2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
23 * Pedro Roque : Fast Retransmit/Recovery.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
56 * J Hadi Salim: ECN support
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
64 #define pr_fmt(fmt) "TCP: " fmt
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <linux/prefetch.h>
74 #include <net/inet_common.h>
75 #include <linux/ipsec.h>
76 #include <asm/unaligned.h>
77 #include <linux/errqueue.h>
79 int sysctl_tcp_timestamps __read_mostly
= 1;
80 int sysctl_tcp_window_scaling __read_mostly
= 1;
81 int sysctl_tcp_sack __read_mostly
= 1;
82 int sysctl_tcp_fack __read_mostly
= 1;
83 int sysctl_tcp_max_reordering __read_mostly
= 300;
84 int sysctl_tcp_dsack __read_mostly
= 1;
85 int sysctl_tcp_app_win __read_mostly
= 31;
86 int sysctl_tcp_adv_win_scale __read_mostly
= 1;
87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale
);
89 /* rfc5961 challenge ack rate limiting */
90 int sysctl_tcp_challenge_ack_limit
= 1000;
92 int sysctl_tcp_stdurg __read_mostly
;
93 int sysctl_tcp_rfc1337 __read_mostly
;
94 int sysctl_tcp_max_orphans __read_mostly
= NR_FILE
;
95 int sysctl_tcp_frto __read_mostly
= 2;
96 int sysctl_tcp_min_rtt_wlen __read_mostly
= 300;
98 int sysctl_tcp_thin_dupack __read_mostly
;
100 int sysctl_tcp_moderate_rcvbuf __read_mostly
= 1;
101 int sysctl_tcp_early_retrans __read_mostly
= 3;
102 int sysctl_tcp_invalid_ratelimit __read_mostly
= HZ
/2;
104 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
105 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
106 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
107 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
108 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
109 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
110 #define FLAG_ECE 0x40 /* ECE in this ACK */
111 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
112 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
113 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
114 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
115 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
116 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
117 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
119 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
120 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
121 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
122 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
124 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
125 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
127 #define REXMIT_NONE 0 /* no loss recovery to do */
128 #define REXMIT_LOST 1 /* retransmit packets marked lost */
129 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
131 /* Adapt the MSS value used to make delayed ack decision to the
134 static void tcp_measure_rcv_mss(struct sock
*sk
, const struct sk_buff
*skb
)
136 struct inet_connection_sock
*icsk
= inet_csk(sk
);
137 const unsigned int lss
= icsk
->icsk_ack
.last_seg_size
;
140 icsk
->icsk_ack
.last_seg_size
= 0;
142 /* skb->len may jitter because of SACKs, even if peer
143 * sends good full-sized frames.
145 len
= skb_shinfo(skb
)->gso_size
? : skb
->len
;
146 if (len
>= icsk
->icsk_ack
.rcv_mss
) {
147 icsk
->icsk_ack
.rcv_mss
= len
;
149 /* Otherwise, we make more careful check taking into account,
150 * that SACKs block is variable.
152 * "len" is invariant segment length, including TCP header.
154 len
+= skb
->data
- skb_transport_header(skb
);
155 if (len
>= TCP_MSS_DEFAULT
+ sizeof(struct tcphdr
) ||
156 /* If PSH is not set, packet should be
157 * full sized, provided peer TCP is not badly broken.
158 * This observation (if it is correct 8)) allows
159 * to handle super-low mtu links fairly.
161 (len
>= TCP_MIN_MSS
+ sizeof(struct tcphdr
) &&
162 !(tcp_flag_word(tcp_hdr(skb
)) & TCP_REMNANT
))) {
163 /* Subtract also invariant (if peer is RFC compliant),
164 * tcp header plus fixed timestamp option length.
165 * Resulting "len" is MSS free of SACK jitter.
167 len
-= tcp_sk(sk
)->tcp_header_len
;
168 icsk
->icsk_ack
.last_seg_size
= len
;
170 icsk
->icsk_ack
.rcv_mss
= len
;
174 if (icsk
->icsk_ack
.pending
& ICSK_ACK_PUSHED
)
175 icsk
->icsk_ack
.pending
|= ICSK_ACK_PUSHED2
;
176 icsk
->icsk_ack
.pending
|= ICSK_ACK_PUSHED
;
180 static void tcp_incr_quickack(struct sock
*sk
)
182 struct inet_connection_sock
*icsk
= inet_csk(sk
);
183 unsigned int quickacks
= tcp_sk(sk
)->rcv_wnd
/ (2 * icsk
->icsk_ack
.rcv_mss
);
187 if (quickacks
> icsk
->icsk_ack
.quick
)
188 icsk
->icsk_ack
.quick
= min(quickacks
, TCP_MAX_QUICKACKS
);
191 static void tcp_enter_quickack_mode(struct sock
*sk
)
193 struct inet_connection_sock
*icsk
= inet_csk(sk
);
194 tcp_incr_quickack(sk
);
195 icsk
->icsk_ack
.pingpong
= 0;
196 icsk
->icsk_ack
.ato
= TCP_ATO_MIN
;
199 /* Send ACKs quickly, if "quick" count is not exhausted
200 * and the session is not interactive.
203 static bool tcp_in_quickack_mode(struct sock
*sk
)
205 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
206 const struct dst_entry
*dst
= __sk_dst_get(sk
);
208 return (dst
&& dst_metric(dst
, RTAX_QUICKACK
)) ||
209 (icsk
->icsk_ack
.quick
&& !icsk
->icsk_ack
.pingpong
);
212 static void tcp_ecn_queue_cwr(struct tcp_sock
*tp
)
214 if (tp
->ecn_flags
& TCP_ECN_OK
)
215 tp
->ecn_flags
|= TCP_ECN_QUEUE_CWR
;
218 static void tcp_ecn_accept_cwr(struct tcp_sock
*tp
, const struct sk_buff
*skb
)
220 if (tcp_hdr(skb
)->cwr
)
221 tp
->ecn_flags
&= ~TCP_ECN_DEMAND_CWR
;
224 static void tcp_ecn_withdraw_cwr(struct tcp_sock
*tp
)
226 tp
->ecn_flags
&= ~TCP_ECN_DEMAND_CWR
;
229 static void __tcp_ecn_check_ce(struct tcp_sock
*tp
, const struct sk_buff
*skb
)
231 switch (TCP_SKB_CB(skb
)->ip_dsfield
& INET_ECN_MASK
) {
232 case INET_ECN_NOT_ECT
:
233 /* Funny extension: if ECT is not set on a segment,
234 * and we already seen ECT on a previous segment,
235 * it is probably a retransmit.
237 if (tp
->ecn_flags
& TCP_ECN_SEEN
)
238 tcp_enter_quickack_mode((struct sock
*)tp
);
241 if (tcp_ca_needs_ecn((struct sock
*)tp
))
242 tcp_ca_event((struct sock
*)tp
, CA_EVENT_ECN_IS_CE
);
244 if (!(tp
->ecn_flags
& TCP_ECN_DEMAND_CWR
)) {
245 /* Better not delay acks, sender can have a very low cwnd */
246 tcp_enter_quickack_mode((struct sock
*)tp
);
247 tp
->ecn_flags
|= TCP_ECN_DEMAND_CWR
;
249 tp
->ecn_flags
|= TCP_ECN_SEEN
;
252 if (tcp_ca_needs_ecn((struct sock
*)tp
))
253 tcp_ca_event((struct sock
*)tp
, CA_EVENT_ECN_NO_CE
);
254 tp
->ecn_flags
|= TCP_ECN_SEEN
;
259 static void tcp_ecn_check_ce(struct tcp_sock
*tp
, const struct sk_buff
*skb
)
261 if (tp
->ecn_flags
& TCP_ECN_OK
)
262 __tcp_ecn_check_ce(tp
, skb
);
265 static void tcp_ecn_rcv_synack(struct tcp_sock
*tp
, const struct tcphdr
*th
)
267 if ((tp
->ecn_flags
& TCP_ECN_OK
) && (!th
->ece
|| th
->cwr
))
268 tp
->ecn_flags
&= ~TCP_ECN_OK
;
271 static void tcp_ecn_rcv_syn(struct tcp_sock
*tp
, const struct tcphdr
*th
)
273 if ((tp
->ecn_flags
& TCP_ECN_OK
) && (!th
->ece
|| !th
->cwr
))
274 tp
->ecn_flags
&= ~TCP_ECN_OK
;
277 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock
*tp
, const struct tcphdr
*th
)
279 if (th
->ece
&& !th
->syn
&& (tp
->ecn_flags
& TCP_ECN_OK
))
284 /* Buffer size and advertised window tuning.
286 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
289 static void tcp_sndbuf_expand(struct sock
*sk
)
291 const struct tcp_sock
*tp
= tcp_sk(sk
);
295 /* Worst case is non GSO/TSO : each frame consumes one skb
296 * and skb->head is kmalloced using power of two area of memory
298 per_mss
= max_t(u32
, tp
->rx_opt
.mss_clamp
, tp
->mss_cache
) +
300 SKB_DATA_ALIGN(sizeof(struct skb_shared_info
));
302 per_mss
= roundup_pow_of_two(per_mss
) +
303 SKB_DATA_ALIGN(sizeof(struct sk_buff
));
305 nr_segs
= max_t(u32
, TCP_INIT_CWND
, tp
->snd_cwnd
);
306 nr_segs
= max_t(u32
, nr_segs
, tp
->reordering
+ 1);
308 /* Fast Recovery (RFC 5681 3.2) :
309 * Cubic needs 1.7 factor, rounded to 2 to include
310 * extra cushion (application might react slowly to POLLOUT)
312 sndmem
= 2 * nr_segs
* per_mss
;
314 if (sk
->sk_sndbuf
< sndmem
)
315 sk
->sk_sndbuf
= min(sndmem
, sysctl_tcp_wmem
[2]);
318 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
320 * All tcp_full_space() is split to two parts: "network" buffer, allocated
321 * forward and advertised in receiver window (tp->rcv_wnd) and
322 * "application buffer", required to isolate scheduling/application
323 * latencies from network.
324 * window_clamp is maximal advertised window. It can be less than
325 * tcp_full_space(), in this case tcp_full_space() - window_clamp
326 * is reserved for "application" buffer. The less window_clamp is
327 * the smoother our behaviour from viewpoint of network, but the lower
328 * throughput and the higher sensitivity of the connection to losses. 8)
330 * rcv_ssthresh is more strict window_clamp used at "slow start"
331 * phase to predict further behaviour of this connection.
332 * It is used for two goals:
333 * - to enforce header prediction at sender, even when application
334 * requires some significant "application buffer". It is check #1.
335 * - to prevent pruning of receive queue because of misprediction
336 * of receiver window. Check #2.
338 * The scheme does not work when sender sends good segments opening
339 * window and then starts to feed us spaghetti. But it should work
340 * in common situations. Otherwise, we have to rely on queue collapsing.
343 /* Slow part of check#2. */
344 static int __tcp_grow_window(const struct sock
*sk
, const struct sk_buff
*skb
)
346 struct tcp_sock
*tp
= tcp_sk(sk
);
348 int truesize
= tcp_win_from_space(skb
->truesize
) >> 1;
349 int window
= tcp_win_from_space(sysctl_tcp_rmem
[2]) >> 1;
351 while (tp
->rcv_ssthresh
<= window
) {
352 if (truesize
<= skb
->len
)
353 return 2 * inet_csk(sk
)->icsk_ack
.rcv_mss
;
361 static void tcp_grow_window(struct sock
*sk
, const struct sk_buff
*skb
)
363 struct tcp_sock
*tp
= tcp_sk(sk
);
366 if (tp
->rcv_ssthresh
< tp
->window_clamp
&&
367 (int)tp
->rcv_ssthresh
< tcp_space(sk
) &&
368 !tcp_under_memory_pressure(sk
)) {
371 /* Check #2. Increase window, if skb with such overhead
372 * will fit to rcvbuf in future.
374 if (tcp_win_from_space(skb
->truesize
) <= skb
->len
)
375 incr
= 2 * tp
->advmss
;
377 incr
= __tcp_grow_window(sk
, skb
);
380 incr
= max_t(int, incr
, 2 * skb
->len
);
381 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
+ incr
,
383 inet_csk(sk
)->icsk_ack
.quick
|= 1;
388 /* 3. Tuning rcvbuf, when connection enters established state. */
389 static void tcp_fixup_rcvbuf(struct sock
*sk
)
391 u32 mss
= tcp_sk(sk
)->advmss
;
394 rcvmem
= 2 * SKB_TRUESIZE(mss
+ MAX_TCP_HEADER
) *
395 tcp_default_init_rwnd(mss
);
397 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
398 * Allow enough cushion so that sender is not limited by our window
400 if (sysctl_tcp_moderate_rcvbuf
)
403 if (sk
->sk_rcvbuf
< rcvmem
)
404 sk
->sk_rcvbuf
= min(rcvmem
, sysctl_tcp_rmem
[2]);
407 /* 4. Try to fixup all. It is made immediately after connection enters
410 void tcp_init_buffer_space(struct sock
*sk
)
412 struct tcp_sock
*tp
= tcp_sk(sk
);
415 if (!(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
))
416 tcp_fixup_rcvbuf(sk
);
417 if (!(sk
->sk_userlocks
& SOCK_SNDBUF_LOCK
))
418 tcp_sndbuf_expand(sk
);
420 tp
->rcvq_space
.space
= tp
->rcv_wnd
;
421 tp
->rcvq_space
.time
= tcp_time_stamp
;
422 tp
->rcvq_space
.seq
= tp
->copied_seq
;
424 maxwin
= tcp_full_space(sk
);
426 if (tp
->window_clamp
>= maxwin
) {
427 tp
->window_clamp
= maxwin
;
429 if (sysctl_tcp_app_win
&& maxwin
> 4 * tp
->advmss
)
430 tp
->window_clamp
= max(maxwin
-
431 (maxwin
>> sysctl_tcp_app_win
),
435 /* Force reservation of one segment. */
436 if (sysctl_tcp_app_win
&&
437 tp
->window_clamp
> 2 * tp
->advmss
&&
438 tp
->window_clamp
+ tp
->advmss
> maxwin
)
439 tp
->window_clamp
= max(2 * tp
->advmss
, maxwin
- tp
->advmss
);
441 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
, tp
->window_clamp
);
442 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
445 /* 5. Recalculate window clamp after socket hit its memory bounds. */
446 static void tcp_clamp_window(struct sock
*sk
)
448 struct tcp_sock
*tp
= tcp_sk(sk
);
449 struct inet_connection_sock
*icsk
= inet_csk(sk
);
451 icsk
->icsk_ack
.quick
= 0;
453 if (sk
->sk_rcvbuf
< sysctl_tcp_rmem
[2] &&
454 !(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
) &&
455 !tcp_under_memory_pressure(sk
) &&
456 sk_memory_allocated(sk
) < sk_prot_mem_limits(sk
, 0)) {
457 sk
->sk_rcvbuf
= min(atomic_read(&sk
->sk_rmem_alloc
),
460 if (atomic_read(&sk
->sk_rmem_alloc
) > sk
->sk_rcvbuf
)
461 tp
->rcv_ssthresh
= min(tp
->window_clamp
, 2U * tp
->advmss
);
464 /* Initialize RCV_MSS value.
465 * RCV_MSS is an our guess about MSS used by the peer.
466 * We haven't any direct information about the MSS.
467 * It's better to underestimate the RCV_MSS rather than overestimate.
468 * Overestimations make us ACKing less frequently than needed.
469 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
471 void tcp_initialize_rcv_mss(struct sock
*sk
)
473 const struct tcp_sock
*tp
= tcp_sk(sk
);
474 unsigned int hint
= min_t(unsigned int, tp
->advmss
, tp
->mss_cache
);
476 hint
= min(hint
, tp
->rcv_wnd
/ 2);
477 hint
= min(hint
, TCP_MSS_DEFAULT
);
478 hint
= max(hint
, TCP_MIN_MSS
);
480 inet_csk(sk
)->icsk_ack
.rcv_mss
= hint
;
482 EXPORT_SYMBOL(tcp_initialize_rcv_mss
);
484 /* Receiver "autotuning" code.
486 * The algorithm for RTT estimation w/o timestamps is based on
487 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
488 * <http://public.lanl.gov/radiant/pubs.html#DRS>
490 * More detail on this code can be found at
491 * <http://staff.psc.edu/jheffner/>,
492 * though this reference is out of date. A new paper
495 static void tcp_rcv_rtt_update(struct tcp_sock
*tp
, u32 sample
, int win_dep
)
497 u32 new_sample
= tp
->rcv_rtt_est
.rtt
;
503 if (new_sample
!= 0) {
504 /* If we sample in larger samples in the non-timestamp
505 * case, we could grossly overestimate the RTT especially
506 * with chatty applications or bulk transfer apps which
507 * are stalled on filesystem I/O.
509 * Also, since we are only going for a minimum in the
510 * non-timestamp case, we do not smooth things out
511 * else with timestamps disabled convergence takes too
515 m
-= (new_sample
>> 3);
523 /* No previous measure. */
527 if (tp
->rcv_rtt_est
.rtt
!= new_sample
)
528 tp
->rcv_rtt_est
.rtt
= new_sample
;
531 static inline void tcp_rcv_rtt_measure(struct tcp_sock
*tp
)
533 if (tp
->rcv_rtt_est
.time
== 0)
535 if (before(tp
->rcv_nxt
, tp
->rcv_rtt_est
.seq
))
537 tcp_rcv_rtt_update(tp
, tcp_time_stamp
- tp
->rcv_rtt_est
.time
, 1);
540 tp
->rcv_rtt_est
.seq
= tp
->rcv_nxt
+ tp
->rcv_wnd
;
541 tp
->rcv_rtt_est
.time
= tcp_time_stamp
;
544 static inline void tcp_rcv_rtt_measure_ts(struct sock
*sk
,
545 const struct sk_buff
*skb
)
547 struct tcp_sock
*tp
= tcp_sk(sk
);
548 if (tp
->rx_opt
.rcv_tsecr
&&
549 (TCP_SKB_CB(skb
)->end_seq
-
550 TCP_SKB_CB(skb
)->seq
>= inet_csk(sk
)->icsk_ack
.rcv_mss
))
551 tcp_rcv_rtt_update(tp
, tcp_time_stamp
- tp
->rx_opt
.rcv_tsecr
, 0);
555 * This function should be called every time data is copied to user space.
556 * It calculates the appropriate TCP receive buffer space.
558 void tcp_rcv_space_adjust(struct sock
*sk
)
560 struct tcp_sock
*tp
= tcp_sk(sk
);
564 time
= tcp_time_stamp
- tp
->rcvq_space
.time
;
565 if (time
< (tp
->rcv_rtt_est
.rtt
>> 3) || tp
->rcv_rtt_est
.rtt
== 0)
568 /* Number of bytes copied to user in last RTT */
569 copied
= tp
->copied_seq
- tp
->rcvq_space
.seq
;
570 if (copied
<= tp
->rcvq_space
.space
)
574 * copied = bytes received in previous RTT, our base window
575 * To cope with packet losses, we need a 2x factor
576 * To cope with slow start, and sender growing its cwin by 100 %
577 * every RTT, we need a 4x factor, because the ACK we are sending
578 * now is for the next RTT, not the current one :
579 * <prev RTT . ><current RTT .. ><next RTT .... >
582 if (sysctl_tcp_moderate_rcvbuf
&&
583 !(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
)) {
584 int rcvwin
, rcvmem
, rcvbuf
;
586 /* minimal window to cope with packet losses, assuming
587 * steady state. Add some cushion because of small variations.
589 rcvwin
= (copied
<< 1) + 16 * tp
->advmss
;
591 /* If rate increased by 25%,
592 * assume slow start, rcvwin = 3 * copied
593 * If rate increased by 50%,
594 * assume sender can use 2x growth, rcvwin = 4 * copied
597 tp
->rcvq_space
.space
+ (tp
->rcvq_space
.space
>> 2)) {
599 tp
->rcvq_space
.space
+ (tp
->rcvq_space
.space
>> 1))
602 rcvwin
+= (rcvwin
>> 1);
605 rcvmem
= SKB_TRUESIZE(tp
->advmss
+ MAX_TCP_HEADER
);
606 while (tcp_win_from_space(rcvmem
) < tp
->advmss
)
609 rcvbuf
= min(rcvwin
/ tp
->advmss
* rcvmem
, sysctl_tcp_rmem
[2]);
610 if (rcvbuf
> sk
->sk_rcvbuf
) {
611 sk
->sk_rcvbuf
= rcvbuf
;
613 /* Make the window clamp follow along. */
614 tp
->window_clamp
= rcvwin
;
617 tp
->rcvq_space
.space
= copied
;
620 tp
->rcvq_space
.seq
= tp
->copied_seq
;
621 tp
->rcvq_space
.time
= tcp_time_stamp
;
624 /* There is something which you must keep in mind when you analyze the
625 * behavior of the tp->ato delayed ack timeout interval. When a
626 * connection starts up, we want to ack as quickly as possible. The
627 * problem is that "good" TCP's do slow start at the beginning of data
628 * transmission. The means that until we send the first few ACK's the
629 * sender will sit on his end and only queue most of his data, because
630 * he can only send snd_cwnd unacked packets at any given time. For
631 * each ACK we send, he increments snd_cwnd and transmits more of his
634 static void tcp_event_data_recv(struct sock
*sk
, struct sk_buff
*skb
)
636 struct tcp_sock
*tp
= tcp_sk(sk
);
637 struct inet_connection_sock
*icsk
= inet_csk(sk
);
640 inet_csk_schedule_ack(sk
);
642 tcp_measure_rcv_mss(sk
, skb
);
644 tcp_rcv_rtt_measure(tp
);
646 now
= tcp_time_stamp
;
648 if (!icsk
->icsk_ack
.ato
) {
649 /* The _first_ data packet received, initialize
650 * delayed ACK engine.
652 tcp_incr_quickack(sk
);
653 icsk
->icsk_ack
.ato
= TCP_ATO_MIN
;
655 int m
= now
- icsk
->icsk_ack
.lrcvtime
;
657 if (m
<= TCP_ATO_MIN
/ 2) {
658 /* The fastest case is the first. */
659 icsk
->icsk_ack
.ato
= (icsk
->icsk_ack
.ato
>> 1) + TCP_ATO_MIN
/ 2;
660 } else if (m
< icsk
->icsk_ack
.ato
) {
661 icsk
->icsk_ack
.ato
= (icsk
->icsk_ack
.ato
>> 1) + m
;
662 if (icsk
->icsk_ack
.ato
> icsk
->icsk_rto
)
663 icsk
->icsk_ack
.ato
= icsk
->icsk_rto
;
664 } else if (m
> icsk
->icsk_rto
) {
665 /* Too long gap. Apparently sender failed to
666 * restart window, so that we send ACKs quickly.
668 tcp_incr_quickack(sk
);
672 icsk
->icsk_ack
.lrcvtime
= now
;
674 tcp_ecn_check_ce(tp
, skb
);
677 tcp_grow_window(sk
, skb
);
680 /* Called to compute a smoothed rtt estimate. The data fed to this
681 * routine either comes from timestamps, or from segments that were
682 * known _not_ to have been retransmitted [see Karn/Partridge
683 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
684 * piece by Van Jacobson.
685 * NOTE: the next three routines used to be one big routine.
686 * To save cycles in the RFC 1323 implementation it was better to break
687 * it up into three procedures. -- erics
689 static void tcp_rtt_estimator(struct sock
*sk
, long mrtt_us
)
691 struct tcp_sock
*tp
= tcp_sk(sk
);
692 long m
= mrtt_us
; /* RTT */
693 u32 srtt
= tp
->srtt_us
;
695 /* The following amusing code comes from Jacobson's
696 * article in SIGCOMM '88. Note that rtt and mdev
697 * are scaled versions of rtt and mean deviation.
698 * This is designed to be as fast as possible
699 * m stands for "measurement".
701 * On a 1990 paper the rto value is changed to:
702 * RTO = rtt + 4 * mdev
704 * Funny. This algorithm seems to be very broken.
705 * These formulae increase RTO, when it should be decreased, increase
706 * too slowly, when it should be increased quickly, decrease too quickly
707 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
708 * does not matter how to _calculate_ it. Seems, it was trap
709 * that VJ failed to avoid. 8)
712 m
-= (srtt
>> 3); /* m is now error in rtt est */
713 srtt
+= m
; /* rtt = 7/8 rtt + 1/8 new */
715 m
= -m
; /* m is now abs(error) */
716 m
-= (tp
->mdev_us
>> 2); /* similar update on mdev */
717 /* This is similar to one of Eifel findings.
718 * Eifel blocks mdev updates when rtt decreases.
719 * This solution is a bit different: we use finer gain
720 * for mdev in this case (alpha*beta).
721 * Like Eifel it also prevents growth of rto,
722 * but also it limits too fast rto decreases,
723 * happening in pure Eifel.
728 m
-= (tp
->mdev_us
>> 2); /* similar update on mdev */
730 tp
->mdev_us
+= m
; /* mdev = 3/4 mdev + 1/4 new */
731 if (tp
->mdev_us
> tp
->mdev_max_us
) {
732 tp
->mdev_max_us
= tp
->mdev_us
;
733 if (tp
->mdev_max_us
> tp
->rttvar_us
)
734 tp
->rttvar_us
= tp
->mdev_max_us
;
736 if (after(tp
->snd_una
, tp
->rtt_seq
)) {
737 if (tp
->mdev_max_us
< tp
->rttvar_us
)
738 tp
->rttvar_us
-= (tp
->rttvar_us
- tp
->mdev_max_us
) >> 2;
739 tp
->rtt_seq
= tp
->snd_nxt
;
740 tp
->mdev_max_us
= tcp_rto_min_us(sk
);
743 /* no previous measure. */
744 srtt
= m
<< 3; /* take the measured time to be rtt */
745 tp
->mdev_us
= m
<< 1; /* make sure rto = 3*rtt */
746 tp
->rttvar_us
= max(tp
->mdev_us
, tcp_rto_min_us(sk
));
747 tp
->mdev_max_us
= tp
->rttvar_us
;
748 tp
->rtt_seq
= tp
->snd_nxt
;
750 tp
->srtt_us
= max(1U, srtt
);
753 /* Set the sk_pacing_rate to allow proper sizing of TSO packets.
754 * Note: TCP stack does not yet implement pacing.
755 * FQ packet scheduler can be used to implement cheap but effective
756 * TCP pacing, to smooth the burst on large writes when packets
757 * in flight is significantly lower than cwnd (or rwin)
759 int sysctl_tcp_pacing_ss_ratio __read_mostly
= 200;
760 int sysctl_tcp_pacing_ca_ratio __read_mostly
= 120;
762 static void tcp_update_pacing_rate(struct sock
*sk
)
764 const struct tcp_sock
*tp
= tcp_sk(sk
);
767 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
768 rate
= (u64
)tp
->mss_cache
* ((USEC_PER_SEC
/ 100) << 3);
770 /* current rate is (cwnd * mss) / srtt
771 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
772 * In Congestion Avoidance phase, set it to 120 % the current rate.
774 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
775 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
776 * end of slow start and should slow down.
778 if (tp
->snd_cwnd
< tp
->snd_ssthresh
/ 2)
779 rate
*= sysctl_tcp_pacing_ss_ratio
;
781 rate
*= sysctl_tcp_pacing_ca_ratio
;
783 rate
*= max(tp
->snd_cwnd
, tp
->packets_out
);
785 if (likely(tp
->srtt_us
))
786 do_div(rate
, tp
->srtt_us
);
788 /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
789 * without any lock. We want to make sure compiler wont store
790 * intermediate values in this location.
792 ACCESS_ONCE(sk
->sk_pacing_rate
) = min_t(u64
, rate
,
793 sk
->sk_max_pacing_rate
);
796 /* Calculate rto without backoff. This is the second half of Van Jacobson's
797 * routine referred to above.
799 static void tcp_set_rto(struct sock
*sk
)
801 const struct tcp_sock
*tp
= tcp_sk(sk
);
802 /* Old crap is replaced with new one. 8)
805 * 1. If rtt variance happened to be less 50msec, it is hallucination.
806 * It cannot be less due to utterly erratic ACK generation made
807 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
808 * to do with delayed acks, because at cwnd>2 true delack timeout
809 * is invisible. Actually, Linux-2.4 also generates erratic
810 * ACKs in some circumstances.
812 inet_csk(sk
)->icsk_rto
= __tcp_set_rto(tp
);
814 /* 2. Fixups made earlier cannot be right.
815 * If we do not estimate RTO correctly without them,
816 * all the algo is pure shit and should be replaced
817 * with correct one. It is exactly, which we pretend to do.
820 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
821 * guarantees that rto is higher.
826 __u32
tcp_init_cwnd(const struct tcp_sock
*tp
, const struct dst_entry
*dst
)
828 __u32 cwnd
= (dst
? dst_metric(dst
, RTAX_INITCWND
) : 0);
831 cwnd
= TCP_INIT_CWND
;
832 return min_t(__u32
, cwnd
, tp
->snd_cwnd_clamp
);
836 * Packet counting of FACK is based on in-order assumptions, therefore TCP
837 * disables it when reordering is detected
839 void tcp_disable_fack(struct tcp_sock
*tp
)
841 /* RFC3517 uses different metric in lost marker => reset on change */
843 tp
->lost_skb_hint
= NULL
;
844 tp
->rx_opt
.sack_ok
&= ~TCP_FACK_ENABLED
;
847 /* Take a notice that peer is sending D-SACKs */
848 static void tcp_dsack_seen(struct tcp_sock
*tp
)
850 tp
->rx_opt
.sack_ok
|= TCP_DSACK_SEEN
;
853 static void tcp_update_reordering(struct sock
*sk
, const int metric
,
856 struct tcp_sock
*tp
= tcp_sk(sk
);
857 if (metric
> tp
->reordering
) {
860 tp
->reordering
= min(sysctl_tcp_max_reordering
, metric
);
862 /* This exciting event is worth to be remembered. 8) */
864 mib_idx
= LINUX_MIB_TCPTSREORDER
;
865 else if (tcp_is_reno(tp
))
866 mib_idx
= LINUX_MIB_TCPRENOREORDER
;
867 else if (tcp_is_fack(tp
))
868 mib_idx
= LINUX_MIB_TCPFACKREORDER
;
870 mib_idx
= LINUX_MIB_TCPSACKREORDER
;
872 NET_INC_STATS(sock_net(sk
), mib_idx
);
873 #if FASTRETRANS_DEBUG > 1
874 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
875 tp
->rx_opt
.sack_ok
, inet_csk(sk
)->icsk_ca_state
,
879 tp
->undo_marker
? tp
->undo_retrans
: 0);
881 tcp_disable_fack(tp
);
885 tcp_disable_early_retrans(tp
);
889 /* This must be called before lost_out is incremented */
890 static void tcp_verify_retransmit_hint(struct tcp_sock
*tp
, struct sk_buff
*skb
)
892 if (!tp
->retransmit_skb_hint
||
893 before(TCP_SKB_CB(skb
)->seq
,
894 TCP_SKB_CB(tp
->retransmit_skb_hint
)->seq
))
895 tp
->retransmit_skb_hint
= skb
;
898 after(TCP_SKB_CB(skb
)->end_seq
, tp
->retransmit_high
))
899 tp
->retransmit_high
= TCP_SKB_CB(skb
)->end_seq
;
902 static void tcp_skb_mark_lost(struct tcp_sock
*tp
, struct sk_buff
*skb
)
904 if (!(TCP_SKB_CB(skb
)->sacked
& (TCPCB_LOST
|TCPCB_SACKED_ACKED
))) {
905 tcp_verify_retransmit_hint(tp
, skb
);
907 tp
->lost_out
+= tcp_skb_pcount(skb
);
908 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
912 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock
*tp
, struct sk_buff
*skb
)
914 tcp_verify_retransmit_hint(tp
, skb
);
916 if (!(TCP_SKB_CB(skb
)->sacked
& (TCPCB_LOST
|TCPCB_SACKED_ACKED
))) {
917 tp
->lost_out
+= tcp_skb_pcount(skb
);
918 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
922 /* This procedure tags the retransmission queue when SACKs arrive.
924 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
925 * Packets in queue with these bits set are counted in variables
926 * sacked_out, retrans_out and lost_out, correspondingly.
928 * Valid combinations are:
929 * Tag InFlight Description
930 * 0 1 - orig segment is in flight.
931 * S 0 - nothing flies, orig reached receiver.
932 * L 0 - nothing flies, orig lost by net.
933 * R 2 - both orig and retransmit are in flight.
934 * L|R 1 - orig is lost, retransmit is in flight.
935 * S|R 1 - orig reached receiver, retrans is still in flight.
936 * (L|S|R is logically valid, it could occur when L|R is sacked,
937 * but it is equivalent to plain S and code short-curcuits it to S.
938 * L|S is logically invalid, it would mean -1 packet in flight 8))
940 * These 6 states form finite state machine, controlled by the following events:
941 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
942 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
943 * 3. Loss detection event of two flavors:
944 * A. Scoreboard estimator decided the packet is lost.
945 * A'. Reno "three dupacks" marks head of queue lost.
946 * A''. Its FACK modification, head until snd.fack is lost.
947 * B. SACK arrives sacking SND.NXT at the moment, when the
948 * segment was retransmitted.
949 * 4. D-SACK added new rule: D-SACK changes any tag to S.
951 * It is pleasant to note, that state diagram turns out to be commutative,
952 * so that we are allowed not to be bothered by order of our actions,
953 * when multiple events arrive simultaneously. (see the function below).
955 * Reordering detection.
956 * --------------------
957 * Reordering metric is maximal distance, which a packet can be displaced
958 * in packet stream. With SACKs we can estimate it:
960 * 1. SACK fills old hole and the corresponding segment was not
961 * ever retransmitted -> reordering. Alas, we cannot use it
962 * when segment was retransmitted.
963 * 2. The last flaw is solved with D-SACK. D-SACK arrives
964 * for retransmitted and already SACKed segment -> reordering..
965 * Both of these heuristics are not used in Loss state, when we cannot
966 * account for retransmits accurately.
968 * SACK block validation.
969 * ----------------------
971 * SACK block range validation checks that the received SACK block fits to
972 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
973 * Note that SND.UNA is not included to the range though being valid because
974 * it means that the receiver is rather inconsistent with itself reporting
975 * SACK reneging when it should advance SND.UNA. Such SACK block this is
976 * perfectly valid, however, in light of RFC2018 which explicitly states
977 * that "SACK block MUST reflect the newest segment. Even if the newest
978 * segment is going to be discarded ...", not that it looks very clever
979 * in case of head skb. Due to potentional receiver driven attacks, we
980 * choose to avoid immediate execution of a walk in write queue due to
981 * reneging and defer head skb's loss recovery to standard loss recovery
982 * procedure that will eventually trigger (nothing forbids us doing this).
984 * Implements also blockage to start_seq wrap-around. Problem lies in the
985 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
986 * there's no guarantee that it will be before snd_nxt (n). The problem
987 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
990 * <- outs wnd -> <- wrapzone ->
991 * u e n u_w e_w s n_w
993 * |<------------+------+----- TCP seqno space --------------+---------->|
994 * ...-- <2^31 ->| |<--------...
995 * ...---- >2^31 ------>| |<--------...
997 * Current code wouldn't be vulnerable but it's better still to discard such
998 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
999 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1000 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1001 * equal to the ideal case (infinite seqno space without wrap caused issues).
1003 * With D-SACK the lower bound is extended to cover sequence space below
1004 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1005 * again, D-SACK block must not to go across snd_una (for the same reason as
1006 * for the normal SACK blocks, explained above). But there all simplicity
1007 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1008 * fully below undo_marker they do not affect behavior in anyway and can
1009 * therefore be safely ignored. In rare cases (which are more or less
1010 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1011 * fragmentation and packet reordering past skb's retransmission. To consider
1012 * them correctly, the acceptable range must be extended even more though
1013 * the exact amount is rather hard to quantify. However, tp->max_window can
1014 * be used as an exaggerated estimate.
1016 static bool tcp_is_sackblock_valid(struct tcp_sock
*tp
, bool is_dsack
,
1017 u32 start_seq
, u32 end_seq
)
1019 /* Too far in future, or reversed (interpretation is ambiguous) */
1020 if (after(end_seq
, tp
->snd_nxt
) || !before(start_seq
, end_seq
))
1023 /* Nasty start_seq wrap-around check (see comments above) */
1024 if (!before(start_seq
, tp
->snd_nxt
))
1027 /* In outstanding window? ...This is valid exit for D-SACKs too.
1028 * start_seq == snd_una is non-sensical (see comments above)
1030 if (after(start_seq
, tp
->snd_una
))
1033 if (!is_dsack
|| !tp
->undo_marker
)
1036 /* ...Then it's D-SACK, and must reside below snd_una completely */
1037 if (after(end_seq
, tp
->snd_una
))
1040 if (!before(start_seq
, tp
->undo_marker
))
1044 if (!after(end_seq
, tp
->undo_marker
))
1047 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1048 * start_seq < undo_marker and end_seq >= undo_marker.
1050 return !before(start_seq
, end_seq
- tp
->max_window
);
1053 static bool tcp_check_dsack(struct sock
*sk
, const struct sk_buff
*ack_skb
,
1054 struct tcp_sack_block_wire
*sp
, int num_sacks
,
1057 struct tcp_sock
*tp
= tcp_sk(sk
);
1058 u32 start_seq_0
= get_unaligned_be32(&sp
[0].start_seq
);
1059 u32 end_seq_0
= get_unaligned_be32(&sp
[0].end_seq
);
1060 bool dup_sack
= false;
1062 if (before(start_seq_0
, TCP_SKB_CB(ack_skb
)->ack_seq
)) {
1065 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPDSACKRECV
);
1066 } else if (num_sacks
> 1) {
1067 u32 end_seq_1
= get_unaligned_be32(&sp
[1].end_seq
);
1068 u32 start_seq_1
= get_unaligned_be32(&sp
[1].start_seq
);
1070 if (!after(end_seq_0
, end_seq_1
) &&
1071 !before(start_seq_0
, start_seq_1
)) {
1074 NET_INC_STATS(sock_net(sk
),
1075 LINUX_MIB_TCPDSACKOFORECV
);
1079 /* D-SACK for already forgotten data... Do dumb counting. */
1080 if (dup_sack
&& tp
->undo_marker
&& tp
->undo_retrans
> 0 &&
1081 !after(end_seq_0
, prior_snd_una
) &&
1082 after(end_seq_0
, tp
->undo_marker
))
1088 struct tcp_sacktag_state
{
1091 /* Timestamps for earliest and latest never-retransmitted segment
1092 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1093 * but congestion control should still get an accurate delay signal.
1095 struct skb_mstamp first_sackt
;
1096 struct skb_mstamp last_sackt
;
1100 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1101 * the incoming SACK may not exactly match but we can find smaller MSS
1102 * aligned portion of it that matches. Therefore we might need to fragment
1103 * which may fail and creates some hassle (caller must handle error case
1106 * FIXME: this could be merged to shift decision code
1108 static int tcp_match_skb_to_sack(struct sock
*sk
, struct sk_buff
*skb
,
1109 u32 start_seq
, u32 end_seq
)
1113 unsigned int pkt_len
;
1116 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
) &&
1117 !before(end_seq
, TCP_SKB_CB(skb
)->end_seq
);
1119 if (tcp_skb_pcount(skb
) > 1 && !in_sack
&&
1120 after(TCP_SKB_CB(skb
)->end_seq
, start_seq
)) {
1121 mss
= tcp_skb_mss(skb
);
1122 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
);
1125 pkt_len
= start_seq
- TCP_SKB_CB(skb
)->seq
;
1129 pkt_len
= end_seq
- TCP_SKB_CB(skb
)->seq
;
1134 /* Round if necessary so that SACKs cover only full MSSes
1135 * and/or the remaining small portion (if present)
1137 if (pkt_len
> mss
) {
1138 unsigned int new_len
= (pkt_len
/ mss
) * mss
;
1139 if (!in_sack
&& new_len
< pkt_len
) {
1141 if (new_len
>= skb
->len
)
1146 err
= tcp_fragment(sk
, skb
, pkt_len
, mss
, GFP_ATOMIC
);
1154 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1155 static u8
tcp_sacktag_one(struct sock
*sk
,
1156 struct tcp_sacktag_state
*state
, u8 sacked
,
1157 u32 start_seq
, u32 end_seq
,
1158 int dup_sack
, int pcount
,
1159 const struct skb_mstamp
*xmit_time
)
1161 struct tcp_sock
*tp
= tcp_sk(sk
);
1162 int fack_count
= state
->fack_count
;
1164 /* Account D-SACK for retransmitted packet. */
1165 if (dup_sack
&& (sacked
& TCPCB_RETRANS
)) {
1166 if (tp
->undo_marker
&& tp
->undo_retrans
> 0 &&
1167 after(end_seq
, tp
->undo_marker
))
1169 if (sacked
& TCPCB_SACKED_ACKED
)
1170 state
->reord
= min(fack_count
, state
->reord
);
1173 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1174 if (!after(end_seq
, tp
->snd_una
))
1177 if (!(sacked
& TCPCB_SACKED_ACKED
)) {
1178 tcp_rack_advance(tp
, xmit_time
, sacked
);
1180 if (sacked
& TCPCB_SACKED_RETRANS
) {
1181 /* If the segment is not tagged as lost,
1182 * we do not clear RETRANS, believing
1183 * that retransmission is still in flight.
1185 if (sacked
& TCPCB_LOST
) {
1186 sacked
&= ~(TCPCB_LOST
|TCPCB_SACKED_RETRANS
);
1187 tp
->lost_out
-= pcount
;
1188 tp
->retrans_out
-= pcount
;
1191 if (!(sacked
& TCPCB_RETRANS
)) {
1192 /* New sack for not retransmitted frame,
1193 * which was in hole. It is reordering.
1195 if (before(start_seq
,
1196 tcp_highest_sack_seq(tp
)))
1197 state
->reord
= min(fack_count
,
1199 if (!after(end_seq
, tp
->high_seq
))
1200 state
->flag
|= FLAG_ORIG_SACK_ACKED
;
1201 if (state
->first_sackt
.v64
== 0)
1202 state
->first_sackt
= *xmit_time
;
1203 state
->last_sackt
= *xmit_time
;
1206 if (sacked
& TCPCB_LOST
) {
1207 sacked
&= ~TCPCB_LOST
;
1208 tp
->lost_out
-= pcount
;
1212 sacked
|= TCPCB_SACKED_ACKED
;
1213 state
->flag
|= FLAG_DATA_SACKED
;
1214 tp
->sacked_out
+= pcount
;
1215 tp
->delivered
+= pcount
; /* Out-of-order packets delivered */
1217 fack_count
+= pcount
;
1219 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1220 if (!tcp_is_fack(tp
) && tp
->lost_skb_hint
&&
1221 before(start_seq
, TCP_SKB_CB(tp
->lost_skb_hint
)->seq
))
1222 tp
->lost_cnt_hint
+= pcount
;
1224 if (fack_count
> tp
->fackets_out
)
1225 tp
->fackets_out
= fack_count
;
1228 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1229 * frames and clear it. undo_retrans is decreased above, L|R frames
1230 * are accounted above as well.
1232 if (dup_sack
&& (sacked
& TCPCB_SACKED_RETRANS
)) {
1233 sacked
&= ~TCPCB_SACKED_RETRANS
;
1234 tp
->retrans_out
-= pcount
;
1240 /* Shift newly-SACKed bytes from this skb to the immediately previous
1241 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1243 static bool tcp_shifted_skb(struct sock
*sk
, struct sk_buff
*skb
,
1244 struct tcp_sacktag_state
*state
,
1245 unsigned int pcount
, int shifted
, int mss
,
1248 struct tcp_sock
*tp
= tcp_sk(sk
);
1249 struct sk_buff
*prev
= tcp_write_queue_prev(sk
, skb
);
1250 u32 start_seq
= TCP_SKB_CB(skb
)->seq
; /* start of newly-SACKed */
1251 u32 end_seq
= start_seq
+ shifted
; /* end of newly-SACKed */
1255 /* Adjust counters and hints for the newly sacked sequence
1256 * range but discard the return value since prev is already
1257 * marked. We must tag the range first because the seq
1258 * advancement below implicitly advances
1259 * tcp_highest_sack_seq() when skb is highest_sack.
1261 tcp_sacktag_one(sk
, state
, TCP_SKB_CB(skb
)->sacked
,
1262 start_seq
, end_seq
, dup_sack
, pcount
,
1265 if (skb
== tp
->lost_skb_hint
)
1266 tp
->lost_cnt_hint
+= pcount
;
1268 TCP_SKB_CB(prev
)->end_seq
+= shifted
;
1269 TCP_SKB_CB(skb
)->seq
+= shifted
;
1271 tcp_skb_pcount_add(prev
, pcount
);
1272 BUG_ON(tcp_skb_pcount(skb
) < pcount
);
1273 tcp_skb_pcount_add(skb
, -pcount
);
1275 /* When we're adding to gso_segs == 1, gso_size will be zero,
1276 * in theory this shouldn't be necessary but as long as DSACK
1277 * code can come after this skb later on it's better to keep
1278 * setting gso_size to something.
1280 if (!TCP_SKB_CB(prev
)->tcp_gso_size
)
1281 TCP_SKB_CB(prev
)->tcp_gso_size
= mss
;
1283 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1284 if (tcp_skb_pcount(skb
) <= 1)
1285 TCP_SKB_CB(skb
)->tcp_gso_size
= 0;
1287 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1288 TCP_SKB_CB(prev
)->sacked
|= (TCP_SKB_CB(skb
)->sacked
& TCPCB_EVER_RETRANS
);
1291 BUG_ON(!tcp_skb_pcount(skb
));
1292 NET_INC_STATS(sock_net(sk
), LINUX_MIB_SACKSHIFTED
);
1296 /* Whole SKB was eaten :-) */
1298 if (skb
== tp
->retransmit_skb_hint
)
1299 tp
->retransmit_skb_hint
= prev
;
1300 if (skb
== tp
->lost_skb_hint
) {
1301 tp
->lost_skb_hint
= prev
;
1302 tp
->lost_cnt_hint
-= tcp_skb_pcount(prev
);
1305 TCP_SKB_CB(prev
)->tcp_flags
|= TCP_SKB_CB(skb
)->tcp_flags
;
1306 TCP_SKB_CB(prev
)->eor
= TCP_SKB_CB(skb
)->eor
;
1307 if (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
)
1308 TCP_SKB_CB(prev
)->end_seq
++;
1310 if (skb
== tcp_highest_sack(sk
))
1311 tcp_advance_highest_sack(sk
, skb
);
1313 tcp_skb_collapse_tstamp(prev
, skb
);
1314 tcp_unlink_write_queue(skb
, sk
);
1315 sk_wmem_free_skb(sk
, skb
);
1317 NET_INC_STATS(sock_net(sk
), LINUX_MIB_SACKMERGED
);
1322 /* I wish gso_size would have a bit more sane initialization than
1323 * something-or-zero which complicates things
1325 static int tcp_skb_seglen(const struct sk_buff
*skb
)
1327 return tcp_skb_pcount(skb
) == 1 ? skb
->len
: tcp_skb_mss(skb
);
1330 /* Shifting pages past head area doesn't work */
1331 static int skb_can_shift(const struct sk_buff
*skb
)
1333 return !skb_headlen(skb
) && skb_is_nonlinear(skb
);
1336 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1339 static struct sk_buff
*tcp_shift_skb_data(struct sock
*sk
, struct sk_buff
*skb
,
1340 struct tcp_sacktag_state
*state
,
1341 u32 start_seq
, u32 end_seq
,
1344 struct tcp_sock
*tp
= tcp_sk(sk
);
1345 struct sk_buff
*prev
;
1351 if (!sk_can_gso(sk
))
1354 /* Normally R but no L won't result in plain S */
1356 (TCP_SKB_CB(skb
)->sacked
& (TCPCB_LOST
|TCPCB_SACKED_RETRANS
)) == TCPCB_SACKED_RETRANS
)
1358 if (!skb_can_shift(skb
))
1360 /* This frame is about to be dropped (was ACKed). */
1361 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
))
1364 /* Can only happen with delayed DSACK + discard craziness */
1365 if (unlikely(skb
== tcp_write_queue_head(sk
)))
1367 prev
= tcp_write_queue_prev(sk
, skb
);
1369 if ((TCP_SKB_CB(prev
)->sacked
& TCPCB_TAGBITS
) != TCPCB_SACKED_ACKED
)
1372 if (!tcp_skb_can_collapse_to(prev
))
1375 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
) &&
1376 !before(end_seq
, TCP_SKB_CB(skb
)->end_seq
);
1380 pcount
= tcp_skb_pcount(skb
);
1381 mss
= tcp_skb_seglen(skb
);
1383 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1384 * drop this restriction as unnecessary
1386 if (mss
!= tcp_skb_seglen(prev
))
1389 if (!after(TCP_SKB_CB(skb
)->end_seq
, start_seq
))
1391 /* CHECKME: This is non-MSS split case only?, this will
1392 * cause skipped skbs due to advancing loop btw, original
1393 * has that feature too
1395 if (tcp_skb_pcount(skb
) <= 1)
1398 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
);
1400 /* TODO: head merge to next could be attempted here
1401 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1402 * though it might not be worth of the additional hassle
1404 * ...we can probably just fallback to what was done
1405 * previously. We could try merging non-SACKed ones
1406 * as well but it probably isn't going to buy off
1407 * because later SACKs might again split them, and
1408 * it would make skb timestamp tracking considerably
1414 len
= end_seq
- TCP_SKB_CB(skb
)->seq
;
1416 BUG_ON(len
> skb
->len
);
1418 /* MSS boundaries should be honoured or else pcount will
1419 * severely break even though it makes things bit trickier.
1420 * Optimize common case to avoid most of the divides
1422 mss
= tcp_skb_mss(skb
);
1424 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1425 * drop this restriction as unnecessary
1427 if (mss
!= tcp_skb_seglen(prev
))
1432 } else if (len
< mss
) {
1440 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1441 if (!after(TCP_SKB_CB(skb
)->seq
+ len
, tp
->snd_una
))
1444 if (!skb_shift(prev
, skb
, len
))
1446 if (!tcp_shifted_skb(sk
, skb
, state
, pcount
, len
, mss
, dup_sack
))
1449 /* Hole filled allows collapsing with the next as well, this is very
1450 * useful when hole on every nth skb pattern happens
1452 if (prev
== tcp_write_queue_tail(sk
))
1454 skb
= tcp_write_queue_next(sk
, prev
);
1456 if (!skb_can_shift(skb
) ||
1457 (skb
== tcp_send_head(sk
)) ||
1458 ((TCP_SKB_CB(skb
)->sacked
& TCPCB_TAGBITS
) != TCPCB_SACKED_ACKED
) ||
1459 (mss
!= tcp_skb_seglen(skb
)))
1463 if (skb_shift(prev
, skb
, len
)) {
1464 pcount
+= tcp_skb_pcount(skb
);
1465 tcp_shifted_skb(sk
, skb
, state
, tcp_skb_pcount(skb
), len
, mss
, 0);
1469 state
->fack_count
+= pcount
;
1476 NET_INC_STATS(sock_net(sk
), LINUX_MIB_SACKSHIFTFALLBACK
);
1480 static struct sk_buff
*tcp_sacktag_walk(struct sk_buff
*skb
, struct sock
*sk
,
1481 struct tcp_sack_block
*next_dup
,
1482 struct tcp_sacktag_state
*state
,
1483 u32 start_seq
, u32 end_seq
,
1486 struct tcp_sock
*tp
= tcp_sk(sk
);
1487 struct sk_buff
*tmp
;
1489 tcp_for_write_queue_from(skb
, sk
) {
1491 bool dup_sack
= dup_sack_in
;
1493 if (skb
== tcp_send_head(sk
))
1496 /* queue is in-order => we can short-circuit the walk early */
1497 if (!before(TCP_SKB_CB(skb
)->seq
, end_seq
))
1501 before(TCP_SKB_CB(skb
)->seq
, next_dup
->end_seq
)) {
1502 in_sack
= tcp_match_skb_to_sack(sk
, skb
,
1503 next_dup
->start_seq
,
1509 /* skb reference here is a bit tricky to get right, since
1510 * shifting can eat and free both this skb and the next,
1511 * so not even _safe variant of the loop is enough.
1514 tmp
= tcp_shift_skb_data(sk
, skb
, state
,
1515 start_seq
, end_seq
, dup_sack
);
1524 in_sack
= tcp_match_skb_to_sack(sk
, skb
,
1530 if (unlikely(in_sack
< 0))
1534 TCP_SKB_CB(skb
)->sacked
=
1537 TCP_SKB_CB(skb
)->sacked
,
1538 TCP_SKB_CB(skb
)->seq
,
1539 TCP_SKB_CB(skb
)->end_seq
,
1541 tcp_skb_pcount(skb
),
1544 if (!before(TCP_SKB_CB(skb
)->seq
,
1545 tcp_highest_sack_seq(tp
)))
1546 tcp_advance_highest_sack(sk
, skb
);
1549 state
->fack_count
+= tcp_skb_pcount(skb
);
1554 /* Avoid all extra work that is being done by sacktag while walking in
1557 static struct sk_buff
*tcp_sacktag_skip(struct sk_buff
*skb
, struct sock
*sk
,
1558 struct tcp_sacktag_state
*state
,
1561 tcp_for_write_queue_from(skb
, sk
) {
1562 if (skb
== tcp_send_head(sk
))
1565 if (after(TCP_SKB_CB(skb
)->end_seq
, skip_to_seq
))
1568 state
->fack_count
+= tcp_skb_pcount(skb
);
1573 static struct sk_buff
*tcp_maybe_skipping_dsack(struct sk_buff
*skb
,
1575 struct tcp_sack_block
*next_dup
,
1576 struct tcp_sacktag_state
*state
,
1582 if (before(next_dup
->start_seq
, skip_to_seq
)) {
1583 skb
= tcp_sacktag_skip(skb
, sk
, state
, next_dup
->start_seq
);
1584 skb
= tcp_sacktag_walk(skb
, sk
, NULL
, state
,
1585 next_dup
->start_seq
, next_dup
->end_seq
,
1592 static int tcp_sack_cache_ok(const struct tcp_sock
*tp
, const struct tcp_sack_block
*cache
)
1594 return cache
< tp
->recv_sack_cache
+ ARRAY_SIZE(tp
->recv_sack_cache
);
1598 tcp_sacktag_write_queue(struct sock
*sk
, const struct sk_buff
*ack_skb
,
1599 u32 prior_snd_una
, struct tcp_sacktag_state
*state
)
1601 struct tcp_sock
*tp
= tcp_sk(sk
);
1602 const unsigned char *ptr
= (skb_transport_header(ack_skb
) +
1603 TCP_SKB_CB(ack_skb
)->sacked
);
1604 struct tcp_sack_block_wire
*sp_wire
= (struct tcp_sack_block_wire
*)(ptr
+2);
1605 struct tcp_sack_block sp
[TCP_NUM_SACKS
];
1606 struct tcp_sack_block
*cache
;
1607 struct sk_buff
*skb
;
1608 int num_sacks
= min(TCP_NUM_SACKS
, (ptr
[1] - TCPOLEN_SACK_BASE
) >> 3);
1610 bool found_dup_sack
= false;
1612 int first_sack_index
;
1615 state
->reord
= tp
->packets_out
;
1617 if (!tp
->sacked_out
) {
1618 if (WARN_ON(tp
->fackets_out
))
1619 tp
->fackets_out
= 0;
1620 tcp_highest_sack_reset(sk
);
1623 found_dup_sack
= tcp_check_dsack(sk
, ack_skb
, sp_wire
,
1624 num_sacks
, prior_snd_una
);
1626 state
->flag
|= FLAG_DSACKING_ACK
;
1628 /* Eliminate too old ACKs, but take into
1629 * account more or less fresh ones, they can
1630 * contain valid SACK info.
1632 if (before(TCP_SKB_CB(ack_skb
)->ack_seq
, prior_snd_una
- tp
->max_window
))
1635 if (!tp
->packets_out
)
1639 first_sack_index
= 0;
1640 for (i
= 0; i
< num_sacks
; i
++) {
1641 bool dup_sack
= !i
&& found_dup_sack
;
1643 sp
[used_sacks
].start_seq
= get_unaligned_be32(&sp_wire
[i
].start_seq
);
1644 sp
[used_sacks
].end_seq
= get_unaligned_be32(&sp_wire
[i
].end_seq
);
1646 if (!tcp_is_sackblock_valid(tp
, dup_sack
,
1647 sp
[used_sacks
].start_seq
,
1648 sp
[used_sacks
].end_seq
)) {
1652 if (!tp
->undo_marker
)
1653 mib_idx
= LINUX_MIB_TCPDSACKIGNOREDNOUNDO
;
1655 mib_idx
= LINUX_MIB_TCPDSACKIGNOREDOLD
;
1657 /* Don't count olds caused by ACK reordering */
1658 if ((TCP_SKB_CB(ack_skb
)->ack_seq
!= tp
->snd_una
) &&
1659 !after(sp
[used_sacks
].end_seq
, tp
->snd_una
))
1661 mib_idx
= LINUX_MIB_TCPSACKDISCARD
;
1664 NET_INC_STATS(sock_net(sk
), mib_idx
);
1666 first_sack_index
= -1;
1670 /* Ignore very old stuff early */
1671 if (!after(sp
[used_sacks
].end_seq
, prior_snd_una
))
1677 /* order SACK blocks to allow in order walk of the retrans queue */
1678 for (i
= used_sacks
- 1; i
> 0; i
--) {
1679 for (j
= 0; j
< i
; j
++) {
1680 if (after(sp
[j
].start_seq
, sp
[j
+ 1].start_seq
)) {
1681 swap(sp
[j
], sp
[j
+ 1]);
1683 /* Track where the first SACK block goes to */
1684 if (j
== first_sack_index
)
1685 first_sack_index
= j
+ 1;
1690 skb
= tcp_write_queue_head(sk
);
1691 state
->fack_count
= 0;
1694 if (!tp
->sacked_out
) {
1695 /* It's already past, so skip checking against it */
1696 cache
= tp
->recv_sack_cache
+ ARRAY_SIZE(tp
->recv_sack_cache
);
1698 cache
= tp
->recv_sack_cache
;
1699 /* Skip empty blocks in at head of the cache */
1700 while (tcp_sack_cache_ok(tp
, cache
) && !cache
->start_seq
&&
1705 while (i
< used_sacks
) {
1706 u32 start_seq
= sp
[i
].start_seq
;
1707 u32 end_seq
= sp
[i
].end_seq
;
1708 bool dup_sack
= (found_dup_sack
&& (i
== first_sack_index
));
1709 struct tcp_sack_block
*next_dup
= NULL
;
1711 if (found_dup_sack
&& ((i
+ 1) == first_sack_index
))
1712 next_dup
= &sp
[i
+ 1];
1714 /* Skip too early cached blocks */
1715 while (tcp_sack_cache_ok(tp
, cache
) &&
1716 !before(start_seq
, cache
->end_seq
))
1719 /* Can skip some work by looking recv_sack_cache? */
1720 if (tcp_sack_cache_ok(tp
, cache
) && !dup_sack
&&
1721 after(end_seq
, cache
->start_seq
)) {
1724 if (before(start_seq
, cache
->start_seq
)) {
1725 skb
= tcp_sacktag_skip(skb
, sk
, state
,
1727 skb
= tcp_sacktag_walk(skb
, sk
, next_dup
,
1734 /* Rest of the block already fully processed? */
1735 if (!after(end_seq
, cache
->end_seq
))
1738 skb
= tcp_maybe_skipping_dsack(skb
, sk
, next_dup
,
1742 /* ...tail remains todo... */
1743 if (tcp_highest_sack_seq(tp
) == cache
->end_seq
) {
1744 /* ...but better entrypoint exists! */
1745 skb
= tcp_highest_sack(sk
);
1748 state
->fack_count
= tp
->fackets_out
;
1753 skb
= tcp_sacktag_skip(skb
, sk
, state
, cache
->end_seq
);
1754 /* Check overlap against next cached too (past this one already) */
1759 if (!before(start_seq
, tcp_highest_sack_seq(tp
))) {
1760 skb
= tcp_highest_sack(sk
);
1763 state
->fack_count
= tp
->fackets_out
;
1765 skb
= tcp_sacktag_skip(skb
, sk
, state
, start_seq
);
1768 skb
= tcp_sacktag_walk(skb
, sk
, next_dup
, state
,
1769 start_seq
, end_seq
, dup_sack
);
1775 /* Clear the head of the cache sack blocks so we can skip it next time */
1776 for (i
= 0; i
< ARRAY_SIZE(tp
->recv_sack_cache
) - used_sacks
; i
++) {
1777 tp
->recv_sack_cache
[i
].start_seq
= 0;
1778 tp
->recv_sack_cache
[i
].end_seq
= 0;
1780 for (j
= 0; j
< used_sacks
; j
++)
1781 tp
->recv_sack_cache
[i
++] = sp
[j
];
1783 if ((state
->reord
< tp
->fackets_out
) &&
1784 ((inet_csk(sk
)->icsk_ca_state
!= TCP_CA_Loss
) || tp
->undo_marker
))
1785 tcp_update_reordering(sk
, tp
->fackets_out
- state
->reord
, 0);
1787 tcp_verify_left_out(tp
);
1790 #if FASTRETRANS_DEBUG > 0
1791 WARN_ON((int)tp
->sacked_out
< 0);
1792 WARN_ON((int)tp
->lost_out
< 0);
1793 WARN_ON((int)tp
->retrans_out
< 0);
1794 WARN_ON((int)tcp_packets_in_flight(tp
) < 0);
1799 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1800 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1802 static bool tcp_limit_reno_sacked(struct tcp_sock
*tp
)
1806 holes
= max(tp
->lost_out
, 1U);
1807 holes
= min(holes
, tp
->packets_out
);
1809 if ((tp
->sacked_out
+ holes
) > tp
->packets_out
) {
1810 tp
->sacked_out
= tp
->packets_out
- holes
;
1816 /* If we receive more dupacks than we expected counting segments
1817 * in assumption of absent reordering, interpret this as reordering.
1818 * The only another reason could be bug in receiver TCP.
1820 static void tcp_check_reno_reordering(struct sock
*sk
, const int addend
)
1822 struct tcp_sock
*tp
= tcp_sk(sk
);
1823 if (tcp_limit_reno_sacked(tp
))
1824 tcp_update_reordering(sk
, tp
->packets_out
+ addend
, 0);
1827 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1829 static void tcp_add_reno_sack(struct sock
*sk
)
1831 struct tcp_sock
*tp
= tcp_sk(sk
);
1832 u32 prior_sacked
= tp
->sacked_out
;
1835 tcp_check_reno_reordering(sk
, 0);
1836 if (tp
->sacked_out
> prior_sacked
)
1837 tp
->delivered
++; /* Some out-of-order packet is delivered */
1838 tcp_verify_left_out(tp
);
1841 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1843 static void tcp_remove_reno_sacks(struct sock
*sk
, int acked
)
1845 struct tcp_sock
*tp
= tcp_sk(sk
);
1848 /* One ACK acked hole. The rest eat duplicate ACKs. */
1849 tp
->delivered
+= max_t(int, acked
- tp
->sacked_out
, 1);
1850 if (acked
- 1 >= tp
->sacked_out
)
1853 tp
->sacked_out
-= acked
- 1;
1855 tcp_check_reno_reordering(sk
, acked
);
1856 tcp_verify_left_out(tp
);
1859 static inline void tcp_reset_reno_sack(struct tcp_sock
*tp
)
1864 void tcp_clear_retrans(struct tcp_sock
*tp
)
1866 tp
->retrans_out
= 0;
1868 tp
->undo_marker
= 0;
1869 tp
->undo_retrans
= -1;
1870 tp
->fackets_out
= 0;
1874 static inline void tcp_init_undo(struct tcp_sock
*tp
)
1876 tp
->undo_marker
= tp
->snd_una
;
1877 /* Retransmission still in flight may cause DSACKs later. */
1878 tp
->undo_retrans
= tp
->retrans_out
? : -1;
1881 /* Enter Loss state. If we detect SACK reneging, forget all SACK information
1882 * and reset tags completely, otherwise preserve SACKs. If receiver
1883 * dropped its ofo queue, we will know this due to reneging detection.
1885 void tcp_enter_loss(struct sock
*sk
)
1887 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1888 struct tcp_sock
*tp
= tcp_sk(sk
);
1889 struct net
*net
= sock_net(sk
);
1890 struct sk_buff
*skb
;
1891 bool new_recovery
= icsk
->icsk_ca_state
< TCP_CA_Recovery
;
1892 bool is_reneg
; /* is receiver reneging on SACKs? */
1894 /* Reduce ssthresh if it has not yet been made inside this window. */
1895 if (icsk
->icsk_ca_state
<= TCP_CA_Disorder
||
1896 !after(tp
->high_seq
, tp
->snd_una
) ||
1897 (icsk
->icsk_ca_state
== TCP_CA_Loss
&& !icsk
->icsk_retransmits
)) {
1898 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
1899 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
1900 tcp_ca_event(sk
, CA_EVENT_LOSS
);
1904 tp
->snd_cwnd_cnt
= 0;
1905 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
1907 tp
->retrans_out
= 0;
1910 if (tcp_is_reno(tp
))
1911 tcp_reset_reno_sack(tp
);
1913 skb
= tcp_write_queue_head(sk
);
1914 is_reneg
= skb
&& (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
);
1916 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPSACKRENEGING
);
1918 tp
->fackets_out
= 0;
1920 tcp_clear_all_retrans_hints(tp
);
1922 tcp_for_write_queue(skb
, sk
) {
1923 if (skb
== tcp_send_head(sk
))
1926 TCP_SKB_CB(skb
)->sacked
&= (~TCPCB_TAGBITS
)|TCPCB_SACKED_ACKED
;
1927 if (!(TCP_SKB_CB(skb
)->sacked
&TCPCB_SACKED_ACKED
) || is_reneg
) {
1928 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_ACKED
;
1929 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
1930 tp
->lost_out
+= tcp_skb_pcount(skb
);
1931 tp
->retransmit_high
= TCP_SKB_CB(skb
)->end_seq
;
1934 tcp_verify_left_out(tp
);
1936 /* Timeout in disordered state after receiving substantial DUPACKs
1937 * suggests that the degree of reordering is over-estimated.
1939 if (icsk
->icsk_ca_state
<= TCP_CA_Disorder
&&
1940 tp
->sacked_out
>= net
->ipv4
.sysctl_tcp_reordering
)
1941 tp
->reordering
= min_t(unsigned int, tp
->reordering
,
1942 net
->ipv4
.sysctl_tcp_reordering
);
1943 tcp_set_ca_state(sk
, TCP_CA_Loss
);
1944 tp
->high_seq
= tp
->snd_nxt
;
1945 tcp_ecn_queue_cwr(tp
);
1947 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
1948 * loss recovery is underway except recurring timeout(s) on
1949 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
1951 tp
->frto
= sysctl_tcp_frto
&&
1952 (new_recovery
|| icsk
->icsk_retransmits
) &&
1953 !inet_csk(sk
)->icsk_mtup
.probe_size
;
1956 /* If ACK arrived pointing to a remembered SACK, it means that our
1957 * remembered SACKs do not reflect real state of receiver i.e.
1958 * receiver _host_ is heavily congested (or buggy).
1960 * To avoid big spurious retransmission bursts due to transient SACK
1961 * scoreboard oddities that look like reneging, we give the receiver a
1962 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
1963 * restore sanity to the SACK scoreboard. If the apparent reneging
1964 * persists until this RTO then we'll clear the SACK scoreboard.
1966 static bool tcp_check_sack_reneging(struct sock
*sk
, int flag
)
1968 if (flag
& FLAG_SACK_RENEGING
) {
1969 struct tcp_sock
*tp
= tcp_sk(sk
);
1970 unsigned long delay
= max(usecs_to_jiffies(tp
->srtt_us
>> 4),
1971 msecs_to_jiffies(10));
1973 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
1974 delay
, TCP_RTO_MAX
);
1980 static inline int tcp_fackets_out(const struct tcp_sock
*tp
)
1982 return tcp_is_reno(tp
) ? tp
->sacked_out
+ 1 : tp
->fackets_out
;
1985 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
1986 * counter when SACK is enabled (without SACK, sacked_out is used for
1989 * Instead, with FACK TCP uses fackets_out that includes both SACKed
1990 * segments up to the highest received SACK block so far and holes in
1993 * With reordering, holes may still be in flight, so RFC3517 recovery
1994 * uses pure sacked_out (total number of SACKed segments) even though
1995 * it violates the RFC that uses duplicate ACKs, often these are equal
1996 * but when e.g. out-of-window ACKs or packet duplication occurs,
1997 * they differ. Since neither occurs due to loss, TCP should really
2000 static inline int tcp_dupack_heuristics(const struct tcp_sock
*tp
)
2002 return tcp_is_fack(tp
) ? tp
->fackets_out
: tp
->sacked_out
+ 1;
2005 static bool tcp_pause_early_retransmit(struct sock
*sk
, int flag
)
2007 struct tcp_sock
*tp
= tcp_sk(sk
);
2008 unsigned long delay
;
2010 /* Delay early retransmit and entering fast recovery for
2011 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
2012 * available, or RTO is scheduled to fire first.
2014 if (sysctl_tcp_early_retrans
< 2 || sysctl_tcp_early_retrans
> 3 ||
2015 (flag
& FLAG_ECE
) || !tp
->srtt_us
)
2018 delay
= max(usecs_to_jiffies(tp
->srtt_us
>> 5),
2019 msecs_to_jiffies(2));
2021 if (!time_after(inet_csk(sk
)->icsk_timeout
, (jiffies
+ delay
)))
2024 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_EARLY_RETRANS
, delay
,
2029 /* Linux NewReno/SACK/FACK/ECN state machine.
2030 * --------------------------------------
2032 * "Open" Normal state, no dubious events, fast path.
2033 * "Disorder" In all the respects it is "Open",
2034 * but requires a bit more attention. It is entered when
2035 * we see some SACKs or dupacks. It is split of "Open"
2036 * mainly to move some processing from fast path to slow one.
2037 * "CWR" CWND was reduced due to some Congestion Notification event.
2038 * It can be ECN, ICMP source quench, local device congestion.
2039 * "Recovery" CWND was reduced, we are fast-retransmitting.
2040 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2042 * tcp_fastretrans_alert() is entered:
2043 * - each incoming ACK, if state is not "Open"
2044 * - when arrived ACK is unusual, namely:
2049 * Counting packets in flight is pretty simple.
2051 * in_flight = packets_out - left_out + retrans_out
2053 * packets_out is SND.NXT-SND.UNA counted in packets.
2055 * retrans_out is number of retransmitted segments.
2057 * left_out is number of segments left network, but not ACKed yet.
2059 * left_out = sacked_out + lost_out
2061 * sacked_out: Packets, which arrived to receiver out of order
2062 * and hence not ACKed. With SACKs this number is simply
2063 * amount of SACKed data. Even without SACKs
2064 * it is easy to give pretty reliable estimate of this number,
2065 * counting duplicate ACKs.
2067 * lost_out: Packets lost by network. TCP has no explicit
2068 * "loss notification" feedback from network (for now).
2069 * It means that this number can be only _guessed_.
2070 * Actually, it is the heuristics to predict lossage that
2071 * distinguishes different algorithms.
2073 * F.e. after RTO, when all the queue is considered as lost,
2074 * lost_out = packets_out and in_flight = retrans_out.
2076 * Essentially, we have now two algorithms counting
2079 * FACK: It is the simplest heuristics. As soon as we decided
2080 * that something is lost, we decide that _all_ not SACKed
2081 * packets until the most forward SACK are lost. I.e.
2082 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2083 * It is absolutely correct estimate, if network does not reorder
2084 * packets. And it loses any connection to reality when reordering
2085 * takes place. We use FACK by default until reordering
2086 * is suspected on the path to this destination.
2088 * NewReno: when Recovery is entered, we assume that one segment
2089 * is lost (classic Reno). While we are in Recovery and
2090 * a partial ACK arrives, we assume that one more packet
2091 * is lost (NewReno). This heuristics are the same in NewReno
2094 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2095 * deflation etc. CWND is real congestion window, never inflated, changes
2096 * only according to classic VJ rules.
2098 * Really tricky (and requiring careful tuning) part of algorithm
2099 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2100 * The first determines the moment _when_ we should reduce CWND and,
2101 * hence, slow down forward transmission. In fact, it determines the moment
2102 * when we decide that hole is caused by loss, rather than by a reorder.
2104 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2105 * holes, caused by lost packets.
2107 * And the most logically complicated part of algorithm is undo
2108 * heuristics. We detect false retransmits due to both too early
2109 * fast retransmit (reordering) and underestimated RTO, analyzing
2110 * timestamps and D-SACKs. When we detect that some segments were
2111 * retransmitted by mistake and CWND reduction was wrong, we undo
2112 * window reduction and abort recovery phase. This logic is hidden
2113 * inside several functions named tcp_try_undo_<something>.
2116 /* This function decides, when we should leave Disordered state
2117 * and enter Recovery phase, reducing congestion window.
2119 * Main question: may we further continue forward transmission
2120 * with the same cwnd?
2122 static bool tcp_time_to_recover(struct sock
*sk
, int flag
)
2124 struct tcp_sock
*tp
= tcp_sk(sk
);
2126 int tcp_reordering
= sock_net(sk
)->ipv4
.sysctl_tcp_reordering
;
2128 /* Trick#1: The loss is proven. */
2132 /* Not-A-Trick#2 : Classic rule... */
2133 if (tcp_dupack_heuristics(tp
) > tp
->reordering
)
2136 /* Trick#4: It is still not OK... But will it be useful to delay
2139 packets_out
= tp
->packets_out
;
2140 if (packets_out
<= tp
->reordering
&&
2141 tp
->sacked_out
>= max_t(__u32
, packets_out
/2, tcp_reordering
) &&
2142 !tcp_may_send_now(sk
)) {
2143 /* We have nothing to send. This connection is limited
2144 * either by receiver window or by application.
2149 /* If a thin stream is detected, retransmit after first
2150 * received dupack. Employ only if SACK is supported in order
2151 * to avoid possible corner-case series of spurious retransmissions
2152 * Use only if there are no unsent data.
2154 if ((tp
->thin_dupack
|| sysctl_tcp_thin_dupack
) &&
2155 tcp_stream_is_thin(tp
) && tcp_dupack_heuristics(tp
) > 1 &&
2156 tcp_is_sack(tp
) && !tcp_send_head(sk
))
2159 /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious
2160 * retransmissions due to small network reorderings, we implement
2161 * Mitigation A.3 in the RFC and delay the retransmission for a short
2162 * interval if appropriate.
2164 if (tp
->do_early_retrans
&& !tp
->retrans_out
&& tp
->sacked_out
&&
2165 (tp
->packets_out
>= (tp
->sacked_out
+ 1) && tp
->packets_out
< 4) &&
2166 !tcp_may_send_now(sk
))
2167 return !tcp_pause_early_retransmit(sk
, flag
);
2172 /* Detect loss in event "A" above by marking head of queue up as lost.
2173 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2174 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2175 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2176 * the maximum SACKed segments to pass before reaching this limit.
2178 static void tcp_mark_head_lost(struct sock
*sk
, int packets
, int mark_head
)
2180 struct tcp_sock
*tp
= tcp_sk(sk
);
2181 struct sk_buff
*skb
;
2182 int cnt
, oldcnt
, lost
;
2184 /* Use SACK to deduce losses of new sequences sent during recovery */
2185 const u32 loss_high
= tcp_is_sack(tp
) ? tp
->snd_nxt
: tp
->high_seq
;
2187 WARN_ON(packets
> tp
->packets_out
);
2188 if (tp
->lost_skb_hint
) {
2189 skb
= tp
->lost_skb_hint
;
2190 cnt
= tp
->lost_cnt_hint
;
2191 /* Head already handled? */
2192 if (mark_head
&& skb
!= tcp_write_queue_head(sk
))
2195 skb
= tcp_write_queue_head(sk
);
2199 tcp_for_write_queue_from(skb
, sk
) {
2200 if (skb
== tcp_send_head(sk
))
2202 /* TODO: do this better */
2203 /* this is not the most efficient way to do this... */
2204 tp
->lost_skb_hint
= skb
;
2205 tp
->lost_cnt_hint
= cnt
;
2207 if (after(TCP_SKB_CB(skb
)->end_seq
, loss_high
))
2211 if (tcp_is_fack(tp
) || tcp_is_reno(tp
) ||
2212 (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
))
2213 cnt
+= tcp_skb_pcount(skb
);
2215 if (cnt
> packets
) {
2216 if ((tcp_is_sack(tp
) && !tcp_is_fack(tp
)) ||
2217 (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
) ||
2218 (oldcnt
>= packets
))
2221 mss
= tcp_skb_mss(skb
);
2222 /* If needed, chop off the prefix to mark as lost. */
2223 lost
= (packets
- oldcnt
) * mss
;
2224 if (lost
< skb
->len
&&
2225 tcp_fragment(sk
, skb
, lost
, mss
, GFP_ATOMIC
) < 0)
2230 tcp_skb_mark_lost(tp
, skb
);
2235 tcp_verify_left_out(tp
);
2238 /* Account newly detected lost packet(s) */
2240 static void tcp_update_scoreboard(struct sock
*sk
, int fast_rexmit
)
2242 struct tcp_sock
*tp
= tcp_sk(sk
);
2244 if (tcp_is_reno(tp
)) {
2245 tcp_mark_head_lost(sk
, 1, 1);
2246 } else if (tcp_is_fack(tp
)) {
2247 int lost
= tp
->fackets_out
- tp
->reordering
;
2250 tcp_mark_head_lost(sk
, lost
, 0);
2252 int sacked_upto
= tp
->sacked_out
- tp
->reordering
;
2253 if (sacked_upto
>= 0)
2254 tcp_mark_head_lost(sk
, sacked_upto
, 0);
2255 else if (fast_rexmit
)
2256 tcp_mark_head_lost(sk
, 1, 1);
2260 static bool tcp_tsopt_ecr_before(const struct tcp_sock
*tp
, u32 when
)
2262 return tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
2263 before(tp
->rx_opt
.rcv_tsecr
, when
);
2266 /* skb is spurious retransmitted if the returned timestamp echo
2267 * reply is prior to the skb transmission time
2269 static bool tcp_skb_spurious_retrans(const struct tcp_sock
*tp
,
2270 const struct sk_buff
*skb
)
2272 return (TCP_SKB_CB(skb
)->sacked
& TCPCB_RETRANS
) &&
2273 tcp_tsopt_ecr_before(tp
, tcp_skb_timestamp(skb
));
2276 /* Nothing was retransmitted or returned timestamp is less
2277 * than timestamp of the first retransmission.
2279 static inline bool tcp_packet_delayed(const struct tcp_sock
*tp
)
2281 return !tp
->retrans_stamp
||
2282 tcp_tsopt_ecr_before(tp
, tp
->retrans_stamp
);
2285 /* Undo procedures. */
2287 /* We can clear retrans_stamp when there are no retransmissions in the
2288 * window. It would seem that it is trivially available for us in
2289 * tp->retrans_out, however, that kind of assumptions doesn't consider
2290 * what will happen if errors occur when sending retransmission for the
2291 * second time. ...It could the that such segment has only
2292 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2293 * the head skb is enough except for some reneging corner cases that
2294 * are not worth the effort.
2296 * Main reason for all this complexity is the fact that connection dying
2297 * time now depends on the validity of the retrans_stamp, in particular,
2298 * that successive retransmissions of a segment must not advance
2299 * retrans_stamp under any conditions.
2301 static bool tcp_any_retrans_done(const struct sock
*sk
)
2303 const struct tcp_sock
*tp
= tcp_sk(sk
);
2304 struct sk_buff
*skb
;
2306 if (tp
->retrans_out
)
2309 skb
= tcp_write_queue_head(sk
);
2310 if (unlikely(skb
&& TCP_SKB_CB(skb
)->sacked
& TCPCB_EVER_RETRANS
))
2316 #if FASTRETRANS_DEBUG > 1
2317 static void DBGUNDO(struct sock
*sk
, const char *msg
)
2319 struct tcp_sock
*tp
= tcp_sk(sk
);
2320 struct inet_sock
*inet
= inet_sk(sk
);
2322 if (sk
->sk_family
== AF_INET
) {
2323 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2325 &inet
->inet_daddr
, ntohs(inet
->inet_dport
),
2326 tp
->snd_cwnd
, tcp_left_out(tp
),
2327 tp
->snd_ssthresh
, tp
->prior_ssthresh
,
2330 #if IS_ENABLED(CONFIG_IPV6)
2331 else if (sk
->sk_family
== AF_INET6
) {
2332 struct ipv6_pinfo
*np
= inet6_sk(sk
);
2333 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2335 &np
->daddr
, ntohs(inet
->inet_dport
),
2336 tp
->snd_cwnd
, tcp_left_out(tp
),
2337 tp
->snd_ssthresh
, tp
->prior_ssthresh
,
2343 #define DBGUNDO(x...) do { } while (0)
2346 static void tcp_undo_cwnd_reduction(struct sock
*sk
, bool unmark_loss
)
2348 struct tcp_sock
*tp
= tcp_sk(sk
);
2351 struct sk_buff
*skb
;
2353 tcp_for_write_queue(skb
, sk
) {
2354 if (skb
== tcp_send_head(sk
))
2356 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_LOST
;
2359 tcp_clear_all_retrans_hints(tp
);
2362 if (tp
->prior_ssthresh
) {
2363 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2365 if (icsk
->icsk_ca_ops
->undo_cwnd
)
2366 tp
->snd_cwnd
= icsk
->icsk_ca_ops
->undo_cwnd(sk
);
2368 tp
->snd_cwnd
= max(tp
->snd_cwnd
, tp
->snd_ssthresh
<< 1);
2370 if (tp
->prior_ssthresh
> tp
->snd_ssthresh
) {
2371 tp
->snd_ssthresh
= tp
->prior_ssthresh
;
2372 tcp_ecn_withdraw_cwr(tp
);
2375 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2376 tp
->undo_marker
= 0;
2379 static inline bool tcp_may_undo(const struct tcp_sock
*tp
)
2381 return tp
->undo_marker
&& (!tp
->undo_retrans
|| tcp_packet_delayed(tp
));
2384 /* People celebrate: "We love our President!" */
2385 static bool tcp_try_undo_recovery(struct sock
*sk
)
2387 struct tcp_sock
*tp
= tcp_sk(sk
);
2389 if (tcp_may_undo(tp
)) {
2392 /* Happy end! We did not retransmit anything
2393 * or our original transmission succeeded.
2395 DBGUNDO(sk
, inet_csk(sk
)->icsk_ca_state
== TCP_CA_Loss
? "loss" : "retrans");
2396 tcp_undo_cwnd_reduction(sk
, false);
2397 if (inet_csk(sk
)->icsk_ca_state
== TCP_CA_Loss
)
2398 mib_idx
= LINUX_MIB_TCPLOSSUNDO
;
2400 mib_idx
= LINUX_MIB_TCPFULLUNDO
;
2402 NET_INC_STATS(sock_net(sk
), mib_idx
);
2404 if (tp
->snd_una
== tp
->high_seq
&& tcp_is_reno(tp
)) {
2405 /* Hold old state until something *above* high_seq
2406 * is ACKed. For Reno it is MUST to prevent false
2407 * fast retransmits (RFC2582). SACK TCP is safe. */
2408 if (!tcp_any_retrans_done(sk
))
2409 tp
->retrans_stamp
= 0;
2412 tcp_set_ca_state(sk
, TCP_CA_Open
);
2416 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2417 static bool tcp_try_undo_dsack(struct sock
*sk
)
2419 struct tcp_sock
*tp
= tcp_sk(sk
);
2421 if (tp
->undo_marker
&& !tp
->undo_retrans
) {
2422 DBGUNDO(sk
, "D-SACK");
2423 tcp_undo_cwnd_reduction(sk
, false);
2424 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPDSACKUNDO
);
2430 /* Undo during loss recovery after partial ACK or using F-RTO. */
2431 static bool tcp_try_undo_loss(struct sock
*sk
, bool frto_undo
)
2433 struct tcp_sock
*tp
= tcp_sk(sk
);
2435 if (frto_undo
|| tcp_may_undo(tp
)) {
2436 tcp_undo_cwnd_reduction(sk
, true);
2438 DBGUNDO(sk
, "partial loss");
2439 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPLOSSUNDO
);
2441 NET_INC_STATS(sock_net(sk
),
2442 LINUX_MIB_TCPSPURIOUSRTOS
);
2443 inet_csk(sk
)->icsk_retransmits
= 0;
2444 if (frto_undo
|| tcp_is_sack(tp
))
2445 tcp_set_ca_state(sk
, TCP_CA_Open
);
2451 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2452 * It computes the number of packets to send (sndcnt) based on packets newly
2454 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2455 * cwnd reductions across a full RTT.
2456 * 2) Otherwise PRR uses packet conservation to send as much as delivered.
2457 * But when the retransmits are acked without further losses, PRR
2458 * slow starts cwnd up to ssthresh to speed up the recovery.
2460 static void tcp_init_cwnd_reduction(struct sock
*sk
)
2462 struct tcp_sock
*tp
= tcp_sk(sk
);
2464 tp
->high_seq
= tp
->snd_nxt
;
2465 tp
->tlp_high_seq
= 0;
2466 tp
->snd_cwnd_cnt
= 0;
2467 tp
->prior_cwnd
= tp
->snd_cwnd
;
2468 tp
->prr_delivered
= 0;
2470 tp
->snd_ssthresh
= inet_csk(sk
)->icsk_ca_ops
->ssthresh(sk
);
2471 tcp_ecn_queue_cwr(tp
);
2474 static void tcp_cwnd_reduction(struct sock
*sk
, int newly_acked_sacked
,
2477 struct tcp_sock
*tp
= tcp_sk(sk
);
2479 int delta
= tp
->snd_ssthresh
- tcp_packets_in_flight(tp
);
2481 if (newly_acked_sacked
<= 0 || WARN_ON_ONCE(!tp
->prior_cwnd
))
2484 tp
->prr_delivered
+= newly_acked_sacked
;
2486 u64 dividend
= (u64
)tp
->snd_ssthresh
* tp
->prr_delivered
+
2488 sndcnt
= div_u64(dividend
, tp
->prior_cwnd
) - tp
->prr_out
;
2489 } else if ((flag
& FLAG_RETRANS_DATA_ACKED
) &&
2490 !(flag
& FLAG_LOST_RETRANS
)) {
2491 sndcnt
= min_t(int, delta
,
2492 max_t(int, tp
->prr_delivered
- tp
->prr_out
,
2493 newly_acked_sacked
) + 1);
2495 sndcnt
= min(delta
, newly_acked_sacked
);
2497 /* Force a fast retransmit upon entering fast recovery */
2498 sndcnt
= max(sndcnt
, (tp
->prr_out
? 0 : 1));
2499 tp
->snd_cwnd
= tcp_packets_in_flight(tp
) + sndcnt
;
2502 static inline void tcp_end_cwnd_reduction(struct sock
*sk
)
2504 struct tcp_sock
*tp
= tcp_sk(sk
);
2506 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2507 if (inet_csk(sk
)->icsk_ca_state
== TCP_CA_CWR
||
2508 (tp
->undo_marker
&& tp
->snd_ssthresh
< TCP_INFINITE_SSTHRESH
)) {
2509 tp
->snd_cwnd
= tp
->snd_ssthresh
;
2510 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2512 tcp_ca_event(sk
, CA_EVENT_COMPLETE_CWR
);
2515 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2516 void tcp_enter_cwr(struct sock
*sk
)
2518 struct tcp_sock
*tp
= tcp_sk(sk
);
2520 tp
->prior_ssthresh
= 0;
2521 if (inet_csk(sk
)->icsk_ca_state
< TCP_CA_CWR
) {
2522 tp
->undo_marker
= 0;
2523 tcp_init_cwnd_reduction(sk
);
2524 tcp_set_ca_state(sk
, TCP_CA_CWR
);
2527 EXPORT_SYMBOL(tcp_enter_cwr
);
2529 static void tcp_try_keep_open(struct sock
*sk
)
2531 struct tcp_sock
*tp
= tcp_sk(sk
);
2532 int state
= TCP_CA_Open
;
2534 if (tcp_left_out(tp
) || tcp_any_retrans_done(sk
))
2535 state
= TCP_CA_Disorder
;
2537 if (inet_csk(sk
)->icsk_ca_state
!= state
) {
2538 tcp_set_ca_state(sk
, state
);
2539 tp
->high_seq
= tp
->snd_nxt
;
2543 static void tcp_try_to_open(struct sock
*sk
, int flag
)
2545 struct tcp_sock
*tp
= tcp_sk(sk
);
2547 tcp_verify_left_out(tp
);
2549 if (!tcp_any_retrans_done(sk
))
2550 tp
->retrans_stamp
= 0;
2552 if (flag
& FLAG_ECE
)
2555 if (inet_csk(sk
)->icsk_ca_state
!= TCP_CA_CWR
) {
2556 tcp_try_keep_open(sk
);
2560 static void tcp_mtup_probe_failed(struct sock
*sk
)
2562 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2564 icsk
->icsk_mtup
.search_high
= icsk
->icsk_mtup
.probe_size
- 1;
2565 icsk
->icsk_mtup
.probe_size
= 0;
2566 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPMTUPFAIL
);
2569 static void tcp_mtup_probe_success(struct sock
*sk
)
2571 struct tcp_sock
*tp
= tcp_sk(sk
);
2572 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2574 /* FIXME: breaks with very large cwnd */
2575 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
2576 tp
->snd_cwnd
= tp
->snd_cwnd
*
2577 tcp_mss_to_mtu(sk
, tp
->mss_cache
) /
2578 icsk
->icsk_mtup
.probe_size
;
2579 tp
->snd_cwnd_cnt
= 0;
2580 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2581 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
2583 icsk
->icsk_mtup
.search_low
= icsk
->icsk_mtup
.probe_size
;
2584 icsk
->icsk_mtup
.probe_size
= 0;
2585 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
2586 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPMTUPSUCCESS
);
2589 /* Do a simple retransmit without using the backoff mechanisms in
2590 * tcp_timer. This is used for path mtu discovery.
2591 * The socket is already locked here.
2593 void tcp_simple_retransmit(struct sock
*sk
)
2595 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2596 struct tcp_sock
*tp
= tcp_sk(sk
);
2597 struct sk_buff
*skb
;
2598 unsigned int mss
= tcp_current_mss(sk
);
2599 u32 prior_lost
= tp
->lost_out
;
2601 tcp_for_write_queue(skb
, sk
) {
2602 if (skb
== tcp_send_head(sk
))
2604 if (tcp_skb_seglen(skb
) > mss
&&
2605 !(TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)) {
2606 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
) {
2607 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
2608 tp
->retrans_out
-= tcp_skb_pcount(skb
);
2610 tcp_skb_mark_lost_uncond_verify(tp
, skb
);
2614 tcp_clear_retrans_hints_partial(tp
);
2616 if (prior_lost
== tp
->lost_out
)
2619 if (tcp_is_reno(tp
))
2620 tcp_limit_reno_sacked(tp
);
2622 tcp_verify_left_out(tp
);
2624 /* Don't muck with the congestion window here.
2625 * Reason is that we do not increase amount of _data_
2626 * in network, but units changed and effective
2627 * cwnd/ssthresh really reduced now.
2629 if (icsk
->icsk_ca_state
!= TCP_CA_Loss
) {
2630 tp
->high_seq
= tp
->snd_nxt
;
2631 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
2632 tp
->prior_ssthresh
= 0;
2633 tp
->undo_marker
= 0;
2634 tcp_set_ca_state(sk
, TCP_CA_Loss
);
2636 tcp_xmit_retransmit_queue(sk
);
2638 EXPORT_SYMBOL(tcp_simple_retransmit
);
2640 static void tcp_enter_recovery(struct sock
*sk
, bool ece_ack
)
2642 struct tcp_sock
*tp
= tcp_sk(sk
);
2645 if (tcp_is_reno(tp
))
2646 mib_idx
= LINUX_MIB_TCPRENORECOVERY
;
2648 mib_idx
= LINUX_MIB_TCPSACKRECOVERY
;
2650 NET_INC_STATS(sock_net(sk
), mib_idx
);
2652 tp
->prior_ssthresh
= 0;
2655 if (!tcp_in_cwnd_reduction(sk
)) {
2657 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
2658 tcp_init_cwnd_reduction(sk
);
2660 tcp_set_ca_state(sk
, TCP_CA_Recovery
);
2663 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2664 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2666 static void tcp_process_loss(struct sock
*sk
, int flag
, bool is_dupack
,
2669 struct tcp_sock
*tp
= tcp_sk(sk
);
2670 bool recovered
= !before(tp
->snd_una
, tp
->high_seq
);
2672 if ((flag
& FLAG_SND_UNA_ADVANCED
) &&
2673 tcp_try_undo_loss(sk
, false))
2676 if (tp
->frto
) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2677 /* Step 3.b. A timeout is spurious if not all data are
2678 * lost, i.e., never-retransmitted data are (s)acked.
2680 if ((flag
& FLAG_ORIG_SACK_ACKED
) &&
2681 tcp_try_undo_loss(sk
, true))
2684 if (after(tp
->snd_nxt
, tp
->high_seq
)) {
2685 if (flag
& FLAG_DATA_SACKED
|| is_dupack
)
2686 tp
->frto
= 0; /* Step 3.a. loss was real */
2687 } else if (flag
& FLAG_SND_UNA_ADVANCED
&& !recovered
) {
2688 tp
->high_seq
= tp
->snd_nxt
;
2689 /* Step 2.b. Try send new data (but deferred until cwnd
2690 * is updated in tcp_ack()). Otherwise fall back to
2691 * the conventional recovery.
2693 if (tcp_send_head(sk
) &&
2694 after(tcp_wnd_end(tp
), tp
->snd_nxt
)) {
2695 *rexmit
= REXMIT_NEW
;
2703 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2704 tcp_try_undo_recovery(sk
);
2707 if (tcp_is_reno(tp
)) {
2708 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2709 * delivered. Lower inflight to clock out (re)tranmissions.
2711 if (after(tp
->snd_nxt
, tp
->high_seq
) && is_dupack
)
2712 tcp_add_reno_sack(sk
);
2713 else if (flag
& FLAG_SND_UNA_ADVANCED
)
2714 tcp_reset_reno_sack(tp
);
2716 *rexmit
= REXMIT_LOST
;
2719 /* Undo during fast recovery after partial ACK. */
2720 static bool tcp_try_undo_partial(struct sock
*sk
, const int acked
)
2722 struct tcp_sock
*tp
= tcp_sk(sk
);
2724 if (tp
->undo_marker
&& tcp_packet_delayed(tp
)) {
2725 /* Plain luck! Hole if filled with delayed
2726 * packet, rather than with a retransmit.
2728 tcp_update_reordering(sk
, tcp_fackets_out(tp
) + acked
, 1);
2730 /* We are getting evidence that the reordering degree is higher
2731 * than we realized. If there are no retransmits out then we
2732 * can undo. Otherwise we clock out new packets but do not
2733 * mark more packets lost or retransmit more.
2735 if (tp
->retrans_out
)
2738 if (!tcp_any_retrans_done(sk
))
2739 tp
->retrans_stamp
= 0;
2741 DBGUNDO(sk
, "partial recovery");
2742 tcp_undo_cwnd_reduction(sk
, true);
2743 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPPARTIALUNDO
);
2744 tcp_try_keep_open(sk
);
2750 /* Process an event, which can update packets-in-flight not trivially.
2751 * Main goal of this function is to calculate new estimate for left_out,
2752 * taking into account both packets sitting in receiver's buffer and
2753 * packets lost by network.
2755 * Besides that it updates the congestion state when packet loss or ECN
2756 * is detected. But it does not reduce the cwnd, it is done by the
2757 * congestion control later.
2759 * It does _not_ decide what to send, it is made in function
2760 * tcp_xmit_retransmit_queue().
2762 static void tcp_fastretrans_alert(struct sock
*sk
, const int acked
,
2763 bool is_dupack
, int *ack_flag
, int *rexmit
)
2765 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2766 struct tcp_sock
*tp
= tcp_sk(sk
);
2767 int fast_rexmit
= 0, flag
= *ack_flag
;
2768 bool do_lost
= is_dupack
|| ((flag
& FLAG_DATA_SACKED
) &&
2769 (tcp_fackets_out(tp
) > tp
->reordering
));
2771 if (WARN_ON(!tp
->packets_out
&& tp
->sacked_out
))
2773 if (WARN_ON(!tp
->sacked_out
&& tp
->fackets_out
))
2774 tp
->fackets_out
= 0;
2776 /* Now state machine starts.
2777 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2778 if (flag
& FLAG_ECE
)
2779 tp
->prior_ssthresh
= 0;
2781 /* B. In all the states check for reneging SACKs. */
2782 if (tcp_check_sack_reneging(sk
, flag
))
2785 /* C. Check consistency of the current state. */
2786 tcp_verify_left_out(tp
);
2788 /* D. Check state exit conditions. State can be terminated
2789 * when high_seq is ACKed. */
2790 if (icsk
->icsk_ca_state
== TCP_CA_Open
) {
2791 WARN_ON(tp
->retrans_out
!= 0);
2792 tp
->retrans_stamp
= 0;
2793 } else if (!before(tp
->snd_una
, tp
->high_seq
)) {
2794 switch (icsk
->icsk_ca_state
) {
2796 /* CWR is to be held something *above* high_seq
2797 * is ACKed for CWR bit to reach receiver. */
2798 if (tp
->snd_una
!= tp
->high_seq
) {
2799 tcp_end_cwnd_reduction(sk
);
2800 tcp_set_ca_state(sk
, TCP_CA_Open
);
2804 case TCP_CA_Recovery
:
2805 if (tcp_is_reno(tp
))
2806 tcp_reset_reno_sack(tp
);
2807 if (tcp_try_undo_recovery(sk
))
2809 tcp_end_cwnd_reduction(sk
);
2814 /* Use RACK to detect loss */
2815 if (sysctl_tcp_recovery
& TCP_RACK_LOST_RETRANS
&&
2816 tcp_rack_mark_lost(sk
)) {
2817 flag
|= FLAG_LOST_RETRANS
;
2818 *ack_flag
|= FLAG_LOST_RETRANS
;
2821 /* E. Process state. */
2822 switch (icsk
->icsk_ca_state
) {
2823 case TCP_CA_Recovery
:
2824 if (!(flag
& FLAG_SND_UNA_ADVANCED
)) {
2825 if (tcp_is_reno(tp
) && is_dupack
)
2826 tcp_add_reno_sack(sk
);
2828 if (tcp_try_undo_partial(sk
, acked
))
2830 /* Partial ACK arrived. Force fast retransmit. */
2831 do_lost
= tcp_is_reno(tp
) ||
2832 tcp_fackets_out(tp
) > tp
->reordering
;
2834 if (tcp_try_undo_dsack(sk
)) {
2835 tcp_try_keep_open(sk
);
2840 tcp_process_loss(sk
, flag
, is_dupack
, rexmit
);
2841 if (icsk
->icsk_ca_state
!= TCP_CA_Open
&&
2842 !(flag
& FLAG_LOST_RETRANS
))
2844 /* Change state if cwnd is undone or retransmits are lost */
2846 if (tcp_is_reno(tp
)) {
2847 if (flag
& FLAG_SND_UNA_ADVANCED
)
2848 tcp_reset_reno_sack(tp
);
2850 tcp_add_reno_sack(sk
);
2853 if (icsk
->icsk_ca_state
<= TCP_CA_Disorder
)
2854 tcp_try_undo_dsack(sk
);
2856 if (!tcp_time_to_recover(sk
, flag
)) {
2857 tcp_try_to_open(sk
, flag
);
2861 /* MTU probe failure: don't reduce cwnd */
2862 if (icsk
->icsk_ca_state
< TCP_CA_CWR
&&
2863 icsk
->icsk_mtup
.probe_size
&&
2864 tp
->snd_una
== tp
->mtu_probe
.probe_seq_start
) {
2865 tcp_mtup_probe_failed(sk
);
2866 /* Restores the reduction we did in tcp_mtup_probe() */
2868 tcp_simple_retransmit(sk
);
2872 /* Otherwise enter Recovery state */
2873 tcp_enter_recovery(sk
, (flag
& FLAG_ECE
));
2878 tcp_update_scoreboard(sk
, fast_rexmit
);
2879 *rexmit
= REXMIT_LOST
;
2882 /* Kathleen Nichols' algorithm for tracking the minimum value of
2883 * a data stream over some fixed time interval. (E.g., the minimum
2884 * RTT over the past five minutes.) It uses constant space and constant
2885 * time per update yet almost always delivers the same minimum as an
2886 * implementation that has to keep all the data in the window.
2888 * The algorithm keeps track of the best, 2nd best & 3rd best min
2889 * values, maintaining an invariant that the measurement time of the
2890 * n'th best >= n-1'th best. It also makes sure that the three values
2891 * are widely separated in the time window since that bounds the worse
2892 * case error when that data is monotonically increasing over the window.
2894 * Upon getting a new min, we can forget everything earlier because it
2895 * has no value - the new min is <= everything else in the window by
2896 * definition and it's the most recent. So we restart fresh on every new min
2897 * and overwrites 2nd & 3rd choices. The same property holds for 2nd & 3rd
2900 static void tcp_update_rtt_min(struct sock
*sk
, u32 rtt_us
)
2902 const u32 now
= tcp_time_stamp
, wlen
= sysctl_tcp_min_rtt_wlen
* HZ
;
2903 struct rtt_meas
*m
= tcp_sk(sk
)->rtt_min
;
2904 struct rtt_meas rttm
= {
2905 .rtt
= likely(rtt_us
) ? rtt_us
: jiffies_to_usecs(1),
2910 /* Check if the new measurement updates the 1st, 2nd, or 3rd choices */
2911 if (unlikely(rttm
.rtt
<= m
[0].rtt
))
2912 m
[0] = m
[1] = m
[2] = rttm
;
2913 else if (rttm
.rtt
<= m
[1].rtt
)
2915 else if (rttm
.rtt
<= m
[2].rtt
)
2918 elapsed
= now
- m
[0].ts
;
2919 if (unlikely(elapsed
> wlen
)) {
2920 /* Passed entire window without a new min so make 2nd choice
2921 * the new min & 3rd choice the new 2nd. So forth and so on.
2926 if (now
- m
[0].ts
> wlen
) {
2929 if (now
- m
[0].ts
> wlen
)
2932 } else if (m
[1].ts
== m
[0].ts
&& elapsed
> wlen
/ 4) {
2933 /* Passed a quarter of the window without a new min so
2934 * take 2nd choice from the 2nd quarter of the window.
2937 } else if (m
[2].ts
== m
[1].ts
&& elapsed
> wlen
/ 2) {
2938 /* Passed half the window without a new min so take the 3rd
2939 * choice from the last half of the window.
2945 static inline bool tcp_ack_update_rtt(struct sock
*sk
, const int flag
,
2946 long seq_rtt_us
, long sack_rtt_us
,
2949 const struct tcp_sock
*tp
= tcp_sk(sk
);
2951 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2952 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2953 * Karn's algorithm forbids taking RTT if some retransmitted data
2954 * is acked (RFC6298).
2957 seq_rtt_us
= sack_rtt_us
;
2959 /* RTTM Rule: A TSecr value received in a segment is used to
2960 * update the averaged RTT measurement only if the segment
2961 * acknowledges some new data, i.e., only if it advances the
2962 * left edge of the send window.
2963 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2965 if (seq_rtt_us
< 0 && tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
2967 seq_rtt_us
= ca_rtt_us
= jiffies_to_usecs(tcp_time_stamp
-
2968 tp
->rx_opt
.rcv_tsecr
);
2972 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2973 * always taken together with ACK, SACK, or TS-opts. Any negative
2974 * values will be skipped with the seq_rtt_us < 0 check above.
2976 tcp_update_rtt_min(sk
, ca_rtt_us
);
2977 tcp_rtt_estimator(sk
, seq_rtt_us
);
2980 /* RFC6298: only reset backoff on valid RTT measurement. */
2981 inet_csk(sk
)->icsk_backoff
= 0;
2985 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2986 void tcp_synack_rtt_meas(struct sock
*sk
, struct request_sock
*req
)
2990 if (req
&& !req
->num_retrans
&& tcp_rsk(req
)->snt_synack
.v64
) {
2991 struct skb_mstamp now
;
2993 skb_mstamp_get(&now
);
2994 rtt_us
= skb_mstamp_us_delta(&now
, &tcp_rsk(req
)->snt_synack
);
2997 tcp_ack_update_rtt(sk
, FLAG_SYN_ACKED
, rtt_us
, -1L, rtt_us
);
3001 static void tcp_cong_avoid(struct sock
*sk
, u32 ack
, u32 acked
)
3003 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
3005 icsk
->icsk_ca_ops
->cong_avoid(sk
, ack
, acked
);
3006 tcp_sk(sk
)->snd_cwnd_stamp
= tcp_time_stamp
;
3009 /* Restart timer after forward progress on connection.
3010 * RFC2988 recommends to restart timer to now+rto.
3012 void tcp_rearm_rto(struct sock
*sk
)
3014 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
3015 struct tcp_sock
*tp
= tcp_sk(sk
);
3017 /* If the retrans timer is currently being used by Fast Open
3018 * for SYN-ACK retrans purpose, stay put.
3020 if (tp
->fastopen_rsk
)
3023 if (!tp
->packets_out
) {
3024 inet_csk_clear_xmit_timer(sk
, ICSK_TIME_RETRANS
);
3026 u32 rto
= inet_csk(sk
)->icsk_rto
;
3027 /* Offset the time elapsed after installing regular RTO */
3028 if (icsk
->icsk_pending
== ICSK_TIME_EARLY_RETRANS
||
3029 icsk
->icsk_pending
== ICSK_TIME_LOSS_PROBE
) {
3030 struct sk_buff
*skb
= tcp_write_queue_head(sk
);
3031 const u32 rto_time_stamp
=
3032 tcp_skb_timestamp(skb
) + rto
;
3033 s32 delta
= (s32
)(rto_time_stamp
- tcp_time_stamp
);
3034 /* delta may not be positive if the socket is locked
3035 * when the retrans timer fires and is rescheduled.
3040 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
, rto
,
3045 /* This function is called when the delayed ER timer fires. TCP enters
3046 * fast recovery and performs fast-retransmit.
3048 void tcp_resume_early_retransmit(struct sock
*sk
)
3050 struct tcp_sock
*tp
= tcp_sk(sk
);
3054 /* Stop if ER is disabled after the delayed ER timer is scheduled */
3055 if (!tp
->do_early_retrans
)
3058 tcp_enter_recovery(sk
, false);
3059 tcp_update_scoreboard(sk
, 1);
3060 tcp_xmit_retransmit_queue(sk
);
3063 /* If we get here, the whole TSO packet has not been acked. */
3064 static u32
tcp_tso_acked(struct sock
*sk
, struct sk_buff
*skb
)
3066 struct tcp_sock
*tp
= tcp_sk(sk
);
3069 BUG_ON(!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
));
3071 packets_acked
= tcp_skb_pcount(skb
);
3072 if (tcp_trim_head(sk
, skb
, tp
->snd_una
- TCP_SKB_CB(skb
)->seq
))
3074 packets_acked
-= tcp_skb_pcount(skb
);
3076 if (packets_acked
) {
3077 BUG_ON(tcp_skb_pcount(skb
) == 0);
3078 BUG_ON(!before(TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
));
3081 return packets_acked
;
3084 static void tcp_ack_tstamp(struct sock
*sk
, struct sk_buff
*skb
,
3087 const struct skb_shared_info
*shinfo
;
3089 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3090 if (likely(!TCP_SKB_CB(skb
)->txstamp_ack
))
3093 shinfo
= skb_shinfo(skb
);
3094 if (!before(shinfo
->tskey
, prior_snd_una
) &&
3095 before(shinfo
->tskey
, tcp_sk(sk
)->snd_una
))
3096 __skb_tstamp_tx(skb
, NULL
, sk
, SCM_TSTAMP_ACK
);
3099 /* Remove acknowledged frames from the retransmission queue. If our packet
3100 * is before the ack sequence we can discard it as it's confirmed to have
3101 * arrived at the other end.
3103 static int tcp_clean_rtx_queue(struct sock
*sk
, int prior_fackets
,
3104 u32 prior_snd_una
, int *acked
,
3105 struct tcp_sacktag_state
*sack
)
3107 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
3108 struct skb_mstamp first_ackt
, last_ackt
, now
;
3109 struct tcp_sock
*tp
= tcp_sk(sk
);
3110 u32 prior_sacked
= tp
->sacked_out
;
3111 u32 reord
= tp
->packets_out
;
3112 bool fully_acked
= true;
3113 long sack_rtt_us
= -1L;
3114 long seq_rtt_us
= -1L;
3115 long ca_rtt_us
= -1L;
3116 struct sk_buff
*skb
;
3118 u32 last_in_flight
= 0;
3124 while ((skb
= tcp_write_queue_head(sk
)) && skb
!= tcp_send_head(sk
)) {
3125 struct tcp_skb_cb
*scb
= TCP_SKB_CB(skb
);
3126 u8 sacked
= scb
->sacked
;
3129 tcp_ack_tstamp(sk
, skb
, prior_snd_una
);
3131 /* Determine how many packets and what bytes were acked, tso and else */
3132 if (after(scb
->end_seq
, tp
->snd_una
)) {
3133 if (tcp_skb_pcount(skb
) == 1 ||
3134 !after(tp
->snd_una
, scb
->seq
))
3137 acked_pcount
= tcp_tso_acked(sk
, skb
);
3141 fully_acked
= false;
3143 /* Speedup tcp_unlink_write_queue() and next loop */
3144 prefetchw(skb
->next
);
3145 acked_pcount
= tcp_skb_pcount(skb
);
3148 if (unlikely(sacked
& TCPCB_RETRANS
)) {
3149 if (sacked
& TCPCB_SACKED_RETRANS
)
3150 tp
->retrans_out
-= acked_pcount
;
3151 flag
|= FLAG_RETRANS_DATA_ACKED
;
3152 } else if (!(sacked
& TCPCB_SACKED_ACKED
)) {
3153 last_ackt
= skb
->skb_mstamp
;
3154 WARN_ON_ONCE(last_ackt
.v64
== 0);
3155 if (!first_ackt
.v64
)
3156 first_ackt
= last_ackt
;
3158 last_in_flight
= TCP_SKB_CB(skb
)->tx
.in_flight
;
3159 reord
= min(pkts_acked
, reord
);
3160 if (!after(scb
->end_seq
, tp
->high_seq
))
3161 flag
|= FLAG_ORIG_SACK_ACKED
;
3164 if (sacked
& TCPCB_SACKED_ACKED
) {
3165 tp
->sacked_out
-= acked_pcount
;
3166 } else if (tcp_is_sack(tp
)) {
3167 tp
->delivered
+= acked_pcount
;
3168 if (!tcp_skb_spurious_retrans(tp
, skb
))
3169 tcp_rack_advance(tp
, &skb
->skb_mstamp
, sacked
);
3171 if (sacked
& TCPCB_LOST
)
3172 tp
->lost_out
-= acked_pcount
;
3174 tp
->packets_out
-= acked_pcount
;
3175 pkts_acked
+= acked_pcount
;
3177 /* Initial outgoing SYN's get put onto the write_queue
3178 * just like anything else we transmit. It is not
3179 * true data, and if we misinform our callers that
3180 * this ACK acks real data, we will erroneously exit
3181 * connection startup slow start one packet too
3182 * quickly. This is severely frowned upon behavior.
3184 if (likely(!(scb
->tcp_flags
& TCPHDR_SYN
))) {
3185 flag
|= FLAG_DATA_ACKED
;
3187 flag
|= FLAG_SYN_ACKED
;
3188 tp
->retrans_stamp
= 0;
3194 tcp_unlink_write_queue(skb
, sk
);
3195 sk_wmem_free_skb(sk
, skb
);
3196 if (unlikely(skb
== tp
->retransmit_skb_hint
))
3197 tp
->retransmit_skb_hint
= NULL
;
3198 if (unlikely(skb
== tp
->lost_skb_hint
))
3199 tp
->lost_skb_hint
= NULL
;
3202 if (likely(between(tp
->snd_up
, prior_snd_una
, tp
->snd_una
)))
3203 tp
->snd_up
= tp
->snd_una
;
3205 if (skb
&& (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
))
3206 flag
|= FLAG_SACK_RENEGING
;
3208 skb_mstamp_get(&now
);
3209 if (likely(first_ackt
.v64
) && !(flag
& FLAG_RETRANS_DATA_ACKED
)) {
3210 seq_rtt_us
= skb_mstamp_us_delta(&now
, &first_ackt
);
3211 ca_rtt_us
= skb_mstamp_us_delta(&now
, &last_ackt
);
3213 if (sack
->first_sackt
.v64
) {
3214 sack_rtt_us
= skb_mstamp_us_delta(&now
, &sack
->first_sackt
);
3215 ca_rtt_us
= skb_mstamp_us_delta(&now
, &sack
->last_sackt
);
3218 rtt_update
= tcp_ack_update_rtt(sk
, flag
, seq_rtt_us
, sack_rtt_us
,
3221 if (flag
& FLAG_ACKED
) {
3223 if (unlikely(icsk
->icsk_mtup
.probe_size
&&
3224 !after(tp
->mtu_probe
.probe_seq_end
, tp
->snd_una
))) {
3225 tcp_mtup_probe_success(sk
);
3228 if (tcp_is_reno(tp
)) {
3229 tcp_remove_reno_sacks(sk
, pkts_acked
);
3233 /* Non-retransmitted hole got filled? That's reordering */
3234 if (reord
< prior_fackets
)
3235 tcp_update_reordering(sk
, tp
->fackets_out
- reord
, 0);
3237 delta
= tcp_is_fack(tp
) ? pkts_acked
:
3238 prior_sacked
- tp
->sacked_out
;
3239 tp
->lost_cnt_hint
-= min(tp
->lost_cnt_hint
, delta
);
3242 tp
->fackets_out
-= min(pkts_acked
, tp
->fackets_out
);
3244 } else if (skb
&& rtt_update
&& sack_rtt_us
>= 0 &&
3245 sack_rtt_us
> skb_mstamp_us_delta(&now
, &skb
->skb_mstamp
)) {
3246 /* Do not re-arm RTO if the sack RTT is measured from data sent
3247 * after when the head was last (re)transmitted. Otherwise the
3248 * timeout may continue to extend in loss recovery.
3253 if (icsk
->icsk_ca_ops
->pkts_acked
) {
3254 struct ack_sample sample
= { .pkts_acked
= pkts_acked
,
3255 .rtt_us
= ca_rtt_us
,
3256 .in_flight
= last_in_flight
};
3258 icsk
->icsk_ca_ops
->pkts_acked(sk
, &sample
);
3261 #if FASTRETRANS_DEBUG > 0
3262 WARN_ON((int)tp
->sacked_out
< 0);
3263 WARN_ON((int)tp
->lost_out
< 0);
3264 WARN_ON((int)tp
->retrans_out
< 0);
3265 if (!tp
->packets_out
&& tcp_is_sack(tp
)) {
3266 icsk
= inet_csk(sk
);
3268 pr_debug("Leak l=%u %d\n",
3269 tp
->lost_out
, icsk
->icsk_ca_state
);
3272 if (tp
->sacked_out
) {
3273 pr_debug("Leak s=%u %d\n",
3274 tp
->sacked_out
, icsk
->icsk_ca_state
);
3277 if (tp
->retrans_out
) {
3278 pr_debug("Leak r=%u %d\n",
3279 tp
->retrans_out
, icsk
->icsk_ca_state
);
3280 tp
->retrans_out
= 0;
3284 *acked
= pkts_acked
;
3288 static void tcp_ack_probe(struct sock
*sk
)
3290 const struct tcp_sock
*tp
= tcp_sk(sk
);
3291 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3293 /* Was it a usable window open? */
3295 if (!after(TCP_SKB_CB(tcp_send_head(sk
))->end_seq
, tcp_wnd_end(tp
))) {
3296 icsk
->icsk_backoff
= 0;
3297 inet_csk_clear_xmit_timer(sk
, ICSK_TIME_PROBE0
);
3298 /* Socket must be waked up by subsequent tcp_data_snd_check().
3299 * This function is not for random using!
3302 unsigned long when
= tcp_probe0_when(sk
, TCP_RTO_MAX
);
3304 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_PROBE0
,
3309 static inline bool tcp_ack_is_dubious(const struct sock
*sk
, const int flag
)
3311 return !(flag
& FLAG_NOT_DUP
) || (flag
& FLAG_CA_ALERT
) ||
3312 inet_csk(sk
)->icsk_ca_state
!= TCP_CA_Open
;
3315 /* Decide wheather to run the increase function of congestion control. */
3316 static inline bool tcp_may_raise_cwnd(const struct sock
*sk
, const int flag
)
3318 /* If reordering is high then always grow cwnd whenever data is
3319 * delivered regardless of its ordering. Otherwise stay conservative
3320 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3321 * new SACK or ECE mark may first advance cwnd here and later reduce
3322 * cwnd in tcp_fastretrans_alert() based on more states.
3324 if (tcp_sk(sk
)->reordering
> sock_net(sk
)->ipv4
.sysctl_tcp_reordering
)
3325 return flag
& FLAG_FORWARD_PROGRESS
;
3327 return flag
& FLAG_DATA_ACKED
;
3330 /* The "ultimate" congestion control function that aims to replace the rigid
3331 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3332 * It's called toward the end of processing an ACK with precise rate
3333 * information. All transmission or retransmission are delayed afterwards.
3335 static void tcp_cong_control(struct sock
*sk
, u32 ack
, u32 acked_sacked
,
3338 if (tcp_in_cwnd_reduction(sk
)) {
3339 /* Reduce cwnd if state mandates */
3340 tcp_cwnd_reduction(sk
, acked_sacked
, flag
);
3341 } else if (tcp_may_raise_cwnd(sk
, flag
)) {
3342 /* Advance cwnd if state allows */
3343 tcp_cong_avoid(sk
, ack
, acked_sacked
);
3345 tcp_update_pacing_rate(sk
);
3348 /* Check that window update is acceptable.
3349 * The function assumes that snd_una<=ack<=snd_next.
3351 static inline bool tcp_may_update_window(const struct tcp_sock
*tp
,
3352 const u32 ack
, const u32 ack_seq
,
3355 return after(ack
, tp
->snd_una
) ||
3356 after(ack_seq
, tp
->snd_wl1
) ||
3357 (ack_seq
== tp
->snd_wl1
&& nwin
> tp
->snd_wnd
);
3360 /* If we update tp->snd_una, also update tp->bytes_acked */
3361 static void tcp_snd_una_update(struct tcp_sock
*tp
, u32 ack
)
3363 u32 delta
= ack
- tp
->snd_una
;
3365 sock_owned_by_me((struct sock
*)tp
);
3366 u64_stats_update_begin_raw(&tp
->syncp
);
3367 tp
->bytes_acked
+= delta
;
3368 u64_stats_update_end_raw(&tp
->syncp
);
3372 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3373 static void tcp_rcv_nxt_update(struct tcp_sock
*tp
, u32 seq
)
3375 u32 delta
= seq
- tp
->rcv_nxt
;
3377 sock_owned_by_me((struct sock
*)tp
);
3378 u64_stats_update_begin_raw(&tp
->syncp
);
3379 tp
->bytes_received
+= delta
;
3380 u64_stats_update_end_raw(&tp
->syncp
);
3384 /* Update our send window.
3386 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3387 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3389 static int tcp_ack_update_window(struct sock
*sk
, const struct sk_buff
*skb
, u32 ack
,
3392 struct tcp_sock
*tp
= tcp_sk(sk
);
3394 u32 nwin
= ntohs(tcp_hdr(skb
)->window
);
3396 if (likely(!tcp_hdr(skb
)->syn
))
3397 nwin
<<= tp
->rx_opt
.snd_wscale
;
3399 if (tcp_may_update_window(tp
, ack
, ack_seq
, nwin
)) {
3400 flag
|= FLAG_WIN_UPDATE
;
3401 tcp_update_wl(tp
, ack_seq
);
3403 if (tp
->snd_wnd
!= nwin
) {
3406 /* Note, it is the only place, where
3407 * fast path is recovered for sending TCP.
3410 tcp_fast_path_check(sk
);
3412 if (tcp_send_head(sk
))
3413 tcp_slow_start_after_idle_check(sk
);
3415 if (nwin
> tp
->max_window
) {
3416 tp
->max_window
= nwin
;
3417 tcp_sync_mss(sk
, inet_csk(sk
)->icsk_pmtu_cookie
);
3422 tcp_snd_una_update(tp
, ack
);
3427 static bool __tcp_oow_rate_limited(struct net
*net
, int mib_idx
,
3428 u32
*last_oow_ack_time
)
3430 if (*last_oow_ack_time
) {
3431 s32 elapsed
= (s32
)(tcp_time_stamp
- *last_oow_ack_time
);
3433 if (0 <= elapsed
&& elapsed
< sysctl_tcp_invalid_ratelimit
) {
3434 NET_INC_STATS(net
, mib_idx
);
3435 return true; /* rate-limited: don't send yet! */
3439 *last_oow_ack_time
= tcp_time_stamp
;
3441 return false; /* not rate-limited: go ahead, send dupack now! */
3444 /* Return true if we're currently rate-limiting out-of-window ACKs and
3445 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3446 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3447 * attacks that send repeated SYNs or ACKs for the same connection. To
3448 * do this, we do not send a duplicate SYNACK or ACK if the remote
3449 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3451 bool tcp_oow_rate_limited(struct net
*net
, const struct sk_buff
*skb
,
3452 int mib_idx
, u32
*last_oow_ack_time
)
3454 /* Data packets without SYNs are not likely part of an ACK loop. */
3455 if ((TCP_SKB_CB(skb
)->seq
!= TCP_SKB_CB(skb
)->end_seq
) &&
3459 return __tcp_oow_rate_limited(net
, mib_idx
, last_oow_ack_time
);
3462 /* RFC 5961 7 [ACK Throttling] */
3463 static void tcp_send_challenge_ack(struct sock
*sk
, const struct sk_buff
*skb
)
3465 /* unprotected vars, we dont care of overwrites */
3466 static u32 challenge_timestamp
;
3467 static unsigned int challenge_count
;
3468 struct tcp_sock
*tp
= tcp_sk(sk
);
3471 /* First check our per-socket dupack rate limit. */
3472 if (__tcp_oow_rate_limited(sock_net(sk
),
3473 LINUX_MIB_TCPACKSKIPPEDCHALLENGE
,
3474 &tp
->last_oow_ack_time
))
3477 /* Then check host-wide RFC 5961 rate limit. */
3479 if (now
!= challenge_timestamp
) {
3480 u32 half
= (sysctl_tcp_challenge_ack_limit
+ 1) >> 1;
3482 challenge_timestamp
= now
;
3483 WRITE_ONCE(challenge_count
, half
+
3484 prandom_u32_max(sysctl_tcp_challenge_ack_limit
));
3486 count
= READ_ONCE(challenge_count
);
3488 WRITE_ONCE(challenge_count
, count
- 1);
3489 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPCHALLENGEACK
);
3494 static void tcp_store_ts_recent(struct tcp_sock
*tp
)
3496 tp
->rx_opt
.ts_recent
= tp
->rx_opt
.rcv_tsval
;
3497 tp
->rx_opt
.ts_recent_stamp
= get_seconds();
3500 static void tcp_replace_ts_recent(struct tcp_sock
*tp
, u32 seq
)
3502 if (tp
->rx_opt
.saw_tstamp
&& !after(seq
, tp
->rcv_wup
)) {
3503 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3504 * extra check below makes sure this can only happen
3505 * for pure ACK frames. -DaveM
3507 * Not only, also it occurs for expired timestamps.
3510 if (tcp_paws_check(&tp
->rx_opt
, 0))
3511 tcp_store_ts_recent(tp
);
3515 /* This routine deals with acks during a TLP episode.
3516 * We mark the end of a TLP episode on receiving TLP dupack or when
3517 * ack is after tlp_high_seq.
3518 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3520 static void tcp_process_tlp_ack(struct sock
*sk
, u32 ack
, int flag
)
3522 struct tcp_sock
*tp
= tcp_sk(sk
);
3524 if (before(ack
, tp
->tlp_high_seq
))
3527 if (flag
& FLAG_DSACKING_ACK
) {
3528 /* This DSACK means original and TLP probe arrived; no loss */
3529 tp
->tlp_high_seq
= 0;
3530 } else if (after(ack
, tp
->tlp_high_seq
)) {
3531 /* ACK advances: there was a loss, so reduce cwnd. Reset
3532 * tlp_high_seq in tcp_init_cwnd_reduction()
3534 tcp_init_cwnd_reduction(sk
);
3535 tcp_set_ca_state(sk
, TCP_CA_CWR
);
3536 tcp_end_cwnd_reduction(sk
);
3537 tcp_try_keep_open(sk
);
3538 NET_INC_STATS(sock_net(sk
),
3539 LINUX_MIB_TCPLOSSPROBERECOVERY
);
3540 } else if (!(flag
& (FLAG_SND_UNA_ADVANCED
|
3541 FLAG_NOT_DUP
| FLAG_DATA_SACKED
))) {
3542 /* Pure dupack: original and TLP probe arrived; no loss */
3543 tp
->tlp_high_seq
= 0;
3547 static inline void tcp_in_ack_event(struct sock
*sk
, u32 flags
)
3549 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
3551 if (icsk
->icsk_ca_ops
->in_ack_event
)
3552 icsk
->icsk_ca_ops
->in_ack_event(sk
, flags
);
3555 /* Congestion control has updated the cwnd already. So if we're in
3556 * loss recovery then now we do any new sends (for FRTO) or
3557 * retransmits (for CA_Loss or CA_recovery) that make sense.
3559 static void tcp_xmit_recovery(struct sock
*sk
, int rexmit
)
3561 struct tcp_sock
*tp
= tcp_sk(sk
);
3563 if (rexmit
== REXMIT_NONE
)
3566 if (unlikely(rexmit
== 2)) {
3567 __tcp_push_pending_frames(sk
, tcp_current_mss(sk
),
3569 if (after(tp
->snd_nxt
, tp
->high_seq
))
3573 tcp_xmit_retransmit_queue(sk
);
3576 /* This routine deals with incoming acks, but not outgoing ones. */
3577 static int tcp_ack(struct sock
*sk
, const struct sk_buff
*skb
, int flag
)
3579 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3580 struct tcp_sock
*tp
= tcp_sk(sk
);
3581 struct tcp_sacktag_state sack_state
;
3582 u32 prior_snd_una
= tp
->snd_una
;
3583 u32 ack_seq
= TCP_SKB_CB(skb
)->seq
;
3584 u32 ack
= TCP_SKB_CB(skb
)->ack_seq
;
3585 bool is_dupack
= false;
3587 int prior_packets
= tp
->packets_out
;
3588 u32 prior_delivered
= tp
->delivered
;
3589 int acked
= 0; /* Number of packets newly acked */
3590 int rexmit
= REXMIT_NONE
; /* Flag to (re)transmit to recover losses */
3592 sack_state
.first_sackt
.v64
= 0;
3594 /* We very likely will need to access write queue head. */
3595 prefetchw(sk
->sk_write_queue
.next
);
3597 /* If the ack is older than previous acks
3598 * then we can probably ignore it.
3600 if (before(ack
, prior_snd_una
)) {
3601 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3602 if (before(ack
, prior_snd_una
- tp
->max_window
)) {
3603 tcp_send_challenge_ack(sk
, skb
);
3609 /* If the ack includes data we haven't sent yet, discard
3610 * this segment (RFC793 Section 3.9).
3612 if (after(ack
, tp
->snd_nxt
))
3615 if (icsk
->icsk_pending
== ICSK_TIME_EARLY_RETRANS
||
3616 icsk
->icsk_pending
== ICSK_TIME_LOSS_PROBE
)
3619 if (after(ack
, prior_snd_una
)) {
3620 flag
|= FLAG_SND_UNA_ADVANCED
;
3621 icsk
->icsk_retransmits
= 0;
3624 prior_fackets
= tp
->fackets_out
;
3626 /* ts_recent update must be made after we are sure that the packet
3629 if (flag
& FLAG_UPDATE_TS_RECENT
)
3630 tcp_replace_ts_recent(tp
, TCP_SKB_CB(skb
)->seq
);
3632 if (!(flag
& FLAG_SLOWPATH
) && after(ack
, prior_snd_una
)) {
3633 /* Window is constant, pure forward advance.
3634 * No more checks are required.
3635 * Note, we use the fact that SND.UNA>=SND.WL2.
3637 tcp_update_wl(tp
, ack_seq
);
3638 tcp_snd_una_update(tp
, ack
);
3639 flag
|= FLAG_WIN_UPDATE
;
3641 tcp_in_ack_event(sk
, CA_ACK_WIN_UPDATE
);
3643 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPHPACKS
);
3645 u32 ack_ev_flags
= CA_ACK_SLOWPATH
;
3647 if (ack_seq
!= TCP_SKB_CB(skb
)->end_seq
)
3650 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPPUREACKS
);
3652 flag
|= tcp_ack_update_window(sk
, skb
, ack
, ack_seq
);
3654 if (TCP_SKB_CB(skb
)->sacked
)
3655 flag
|= tcp_sacktag_write_queue(sk
, skb
, prior_snd_una
,
3658 if (tcp_ecn_rcv_ecn_echo(tp
, tcp_hdr(skb
))) {
3660 ack_ev_flags
|= CA_ACK_ECE
;
3663 if (flag
& FLAG_WIN_UPDATE
)
3664 ack_ev_flags
|= CA_ACK_WIN_UPDATE
;
3666 tcp_in_ack_event(sk
, ack_ev_flags
);
3669 /* We passed data and got it acked, remove any soft error
3670 * log. Something worked...
3672 sk
->sk_err_soft
= 0;
3673 icsk
->icsk_probes_out
= 0;
3674 tp
->rcv_tstamp
= tcp_time_stamp
;
3678 /* See if we can take anything off of the retransmit queue. */
3679 flag
|= tcp_clean_rtx_queue(sk
, prior_fackets
, prior_snd_una
, &acked
,
3682 if (tcp_ack_is_dubious(sk
, flag
)) {
3683 is_dupack
= !(flag
& (FLAG_SND_UNA_ADVANCED
| FLAG_NOT_DUP
));
3684 tcp_fastretrans_alert(sk
, acked
, is_dupack
, &flag
, &rexmit
);
3686 if (tp
->tlp_high_seq
)
3687 tcp_process_tlp_ack(sk
, ack
, flag
);
3689 if ((flag
& FLAG_FORWARD_PROGRESS
) || !(flag
& FLAG_NOT_DUP
)) {
3690 struct dst_entry
*dst
= __sk_dst_get(sk
);
3695 if (icsk
->icsk_pending
== ICSK_TIME_RETRANS
)
3696 tcp_schedule_loss_probe(sk
);
3697 tcp_cong_control(sk
, ack
, tp
->delivered
- prior_delivered
, flag
);
3698 tcp_xmit_recovery(sk
, rexmit
);
3702 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3703 if (flag
& FLAG_DSACKING_ACK
)
3704 tcp_fastretrans_alert(sk
, acked
, is_dupack
, &flag
, &rexmit
);
3705 /* If this ack opens up a zero window, clear backoff. It was
3706 * being used to time the probes, and is probably far higher than
3707 * it needs to be for normal retransmission.
3709 if (tcp_send_head(sk
))
3712 if (tp
->tlp_high_seq
)
3713 tcp_process_tlp_ack(sk
, ack
, flag
);
3717 SOCK_DEBUG(sk
, "Ack %u after %u:%u\n", ack
, tp
->snd_una
, tp
->snd_nxt
);
3721 /* If data was SACKed, tag it and see if we should send more data.
3722 * If data was DSACKed, see if we can undo a cwnd reduction.
3724 if (TCP_SKB_CB(skb
)->sacked
) {
3725 flag
|= tcp_sacktag_write_queue(sk
, skb
, prior_snd_una
,
3727 tcp_fastretrans_alert(sk
, acked
, is_dupack
, &flag
, &rexmit
);
3728 tcp_xmit_recovery(sk
, rexmit
);
3731 SOCK_DEBUG(sk
, "Ack %u before %u:%u\n", ack
, tp
->snd_una
, tp
->snd_nxt
);
3735 static void tcp_parse_fastopen_option(int len
, const unsigned char *cookie
,
3736 bool syn
, struct tcp_fastopen_cookie
*foc
,
3739 /* Valid only in SYN or SYN-ACK with an even length. */
3740 if (!foc
|| !syn
|| len
< 0 || (len
& 1))
3743 if (len
>= TCP_FASTOPEN_COOKIE_MIN
&&
3744 len
<= TCP_FASTOPEN_COOKIE_MAX
)
3745 memcpy(foc
->val
, cookie
, len
);
3752 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3753 * But, this can also be called on packets in the established flow when
3754 * the fast version below fails.
3756 void tcp_parse_options(const struct sk_buff
*skb
,
3757 struct tcp_options_received
*opt_rx
, int estab
,
3758 struct tcp_fastopen_cookie
*foc
)
3760 const unsigned char *ptr
;
3761 const struct tcphdr
*th
= tcp_hdr(skb
);
3762 int length
= (th
->doff
* 4) - sizeof(struct tcphdr
);
3764 ptr
= (const unsigned char *)(th
+ 1);
3765 opt_rx
->saw_tstamp
= 0;
3767 while (length
> 0) {
3768 int opcode
= *ptr
++;
3774 case TCPOPT_NOP
: /* Ref: RFC 793 section 3.1 */
3779 if (opsize
< 2) /* "silly options" */
3781 if (opsize
> length
)
3782 return; /* don't parse partial options */
3785 if (opsize
== TCPOLEN_MSS
&& th
->syn
&& !estab
) {
3786 u16 in_mss
= get_unaligned_be16(ptr
);
3788 if (opt_rx
->user_mss
&&
3789 opt_rx
->user_mss
< in_mss
)
3790 in_mss
= opt_rx
->user_mss
;
3791 opt_rx
->mss_clamp
= in_mss
;
3796 if (opsize
== TCPOLEN_WINDOW
&& th
->syn
&&
3797 !estab
&& sysctl_tcp_window_scaling
) {
3798 __u8 snd_wscale
= *(__u8
*)ptr
;
3799 opt_rx
->wscale_ok
= 1;
3800 if (snd_wscale
> 14) {
3801 net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3806 opt_rx
->snd_wscale
= snd_wscale
;
3809 case TCPOPT_TIMESTAMP
:
3810 if ((opsize
== TCPOLEN_TIMESTAMP
) &&
3811 ((estab
&& opt_rx
->tstamp_ok
) ||
3812 (!estab
&& sysctl_tcp_timestamps
))) {
3813 opt_rx
->saw_tstamp
= 1;
3814 opt_rx
->rcv_tsval
= get_unaligned_be32(ptr
);
3815 opt_rx
->rcv_tsecr
= get_unaligned_be32(ptr
+ 4);
3818 case TCPOPT_SACK_PERM
:
3819 if (opsize
== TCPOLEN_SACK_PERM
&& th
->syn
&&
3820 !estab
&& sysctl_tcp_sack
) {
3821 opt_rx
->sack_ok
= TCP_SACK_SEEN
;
3822 tcp_sack_reset(opt_rx
);
3827 if ((opsize
>= (TCPOLEN_SACK_BASE
+ TCPOLEN_SACK_PERBLOCK
)) &&
3828 !((opsize
- TCPOLEN_SACK_BASE
) % TCPOLEN_SACK_PERBLOCK
) &&
3830 TCP_SKB_CB(skb
)->sacked
= (ptr
- 2) - (unsigned char *)th
;
3833 #ifdef CONFIG_TCP_MD5SIG
3836 * The MD5 Hash has already been
3837 * checked (see tcp_v{4,6}_do_rcv()).
3841 case TCPOPT_FASTOPEN
:
3842 tcp_parse_fastopen_option(
3843 opsize
- TCPOLEN_FASTOPEN_BASE
,
3844 ptr
, th
->syn
, foc
, false);
3848 /* Fast Open option shares code 254 using a
3849 * 16 bits magic number.
3851 if (opsize
>= TCPOLEN_EXP_FASTOPEN_BASE
&&
3852 get_unaligned_be16(ptr
) ==
3853 TCPOPT_FASTOPEN_MAGIC
)
3854 tcp_parse_fastopen_option(opsize
-
3855 TCPOLEN_EXP_FASTOPEN_BASE
,
3856 ptr
+ 2, th
->syn
, foc
, true);
3865 EXPORT_SYMBOL(tcp_parse_options
);
3867 static bool tcp_parse_aligned_timestamp(struct tcp_sock
*tp
, const struct tcphdr
*th
)
3869 const __be32
*ptr
= (const __be32
*)(th
+ 1);
3871 if (*ptr
== htonl((TCPOPT_NOP
<< 24) | (TCPOPT_NOP
<< 16)
3872 | (TCPOPT_TIMESTAMP
<< 8) | TCPOLEN_TIMESTAMP
)) {
3873 tp
->rx_opt
.saw_tstamp
= 1;
3875 tp
->rx_opt
.rcv_tsval
= ntohl(*ptr
);
3878 tp
->rx_opt
.rcv_tsecr
= ntohl(*ptr
) - tp
->tsoffset
;
3880 tp
->rx_opt
.rcv_tsecr
= 0;
3886 /* Fast parse options. This hopes to only see timestamps.
3887 * If it is wrong it falls back on tcp_parse_options().
3889 static bool tcp_fast_parse_options(const struct sk_buff
*skb
,
3890 const struct tcphdr
*th
, struct tcp_sock
*tp
)
3892 /* In the spirit of fast parsing, compare doff directly to constant
3893 * values. Because equality is used, short doff can be ignored here.
3895 if (th
->doff
== (sizeof(*th
) / 4)) {
3896 tp
->rx_opt
.saw_tstamp
= 0;
3898 } else if (tp
->rx_opt
.tstamp_ok
&&
3899 th
->doff
== ((sizeof(*th
) + TCPOLEN_TSTAMP_ALIGNED
) / 4)) {
3900 if (tcp_parse_aligned_timestamp(tp
, th
))
3904 tcp_parse_options(skb
, &tp
->rx_opt
, 1, NULL
);
3905 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
)
3906 tp
->rx_opt
.rcv_tsecr
-= tp
->tsoffset
;
3911 #ifdef CONFIG_TCP_MD5SIG
3913 * Parse MD5 Signature option
3915 const u8
*tcp_parse_md5sig_option(const struct tcphdr
*th
)
3917 int length
= (th
->doff
<< 2) - sizeof(*th
);
3918 const u8
*ptr
= (const u8
*)(th
+ 1);
3920 /* If the TCP option is too short, we can short cut */
3921 if (length
< TCPOLEN_MD5SIG
)
3924 while (length
> 0) {
3925 int opcode
= *ptr
++;
3936 if (opsize
< 2 || opsize
> length
)
3938 if (opcode
== TCPOPT_MD5SIG
)
3939 return opsize
== TCPOLEN_MD5SIG
? ptr
: NULL
;
3946 EXPORT_SYMBOL(tcp_parse_md5sig_option
);
3949 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3951 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3952 * it can pass through stack. So, the following predicate verifies that
3953 * this segment is not used for anything but congestion avoidance or
3954 * fast retransmit. Moreover, we even are able to eliminate most of such
3955 * second order effects, if we apply some small "replay" window (~RTO)
3956 * to timestamp space.
3958 * All these measures still do not guarantee that we reject wrapped ACKs
3959 * on networks with high bandwidth, when sequence space is recycled fastly,
3960 * but it guarantees that such events will be very rare and do not affect
3961 * connection seriously. This doesn't look nice, but alas, PAWS is really
3964 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3965 * states that events when retransmit arrives after original data are rare.
3966 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3967 * the biggest problem on large power networks even with minor reordering.
3968 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3969 * up to bandwidth of 18Gigabit/sec. 8) ]
3972 static int tcp_disordered_ack(const struct sock
*sk
, const struct sk_buff
*skb
)
3974 const struct tcp_sock
*tp
= tcp_sk(sk
);
3975 const struct tcphdr
*th
= tcp_hdr(skb
);
3976 u32 seq
= TCP_SKB_CB(skb
)->seq
;
3977 u32 ack
= TCP_SKB_CB(skb
)->ack_seq
;
3979 return (/* 1. Pure ACK with correct sequence number. */
3980 (th
->ack
&& seq
== TCP_SKB_CB(skb
)->end_seq
&& seq
== tp
->rcv_nxt
) &&
3982 /* 2. ... and duplicate ACK. */
3983 ack
== tp
->snd_una
&&
3985 /* 3. ... and does not update window. */
3986 !tcp_may_update_window(tp
, ack
, seq
, ntohs(th
->window
) << tp
->rx_opt
.snd_wscale
) &&
3988 /* 4. ... and sits in replay window. */
3989 (s32
)(tp
->rx_opt
.ts_recent
- tp
->rx_opt
.rcv_tsval
) <= (inet_csk(sk
)->icsk_rto
* 1024) / HZ
);
3992 static inline bool tcp_paws_discard(const struct sock
*sk
,
3993 const struct sk_buff
*skb
)
3995 const struct tcp_sock
*tp
= tcp_sk(sk
);
3997 return !tcp_paws_check(&tp
->rx_opt
, TCP_PAWS_WINDOW
) &&
3998 !tcp_disordered_ack(sk
, skb
);
4001 /* Check segment sequence number for validity.
4003 * Segment controls are considered valid, if the segment
4004 * fits to the window after truncation to the window. Acceptability
4005 * of data (and SYN, FIN, of course) is checked separately.
4006 * See tcp_data_queue(), for example.
4008 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4009 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4010 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4011 * (borrowed from freebsd)
4014 static inline bool tcp_sequence(const struct tcp_sock
*tp
, u32 seq
, u32 end_seq
)
4016 return !before(end_seq
, tp
->rcv_wup
) &&
4017 !after(seq
, tp
->rcv_nxt
+ tcp_receive_window(tp
));
4020 /* When we get a reset we do this. */
4021 void tcp_reset(struct sock
*sk
)
4023 /* We want the right error as BSD sees it (and indeed as we do). */
4024 switch (sk
->sk_state
) {
4026 sk
->sk_err
= ECONNREFUSED
;
4028 case TCP_CLOSE_WAIT
:
4034 sk
->sk_err
= ECONNRESET
;
4036 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4039 if (!sock_flag(sk
, SOCK_DEAD
))
4040 sk
->sk_error_report(sk
);
4046 * Process the FIN bit. This now behaves as it is supposed to work
4047 * and the FIN takes effect when it is validly part of sequence
4048 * space. Not before when we get holes.
4050 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4051 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4054 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4055 * close and we go into CLOSING (and later onto TIME-WAIT)
4057 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4059 void tcp_fin(struct sock
*sk
)
4061 struct tcp_sock
*tp
= tcp_sk(sk
);
4063 inet_csk_schedule_ack(sk
);
4065 sk
->sk_shutdown
|= RCV_SHUTDOWN
;
4066 sock_set_flag(sk
, SOCK_DONE
);
4068 switch (sk
->sk_state
) {
4070 case TCP_ESTABLISHED
:
4071 /* Move to CLOSE_WAIT */
4072 tcp_set_state(sk
, TCP_CLOSE_WAIT
);
4073 inet_csk(sk
)->icsk_ack
.pingpong
= 1;
4076 case TCP_CLOSE_WAIT
:
4078 /* Received a retransmission of the FIN, do
4083 /* RFC793: Remain in the LAST-ACK state. */
4087 /* This case occurs when a simultaneous close
4088 * happens, we must ack the received FIN and
4089 * enter the CLOSING state.
4092 tcp_set_state(sk
, TCP_CLOSING
);
4095 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4097 tcp_time_wait(sk
, TCP_TIME_WAIT
, 0);
4100 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4101 * cases we should never reach this piece of code.
4103 pr_err("%s: Impossible, sk->sk_state=%d\n",
4104 __func__
, sk
->sk_state
);
4108 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4109 * Probably, we should reset in this case. For now drop them.
4111 __skb_queue_purge(&tp
->out_of_order_queue
);
4112 if (tcp_is_sack(tp
))
4113 tcp_sack_reset(&tp
->rx_opt
);
4116 if (!sock_flag(sk
, SOCK_DEAD
)) {
4117 sk
->sk_state_change(sk
);
4119 /* Do not send POLL_HUP for half duplex close. */
4120 if (sk
->sk_shutdown
== SHUTDOWN_MASK
||
4121 sk
->sk_state
== TCP_CLOSE
)
4122 sk_wake_async(sk
, SOCK_WAKE_WAITD
, POLL_HUP
);
4124 sk_wake_async(sk
, SOCK_WAKE_WAITD
, POLL_IN
);
4128 static inline bool tcp_sack_extend(struct tcp_sack_block
*sp
, u32 seq
,
4131 if (!after(seq
, sp
->end_seq
) && !after(sp
->start_seq
, end_seq
)) {
4132 if (before(seq
, sp
->start_seq
))
4133 sp
->start_seq
= seq
;
4134 if (after(end_seq
, sp
->end_seq
))
4135 sp
->end_seq
= end_seq
;
4141 static void tcp_dsack_set(struct sock
*sk
, u32 seq
, u32 end_seq
)
4143 struct tcp_sock
*tp
= tcp_sk(sk
);
4145 if (tcp_is_sack(tp
) && sysctl_tcp_dsack
) {
4148 if (before(seq
, tp
->rcv_nxt
))
4149 mib_idx
= LINUX_MIB_TCPDSACKOLDSENT
;
4151 mib_idx
= LINUX_MIB_TCPDSACKOFOSENT
;
4153 NET_INC_STATS(sock_net(sk
), mib_idx
);
4155 tp
->rx_opt
.dsack
= 1;
4156 tp
->duplicate_sack
[0].start_seq
= seq
;
4157 tp
->duplicate_sack
[0].end_seq
= end_seq
;
4161 static void tcp_dsack_extend(struct sock
*sk
, u32 seq
, u32 end_seq
)
4163 struct tcp_sock
*tp
= tcp_sk(sk
);
4165 if (!tp
->rx_opt
.dsack
)
4166 tcp_dsack_set(sk
, seq
, end_seq
);
4168 tcp_sack_extend(tp
->duplicate_sack
, seq
, end_seq
);
4171 static void tcp_send_dupack(struct sock
*sk
, const struct sk_buff
*skb
)
4173 struct tcp_sock
*tp
= tcp_sk(sk
);
4175 if (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
4176 before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
4177 NET_INC_STATS(sock_net(sk
), LINUX_MIB_DELAYEDACKLOST
);
4178 tcp_enter_quickack_mode(sk
);
4180 if (tcp_is_sack(tp
) && sysctl_tcp_dsack
) {
4181 u32 end_seq
= TCP_SKB_CB(skb
)->end_seq
;
4183 if (after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
))
4184 end_seq
= tp
->rcv_nxt
;
4185 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, end_seq
);
4192 /* These routines update the SACK block as out-of-order packets arrive or
4193 * in-order packets close up the sequence space.
4195 static void tcp_sack_maybe_coalesce(struct tcp_sock
*tp
)
4198 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
4199 struct tcp_sack_block
*swalk
= sp
+ 1;
4201 /* See if the recent change to the first SACK eats into
4202 * or hits the sequence space of other SACK blocks, if so coalesce.
4204 for (this_sack
= 1; this_sack
< tp
->rx_opt
.num_sacks
;) {
4205 if (tcp_sack_extend(sp
, swalk
->start_seq
, swalk
->end_seq
)) {
4208 /* Zap SWALK, by moving every further SACK up by one slot.
4209 * Decrease num_sacks.
4211 tp
->rx_opt
.num_sacks
--;
4212 for (i
= this_sack
; i
< tp
->rx_opt
.num_sacks
; i
++)
4216 this_sack
++, swalk
++;
4220 static void tcp_sack_new_ofo_skb(struct sock
*sk
, u32 seq
, u32 end_seq
)
4222 struct tcp_sock
*tp
= tcp_sk(sk
);
4223 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
4224 int cur_sacks
= tp
->rx_opt
.num_sacks
;
4230 for (this_sack
= 0; this_sack
< cur_sacks
; this_sack
++, sp
++) {
4231 if (tcp_sack_extend(sp
, seq
, end_seq
)) {
4232 /* Rotate this_sack to the first one. */
4233 for (; this_sack
> 0; this_sack
--, sp
--)
4234 swap(*sp
, *(sp
- 1));
4236 tcp_sack_maybe_coalesce(tp
);
4241 /* Could not find an adjacent existing SACK, build a new one,
4242 * put it at the front, and shift everyone else down. We
4243 * always know there is at least one SACK present already here.
4245 * If the sack array is full, forget about the last one.
4247 if (this_sack
>= TCP_NUM_SACKS
) {
4249 tp
->rx_opt
.num_sacks
--;
4252 for (; this_sack
> 0; this_sack
--, sp
--)
4256 /* Build the new head SACK, and we're done. */
4257 sp
->start_seq
= seq
;
4258 sp
->end_seq
= end_seq
;
4259 tp
->rx_opt
.num_sacks
++;
4262 /* RCV.NXT advances, some SACKs should be eaten. */
4264 static void tcp_sack_remove(struct tcp_sock
*tp
)
4266 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
4267 int num_sacks
= tp
->rx_opt
.num_sacks
;
4270 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4271 if (skb_queue_empty(&tp
->out_of_order_queue
)) {
4272 tp
->rx_opt
.num_sacks
= 0;
4276 for (this_sack
= 0; this_sack
< num_sacks
;) {
4277 /* Check if the start of the sack is covered by RCV.NXT. */
4278 if (!before(tp
->rcv_nxt
, sp
->start_seq
)) {
4281 /* RCV.NXT must cover all the block! */
4282 WARN_ON(before(tp
->rcv_nxt
, sp
->end_seq
));
4284 /* Zap this SACK, by moving forward any other SACKS. */
4285 for (i
= this_sack
+1; i
< num_sacks
; i
++)
4286 tp
->selective_acks
[i
-1] = tp
->selective_acks
[i
];
4293 tp
->rx_opt
.num_sacks
= num_sacks
;
4297 * tcp_try_coalesce - try to merge skb to prior one
4300 * @from: buffer to add in queue
4301 * @fragstolen: pointer to boolean
4303 * Before queueing skb @from after @to, try to merge them
4304 * to reduce overall memory use and queue lengths, if cost is small.
4305 * Packets in ofo or receive queues can stay a long time.
4306 * Better try to coalesce them right now to avoid future collapses.
4307 * Returns true if caller should free @from instead of queueing it
4309 static bool tcp_try_coalesce(struct sock
*sk
,
4311 struct sk_buff
*from
,
4316 *fragstolen
= false;
4318 /* Its possible this segment overlaps with prior segment in queue */
4319 if (TCP_SKB_CB(from
)->seq
!= TCP_SKB_CB(to
)->end_seq
)
4322 if (!skb_try_coalesce(to
, from
, fragstolen
, &delta
))
4325 atomic_add(delta
, &sk
->sk_rmem_alloc
);
4326 sk_mem_charge(sk
, delta
);
4327 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPRCVCOALESCE
);
4328 TCP_SKB_CB(to
)->end_seq
= TCP_SKB_CB(from
)->end_seq
;
4329 TCP_SKB_CB(to
)->ack_seq
= TCP_SKB_CB(from
)->ack_seq
;
4330 TCP_SKB_CB(to
)->tcp_flags
|= TCP_SKB_CB(from
)->tcp_flags
;
4334 static void tcp_drop(struct sock
*sk
, struct sk_buff
*skb
)
4336 sk_drops_add(sk
, skb
);
4340 /* This one checks to see if we can put data from the
4341 * out_of_order queue into the receive_queue.
4343 static void tcp_ofo_queue(struct sock
*sk
)
4345 struct tcp_sock
*tp
= tcp_sk(sk
);
4346 __u32 dsack_high
= tp
->rcv_nxt
;
4347 struct sk_buff
*skb
, *tail
;
4348 bool fragstolen
, eaten
;
4350 while ((skb
= skb_peek(&tp
->out_of_order_queue
)) != NULL
) {
4351 if (after(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
))
4354 if (before(TCP_SKB_CB(skb
)->seq
, dsack_high
)) {
4355 __u32 dsack
= dsack_high
;
4356 if (before(TCP_SKB_CB(skb
)->end_seq
, dsack_high
))
4357 dsack_high
= TCP_SKB_CB(skb
)->end_seq
;
4358 tcp_dsack_extend(sk
, TCP_SKB_CB(skb
)->seq
, dsack
);
4361 __skb_unlink(skb
, &tp
->out_of_order_queue
);
4362 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
)) {
4363 SOCK_DEBUG(sk
, "ofo packet was already received\n");
4367 SOCK_DEBUG(sk
, "ofo requeuing : rcv_next %X seq %X - %X\n",
4368 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
,
4369 TCP_SKB_CB(skb
)->end_seq
);
4371 tail
= skb_peek_tail(&sk
->sk_receive_queue
);
4372 eaten
= tail
&& tcp_try_coalesce(sk
, tail
, skb
, &fragstolen
);
4373 tcp_rcv_nxt_update(tp
, TCP_SKB_CB(skb
)->end_seq
);
4375 __skb_queue_tail(&sk
->sk_receive_queue
, skb
);
4376 if (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
)
4379 kfree_skb_partial(skb
, fragstolen
);
4383 static bool tcp_prune_ofo_queue(struct sock
*sk
);
4384 static int tcp_prune_queue(struct sock
*sk
);
4386 static int tcp_try_rmem_schedule(struct sock
*sk
, struct sk_buff
*skb
,
4389 if (atomic_read(&sk
->sk_rmem_alloc
) > sk
->sk_rcvbuf
||
4390 !sk_rmem_schedule(sk
, skb
, size
)) {
4392 if (tcp_prune_queue(sk
) < 0)
4395 if (!sk_rmem_schedule(sk
, skb
, size
)) {
4396 if (!tcp_prune_ofo_queue(sk
))
4399 if (!sk_rmem_schedule(sk
, skb
, size
))
4406 static void tcp_data_queue_ofo(struct sock
*sk
, struct sk_buff
*skb
)
4408 struct tcp_sock
*tp
= tcp_sk(sk
);
4409 struct sk_buff
*skb1
;
4412 tcp_ecn_check_ce(tp
, skb
);
4414 if (unlikely(tcp_try_rmem_schedule(sk
, skb
, skb
->truesize
))) {
4415 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPOFODROP
);
4420 /* Disable header prediction. */
4422 inet_csk_schedule_ack(sk
);
4424 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPOFOQUEUE
);
4425 SOCK_DEBUG(sk
, "out of order segment: rcv_next %X seq %X - %X\n",
4426 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
);
4428 skb1
= skb_peek_tail(&tp
->out_of_order_queue
);
4430 /* Initial out of order segment, build 1 SACK. */
4431 if (tcp_is_sack(tp
)) {
4432 tp
->rx_opt
.num_sacks
= 1;
4433 tp
->selective_acks
[0].start_seq
= TCP_SKB_CB(skb
)->seq
;
4434 tp
->selective_acks
[0].end_seq
=
4435 TCP_SKB_CB(skb
)->end_seq
;
4437 __skb_queue_head(&tp
->out_of_order_queue
, skb
);
4441 seq
= TCP_SKB_CB(skb
)->seq
;
4442 end_seq
= TCP_SKB_CB(skb
)->end_seq
;
4444 if (seq
== TCP_SKB_CB(skb1
)->end_seq
) {
4447 if (!tcp_try_coalesce(sk
, skb1
, skb
, &fragstolen
)) {
4448 __skb_queue_after(&tp
->out_of_order_queue
, skb1
, skb
);
4450 tcp_grow_window(sk
, skb
);
4451 kfree_skb_partial(skb
, fragstolen
);
4455 if (!tp
->rx_opt
.num_sacks
||
4456 tp
->selective_acks
[0].end_seq
!= seq
)
4459 /* Common case: data arrive in order after hole. */
4460 tp
->selective_acks
[0].end_seq
= end_seq
;
4464 /* Find place to insert this segment. */
4466 if (!after(TCP_SKB_CB(skb1
)->seq
, seq
))
4468 if (skb_queue_is_first(&tp
->out_of_order_queue
, skb1
)) {
4472 skb1
= skb_queue_prev(&tp
->out_of_order_queue
, skb1
);
4475 /* Do skb overlap to previous one? */
4476 if (skb1
&& before(seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4477 if (!after(end_seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4478 /* All the bits are present. Drop. */
4479 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPOFOMERGE
);
4482 tcp_dsack_set(sk
, seq
, end_seq
);
4485 if (after(seq
, TCP_SKB_CB(skb1
)->seq
)) {
4486 /* Partial overlap. */
4487 tcp_dsack_set(sk
, seq
,
4488 TCP_SKB_CB(skb1
)->end_seq
);
4490 if (skb_queue_is_first(&tp
->out_of_order_queue
,
4494 skb1
= skb_queue_prev(
4495 &tp
->out_of_order_queue
,
4500 __skb_queue_head(&tp
->out_of_order_queue
, skb
);
4502 __skb_queue_after(&tp
->out_of_order_queue
, skb1
, skb
);
4504 /* And clean segments covered by new one as whole. */
4505 while (!skb_queue_is_last(&tp
->out_of_order_queue
, skb
)) {
4506 skb1
= skb_queue_next(&tp
->out_of_order_queue
, skb
);
4508 if (!after(end_seq
, TCP_SKB_CB(skb1
)->seq
))
4510 if (before(end_seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4511 tcp_dsack_extend(sk
, TCP_SKB_CB(skb1
)->seq
,
4515 __skb_unlink(skb1
, &tp
->out_of_order_queue
);
4516 tcp_dsack_extend(sk
, TCP_SKB_CB(skb1
)->seq
,
4517 TCP_SKB_CB(skb1
)->end_seq
);
4518 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPOFOMERGE
);
4523 if (tcp_is_sack(tp
))
4524 tcp_sack_new_ofo_skb(sk
, seq
, end_seq
);
4527 tcp_grow_window(sk
, skb
);
4528 skb_set_owner_r(skb
, sk
);
4532 static int __must_check
tcp_queue_rcv(struct sock
*sk
, struct sk_buff
*skb
, int hdrlen
,
4536 struct sk_buff
*tail
= skb_peek_tail(&sk
->sk_receive_queue
);
4538 __skb_pull(skb
, hdrlen
);
4540 tcp_try_coalesce(sk
, tail
, skb
, fragstolen
)) ? 1 : 0;
4541 tcp_rcv_nxt_update(tcp_sk(sk
), TCP_SKB_CB(skb
)->end_seq
);
4543 __skb_queue_tail(&sk
->sk_receive_queue
, skb
);
4544 skb_set_owner_r(skb
, sk
);
4549 int tcp_send_rcvq(struct sock
*sk
, struct msghdr
*msg
, size_t size
)
4551 struct sk_buff
*skb
;
4559 if (size
> PAGE_SIZE
) {
4560 int npages
= min_t(size_t, size
>> PAGE_SHIFT
, MAX_SKB_FRAGS
);
4562 data_len
= npages
<< PAGE_SHIFT
;
4563 size
= data_len
+ (size
& ~PAGE_MASK
);
4565 skb
= alloc_skb_with_frags(size
- data_len
, data_len
,
4566 PAGE_ALLOC_COSTLY_ORDER
,
4567 &err
, sk
->sk_allocation
);
4571 skb_put(skb
, size
- data_len
);
4572 skb
->data_len
= data_len
;
4575 if (tcp_try_rmem_schedule(sk
, skb
, skb
->truesize
))
4578 err
= skb_copy_datagram_from_iter(skb
, 0, &msg
->msg_iter
, size
);
4582 TCP_SKB_CB(skb
)->seq
= tcp_sk(sk
)->rcv_nxt
;
4583 TCP_SKB_CB(skb
)->end_seq
= TCP_SKB_CB(skb
)->seq
+ size
;
4584 TCP_SKB_CB(skb
)->ack_seq
= tcp_sk(sk
)->snd_una
- 1;
4586 if (tcp_queue_rcv(sk
, skb
, 0, &fragstolen
)) {
4587 WARN_ON_ONCE(fragstolen
); /* should not happen */
4599 static void tcp_data_queue(struct sock
*sk
, struct sk_buff
*skb
)
4601 struct tcp_sock
*tp
= tcp_sk(sk
);
4602 bool fragstolen
= false;
4605 if (TCP_SKB_CB(skb
)->seq
== TCP_SKB_CB(skb
)->end_seq
) {
4610 __skb_pull(skb
, tcp_hdr(skb
)->doff
* 4);
4612 tcp_ecn_accept_cwr(tp
, skb
);
4614 tp
->rx_opt
.dsack
= 0;
4616 /* Queue data for delivery to the user.
4617 * Packets in sequence go to the receive queue.
4618 * Out of sequence packets to the out_of_order_queue.
4620 if (TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
) {
4621 if (tcp_receive_window(tp
) == 0)
4624 /* Ok. In sequence. In window. */
4625 if (tp
->ucopy
.task
== current
&&
4626 tp
->copied_seq
== tp
->rcv_nxt
&& tp
->ucopy
.len
&&
4627 sock_owned_by_user(sk
) && !tp
->urg_data
) {
4628 int chunk
= min_t(unsigned int, skb
->len
,
4631 __set_current_state(TASK_RUNNING
);
4633 if (!skb_copy_datagram_msg(skb
, 0, tp
->ucopy
.msg
, chunk
)) {
4634 tp
->ucopy
.len
-= chunk
;
4635 tp
->copied_seq
+= chunk
;
4636 eaten
= (chunk
== skb
->len
);
4637 tcp_rcv_space_adjust(sk
);
4644 if (skb_queue_len(&sk
->sk_receive_queue
) == 0)
4645 sk_forced_mem_schedule(sk
, skb
->truesize
);
4646 else if (tcp_try_rmem_schedule(sk
, skb
, skb
->truesize
))
4649 eaten
= tcp_queue_rcv(sk
, skb
, 0, &fragstolen
);
4651 tcp_rcv_nxt_update(tp
, TCP_SKB_CB(skb
)->end_seq
);
4653 tcp_event_data_recv(sk
, skb
);
4654 if (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
)
4657 if (!skb_queue_empty(&tp
->out_of_order_queue
)) {
4660 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4661 * gap in queue is filled.
4663 if (skb_queue_empty(&tp
->out_of_order_queue
))
4664 inet_csk(sk
)->icsk_ack
.pingpong
= 0;
4667 if (tp
->rx_opt
.num_sacks
)
4668 tcp_sack_remove(tp
);
4670 tcp_fast_path_check(sk
);
4673 kfree_skb_partial(skb
, fragstolen
);
4674 if (!sock_flag(sk
, SOCK_DEAD
))
4675 sk
->sk_data_ready(sk
);
4679 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
)) {
4680 /* A retransmit, 2nd most common case. Force an immediate ack. */
4681 NET_INC_STATS(sock_net(sk
), LINUX_MIB_DELAYEDACKLOST
);
4682 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
);
4685 tcp_enter_quickack_mode(sk
);
4686 inet_csk_schedule_ack(sk
);
4692 /* Out of window. F.e. zero window probe. */
4693 if (!before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
+ tcp_receive_window(tp
)))
4696 tcp_enter_quickack_mode(sk
);
4698 if (before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
4699 /* Partial packet, seq < rcv_next < end_seq */
4700 SOCK_DEBUG(sk
, "partial packet: rcv_next %X seq %X - %X\n",
4701 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
,
4702 TCP_SKB_CB(skb
)->end_seq
);
4704 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
);
4706 /* If window is closed, drop tail of packet. But after
4707 * remembering D-SACK for its head made in previous line.
4709 if (!tcp_receive_window(tp
))
4714 tcp_data_queue_ofo(sk
, skb
);
4717 static struct sk_buff
*tcp_collapse_one(struct sock
*sk
, struct sk_buff
*skb
,
4718 struct sk_buff_head
*list
)
4720 struct sk_buff
*next
= NULL
;
4722 if (!skb_queue_is_last(list
, skb
))
4723 next
= skb_queue_next(list
, skb
);
4725 __skb_unlink(skb
, list
);
4727 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPRCVCOLLAPSED
);
4732 /* Collapse contiguous sequence of skbs head..tail with
4733 * sequence numbers start..end.
4735 * If tail is NULL, this means until the end of the list.
4737 * Segments with FIN/SYN are not collapsed (only because this
4741 tcp_collapse(struct sock
*sk
, struct sk_buff_head
*list
,
4742 struct sk_buff
*head
, struct sk_buff
*tail
,
4745 struct sk_buff
*skb
, *n
;
4748 /* First, check that queue is collapsible and find
4749 * the point where collapsing can be useful. */
4753 skb_queue_walk_from_safe(list
, skb
, n
) {
4756 /* No new bits? It is possible on ofo queue. */
4757 if (!before(start
, TCP_SKB_CB(skb
)->end_seq
)) {
4758 skb
= tcp_collapse_one(sk
, skb
, list
);
4764 /* The first skb to collapse is:
4766 * - bloated or contains data before "start" or
4767 * overlaps to the next one.
4769 if (!(TCP_SKB_CB(skb
)->tcp_flags
& (TCPHDR_SYN
| TCPHDR_FIN
)) &&
4770 (tcp_win_from_space(skb
->truesize
) > skb
->len
||
4771 before(TCP_SKB_CB(skb
)->seq
, start
))) {
4772 end_of_skbs
= false;
4776 if (!skb_queue_is_last(list
, skb
)) {
4777 struct sk_buff
*next
= skb_queue_next(list
, skb
);
4779 TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(next
)->seq
) {
4780 end_of_skbs
= false;
4785 /* Decided to skip this, advance start seq. */
4786 start
= TCP_SKB_CB(skb
)->end_seq
;
4789 (TCP_SKB_CB(skb
)->tcp_flags
& (TCPHDR_SYN
| TCPHDR_FIN
)))
4792 while (before(start
, end
)) {
4793 int copy
= min_t(int, SKB_MAX_ORDER(0, 0), end
- start
);
4794 struct sk_buff
*nskb
;
4796 nskb
= alloc_skb(copy
, GFP_ATOMIC
);
4800 memcpy(nskb
->cb
, skb
->cb
, sizeof(skb
->cb
));
4801 TCP_SKB_CB(nskb
)->seq
= TCP_SKB_CB(nskb
)->end_seq
= start
;
4802 __skb_queue_before(list
, skb
, nskb
);
4803 skb_set_owner_r(nskb
, sk
);
4805 /* Copy data, releasing collapsed skbs. */
4807 int offset
= start
- TCP_SKB_CB(skb
)->seq
;
4808 int size
= TCP_SKB_CB(skb
)->end_seq
- start
;
4812 size
= min(copy
, size
);
4813 if (skb_copy_bits(skb
, offset
, skb_put(nskb
, size
), size
))
4815 TCP_SKB_CB(nskb
)->end_seq
+= size
;
4819 if (!before(start
, TCP_SKB_CB(skb
)->end_seq
)) {
4820 skb
= tcp_collapse_one(sk
, skb
, list
);
4823 (TCP_SKB_CB(skb
)->tcp_flags
& (TCPHDR_SYN
| TCPHDR_FIN
)))
4830 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4831 * and tcp_collapse() them until all the queue is collapsed.
4833 static void tcp_collapse_ofo_queue(struct sock
*sk
)
4835 struct tcp_sock
*tp
= tcp_sk(sk
);
4836 struct sk_buff
*skb
= skb_peek(&tp
->out_of_order_queue
);
4837 struct sk_buff
*head
;
4843 start
= TCP_SKB_CB(skb
)->seq
;
4844 end
= TCP_SKB_CB(skb
)->end_seq
;
4848 struct sk_buff
*next
= NULL
;
4850 if (!skb_queue_is_last(&tp
->out_of_order_queue
, skb
))
4851 next
= skb_queue_next(&tp
->out_of_order_queue
, skb
);
4854 /* Segment is terminated when we see gap or when
4855 * we are at the end of all the queue. */
4857 after(TCP_SKB_CB(skb
)->seq
, end
) ||
4858 before(TCP_SKB_CB(skb
)->end_seq
, start
)) {
4859 tcp_collapse(sk
, &tp
->out_of_order_queue
,
4860 head
, skb
, start
, end
);
4864 /* Start new segment */
4865 start
= TCP_SKB_CB(skb
)->seq
;
4866 end
= TCP_SKB_CB(skb
)->end_seq
;
4868 if (before(TCP_SKB_CB(skb
)->seq
, start
))
4869 start
= TCP_SKB_CB(skb
)->seq
;
4870 if (after(TCP_SKB_CB(skb
)->end_seq
, end
))
4871 end
= TCP_SKB_CB(skb
)->end_seq
;
4877 * Purge the out-of-order queue.
4878 * Return true if queue was pruned.
4880 static bool tcp_prune_ofo_queue(struct sock
*sk
)
4882 struct tcp_sock
*tp
= tcp_sk(sk
);
4885 if (!skb_queue_empty(&tp
->out_of_order_queue
)) {
4886 NET_INC_STATS(sock_net(sk
), LINUX_MIB_OFOPRUNED
);
4887 __skb_queue_purge(&tp
->out_of_order_queue
);
4889 /* Reset SACK state. A conforming SACK implementation will
4890 * do the same at a timeout based retransmit. When a connection
4891 * is in a sad state like this, we care only about integrity
4892 * of the connection not performance.
4894 if (tp
->rx_opt
.sack_ok
)
4895 tcp_sack_reset(&tp
->rx_opt
);
4902 /* Reduce allocated memory if we can, trying to get
4903 * the socket within its memory limits again.
4905 * Return less than zero if we should start dropping frames
4906 * until the socket owning process reads some of the data
4907 * to stabilize the situation.
4909 static int tcp_prune_queue(struct sock
*sk
)
4911 struct tcp_sock
*tp
= tcp_sk(sk
);
4913 SOCK_DEBUG(sk
, "prune_queue: c=%x\n", tp
->copied_seq
);
4915 NET_INC_STATS(sock_net(sk
), LINUX_MIB_PRUNECALLED
);
4917 if (atomic_read(&sk
->sk_rmem_alloc
) >= sk
->sk_rcvbuf
)
4918 tcp_clamp_window(sk
);
4919 else if (tcp_under_memory_pressure(sk
))
4920 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
, 4U * tp
->advmss
);
4922 tcp_collapse_ofo_queue(sk
);
4923 if (!skb_queue_empty(&sk
->sk_receive_queue
))
4924 tcp_collapse(sk
, &sk
->sk_receive_queue
,
4925 skb_peek(&sk
->sk_receive_queue
),
4927 tp
->copied_seq
, tp
->rcv_nxt
);
4930 if (atomic_read(&sk
->sk_rmem_alloc
) <= sk
->sk_rcvbuf
)
4933 /* Collapsing did not help, destructive actions follow.
4934 * This must not ever occur. */
4936 tcp_prune_ofo_queue(sk
);
4938 if (atomic_read(&sk
->sk_rmem_alloc
) <= sk
->sk_rcvbuf
)
4941 /* If we are really being abused, tell the caller to silently
4942 * drop receive data on the floor. It will get retransmitted
4943 * and hopefully then we'll have sufficient space.
4945 NET_INC_STATS(sock_net(sk
), LINUX_MIB_RCVPRUNED
);
4947 /* Massive buffer overcommit. */
4952 static bool tcp_should_expand_sndbuf(const struct sock
*sk
)
4954 const struct tcp_sock
*tp
= tcp_sk(sk
);
4956 /* If the user specified a specific send buffer setting, do
4959 if (sk
->sk_userlocks
& SOCK_SNDBUF_LOCK
)
4962 /* If we are under global TCP memory pressure, do not expand. */
4963 if (tcp_under_memory_pressure(sk
))
4966 /* If we are under soft global TCP memory pressure, do not expand. */
4967 if (sk_memory_allocated(sk
) >= sk_prot_mem_limits(sk
, 0))
4970 /* If we filled the congestion window, do not expand. */
4971 if (tcp_packets_in_flight(tp
) >= tp
->snd_cwnd
)
4977 /* When incoming ACK allowed to free some skb from write_queue,
4978 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4979 * on the exit from tcp input handler.
4981 * PROBLEM: sndbuf expansion does not work well with largesend.
4983 static void tcp_new_space(struct sock
*sk
)
4985 struct tcp_sock
*tp
= tcp_sk(sk
);
4987 if (tcp_should_expand_sndbuf(sk
)) {
4988 tcp_sndbuf_expand(sk
);
4989 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
4992 sk
->sk_write_space(sk
);
4995 static void tcp_check_space(struct sock
*sk
)
4997 if (sock_flag(sk
, SOCK_QUEUE_SHRUNK
)) {
4998 sock_reset_flag(sk
, SOCK_QUEUE_SHRUNK
);
4999 /* pairs with tcp_poll() */
5000 smp_mb__after_atomic();
5001 if (sk
->sk_socket
&&
5002 test_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
))
5007 static inline void tcp_data_snd_check(struct sock
*sk
)
5009 tcp_push_pending_frames(sk
);
5010 tcp_check_space(sk
);
5014 * Check if sending an ack is needed.
5016 static void __tcp_ack_snd_check(struct sock
*sk
, int ofo_possible
)
5018 struct tcp_sock
*tp
= tcp_sk(sk
);
5020 /* More than one full frame received... */
5021 if (((tp
->rcv_nxt
- tp
->rcv_wup
) > inet_csk(sk
)->icsk_ack
.rcv_mss
&&
5022 /* ... and right edge of window advances far enough.
5023 * (tcp_recvmsg() will send ACK otherwise). Or...
5025 __tcp_select_window(sk
) >= tp
->rcv_wnd
) ||
5026 /* We ACK each frame or... */
5027 tcp_in_quickack_mode(sk
) ||
5028 /* We have out of order data. */
5029 (ofo_possible
&& skb_peek(&tp
->out_of_order_queue
))) {
5030 /* Then ack it now */
5033 /* Else, send delayed ack. */
5034 tcp_send_delayed_ack(sk
);
5038 static inline void tcp_ack_snd_check(struct sock
*sk
)
5040 if (!inet_csk_ack_scheduled(sk
)) {
5041 /* We sent a data segment already. */
5044 __tcp_ack_snd_check(sk
, 1);
5048 * This routine is only called when we have urgent data
5049 * signaled. Its the 'slow' part of tcp_urg. It could be
5050 * moved inline now as tcp_urg is only called from one
5051 * place. We handle URGent data wrong. We have to - as
5052 * BSD still doesn't use the correction from RFC961.
5053 * For 1003.1g we should support a new option TCP_STDURG to permit
5054 * either form (or just set the sysctl tcp_stdurg).
5057 static void tcp_check_urg(struct sock
*sk
, const struct tcphdr
*th
)
5059 struct tcp_sock
*tp
= tcp_sk(sk
);
5060 u32 ptr
= ntohs(th
->urg_ptr
);
5062 if (ptr
&& !sysctl_tcp_stdurg
)
5064 ptr
+= ntohl(th
->seq
);
5066 /* Ignore urgent data that we've already seen and read. */
5067 if (after(tp
->copied_seq
, ptr
))
5070 /* Do not replay urg ptr.
5072 * NOTE: interesting situation not covered by specs.
5073 * Misbehaving sender may send urg ptr, pointing to segment,
5074 * which we already have in ofo queue. We are not able to fetch
5075 * such data and will stay in TCP_URG_NOTYET until will be eaten
5076 * by recvmsg(). Seems, we are not obliged to handle such wicked
5077 * situations. But it is worth to think about possibility of some
5078 * DoSes using some hypothetical application level deadlock.
5080 if (before(ptr
, tp
->rcv_nxt
))
5083 /* Do we already have a newer (or duplicate) urgent pointer? */
5084 if (tp
->urg_data
&& !after(ptr
, tp
->urg_seq
))
5087 /* Tell the world about our new urgent pointer. */
5090 /* We may be adding urgent data when the last byte read was
5091 * urgent. To do this requires some care. We cannot just ignore
5092 * tp->copied_seq since we would read the last urgent byte again
5093 * as data, nor can we alter copied_seq until this data arrives
5094 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5096 * NOTE. Double Dutch. Rendering to plain English: author of comment
5097 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5098 * and expect that both A and B disappear from stream. This is _wrong_.
5099 * Though this happens in BSD with high probability, this is occasional.
5100 * Any application relying on this is buggy. Note also, that fix "works"
5101 * only in this artificial test. Insert some normal data between A and B and we will
5102 * decline of BSD again. Verdict: it is better to remove to trap
5105 if (tp
->urg_seq
== tp
->copied_seq
&& tp
->urg_data
&&
5106 !sock_flag(sk
, SOCK_URGINLINE
) && tp
->copied_seq
!= tp
->rcv_nxt
) {
5107 struct sk_buff
*skb
= skb_peek(&sk
->sk_receive_queue
);
5109 if (skb
&& !before(tp
->copied_seq
, TCP_SKB_CB(skb
)->end_seq
)) {
5110 __skb_unlink(skb
, &sk
->sk_receive_queue
);
5115 tp
->urg_data
= TCP_URG_NOTYET
;
5118 /* Disable header prediction. */
5122 /* This is the 'fast' part of urgent handling. */
5123 static void tcp_urg(struct sock
*sk
, struct sk_buff
*skb
, const struct tcphdr
*th
)
5125 struct tcp_sock
*tp
= tcp_sk(sk
);
5127 /* Check if we get a new urgent pointer - normally not. */
5129 tcp_check_urg(sk
, th
);
5131 /* Do we wait for any urgent data? - normally not... */
5132 if (tp
->urg_data
== TCP_URG_NOTYET
) {
5133 u32 ptr
= tp
->urg_seq
- ntohl(th
->seq
) + (th
->doff
* 4) -
5136 /* Is the urgent pointer pointing into this packet? */
5137 if (ptr
< skb
->len
) {
5139 if (skb_copy_bits(skb
, ptr
, &tmp
, 1))
5141 tp
->urg_data
= TCP_URG_VALID
| tmp
;
5142 if (!sock_flag(sk
, SOCK_DEAD
))
5143 sk
->sk_data_ready(sk
);
5148 static int tcp_copy_to_iovec(struct sock
*sk
, struct sk_buff
*skb
, int hlen
)
5150 struct tcp_sock
*tp
= tcp_sk(sk
);
5151 int chunk
= skb
->len
- hlen
;
5154 if (skb_csum_unnecessary(skb
))
5155 err
= skb_copy_datagram_msg(skb
, hlen
, tp
->ucopy
.msg
, chunk
);
5157 err
= skb_copy_and_csum_datagram_msg(skb
, hlen
, tp
->ucopy
.msg
);
5160 tp
->ucopy
.len
-= chunk
;
5161 tp
->copied_seq
+= chunk
;
5162 tcp_rcv_space_adjust(sk
);
5168 /* Does PAWS and seqno based validation of an incoming segment, flags will
5169 * play significant role here.
5171 static bool tcp_validate_incoming(struct sock
*sk
, struct sk_buff
*skb
,
5172 const struct tcphdr
*th
, int syn_inerr
)
5174 struct tcp_sock
*tp
= tcp_sk(sk
);
5175 bool rst_seq_match
= false;
5177 /* RFC1323: H1. Apply PAWS check first. */
5178 if (tcp_fast_parse_options(skb
, th
, tp
) && tp
->rx_opt
.saw_tstamp
&&
5179 tcp_paws_discard(sk
, skb
)) {
5181 NET_INC_STATS(sock_net(sk
), LINUX_MIB_PAWSESTABREJECTED
);
5182 if (!tcp_oow_rate_limited(sock_net(sk
), skb
,
5183 LINUX_MIB_TCPACKSKIPPEDPAWS
,
5184 &tp
->last_oow_ack_time
))
5185 tcp_send_dupack(sk
, skb
);
5188 /* Reset is accepted even if it did not pass PAWS. */
5191 /* Step 1: check sequence number */
5192 if (!tcp_sequence(tp
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
)) {
5193 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5194 * (RST) segments are validated by checking their SEQ-fields."
5195 * And page 69: "If an incoming segment is not acceptable,
5196 * an acknowledgment should be sent in reply (unless the RST
5197 * bit is set, if so drop the segment and return)".
5202 if (!tcp_oow_rate_limited(sock_net(sk
), skb
,
5203 LINUX_MIB_TCPACKSKIPPEDSEQ
,
5204 &tp
->last_oow_ack_time
))
5205 tcp_send_dupack(sk
, skb
);
5210 /* Step 2: check RST bit */
5212 /* RFC 5961 3.2 (extend to match against SACK too if available):
5213 * If seq num matches RCV.NXT or the right-most SACK block,
5215 * RESET the connection
5217 * Send a challenge ACK
5219 if (TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
) {
5220 rst_seq_match
= true;
5221 } else if (tcp_is_sack(tp
) && tp
->rx_opt
.num_sacks
> 0) {
5222 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
5223 int max_sack
= sp
[0].end_seq
;
5226 for (this_sack
= 1; this_sack
< tp
->rx_opt
.num_sacks
;
5228 max_sack
= after(sp
[this_sack
].end_seq
,
5230 sp
[this_sack
].end_seq
: max_sack
;
5233 if (TCP_SKB_CB(skb
)->seq
== max_sack
)
5234 rst_seq_match
= true;
5240 tcp_send_challenge_ack(sk
, skb
);
5244 /* step 3: check security and precedence [ignored] */
5246 /* step 4: Check for a SYN
5247 * RFC 5961 4.2 : Send a challenge ack
5252 TCP_INC_STATS(sock_net(sk
), TCP_MIB_INERRS
);
5253 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPSYNCHALLENGE
);
5254 tcp_send_challenge_ack(sk
, skb
);
5266 * TCP receive function for the ESTABLISHED state.
5268 * It is split into a fast path and a slow path. The fast path is
5270 * - A zero window was announced from us - zero window probing
5271 * is only handled properly in the slow path.
5272 * - Out of order segments arrived.
5273 * - Urgent data is expected.
5274 * - There is no buffer space left
5275 * - Unexpected TCP flags/window values/header lengths are received
5276 * (detected by checking the TCP header against pred_flags)
5277 * - Data is sent in both directions. Fast path only supports pure senders
5278 * or pure receivers (this means either the sequence number or the ack
5279 * value must stay constant)
5280 * - Unexpected TCP option.
5282 * When these conditions are not satisfied it drops into a standard
5283 * receive procedure patterned after RFC793 to handle all cases.
5284 * The first three cases are guaranteed by proper pred_flags setting,
5285 * the rest is checked inline. Fast processing is turned on in
5286 * tcp_data_queue when everything is OK.
5288 void tcp_rcv_established(struct sock
*sk
, struct sk_buff
*skb
,
5289 const struct tcphdr
*th
, unsigned int len
)
5291 struct tcp_sock
*tp
= tcp_sk(sk
);
5293 if (unlikely(!sk
->sk_rx_dst
))
5294 inet_csk(sk
)->icsk_af_ops
->sk_rx_dst_set(sk
, skb
);
5296 * Header prediction.
5297 * The code loosely follows the one in the famous
5298 * "30 instruction TCP receive" Van Jacobson mail.
5300 * Van's trick is to deposit buffers into socket queue
5301 * on a device interrupt, to call tcp_recv function
5302 * on the receive process context and checksum and copy
5303 * the buffer to user space. smart...
5305 * Our current scheme is not silly either but we take the
5306 * extra cost of the net_bh soft interrupt processing...
5307 * We do checksum and copy also but from device to kernel.
5310 tp
->rx_opt
.saw_tstamp
= 0;
5312 /* pred_flags is 0xS?10 << 16 + snd_wnd
5313 * if header_prediction is to be made
5314 * 'S' will always be tp->tcp_header_len >> 2
5315 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5316 * turn it off (when there are holes in the receive
5317 * space for instance)
5318 * PSH flag is ignored.
5321 if ((tcp_flag_word(th
) & TCP_HP_BITS
) == tp
->pred_flags
&&
5322 TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
&&
5323 !after(TCP_SKB_CB(skb
)->ack_seq
, tp
->snd_nxt
)) {
5324 int tcp_header_len
= tp
->tcp_header_len
;
5326 /* Timestamp header prediction: tcp_header_len
5327 * is automatically equal to th->doff*4 due to pred_flags
5331 /* Check timestamp */
5332 if (tcp_header_len
== sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) {
5333 /* No? Slow path! */
5334 if (!tcp_parse_aligned_timestamp(tp
, th
))
5337 /* If PAWS failed, check it more carefully in slow path */
5338 if ((s32
)(tp
->rx_opt
.rcv_tsval
- tp
->rx_opt
.ts_recent
) < 0)
5341 /* DO NOT update ts_recent here, if checksum fails
5342 * and timestamp was corrupted part, it will result
5343 * in a hung connection since we will drop all
5344 * future packets due to the PAWS test.
5348 if (len
<= tcp_header_len
) {
5349 /* Bulk data transfer: sender */
5350 if (len
== tcp_header_len
) {
5351 /* Predicted packet is in window by definition.
5352 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5353 * Hence, check seq<=rcv_wup reduces to:
5355 if (tcp_header_len
==
5356 (sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) &&
5357 tp
->rcv_nxt
== tp
->rcv_wup
)
5358 tcp_store_ts_recent(tp
);
5360 /* We know that such packets are checksummed
5363 tcp_ack(sk
, skb
, 0);
5365 tcp_data_snd_check(sk
);
5367 } else { /* Header too small */
5368 TCP_INC_STATS(sock_net(sk
), TCP_MIB_INERRS
);
5373 bool fragstolen
= false;
5375 if (tp
->ucopy
.task
== current
&&
5376 tp
->copied_seq
== tp
->rcv_nxt
&&
5377 len
- tcp_header_len
<= tp
->ucopy
.len
&&
5378 sock_owned_by_user(sk
)) {
5379 __set_current_state(TASK_RUNNING
);
5381 if (!tcp_copy_to_iovec(sk
, skb
, tcp_header_len
)) {
5382 /* Predicted packet is in window by definition.
5383 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5384 * Hence, check seq<=rcv_wup reduces to:
5386 if (tcp_header_len
==
5387 (sizeof(struct tcphdr
) +
5388 TCPOLEN_TSTAMP_ALIGNED
) &&
5389 tp
->rcv_nxt
== tp
->rcv_wup
)
5390 tcp_store_ts_recent(tp
);
5392 tcp_rcv_rtt_measure_ts(sk
, skb
);
5394 __skb_pull(skb
, tcp_header_len
);
5395 tcp_rcv_nxt_update(tp
, TCP_SKB_CB(skb
)->end_seq
);
5396 NET_INC_STATS(sock_net(sk
),
5397 LINUX_MIB_TCPHPHITSTOUSER
);
5402 if (tcp_checksum_complete(skb
))
5405 if ((int)skb
->truesize
> sk
->sk_forward_alloc
)
5408 /* Predicted packet is in window by definition.
5409 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5410 * Hence, check seq<=rcv_wup reduces to:
5412 if (tcp_header_len
==
5413 (sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) &&
5414 tp
->rcv_nxt
== tp
->rcv_wup
)
5415 tcp_store_ts_recent(tp
);
5417 tcp_rcv_rtt_measure_ts(sk
, skb
);
5419 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPHPHITS
);
5421 /* Bulk data transfer: receiver */
5422 eaten
= tcp_queue_rcv(sk
, skb
, tcp_header_len
,
5426 tcp_event_data_recv(sk
, skb
);
5428 if (TCP_SKB_CB(skb
)->ack_seq
!= tp
->snd_una
) {
5429 /* Well, only one small jumplet in fast path... */
5430 tcp_ack(sk
, skb
, FLAG_DATA
);
5431 tcp_data_snd_check(sk
);
5432 if (!inet_csk_ack_scheduled(sk
))
5436 __tcp_ack_snd_check(sk
, 0);
5439 kfree_skb_partial(skb
, fragstolen
);
5440 sk
->sk_data_ready(sk
);
5446 if (len
< (th
->doff
<< 2) || tcp_checksum_complete(skb
))
5449 if (!th
->ack
&& !th
->rst
&& !th
->syn
)
5453 * Standard slow path.
5456 if (!tcp_validate_incoming(sk
, skb
, th
, 1))
5460 if (tcp_ack(sk
, skb
, FLAG_SLOWPATH
| FLAG_UPDATE_TS_RECENT
) < 0)
5463 tcp_rcv_rtt_measure_ts(sk
, skb
);
5465 /* Process urgent data. */
5466 tcp_urg(sk
, skb
, th
);
5468 /* step 7: process the segment text */
5469 tcp_data_queue(sk
, skb
);
5471 tcp_data_snd_check(sk
);
5472 tcp_ack_snd_check(sk
);
5476 TCP_INC_STATS(sock_net(sk
), TCP_MIB_CSUMERRORS
);
5477 TCP_INC_STATS(sock_net(sk
), TCP_MIB_INERRS
);
5482 EXPORT_SYMBOL(tcp_rcv_established
);
5484 void tcp_finish_connect(struct sock
*sk
, struct sk_buff
*skb
)
5486 struct tcp_sock
*tp
= tcp_sk(sk
);
5487 struct inet_connection_sock
*icsk
= inet_csk(sk
);
5489 tcp_set_state(sk
, TCP_ESTABLISHED
);
5492 icsk
->icsk_af_ops
->sk_rx_dst_set(sk
, skb
);
5493 security_inet_conn_established(sk
, skb
);
5496 /* Make sure socket is routed, for correct metrics. */
5497 icsk
->icsk_af_ops
->rebuild_header(sk
);
5499 tcp_init_metrics(sk
);
5501 tcp_init_congestion_control(sk
);
5503 /* Prevent spurious tcp_cwnd_restart() on first data
5506 tp
->lsndtime
= tcp_time_stamp
;
5508 tcp_init_buffer_space(sk
);
5510 if (sock_flag(sk
, SOCK_KEEPOPEN
))
5511 inet_csk_reset_keepalive_timer(sk
, keepalive_time_when(tp
));
5513 if (!tp
->rx_opt
.snd_wscale
)
5514 __tcp_fast_path_on(tp
, tp
->snd_wnd
);
5518 if (!sock_flag(sk
, SOCK_DEAD
)) {
5519 sk
->sk_state_change(sk
);
5520 sk_wake_async(sk
, SOCK_WAKE_IO
, POLL_OUT
);
5524 static bool tcp_rcv_fastopen_synack(struct sock
*sk
, struct sk_buff
*synack
,
5525 struct tcp_fastopen_cookie
*cookie
)
5527 struct tcp_sock
*tp
= tcp_sk(sk
);
5528 struct sk_buff
*data
= tp
->syn_data
? tcp_write_queue_head(sk
) : NULL
;
5529 u16 mss
= tp
->rx_opt
.mss_clamp
, try_exp
= 0;
5530 bool syn_drop
= false;
5532 if (mss
== tp
->rx_opt
.user_mss
) {
5533 struct tcp_options_received opt
;
5535 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
5536 tcp_clear_options(&opt
);
5537 opt
.user_mss
= opt
.mss_clamp
= 0;
5538 tcp_parse_options(synack
, &opt
, 0, NULL
);
5539 mss
= opt
.mss_clamp
;
5542 if (!tp
->syn_fastopen
) {
5543 /* Ignore an unsolicited cookie */
5545 } else if (tp
->total_retrans
) {
5546 /* SYN timed out and the SYN-ACK neither has a cookie nor
5547 * acknowledges data. Presumably the remote received only
5548 * the retransmitted (regular) SYNs: either the original
5549 * SYN-data or the corresponding SYN-ACK was dropped.
5551 syn_drop
= (cookie
->len
< 0 && data
);
5552 } else if (cookie
->len
< 0 && !tp
->syn_data
) {
5553 /* We requested a cookie but didn't get it. If we did not use
5554 * the (old) exp opt format then try so next time (try_exp=1).
5555 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5557 try_exp
= tp
->syn_fastopen_exp
? 2 : 1;
5560 tcp_fastopen_cache_set(sk
, mss
, cookie
, syn_drop
, try_exp
);
5562 if (data
) { /* Retransmit unacked data in SYN */
5563 tcp_for_write_queue_from(data
, sk
) {
5564 if (data
== tcp_send_head(sk
) ||
5565 __tcp_retransmit_skb(sk
, data
, 1))
5569 NET_INC_STATS(sock_net(sk
),
5570 LINUX_MIB_TCPFASTOPENACTIVEFAIL
);
5573 tp
->syn_data_acked
= tp
->syn_data
;
5574 if (tp
->syn_data_acked
)
5575 NET_INC_STATS(sock_net(sk
),
5576 LINUX_MIB_TCPFASTOPENACTIVE
);
5578 tcp_fastopen_add_skb(sk
, synack
);
5583 static int tcp_rcv_synsent_state_process(struct sock
*sk
, struct sk_buff
*skb
,
5584 const struct tcphdr
*th
)
5586 struct inet_connection_sock
*icsk
= inet_csk(sk
);
5587 struct tcp_sock
*tp
= tcp_sk(sk
);
5588 struct tcp_fastopen_cookie foc
= { .len
= -1 };
5589 int saved_clamp
= tp
->rx_opt
.mss_clamp
;
5591 tcp_parse_options(skb
, &tp
->rx_opt
, 0, &foc
);
5592 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
)
5593 tp
->rx_opt
.rcv_tsecr
-= tp
->tsoffset
;
5597 * "If the state is SYN-SENT then
5598 * first check the ACK bit
5599 * If the ACK bit is set
5600 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5601 * a reset (unless the RST bit is set, if so drop
5602 * the segment and return)"
5604 if (!after(TCP_SKB_CB(skb
)->ack_seq
, tp
->snd_una
) ||
5605 after(TCP_SKB_CB(skb
)->ack_seq
, tp
->snd_nxt
))
5606 goto reset_and_undo
;
5608 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
5609 !between(tp
->rx_opt
.rcv_tsecr
, tp
->retrans_stamp
,
5611 NET_INC_STATS(sock_net(sk
),
5612 LINUX_MIB_PAWSACTIVEREJECTED
);
5613 goto reset_and_undo
;
5616 /* Now ACK is acceptable.
5618 * "If the RST bit is set
5619 * If the ACK was acceptable then signal the user "error:
5620 * connection reset", drop the segment, enter CLOSED state,
5621 * delete TCB, and return."
5630 * "fifth, if neither of the SYN or RST bits is set then
5631 * drop the segment and return."
5637 goto discard_and_undo
;
5640 * "If the SYN bit is on ...
5641 * are acceptable then ...
5642 * (our SYN has been ACKed), change the connection
5643 * state to ESTABLISHED..."
5646 tcp_ecn_rcv_synack(tp
, th
);
5648 tcp_init_wl(tp
, TCP_SKB_CB(skb
)->seq
);
5649 tcp_ack(sk
, skb
, FLAG_SLOWPATH
);
5651 /* Ok.. it's good. Set up sequence numbers and
5652 * move to established.
5654 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->seq
+ 1;
5655 tp
->rcv_wup
= TCP_SKB_CB(skb
)->seq
+ 1;
5657 /* RFC1323: The window in SYN & SYN/ACK segments is
5660 tp
->snd_wnd
= ntohs(th
->window
);
5662 if (!tp
->rx_opt
.wscale_ok
) {
5663 tp
->rx_opt
.snd_wscale
= tp
->rx_opt
.rcv_wscale
= 0;
5664 tp
->window_clamp
= min(tp
->window_clamp
, 65535U);
5667 if (tp
->rx_opt
.saw_tstamp
) {
5668 tp
->rx_opt
.tstamp_ok
= 1;
5669 tp
->tcp_header_len
=
5670 sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
;
5671 tp
->advmss
-= TCPOLEN_TSTAMP_ALIGNED
;
5672 tcp_store_ts_recent(tp
);
5674 tp
->tcp_header_len
= sizeof(struct tcphdr
);
5677 if (tcp_is_sack(tp
) && sysctl_tcp_fack
)
5678 tcp_enable_fack(tp
);
5681 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
5682 tcp_initialize_rcv_mss(sk
);
5684 /* Remember, tcp_poll() does not lock socket!
5685 * Change state from SYN-SENT only after copied_seq
5686 * is initialized. */
5687 tp
->copied_seq
= tp
->rcv_nxt
;
5691 tcp_finish_connect(sk
, skb
);
5693 if ((tp
->syn_fastopen
|| tp
->syn_data
) &&
5694 tcp_rcv_fastopen_synack(sk
, skb
, &foc
))
5697 if (sk
->sk_write_pending
||
5698 icsk
->icsk_accept_queue
.rskq_defer_accept
||
5699 icsk
->icsk_ack
.pingpong
) {
5700 /* Save one ACK. Data will be ready after
5701 * several ticks, if write_pending is set.
5703 * It may be deleted, but with this feature tcpdumps
5704 * look so _wonderfully_ clever, that I was not able
5705 * to stand against the temptation 8) --ANK
5707 inet_csk_schedule_ack(sk
);
5708 icsk
->icsk_ack
.lrcvtime
= tcp_time_stamp
;
5709 tcp_enter_quickack_mode(sk
);
5710 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_DACK
,
5711 TCP_DELACK_MAX
, TCP_RTO_MAX
);
5722 /* No ACK in the segment */
5726 * "If the RST bit is set
5728 * Otherwise (no ACK) drop the segment and return."
5731 goto discard_and_undo
;
5735 if (tp
->rx_opt
.ts_recent_stamp
&& tp
->rx_opt
.saw_tstamp
&&
5736 tcp_paws_reject(&tp
->rx_opt
, 0))
5737 goto discard_and_undo
;
5740 /* We see SYN without ACK. It is attempt of
5741 * simultaneous connect with crossed SYNs.
5742 * Particularly, it can be connect to self.
5744 tcp_set_state(sk
, TCP_SYN_RECV
);
5746 if (tp
->rx_opt
.saw_tstamp
) {
5747 tp
->rx_opt
.tstamp_ok
= 1;
5748 tcp_store_ts_recent(tp
);
5749 tp
->tcp_header_len
=
5750 sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
;
5752 tp
->tcp_header_len
= sizeof(struct tcphdr
);
5755 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->seq
+ 1;
5756 tp
->copied_seq
= tp
->rcv_nxt
;
5757 tp
->rcv_wup
= TCP_SKB_CB(skb
)->seq
+ 1;
5759 /* RFC1323: The window in SYN & SYN/ACK segments is
5762 tp
->snd_wnd
= ntohs(th
->window
);
5763 tp
->snd_wl1
= TCP_SKB_CB(skb
)->seq
;
5764 tp
->max_window
= tp
->snd_wnd
;
5766 tcp_ecn_rcv_syn(tp
, th
);
5769 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
5770 tcp_initialize_rcv_mss(sk
);
5772 tcp_send_synack(sk
);
5774 /* Note, we could accept data and URG from this segment.
5775 * There are no obstacles to make this (except that we must
5776 * either change tcp_recvmsg() to prevent it from returning data
5777 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5779 * However, if we ignore data in ACKless segments sometimes,
5780 * we have no reasons to accept it sometimes.
5781 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5782 * is not flawless. So, discard packet for sanity.
5783 * Uncomment this return to process the data.
5790 /* "fifth, if neither of the SYN or RST bits is set then
5791 * drop the segment and return."
5795 tcp_clear_options(&tp
->rx_opt
);
5796 tp
->rx_opt
.mss_clamp
= saved_clamp
;
5800 tcp_clear_options(&tp
->rx_opt
);
5801 tp
->rx_opt
.mss_clamp
= saved_clamp
;
5806 * This function implements the receiving procedure of RFC 793 for
5807 * all states except ESTABLISHED and TIME_WAIT.
5808 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5809 * address independent.
5812 int tcp_rcv_state_process(struct sock
*sk
, struct sk_buff
*skb
)
5814 struct tcp_sock
*tp
= tcp_sk(sk
);
5815 struct inet_connection_sock
*icsk
= inet_csk(sk
);
5816 const struct tcphdr
*th
= tcp_hdr(skb
);
5817 struct request_sock
*req
;
5821 switch (sk
->sk_state
) {
5835 if (icsk
->icsk_af_ops
->conn_request(sk
, skb
) < 0)
5844 tp
->rx_opt
.saw_tstamp
= 0;
5845 queued
= tcp_rcv_synsent_state_process(sk
, skb
, th
);
5849 /* Do step6 onward by hand. */
5850 tcp_urg(sk
, skb
, th
);
5852 tcp_data_snd_check(sk
);
5856 tp
->rx_opt
.saw_tstamp
= 0;
5857 req
= tp
->fastopen_rsk
;
5859 WARN_ON_ONCE(sk
->sk_state
!= TCP_SYN_RECV
&&
5860 sk
->sk_state
!= TCP_FIN_WAIT1
);
5862 if (!tcp_check_req(sk
, skb
, req
, true))
5866 if (!th
->ack
&& !th
->rst
&& !th
->syn
)
5869 if (!tcp_validate_incoming(sk
, skb
, th
, 0))
5872 /* step 5: check the ACK field */
5873 acceptable
= tcp_ack(sk
, skb
, FLAG_SLOWPATH
|
5874 FLAG_UPDATE_TS_RECENT
) > 0;
5876 switch (sk
->sk_state
) {
5882 tcp_synack_rtt_meas(sk
, req
);
5884 /* Once we leave TCP_SYN_RECV, we no longer need req
5888 tp
->total_retrans
= req
->num_retrans
;
5889 reqsk_fastopen_remove(sk
, req
, false);
5891 /* Make sure socket is routed, for correct metrics. */
5892 icsk
->icsk_af_ops
->rebuild_header(sk
);
5893 tcp_init_congestion_control(sk
);
5896 tp
->copied_seq
= tp
->rcv_nxt
;
5897 tcp_init_buffer_space(sk
);
5900 tcp_set_state(sk
, TCP_ESTABLISHED
);
5901 sk
->sk_state_change(sk
);
5903 /* Note, that this wakeup is only for marginal crossed SYN case.
5904 * Passively open sockets are not waked up, because
5905 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5908 sk_wake_async(sk
, SOCK_WAKE_IO
, POLL_OUT
);
5910 tp
->snd_una
= TCP_SKB_CB(skb
)->ack_seq
;
5911 tp
->snd_wnd
= ntohs(th
->window
) << tp
->rx_opt
.snd_wscale
;
5912 tcp_init_wl(tp
, TCP_SKB_CB(skb
)->seq
);
5914 if (tp
->rx_opt
.tstamp_ok
)
5915 tp
->advmss
-= TCPOLEN_TSTAMP_ALIGNED
;
5918 /* Re-arm the timer because data may have been sent out.
5919 * This is similar to the regular data transmission case
5920 * when new data has just been ack'ed.
5922 * (TFO) - we could try to be more aggressive and
5923 * retransmitting any data sooner based on when they
5928 tcp_init_metrics(sk
);
5930 tcp_update_pacing_rate(sk
);
5932 /* Prevent spurious tcp_cwnd_restart() on first data packet */
5933 tp
->lsndtime
= tcp_time_stamp
;
5935 tcp_initialize_rcv_mss(sk
);
5936 tcp_fast_path_on(tp
);
5939 case TCP_FIN_WAIT1
: {
5940 struct dst_entry
*dst
;
5943 /* If we enter the TCP_FIN_WAIT1 state and we are a
5944 * Fast Open socket and this is the first acceptable
5945 * ACK we have received, this would have acknowledged
5946 * our SYNACK so stop the SYNACK timer.
5949 /* Return RST if ack_seq is invalid.
5950 * Note that RFC793 only says to generate a
5951 * DUPACK for it but for TCP Fast Open it seems
5952 * better to treat this case like TCP_SYN_RECV
5957 /* We no longer need the request sock. */
5958 reqsk_fastopen_remove(sk
, req
, false);
5961 if (tp
->snd_una
!= tp
->write_seq
)
5964 tcp_set_state(sk
, TCP_FIN_WAIT2
);
5965 sk
->sk_shutdown
|= SEND_SHUTDOWN
;
5967 dst
= __sk_dst_get(sk
);
5971 if (!sock_flag(sk
, SOCK_DEAD
)) {
5972 /* Wake up lingering close() */
5973 sk
->sk_state_change(sk
);
5977 if (tp
->linger2
< 0 ||
5978 (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
5979 after(TCP_SKB_CB(skb
)->end_seq
- th
->fin
, tp
->rcv_nxt
))) {
5981 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPABORTONDATA
);
5985 tmo
= tcp_fin_time(sk
);
5986 if (tmo
> TCP_TIMEWAIT_LEN
) {
5987 inet_csk_reset_keepalive_timer(sk
, tmo
- TCP_TIMEWAIT_LEN
);
5988 } else if (th
->fin
|| sock_owned_by_user(sk
)) {
5989 /* Bad case. We could lose such FIN otherwise.
5990 * It is not a big problem, but it looks confusing
5991 * and not so rare event. We still can lose it now,
5992 * if it spins in bh_lock_sock(), but it is really
5995 inet_csk_reset_keepalive_timer(sk
, tmo
);
5997 tcp_time_wait(sk
, TCP_FIN_WAIT2
, tmo
);
6004 if (tp
->snd_una
== tp
->write_seq
) {
6005 tcp_time_wait(sk
, TCP_TIME_WAIT
, 0);
6011 if (tp
->snd_una
== tp
->write_seq
) {
6012 tcp_update_metrics(sk
);
6019 /* step 6: check the URG bit */
6020 tcp_urg(sk
, skb
, th
);
6022 /* step 7: process the segment text */
6023 switch (sk
->sk_state
) {
6024 case TCP_CLOSE_WAIT
:
6027 if (!before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
))
6031 /* RFC 793 says to queue data in these states,
6032 * RFC 1122 says we MUST send a reset.
6033 * BSD 4.4 also does reset.
6035 if (sk
->sk_shutdown
& RCV_SHUTDOWN
) {
6036 if (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
6037 after(TCP_SKB_CB(skb
)->end_seq
- th
->fin
, tp
->rcv_nxt
)) {
6038 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPABORTONDATA
);
6044 case TCP_ESTABLISHED
:
6045 tcp_data_queue(sk
, skb
);
6050 /* tcp_data could move socket to TIME-WAIT */
6051 if (sk
->sk_state
!= TCP_CLOSE
) {
6052 tcp_data_snd_check(sk
);
6053 tcp_ack_snd_check(sk
);
6062 EXPORT_SYMBOL(tcp_rcv_state_process
);
6064 static inline void pr_drop_req(struct request_sock
*req
, __u16 port
, int family
)
6066 struct inet_request_sock
*ireq
= inet_rsk(req
);
6068 if (family
== AF_INET
)
6069 net_dbg_ratelimited("drop open request from %pI4/%u\n",
6070 &ireq
->ir_rmt_addr
, port
);
6071 #if IS_ENABLED(CONFIG_IPV6)
6072 else if (family
== AF_INET6
)
6073 net_dbg_ratelimited("drop open request from %pI6/%u\n",
6074 &ireq
->ir_v6_rmt_addr
, port
);
6078 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6080 * If we receive a SYN packet with these bits set, it means a
6081 * network is playing bad games with TOS bits. In order to
6082 * avoid possible false congestion notifications, we disable
6083 * TCP ECN negotiation.
6085 * Exception: tcp_ca wants ECN. This is required for DCTCP
6086 * congestion control: Linux DCTCP asserts ECT on all packets,
6087 * including SYN, which is most optimal solution; however,
6088 * others, such as FreeBSD do not.
6090 static void tcp_ecn_create_request(struct request_sock
*req
,
6091 const struct sk_buff
*skb
,
6092 const struct sock
*listen_sk
,
6093 const struct dst_entry
*dst
)
6095 const struct tcphdr
*th
= tcp_hdr(skb
);
6096 const struct net
*net
= sock_net(listen_sk
);
6097 bool th_ecn
= th
->ece
&& th
->cwr
;
6104 ect
= !INET_ECN_is_not_ect(TCP_SKB_CB(skb
)->ip_dsfield
);
6105 ecn_ok_dst
= dst_feature(dst
, DST_FEATURE_ECN_MASK
);
6106 ecn_ok
= net
->ipv4
.sysctl_tcp_ecn
|| ecn_ok_dst
;
6108 if ((!ect
&& ecn_ok
) || tcp_ca_needs_ecn(listen_sk
) ||
6109 (ecn_ok_dst
& DST_FEATURE_ECN_CA
))
6110 inet_rsk(req
)->ecn_ok
= 1;
6113 static void tcp_openreq_init(struct request_sock
*req
,
6114 const struct tcp_options_received
*rx_opt
,
6115 struct sk_buff
*skb
, const struct sock
*sk
)
6117 struct inet_request_sock
*ireq
= inet_rsk(req
);
6119 req
->rsk_rcv_wnd
= 0; /* So that tcp_send_synack() knows! */
6121 tcp_rsk(req
)->rcv_isn
= TCP_SKB_CB(skb
)->seq
;
6122 tcp_rsk(req
)->rcv_nxt
= TCP_SKB_CB(skb
)->seq
+ 1;
6123 skb_mstamp_get(&tcp_rsk(req
)->snt_synack
);
6124 tcp_rsk(req
)->last_oow_ack_time
= 0;
6125 req
->mss
= rx_opt
->mss_clamp
;
6126 req
->ts_recent
= rx_opt
->saw_tstamp
? rx_opt
->rcv_tsval
: 0;
6127 ireq
->tstamp_ok
= rx_opt
->tstamp_ok
;
6128 ireq
->sack_ok
= rx_opt
->sack_ok
;
6129 ireq
->snd_wscale
= rx_opt
->snd_wscale
;
6130 ireq
->wscale_ok
= rx_opt
->wscale_ok
;
6133 ireq
->ir_rmt_port
= tcp_hdr(skb
)->source
;
6134 ireq
->ir_num
= ntohs(tcp_hdr(skb
)->dest
);
6135 ireq
->ir_mark
= inet_request_mark(sk
, skb
);
6138 struct request_sock
*inet_reqsk_alloc(const struct request_sock_ops
*ops
,
6139 struct sock
*sk_listener
,
6140 bool attach_listener
)
6142 struct request_sock
*req
= reqsk_alloc(ops
, sk_listener
,
6146 struct inet_request_sock
*ireq
= inet_rsk(req
);
6148 kmemcheck_annotate_bitfield(ireq
, flags
);
6150 #if IS_ENABLED(CONFIG_IPV6)
6151 ireq
->pktopts
= NULL
;
6153 atomic64_set(&ireq
->ir_cookie
, 0);
6154 ireq
->ireq_state
= TCP_NEW_SYN_RECV
;
6155 write_pnet(&ireq
->ireq_net
, sock_net(sk_listener
));
6156 ireq
->ireq_family
= sk_listener
->sk_family
;
6161 EXPORT_SYMBOL(inet_reqsk_alloc
);
6164 * Return true if a syncookie should be sent
6166 static bool tcp_syn_flood_action(const struct sock
*sk
,
6167 const struct sk_buff
*skb
,
6170 struct request_sock_queue
*queue
= &inet_csk(sk
)->icsk_accept_queue
;
6171 const char *msg
= "Dropping request";
6172 bool want_cookie
= false;
6173 struct net
*net
= sock_net(sk
);
6175 #ifdef CONFIG_SYN_COOKIES
6176 if (net
->ipv4
.sysctl_tcp_syncookies
) {
6177 msg
= "Sending cookies";
6179 __NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPREQQFULLDOCOOKIES
);
6182 __NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPREQQFULLDROP
);
6184 if (!queue
->synflood_warned
&&
6185 net
->ipv4
.sysctl_tcp_syncookies
!= 2 &&
6186 xchg(&queue
->synflood_warned
, 1) == 0)
6187 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
6188 proto
, ntohs(tcp_hdr(skb
)->dest
), msg
);
6193 static void tcp_reqsk_record_syn(const struct sock
*sk
,
6194 struct request_sock
*req
,
6195 const struct sk_buff
*skb
)
6197 if (tcp_sk(sk
)->save_syn
) {
6198 u32 len
= skb_network_header_len(skb
) + tcp_hdrlen(skb
);
6201 copy
= kmalloc(len
+ sizeof(u32
), GFP_ATOMIC
);
6204 memcpy(©
[1], skb_network_header(skb
), len
);
6205 req
->saved_syn
= copy
;
6210 int tcp_conn_request(struct request_sock_ops
*rsk_ops
,
6211 const struct tcp_request_sock_ops
*af_ops
,
6212 struct sock
*sk
, struct sk_buff
*skb
)
6214 struct tcp_fastopen_cookie foc
= { .len
= -1 };
6215 __u32 isn
= TCP_SKB_CB(skb
)->tcp_tw_isn
;
6216 struct tcp_options_received tmp_opt
;
6217 struct tcp_sock
*tp
= tcp_sk(sk
);
6218 struct net
*net
= sock_net(sk
);
6219 struct sock
*fastopen_sk
= NULL
;
6220 struct dst_entry
*dst
= NULL
;
6221 struct request_sock
*req
;
6222 bool want_cookie
= false;
6225 /* TW buckets are converted to open requests without
6226 * limitations, they conserve resources and peer is
6227 * evidently real one.
6229 if ((net
->ipv4
.sysctl_tcp_syncookies
== 2 ||
6230 inet_csk_reqsk_queue_is_full(sk
)) && !isn
) {
6231 want_cookie
= tcp_syn_flood_action(sk
, skb
, rsk_ops
->slab_name
);
6237 /* Accept backlog is full. If we have already queued enough
6238 * of warm entries in syn queue, drop request. It is better than
6239 * clogging syn queue with openreqs with exponentially increasing
6242 if (sk_acceptq_is_full(sk
) && inet_csk_reqsk_queue_young(sk
) > 1) {
6243 NET_INC_STATS(sock_net(sk
), LINUX_MIB_LISTENOVERFLOWS
);
6247 req
= inet_reqsk_alloc(rsk_ops
, sk
, !want_cookie
);
6251 tcp_rsk(req
)->af_specific
= af_ops
;
6253 tcp_clear_options(&tmp_opt
);
6254 tmp_opt
.mss_clamp
= af_ops
->mss_clamp
;
6255 tmp_opt
.user_mss
= tp
->rx_opt
.user_mss
;
6256 tcp_parse_options(skb
, &tmp_opt
, 0, want_cookie
? NULL
: &foc
);
6258 if (want_cookie
&& !tmp_opt
.saw_tstamp
)
6259 tcp_clear_options(&tmp_opt
);
6261 tmp_opt
.tstamp_ok
= tmp_opt
.saw_tstamp
;
6262 tcp_openreq_init(req
, &tmp_opt
, skb
, sk
);
6264 /* Note: tcp_v6_init_req() might override ir_iif for link locals */
6265 inet_rsk(req
)->ir_iif
= inet_request_bound_dev_if(sk
, skb
);
6267 af_ops
->init_req(req
, sk
, skb
);
6269 if (security_inet_conn_request(sk
, skb
, req
))
6272 if (!want_cookie
&& !isn
) {
6273 /* VJ's idea. We save last timestamp seen
6274 * from the destination in peer table, when entering
6275 * state TIME-WAIT, and check against it before
6276 * accepting new connection request.
6278 * If "isn" is not zero, this request hit alive
6279 * timewait bucket, so that all the necessary checks
6280 * are made in the function processing timewait state.
6282 if (tcp_death_row
.sysctl_tw_recycle
) {
6285 dst
= af_ops
->route_req(sk
, &fl
, req
, &strict
);
6287 if (dst
&& strict
&&
6288 !tcp_peer_is_proven(req
, dst
, true,
6289 tmp_opt
.saw_tstamp
)) {
6290 NET_INC_STATS(sock_net(sk
), LINUX_MIB_PAWSPASSIVEREJECTED
);
6291 goto drop_and_release
;
6294 /* Kill the following clause, if you dislike this way. */
6295 else if (!net
->ipv4
.sysctl_tcp_syncookies
&&
6296 (sysctl_max_syn_backlog
- inet_csk_reqsk_queue_len(sk
) <
6297 (sysctl_max_syn_backlog
>> 2)) &&
6298 !tcp_peer_is_proven(req
, dst
, false,
6299 tmp_opt
.saw_tstamp
)) {
6300 /* Without syncookies last quarter of
6301 * backlog is filled with destinations,
6302 * proven to be alive.
6303 * It means that we continue to communicate
6304 * to destinations, already remembered
6305 * to the moment of synflood.
6307 pr_drop_req(req
, ntohs(tcp_hdr(skb
)->source
),
6309 goto drop_and_release
;
6312 isn
= af_ops
->init_seq(skb
);
6315 dst
= af_ops
->route_req(sk
, &fl
, req
, NULL
);
6320 tcp_ecn_create_request(req
, skb
, sk
, dst
);
6323 isn
= cookie_init_sequence(af_ops
, sk
, skb
, &req
->mss
);
6324 req
->cookie_ts
= tmp_opt
.tstamp_ok
;
6325 if (!tmp_opt
.tstamp_ok
)
6326 inet_rsk(req
)->ecn_ok
= 0;
6329 tcp_rsk(req
)->snt_isn
= isn
;
6330 tcp_rsk(req
)->txhash
= net_tx_rndhash();
6331 tcp_openreq_init_rwin(req
, sk
, dst
);
6333 tcp_reqsk_record_syn(sk
, req
, skb
);
6334 fastopen_sk
= tcp_try_fastopen(sk
, skb
, req
, &foc
, dst
);
6337 af_ops
->send_synack(fastopen_sk
, dst
, &fl
, req
,
6338 &foc
, TCP_SYNACK_FASTOPEN
);
6339 /* Add the child socket directly into the accept queue */
6340 inet_csk_reqsk_queue_add(sk
, req
, fastopen_sk
);
6341 sk
->sk_data_ready(sk
);
6342 bh_unlock_sock(fastopen_sk
);
6343 sock_put(fastopen_sk
);
6345 tcp_rsk(req
)->tfo_listener
= false;
6347 inet_csk_reqsk_queue_hash_add(sk
, req
, TCP_TIMEOUT_INIT
);
6348 af_ops
->send_synack(sk
, dst
, &fl
, req
, &foc
,
6349 !want_cookie
? TCP_SYNACK_NORMAL
:
6367 EXPORT_SYMBOL(tcp_conn_request
);