SYSVSEM
|
1947 CLONE_NEWUTS
|CLONE_NEWIPC
|CLONE_NEWNET
|
1948 CLONE_NEWUSER
|CLONE_NEWPID
|CLONE_NEWCGROUP
))
1951 * Not implemented, but pretend it works if there is nothing
1952 * to unshare. Note that unsharing the address space or the
1953 * signal handlers also need to unshare the signal queues (aka
1956 if (unshare_flags
& (CLONE_THREAD
| CLONE_SIGHAND
| CLONE_VM
)) {
1957 if (!thread_group_empty(current
))
1960 if (unshare_flags
& (CLONE_SIGHAND
| CLONE_VM
)) {
1961 if (atomic_read(¤t
->sighand
->count
) > 1)
1964 if (unshare_flags
& CLONE_VM
) {
1965 if (!current_is_single_threaded())
1973 * Unshare the filesystem structure if it is being shared
1975 static int unshare_fs(unsigned long unshare_flags
, struct fs_struct
**new_fsp
)
1977 struct fs_struct
*fs
= current
->fs
;
1979 if (!(unshare_flags
& CLONE_FS
) || !fs
)
1982 /* don't need lock here; in the worst case we'll do useless copy */
1986 *new_fsp
= copy_fs_struct(fs
);
1994 * Unshare file descriptor table if it is being shared
1996 static int unshare_fd(unsigned long unshare_flags
, struct files_struct
**new_fdp
)
1998 struct files_struct
*fd
= current
->files
;
2001 if ((unshare_flags
& CLONE_FILES
) &&
2002 (fd
&& atomic_read(&fd
->count
) > 1)) {
2003 *new_fdp
= dup_fd(fd
, &error
);
2012 * unshare allows a process to 'unshare' part of the process
2013 * context which was originally shared using clone. copy_*
2014 * functions used by do_fork() cannot be used here directly
2015 * because they modify an inactive task_struct that is being
2016 * constructed. Here we are modifying the current, active,
2019 SYSCALL_DEFINE1(unshare
, unsigned long, unshare_flags
)
2021 struct fs_struct
*fs
, *new_fs
= NULL
;
2022 struct files_struct
*fd
, *new_fd
= NULL
;
2023 struct cred
*new_cred
= NULL
;
2024 struct nsproxy
*new_nsproxy
= NULL
;
2029 * If unsharing a user namespace must also unshare the thread group
2030 * and unshare the filesystem root and working directories.
2032 if (unshare_flags
& CLONE_NEWUSER
)
2033 unshare_flags
|= CLONE_THREAD
| CLONE_FS
;
2035 * If unsharing vm, must also unshare signal handlers.
2037 if (unshare_flags
& CLONE_VM
)
2038 unshare_flags
|= CLONE_SIGHAND
;
2040 * If unsharing a signal handlers, must also unshare the signal queues.
2042 if (unshare_flags
& CLONE_SIGHAND
)
2043 unshare_flags
|= CLONE_THREAD
;
2045 * If unsharing namespace, must also unshare filesystem information.
2047 if (unshare_flags
& CLONE_NEWNS
)
2048 unshare_flags
|= CLONE_FS
;
2050 err
= check_unshare_flags(unshare_flags
);
2052 goto bad_unshare_out
;
2054 * CLONE_NEWIPC must also detach from the undolist: after switching
2055 * to a new ipc namespace, the semaphore arrays from the old
2056 * namespace are unreachable.
2058 if (unshare_flags
& (CLONE_NEWIPC
|CLONE_SYSVSEM
))
2060 err
= unshare_fs(unshare_flags
, &new_fs
);
2062 goto bad_unshare_out
;
2063 err
= unshare_fd(unshare_flags
, &new_fd
);
2065 goto bad_unshare_cleanup_fs
;
2066 err
= unshare_userns(unshare_flags
, &new_cred
);
2068 goto bad_unshare_cleanup_fd
;
2069 err
= unshare_nsproxy_namespaces(unshare_flags
, &new_nsproxy
,
2072 goto bad_unshare_cleanup_cred
;
2074 if (new_fs
|| new_fd
|| do_sysvsem
|| new_cred
|| new_nsproxy
) {
2077 * CLONE_SYSVSEM is equivalent to sys_exit().
2081 if (unshare_flags
& CLONE_NEWIPC
) {
2082 /* Orphan segments in old ns (see sem above). */
2084 shm_init_task(current
);
2088 switch_task_namespaces(current
, new_nsproxy
);
2094 spin_lock(&fs
->lock
);
2095 current
->fs
= new_fs
;
2100 spin_unlock(&fs
->lock
);
2104 fd
= current
->files
;
2105 current
->files
= new_fd
;
2109 task_unlock(current
);
2112 /* Install the new user namespace */
2113 commit_creds(new_cred
);
2118 bad_unshare_cleanup_cred
:
2121 bad_unshare_cleanup_fd
:
2123 put_files_struct(new_fd
);
2125 bad_unshare_cleanup_fs
:
2127 free_fs_struct(new_fs
);
2134 * Helper to unshare the files of the current task.
2135 * We don't want to expose copy_files internals to
2136 * the exec layer of the kernel.
2139 int unshare_files(struct files_struct
**displaced
)
2141 struct task_struct
*task
= current
;
2142 struct files_struct
*copy
= NULL
;
2145 error
= unshare_fd(CLONE_FILES
, ©
);
2146 if (error
|| !copy
) {
2150 *displaced
= task
->files
;
2157 int sysctl_max_threads(struct ctl_table
*table
, int write
,
2158 void __user
*buffer
, size_t *lenp
, loff_t
*ppos
)
2162 int threads
= max_threads
;
2163 int min
= MIN_THREADS
;
2164 int max
= MAX_THREADS
;
2171 ret
= proc_dointvec_minmax(&t
, write
, buffer
, lenp
, ppos
);
2175 set_max_threads(threads
);