Merge branch 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[cris-mirror.git] / net / bluetooth / hci_core.c
blobddf8432fe8fb9a3fe4fd903573cc3355d1a4732b
1 /*
2 BlueZ - Bluetooth protocol stack for Linux
3 Copyright (C) 2000-2001 Qualcomm Incorporated
4 Copyright (C) 2011 ProFUSION Embedded Systems
6 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License version 2 as
10 published by the Free Software Foundation;
12 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
13 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
14 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
15 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
16 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
17 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
22 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
23 SOFTWARE IS DISCLAIMED.
26 /* Bluetooth HCI core. */
28 #include <linux/export.h>
29 #include <linux/idr.h>
30 #include <linux/rfkill.h>
31 #include <linux/debugfs.h>
32 #include <linux/crypto.h>
33 #include <asm/unaligned.h>
35 #include <net/bluetooth/bluetooth.h>
36 #include <net/bluetooth/hci_core.h>
37 #include <net/bluetooth/l2cap.h>
38 #include <net/bluetooth/mgmt.h>
40 #include "hci_request.h"
41 #include "hci_debugfs.h"
42 #include "smp.h"
43 #include "leds.h"
45 static void hci_rx_work(struct work_struct *work);
46 static void hci_cmd_work(struct work_struct *work);
47 static void hci_tx_work(struct work_struct *work);
49 /* HCI device list */
50 LIST_HEAD(hci_dev_list);
51 DEFINE_RWLOCK(hci_dev_list_lock);
53 /* HCI callback list */
54 LIST_HEAD(hci_cb_list);
55 DEFINE_MUTEX(hci_cb_list_lock);
57 /* HCI ID Numbering */
58 static DEFINE_IDA(hci_index_ida);
60 /* ---- HCI debugfs entries ---- */
62 static ssize_t dut_mode_read(struct file *file, char __user *user_buf,
63 size_t count, loff_t *ppos)
65 struct hci_dev *hdev = file->private_data;
66 char buf[3];
68 buf[0] = hci_dev_test_flag(hdev, HCI_DUT_MODE) ? 'Y' : 'N';
69 buf[1] = '\n';
70 buf[2] = '\0';
71 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
74 static ssize_t dut_mode_write(struct file *file, const char __user *user_buf,
75 size_t count, loff_t *ppos)
77 struct hci_dev *hdev = file->private_data;
78 struct sk_buff *skb;
79 char buf[32];
80 size_t buf_size = min(count, (sizeof(buf)-1));
81 bool enable;
83 if (!test_bit(HCI_UP, &hdev->flags))
84 return -ENETDOWN;
86 if (copy_from_user(buf, user_buf, buf_size))
87 return -EFAULT;
89 buf[buf_size] = '\0';
90 if (strtobool(buf, &enable))
91 return -EINVAL;
93 if (enable == hci_dev_test_flag(hdev, HCI_DUT_MODE))
94 return -EALREADY;
96 hci_req_sync_lock(hdev);
97 if (enable)
98 skb = __hci_cmd_sync(hdev, HCI_OP_ENABLE_DUT_MODE, 0, NULL,
99 HCI_CMD_TIMEOUT);
100 else
101 skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL,
102 HCI_CMD_TIMEOUT);
103 hci_req_sync_unlock(hdev);
105 if (IS_ERR(skb))
106 return PTR_ERR(skb);
108 kfree_skb(skb);
110 hci_dev_change_flag(hdev, HCI_DUT_MODE);
112 return count;
115 static const struct file_operations dut_mode_fops = {
116 .open = simple_open,
117 .read = dut_mode_read,
118 .write = dut_mode_write,
119 .llseek = default_llseek,
122 static ssize_t vendor_diag_read(struct file *file, char __user *user_buf,
123 size_t count, loff_t *ppos)
125 struct hci_dev *hdev = file->private_data;
126 char buf[3];
128 buf[0] = hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) ? 'Y' : 'N';
129 buf[1] = '\n';
130 buf[2] = '\0';
131 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
134 static ssize_t vendor_diag_write(struct file *file, const char __user *user_buf,
135 size_t count, loff_t *ppos)
137 struct hci_dev *hdev = file->private_data;
138 char buf[32];
139 size_t buf_size = min(count, (sizeof(buf)-1));
140 bool enable;
141 int err;
143 if (copy_from_user(buf, user_buf, buf_size))
144 return -EFAULT;
146 buf[buf_size] = '\0';
147 if (strtobool(buf, &enable))
148 return -EINVAL;
150 /* When the diagnostic flags are not persistent and the transport
151 * is not active, then there is no need for the vendor callback.
153 * Instead just store the desired value. If needed the setting
154 * will be programmed when the controller gets powered on.
156 if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
157 !test_bit(HCI_RUNNING, &hdev->flags))
158 goto done;
160 hci_req_sync_lock(hdev);
161 err = hdev->set_diag(hdev, enable);
162 hci_req_sync_unlock(hdev);
164 if (err < 0)
165 return err;
167 done:
168 if (enable)
169 hci_dev_set_flag(hdev, HCI_VENDOR_DIAG);
170 else
171 hci_dev_clear_flag(hdev, HCI_VENDOR_DIAG);
173 return count;
176 static const struct file_operations vendor_diag_fops = {
177 .open = simple_open,
178 .read = vendor_diag_read,
179 .write = vendor_diag_write,
180 .llseek = default_llseek,
183 static void hci_debugfs_create_basic(struct hci_dev *hdev)
185 debugfs_create_file("dut_mode", 0644, hdev->debugfs, hdev,
186 &dut_mode_fops);
188 if (hdev->set_diag)
189 debugfs_create_file("vendor_diag", 0644, hdev->debugfs, hdev,
190 &vendor_diag_fops);
193 static int hci_reset_req(struct hci_request *req, unsigned long opt)
195 BT_DBG("%s %ld", req->hdev->name, opt);
197 /* Reset device */
198 set_bit(HCI_RESET, &req->hdev->flags);
199 hci_req_add(req, HCI_OP_RESET, 0, NULL);
200 return 0;
203 static void bredr_init(struct hci_request *req)
205 req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED;
207 /* Read Local Supported Features */
208 hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
210 /* Read Local Version */
211 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
213 /* Read BD Address */
214 hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
217 static void amp_init1(struct hci_request *req)
219 req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED;
221 /* Read Local Version */
222 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
224 /* Read Local Supported Commands */
225 hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
227 /* Read Local AMP Info */
228 hci_req_add(req, HCI_OP_READ_LOCAL_AMP_INFO, 0, NULL);
230 /* Read Data Blk size */
231 hci_req_add(req, HCI_OP_READ_DATA_BLOCK_SIZE, 0, NULL);
233 /* Read Flow Control Mode */
234 hci_req_add(req, HCI_OP_READ_FLOW_CONTROL_MODE, 0, NULL);
236 /* Read Location Data */
237 hci_req_add(req, HCI_OP_READ_LOCATION_DATA, 0, NULL);
240 static int amp_init2(struct hci_request *req)
242 /* Read Local Supported Features. Not all AMP controllers
243 * support this so it's placed conditionally in the second
244 * stage init.
246 if (req->hdev->commands[14] & 0x20)
247 hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
249 return 0;
252 static int hci_init1_req(struct hci_request *req, unsigned long opt)
254 struct hci_dev *hdev = req->hdev;
256 BT_DBG("%s %ld", hdev->name, opt);
258 /* Reset */
259 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
260 hci_reset_req(req, 0);
262 switch (hdev->dev_type) {
263 case HCI_PRIMARY:
264 bredr_init(req);
265 break;
266 case HCI_AMP:
267 amp_init1(req);
268 break;
269 default:
270 BT_ERR("Unknown device type %d", hdev->dev_type);
271 break;
274 return 0;
277 static void bredr_setup(struct hci_request *req)
279 __le16 param;
280 __u8 flt_type;
282 /* Read Buffer Size (ACL mtu, max pkt, etc.) */
283 hci_req_add(req, HCI_OP_READ_BUFFER_SIZE, 0, NULL);
285 /* Read Class of Device */
286 hci_req_add(req, HCI_OP_READ_CLASS_OF_DEV, 0, NULL);
288 /* Read Local Name */
289 hci_req_add(req, HCI_OP_READ_LOCAL_NAME, 0, NULL);
291 /* Read Voice Setting */
292 hci_req_add(req, HCI_OP_READ_VOICE_SETTING, 0, NULL);
294 /* Read Number of Supported IAC */
295 hci_req_add(req, HCI_OP_READ_NUM_SUPPORTED_IAC, 0, NULL);
297 /* Read Current IAC LAP */
298 hci_req_add(req, HCI_OP_READ_CURRENT_IAC_LAP, 0, NULL);
300 /* Clear Event Filters */
301 flt_type = HCI_FLT_CLEAR_ALL;
302 hci_req_add(req, HCI_OP_SET_EVENT_FLT, 1, &flt_type);
304 /* Connection accept timeout ~20 secs */
305 param = cpu_to_le16(0x7d00);
306 hci_req_add(req, HCI_OP_WRITE_CA_TIMEOUT, 2, &param);
309 static void le_setup(struct hci_request *req)
311 struct hci_dev *hdev = req->hdev;
313 /* Read LE Buffer Size */
314 hci_req_add(req, HCI_OP_LE_READ_BUFFER_SIZE, 0, NULL);
316 /* Read LE Local Supported Features */
317 hci_req_add(req, HCI_OP_LE_READ_LOCAL_FEATURES, 0, NULL);
319 /* Read LE Supported States */
320 hci_req_add(req, HCI_OP_LE_READ_SUPPORTED_STATES, 0, NULL);
322 /* LE-only controllers have LE implicitly enabled */
323 if (!lmp_bredr_capable(hdev))
324 hci_dev_set_flag(hdev, HCI_LE_ENABLED);
327 static void hci_setup_event_mask(struct hci_request *req)
329 struct hci_dev *hdev = req->hdev;
331 /* The second byte is 0xff instead of 0x9f (two reserved bits
332 * disabled) since a Broadcom 1.2 dongle doesn't respond to the
333 * command otherwise.
335 u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 };
337 /* CSR 1.1 dongles does not accept any bitfield so don't try to set
338 * any event mask for pre 1.2 devices.
340 if (hdev->hci_ver < BLUETOOTH_VER_1_2)
341 return;
343 if (lmp_bredr_capable(hdev)) {
344 events[4] |= 0x01; /* Flow Specification Complete */
345 } else {
346 /* Use a different default for LE-only devices */
347 memset(events, 0, sizeof(events));
348 events[1] |= 0x20; /* Command Complete */
349 events[1] |= 0x40; /* Command Status */
350 events[1] |= 0x80; /* Hardware Error */
352 /* If the controller supports the Disconnect command, enable
353 * the corresponding event. In addition enable packet flow
354 * control related events.
356 if (hdev->commands[0] & 0x20) {
357 events[0] |= 0x10; /* Disconnection Complete */
358 events[2] |= 0x04; /* Number of Completed Packets */
359 events[3] |= 0x02; /* Data Buffer Overflow */
362 /* If the controller supports the Read Remote Version
363 * Information command, enable the corresponding event.
365 if (hdev->commands[2] & 0x80)
366 events[1] |= 0x08; /* Read Remote Version Information
367 * Complete
370 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) {
371 events[0] |= 0x80; /* Encryption Change */
372 events[5] |= 0x80; /* Encryption Key Refresh Complete */
376 if (lmp_inq_rssi_capable(hdev) ||
377 test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks))
378 events[4] |= 0x02; /* Inquiry Result with RSSI */
380 if (lmp_ext_feat_capable(hdev))
381 events[4] |= 0x04; /* Read Remote Extended Features Complete */
383 if (lmp_esco_capable(hdev)) {
384 events[5] |= 0x08; /* Synchronous Connection Complete */
385 events[5] |= 0x10; /* Synchronous Connection Changed */
388 if (lmp_sniffsubr_capable(hdev))
389 events[5] |= 0x20; /* Sniff Subrating */
391 if (lmp_pause_enc_capable(hdev))
392 events[5] |= 0x80; /* Encryption Key Refresh Complete */
394 if (lmp_ext_inq_capable(hdev))
395 events[5] |= 0x40; /* Extended Inquiry Result */
397 if (lmp_no_flush_capable(hdev))
398 events[7] |= 0x01; /* Enhanced Flush Complete */
400 if (lmp_lsto_capable(hdev))
401 events[6] |= 0x80; /* Link Supervision Timeout Changed */
403 if (lmp_ssp_capable(hdev)) {
404 events[6] |= 0x01; /* IO Capability Request */
405 events[6] |= 0x02; /* IO Capability Response */
406 events[6] |= 0x04; /* User Confirmation Request */
407 events[6] |= 0x08; /* User Passkey Request */
408 events[6] |= 0x10; /* Remote OOB Data Request */
409 events[6] |= 0x20; /* Simple Pairing Complete */
410 events[7] |= 0x04; /* User Passkey Notification */
411 events[7] |= 0x08; /* Keypress Notification */
412 events[7] |= 0x10; /* Remote Host Supported
413 * Features Notification
417 if (lmp_le_capable(hdev))
418 events[7] |= 0x20; /* LE Meta-Event */
420 hci_req_add(req, HCI_OP_SET_EVENT_MASK, sizeof(events), events);
423 static int hci_init2_req(struct hci_request *req, unsigned long opt)
425 struct hci_dev *hdev = req->hdev;
427 if (hdev->dev_type == HCI_AMP)
428 return amp_init2(req);
430 if (lmp_bredr_capable(hdev))
431 bredr_setup(req);
432 else
433 hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED);
435 if (lmp_le_capable(hdev))
436 le_setup(req);
438 /* All Bluetooth 1.2 and later controllers should support the
439 * HCI command for reading the local supported commands.
441 * Unfortunately some controllers indicate Bluetooth 1.2 support,
442 * but do not have support for this command. If that is the case,
443 * the driver can quirk the behavior and skip reading the local
444 * supported commands.
446 if (hdev->hci_ver > BLUETOOTH_VER_1_1 &&
447 !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks))
448 hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
450 if (lmp_ssp_capable(hdev)) {
451 /* When SSP is available, then the host features page
452 * should also be available as well. However some
453 * controllers list the max_page as 0 as long as SSP
454 * has not been enabled. To achieve proper debugging
455 * output, force the minimum max_page to 1 at least.
457 hdev->max_page = 0x01;
459 if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) {
460 u8 mode = 0x01;
462 hci_req_add(req, HCI_OP_WRITE_SSP_MODE,
463 sizeof(mode), &mode);
464 } else {
465 struct hci_cp_write_eir cp;
467 memset(hdev->eir, 0, sizeof(hdev->eir));
468 memset(&cp, 0, sizeof(cp));
470 hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
474 if (lmp_inq_rssi_capable(hdev) ||
475 test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) {
476 u8 mode;
478 /* If Extended Inquiry Result events are supported, then
479 * they are clearly preferred over Inquiry Result with RSSI
480 * events.
482 mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01;
484 hci_req_add(req, HCI_OP_WRITE_INQUIRY_MODE, 1, &mode);
487 if (lmp_inq_tx_pwr_capable(hdev))
488 hci_req_add(req, HCI_OP_READ_INQ_RSP_TX_POWER, 0, NULL);
490 if (lmp_ext_feat_capable(hdev)) {
491 struct hci_cp_read_local_ext_features cp;
493 cp.page = 0x01;
494 hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
495 sizeof(cp), &cp);
498 if (hci_dev_test_flag(hdev, HCI_LINK_SECURITY)) {
499 u8 enable = 1;
500 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, sizeof(enable),
501 &enable);
504 return 0;
507 static void hci_setup_link_policy(struct hci_request *req)
509 struct hci_dev *hdev = req->hdev;
510 struct hci_cp_write_def_link_policy cp;
511 u16 link_policy = 0;
513 if (lmp_rswitch_capable(hdev))
514 link_policy |= HCI_LP_RSWITCH;
515 if (lmp_hold_capable(hdev))
516 link_policy |= HCI_LP_HOLD;
517 if (lmp_sniff_capable(hdev))
518 link_policy |= HCI_LP_SNIFF;
519 if (lmp_park_capable(hdev))
520 link_policy |= HCI_LP_PARK;
522 cp.policy = cpu_to_le16(link_policy);
523 hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, sizeof(cp), &cp);
526 static void hci_set_le_support(struct hci_request *req)
528 struct hci_dev *hdev = req->hdev;
529 struct hci_cp_write_le_host_supported cp;
531 /* LE-only devices do not support explicit enablement */
532 if (!lmp_bredr_capable(hdev))
533 return;
535 memset(&cp, 0, sizeof(cp));
537 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
538 cp.le = 0x01;
539 cp.simul = 0x00;
542 if (cp.le != lmp_host_le_capable(hdev))
543 hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED, sizeof(cp),
544 &cp);
547 static void hci_set_event_mask_page_2(struct hci_request *req)
549 struct hci_dev *hdev = req->hdev;
550 u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
552 /* If Connectionless Slave Broadcast master role is supported
553 * enable all necessary events for it.
555 if (lmp_csb_master_capable(hdev)) {
556 events[1] |= 0x40; /* Triggered Clock Capture */
557 events[1] |= 0x80; /* Synchronization Train Complete */
558 events[2] |= 0x10; /* Slave Page Response Timeout */
559 events[2] |= 0x20; /* CSB Channel Map Change */
562 /* If Connectionless Slave Broadcast slave role is supported
563 * enable all necessary events for it.
565 if (lmp_csb_slave_capable(hdev)) {
566 events[2] |= 0x01; /* Synchronization Train Received */
567 events[2] |= 0x02; /* CSB Receive */
568 events[2] |= 0x04; /* CSB Timeout */
569 events[2] |= 0x08; /* Truncated Page Complete */
572 /* Enable Authenticated Payload Timeout Expired event if supported */
573 if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING)
574 events[2] |= 0x80;
576 hci_req_add(req, HCI_OP_SET_EVENT_MASK_PAGE_2, sizeof(events), events);
579 static int hci_init3_req(struct hci_request *req, unsigned long opt)
581 struct hci_dev *hdev = req->hdev;
582 u8 p;
584 hci_setup_event_mask(req);
586 if (hdev->commands[6] & 0x20 &&
587 !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
588 struct hci_cp_read_stored_link_key cp;
590 bacpy(&cp.bdaddr, BDADDR_ANY);
591 cp.read_all = 0x01;
592 hci_req_add(req, HCI_OP_READ_STORED_LINK_KEY, sizeof(cp), &cp);
595 if (hdev->commands[5] & 0x10)
596 hci_setup_link_policy(req);
598 if (hdev->commands[8] & 0x01)
599 hci_req_add(req, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 0, NULL);
601 /* Some older Broadcom based Bluetooth 1.2 controllers do not
602 * support the Read Page Scan Type command. Check support for
603 * this command in the bit mask of supported commands.
605 if (hdev->commands[13] & 0x01)
606 hci_req_add(req, HCI_OP_READ_PAGE_SCAN_TYPE, 0, NULL);
608 if (lmp_le_capable(hdev)) {
609 u8 events[8];
611 memset(events, 0, sizeof(events));
613 if (hdev->le_features[0] & HCI_LE_ENCRYPTION)
614 events[0] |= 0x10; /* LE Long Term Key Request */
616 /* If controller supports the Connection Parameters Request
617 * Link Layer Procedure, enable the corresponding event.
619 if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC)
620 events[0] |= 0x20; /* LE Remote Connection
621 * Parameter Request
624 /* If the controller supports the Data Length Extension
625 * feature, enable the corresponding event.
627 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)
628 events[0] |= 0x40; /* LE Data Length Change */
630 /* If the controller supports Extended Scanner Filter
631 * Policies, enable the correspondig event.
633 if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)
634 events[1] |= 0x04; /* LE Direct Advertising
635 * Report
638 /* If the controller supports the LE Set Scan Enable command,
639 * enable the corresponding advertising report event.
641 if (hdev->commands[26] & 0x08)
642 events[0] |= 0x02; /* LE Advertising Report */
644 /* If the controller supports the LE Create Connection
645 * command, enable the corresponding event.
647 if (hdev->commands[26] & 0x10)
648 events[0] |= 0x01; /* LE Connection Complete */
650 /* If the controller supports the LE Connection Update
651 * command, enable the corresponding event.
653 if (hdev->commands[27] & 0x04)
654 events[0] |= 0x04; /* LE Connection Update
655 * Complete
658 /* If the controller supports the LE Read Remote Used Features
659 * command, enable the corresponding event.
661 if (hdev->commands[27] & 0x20)
662 events[0] |= 0x08; /* LE Read Remote Used
663 * Features Complete
666 /* If the controller supports the LE Read Local P-256
667 * Public Key command, enable the corresponding event.
669 if (hdev->commands[34] & 0x02)
670 events[0] |= 0x80; /* LE Read Local P-256
671 * Public Key Complete
674 /* If the controller supports the LE Generate DHKey
675 * command, enable the corresponding event.
677 if (hdev->commands[34] & 0x04)
678 events[1] |= 0x01; /* LE Generate DHKey Complete */
680 hci_req_add(req, HCI_OP_LE_SET_EVENT_MASK, sizeof(events),
681 events);
683 if (hdev->commands[25] & 0x40) {
684 /* Read LE Advertising Channel TX Power */
685 hci_req_add(req, HCI_OP_LE_READ_ADV_TX_POWER, 0, NULL);
688 if (hdev->commands[26] & 0x40) {
689 /* Read LE White List Size */
690 hci_req_add(req, HCI_OP_LE_READ_WHITE_LIST_SIZE,
691 0, NULL);
694 if (hdev->commands[26] & 0x80) {
695 /* Clear LE White List */
696 hci_req_add(req, HCI_OP_LE_CLEAR_WHITE_LIST, 0, NULL);
699 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) {
700 /* Read LE Maximum Data Length */
701 hci_req_add(req, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL);
703 /* Read LE Suggested Default Data Length */
704 hci_req_add(req, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL);
707 hci_set_le_support(req);
710 /* Read features beyond page 1 if available */
711 for (p = 2; p < HCI_MAX_PAGES && p <= hdev->max_page; p++) {
712 struct hci_cp_read_local_ext_features cp;
714 cp.page = p;
715 hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
716 sizeof(cp), &cp);
719 return 0;
722 static int hci_init4_req(struct hci_request *req, unsigned long opt)
724 struct hci_dev *hdev = req->hdev;
726 /* Some Broadcom based Bluetooth controllers do not support the
727 * Delete Stored Link Key command. They are clearly indicating its
728 * absence in the bit mask of supported commands.
730 * Check the supported commands and only if the the command is marked
731 * as supported send it. If not supported assume that the controller
732 * does not have actual support for stored link keys which makes this
733 * command redundant anyway.
735 * Some controllers indicate that they support handling deleting
736 * stored link keys, but they don't. The quirk lets a driver
737 * just disable this command.
739 if (hdev->commands[6] & 0x80 &&
740 !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
741 struct hci_cp_delete_stored_link_key cp;
743 bacpy(&cp.bdaddr, BDADDR_ANY);
744 cp.delete_all = 0x01;
745 hci_req_add(req, HCI_OP_DELETE_STORED_LINK_KEY,
746 sizeof(cp), &cp);
749 /* Set event mask page 2 if the HCI command for it is supported */
750 if (hdev->commands[22] & 0x04)
751 hci_set_event_mask_page_2(req);
753 /* Read local codec list if the HCI command is supported */
754 if (hdev->commands[29] & 0x20)
755 hci_req_add(req, HCI_OP_READ_LOCAL_CODECS, 0, NULL);
757 /* Get MWS transport configuration if the HCI command is supported */
758 if (hdev->commands[30] & 0x08)
759 hci_req_add(req, HCI_OP_GET_MWS_TRANSPORT_CONFIG, 0, NULL);
761 /* Check for Synchronization Train support */
762 if (lmp_sync_train_capable(hdev))
763 hci_req_add(req, HCI_OP_READ_SYNC_TRAIN_PARAMS, 0, NULL);
765 /* Enable Secure Connections if supported and configured */
766 if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
767 bredr_sc_enabled(hdev)) {
768 u8 support = 0x01;
770 hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
771 sizeof(support), &support);
774 return 0;
777 static int __hci_init(struct hci_dev *hdev)
779 int err;
781 err = __hci_req_sync(hdev, hci_init1_req, 0, HCI_INIT_TIMEOUT, NULL);
782 if (err < 0)
783 return err;
785 if (hci_dev_test_flag(hdev, HCI_SETUP))
786 hci_debugfs_create_basic(hdev);
788 err = __hci_req_sync(hdev, hci_init2_req, 0, HCI_INIT_TIMEOUT, NULL);
789 if (err < 0)
790 return err;
792 /* HCI_PRIMARY covers both single-mode LE, BR/EDR and dual-mode
793 * BR/EDR/LE type controllers. AMP controllers only need the
794 * first two stages of init.
796 if (hdev->dev_type != HCI_PRIMARY)
797 return 0;
799 err = __hci_req_sync(hdev, hci_init3_req, 0, HCI_INIT_TIMEOUT, NULL);
800 if (err < 0)
801 return err;
803 err = __hci_req_sync(hdev, hci_init4_req, 0, HCI_INIT_TIMEOUT, NULL);
804 if (err < 0)
805 return err;
807 /* This function is only called when the controller is actually in
808 * configured state. When the controller is marked as unconfigured,
809 * this initialization procedure is not run.
811 * It means that it is possible that a controller runs through its
812 * setup phase and then discovers missing settings. If that is the
813 * case, then this function will not be called. It then will only
814 * be called during the config phase.
816 * So only when in setup phase or config phase, create the debugfs
817 * entries and register the SMP channels.
819 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
820 !hci_dev_test_flag(hdev, HCI_CONFIG))
821 return 0;
823 hci_debugfs_create_common(hdev);
825 if (lmp_bredr_capable(hdev))
826 hci_debugfs_create_bredr(hdev);
828 if (lmp_le_capable(hdev))
829 hci_debugfs_create_le(hdev);
831 return 0;
834 static int hci_init0_req(struct hci_request *req, unsigned long opt)
836 struct hci_dev *hdev = req->hdev;
838 BT_DBG("%s %ld", hdev->name, opt);
840 /* Reset */
841 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
842 hci_reset_req(req, 0);
844 /* Read Local Version */
845 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
847 /* Read BD Address */
848 if (hdev->set_bdaddr)
849 hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
851 return 0;
854 static int __hci_unconf_init(struct hci_dev *hdev)
856 int err;
858 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
859 return 0;
861 err = __hci_req_sync(hdev, hci_init0_req, 0, HCI_INIT_TIMEOUT, NULL);
862 if (err < 0)
863 return err;
865 if (hci_dev_test_flag(hdev, HCI_SETUP))
866 hci_debugfs_create_basic(hdev);
868 return 0;
871 static int hci_scan_req(struct hci_request *req, unsigned long opt)
873 __u8 scan = opt;
875 BT_DBG("%s %x", req->hdev->name, scan);
877 /* Inquiry and Page scans */
878 hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
879 return 0;
882 static int hci_auth_req(struct hci_request *req, unsigned long opt)
884 __u8 auth = opt;
886 BT_DBG("%s %x", req->hdev->name, auth);
888 /* Authentication */
889 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
890 return 0;
893 static int hci_encrypt_req(struct hci_request *req, unsigned long opt)
895 __u8 encrypt = opt;
897 BT_DBG("%s %x", req->hdev->name, encrypt);
899 /* Encryption */
900 hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
901 return 0;
904 static int hci_linkpol_req(struct hci_request *req, unsigned long opt)
906 __le16 policy = cpu_to_le16(opt);
908 BT_DBG("%s %x", req->hdev->name, policy);
910 /* Default link policy */
911 hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
912 return 0;
915 /* Get HCI device by index.
916 * Device is held on return. */
917 struct hci_dev *hci_dev_get(int index)
919 struct hci_dev *hdev = NULL, *d;
921 BT_DBG("%d", index);
923 if (index < 0)
924 return NULL;
926 read_lock(&hci_dev_list_lock);
927 list_for_each_entry(d, &hci_dev_list, list) {
928 if (d->id == index) {
929 hdev = hci_dev_hold(d);
930 break;
933 read_unlock(&hci_dev_list_lock);
934 return hdev;
937 /* ---- Inquiry support ---- */
939 bool hci_discovery_active(struct hci_dev *hdev)
941 struct discovery_state *discov = &hdev->discovery;
943 switch (discov->state) {
944 case DISCOVERY_FINDING:
945 case DISCOVERY_RESOLVING:
946 return true;
948 default:
949 return false;
953 void hci_discovery_set_state(struct hci_dev *hdev, int state)
955 int old_state = hdev->discovery.state;
957 BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state);
959 if (old_state == state)
960 return;
962 hdev->discovery.state = state;
964 switch (state) {
965 case DISCOVERY_STOPPED:
966 hci_update_background_scan(hdev);
968 if (old_state != DISCOVERY_STARTING)
969 mgmt_discovering(hdev, 0);
970 break;
971 case DISCOVERY_STARTING:
972 break;
973 case DISCOVERY_FINDING:
974 mgmt_discovering(hdev, 1);
975 break;
976 case DISCOVERY_RESOLVING:
977 break;
978 case DISCOVERY_STOPPING:
979 break;
983 void hci_inquiry_cache_flush(struct hci_dev *hdev)
985 struct discovery_state *cache = &hdev->discovery;
986 struct inquiry_entry *p, *n;
988 list_for_each_entry_safe(p, n, &cache->all, all) {
989 list_del(&p->all);
990 kfree(p);
993 INIT_LIST_HEAD(&cache->unknown);
994 INIT_LIST_HEAD(&cache->resolve);
997 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
998 bdaddr_t *bdaddr)
1000 struct discovery_state *cache = &hdev->discovery;
1001 struct inquiry_entry *e;
1003 BT_DBG("cache %p, %pMR", cache, bdaddr);
1005 list_for_each_entry(e, &cache->all, all) {
1006 if (!bacmp(&e->data.bdaddr, bdaddr))
1007 return e;
1010 return NULL;
1013 struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
1014 bdaddr_t *bdaddr)
1016 struct discovery_state *cache = &hdev->discovery;
1017 struct inquiry_entry *e;
1019 BT_DBG("cache %p, %pMR", cache, bdaddr);
1021 list_for_each_entry(e, &cache->unknown, list) {
1022 if (!bacmp(&e->data.bdaddr, bdaddr))
1023 return e;
1026 return NULL;
1029 struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
1030 bdaddr_t *bdaddr,
1031 int state)
1033 struct discovery_state *cache = &hdev->discovery;
1034 struct inquiry_entry *e;
1036 BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
1038 list_for_each_entry(e, &cache->resolve, list) {
1039 if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
1040 return e;
1041 if (!bacmp(&e->data.bdaddr, bdaddr))
1042 return e;
1045 return NULL;
1048 void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
1049 struct inquiry_entry *ie)
1051 struct discovery_state *cache = &hdev->discovery;
1052 struct list_head *pos = &cache->resolve;
1053 struct inquiry_entry *p;
1055 list_del(&ie->list);
1057 list_for_each_entry(p, &cache->resolve, list) {
1058 if (p->name_state != NAME_PENDING &&
1059 abs(p->data.rssi) >= abs(ie->data.rssi))
1060 break;
1061 pos = &p->list;
1064 list_add(&ie->list, pos);
1067 u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
1068 bool name_known)
1070 struct discovery_state *cache = &hdev->discovery;
1071 struct inquiry_entry *ie;
1072 u32 flags = 0;
1074 BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
1076 hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR);
1078 if (!data->ssp_mode)
1079 flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1081 ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
1082 if (ie) {
1083 if (!ie->data.ssp_mode)
1084 flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1086 if (ie->name_state == NAME_NEEDED &&
1087 data->rssi != ie->data.rssi) {
1088 ie->data.rssi = data->rssi;
1089 hci_inquiry_cache_update_resolve(hdev, ie);
1092 goto update;
1095 /* Entry not in the cache. Add new one. */
1096 ie = kzalloc(sizeof(*ie), GFP_KERNEL);
1097 if (!ie) {
1098 flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1099 goto done;
1102 list_add(&ie->all, &cache->all);
1104 if (name_known) {
1105 ie->name_state = NAME_KNOWN;
1106 } else {
1107 ie->name_state = NAME_NOT_KNOWN;
1108 list_add(&ie->list, &cache->unknown);
1111 update:
1112 if (name_known && ie->name_state != NAME_KNOWN &&
1113 ie->name_state != NAME_PENDING) {
1114 ie->name_state = NAME_KNOWN;
1115 list_del(&ie->list);
1118 memcpy(&ie->data, data, sizeof(*data));
1119 ie->timestamp = jiffies;
1120 cache->timestamp = jiffies;
1122 if (ie->name_state == NAME_NOT_KNOWN)
1123 flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1125 done:
1126 return flags;
1129 static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
1131 struct discovery_state *cache = &hdev->discovery;
1132 struct inquiry_info *info = (struct inquiry_info *) buf;
1133 struct inquiry_entry *e;
1134 int copied = 0;
1136 list_for_each_entry(e, &cache->all, all) {
1137 struct inquiry_data *data = &e->data;
1139 if (copied >= num)
1140 break;
1142 bacpy(&info->bdaddr, &data->bdaddr);
1143 info->pscan_rep_mode = data->pscan_rep_mode;
1144 info->pscan_period_mode = data->pscan_period_mode;
1145 info->pscan_mode = data->pscan_mode;
1146 memcpy(info->dev_class, data->dev_class, 3);
1147 info->clock_offset = data->clock_offset;
1149 info++;
1150 copied++;
1153 BT_DBG("cache %p, copied %d", cache, copied);
1154 return copied;
1157 static int hci_inq_req(struct hci_request *req, unsigned long opt)
1159 struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
1160 struct hci_dev *hdev = req->hdev;
1161 struct hci_cp_inquiry cp;
1163 BT_DBG("%s", hdev->name);
1165 if (test_bit(HCI_INQUIRY, &hdev->flags))
1166 return 0;
1168 /* Start Inquiry */
1169 memcpy(&cp.lap, &ir->lap, 3);
1170 cp.length = ir->length;
1171 cp.num_rsp = ir->num_rsp;
1172 hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
1174 return 0;
1177 int hci_inquiry(void __user *arg)
1179 __u8 __user *ptr = arg;
1180 struct hci_inquiry_req ir;
1181 struct hci_dev *hdev;
1182 int err = 0, do_inquiry = 0, max_rsp;
1183 long timeo;
1184 __u8 *buf;
1186 if (copy_from_user(&ir, ptr, sizeof(ir)))
1187 return -EFAULT;
1189 hdev = hci_dev_get(ir.dev_id);
1190 if (!hdev)
1191 return -ENODEV;
1193 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1194 err = -EBUSY;
1195 goto done;
1198 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1199 err = -EOPNOTSUPP;
1200 goto done;
1203 if (hdev->dev_type != HCI_PRIMARY) {
1204 err = -EOPNOTSUPP;
1205 goto done;
1208 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1209 err = -EOPNOTSUPP;
1210 goto done;
1213 hci_dev_lock(hdev);
1214 if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
1215 inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
1216 hci_inquiry_cache_flush(hdev);
1217 do_inquiry = 1;
1219 hci_dev_unlock(hdev);
1221 timeo = ir.length * msecs_to_jiffies(2000);
1223 if (do_inquiry) {
1224 err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir,
1225 timeo, NULL);
1226 if (err < 0)
1227 goto done;
1229 /* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
1230 * cleared). If it is interrupted by a signal, return -EINTR.
1232 if (wait_on_bit(&hdev->flags, HCI_INQUIRY,
1233 TASK_INTERRUPTIBLE))
1234 return -EINTR;
1237 /* for unlimited number of responses we will use buffer with
1238 * 255 entries
1240 max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
1242 /* cache_dump can't sleep. Therefore we allocate temp buffer and then
1243 * copy it to the user space.
1245 buf = kmalloc(sizeof(struct inquiry_info) * max_rsp, GFP_KERNEL);
1246 if (!buf) {
1247 err = -ENOMEM;
1248 goto done;
1251 hci_dev_lock(hdev);
1252 ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
1253 hci_dev_unlock(hdev);
1255 BT_DBG("num_rsp %d", ir.num_rsp);
1257 if (!copy_to_user(ptr, &ir, sizeof(ir))) {
1258 ptr += sizeof(ir);
1259 if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
1260 ir.num_rsp))
1261 err = -EFAULT;
1262 } else
1263 err = -EFAULT;
1265 kfree(buf);
1267 done:
1268 hci_dev_put(hdev);
1269 return err;
1272 static int hci_dev_do_open(struct hci_dev *hdev)
1274 int ret = 0;
1276 BT_DBG("%s %p", hdev->name, hdev);
1278 hci_req_sync_lock(hdev);
1280 if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
1281 ret = -ENODEV;
1282 goto done;
1285 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1286 !hci_dev_test_flag(hdev, HCI_CONFIG)) {
1287 /* Check for rfkill but allow the HCI setup stage to
1288 * proceed (which in itself doesn't cause any RF activity).
1290 if (hci_dev_test_flag(hdev, HCI_RFKILLED)) {
1291 ret = -ERFKILL;
1292 goto done;
1295 /* Check for valid public address or a configured static
1296 * random adddress, but let the HCI setup proceed to
1297 * be able to determine if there is a public address
1298 * or not.
1300 * In case of user channel usage, it is not important
1301 * if a public address or static random address is
1302 * available.
1304 * This check is only valid for BR/EDR controllers
1305 * since AMP controllers do not have an address.
1307 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1308 hdev->dev_type == HCI_PRIMARY &&
1309 !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
1310 !bacmp(&hdev->static_addr, BDADDR_ANY)) {
1311 ret = -EADDRNOTAVAIL;
1312 goto done;
1316 if (test_bit(HCI_UP, &hdev->flags)) {
1317 ret = -EALREADY;
1318 goto done;
1321 if (hdev->open(hdev)) {
1322 ret = -EIO;
1323 goto done;
1326 set_bit(HCI_RUNNING, &hdev->flags);
1327 hci_sock_dev_event(hdev, HCI_DEV_OPEN);
1329 atomic_set(&hdev->cmd_cnt, 1);
1330 set_bit(HCI_INIT, &hdev->flags);
1332 if (hci_dev_test_flag(hdev, HCI_SETUP)) {
1333 hci_sock_dev_event(hdev, HCI_DEV_SETUP);
1335 if (hdev->setup)
1336 ret = hdev->setup(hdev);
1338 /* The transport driver can set these quirks before
1339 * creating the HCI device or in its setup callback.
1341 * In case any of them is set, the controller has to
1342 * start up as unconfigured.
1344 if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) ||
1345 test_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks))
1346 hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
1348 /* For an unconfigured controller it is required to
1349 * read at least the version information provided by
1350 * the Read Local Version Information command.
1352 * If the set_bdaddr driver callback is provided, then
1353 * also the original Bluetooth public device address
1354 * will be read using the Read BD Address command.
1356 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
1357 ret = __hci_unconf_init(hdev);
1360 if (hci_dev_test_flag(hdev, HCI_CONFIG)) {
1361 /* If public address change is configured, ensure that
1362 * the address gets programmed. If the driver does not
1363 * support changing the public address, fail the power
1364 * on procedure.
1366 if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
1367 hdev->set_bdaddr)
1368 ret = hdev->set_bdaddr(hdev, &hdev->public_addr);
1369 else
1370 ret = -EADDRNOTAVAIL;
1373 if (!ret) {
1374 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1375 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1376 ret = __hci_init(hdev);
1377 if (!ret && hdev->post_init)
1378 ret = hdev->post_init(hdev);
1382 /* If the HCI Reset command is clearing all diagnostic settings,
1383 * then they need to be reprogrammed after the init procedure
1384 * completed.
1386 if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
1387 hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag)
1388 ret = hdev->set_diag(hdev, true);
1390 clear_bit(HCI_INIT, &hdev->flags);
1392 if (!ret) {
1393 hci_dev_hold(hdev);
1394 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
1395 set_bit(HCI_UP, &hdev->flags);
1396 hci_sock_dev_event(hdev, HCI_DEV_UP);
1397 hci_leds_update_powered(hdev, true);
1398 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1399 !hci_dev_test_flag(hdev, HCI_CONFIG) &&
1400 !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1401 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1402 hci_dev_test_flag(hdev, HCI_MGMT) &&
1403 hdev->dev_type == HCI_PRIMARY) {
1404 ret = __hci_req_hci_power_on(hdev);
1405 mgmt_power_on(hdev, ret);
1407 } else {
1408 /* Init failed, cleanup */
1409 flush_work(&hdev->tx_work);
1410 flush_work(&hdev->cmd_work);
1411 flush_work(&hdev->rx_work);
1413 skb_queue_purge(&hdev->cmd_q);
1414 skb_queue_purge(&hdev->rx_q);
1416 if (hdev->flush)
1417 hdev->flush(hdev);
1419 if (hdev->sent_cmd) {
1420 kfree_skb(hdev->sent_cmd);
1421 hdev->sent_cmd = NULL;
1424 clear_bit(HCI_RUNNING, &hdev->flags);
1425 hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1427 hdev->close(hdev);
1428 hdev->flags &= BIT(HCI_RAW);
1431 done:
1432 hci_req_sync_unlock(hdev);
1433 return ret;
1436 /* ---- HCI ioctl helpers ---- */
1438 int hci_dev_open(__u16 dev)
1440 struct hci_dev *hdev;
1441 int err;
1443 hdev = hci_dev_get(dev);
1444 if (!hdev)
1445 return -ENODEV;
1447 /* Devices that are marked as unconfigured can only be powered
1448 * up as user channel. Trying to bring them up as normal devices
1449 * will result into a failure. Only user channel operation is
1450 * possible.
1452 * When this function is called for a user channel, the flag
1453 * HCI_USER_CHANNEL will be set first before attempting to
1454 * open the device.
1456 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1457 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1458 err = -EOPNOTSUPP;
1459 goto done;
1462 /* We need to ensure that no other power on/off work is pending
1463 * before proceeding to call hci_dev_do_open. This is
1464 * particularly important if the setup procedure has not yet
1465 * completed.
1467 if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1468 cancel_delayed_work(&hdev->power_off);
1470 /* After this call it is guaranteed that the setup procedure
1471 * has finished. This means that error conditions like RFKILL
1472 * or no valid public or static random address apply.
1474 flush_workqueue(hdev->req_workqueue);
1476 /* For controllers not using the management interface and that
1477 * are brought up using legacy ioctl, set the HCI_BONDABLE bit
1478 * so that pairing works for them. Once the management interface
1479 * is in use this bit will be cleared again and userspace has
1480 * to explicitly enable it.
1482 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1483 !hci_dev_test_flag(hdev, HCI_MGMT))
1484 hci_dev_set_flag(hdev, HCI_BONDABLE);
1486 err = hci_dev_do_open(hdev);
1488 done:
1489 hci_dev_put(hdev);
1490 return err;
1493 /* This function requires the caller holds hdev->lock */
1494 static void hci_pend_le_actions_clear(struct hci_dev *hdev)
1496 struct hci_conn_params *p;
1498 list_for_each_entry(p, &hdev->le_conn_params, list) {
1499 if (p->conn) {
1500 hci_conn_drop(p->conn);
1501 hci_conn_put(p->conn);
1502 p->conn = NULL;
1504 list_del_init(&p->action);
1507 BT_DBG("All LE pending actions cleared");
1510 int hci_dev_do_close(struct hci_dev *hdev)
1512 bool auto_off;
1514 BT_DBG("%s %p", hdev->name, hdev);
1516 if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) &&
1517 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1518 test_bit(HCI_UP, &hdev->flags)) {
1519 /* Execute vendor specific shutdown routine */
1520 if (hdev->shutdown)
1521 hdev->shutdown(hdev);
1524 cancel_delayed_work(&hdev->power_off);
1526 hci_request_cancel_all(hdev);
1527 hci_req_sync_lock(hdev);
1529 if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
1530 cancel_delayed_work_sync(&hdev->cmd_timer);
1531 hci_req_sync_unlock(hdev);
1532 return 0;
1535 hci_leds_update_powered(hdev, false);
1537 /* Flush RX and TX works */
1538 flush_work(&hdev->tx_work);
1539 flush_work(&hdev->rx_work);
1541 if (hdev->discov_timeout > 0) {
1542 hdev->discov_timeout = 0;
1543 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
1544 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1547 if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE))
1548 cancel_delayed_work(&hdev->service_cache);
1550 if (hci_dev_test_flag(hdev, HCI_MGMT))
1551 cancel_delayed_work_sync(&hdev->rpa_expired);
1553 /* Avoid potential lockdep warnings from the *_flush() calls by
1554 * ensuring the workqueue is empty up front.
1556 drain_workqueue(hdev->workqueue);
1558 hci_dev_lock(hdev);
1560 hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
1562 auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF);
1564 if (!auto_off && hdev->dev_type == HCI_PRIMARY &&
1565 hci_dev_test_flag(hdev, HCI_MGMT))
1566 __mgmt_power_off(hdev);
1568 hci_inquiry_cache_flush(hdev);
1569 hci_pend_le_actions_clear(hdev);
1570 hci_conn_hash_flush(hdev);
1571 hci_dev_unlock(hdev);
1573 smp_unregister(hdev);
1575 hci_sock_dev_event(hdev, HCI_DEV_DOWN);
1577 if (hdev->flush)
1578 hdev->flush(hdev);
1580 /* Reset device */
1581 skb_queue_purge(&hdev->cmd_q);
1582 atomic_set(&hdev->cmd_cnt, 1);
1583 if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) &&
1584 !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1585 set_bit(HCI_INIT, &hdev->flags);
1586 __hci_req_sync(hdev, hci_reset_req, 0, HCI_CMD_TIMEOUT, NULL);
1587 clear_bit(HCI_INIT, &hdev->flags);
1590 /* flush cmd work */
1591 flush_work(&hdev->cmd_work);
1593 /* Drop queues */
1594 skb_queue_purge(&hdev->rx_q);
1595 skb_queue_purge(&hdev->cmd_q);
1596 skb_queue_purge(&hdev->raw_q);
1598 /* Drop last sent command */
1599 if (hdev->sent_cmd) {
1600 cancel_delayed_work_sync(&hdev->cmd_timer);
1601 kfree_skb(hdev->sent_cmd);
1602 hdev->sent_cmd = NULL;
1605 clear_bit(HCI_RUNNING, &hdev->flags);
1606 hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1608 /* After this point our queues are empty
1609 * and no tasks are scheduled. */
1610 hdev->close(hdev);
1612 /* Clear flags */
1613 hdev->flags &= BIT(HCI_RAW);
1614 hci_dev_clear_volatile_flags(hdev);
1616 /* Controller radio is available but is currently powered down */
1617 hdev->amp_status = AMP_STATUS_POWERED_DOWN;
1619 memset(hdev->eir, 0, sizeof(hdev->eir));
1620 memset(hdev->dev_class, 0, sizeof(hdev->dev_class));
1621 bacpy(&hdev->random_addr, BDADDR_ANY);
1623 hci_req_sync_unlock(hdev);
1625 hci_dev_put(hdev);
1626 return 0;
1629 int hci_dev_close(__u16 dev)
1631 struct hci_dev *hdev;
1632 int err;
1634 hdev = hci_dev_get(dev);
1635 if (!hdev)
1636 return -ENODEV;
1638 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1639 err = -EBUSY;
1640 goto done;
1643 if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1644 cancel_delayed_work(&hdev->power_off);
1646 err = hci_dev_do_close(hdev);
1648 done:
1649 hci_dev_put(hdev);
1650 return err;
1653 static int hci_dev_do_reset(struct hci_dev *hdev)
1655 int ret;
1657 BT_DBG("%s %p", hdev->name, hdev);
1659 hci_req_sync_lock(hdev);
1661 /* Drop queues */
1662 skb_queue_purge(&hdev->rx_q);
1663 skb_queue_purge(&hdev->cmd_q);
1665 /* Avoid potential lockdep warnings from the *_flush() calls by
1666 * ensuring the workqueue is empty up front.
1668 drain_workqueue(hdev->workqueue);
1670 hci_dev_lock(hdev);
1671 hci_inquiry_cache_flush(hdev);
1672 hci_conn_hash_flush(hdev);
1673 hci_dev_unlock(hdev);
1675 if (hdev->flush)
1676 hdev->flush(hdev);
1678 atomic_set(&hdev->cmd_cnt, 1);
1679 hdev->acl_cnt = 0; hdev->sco_cnt = 0; hdev->le_cnt = 0;
1681 ret = __hci_req_sync(hdev, hci_reset_req, 0, HCI_INIT_TIMEOUT, NULL);
1683 hci_req_sync_unlock(hdev);
1684 return ret;
1687 int hci_dev_reset(__u16 dev)
1689 struct hci_dev *hdev;
1690 int err;
1692 hdev = hci_dev_get(dev);
1693 if (!hdev)
1694 return -ENODEV;
1696 if (!test_bit(HCI_UP, &hdev->flags)) {
1697 err = -ENETDOWN;
1698 goto done;
1701 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1702 err = -EBUSY;
1703 goto done;
1706 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1707 err = -EOPNOTSUPP;
1708 goto done;
1711 err = hci_dev_do_reset(hdev);
1713 done:
1714 hci_dev_put(hdev);
1715 return err;
1718 int hci_dev_reset_stat(__u16 dev)
1720 struct hci_dev *hdev;
1721 int ret = 0;
1723 hdev = hci_dev_get(dev);
1724 if (!hdev)
1725 return -ENODEV;
1727 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1728 ret = -EBUSY;
1729 goto done;
1732 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1733 ret = -EOPNOTSUPP;
1734 goto done;
1737 memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
1739 done:
1740 hci_dev_put(hdev);
1741 return ret;
1744 static void hci_update_scan_state(struct hci_dev *hdev, u8 scan)
1746 bool conn_changed, discov_changed;
1748 BT_DBG("%s scan 0x%02x", hdev->name, scan);
1750 if ((scan & SCAN_PAGE))
1751 conn_changed = !hci_dev_test_and_set_flag(hdev,
1752 HCI_CONNECTABLE);
1753 else
1754 conn_changed = hci_dev_test_and_clear_flag(hdev,
1755 HCI_CONNECTABLE);
1757 if ((scan & SCAN_INQUIRY)) {
1758 discov_changed = !hci_dev_test_and_set_flag(hdev,
1759 HCI_DISCOVERABLE);
1760 } else {
1761 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1762 discov_changed = hci_dev_test_and_clear_flag(hdev,
1763 HCI_DISCOVERABLE);
1766 if (!hci_dev_test_flag(hdev, HCI_MGMT))
1767 return;
1769 if (conn_changed || discov_changed) {
1770 /* In case this was disabled through mgmt */
1771 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
1773 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1774 hci_req_update_adv_data(hdev, hdev->cur_adv_instance);
1776 mgmt_new_settings(hdev);
1780 int hci_dev_cmd(unsigned int cmd, void __user *arg)
1782 struct hci_dev *hdev;
1783 struct hci_dev_req dr;
1784 int err = 0;
1786 if (copy_from_user(&dr, arg, sizeof(dr)))
1787 return -EFAULT;
1789 hdev = hci_dev_get(dr.dev_id);
1790 if (!hdev)
1791 return -ENODEV;
1793 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1794 err = -EBUSY;
1795 goto done;
1798 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1799 err = -EOPNOTSUPP;
1800 goto done;
1803 if (hdev->dev_type != HCI_PRIMARY) {
1804 err = -EOPNOTSUPP;
1805 goto done;
1808 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1809 err = -EOPNOTSUPP;
1810 goto done;
1813 switch (cmd) {
1814 case HCISETAUTH:
1815 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
1816 HCI_INIT_TIMEOUT, NULL);
1817 break;
1819 case HCISETENCRYPT:
1820 if (!lmp_encrypt_capable(hdev)) {
1821 err = -EOPNOTSUPP;
1822 break;
1825 if (!test_bit(HCI_AUTH, &hdev->flags)) {
1826 /* Auth must be enabled first */
1827 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
1828 HCI_INIT_TIMEOUT, NULL);
1829 if (err)
1830 break;
1833 err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt,
1834 HCI_INIT_TIMEOUT, NULL);
1835 break;
1837 case HCISETSCAN:
1838 err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt,
1839 HCI_INIT_TIMEOUT, NULL);
1841 /* Ensure that the connectable and discoverable states
1842 * get correctly modified as this was a non-mgmt change.
1844 if (!err)
1845 hci_update_scan_state(hdev, dr.dev_opt);
1846 break;
1848 case HCISETLINKPOL:
1849 err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt,
1850 HCI_INIT_TIMEOUT, NULL);
1851 break;
1853 case HCISETLINKMODE:
1854 hdev->link_mode = ((__u16) dr.dev_opt) &
1855 (HCI_LM_MASTER | HCI_LM_ACCEPT);
1856 break;
1858 case HCISETPTYPE:
1859 hdev->pkt_type = (__u16) dr.dev_opt;
1860 break;
1862 case HCISETACLMTU:
1863 hdev->acl_mtu = *((__u16 *) &dr.dev_opt + 1);
1864 hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
1865 break;
1867 case HCISETSCOMTU:
1868 hdev->sco_mtu = *((__u16 *) &dr.dev_opt + 1);
1869 hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
1870 break;
1872 default:
1873 err = -EINVAL;
1874 break;
1877 done:
1878 hci_dev_put(hdev);
1879 return err;
1882 int hci_get_dev_list(void __user *arg)
1884 struct hci_dev *hdev;
1885 struct hci_dev_list_req *dl;
1886 struct hci_dev_req *dr;
1887 int n = 0, size, err;
1888 __u16 dev_num;
1890 if (get_user(dev_num, (__u16 __user *) arg))
1891 return -EFAULT;
1893 if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
1894 return -EINVAL;
1896 size = sizeof(*dl) + dev_num * sizeof(*dr);
1898 dl = kzalloc(size, GFP_KERNEL);
1899 if (!dl)
1900 return -ENOMEM;
1902 dr = dl->dev_req;
1904 read_lock(&hci_dev_list_lock);
1905 list_for_each_entry(hdev, &hci_dev_list, list) {
1906 unsigned long flags = hdev->flags;
1908 /* When the auto-off is configured it means the transport
1909 * is running, but in that case still indicate that the
1910 * device is actually down.
1912 if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
1913 flags &= ~BIT(HCI_UP);
1915 (dr + n)->dev_id = hdev->id;
1916 (dr + n)->dev_opt = flags;
1918 if (++n >= dev_num)
1919 break;
1921 read_unlock(&hci_dev_list_lock);
1923 dl->dev_num = n;
1924 size = sizeof(*dl) + n * sizeof(*dr);
1926 err = copy_to_user(arg, dl, size);
1927 kfree(dl);
1929 return err ? -EFAULT : 0;
1932 int hci_get_dev_info(void __user *arg)
1934 struct hci_dev *hdev;
1935 struct hci_dev_info di;
1936 unsigned long flags;
1937 int err = 0;
1939 if (copy_from_user(&di, arg, sizeof(di)))
1940 return -EFAULT;
1942 hdev = hci_dev_get(di.dev_id);
1943 if (!hdev)
1944 return -ENODEV;
1946 /* When the auto-off is configured it means the transport
1947 * is running, but in that case still indicate that the
1948 * device is actually down.
1950 if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
1951 flags = hdev->flags & ~BIT(HCI_UP);
1952 else
1953 flags = hdev->flags;
1955 strcpy(di.name, hdev->name);
1956 di.bdaddr = hdev->bdaddr;
1957 di.type = (hdev->bus & 0x0f) | ((hdev->dev_type & 0x03) << 4);
1958 di.flags = flags;
1959 di.pkt_type = hdev->pkt_type;
1960 if (lmp_bredr_capable(hdev)) {
1961 di.acl_mtu = hdev->acl_mtu;
1962 di.acl_pkts = hdev->acl_pkts;
1963 di.sco_mtu = hdev->sco_mtu;
1964 di.sco_pkts = hdev->sco_pkts;
1965 } else {
1966 di.acl_mtu = hdev->le_mtu;
1967 di.acl_pkts = hdev->le_pkts;
1968 di.sco_mtu = 0;
1969 di.sco_pkts = 0;
1971 di.link_policy = hdev->link_policy;
1972 di.link_mode = hdev->link_mode;
1974 memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
1975 memcpy(&di.features, &hdev->features, sizeof(di.features));
1977 if (copy_to_user(arg, &di, sizeof(di)))
1978 err = -EFAULT;
1980 hci_dev_put(hdev);
1982 return err;
1985 /* ---- Interface to HCI drivers ---- */
1987 static int hci_rfkill_set_block(void *data, bool blocked)
1989 struct hci_dev *hdev = data;
1991 BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
1993 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
1994 return -EBUSY;
1996 if (blocked) {
1997 hci_dev_set_flag(hdev, HCI_RFKILLED);
1998 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1999 !hci_dev_test_flag(hdev, HCI_CONFIG))
2000 hci_dev_do_close(hdev);
2001 } else {
2002 hci_dev_clear_flag(hdev, HCI_RFKILLED);
2005 return 0;
2008 static const struct rfkill_ops hci_rfkill_ops = {
2009 .set_block = hci_rfkill_set_block,
2012 static void hci_power_on(struct work_struct *work)
2014 struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
2015 int err;
2017 BT_DBG("%s", hdev->name);
2019 if (test_bit(HCI_UP, &hdev->flags) &&
2020 hci_dev_test_flag(hdev, HCI_MGMT) &&
2021 hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
2022 cancel_delayed_work(&hdev->power_off);
2023 hci_req_sync_lock(hdev);
2024 err = __hci_req_hci_power_on(hdev);
2025 hci_req_sync_unlock(hdev);
2026 mgmt_power_on(hdev, err);
2027 return;
2030 err = hci_dev_do_open(hdev);
2031 if (err < 0) {
2032 hci_dev_lock(hdev);
2033 mgmt_set_powered_failed(hdev, err);
2034 hci_dev_unlock(hdev);
2035 return;
2038 /* During the HCI setup phase, a few error conditions are
2039 * ignored and they need to be checked now. If they are still
2040 * valid, it is important to turn the device back off.
2042 if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
2043 hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
2044 (hdev->dev_type == HCI_PRIMARY &&
2045 !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
2046 !bacmp(&hdev->static_addr, BDADDR_ANY))) {
2047 hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
2048 hci_dev_do_close(hdev);
2049 } else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
2050 queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
2051 HCI_AUTO_OFF_TIMEOUT);
2054 if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
2055 /* For unconfigured devices, set the HCI_RAW flag
2056 * so that userspace can easily identify them.
2058 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2059 set_bit(HCI_RAW, &hdev->flags);
2061 /* For fully configured devices, this will send
2062 * the Index Added event. For unconfigured devices,
2063 * it will send Unconfigued Index Added event.
2065 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
2066 * and no event will be send.
2068 mgmt_index_added(hdev);
2069 } else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
2070 /* When the controller is now configured, then it
2071 * is important to clear the HCI_RAW flag.
2073 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2074 clear_bit(HCI_RAW, &hdev->flags);
2076 /* Powering on the controller with HCI_CONFIG set only
2077 * happens with the transition from unconfigured to
2078 * configured. This will send the Index Added event.
2080 mgmt_index_added(hdev);
2084 static void hci_power_off(struct work_struct *work)
2086 struct hci_dev *hdev = container_of(work, struct hci_dev,
2087 power_off.work);
2089 BT_DBG("%s", hdev->name);
2091 hci_dev_do_close(hdev);
2094 static void hci_error_reset(struct work_struct *work)
2096 struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset);
2098 BT_DBG("%s", hdev->name);
2100 if (hdev->hw_error)
2101 hdev->hw_error(hdev, hdev->hw_error_code);
2102 else
2103 BT_ERR("%s hardware error 0x%2.2x", hdev->name,
2104 hdev->hw_error_code);
2106 if (hci_dev_do_close(hdev))
2107 return;
2109 hci_dev_do_open(hdev);
2112 void hci_uuids_clear(struct hci_dev *hdev)
2114 struct bt_uuid *uuid, *tmp;
2116 list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
2117 list_del(&uuid->list);
2118 kfree(uuid);
2122 void hci_link_keys_clear(struct hci_dev *hdev)
2124 struct link_key *key;
2126 list_for_each_entry_rcu(key, &hdev->link_keys, list) {
2127 list_del_rcu(&key->list);
2128 kfree_rcu(key, rcu);
2132 void hci_smp_ltks_clear(struct hci_dev *hdev)
2134 struct smp_ltk *k;
2136 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2137 list_del_rcu(&k->list);
2138 kfree_rcu(k, rcu);
2142 void hci_smp_irks_clear(struct hci_dev *hdev)
2144 struct smp_irk *k;
2146 list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
2147 list_del_rcu(&k->list);
2148 kfree_rcu(k, rcu);
2152 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2154 struct link_key *k;
2156 rcu_read_lock();
2157 list_for_each_entry_rcu(k, &hdev->link_keys, list) {
2158 if (bacmp(bdaddr, &k->bdaddr) == 0) {
2159 rcu_read_unlock();
2160 return k;
2163 rcu_read_unlock();
2165 return NULL;
2168 static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
2169 u8 key_type, u8 old_key_type)
2171 /* Legacy key */
2172 if (key_type < 0x03)
2173 return true;
2175 /* Debug keys are insecure so don't store them persistently */
2176 if (key_type == HCI_LK_DEBUG_COMBINATION)
2177 return false;
2179 /* Changed combination key and there's no previous one */
2180 if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
2181 return false;
2183 /* Security mode 3 case */
2184 if (!conn)
2185 return true;
2187 /* BR/EDR key derived using SC from an LE link */
2188 if (conn->type == LE_LINK)
2189 return true;
2191 /* Neither local nor remote side had no-bonding as requirement */
2192 if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
2193 return true;
2195 /* Local side had dedicated bonding as requirement */
2196 if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
2197 return true;
2199 /* Remote side had dedicated bonding as requirement */
2200 if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
2201 return true;
2203 /* If none of the above criteria match, then don't store the key
2204 * persistently */
2205 return false;
2208 static u8 ltk_role(u8 type)
2210 if (type == SMP_LTK)
2211 return HCI_ROLE_MASTER;
2213 return HCI_ROLE_SLAVE;
2216 struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2217 u8 addr_type, u8 role)
2219 struct smp_ltk *k;
2221 rcu_read_lock();
2222 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2223 if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr))
2224 continue;
2226 if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) {
2227 rcu_read_unlock();
2228 return k;
2231 rcu_read_unlock();
2233 return NULL;
2236 struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa)
2238 struct smp_irk *irk;
2240 rcu_read_lock();
2241 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2242 if (!bacmp(&irk->rpa, rpa)) {
2243 rcu_read_unlock();
2244 return irk;
2248 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2249 if (smp_irk_matches(hdev, irk->val, rpa)) {
2250 bacpy(&irk->rpa, rpa);
2251 rcu_read_unlock();
2252 return irk;
2255 rcu_read_unlock();
2257 return NULL;
2260 struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
2261 u8 addr_type)
2263 struct smp_irk *irk;
2265 /* Identity Address must be public or static random */
2266 if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0)
2267 return NULL;
2269 rcu_read_lock();
2270 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2271 if (addr_type == irk->addr_type &&
2272 bacmp(bdaddr, &irk->bdaddr) == 0) {
2273 rcu_read_unlock();
2274 return irk;
2277 rcu_read_unlock();
2279 return NULL;
2282 struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
2283 bdaddr_t *bdaddr, u8 *val, u8 type,
2284 u8 pin_len, bool *persistent)
2286 struct link_key *key, *old_key;
2287 u8 old_key_type;
2289 old_key = hci_find_link_key(hdev, bdaddr);
2290 if (old_key) {
2291 old_key_type = old_key->type;
2292 key = old_key;
2293 } else {
2294 old_key_type = conn ? conn->key_type : 0xff;
2295 key = kzalloc(sizeof(*key), GFP_KERNEL);
2296 if (!key)
2297 return NULL;
2298 list_add_rcu(&key->list, &hdev->link_keys);
2301 BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
2303 /* Some buggy controller combinations generate a changed
2304 * combination key for legacy pairing even when there's no
2305 * previous key */
2306 if (type == HCI_LK_CHANGED_COMBINATION &&
2307 (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
2308 type = HCI_LK_COMBINATION;
2309 if (conn)
2310 conn->key_type = type;
2313 bacpy(&key->bdaddr, bdaddr);
2314 memcpy(key->val, val, HCI_LINK_KEY_SIZE);
2315 key->pin_len = pin_len;
2317 if (type == HCI_LK_CHANGED_COMBINATION)
2318 key->type = old_key_type;
2319 else
2320 key->type = type;
2322 if (persistent)
2323 *persistent = hci_persistent_key(hdev, conn, type,
2324 old_key_type);
2326 return key;
2329 struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2330 u8 addr_type, u8 type, u8 authenticated,
2331 u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand)
2333 struct smp_ltk *key, *old_key;
2334 u8 role = ltk_role(type);
2336 old_key = hci_find_ltk(hdev, bdaddr, addr_type, role);
2337 if (old_key)
2338 key = old_key;
2339 else {
2340 key = kzalloc(sizeof(*key), GFP_KERNEL);
2341 if (!key)
2342 return NULL;
2343 list_add_rcu(&key->list, &hdev->long_term_keys);
2346 bacpy(&key->bdaddr, bdaddr);
2347 key->bdaddr_type = addr_type;
2348 memcpy(key->val, tk, sizeof(key->val));
2349 key->authenticated = authenticated;
2350 key->ediv = ediv;
2351 key->rand = rand;
2352 key->enc_size = enc_size;
2353 key->type = type;
2355 return key;
2358 struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2359 u8 addr_type, u8 val[16], bdaddr_t *rpa)
2361 struct smp_irk *irk;
2363 irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type);
2364 if (!irk) {
2365 irk = kzalloc(sizeof(*irk), GFP_KERNEL);
2366 if (!irk)
2367 return NULL;
2369 bacpy(&irk->bdaddr, bdaddr);
2370 irk->addr_type = addr_type;
2372 list_add_rcu(&irk->list, &hdev->identity_resolving_keys);
2375 memcpy(irk->val, val, 16);
2376 bacpy(&irk->rpa, rpa);
2378 return irk;
2381 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2383 struct link_key *key;
2385 key = hci_find_link_key(hdev, bdaddr);
2386 if (!key)
2387 return -ENOENT;
2389 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2391 list_del_rcu(&key->list);
2392 kfree_rcu(key, rcu);
2394 return 0;
2397 int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type)
2399 struct smp_ltk *k;
2400 int removed = 0;
2402 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2403 if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type)
2404 continue;
2406 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2408 list_del_rcu(&k->list);
2409 kfree_rcu(k, rcu);
2410 removed++;
2413 return removed ? 0 : -ENOENT;
2416 void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type)
2418 struct smp_irk *k;
2420 list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
2421 if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type)
2422 continue;
2424 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2426 list_del_rcu(&k->list);
2427 kfree_rcu(k, rcu);
2431 bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
2433 struct smp_ltk *k;
2434 struct smp_irk *irk;
2435 u8 addr_type;
2437 if (type == BDADDR_BREDR) {
2438 if (hci_find_link_key(hdev, bdaddr))
2439 return true;
2440 return false;
2443 /* Convert to HCI addr type which struct smp_ltk uses */
2444 if (type == BDADDR_LE_PUBLIC)
2445 addr_type = ADDR_LE_DEV_PUBLIC;
2446 else
2447 addr_type = ADDR_LE_DEV_RANDOM;
2449 irk = hci_get_irk(hdev, bdaddr, addr_type);
2450 if (irk) {
2451 bdaddr = &irk->bdaddr;
2452 addr_type = irk->addr_type;
2455 rcu_read_lock();
2456 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2457 if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) {
2458 rcu_read_unlock();
2459 return true;
2462 rcu_read_unlock();
2464 return false;
2467 /* HCI command timer function */
2468 static void hci_cmd_timeout(struct work_struct *work)
2470 struct hci_dev *hdev = container_of(work, struct hci_dev,
2471 cmd_timer.work);
2473 if (hdev->sent_cmd) {
2474 struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data;
2475 u16 opcode = __le16_to_cpu(sent->opcode);
2477 BT_ERR("%s command 0x%4.4x tx timeout", hdev->name, opcode);
2478 } else {
2479 BT_ERR("%s command tx timeout", hdev->name);
2482 atomic_set(&hdev->cmd_cnt, 1);
2483 queue_work(hdev->workqueue, &hdev->cmd_work);
2486 struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
2487 bdaddr_t *bdaddr, u8 bdaddr_type)
2489 struct oob_data *data;
2491 list_for_each_entry(data, &hdev->remote_oob_data, list) {
2492 if (bacmp(bdaddr, &data->bdaddr) != 0)
2493 continue;
2494 if (data->bdaddr_type != bdaddr_type)
2495 continue;
2496 return data;
2499 return NULL;
2502 int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2503 u8 bdaddr_type)
2505 struct oob_data *data;
2507 data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2508 if (!data)
2509 return -ENOENT;
2511 BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type);
2513 list_del(&data->list);
2514 kfree(data);
2516 return 0;
2519 void hci_remote_oob_data_clear(struct hci_dev *hdev)
2521 struct oob_data *data, *n;
2523 list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
2524 list_del(&data->list);
2525 kfree(data);
2529 int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2530 u8 bdaddr_type, u8 *hash192, u8 *rand192,
2531 u8 *hash256, u8 *rand256)
2533 struct oob_data *data;
2535 data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2536 if (!data) {
2537 data = kmalloc(sizeof(*data), GFP_KERNEL);
2538 if (!data)
2539 return -ENOMEM;
2541 bacpy(&data->bdaddr, bdaddr);
2542 data->bdaddr_type = bdaddr_type;
2543 list_add(&data->list, &hdev->remote_oob_data);
2546 if (hash192 && rand192) {
2547 memcpy(data->hash192, hash192, sizeof(data->hash192));
2548 memcpy(data->rand192, rand192, sizeof(data->rand192));
2549 if (hash256 && rand256)
2550 data->present = 0x03;
2551 } else {
2552 memset(data->hash192, 0, sizeof(data->hash192));
2553 memset(data->rand192, 0, sizeof(data->rand192));
2554 if (hash256 && rand256)
2555 data->present = 0x02;
2556 else
2557 data->present = 0x00;
2560 if (hash256 && rand256) {
2561 memcpy(data->hash256, hash256, sizeof(data->hash256));
2562 memcpy(data->rand256, rand256, sizeof(data->rand256));
2563 } else {
2564 memset(data->hash256, 0, sizeof(data->hash256));
2565 memset(data->rand256, 0, sizeof(data->rand256));
2566 if (hash192 && rand192)
2567 data->present = 0x01;
2570 BT_DBG("%s for %pMR", hdev->name, bdaddr);
2572 return 0;
2575 /* This function requires the caller holds hdev->lock */
2576 struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance)
2578 struct adv_info *adv_instance;
2580 list_for_each_entry(adv_instance, &hdev->adv_instances, list) {
2581 if (adv_instance->instance == instance)
2582 return adv_instance;
2585 return NULL;
2588 /* This function requires the caller holds hdev->lock */
2589 struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance)
2591 struct adv_info *cur_instance;
2593 cur_instance = hci_find_adv_instance(hdev, instance);
2594 if (!cur_instance)
2595 return NULL;
2597 if (cur_instance == list_last_entry(&hdev->adv_instances,
2598 struct adv_info, list))
2599 return list_first_entry(&hdev->adv_instances,
2600 struct adv_info, list);
2601 else
2602 return list_next_entry(cur_instance, list);
2605 /* This function requires the caller holds hdev->lock */
2606 int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance)
2608 struct adv_info *adv_instance;
2610 adv_instance = hci_find_adv_instance(hdev, instance);
2611 if (!adv_instance)
2612 return -ENOENT;
2614 BT_DBG("%s removing %dMR", hdev->name, instance);
2616 if (hdev->cur_adv_instance == instance) {
2617 if (hdev->adv_instance_timeout) {
2618 cancel_delayed_work(&hdev->adv_instance_expire);
2619 hdev->adv_instance_timeout = 0;
2621 hdev->cur_adv_instance = 0x00;
2624 list_del(&adv_instance->list);
2625 kfree(adv_instance);
2627 hdev->adv_instance_cnt--;
2629 return 0;
2632 /* This function requires the caller holds hdev->lock */
2633 void hci_adv_instances_clear(struct hci_dev *hdev)
2635 struct adv_info *adv_instance, *n;
2637 if (hdev->adv_instance_timeout) {
2638 cancel_delayed_work(&hdev->adv_instance_expire);
2639 hdev->adv_instance_timeout = 0;
2642 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) {
2643 list_del(&adv_instance->list);
2644 kfree(adv_instance);
2647 hdev->adv_instance_cnt = 0;
2648 hdev->cur_adv_instance = 0x00;
2651 /* This function requires the caller holds hdev->lock */
2652 int hci_add_adv_instance(struct hci_dev *hdev, u8 instance, u32 flags,
2653 u16 adv_data_len, u8 *adv_data,
2654 u16 scan_rsp_len, u8 *scan_rsp_data,
2655 u16 timeout, u16 duration)
2657 struct adv_info *adv_instance;
2659 adv_instance = hci_find_adv_instance(hdev, instance);
2660 if (adv_instance) {
2661 memset(adv_instance->adv_data, 0,
2662 sizeof(adv_instance->adv_data));
2663 memset(adv_instance->scan_rsp_data, 0,
2664 sizeof(adv_instance->scan_rsp_data));
2665 } else {
2666 if (hdev->adv_instance_cnt >= HCI_MAX_ADV_INSTANCES ||
2667 instance < 1 || instance > HCI_MAX_ADV_INSTANCES)
2668 return -EOVERFLOW;
2670 adv_instance = kzalloc(sizeof(*adv_instance), GFP_KERNEL);
2671 if (!adv_instance)
2672 return -ENOMEM;
2674 adv_instance->pending = true;
2675 adv_instance->instance = instance;
2676 list_add(&adv_instance->list, &hdev->adv_instances);
2677 hdev->adv_instance_cnt++;
2680 adv_instance->flags = flags;
2681 adv_instance->adv_data_len = adv_data_len;
2682 adv_instance->scan_rsp_len = scan_rsp_len;
2684 if (adv_data_len)
2685 memcpy(adv_instance->adv_data, adv_data, adv_data_len);
2687 if (scan_rsp_len)
2688 memcpy(adv_instance->scan_rsp_data,
2689 scan_rsp_data, scan_rsp_len);
2691 adv_instance->timeout = timeout;
2692 adv_instance->remaining_time = timeout;
2694 if (duration == 0)
2695 adv_instance->duration = HCI_DEFAULT_ADV_DURATION;
2696 else
2697 adv_instance->duration = duration;
2699 BT_DBG("%s for %dMR", hdev->name, instance);
2701 return 0;
2704 struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list,
2705 bdaddr_t *bdaddr, u8 type)
2707 struct bdaddr_list *b;
2709 list_for_each_entry(b, bdaddr_list, list) {
2710 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2711 return b;
2714 return NULL;
2717 void hci_bdaddr_list_clear(struct list_head *bdaddr_list)
2719 struct bdaddr_list *b, *n;
2721 list_for_each_entry_safe(b, n, bdaddr_list, list) {
2722 list_del(&b->list);
2723 kfree(b);
2727 int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2729 struct bdaddr_list *entry;
2731 if (!bacmp(bdaddr, BDADDR_ANY))
2732 return -EBADF;
2734 if (hci_bdaddr_list_lookup(list, bdaddr, type))
2735 return -EEXIST;
2737 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2738 if (!entry)
2739 return -ENOMEM;
2741 bacpy(&entry->bdaddr, bdaddr);
2742 entry->bdaddr_type = type;
2744 list_add(&entry->list, list);
2746 return 0;
2749 int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2751 struct bdaddr_list *entry;
2753 if (!bacmp(bdaddr, BDADDR_ANY)) {
2754 hci_bdaddr_list_clear(list);
2755 return 0;
2758 entry = hci_bdaddr_list_lookup(list, bdaddr, type);
2759 if (!entry)
2760 return -ENOENT;
2762 list_del(&entry->list);
2763 kfree(entry);
2765 return 0;
2768 /* This function requires the caller holds hdev->lock */
2769 struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
2770 bdaddr_t *addr, u8 addr_type)
2772 struct hci_conn_params *params;
2774 list_for_each_entry(params, &hdev->le_conn_params, list) {
2775 if (bacmp(&params->addr, addr) == 0 &&
2776 params->addr_type == addr_type) {
2777 return params;
2781 return NULL;
2784 /* This function requires the caller holds hdev->lock */
2785 struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
2786 bdaddr_t *addr, u8 addr_type)
2788 struct hci_conn_params *param;
2790 list_for_each_entry(param, list, action) {
2791 if (bacmp(&param->addr, addr) == 0 &&
2792 param->addr_type == addr_type)
2793 return param;
2796 return NULL;
2799 /* This function requires the caller holds hdev->lock */
2800 struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
2801 bdaddr_t *addr, u8 addr_type)
2803 struct hci_conn_params *params;
2805 params = hci_conn_params_lookup(hdev, addr, addr_type);
2806 if (params)
2807 return params;
2809 params = kzalloc(sizeof(*params), GFP_KERNEL);
2810 if (!params) {
2811 BT_ERR("Out of memory");
2812 return NULL;
2815 bacpy(&params->addr, addr);
2816 params->addr_type = addr_type;
2818 list_add(&params->list, &hdev->le_conn_params);
2819 INIT_LIST_HEAD(&params->action);
2821 params->conn_min_interval = hdev->le_conn_min_interval;
2822 params->conn_max_interval = hdev->le_conn_max_interval;
2823 params->conn_latency = hdev->le_conn_latency;
2824 params->supervision_timeout = hdev->le_supv_timeout;
2825 params->auto_connect = HCI_AUTO_CONN_DISABLED;
2827 BT_DBG("addr %pMR (type %u)", addr, addr_type);
2829 return params;
2832 static void hci_conn_params_free(struct hci_conn_params *params)
2834 if (params->conn) {
2835 hci_conn_drop(params->conn);
2836 hci_conn_put(params->conn);
2839 list_del(&params->action);
2840 list_del(&params->list);
2841 kfree(params);
2844 /* This function requires the caller holds hdev->lock */
2845 void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
2847 struct hci_conn_params *params;
2849 params = hci_conn_params_lookup(hdev, addr, addr_type);
2850 if (!params)
2851 return;
2853 hci_conn_params_free(params);
2855 hci_update_background_scan(hdev);
2857 BT_DBG("addr %pMR (type %u)", addr, addr_type);
2860 /* This function requires the caller holds hdev->lock */
2861 void hci_conn_params_clear_disabled(struct hci_dev *hdev)
2863 struct hci_conn_params *params, *tmp;
2865 list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) {
2866 if (params->auto_connect != HCI_AUTO_CONN_DISABLED)
2867 continue;
2869 /* If trying to estabilish one time connection to disabled
2870 * device, leave the params, but mark them as just once.
2872 if (params->explicit_connect) {
2873 params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
2874 continue;
2877 list_del(&params->list);
2878 kfree(params);
2881 BT_DBG("All LE disabled connection parameters were removed");
2884 /* This function requires the caller holds hdev->lock */
2885 static void hci_conn_params_clear_all(struct hci_dev *hdev)
2887 struct hci_conn_params *params, *tmp;
2889 list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list)
2890 hci_conn_params_free(params);
2892 BT_DBG("All LE connection parameters were removed");
2895 /* Copy the Identity Address of the controller.
2897 * If the controller has a public BD_ADDR, then by default use that one.
2898 * If this is a LE only controller without a public address, default to
2899 * the static random address.
2901 * For debugging purposes it is possible to force controllers with a
2902 * public address to use the static random address instead.
2904 * In case BR/EDR has been disabled on a dual-mode controller and
2905 * userspace has configured a static address, then that address
2906 * becomes the identity address instead of the public BR/EDR address.
2908 void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
2909 u8 *bdaddr_type)
2911 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
2912 !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
2913 (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
2914 bacmp(&hdev->static_addr, BDADDR_ANY))) {
2915 bacpy(bdaddr, &hdev->static_addr);
2916 *bdaddr_type = ADDR_LE_DEV_RANDOM;
2917 } else {
2918 bacpy(bdaddr, &hdev->bdaddr);
2919 *bdaddr_type = ADDR_LE_DEV_PUBLIC;
2923 /* Alloc HCI device */
2924 struct hci_dev *hci_alloc_dev(void)
2926 struct hci_dev *hdev;
2928 hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
2929 if (!hdev)
2930 return NULL;
2932 hdev->pkt_type = (HCI_DM1 | HCI_DH1 | HCI_HV1);
2933 hdev->esco_type = (ESCO_HV1);
2934 hdev->link_mode = (HCI_LM_ACCEPT);
2935 hdev->num_iac = 0x01; /* One IAC support is mandatory */
2936 hdev->io_capability = 0x03; /* No Input No Output */
2937 hdev->manufacturer = 0xffff; /* Default to internal use */
2938 hdev->inq_tx_power = HCI_TX_POWER_INVALID;
2939 hdev->adv_tx_power = HCI_TX_POWER_INVALID;
2940 hdev->adv_instance_cnt = 0;
2941 hdev->cur_adv_instance = 0x00;
2942 hdev->adv_instance_timeout = 0;
2944 hdev->sniff_max_interval = 800;
2945 hdev->sniff_min_interval = 80;
2947 hdev->le_adv_channel_map = 0x07;
2948 hdev->le_adv_min_interval = 0x0800;
2949 hdev->le_adv_max_interval = 0x0800;
2950 hdev->le_scan_interval = 0x0060;
2951 hdev->le_scan_window = 0x0030;
2952 hdev->le_conn_min_interval = 0x0028;
2953 hdev->le_conn_max_interval = 0x0038;
2954 hdev->le_conn_latency = 0x0000;
2955 hdev->le_supv_timeout = 0x002a;
2956 hdev->le_def_tx_len = 0x001b;
2957 hdev->le_def_tx_time = 0x0148;
2958 hdev->le_max_tx_len = 0x001b;
2959 hdev->le_max_tx_time = 0x0148;
2960 hdev->le_max_rx_len = 0x001b;
2961 hdev->le_max_rx_time = 0x0148;
2963 hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT;
2964 hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT;
2965 hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE;
2966 hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE;
2968 mutex_init(&hdev->lock);
2969 mutex_init(&hdev->req_lock);
2971 INIT_LIST_HEAD(&hdev->mgmt_pending);
2972 INIT_LIST_HEAD(&hdev->blacklist);
2973 INIT_LIST_HEAD(&hdev->whitelist);
2974 INIT_LIST_HEAD(&hdev->uuids);
2975 INIT_LIST_HEAD(&hdev->link_keys);
2976 INIT_LIST_HEAD(&hdev->long_term_keys);
2977 INIT_LIST_HEAD(&hdev->identity_resolving_keys);
2978 INIT_LIST_HEAD(&hdev->remote_oob_data);
2979 INIT_LIST_HEAD(&hdev->le_white_list);
2980 INIT_LIST_HEAD(&hdev->le_conn_params);
2981 INIT_LIST_HEAD(&hdev->pend_le_conns);
2982 INIT_LIST_HEAD(&hdev->pend_le_reports);
2983 INIT_LIST_HEAD(&hdev->conn_hash.list);
2984 INIT_LIST_HEAD(&hdev->adv_instances);
2986 INIT_WORK(&hdev->rx_work, hci_rx_work);
2987 INIT_WORK(&hdev->cmd_work, hci_cmd_work);
2988 INIT_WORK(&hdev->tx_work, hci_tx_work);
2989 INIT_WORK(&hdev->power_on, hci_power_on);
2990 INIT_WORK(&hdev->error_reset, hci_error_reset);
2992 INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
2994 skb_queue_head_init(&hdev->rx_q);
2995 skb_queue_head_init(&hdev->cmd_q);
2996 skb_queue_head_init(&hdev->raw_q);
2998 init_waitqueue_head(&hdev->req_wait_q);
3000 INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout);
3002 hci_request_setup(hdev);
3004 hci_init_sysfs(hdev);
3005 discovery_init(hdev);
3007 return hdev;
3009 EXPORT_SYMBOL(hci_alloc_dev);
3011 /* Free HCI device */
3012 void hci_free_dev(struct hci_dev *hdev)
3014 /* will free via device release */
3015 put_device(&hdev->dev);
3017 EXPORT_SYMBOL(hci_free_dev);
3019 /* Register HCI device */
3020 int hci_register_dev(struct hci_dev *hdev)
3022 int id, error;
3024 if (!hdev->open || !hdev->close || !hdev->send)
3025 return -EINVAL;
3027 /* Do not allow HCI_AMP devices to register at index 0,
3028 * so the index can be used as the AMP controller ID.
3030 switch (hdev->dev_type) {
3031 case HCI_PRIMARY:
3032 id = ida_simple_get(&hci_index_ida, 0, 0, GFP_KERNEL);
3033 break;
3034 case HCI_AMP:
3035 id = ida_simple_get(&hci_index_ida, 1, 0, GFP_KERNEL);
3036 break;
3037 default:
3038 return -EINVAL;
3041 if (id < 0)
3042 return id;
3044 sprintf(hdev->name, "hci%d", id);
3045 hdev->id = id;
3047 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3049 hdev->workqueue = alloc_workqueue("%s", WQ_HIGHPRI | WQ_UNBOUND |
3050 WQ_MEM_RECLAIM, 1, hdev->name);
3051 if (!hdev->workqueue) {
3052 error = -ENOMEM;
3053 goto err;
3056 hdev->req_workqueue = alloc_workqueue("%s", WQ_HIGHPRI | WQ_UNBOUND |
3057 WQ_MEM_RECLAIM, 1, hdev->name);
3058 if (!hdev->req_workqueue) {
3059 destroy_workqueue(hdev->workqueue);
3060 error = -ENOMEM;
3061 goto err;
3064 if (!IS_ERR_OR_NULL(bt_debugfs))
3065 hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs);
3067 dev_set_name(&hdev->dev, "%s", hdev->name);
3069 error = device_add(&hdev->dev);
3070 if (error < 0)
3071 goto err_wqueue;
3073 hci_leds_init(hdev);
3075 hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
3076 RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
3077 hdev);
3078 if (hdev->rfkill) {
3079 if (rfkill_register(hdev->rfkill) < 0) {
3080 rfkill_destroy(hdev->rfkill);
3081 hdev->rfkill = NULL;
3085 if (hdev->rfkill && rfkill_blocked(hdev->rfkill))
3086 hci_dev_set_flag(hdev, HCI_RFKILLED);
3088 hci_dev_set_flag(hdev, HCI_SETUP);
3089 hci_dev_set_flag(hdev, HCI_AUTO_OFF);
3091 if (hdev->dev_type == HCI_PRIMARY) {
3092 /* Assume BR/EDR support until proven otherwise (such as
3093 * through reading supported features during init.
3095 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
3098 write_lock(&hci_dev_list_lock);
3099 list_add(&hdev->list, &hci_dev_list);
3100 write_unlock(&hci_dev_list_lock);
3102 /* Devices that are marked for raw-only usage are unconfigured
3103 * and should not be included in normal operation.
3105 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
3106 hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
3108 hci_sock_dev_event(hdev, HCI_DEV_REG);
3109 hci_dev_hold(hdev);
3111 queue_work(hdev->req_workqueue, &hdev->power_on);
3113 return id;
3115 err_wqueue:
3116 destroy_workqueue(hdev->workqueue);
3117 destroy_workqueue(hdev->req_workqueue);
3118 err:
3119 ida_simple_remove(&hci_index_ida, hdev->id);
3121 return error;
3123 EXPORT_SYMBOL(hci_register_dev);
3125 /* Unregister HCI device */
3126 void hci_unregister_dev(struct hci_dev *hdev)
3128 int id;
3130 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3132 hci_dev_set_flag(hdev, HCI_UNREGISTER);
3134 id = hdev->id;
3136 write_lock(&hci_dev_list_lock);
3137 list_del(&hdev->list);
3138 write_unlock(&hci_dev_list_lock);
3140 cancel_work_sync(&hdev->power_on);
3142 hci_dev_do_close(hdev);
3144 if (!test_bit(HCI_INIT, &hdev->flags) &&
3145 !hci_dev_test_flag(hdev, HCI_SETUP) &&
3146 !hci_dev_test_flag(hdev, HCI_CONFIG)) {
3147 hci_dev_lock(hdev);
3148 mgmt_index_removed(hdev);
3149 hci_dev_unlock(hdev);
3152 /* mgmt_index_removed should take care of emptying the
3153 * pending list */
3154 BUG_ON(!list_empty(&hdev->mgmt_pending));
3156 hci_sock_dev_event(hdev, HCI_DEV_UNREG);
3158 if (hdev->rfkill) {
3159 rfkill_unregister(hdev->rfkill);
3160 rfkill_destroy(hdev->rfkill);
3163 device_del(&hdev->dev);
3165 debugfs_remove_recursive(hdev->debugfs);
3166 kfree_const(hdev->hw_info);
3167 kfree_const(hdev->fw_info);
3169 destroy_workqueue(hdev->workqueue);
3170 destroy_workqueue(hdev->req_workqueue);
3172 hci_dev_lock(hdev);
3173 hci_bdaddr_list_clear(&hdev->blacklist);
3174 hci_bdaddr_list_clear(&hdev->whitelist);
3175 hci_uuids_clear(hdev);
3176 hci_link_keys_clear(hdev);
3177 hci_smp_ltks_clear(hdev);
3178 hci_smp_irks_clear(hdev);
3179 hci_remote_oob_data_clear(hdev);
3180 hci_adv_instances_clear(hdev);
3181 hci_bdaddr_list_clear(&hdev->le_white_list);
3182 hci_conn_params_clear_all(hdev);
3183 hci_discovery_filter_clear(hdev);
3184 hci_dev_unlock(hdev);
3186 hci_dev_put(hdev);
3188 ida_simple_remove(&hci_index_ida, id);
3190 EXPORT_SYMBOL(hci_unregister_dev);
3192 /* Suspend HCI device */
3193 int hci_suspend_dev(struct hci_dev *hdev)
3195 hci_sock_dev_event(hdev, HCI_DEV_SUSPEND);
3196 return 0;
3198 EXPORT_SYMBOL(hci_suspend_dev);
3200 /* Resume HCI device */
3201 int hci_resume_dev(struct hci_dev *hdev)
3203 hci_sock_dev_event(hdev, HCI_DEV_RESUME);
3204 return 0;
3206 EXPORT_SYMBOL(hci_resume_dev);
3208 /* Reset HCI device */
3209 int hci_reset_dev(struct hci_dev *hdev)
3211 const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 };
3212 struct sk_buff *skb;
3214 skb = bt_skb_alloc(3, GFP_ATOMIC);
3215 if (!skb)
3216 return -ENOMEM;
3218 hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
3219 memcpy(skb_put(skb, 3), hw_err, 3);
3221 /* Send Hardware Error to upper stack */
3222 return hci_recv_frame(hdev, skb);
3224 EXPORT_SYMBOL(hci_reset_dev);
3226 /* Receive frame from HCI drivers */
3227 int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb)
3229 if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
3230 && !test_bit(HCI_INIT, &hdev->flags))) {
3231 kfree_skb(skb);
3232 return -ENXIO;
3235 if (hci_skb_pkt_type(skb) != HCI_EVENT_PKT &&
3236 hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT &&
3237 hci_skb_pkt_type(skb) != HCI_SCODATA_PKT) {
3238 kfree_skb(skb);
3239 return -EINVAL;
3242 /* Incoming skb */
3243 bt_cb(skb)->incoming = 1;
3245 /* Time stamp */
3246 __net_timestamp(skb);
3248 skb_queue_tail(&hdev->rx_q, skb);
3249 queue_work(hdev->workqueue, &hdev->rx_work);
3251 return 0;
3253 EXPORT_SYMBOL(hci_recv_frame);
3255 /* Receive diagnostic message from HCI drivers */
3256 int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb)
3258 /* Mark as diagnostic packet */
3259 hci_skb_pkt_type(skb) = HCI_DIAG_PKT;
3261 /* Time stamp */
3262 __net_timestamp(skb);
3264 skb_queue_tail(&hdev->rx_q, skb);
3265 queue_work(hdev->workqueue, &hdev->rx_work);
3267 return 0;
3269 EXPORT_SYMBOL(hci_recv_diag);
3271 void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...)
3273 va_list vargs;
3275 va_start(vargs, fmt);
3276 kfree_const(hdev->hw_info);
3277 hdev->hw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
3278 va_end(vargs);
3280 EXPORT_SYMBOL(hci_set_hw_info);
3282 void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...)
3284 va_list vargs;
3286 va_start(vargs, fmt);
3287 kfree_const(hdev->fw_info);
3288 hdev->fw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
3289 va_end(vargs);
3291 EXPORT_SYMBOL(hci_set_fw_info);
3293 /* ---- Interface to upper protocols ---- */
3295 int hci_register_cb(struct hci_cb *cb)
3297 BT_DBG("%p name %s", cb, cb->name);
3299 mutex_lock(&hci_cb_list_lock);
3300 list_add_tail(&cb->list, &hci_cb_list);
3301 mutex_unlock(&hci_cb_list_lock);
3303 return 0;
3305 EXPORT_SYMBOL(hci_register_cb);
3307 int hci_unregister_cb(struct hci_cb *cb)
3309 BT_DBG("%p name %s", cb, cb->name);
3311 mutex_lock(&hci_cb_list_lock);
3312 list_del(&cb->list);
3313 mutex_unlock(&hci_cb_list_lock);
3315 return 0;
3317 EXPORT_SYMBOL(hci_unregister_cb);
3319 static void hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
3321 int err;
3323 BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb),
3324 skb->len);
3326 /* Time stamp */
3327 __net_timestamp(skb);
3329 /* Send copy to monitor */
3330 hci_send_to_monitor(hdev, skb);
3332 if (atomic_read(&hdev->promisc)) {
3333 /* Send copy to the sockets */
3334 hci_send_to_sock(hdev, skb);
3337 /* Get rid of skb owner, prior to sending to the driver. */
3338 skb_orphan(skb);
3340 if (!test_bit(HCI_RUNNING, &hdev->flags)) {
3341 kfree_skb(skb);
3342 return;
3345 err = hdev->send(hdev, skb);
3346 if (err < 0) {
3347 BT_ERR("%s sending frame failed (%d)", hdev->name, err);
3348 kfree_skb(skb);
3352 /* Send HCI command */
3353 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
3354 const void *param)
3356 struct sk_buff *skb;
3358 BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
3360 skb = hci_prepare_cmd(hdev, opcode, plen, param);
3361 if (!skb) {
3362 BT_ERR("%s no memory for command", hdev->name);
3363 return -ENOMEM;
3366 /* Stand-alone HCI commands must be flagged as
3367 * single-command requests.
3369 bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
3371 skb_queue_tail(&hdev->cmd_q, skb);
3372 queue_work(hdev->workqueue, &hdev->cmd_work);
3374 return 0;
3377 /* Get data from the previously sent command */
3378 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
3380 struct hci_command_hdr *hdr;
3382 if (!hdev->sent_cmd)
3383 return NULL;
3385 hdr = (void *) hdev->sent_cmd->data;
3387 if (hdr->opcode != cpu_to_le16(opcode))
3388 return NULL;
3390 BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode);
3392 return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
3395 /* Send HCI command and wait for command commplete event */
3396 struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
3397 const void *param, u32 timeout)
3399 struct sk_buff *skb;
3401 if (!test_bit(HCI_UP, &hdev->flags))
3402 return ERR_PTR(-ENETDOWN);
3404 bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
3406 hci_req_sync_lock(hdev);
3407 skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout);
3408 hci_req_sync_unlock(hdev);
3410 return skb;
3412 EXPORT_SYMBOL(hci_cmd_sync);
3414 /* Send ACL data */
3415 static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
3417 struct hci_acl_hdr *hdr;
3418 int len = skb->len;
3420 skb_push(skb, HCI_ACL_HDR_SIZE);
3421 skb_reset_transport_header(skb);
3422 hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
3423 hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3424 hdr->dlen = cpu_to_le16(len);
3427 static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
3428 struct sk_buff *skb, __u16 flags)
3430 struct hci_conn *conn = chan->conn;
3431 struct hci_dev *hdev = conn->hdev;
3432 struct sk_buff *list;
3434 skb->len = skb_headlen(skb);
3435 skb->data_len = 0;
3437 hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3439 switch (hdev->dev_type) {
3440 case HCI_PRIMARY:
3441 hci_add_acl_hdr(skb, conn->handle, flags);
3442 break;
3443 case HCI_AMP:
3444 hci_add_acl_hdr(skb, chan->handle, flags);
3445 break;
3446 default:
3447 BT_ERR("%s unknown dev_type %d", hdev->name, hdev->dev_type);
3448 return;
3451 list = skb_shinfo(skb)->frag_list;
3452 if (!list) {
3453 /* Non fragmented */
3454 BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3456 skb_queue_tail(queue, skb);
3457 } else {
3458 /* Fragmented */
3459 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3461 skb_shinfo(skb)->frag_list = NULL;
3463 /* Queue all fragments atomically. We need to use spin_lock_bh
3464 * here because of 6LoWPAN links, as there this function is
3465 * called from softirq and using normal spin lock could cause
3466 * deadlocks.
3468 spin_lock_bh(&queue->lock);
3470 __skb_queue_tail(queue, skb);
3472 flags &= ~ACL_START;
3473 flags |= ACL_CONT;
3474 do {
3475 skb = list; list = list->next;
3477 hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3478 hci_add_acl_hdr(skb, conn->handle, flags);
3480 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3482 __skb_queue_tail(queue, skb);
3483 } while (list);
3485 spin_unlock_bh(&queue->lock);
3489 void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
3491 struct hci_dev *hdev = chan->conn->hdev;
3493 BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
3495 hci_queue_acl(chan, &chan->data_q, skb, flags);
3497 queue_work(hdev->workqueue, &hdev->tx_work);
3500 /* Send SCO data */
3501 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
3503 struct hci_dev *hdev = conn->hdev;
3504 struct hci_sco_hdr hdr;
3506 BT_DBG("%s len %d", hdev->name, skb->len);
3508 hdr.handle = cpu_to_le16(conn->handle);
3509 hdr.dlen = skb->len;
3511 skb_push(skb, HCI_SCO_HDR_SIZE);
3512 skb_reset_transport_header(skb);
3513 memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
3515 hci_skb_pkt_type(skb) = HCI_SCODATA_PKT;
3517 skb_queue_tail(&conn->data_q, skb);
3518 queue_work(hdev->workqueue, &hdev->tx_work);
3521 /* ---- HCI TX task (outgoing data) ---- */
3523 /* HCI Connection scheduler */
3524 static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
3525 int *quote)
3527 struct hci_conn_hash *h = &hdev->conn_hash;
3528 struct hci_conn *conn = NULL, *c;
3529 unsigned int num = 0, min = ~0;
3531 /* We don't have to lock device here. Connections are always
3532 * added and removed with TX task disabled. */
3534 rcu_read_lock();
3536 list_for_each_entry_rcu(c, &h->list, list) {
3537 if (c->type != type || skb_queue_empty(&c->data_q))
3538 continue;
3540 if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
3541 continue;
3543 num++;
3545 if (c->sent < min) {
3546 min = c->sent;
3547 conn = c;
3550 if (hci_conn_num(hdev, type) == num)
3551 break;
3554 rcu_read_unlock();
3556 if (conn) {
3557 int cnt, q;
3559 switch (conn->type) {
3560 case ACL_LINK:
3561 cnt = hdev->acl_cnt;
3562 break;
3563 case SCO_LINK:
3564 case ESCO_LINK:
3565 cnt = hdev->sco_cnt;
3566 break;
3567 case LE_LINK:
3568 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3569 break;
3570 default:
3571 cnt = 0;
3572 BT_ERR("Unknown link type");
3575 q = cnt / num;
3576 *quote = q ? q : 1;
3577 } else
3578 *quote = 0;
3580 BT_DBG("conn %p quote %d", conn, *quote);
3581 return conn;
3584 static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
3586 struct hci_conn_hash *h = &hdev->conn_hash;
3587 struct hci_conn *c;
3589 BT_ERR("%s link tx timeout", hdev->name);
3591 rcu_read_lock();
3593 /* Kill stalled connections */
3594 list_for_each_entry_rcu(c, &h->list, list) {
3595 if (c->type == type && c->sent) {
3596 BT_ERR("%s killing stalled connection %pMR",
3597 hdev->name, &c->dst);
3598 hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
3602 rcu_read_unlock();
3605 static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
3606 int *quote)
3608 struct hci_conn_hash *h = &hdev->conn_hash;
3609 struct hci_chan *chan = NULL;
3610 unsigned int num = 0, min = ~0, cur_prio = 0;
3611 struct hci_conn *conn;
3612 int cnt, q, conn_num = 0;
3614 BT_DBG("%s", hdev->name);
3616 rcu_read_lock();
3618 list_for_each_entry_rcu(conn, &h->list, list) {
3619 struct hci_chan *tmp;
3621 if (conn->type != type)
3622 continue;
3624 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3625 continue;
3627 conn_num++;
3629 list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
3630 struct sk_buff *skb;
3632 if (skb_queue_empty(&tmp->data_q))
3633 continue;
3635 skb = skb_peek(&tmp->data_q);
3636 if (skb->priority < cur_prio)
3637 continue;
3639 if (skb->priority > cur_prio) {
3640 num = 0;
3641 min = ~0;
3642 cur_prio = skb->priority;
3645 num++;
3647 if (conn->sent < min) {
3648 min = conn->sent;
3649 chan = tmp;
3653 if (hci_conn_num(hdev, type) == conn_num)
3654 break;
3657 rcu_read_unlock();
3659 if (!chan)
3660 return NULL;
3662 switch (chan->conn->type) {
3663 case ACL_LINK:
3664 cnt = hdev->acl_cnt;
3665 break;
3666 case AMP_LINK:
3667 cnt = hdev->block_cnt;
3668 break;
3669 case SCO_LINK:
3670 case ESCO_LINK:
3671 cnt = hdev->sco_cnt;
3672 break;
3673 case LE_LINK:
3674 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3675 break;
3676 default:
3677 cnt = 0;
3678 BT_ERR("Unknown link type");
3681 q = cnt / num;
3682 *quote = q ? q : 1;
3683 BT_DBG("chan %p quote %d", chan, *quote);
3684 return chan;
3687 static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
3689 struct hci_conn_hash *h = &hdev->conn_hash;
3690 struct hci_conn *conn;
3691 int num = 0;
3693 BT_DBG("%s", hdev->name);
3695 rcu_read_lock();
3697 list_for_each_entry_rcu(conn, &h->list, list) {
3698 struct hci_chan *chan;
3700 if (conn->type != type)
3701 continue;
3703 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3704 continue;
3706 num++;
3708 list_for_each_entry_rcu(chan, &conn->chan_list, list) {
3709 struct sk_buff *skb;
3711 if (chan->sent) {
3712 chan->sent = 0;
3713 continue;
3716 if (skb_queue_empty(&chan->data_q))
3717 continue;
3719 skb = skb_peek(&chan->data_q);
3720 if (skb->priority >= HCI_PRIO_MAX - 1)
3721 continue;
3723 skb->priority = HCI_PRIO_MAX - 1;
3725 BT_DBG("chan %p skb %p promoted to %d", chan, skb,
3726 skb->priority);
3729 if (hci_conn_num(hdev, type) == num)
3730 break;
3733 rcu_read_unlock();
3737 static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb)
3739 /* Calculate count of blocks used by this packet */
3740 return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len);
3743 static void __check_timeout(struct hci_dev *hdev, unsigned int cnt)
3745 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
3746 /* ACL tx timeout must be longer than maximum
3747 * link supervision timeout (40.9 seconds) */
3748 if (!cnt && time_after(jiffies, hdev->acl_last_tx +
3749 HCI_ACL_TX_TIMEOUT))
3750 hci_link_tx_to(hdev, ACL_LINK);
3754 static void hci_sched_acl_pkt(struct hci_dev *hdev)
3756 unsigned int cnt = hdev->acl_cnt;
3757 struct hci_chan *chan;
3758 struct sk_buff *skb;
3759 int quote;
3761 __check_timeout(hdev, cnt);
3763 while (hdev->acl_cnt &&
3764 (chan = hci_chan_sent(hdev, ACL_LINK, &quote))) {
3765 u32 priority = (skb_peek(&chan->data_q))->priority;
3766 while (quote-- && (skb = skb_peek(&chan->data_q))) {
3767 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3768 skb->len, skb->priority);
3770 /* Stop if priority has changed */
3771 if (skb->priority < priority)
3772 break;
3774 skb = skb_dequeue(&chan->data_q);
3776 hci_conn_enter_active_mode(chan->conn,
3777 bt_cb(skb)->force_active);
3779 hci_send_frame(hdev, skb);
3780 hdev->acl_last_tx = jiffies;
3782 hdev->acl_cnt--;
3783 chan->sent++;
3784 chan->conn->sent++;
3788 if (cnt != hdev->acl_cnt)
3789 hci_prio_recalculate(hdev, ACL_LINK);
3792 static void hci_sched_acl_blk(struct hci_dev *hdev)
3794 unsigned int cnt = hdev->block_cnt;
3795 struct hci_chan *chan;
3796 struct sk_buff *skb;
3797 int quote;
3798 u8 type;
3800 __check_timeout(hdev, cnt);
3802 BT_DBG("%s", hdev->name);
3804 if (hdev->dev_type == HCI_AMP)
3805 type = AMP_LINK;
3806 else
3807 type = ACL_LINK;
3809 while (hdev->block_cnt > 0 &&
3810 (chan = hci_chan_sent(hdev, type, &quote))) {
3811 u32 priority = (skb_peek(&chan->data_q))->priority;
3812 while (quote > 0 && (skb = skb_peek(&chan->data_q))) {
3813 int blocks;
3815 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3816 skb->len, skb->priority);
3818 /* Stop if priority has changed */
3819 if (skb->priority < priority)
3820 break;
3822 skb = skb_dequeue(&chan->data_q);
3824 blocks = __get_blocks(hdev, skb);
3825 if (blocks > hdev->block_cnt)
3826 return;
3828 hci_conn_enter_active_mode(chan->conn,
3829 bt_cb(skb)->force_active);
3831 hci_send_frame(hdev, skb);
3832 hdev->acl_last_tx = jiffies;
3834 hdev->block_cnt -= blocks;
3835 quote -= blocks;
3837 chan->sent += blocks;
3838 chan->conn->sent += blocks;
3842 if (cnt != hdev->block_cnt)
3843 hci_prio_recalculate(hdev, type);
3846 static void hci_sched_acl(struct hci_dev *hdev)
3848 BT_DBG("%s", hdev->name);
3850 /* No ACL link over BR/EDR controller */
3851 if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_PRIMARY)
3852 return;
3854 /* No AMP link over AMP controller */
3855 if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP)
3856 return;
3858 switch (hdev->flow_ctl_mode) {
3859 case HCI_FLOW_CTL_MODE_PACKET_BASED:
3860 hci_sched_acl_pkt(hdev);
3861 break;
3863 case HCI_FLOW_CTL_MODE_BLOCK_BASED:
3864 hci_sched_acl_blk(hdev);
3865 break;
3869 /* Schedule SCO */
3870 static void hci_sched_sco(struct hci_dev *hdev)
3872 struct hci_conn *conn;
3873 struct sk_buff *skb;
3874 int quote;
3876 BT_DBG("%s", hdev->name);
3878 if (!hci_conn_num(hdev, SCO_LINK))
3879 return;
3881 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
3882 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3883 BT_DBG("skb %p len %d", skb, skb->len);
3884 hci_send_frame(hdev, skb);
3886 conn->sent++;
3887 if (conn->sent == ~0)
3888 conn->sent = 0;
3893 static void hci_sched_esco(struct hci_dev *hdev)
3895 struct hci_conn *conn;
3896 struct sk_buff *skb;
3897 int quote;
3899 BT_DBG("%s", hdev->name);
3901 if (!hci_conn_num(hdev, ESCO_LINK))
3902 return;
3904 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
3905 &quote))) {
3906 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3907 BT_DBG("skb %p len %d", skb, skb->len);
3908 hci_send_frame(hdev, skb);
3910 conn->sent++;
3911 if (conn->sent == ~0)
3912 conn->sent = 0;
3917 static void hci_sched_le(struct hci_dev *hdev)
3919 struct hci_chan *chan;
3920 struct sk_buff *skb;
3921 int quote, cnt, tmp;
3923 BT_DBG("%s", hdev->name);
3925 if (!hci_conn_num(hdev, LE_LINK))
3926 return;
3928 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
3929 /* LE tx timeout must be longer than maximum
3930 * link supervision timeout (40.9 seconds) */
3931 if (!hdev->le_cnt && hdev->le_pkts &&
3932 time_after(jiffies, hdev->le_last_tx + HZ * 45))
3933 hci_link_tx_to(hdev, LE_LINK);
3936 cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
3937 tmp = cnt;
3938 while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, &quote))) {
3939 u32 priority = (skb_peek(&chan->data_q))->priority;
3940 while (quote-- && (skb = skb_peek(&chan->data_q))) {
3941 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3942 skb->len, skb->priority);
3944 /* Stop if priority has changed */
3945 if (skb->priority < priority)
3946 break;
3948 skb = skb_dequeue(&chan->data_q);
3950 hci_send_frame(hdev, skb);
3951 hdev->le_last_tx = jiffies;
3953 cnt--;
3954 chan->sent++;
3955 chan->conn->sent++;
3959 if (hdev->le_pkts)
3960 hdev->le_cnt = cnt;
3961 else
3962 hdev->acl_cnt = cnt;
3964 if (cnt != tmp)
3965 hci_prio_recalculate(hdev, LE_LINK);
3968 static void hci_tx_work(struct work_struct *work)
3970 struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
3971 struct sk_buff *skb;
3973 BT_DBG("%s acl %d sco %d le %d", hdev->name, hdev->acl_cnt,
3974 hdev->sco_cnt, hdev->le_cnt);
3976 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
3977 /* Schedule queues and send stuff to HCI driver */
3978 hci_sched_acl(hdev);
3979 hci_sched_sco(hdev);
3980 hci_sched_esco(hdev);
3981 hci_sched_le(hdev);
3984 /* Send next queued raw (unknown type) packet */
3985 while ((skb = skb_dequeue(&hdev->raw_q)))
3986 hci_send_frame(hdev, skb);
3989 /* ----- HCI RX task (incoming data processing) ----- */
3991 /* ACL data packet */
3992 static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3994 struct hci_acl_hdr *hdr = (void *) skb->data;
3995 struct hci_conn *conn;
3996 __u16 handle, flags;
3998 skb_pull(skb, HCI_ACL_HDR_SIZE);
4000 handle = __le16_to_cpu(hdr->handle);
4001 flags = hci_flags(handle);
4002 handle = hci_handle(handle);
4004 BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
4005 handle, flags);
4007 hdev->stat.acl_rx++;
4009 hci_dev_lock(hdev);
4010 conn = hci_conn_hash_lookup_handle(hdev, handle);
4011 hci_dev_unlock(hdev);
4013 if (conn) {
4014 hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
4016 /* Send to upper protocol */
4017 l2cap_recv_acldata(conn, skb, flags);
4018 return;
4019 } else {
4020 BT_ERR("%s ACL packet for unknown connection handle %d",
4021 hdev->name, handle);
4024 kfree_skb(skb);
4027 /* SCO data packet */
4028 static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4030 struct hci_sco_hdr *hdr = (void *) skb->data;
4031 struct hci_conn *conn;
4032 __u16 handle;
4034 skb_pull(skb, HCI_SCO_HDR_SIZE);
4036 handle = __le16_to_cpu(hdr->handle);
4038 BT_DBG("%s len %d handle 0x%4.4x", hdev->name, skb->len, handle);
4040 hdev->stat.sco_rx++;
4042 hci_dev_lock(hdev);
4043 conn = hci_conn_hash_lookup_handle(hdev, handle);
4044 hci_dev_unlock(hdev);
4046 if (conn) {
4047 /* Send to upper protocol */
4048 sco_recv_scodata(conn, skb);
4049 return;
4050 } else {
4051 BT_ERR("%s SCO packet for unknown connection handle %d",
4052 hdev->name, handle);
4055 kfree_skb(skb);
4058 static bool hci_req_is_complete(struct hci_dev *hdev)
4060 struct sk_buff *skb;
4062 skb = skb_peek(&hdev->cmd_q);
4063 if (!skb)
4064 return true;
4066 return (bt_cb(skb)->hci.req_flags & HCI_REQ_START);
4069 static void hci_resend_last(struct hci_dev *hdev)
4071 struct hci_command_hdr *sent;
4072 struct sk_buff *skb;
4073 u16 opcode;
4075 if (!hdev->sent_cmd)
4076 return;
4078 sent = (void *) hdev->sent_cmd->data;
4079 opcode = __le16_to_cpu(sent->opcode);
4080 if (opcode == HCI_OP_RESET)
4081 return;
4083 skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
4084 if (!skb)
4085 return;
4087 skb_queue_head(&hdev->cmd_q, skb);
4088 queue_work(hdev->workqueue, &hdev->cmd_work);
4091 void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status,
4092 hci_req_complete_t *req_complete,
4093 hci_req_complete_skb_t *req_complete_skb)
4095 struct sk_buff *skb;
4096 unsigned long flags;
4098 BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
4100 /* If the completed command doesn't match the last one that was
4101 * sent we need to do special handling of it.
4103 if (!hci_sent_cmd_data(hdev, opcode)) {
4104 /* Some CSR based controllers generate a spontaneous
4105 * reset complete event during init and any pending
4106 * command will never be completed. In such a case we
4107 * need to resend whatever was the last sent
4108 * command.
4110 if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
4111 hci_resend_last(hdev);
4113 return;
4116 /* If the command succeeded and there's still more commands in
4117 * this request the request is not yet complete.
4119 if (!status && !hci_req_is_complete(hdev))
4120 return;
4122 /* If this was the last command in a request the complete
4123 * callback would be found in hdev->sent_cmd instead of the
4124 * command queue (hdev->cmd_q).
4126 if (bt_cb(hdev->sent_cmd)->hci.req_flags & HCI_REQ_SKB) {
4127 *req_complete_skb = bt_cb(hdev->sent_cmd)->hci.req_complete_skb;
4128 return;
4131 if (bt_cb(hdev->sent_cmd)->hci.req_complete) {
4132 *req_complete = bt_cb(hdev->sent_cmd)->hci.req_complete;
4133 return;
4136 /* Remove all pending commands belonging to this request */
4137 spin_lock_irqsave(&hdev->cmd_q.lock, flags);
4138 while ((skb = __skb_dequeue(&hdev->cmd_q))) {
4139 if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) {
4140 __skb_queue_head(&hdev->cmd_q, skb);
4141 break;
4144 if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB)
4145 *req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
4146 else
4147 *req_complete = bt_cb(skb)->hci.req_complete;
4148 kfree_skb(skb);
4150 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
4153 static void hci_rx_work(struct work_struct *work)
4155 struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
4156 struct sk_buff *skb;
4158 BT_DBG("%s", hdev->name);
4160 while ((skb = skb_dequeue(&hdev->rx_q))) {
4161 /* Send copy to monitor */
4162 hci_send_to_monitor(hdev, skb);
4164 if (atomic_read(&hdev->promisc)) {
4165 /* Send copy to the sockets */
4166 hci_send_to_sock(hdev, skb);
4169 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4170 kfree_skb(skb);
4171 continue;
4174 if (test_bit(HCI_INIT, &hdev->flags)) {
4175 /* Don't process data packets in this states. */
4176 switch (hci_skb_pkt_type(skb)) {
4177 case HCI_ACLDATA_PKT:
4178 case HCI_SCODATA_PKT:
4179 kfree_skb(skb);
4180 continue;
4184 /* Process frame */
4185 switch (hci_skb_pkt_type(skb)) {
4186 case HCI_EVENT_PKT:
4187 BT_DBG("%s Event packet", hdev->name);
4188 hci_event_packet(hdev, skb);
4189 break;
4191 case HCI_ACLDATA_PKT:
4192 BT_DBG("%s ACL data packet", hdev->name);
4193 hci_acldata_packet(hdev, skb);
4194 break;
4196 case HCI_SCODATA_PKT:
4197 BT_DBG("%s SCO data packet", hdev->name);
4198 hci_scodata_packet(hdev, skb);
4199 break;
4201 default:
4202 kfree_skb(skb);
4203 break;
4208 static void hci_cmd_work(struct work_struct *work)
4210 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
4211 struct sk_buff *skb;
4213 BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
4214 atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
4216 /* Send queued commands */
4217 if (atomic_read(&hdev->cmd_cnt)) {
4218 skb = skb_dequeue(&hdev->cmd_q);
4219 if (!skb)
4220 return;
4222 kfree_skb(hdev->sent_cmd);
4224 hdev->sent_cmd = skb_clone(skb, GFP_KERNEL);
4225 if (hdev->sent_cmd) {
4226 atomic_dec(&hdev->cmd_cnt);
4227 hci_send_frame(hdev, skb);
4228 if (test_bit(HCI_RESET, &hdev->flags))
4229 cancel_delayed_work(&hdev->cmd_timer);
4230 else
4231 schedule_delayed_work(&hdev->cmd_timer,
4232 HCI_CMD_TIMEOUT);
4233 } else {
4234 skb_queue_head(&hdev->cmd_q, skb);
4235 queue_work(hdev->workqueue, &hdev->cmd_work);