x86/intel_rdt: Fix incorrect returned value when creating rdgroup sub-directory in...
[cris-mirror.git] / drivers / dma / amba-pl08x.c
blob97483df1f82ea6037ec643b6e6e8a7639703d130
1 /*
2 * Copyright (c) 2006 ARM Ltd.
3 * Copyright (c) 2010 ST-Ericsson SA
4 * Copyirght (c) 2017 Linaro Ltd.
6 * Author: Peter Pearse <peter.pearse@arm.com>
7 * Author: Linus Walleij <linus.walleij@linaro.org>
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the Free
11 * Software Foundation; either version 2 of the License, or (at your option)
12 * any later version.
14 * This program is distributed in the hope that it will be useful, but WITHOUT
15 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
17 * more details.
19 * The full GNU General Public License is in this distribution in the file
20 * called COPYING.
22 * Documentation: ARM DDI 0196G == PL080
23 * Documentation: ARM DDI 0218E == PL081
24 * Documentation: S3C6410 User's Manual == PL080S
26 * PL080 & PL081 both have 16 sets of DMA signals that can be routed to any
27 * channel.
29 * The PL080 has 8 channels available for simultaneous use, and the PL081
30 * has only two channels. So on these DMA controllers the number of channels
31 * and the number of incoming DMA signals are two totally different things.
32 * It is usually not possible to theoretically handle all physical signals,
33 * so a multiplexing scheme with possible denial of use is necessary.
35 * The PL080 has a dual bus master, PL081 has a single master.
37 * PL080S is a version modified by Samsung and used in S3C64xx SoCs.
38 * It differs in following aspects:
39 * - CH_CONFIG register at different offset,
40 * - separate CH_CONTROL2 register for transfer size,
41 * - bigger maximum transfer size,
42 * - 8-word aligned LLI, instead of 4-word, due to extra CCTL2 word,
43 * - no support for peripheral flow control.
45 * Memory to peripheral transfer may be visualized as
46 * Get data from memory to DMAC
47 * Until no data left
48 * On burst request from peripheral
49 * Destination burst from DMAC to peripheral
50 * Clear burst request
51 * Raise terminal count interrupt
53 * For peripherals with a FIFO:
54 * Source burst size == half the depth of the peripheral FIFO
55 * Destination burst size == the depth of the peripheral FIFO
57 * (Bursts are irrelevant for mem to mem transfers - there are no burst
58 * signals, the DMA controller will simply facilitate its AHB master.)
60 * ASSUMES default (little) endianness for DMA transfers
62 * The PL08x has two flow control settings:
63 * - DMAC flow control: the transfer size defines the number of transfers
64 * which occur for the current LLI entry, and the DMAC raises TC at the
65 * end of every LLI entry. Observed behaviour shows the DMAC listening
66 * to both the BREQ and SREQ signals (contrary to documented),
67 * transferring data if either is active. The LBREQ and LSREQ signals
68 * are ignored.
70 * - Peripheral flow control: the transfer size is ignored (and should be
71 * zero). The data is transferred from the current LLI entry, until
72 * after the final transfer signalled by LBREQ or LSREQ. The DMAC
73 * will then move to the next LLI entry. Unsupported by PL080S.
75 #include <linux/amba/bus.h>
76 #include <linux/amba/pl08x.h>
77 #include <linux/debugfs.h>
78 #include <linux/delay.h>
79 #include <linux/device.h>
80 #include <linux/dmaengine.h>
81 #include <linux/dmapool.h>
82 #include <linux/dma-mapping.h>
83 #include <linux/export.h>
84 #include <linux/init.h>
85 #include <linux/interrupt.h>
86 #include <linux/module.h>
87 #include <linux/of.h>
88 #include <linux/of_dma.h>
89 #include <linux/pm_runtime.h>
90 #include <linux/seq_file.h>
91 #include <linux/slab.h>
92 #include <linux/amba/pl080.h>
94 #include "dmaengine.h"
95 #include "virt-dma.h"
97 #define DRIVER_NAME "pl08xdmac"
99 #define PL80X_DMA_BUSWIDTHS \
100 BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \
101 BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
102 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
103 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)
105 static struct amba_driver pl08x_amba_driver;
106 struct pl08x_driver_data;
109 * struct vendor_data - vendor-specific config parameters for PL08x derivatives
110 * @config_offset: offset to the configuration register
111 * @channels: the number of channels available in this variant
112 * @signals: the number of request signals available from the hardware
113 * @dualmaster: whether this version supports dual AHB masters or not.
114 * @nomadik: whether this variant is a ST Microelectronics Nomadik, where the
115 * channels have Nomadik security extension bits that need to be checked
116 * for permission before use and some registers are missing
117 * @pl080s: whether this variant is a Samsung PL080S, which has separate
118 * register and LLI word for transfer size.
119 * @ftdmac020: whether this variant is a Faraday Technology FTDMAC020
120 * @max_transfer_size: the maximum single element transfer size for this
121 * PL08x variant.
123 struct vendor_data {
124 u8 config_offset;
125 u8 channels;
126 u8 signals;
127 bool dualmaster;
128 bool nomadik;
129 bool pl080s;
130 bool ftdmac020;
131 u32 max_transfer_size;
135 * struct pl08x_bus_data - information of source or destination
136 * busses for a transfer
137 * @addr: current address
138 * @maxwidth: the maximum width of a transfer on this bus
139 * @buswidth: the width of this bus in bytes: 1, 2 or 4
141 struct pl08x_bus_data {
142 dma_addr_t addr;
143 u8 maxwidth;
144 u8 buswidth;
147 #define IS_BUS_ALIGNED(bus) IS_ALIGNED((bus)->addr, (bus)->buswidth)
150 * struct pl08x_phy_chan - holder for the physical channels
151 * @id: physical index to this channel
152 * @base: memory base address for this physical channel
153 * @reg_config: configuration address for this physical channel
154 * @reg_control: control address for this physical channel
155 * @reg_src: transfer source address register
156 * @reg_dst: transfer destination address register
157 * @reg_lli: transfer LLI address register
158 * @reg_busy: if the variant has a special per-channel busy register,
159 * this contains a pointer to it
160 * @lock: a lock to use when altering an instance of this struct
161 * @serving: the virtual channel currently being served by this physical
162 * channel
163 * @locked: channel unavailable for the system, e.g. dedicated to secure
164 * world
165 * @ftdmac020: channel is on a FTDMAC020
166 * @pl080s: channel is on a PL08s
168 struct pl08x_phy_chan {
169 unsigned int id;
170 void __iomem *base;
171 void __iomem *reg_config;
172 void __iomem *reg_control;
173 void __iomem *reg_src;
174 void __iomem *reg_dst;
175 void __iomem *reg_lli;
176 void __iomem *reg_busy;
177 spinlock_t lock;
178 struct pl08x_dma_chan *serving;
179 bool locked;
180 bool ftdmac020;
181 bool pl080s;
185 * struct pl08x_sg - structure containing data per sg
186 * @src_addr: src address of sg
187 * @dst_addr: dst address of sg
188 * @len: transfer len in bytes
189 * @node: node for txd's dsg_list
191 struct pl08x_sg {
192 dma_addr_t src_addr;
193 dma_addr_t dst_addr;
194 size_t len;
195 struct list_head node;
199 * struct pl08x_txd - wrapper for struct dma_async_tx_descriptor
200 * @vd: virtual DMA descriptor
201 * @dsg_list: list of children sg's
202 * @llis_bus: DMA memory address (physical) start for the LLIs
203 * @llis_va: virtual memory address start for the LLIs
204 * @cctl: control reg values for current txd
205 * @ccfg: config reg values for current txd
206 * @done: this marks completed descriptors, which should not have their
207 * mux released.
208 * @cyclic: indicate cyclic transfers
210 struct pl08x_txd {
211 struct virt_dma_desc vd;
212 struct list_head dsg_list;
213 dma_addr_t llis_bus;
214 u32 *llis_va;
215 /* Default cctl value for LLIs */
216 u32 cctl;
218 * Settings to be put into the physical channel when we
219 * trigger this txd. Other registers are in llis_va[0].
221 u32 ccfg;
222 bool done;
223 bool cyclic;
227 * enum pl08x_dma_chan_state - holds the PL08x specific virtual channel
228 * states
229 * @PL08X_CHAN_IDLE: the channel is idle
230 * @PL08X_CHAN_RUNNING: the channel has allocated a physical transport
231 * channel and is running a transfer on it
232 * @PL08X_CHAN_PAUSED: the channel has allocated a physical transport
233 * channel, but the transfer is currently paused
234 * @PL08X_CHAN_WAITING: the channel is waiting for a physical transport
235 * channel to become available (only pertains to memcpy channels)
237 enum pl08x_dma_chan_state {
238 PL08X_CHAN_IDLE,
239 PL08X_CHAN_RUNNING,
240 PL08X_CHAN_PAUSED,
241 PL08X_CHAN_WAITING,
245 * struct pl08x_dma_chan - this structure wraps a DMA ENGINE channel
246 * @vc: wrappped virtual channel
247 * @phychan: the physical channel utilized by this channel, if there is one
248 * @name: name of channel
249 * @cd: channel platform data
250 * @cfg: slave configuration
251 * @at: active transaction on this channel
252 * @host: a pointer to the host (internal use)
253 * @state: whether the channel is idle, paused, running etc
254 * @slave: whether this channel is a device (slave) or for memcpy
255 * @signal: the physical DMA request signal which this channel is using
256 * @mux_use: count of descriptors using this DMA request signal setting
258 struct pl08x_dma_chan {
259 struct virt_dma_chan vc;
260 struct pl08x_phy_chan *phychan;
261 const char *name;
262 struct pl08x_channel_data *cd;
263 struct dma_slave_config cfg;
264 struct pl08x_txd *at;
265 struct pl08x_driver_data *host;
266 enum pl08x_dma_chan_state state;
267 bool slave;
268 int signal;
269 unsigned mux_use;
273 * struct pl08x_driver_data - the local state holder for the PL08x
274 * @slave: optional slave engine for this instance
275 * @memcpy: memcpy engine for this instance
276 * @has_slave: the PL08x has a slave engine (routed signals)
277 * @base: virtual memory base (remapped) for the PL08x
278 * @adev: the corresponding AMBA (PrimeCell) bus entry
279 * @vd: vendor data for this PL08x variant
280 * @pd: platform data passed in from the platform/machine
281 * @phy_chans: array of data for the physical channels
282 * @pool: a pool for the LLI descriptors
283 * @lli_buses: bitmask to or in to LLI pointer selecting AHB port for LLI
284 * fetches
285 * @mem_buses: set to indicate memory transfers on AHB2.
286 * @lli_words: how many words are used in each LLI item for this variant
288 struct pl08x_driver_data {
289 struct dma_device slave;
290 struct dma_device memcpy;
291 bool has_slave;
292 void __iomem *base;
293 struct amba_device *adev;
294 const struct vendor_data *vd;
295 struct pl08x_platform_data *pd;
296 struct pl08x_phy_chan *phy_chans;
297 struct dma_pool *pool;
298 u8 lli_buses;
299 u8 mem_buses;
300 u8 lli_words;
304 * PL08X specific defines
307 /* The order of words in an LLI. */
308 #define PL080_LLI_SRC 0
309 #define PL080_LLI_DST 1
310 #define PL080_LLI_LLI 2
311 #define PL080_LLI_CCTL 3
312 #define PL080S_LLI_CCTL2 4
314 /* Total words in an LLI. */
315 #define PL080_LLI_WORDS 4
316 #define PL080S_LLI_WORDS 8
319 * Number of LLIs in each LLI buffer allocated for one transfer
320 * (maximum times we call dma_pool_alloc on this pool without freeing)
322 #define MAX_NUM_TSFR_LLIS 512
323 #define PL08X_ALIGN 8
325 static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan)
327 return container_of(chan, struct pl08x_dma_chan, vc.chan);
330 static inline struct pl08x_txd *to_pl08x_txd(struct dma_async_tx_descriptor *tx)
332 return container_of(tx, struct pl08x_txd, vd.tx);
336 * Mux handling.
338 * This gives us the DMA request input to the PL08x primecell which the
339 * peripheral described by the channel data will be routed to, possibly
340 * via a board/SoC specific external MUX. One important point to note
341 * here is that this does not depend on the physical channel.
343 static int pl08x_request_mux(struct pl08x_dma_chan *plchan)
345 const struct pl08x_platform_data *pd = plchan->host->pd;
346 int ret;
348 if (plchan->mux_use++ == 0 && pd->get_xfer_signal) {
349 ret = pd->get_xfer_signal(plchan->cd);
350 if (ret < 0) {
351 plchan->mux_use = 0;
352 return ret;
355 plchan->signal = ret;
357 return 0;
360 static void pl08x_release_mux(struct pl08x_dma_chan *plchan)
362 const struct pl08x_platform_data *pd = plchan->host->pd;
364 if (plchan->signal >= 0) {
365 WARN_ON(plchan->mux_use == 0);
367 if (--plchan->mux_use == 0 && pd->put_xfer_signal) {
368 pd->put_xfer_signal(plchan->cd, plchan->signal);
369 plchan->signal = -1;
375 * Physical channel handling
378 /* Whether a certain channel is busy or not */
379 static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch)
381 unsigned int val;
383 /* If we have a special busy register, take a shortcut */
384 if (ch->reg_busy) {
385 val = readl(ch->reg_busy);
386 return !!(val & BIT(ch->id));
388 val = readl(ch->reg_config);
389 return val & PL080_CONFIG_ACTIVE;
393 * pl08x_write_lli() - Write an LLI into the DMA controller.
395 * The PL08x derivatives support linked lists, but the first item of the
396 * list containing the source, destination, control word and next LLI is
397 * ignored. Instead the driver has to write those values directly into the
398 * SRC, DST, LLI and control registers. On FTDMAC020 also the SIZE
399 * register need to be set up for the first transfer.
401 static void pl08x_write_lli(struct pl08x_driver_data *pl08x,
402 struct pl08x_phy_chan *phychan, const u32 *lli, u32 ccfg)
404 if (pl08x->vd->pl080s)
405 dev_vdbg(&pl08x->adev->dev,
406 "WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
407 "clli=0x%08x, cctl=0x%08x, cctl2=0x%08x, ccfg=0x%08x\n",
408 phychan->id, lli[PL080_LLI_SRC], lli[PL080_LLI_DST],
409 lli[PL080_LLI_LLI], lli[PL080_LLI_CCTL],
410 lli[PL080S_LLI_CCTL2], ccfg);
411 else
412 dev_vdbg(&pl08x->adev->dev,
413 "WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
414 "clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n",
415 phychan->id, lli[PL080_LLI_SRC], lli[PL080_LLI_DST],
416 lli[PL080_LLI_LLI], lli[PL080_LLI_CCTL], ccfg);
418 writel_relaxed(lli[PL080_LLI_SRC], phychan->reg_src);
419 writel_relaxed(lli[PL080_LLI_DST], phychan->reg_dst);
420 writel_relaxed(lli[PL080_LLI_LLI], phychan->reg_lli);
423 * The FTMAC020 has a different layout in the CCTL word of the LLI
424 * and the CCTL register which is split in CSR and SIZE registers.
425 * Convert the LLI item CCTL into the proper values to write into
426 * the CSR and SIZE registers.
428 if (phychan->ftdmac020) {
429 u32 llictl = lli[PL080_LLI_CCTL];
430 u32 val = 0;
432 /* Write the transfer size (12 bits) to the size register */
433 writel_relaxed(llictl & FTDMAC020_LLI_TRANSFER_SIZE_MASK,
434 phychan->base + FTDMAC020_CH_SIZE);
436 * Then write the control bits 28..16 to the control register
437 * by shuffleing the bits around to where they are in the
438 * main register. The mapping is as follows:
439 * Bit 28: TC_MSK - mask on all except last LLI
440 * Bit 27..25: SRC_WIDTH
441 * Bit 24..22: DST_WIDTH
442 * Bit 21..20: SRCAD_CTRL
443 * Bit 19..17: DSTAD_CTRL
444 * Bit 17: SRC_SEL
445 * Bit 16: DST_SEL
447 if (llictl & FTDMAC020_LLI_TC_MSK)
448 val |= FTDMAC020_CH_CSR_TC_MSK;
449 val |= ((llictl & FTDMAC020_LLI_SRC_WIDTH_MSK) >>
450 (FTDMAC020_LLI_SRC_WIDTH_SHIFT -
451 FTDMAC020_CH_CSR_SRC_WIDTH_SHIFT));
452 val |= ((llictl & FTDMAC020_LLI_DST_WIDTH_MSK) >>
453 (FTDMAC020_LLI_DST_WIDTH_SHIFT -
454 FTDMAC020_CH_CSR_DST_WIDTH_SHIFT));
455 val |= ((llictl & FTDMAC020_LLI_SRCAD_CTL_MSK) >>
456 (FTDMAC020_LLI_SRCAD_CTL_SHIFT -
457 FTDMAC020_CH_CSR_SRCAD_CTL_SHIFT));
458 val |= ((llictl & FTDMAC020_LLI_DSTAD_CTL_MSK) >>
459 (FTDMAC020_LLI_DSTAD_CTL_SHIFT -
460 FTDMAC020_CH_CSR_DSTAD_CTL_SHIFT));
461 if (llictl & FTDMAC020_LLI_SRC_SEL)
462 val |= FTDMAC020_CH_CSR_SRC_SEL;
463 if (llictl & FTDMAC020_LLI_DST_SEL)
464 val |= FTDMAC020_CH_CSR_DST_SEL;
467 * Set up the bits that exist in the CSR but are not
468 * part the LLI, i.e. only gets written to the control
469 * register right here.
471 * FIXME: do not just handle memcpy, also handle slave DMA.
473 switch (pl08x->pd->memcpy_burst_size) {
474 default:
475 case PL08X_BURST_SZ_1:
476 val |= PL080_BSIZE_1 <<
477 FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
478 break;
479 case PL08X_BURST_SZ_4:
480 val |= PL080_BSIZE_4 <<
481 FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
482 break;
483 case PL08X_BURST_SZ_8:
484 val |= PL080_BSIZE_8 <<
485 FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
486 break;
487 case PL08X_BURST_SZ_16:
488 val |= PL080_BSIZE_16 <<
489 FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
490 break;
491 case PL08X_BURST_SZ_32:
492 val |= PL080_BSIZE_32 <<
493 FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
494 break;
495 case PL08X_BURST_SZ_64:
496 val |= PL080_BSIZE_64 <<
497 FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
498 break;
499 case PL08X_BURST_SZ_128:
500 val |= PL080_BSIZE_128 <<
501 FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
502 break;
503 case PL08X_BURST_SZ_256:
504 val |= PL080_BSIZE_256 <<
505 FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
506 break;
509 /* Protection flags */
510 if (pl08x->pd->memcpy_prot_buff)
511 val |= FTDMAC020_CH_CSR_PROT2;
512 if (pl08x->pd->memcpy_prot_cache)
513 val |= FTDMAC020_CH_CSR_PROT3;
514 /* We are the kernel, so we are in privileged mode */
515 val |= FTDMAC020_CH_CSR_PROT1;
517 writel_relaxed(val, phychan->reg_control);
518 } else {
519 /* Bits are just identical */
520 writel_relaxed(lli[PL080_LLI_CCTL], phychan->reg_control);
523 /* Second control word on the PL080s */
524 if (pl08x->vd->pl080s)
525 writel_relaxed(lli[PL080S_LLI_CCTL2],
526 phychan->base + PL080S_CH_CONTROL2);
528 writel(ccfg, phychan->reg_config);
532 * Set the initial DMA register values i.e. those for the first LLI
533 * The next LLI pointer and the configuration interrupt bit have
534 * been set when the LLIs were constructed. Poke them into the hardware
535 * and start the transfer.
537 static void pl08x_start_next_txd(struct pl08x_dma_chan *plchan)
539 struct pl08x_driver_data *pl08x = plchan->host;
540 struct pl08x_phy_chan *phychan = plchan->phychan;
541 struct virt_dma_desc *vd = vchan_next_desc(&plchan->vc);
542 struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
543 u32 val;
545 list_del(&txd->vd.node);
547 plchan->at = txd;
549 /* Wait for channel inactive */
550 while (pl08x_phy_channel_busy(phychan))
551 cpu_relax();
553 pl08x_write_lli(pl08x, phychan, &txd->llis_va[0], txd->ccfg);
555 /* Enable the DMA channel */
556 /* Do not access config register until channel shows as disabled */
557 while (readl(pl08x->base + PL080_EN_CHAN) & BIT(phychan->id))
558 cpu_relax();
560 /* Do not access config register until channel shows as inactive */
561 if (phychan->ftdmac020) {
562 val = readl(phychan->reg_config);
563 while (val & FTDMAC020_CH_CFG_BUSY)
564 val = readl(phychan->reg_config);
566 val = readl(phychan->reg_control);
567 while (val & FTDMAC020_CH_CSR_EN)
568 val = readl(phychan->reg_control);
570 writel(val | FTDMAC020_CH_CSR_EN,
571 phychan->reg_control);
572 } else {
573 val = readl(phychan->reg_config);
574 while ((val & PL080_CONFIG_ACTIVE) ||
575 (val & PL080_CONFIG_ENABLE))
576 val = readl(phychan->reg_config);
578 writel(val | PL080_CONFIG_ENABLE, phychan->reg_config);
583 * Pause the channel by setting the HALT bit.
585 * For M->P transfers, pause the DMAC first and then stop the peripheral -
586 * the FIFO can only drain if the peripheral is still requesting data.
587 * (note: this can still timeout if the DMAC FIFO never drains of data.)
589 * For P->M transfers, disable the peripheral first to stop it filling
590 * the DMAC FIFO, and then pause the DMAC.
592 static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch)
594 u32 val;
595 int timeout;
597 if (ch->ftdmac020) {
598 /* Use the enable bit on the FTDMAC020 */
599 val = readl(ch->reg_control);
600 val &= ~FTDMAC020_CH_CSR_EN;
601 writel(val, ch->reg_control);
602 return;
605 /* Set the HALT bit and wait for the FIFO to drain */
606 val = readl(ch->reg_config);
607 val |= PL080_CONFIG_HALT;
608 writel(val, ch->reg_config);
610 /* Wait for channel inactive */
611 for (timeout = 1000; timeout; timeout--) {
612 if (!pl08x_phy_channel_busy(ch))
613 break;
614 udelay(1);
616 if (pl08x_phy_channel_busy(ch))
617 pr_err("pl08x: channel%u timeout waiting for pause\n", ch->id);
620 static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch)
622 u32 val;
624 /* Use the enable bit on the FTDMAC020 */
625 if (ch->ftdmac020) {
626 val = readl(ch->reg_control);
627 val |= FTDMAC020_CH_CSR_EN;
628 writel(val, ch->reg_control);
629 return;
632 /* Clear the HALT bit */
633 val = readl(ch->reg_config);
634 val &= ~PL080_CONFIG_HALT;
635 writel(val, ch->reg_config);
639 * pl08x_terminate_phy_chan() stops the channel, clears the FIFO and
640 * clears any pending interrupt status. This should not be used for
641 * an on-going transfer, but as a method of shutting down a channel
642 * (eg, when it's no longer used) or terminating a transfer.
644 static void pl08x_terminate_phy_chan(struct pl08x_driver_data *pl08x,
645 struct pl08x_phy_chan *ch)
647 u32 val;
649 /* The layout for the FTDMAC020 is different */
650 if (ch->ftdmac020) {
651 /* Disable all interrupts */
652 val = readl(ch->reg_config);
653 val |= (FTDMAC020_CH_CFG_INT_ABT_MASK |
654 FTDMAC020_CH_CFG_INT_ERR_MASK |
655 FTDMAC020_CH_CFG_INT_TC_MASK);
656 writel(val, ch->reg_config);
658 /* Abort and disable channel */
659 val = readl(ch->reg_control);
660 val &= ~FTDMAC020_CH_CSR_EN;
661 val |= FTDMAC020_CH_CSR_ABT;
662 writel(val, ch->reg_control);
664 /* Clear ABT and ERR interrupt flags */
665 writel(BIT(ch->id) | BIT(ch->id + 16),
666 pl08x->base + PL080_ERR_CLEAR);
667 writel(BIT(ch->id), pl08x->base + PL080_TC_CLEAR);
669 return;
672 val = readl(ch->reg_config);
673 val &= ~(PL080_CONFIG_ENABLE | PL080_CONFIG_ERR_IRQ_MASK |
674 PL080_CONFIG_TC_IRQ_MASK);
675 writel(val, ch->reg_config);
677 writel(BIT(ch->id), pl08x->base + PL080_ERR_CLEAR);
678 writel(BIT(ch->id), pl08x->base + PL080_TC_CLEAR);
681 static u32 get_bytes_in_phy_channel(struct pl08x_phy_chan *ch)
683 u32 val;
684 u32 bytes;
686 if (ch->ftdmac020) {
687 bytes = readl(ch->base + FTDMAC020_CH_SIZE);
689 val = readl(ch->reg_control);
690 val &= FTDMAC020_CH_CSR_SRC_WIDTH_MSK;
691 val >>= FTDMAC020_CH_CSR_SRC_WIDTH_SHIFT;
692 } else if (ch->pl080s) {
693 val = readl(ch->base + PL080S_CH_CONTROL2);
694 bytes = val & PL080S_CONTROL_TRANSFER_SIZE_MASK;
696 val = readl(ch->reg_control);
697 val &= PL080_CONTROL_SWIDTH_MASK;
698 val >>= PL080_CONTROL_SWIDTH_SHIFT;
699 } else {
700 /* Plain PL08x */
701 val = readl(ch->reg_control);
702 bytes = val & PL080_CONTROL_TRANSFER_SIZE_MASK;
704 val &= PL080_CONTROL_SWIDTH_MASK;
705 val >>= PL080_CONTROL_SWIDTH_SHIFT;
708 switch (val) {
709 case PL080_WIDTH_8BIT:
710 break;
711 case PL080_WIDTH_16BIT:
712 bytes *= 2;
713 break;
714 case PL080_WIDTH_32BIT:
715 bytes *= 4;
716 break;
718 return bytes;
721 static u32 get_bytes_in_lli(struct pl08x_phy_chan *ch, const u32 *llis_va)
723 u32 val;
724 u32 bytes;
726 if (ch->ftdmac020) {
727 val = llis_va[PL080_LLI_CCTL];
728 bytes = val & FTDMAC020_LLI_TRANSFER_SIZE_MASK;
730 val = llis_va[PL080_LLI_CCTL];
731 val &= FTDMAC020_LLI_SRC_WIDTH_MSK;
732 val >>= FTDMAC020_LLI_SRC_WIDTH_SHIFT;
733 } else if (ch->pl080s) {
734 val = llis_va[PL080S_LLI_CCTL2];
735 bytes = val & PL080S_CONTROL_TRANSFER_SIZE_MASK;
737 val = llis_va[PL080_LLI_CCTL];
738 val &= PL080_CONTROL_SWIDTH_MASK;
739 val >>= PL080_CONTROL_SWIDTH_SHIFT;
740 } else {
741 /* Plain PL08x */
742 val = llis_va[PL080_LLI_CCTL];
743 bytes = val & PL080_CONTROL_TRANSFER_SIZE_MASK;
745 val &= PL080_CONTROL_SWIDTH_MASK;
746 val >>= PL080_CONTROL_SWIDTH_SHIFT;
749 switch (val) {
750 case PL080_WIDTH_8BIT:
751 break;
752 case PL080_WIDTH_16BIT:
753 bytes *= 2;
754 break;
755 case PL080_WIDTH_32BIT:
756 bytes *= 4;
757 break;
759 return bytes;
762 /* The channel should be paused when calling this */
763 static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan)
765 struct pl08x_driver_data *pl08x = plchan->host;
766 const u32 *llis_va, *llis_va_limit;
767 struct pl08x_phy_chan *ch;
768 dma_addr_t llis_bus;
769 struct pl08x_txd *txd;
770 u32 llis_max_words;
771 size_t bytes;
772 u32 clli;
774 ch = plchan->phychan;
775 txd = plchan->at;
777 if (!ch || !txd)
778 return 0;
781 * Follow the LLIs to get the number of remaining
782 * bytes in the currently active transaction.
784 clli = readl(ch->reg_lli) & ~PL080_LLI_LM_AHB2;
786 /* First get the remaining bytes in the active transfer */
787 bytes = get_bytes_in_phy_channel(ch);
789 if (!clli)
790 return bytes;
792 llis_va = txd->llis_va;
793 llis_bus = txd->llis_bus;
795 llis_max_words = pl08x->lli_words * MAX_NUM_TSFR_LLIS;
796 BUG_ON(clli < llis_bus || clli >= llis_bus +
797 sizeof(u32) * llis_max_words);
800 * Locate the next LLI - as this is an array,
801 * it's simple maths to find.
803 llis_va += (clli - llis_bus) / sizeof(u32);
805 llis_va_limit = llis_va + llis_max_words;
807 for (; llis_va < llis_va_limit; llis_va += pl08x->lli_words) {
808 bytes += get_bytes_in_lli(ch, llis_va);
811 * A LLI pointer going backward terminates the LLI list
813 if (llis_va[PL080_LLI_LLI] <= clli)
814 break;
817 return bytes;
821 * Allocate a physical channel for a virtual channel
823 * Try to locate a physical channel to be used for this transfer. If all
824 * are taken return NULL and the requester will have to cope by using
825 * some fallback PIO mode or retrying later.
827 static struct pl08x_phy_chan *
828 pl08x_get_phy_channel(struct pl08x_driver_data *pl08x,
829 struct pl08x_dma_chan *virt_chan)
831 struct pl08x_phy_chan *ch = NULL;
832 unsigned long flags;
833 int i;
835 for (i = 0; i < pl08x->vd->channels; i++) {
836 ch = &pl08x->phy_chans[i];
838 spin_lock_irqsave(&ch->lock, flags);
840 if (!ch->locked && !ch->serving) {
841 ch->serving = virt_chan;
842 spin_unlock_irqrestore(&ch->lock, flags);
843 break;
846 spin_unlock_irqrestore(&ch->lock, flags);
849 if (i == pl08x->vd->channels) {
850 /* No physical channel available, cope with it */
851 return NULL;
854 return ch;
857 /* Mark the physical channel as free. Note, this write is atomic. */
858 static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x,
859 struct pl08x_phy_chan *ch)
861 ch->serving = NULL;
865 * Try to allocate a physical channel. When successful, assign it to
866 * this virtual channel, and initiate the next descriptor. The
867 * virtual channel lock must be held at this point.
869 static void pl08x_phy_alloc_and_start(struct pl08x_dma_chan *plchan)
871 struct pl08x_driver_data *pl08x = plchan->host;
872 struct pl08x_phy_chan *ch;
874 ch = pl08x_get_phy_channel(pl08x, plchan);
875 if (!ch) {
876 dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name);
877 plchan->state = PL08X_CHAN_WAITING;
878 return;
881 dev_dbg(&pl08x->adev->dev, "allocated physical channel %d for xfer on %s\n",
882 ch->id, plchan->name);
884 plchan->phychan = ch;
885 plchan->state = PL08X_CHAN_RUNNING;
886 pl08x_start_next_txd(plchan);
889 static void pl08x_phy_reassign_start(struct pl08x_phy_chan *ch,
890 struct pl08x_dma_chan *plchan)
892 struct pl08x_driver_data *pl08x = plchan->host;
894 dev_dbg(&pl08x->adev->dev, "reassigned physical channel %d for xfer on %s\n",
895 ch->id, plchan->name);
898 * We do this without taking the lock; we're really only concerned
899 * about whether this pointer is NULL or not, and we're guaranteed
900 * that this will only be called when it _already_ is non-NULL.
902 ch->serving = plchan;
903 plchan->phychan = ch;
904 plchan->state = PL08X_CHAN_RUNNING;
905 pl08x_start_next_txd(plchan);
909 * Free a physical DMA channel, potentially reallocating it to another
910 * virtual channel if we have any pending.
912 static void pl08x_phy_free(struct pl08x_dma_chan *plchan)
914 struct pl08x_driver_data *pl08x = plchan->host;
915 struct pl08x_dma_chan *p, *next;
917 retry:
918 next = NULL;
920 /* Find a waiting virtual channel for the next transfer. */
921 list_for_each_entry(p, &pl08x->memcpy.channels, vc.chan.device_node)
922 if (p->state == PL08X_CHAN_WAITING) {
923 next = p;
924 break;
927 if (!next && pl08x->has_slave) {
928 list_for_each_entry(p, &pl08x->slave.channels, vc.chan.device_node)
929 if (p->state == PL08X_CHAN_WAITING) {
930 next = p;
931 break;
935 /* Ensure that the physical channel is stopped */
936 pl08x_terminate_phy_chan(pl08x, plchan->phychan);
938 if (next) {
939 bool success;
942 * Eww. We know this isn't going to deadlock
943 * but lockdep probably doesn't.
945 spin_lock(&next->vc.lock);
946 /* Re-check the state now that we have the lock */
947 success = next->state == PL08X_CHAN_WAITING;
948 if (success)
949 pl08x_phy_reassign_start(plchan->phychan, next);
950 spin_unlock(&next->vc.lock);
952 /* If the state changed, try to find another channel */
953 if (!success)
954 goto retry;
955 } else {
956 /* No more jobs, so free up the physical channel */
957 pl08x_put_phy_channel(pl08x, plchan->phychan);
960 plchan->phychan = NULL;
961 plchan->state = PL08X_CHAN_IDLE;
965 * LLI handling
968 static inline unsigned int
969 pl08x_get_bytes_for_lli(struct pl08x_driver_data *pl08x,
970 u32 cctl,
971 bool source)
973 u32 val;
975 if (pl08x->vd->ftdmac020) {
976 if (source)
977 val = (cctl & FTDMAC020_LLI_SRC_WIDTH_MSK) >>
978 FTDMAC020_LLI_SRC_WIDTH_SHIFT;
979 else
980 val = (cctl & FTDMAC020_LLI_DST_WIDTH_MSK) >>
981 FTDMAC020_LLI_DST_WIDTH_SHIFT;
982 } else {
983 if (source)
984 val = (cctl & PL080_CONTROL_SWIDTH_MASK) >>
985 PL080_CONTROL_SWIDTH_SHIFT;
986 else
987 val = (cctl & PL080_CONTROL_DWIDTH_MASK) >>
988 PL080_CONTROL_DWIDTH_SHIFT;
991 switch (val) {
992 case PL080_WIDTH_8BIT:
993 return 1;
994 case PL080_WIDTH_16BIT:
995 return 2;
996 case PL080_WIDTH_32BIT:
997 return 4;
998 default:
999 break;
1001 BUG();
1002 return 0;
1005 static inline u32 pl08x_lli_control_bits(struct pl08x_driver_data *pl08x,
1006 u32 cctl,
1007 u8 srcwidth, u8 dstwidth,
1008 size_t tsize)
1010 u32 retbits = cctl;
1013 * Remove all src, dst and transfer size bits, then set the
1014 * width and size according to the parameters. The bit offsets
1015 * are different in the FTDMAC020 so we need to accound for this.
1017 if (pl08x->vd->ftdmac020) {
1018 retbits &= ~FTDMAC020_LLI_DST_WIDTH_MSK;
1019 retbits &= ~FTDMAC020_LLI_SRC_WIDTH_MSK;
1020 retbits &= ~FTDMAC020_LLI_TRANSFER_SIZE_MASK;
1022 switch (srcwidth) {
1023 case 1:
1024 retbits |= PL080_WIDTH_8BIT <<
1025 FTDMAC020_LLI_SRC_WIDTH_SHIFT;
1026 break;
1027 case 2:
1028 retbits |= PL080_WIDTH_16BIT <<
1029 FTDMAC020_LLI_SRC_WIDTH_SHIFT;
1030 break;
1031 case 4:
1032 retbits |= PL080_WIDTH_32BIT <<
1033 FTDMAC020_LLI_SRC_WIDTH_SHIFT;
1034 break;
1035 default:
1036 BUG();
1037 break;
1040 switch (dstwidth) {
1041 case 1:
1042 retbits |= PL080_WIDTH_8BIT <<
1043 FTDMAC020_LLI_DST_WIDTH_SHIFT;
1044 break;
1045 case 2:
1046 retbits |= PL080_WIDTH_16BIT <<
1047 FTDMAC020_LLI_DST_WIDTH_SHIFT;
1048 break;
1049 case 4:
1050 retbits |= PL080_WIDTH_32BIT <<
1051 FTDMAC020_LLI_DST_WIDTH_SHIFT;
1052 break;
1053 default:
1054 BUG();
1055 break;
1058 tsize &= FTDMAC020_LLI_TRANSFER_SIZE_MASK;
1059 retbits |= tsize << FTDMAC020_LLI_TRANSFER_SIZE_SHIFT;
1060 } else {
1061 retbits &= ~PL080_CONTROL_DWIDTH_MASK;
1062 retbits &= ~PL080_CONTROL_SWIDTH_MASK;
1063 retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK;
1065 switch (srcwidth) {
1066 case 1:
1067 retbits |= PL080_WIDTH_8BIT <<
1068 PL080_CONTROL_SWIDTH_SHIFT;
1069 break;
1070 case 2:
1071 retbits |= PL080_WIDTH_16BIT <<
1072 PL080_CONTROL_SWIDTH_SHIFT;
1073 break;
1074 case 4:
1075 retbits |= PL080_WIDTH_32BIT <<
1076 PL080_CONTROL_SWIDTH_SHIFT;
1077 break;
1078 default:
1079 BUG();
1080 break;
1083 switch (dstwidth) {
1084 case 1:
1085 retbits |= PL080_WIDTH_8BIT <<
1086 PL080_CONTROL_DWIDTH_SHIFT;
1087 break;
1088 case 2:
1089 retbits |= PL080_WIDTH_16BIT <<
1090 PL080_CONTROL_DWIDTH_SHIFT;
1091 break;
1092 case 4:
1093 retbits |= PL080_WIDTH_32BIT <<
1094 PL080_CONTROL_DWIDTH_SHIFT;
1095 break;
1096 default:
1097 BUG();
1098 break;
1101 tsize &= PL080_CONTROL_TRANSFER_SIZE_MASK;
1102 retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT;
1105 return retbits;
1108 struct pl08x_lli_build_data {
1109 struct pl08x_txd *txd;
1110 struct pl08x_bus_data srcbus;
1111 struct pl08x_bus_data dstbus;
1112 size_t remainder;
1113 u32 lli_bus;
1117 * Autoselect a master bus to use for the transfer. Slave will be the chosen as
1118 * victim in case src & dest are not similarly aligned. i.e. If after aligning
1119 * masters address with width requirements of transfer (by sending few byte by
1120 * byte data), slave is still not aligned, then its width will be reduced to
1121 * BYTE.
1122 * - prefers the destination bus if both available
1123 * - prefers bus with fixed address (i.e. peripheral)
1125 static void pl08x_choose_master_bus(struct pl08x_driver_data *pl08x,
1126 struct pl08x_lli_build_data *bd,
1127 struct pl08x_bus_data **mbus,
1128 struct pl08x_bus_data **sbus,
1129 u32 cctl)
1131 bool dst_incr;
1132 bool src_incr;
1135 * The FTDMAC020 only supports memory-to-memory transfer, so
1136 * source and destination always increase.
1138 if (pl08x->vd->ftdmac020) {
1139 dst_incr = true;
1140 src_incr = true;
1141 } else {
1142 dst_incr = !!(cctl & PL080_CONTROL_DST_INCR);
1143 src_incr = !!(cctl & PL080_CONTROL_SRC_INCR);
1147 * If either bus is not advancing, i.e. it is a peripheral, that
1148 * one becomes master
1150 if (!dst_incr) {
1151 *mbus = &bd->dstbus;
1152 *sbus = &bd->srcbus;
1153 } else if (!src_incr) {
1154 *mbus = &bd->srcbus;
1155 *sbus = &bd->dstbus;
1156 } else {
1157 if (bd->dstbus.buswidth >= bd->srcbus.buswidth) {
1158 *mbus = &bd->dstbus;
1159 *sbus = &bd->srcbus;
1160 } else {
1161 *mbus = &bd->srcbus;
1162 *sbus = &bd->dstbus;
1168 * Fills in one LLI for a certain transfer descriptor and advance the counter
1170 static void pl08x_fill_lli_for_desc(struct pl08x_driver_data *pl08x,
1171 struct pl08x_lli_build_data *bd,
1172 int num_llis, int len, u32 cctl, u32 cctl2)
1174 u32 offset = num_llis * pl08x->lli_words;
1175 u32 *llis_va = bd->txd->llis_va + offset;
1176 dma_addr_t llis_bus = bd->txd->llis_bus;
1178 BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS);
1180 /* Advance the offset to next LLI. */
1181 offset += pl08x->lli_words;
1183 llis_va[PL080_LLI_SRC] = bd->srcbus.addr;
1184 llis_va[PL080_LLI_DST] = bd->dstbus.addr;
1185 llis_va[PL080_LLI_LLI] = (llis_bus + sizeof(u32) * offset);
1186 llis_va[PL080_LLI_LLI] |= bd->lli_bus;
1187 llis_va[PL080_LLI_CCTL] = cctl;
1188 if (pl08x->vd->pl080s)
1189 llis_va[PL080S_LLI_CCTL2] = cctl2;
1191 if (pl08x->vd->ftdmac020) {
1192 /* FIXME: only memcpy so far so both increase */
1193 bd->srcbus.addr += len;
1194 bd->dstbus.addr += len;
1195 } else {
1196 if (cctl & PL080_CONTROL_SRC_INCR)
1197 bd->srcbus.addr += len;
1198 if (cctl & PL080_CONTROL_DST_INCR)
1199 bd->dstbus.addr += len;
1202 BUG_ON(bd->remainder < len);
1204 bd->remainder -= len;
1207 static inline void prep_byte_width_lli(struct pl08x_driver_data *pl08x,
1208 struct pl08x_lli_build_data *bd, u32 *cctl, u32 len,
1209 int num_llis, size_t *total_bytes)
1211 *cctl = pl08x_lli_control_bits(pl08x, *cctl, 1, 1, len);
1212 pl08x_fill_lli_for_desc(pl08x, bd, num_llis, len, *cctl, len);
1213 (*total_bytes) += len;
1216 #if 1
1217 static void pl08x_dump_lli(struct pl08x_driver_data *pl08x,
1218 const u32 *llis_va, int num_llis)
1220 int i;
1222 if (pl08x->vd->pl080s) {
1223 dev_vdbg(&pl08x->adev->dev,
1224 "%-3s %-9s %-10s %-10s %-10s %-10s %s\n",
1225 "lli", "", "csrc", "cdst", "clli", "cctl", "cctl2");
1226 for (i = 0; i < num_llis; i++) {
1227 dev_vdbg(&pl08x->adev->dev,
1228 "%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
1229 i, llis_va, llis_va[PL080_LLI_SRC],
1230 llis_va[PL080_LLI_DST], llis_va[PL080_LLI_LLI],
1231 llis_va[PL080_LLI_CCTL],
1232 llis_va[PL080S_LLI_CCTL2]);
1233 llis_va += pl08x->lli_words;
1235 } else {
1236 dev_vdbg(&pl08x->adev->dev,
1237 "%-3s %-9s %-10s %-10s %-10s %s\n",
1238 "lli", "", "csrc", "cdst", "clli", "cctl");
1239 for (i = 0; i < num_llis; i++) {
1240 dev_vdbg(&pl08x->adev->dev,
1241 "%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x\n",
1242 i, llis_va, llis_va[PL080_LLI_SRC],
1243 llis_va[PL080_LLI_DST], llis_va[PL080_LLI_LLI],
1244 llis_va[PL080_LLI_CCTL]);
1245 llis_va += pl08x->lli_words;
1249 #else
1250 static inline void pl08x_dump_lli(struct pl08x_driver_data *pl08x,
1251 const u32 *llis_va, int num_llis) {}
1252 #endif
1255 * This fills in the table of LLIs for the transfer descriptor
1256 * Note that we assume we never have to change the burst sizes
1257 * Return 0 for error
1259 static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x,
1260 struct pl08x_txd *txd)
1262 struct pl08x_bus_data *mbus, *sbus;
1263 struct pl08x_lli_build_data bd;
1264 int num_llis = 0;
1265 u32 cctl, early_bytes = 0;
1266 size_t max_bytes_per_lli, total_bytes;
1267 u32 *llis_va, *last_lli;
1268 struct pl08x_sg *dsg;
1270 txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT, &txd->llis_bus);
1271 if (!txd->llis_va) {
1272 dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__);
1273 return 0;
1276 bd.txd = txd;
1277 bd.lli_bus = (pl08x->lli_buses & PL08X_AHB2) ? PL080_LLI_LM_AHB2 : 0;
1278 cctl = txd->cctl;
1280 /* Find maximum width of the source bus */
1281 bd.srcbus.maxwidth = pl08x_get_bytes_for_lli(pl08x, cctl, true);
1283 /* Find maximum width of the destination bus */
1284 bd.dstbus.maxwidth = pl08x_get_bytes_for_lli(pl08x, cctl, false);
1286 list_for_each_entry(dsg, &txd->dsg_list, node) {
1287 total_bytes = 0;
1288 cctl = txd->cctl;
1290 bd.srcbus.addr = dsg->src_addr;
1291 bd.dstbus.addr = dsg->dst_addr;
1292 bd.remainder = dsg->len;
1293 bd.srcbus.buswidth = bd.srcbus.maxwidth;
1294 bd.dstbus.buswidth = bd.dstbus.maxwidth;
1296 pl08x_choose_master_bus(pl08x, &bd, &mbus, &sbus, cctl);
1298 dev_vdbg(&pl08x->adev->dev,
1299 "src=0x%08llx%s/%u dst=0x%08llx%s/%u len=%zu\n",
1300 (u64)bd.srcbus.addr,
1301 cctl & PL080_CONTROL_SRC_INCR ? "+" : "",
1302 bd.srcbus.buswidth,
1303 (u64)bd.dstbus.addr,
1304 cctl & PL080_CONTROL_DST_INCR ? "+" : "",
1305 bd.dstbus.buswidth,
1306 bd.remainder);
1307 dev_vdbg(&pl08x->adev->dev, "mbus=%s sbus=%s\n",
1308 mbus == &bd.srcbus ? "src" : "dst",
1309 sbus == &bd.srcbus ? "src" : "dst");
1312 * Zero length is only allowed if all these requirements are
1313 * met:
1314 * - flow controller is peripheral.
1315 * - src.addr is aligned to src.width
1316 * - dst.addr is aligned to dst.width
1318 * sg_len == 1 should be true, as there can be two cases here:
1320 * - Memory addresses are contiguous and are not scattered.
1321 * Here, Only one sg will be passed by user driver, with
1322 * memory address and zero length. We pass this to controller
1323 * and after the transfer it will receive the last burst
1324 * request from peripheral and so transfer finishes.
1326 * - Memory addresses are scattered and are not contiguous.
1327 * Here, Obviously as DMA controller doesn't know when a lli's
1328 * transfer gets over, it can't load next lli. So in this
1329 * case, there has to be an assumption that only one lli is
1330 * supported. Thus, we can't have scattered addresses.
1332 if (!bd.remainder) {
1333 u32 fc;
1335 /* FTDMAC020 only does memory-to-memory */
1336 if (pl08x->vd->ftdmac020)
1337 fc = PL080_FLOW_MEM2MEM;
1338 else
1339 fc = (txd->ccfg & PL080_CONFIG_FLOW_CONTROL_MASK) >>
1340 PL080_CONFIG_FLOW_CONTROL_SHIFT;
1341 if (!((fc >= PL080_FLOW_SRC2DST_DST) &&
1342 (fc <= PL080_FLOW_SRC2DST_SRC))) {
1343 dev_err(&pl08x->adev->dev, "%s sg len can't be zero",
1344 __func__);
1345 return 0;
1348 if (!IS_BUS_ALIGNED(&bd.srcbus) ||
1349 !IS_BUS_ALIGNED(&bd.dstbus)) {
1350 dev_err(&pl08x->adev->dev,
1351 "%s src & dst address must be aligned to src"
1352 " & dst width if peripheral is flow controller",
1353 __func__);
1354 return 0;
1357 cctl = pl08x_lli_control_bits(pl08x, cctl,
1358 bd.srcbus.buswidth, bd.dstbus.buswidth,
1360 pl08x_fill_lli_for_desc(pl08x, &bd, num_llis++,
1361 0, cctl, 0);
1362 break;
1366 * Send byte by byte for following cases
1367 * - Less than a bus width available
1368 * - until master bus is aligned
1370 if (bd.remainder < mbus->buswidth)
1371 early_bytes = bd.remainder;
1372 else if (!IS_BUS_ALIGNED(mbus)) {
1373 early_bytes = mbus->buswidth -
1374 (mbus->addr & (mbus->buswidth - 1));
1375 if ((bd.remainder - early_bytes) < mbus->buswidth)
1376 early_bytes = bd.remainder;
1379 if (early_bytes) {
1380 dev_vdbg(&pl08x->adev->dev,
1381 "%s byte width LLIs (remain 0x%08zx)\n",
1382 __func__, bd.remainder);
1383 prep_byte_width_lli(pl08x, &bd, &cctl, early_bytes,
1384 num_llis++, &total_bytes);
1387 if (bd.remainder) {
1389 * Master now aligned
1390 * - if slave is not then we must set its width down
1392 if (!IS_BUS_ALIGNED(sbus)) {
1393 dev_dbg(&pl08x->adev->dev,
1394 "%s set down bus width to one byte\n",
1395 __func__);
1397 sbus->buswidth = 1;
1401 * Bytes transferred = tsize * src width, not
1402 * MIN(buswidths)
1404 max_bytes_per_lli = bd.srcbus.buswidth *
1405 pl08x->vd->max_transfer_size;
1406 dev_vdbg(&pl08x->adev->dev,
1407 "%s max bytes per lli = %zu\n",
1408 __func__, max_bytes_per_lli);
1411 * Make largest possible LLIs until less than one bus
1412 * width left
1414 while (bd.remainder > (mbus->buswidth - 1)) {
1415 size_t lli_len, tsize, width;
1418 * If enough left try to send max possible,
1419 * otherwise try to send the remainder
1421 lli_len = min(bd.remainder, max_bytes_per_lli);
1424 * Check against maximum bus alignment:
1425 * Calculate actual transfer size in relation to
1426 * bus width an get a maximum remainder of the
1427 * highest bus width - 1
1429 width = max(mbus->buswidth, sbus->buswidth);
1430 lli_len = (lli_len / width) * width;
1431 tsize = lli_len / bd.srcbus.buswidth;
1433 dev_vdbg(&pl08x->adev->dev,
1434 "%s fill lli with single lli chunk of "
1435 "size 0x%08zx (remainder 0x%08zx)\n",
1436 __func__, lli_len, bd.remainder);
1438 cctl = pl08x_lli_control_bits(pl08x, cctl,
1439 bd.srcbus.buswidth, bd.dstbus.buswidth,
1440 tsize);
1441 pl08x_fill_lli_for_desc(pl08x, &bd, num_llis++,
1442 lli_len, cctl, tsize);
1443 total_bytes += lli_len;
1447 * Send any odd bytes
1449 if (bd.remainder) {
1450 dev_vdbg(&pl08x->adev->dev,
1451 "%s align with boundary, send odd bytes (remain %zu)\n",
1452 __func__, bd.remainder);
1453 prep_byte_width_lli(pl08x, &bd, &cctl,
1454 bd.remainder, num_llis++, &total_bytes);
1458 if (total_bytes != dsg->len) {
1459 dev_err(&pl08x->adev->dev,
1460 "%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n",
1461 __func__, total_bytes, dsg->len);
1462 return 0;
1465 if (num_llis >= MAX_NUM_TSFR_LLIS) {
1466 dev_err(&pl08x->adev->dev,
1467 "%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
1468 __func__, MAX_NUM_TSFR_LLIS);
1469 return 0;
1473 llis_va = txd->llis_va;
1474 last_lli = llis_va + (num_llis - 1) * pl08x->lli_words;
1476 if (txd->cyclic) {
1477 /* Link back to the first LLI. */
1478 last_lli[PL080_LLI_LLI] = txd->llis_bus | bd.lli_bus;
1479 } else {
1480 /* The final LLI terminates the LLI. */
1481 last_lli[PL080_LLI_LLI] = 0;
1482 /* The final LLI element shall also fire an interrupt. */
1483 if (pl08x->vd->ftdmac020)
1484 last_lli[PL080_LLI_CCTL] &= ~FTDMAC020_LLI_TC_MSK;
1485 else
1486 last_lli[PL080_LLI_CCTL] |= PL080_CONTROL_TC_IRQ_EN;
1489 pl08x_dump_lli(pl08x, llis_va, num_llis);
1491 return num_llis;
1494 static void pl08x_free_txd(struct pl08x_driver_data *pl08x,
1495 struct pl08x_txd *txd)
1497 struct pl08x_sg *dsg, *_dsg;
1499 if (txd->llis_va)
1500 dma_pool_free(pl08x->pool, txd->llis_va, txd->llis_bus);
1502 list_for_each_entry_safe(dsg, _dsg, &txd->dsg_list, node) {
1503 list_del(&dsg->node);
1504 kfree(dsg);
1507 kfree(txd);
1510 static void pl08x_desc_free(struct virt_dma_desc *vd)
1512 struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
1513 struct pl08x_dma_chan *plchan = to_pl08x_chan(vd->tx.chan);
1515 dma_descriptor_unmap(&vd->tx);
1516 if (!txd->done)
1517 pl08x_release_mux(plchan);
1519 pl08x_free_txd(plchan->host, txd);
1522 static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x,
1523 struct pl08x_dma_chan *plchan)
1525 LIST_HEAD(head);
1527 vchan_get_all_descriptors(&plchan->vc, &head);
1528 vchan_dma_desc_free_list(&plchan->vc, &head);
1532 * The DMA ENGINE API
1534 static void pl08x_free_chan_resources(struct dma_chan *chan)
1536 /* Ensure all queued descriptors are freed */
1537 vchan_free_chan_resources(to_virt_chan(chan));
1540 static struct dma_async_tx_descriptor *pl08x_prep_dma_interrupt(
1541 struct dma_chan *chan, unsigned long flags)
1543 struct dma_async_tx_descriptor *retval = NULL;
1545 return retval;
1549 * Code accessing dma_async_is_complete() in a tight loop may give problems.
1550 * If slaves are relying on interrupts to signal completion this function
1551 * must not be called with interrupts disabled.
1553 static enum dma_status pl08x_dma_tx_status(struct dma_chan *chan,
1554 dma_cookie_t cookie, struct dma_tx_state *txstate)
1556 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1557 struct virt_dma_desc *vd;
1558 unsigned long flags;
1559 enum dma_status ret;
1560 size_t bytes = 0;
1562 ret = dma_cookie_status(chan, cookie, txstate);
1563 if (ret == DMA_COMPLETE)
1564 return ret;
1567 * There's no point calculating the residue if there's
1568 * no txstate to store the value.
1570 if (!txstate) {
1571 if (plchan->state == PL08X_CHAN_PAUSED)
1572 ret = DMA_PAUSED;
1573 return ret;
1576 spin_lock_irqsave(&plchan->vc.lock, flags);
1577 ret = dma_cookie_status(chan, cookie, txstate);
1578 if (ret != DMA_COMPLETE) {
1579 vd = vchan_find_desc(&plchan->vc, cookie);
1580 if (vd) {
1581 /* On the issued list, so hasn't been processed yet */
1582 struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
1583 struct pl08x_sg *dsg;
1585 list_for_each_entry(dsg, &txd->dsg_list, node)
1586 bytes += dsg->len;
1587 } else {
1588 bytes = pl08x_getbytes_chan(plchan);
1591 spin_unlock_irqrestore(&plchan->vc.lock, flags);
1594 * This cookie not complete yet
1595 * Get number of bytes left in the active transactions and queue
1597 dma_set_residue(txstate, bytes);
1599 if (plchan->state == PL08X_CHAN_PAUSED && ret == DMA_IN_PROGRESS)
1600 ret = DMA_PAUSED;
1602 /* Whether waiting or running, we're in progress */
1603 return ret;
1606 /* PrimeCell DMA extension */
1607 struct burst_table {
1608 u32 burstwords;
1609 u32 reg;
1612 static const struct burst_table burst_sizes[] = {
1614 .burstwords = 256,
1615 .reg = PL080_BSIZE_256,
1618 .burstwords = 128,
1619 .reg = PL080_BSIZE_128,
1622 .burstwords = 64,
1623 .reg = PL080_BSIZE_64,
1626 .burstwords = 32,
1627 .reg = PL080_BSIZE_32,
1630 .burstwords = 16,
1631 .reg = PL080_BSIZE_16,
1634 .burstwords = 8,
1635 .reg = PL080_BSIZE_8,
1638 .burstwords = 4,
1639 .reg = PL080_BSIZE_4,
1642 .burstwords = 0,
1643 .reg = PL080_BSIZE_1,
1648 * Given the source and destination available bus masks, select which
1649 * will be routed to each port. We try to have source and destination
1650 * on separate ports, but always respect the allowable settings.
1652 static u32 pl08x_select_bus(bool ftdmac020, u8 src, u8 dst)
1654 u32 cctl = 0;
1655 u32 dst_ahb2;
1656 u32 src_ahb2;
1658 /* The FTDMAC020 use different bits to indicate src/dst bus */
1659 if (ftdmac020) {
1660 dst_ahb2 = FTDMAC020_LLI_DST_SEL;
1661 src_ahb2 = FTDMAC020_LLI_SRC_SEL;
1662 } else {
1663 dst_ahb2 = PL080_CONTROL_DST_AHB2;
1664 src_ahb2 = PL080_CONTROL_SRC_AHB2;
1667 if (!(dst & PL08X_AHB1) || ((dst & PL08X_AHB2) && (src & PL08X_AHB1)))
1668 cctl |= dst_ahb2;
1669 if (!(src & PL08X_AHB1) || ((src & PL08X_AHB2) && !(dst & PL08X_AHB2)))
1670 cctl |= src_ahb2;
1672 return cctl;
1675 static u32 pl08x_cctl(u32 cctl)
1677 cctl &= ~(PL080_CONTROL_SRC_AHB2 | PL080_CONTROL_DST_AHB2 |
1678 PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR |
1679 PL080_CONTROL_PROT_MASK);
1681 /* Access the cell in privileged mode, non-bufferable, non-cacheable */
1682 return cctl | PL080_CONTROL_PROT_SYS;
1685 static u32 pl08x_width(enum dma_slave_buswidth width)
1687 switch (width) {
1688 case DMA_SLAVE_BUSWIDTH_1_BYTE:
1689 return PL080_WIDTH_8BIT;
1690 case DMA_SLAVE_BUSWIDTH_2_BYTES:
1691 return PL080_WIDTH_16BIT;
1692 case DMA_SLAVE_BUSWIDTH_4_BYTES:
1693 return PL080_WIDTH_32BIT;
1694 default:
1695 return ~0;
1699 static u32 pl08x_burst(u32 maxburst)
1701 int i;
1703 for (i = 0; i < ARRAY_SIZE(burst_sizes); i++)
1704 if (burst_sizes[i].burstwords <= maxburst)
1705 break;
1707 return burst_sizes[i].reg;
1710 static u32 pl08x_get_cctl(struct pl08x_dma_chan *plchan,
1711 enum dma_slave_buswidth addr_width, u32 maxburst)
1713 u32 width, burst, cctl = 0;
1715 width = pl08x_width(addr_width);
1716 if (width == ~0)
1717 return ~0;
1719 cctl |= width << PL080_CONTROL_SWIDTH_SHIFT;
1720 cctl |= width << PL080_CONTROL_DWIDTH_SHIFT;
1723 * If this channel will only request single transfers, set this
1724 * down to ONE element. Also select one element if no maxburst
1725 * is specified.
1727 if (plchan->cd->single)
1728 maxburst = 1;
1730 burst = pl08x_burst(maxburst);
1731 cctl |= burst << PL080_CONTROL_SB_SIZE_SHIFT;
1732 cctl |= burst << PL080_CONTROL_DB_SIZE_SHIFT;
1734 return pl08x_cctl(cctl);
1738 * Slave transactions callback to the slave device to allow
1739 * synchronization of slave DMA signals with the DMAC enable
1741 static void pl08x_issue_pending(struct dma_chan *chan)
1743 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1744 unsigned long flags;
1746 spin_lock_irqsave(&plchan->vc.lock, flags);
1747 if (vchan_issue_pending(&plchan->vc)) {
1748 if (!plchan->phychan && plchan->state != PL08X_CHAN_WAITING)
1749 pl08x_phy_alloc_and_start(plchan);
1751 spin_unlock_irqrestore(&plchan->vc.lock, flags);
1754 static struct pl08x_txd *pl08x_get_txd(struct pl08x_dma_chan *plchan)
1756 struct pl08x_txd *txd = kzalloc(sizeof(*txd), GFP_NOWAIT);
1758 if (txd)
1759 INIT_LIST_HEAD(&txd->dsg_list);
1760 return txd;
1763 static u32 pl08x_memcpy_cctl(struct pl08x_driver_data *pl08x)
1765 u32 cctl = 0;
1767 /* Conjure cctl */
1768 switch (pl08x->pd->memcpy_burst_size) {
1769 default:
1770 dev_err(&pl08x->adev->dev,
1771 "illegal burst size for memcpy, set to 1\n");
1772 /* Fall through */
1773 case PL08X_BURST_SZ_1:
1774 cctl |= PL080_BSIZE_1 << PL080_CONTROL_SB_SIZE_SHIFT |
1775 PL080_BSIZE_1 << PL080_CONTROL_DB_SIZE_SHIFT;
1776 break;
1777 case PL08X_BURST_SZ_4:
1778 cctl |= PL080_BSIZE_4 << PL080_CONTROL_SB_SIZE_SHIFT |
1779 PL080_BSIZE_4 << PL080_CONTROL_DB_SIZE_SHIFT;
1780 break;
1781 case PL08X_BURST_SZ_8:
1782 cctl |= PL080_BSIZE_8 << PL080_CONTROL_SB_SIZE_SHIFT |
1783 PL080_BSIZE_8 << PL080_CONTROL_DB_SIZE_SHIFT;
1784 break;
1785 case PL08X_BURST_SZ_16:
1786 cctl |= PL080_BSIZE_16 << PL080_CONTROL_SB_SIZE_SHIFT |
1787 PL080_BSIZE_16 << PL080_CONTROL_DB_SIZE_SHIFT;
1788 break;
1789 case PL08X_BURST_SZ_32:
1790 cctl |= PL080_BSIZE_32 << PL080_CONTROL_SB_SIZE_SHIFT |
1791 PL080_BSIZE_32 << PL080_CONTROL_DB_SIZE_SHIFT;
1792 break;
1793 case PL08X_BURST_SZ_64:
1794 cctl |= PL080_BSIZE_64 << PL080_CONTROL_SB_SIZE_SHIFT |
1795 PL080_BSIZE_64 << PL080_CONTROL_DB_SIZE_SHIFT;
1796 break;
1797 case PL08X_BURST_SZ_128:
1798 cctl |= PL080_BSIZE_128 << PL080_CONTROL_SB_SIZE_SHIFT |
1799 PL080_BSIZE_128 << PL080_CONTROL_DB_SIZE_SHIFT;
1800 break;
1801 case PL08X_BURST_SZ_256:
1802 cctl |= PL080_BSIZE_256 << PL080_CONTROL_SB_SIZE_SHIFT |
1803 PL080_BSIZE_256 << PL080_CONTROL_DB_SIZE_SHIFT;
1804 break;
1807 switch (pl08x->pd->memcpy_bus_width) {
1808 default:
1809 dev_err(&pl08x->adev->dev,
1810 "illegal bus width for memcpy, set to 8 bits\n");
1811 /* Fall through */
1812 case PL08X_BUS_WIDTH_8_BITS:
1813 cctl |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT |
1814 PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
1815 break;
1816 case PL08X_BUS_WIDTH_16_BITS:
1817 cctl |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT |
1818 PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
1819 break;
1820 case PL08X_BUS_WIDTH_32_BITS:
1821 cctl |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT |
1822 PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
1823 break;
1826 /* Protection flags */
1827 if (pl08x->pd->memcpy_prot_buff)
1828 cctl |= PL080_CONTROL_PROT_BUFF;
1829 if (pl08x->pd->memcpy_prot_cache)
1830 cctl |= PL080_CONTROL_PROT_CACHE;
1832 /* We are the kernel, so we are in privileged mode */
1833 cctl |= PL080_CONTROL_PROT_SYS;
1835 /* Both to be incremented or the code will break */
1836 cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR;
1838 if (pl08x->vd->dualmaster)
1839 cctl |= pl08x_select_bus(false,
1840 pl08x->mem_buses,
1841 pl08x->mem_buses);
1843 return cctl;
1846 static u32 pl08x_ftdmac020_memcpy_cctl(struct pl08x_driver_data *pl08x)
1848 u32 cctl = 0;
1850 /* Conjure cctl */
1851 switch (pl08x->pd->memcpy_bus_width) {
1852 default:
1853 dev_err(&pl08x->adev->dev,
1854 "illegal bus width for memcpy, set to 8 bits\n");
1855 /* Fall through */
1856 case PL08X_BUS_WIDTH_8_BITS:
1857 cctl |= PL080_WIDTH_8BIT << FTDMAC020_LLI_SRC_WIDTH_SHIFT |
1858 PL080_WIDTH_8BIT << FTDMAC020_LLI_DST_WIDTH_SHIFT;
1859 break;
1860 case PL08X_BUS_WIDTH_16_BITS:
1861 cctl |= PL080_WIDTH_16BIT << FTDMAC020_LLI_SRC_WIDTH_SHIFT |
1862 PL080_WIDTH_16BIT << FTDMAC020_LLI_DST_WIDTH_SHIFT;
1863 break;
1864 case PL08X_BUS_WIDTH_32_BITS:
1865 cctl |= PL080_WIDTH_32BIT << FTDMAC020_LLI_SRC_WIDTH_SHIFT |
1866 PL080_WIDTH_32BIT << FTDMAC020_LLI_DST_WIDTH_SHIFT;
1867 break;
1871 * By default mask the TC IRQ on all LLIs, it will be unmasked on
1872 * the last LLI item by other code.
1874 cctl |= FTDMAC020_LLI_TC_MSK;
1877 * Both to be incremented so leave bits FTDMAC020_LLI_SRCAD_CTL
1878 * and FTDMAC020_LLI_DSTAD_CTL as zero
1880 if (pl08x->vd->dualmaster)
1881 cctl |= pl08x_select_bus(true,
1882 pl08x->mem_buses,
1883 pl08x->mem_buses);
1885 return cctl;
1889 * Initialize a descriptor to be used by memcpy submit
1891 static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy(
1892 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1893 size_t len, unsigned long flags)
1895 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1896 struct pl08x_driver_data *pl08x = plchan->host;
1897 struct pl08x_txd *txd;
1898 struct pl08x_sg *dsg;
1899 int ret;
1901 txd = pl08x_get_txd(plchan);
1902 if (!txd) {
1903 dev_err(&pl08x->adev->dev,
1904 "%s no memory for descriptor\n", __func__);
1905 return NULL;
1908 dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
1909 if (!dsg) {
1910 pl08x_free_txd(pl08x, txd);
1911 return NULL;
1913 list_add_tail(&dsg->node, &txd->dsg_list);
1915 dsg->src_addr = src;
1916 dsg->dst_addr = dest;
1917 dsg->len = len;
1918 if (pl08x->vd->ftdmac020) {
1919 /* Writing CCFG zero ENABLES all interrupts */
1920 txd->ccfg = 0;
1921 txd->cctl = pl08x_ftdmac020_memcpy_cctl(pl08x);
1922 } else {
1923 txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
1924 PL080_CONFIG_TC_IRQ_MASK |
1925 PL080_FLOW_MEM2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1926 txd->cctl = pl08x_memcpy_cctl(pl08x);
1929 ret = pl08x_fill_llis_for_desc(plchan->host, txd);
1930 if (!ret) {
1931 pl08x_free_txd(pl08x, txd);
1932 return NULL;
1935 return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
1938 static struct pl08x_txd *pl08x_init_txd(
1939 struct dma_chan *chan,
1940 enum dma_transfer_direction direction,
1941 dma_addr_t *slave_addr)
1943 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1944 struct pl08x_driver_data *pl08x = plchan->host;
1945 struct pl08x_txd *txd;
1946 enum dma_slave_buswidth addr_width;
1947 int ret, tmp;
1948 u8 src_buses, dst_buses;
1949 u32 maxburst, cctl;
1951 txd = pl08x_get_txd(plchan);
1952 if (!txd) {
1953 dev_err(&pl08x->adev->dev, "%s no txd\n", __func__);
1954 return NULL;
1958 * Set up addresses, the PrimeCell configured address
1959 * will take precedence since this may configure the
1960 * channel target address dynamically at runtime.
1962 if (direction == DMA_MEM_TO_DEV) {
1963 cctl = PL080_CONTROL_SRC_INCR;
1964 *slave_addr = plchan->cfg.dst_addr;
1965 addr_width = plchan->cfg.dst_addr_width;
1966 maxburst = plchan->cfg.dst_maxburst;
1967 src_buses = pl08x->mem_buses;
1968 dst_buses = plchan->cd->periph_buses;
1969 } else if (direction == DMA_DEV_TO_MEM) {
1970 cctl = PL080_CONTROL_DST_INCR;
1971 *slave_addr = plchan->cfg.src_addr;
1972 addr_width = plchan->cfg.src_addr_width;
1973 maxburst = plchan->cfg.src_maxburst;
1974 src_buses = plchan->cd->periph_buses;
1975 dst_buses = pl08x->mem_buses;
1976 } else {
1977 pl08x_free_txd(pl08x, txd);
1978 dev_err(&pl08x->adev->dev,
1979 "%s direction unsupported\n", __func__);
1980 return NULL;
1983 cctl |= pl08x_get_cctl(plchan, addr_width, maxburst);
1984 if (cctl == ~0) {
1985 pl08x_free_txd(pl08x, txd);
1986 dev_err(&pl08x->adev->dev,
1987 "DMA slave configuration botched?\n");
1988 return NULL;
1991 txd->cctl = cctl | pl08x_select_bus(false, src_buses, dst_buses);
1993 if (plchan->cfg.device_fc)
1994 tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER_PER :
1995 PL080_FLOW_PER2MEM_PER;
1996 else
1997 tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER :
1998 PL080_FLOW_PER2MEM;
2000 txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
2001 PL080_CONFIG_TC_IRQ_MASK |
2002 tmp << PL080_CONFIG_FLOW_CONTROL_SHIFT;
2004 ret = pl08x_request_mux(plchan);
2005 if (ret < 0) {
2006 pl08x_free_txd(pl08x, txd);
2007 dev_dbg(&pl08x->adev->dev,
2008 "unable to mux for transfer on %s due to platform restrictions\n",
2009 plchan->name);
2010 return NULL;
2013 dev_dbg(&pl08x->adev->dev, "allocated DMA request signal %d for xfer on %s\n",
2014 plchan->signal, plchan->name);
2016 /* Assign the flow control signal to this channel */
2017 if (direction == DMA_MEM_TO_DEV)
2018 txd->ccfg |= plchan->signal << PL080_CONFIG_DST_SEL_SHIFT;
2019 else
2020 txd->ccfg |= plchan->signal << PL080_CONFIG_SRC_SEL_SHIFT;
2022 return txd;
2025 static int pl08x_tx_add_sg(struct pl08x_txd *txd,
2026 enum dma_transfer_direction direction,
2027 dma_addr_t slave_addr,
2028 dma_addr_t buf_addr,
2029 unsigned int len)
2031 struct pl08x_sg *dsg;
2033 dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
2034 if (!dsg)
2035 return -ENOMEM;
2037 list_add_tail(&dsg->node, &txd->dsg_list);
2039 dsg->len = len;
2040 if (direction == DMA_MEM_TO_DEV) {
2041 dsg->src_addr = buf_addr;
2042 dsg->dst_addr = slave_addr;
2043 } else {
2044 dsg->src_addr = slave_addr;
2045 dsg->dst_addr = buf_addr;
2048 return 0;
2051 static struct dma_async_tx_descriptor *pl08x_prep_slave_sg(
2052 struct dma_chan *chan, struct scatterlist *sgl,
2053 unsigned int sg_len, enum dma_transfer_direction direction,
2054 unsigned long flags, void *context)
2056 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
2057 struct pl08x_driver_data *pl08x = plchan->host;
2058 struct pl08x_txd *txd;
2059 struct scatterlist *sg;
2060 int ret, tmp;
2061 dma_addr_t slave_addr;
2063 dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n",
2064 __func__, sg_dma_len(sgl), plchan->name);
2066 txd = pl08x_init_txd(chan, direction, &slave_addr);
2067 if (!txd)
2068 return NULL;
2070 for_each_sg(sgl, sg, sg_len, tmp) {
2071 ret = pl08x_tx_add_sg(txd, direction, slave_addr,
2072 sg_dma_address(sg),
2073 sg_dma_len(sg));
2074 if (ret) {
2075 pl08x_release_mux(plchan);
2076 pl08x_free_txd(pl08x, txd);
2077 dev_err(&pl08x->adev->dev, "%s no mem for pl080 sg\n",
2078 __func__);
2079 return NULL;
2083 ret = pl08x_fill_llis_for_desc(plchan->host, txd);
2084 if (!ret) {
2085 pl08x_release_mux(plchan);
2086 pl08x_free_txd(pl08x, txd);
2087 return NULL;
2090 return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
2093 static struct dma_async_tx_descriptor *pl08x_prep_dma_cyclic(
2094 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
2095 size_t period_len, enum dma_transfer_direction direction,
2096 unsigned long flags)
2098 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
2099 struct pl08x_driver_data *pl08x = plchan->host;
2100 struct pl08x_txd *txd;
2101 int ret, tmp;
2102 dma_addr_t slave_addr;
2104 dev_dbg(&pl08x->adev->dev,
2105 "%s prepare cyclic transaction of %zd/%zd bytes %s %s\n",
2106 __func__, period_len, buf_len,
2107 direction == DMA_MEM_TO_DEV ? "to" : "from",
2108 plchan->name);
2110 txd = pl08x_init_txd(chan, direction, &slave_addr);
2111 if (!txd)
2112 return NULL;
2114 txd->cyclic = true;
2115 txd->cctl |= PL080_CONTROL_TC_IRQ_EN;
2116 for (tmp = 0; tmp < buf_len; tmp += period_len) {
2117 ret = pl08x_tx_add_sg(txd, direction, slave_addr,
2118 buf_addr + tmp, period_len);
2119 if (ret) {
2120 pl08x_release_mux(plchan);
2121 pl08x_free_txd(pl08x, txd);
2122 return NULL;
2126 ret = pl08x_fill_llis_for_desc(plchan->host, txd);
2127 if (!ret) {
2128 pl08x_release_mux(plchan);
2129 pl08x_free_txd(pl08x, txd);
2130 return NULL;
2133 return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
2136 static int pl08x_config(struct dma_chan *chan,
2137 struct dma_slave_config *config)
2139 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
2140 struct pl08x_driver_data *pl08x = plchan->host;
2142 if (!plchan->slave)
2143 return -EINVAL;
2145 /* Reject definitely invalid configurations */
2146 if (config->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
2147 config->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
2148 return -EINVAL;
2150 if (config->device_fc && pl08x->vd->pl080s) {
2151 dev_err(&pl08x->adev->dev,
2152 "%s: PL080S does not support peripheral flow control\n",
2153 __func__);
2154 return -EINVAL;
2157 plchan->cfg = *config;
2159 return 0;
2162 static int pl08x_terminate_all(struct dma_chan *chan)
2164 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
2165 struct pl08x_driver_data *pl08x = plchan->host;
2166 unsigned long flags;
2168 spin_lock_irqsave(&plchan->vc.lock, flags);
2169 if (!plchan->phychan && !plchan->at) {
2170 spin_unlock_irqrestore(&plchan->vc.lock, flags);
2171 return 0;
2174 plchan->state = PL08X_CHAN_IDLE;
2176 if (plchan->phychan) {
2178 * Mark physical channel as free and free any slave
2179 * signal
2181 pl08x_phy_free(plchan);
2183 /* Dequeue jobs and free LLIs */
2184 if (plchan->at) {
2185 vchan_terminate_vdesc(&plchan->at->vd);
2186 plchan->at = NULL;
2188 /* Dequeue jobs not yet fired as well */
2189 pl08x_free_txd_list(pl08x, plchan);
2191 spin_unlock_irqrestore(&plchan->vc.lock, flags);
2193 return 0;
2196 static void pl08x_synchronize(struct dma_chan *chan)
2198 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
2200 vchan_synchronize(&plchan->vc);
2203 static int pl08x_pause(struct dma_chan *chan)
2205 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
2206 unsigned long flags;
2209 * Anything succeeds on channels with no physical allocation and
2210 * no queued transfers.
2212 spin_lock_irqsave(&plchan->vc.lock, flags);
2213 if (!plchan->phychan && !plchan->at) {
2214 spin_unlock_irqrestore(&plchan->vc.lock, flags);
2215 return 0;
2218 pl08x_pause_phy_chan(plchan->phychan);
2219 plchan->state = PL08X_CHAN_PAUSED;
2221 spin_unlock_irqrestore(&plchan->vc.lock, flags);
2223 return 0;
2226 static int pl08x_resume(struct dma_chan *chan)
2228 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
2229 unsigned long flags;
2232 * Anything succeeds on channels with no physical allocation and
2233 * no queued transfers.
2235 spin_lock_irqsave(&plchan->vc.lock, flags);
2236 if (!plchan->phychan && !plchan->at) {
2237 spin_unlock_irqrestore(&plchan->vc.lock, flags);
2238 return 0;
2241 pl08x_resume_phy_chan(plchan->phychan);
2242 plchan->state = PL08X_CHAN_RUNNING;
2244 spin_unlock_irqrestore(&plchan->vc.lock, flags);
2246 return 0;
2249 bool pl08x_filter_id(struct dma_chan *chan, void *chan_id)
2251 struct pl08x_dma_chan *plchan;
2252 char *name = chan_id;
2254 /* Reject channels for devices not bound to this driver */
2255 if (chan->device->dev->driver != &pl08x_amba_driver.drv)
2256 return false;
2258 plchan = to_pl08x_chan(chan);
2260 /* Check that the channel is not taken! */
2261 if (!strcmp(plchan->name, name))
2262 return true;
2264 return false;
2266 EXPORT_SYMBOL_GPL(pl08x_filter_id);
2268 static bool pl08x_filter_fn(struct dma_chan *chan, void *chan_id)
2270 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
2272 return plchan->cd == chan_id;
2276 * Just check that the device is there and active
2277 * TODO: turn this bit on/off depending on the number of physical channels
2278 * actually used, if it is zero... well shut it off. That will save some
2279 * power. Cut the clock at the same time.
2281 static void pl08x_ensure_on(struct pl08x_driver_data *pl08x)
2283 /* The Nomadik variant does not have the config register */
2284 if (pl08x->vd->nomadik)
2285 return;
2286 /* The FTDMAC020 variant does this in another register */
2287 if (pl08x->vd->ftdmac020) {
2288 writel(PL080_CONFIG_ENABLE, pl08x->base + FTDMAC020_CSR);
2289 return;
2291 writel(PL080_CONFIG_ENABLE, pl08x->base + PL080_CONFIG);
2294 static irqreturn_t pl08x_irq(int irq, void *dev)
2296 struct pl08x_driver_data *pl08x = dev;
2297 u32 mask = 0, err, tc, i;
2299 /* check & clear - ERR & TC interrupts */
2300 err = readl(pl08x->base + PL080_ERR_STATUS);
2301 if (err) {
2302 dev_err(&pl08x->adev->dev, "%s error interrupt, register value 0x%08x\n",
2303 __func__, err);
2304 writel(err, pl08x->base + PL080_ERR_CLEAR);
2306 tc = readl(pl08x->base + PL080_TC_STATUS);
2307 if (tc)
2308 writel(tc, pl08x->base + PL080_TC_CLEAR);
2310 if (!err && !tc)
2311 return IRQ_NONE;
2313 for (i = 0; i < pl08x->vd->channels; i++) {
2314 if ((BIT(i) & err) || (BIT(i) & tc)) {
2315 /* Locate physical channel */
2316 struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i];
2317 struct pl08x_dma_chan *plchan = phychan->serving;
2318 struct pl08x_txd *tx;
2320 if (!plchan) {
2321 dev_err(&pl08x->adev->dev,
2322 "%s Error TC interrupt on unused channel: 0x%08x\n",
2323 __func__, i);
2324 continue;
2327 spin_lock(&plchan->vc.lock);
2328 tx = plchan->at;
2329 if (tx && tx->cyclic) {
2330 vchan_cyclic_callback(&tx->vd);
2331 } else if (tx) {
2332 plchan->at = NULL;
2334 * This descriptor is done, release its mux
2335 * reservation.
2337 pl08x_release_mux(plchan);
2338 tx->done = true;
2339 vchan_cookie_complete(&tx->vd);
2342 * And start the next descriptor (if any),
2343 * otherwise free this channel.
2345 if (vchan_next_desc(&plchan->vc))
2346 pl08x_start_next_txd(plchan);
2347 else
2348 pl08x_phy_free(plchan);
2350 spin_unlock(&plchan->vc.lock);
2352 mask |= BIT(i);
2356 return mask ? IRQ_HANDLED : IRQ_NONE;
2359 static void pl08x_dma_slave_init(struct pl08x_dma_chan *chan)
2361 chan->slave = true;
2362 chan->name = chan->cd->bus_id;
2363 chan->cfg.src_addr = chan->cd->addr;
2364 chan->cfg.dst_addr = chan->cd->addr;
2368 * Initialise the DMAC memcpy/slave channels.
2369 * Make a local wrapper to hold required data
2371 static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x,
2372 struct dma_device *dmadev, unsigned int channels, bool slave)
2374 struct pl08x_dma_chan *chan;
2375 int i;
2377 INIT_LIST_HEAD(&dmadev->channels);
2380 * Register as many many memcpy as we have physical channels,
2381 * we won't always be able to use all but the code will have
2382 * to cope with that situation.
2384 for (i = 0; i < channels; i++) {
2385 chan = kzalloc(sizeof(*chan), GFP_KERNEL);
2386 if (!chan)
2387 return -ENOMEM;
2389 chan->host = pl08x;
2390 chan->state = PL08X_CHAN_IDLE;
2391 chan->signal = -1;
2393 if (slave) {
2394 chan->cd = &pl08x->pd->slave_channels[i];
2396 * Some implementations have muxed signals, whereas some
2397 * use a mux in front of the signals and need dynamic
2398 * assignment of signals.
2400 chan->signal = i;
2401 pl08x_dma_slave_init(chan);
2402 } else {
2403 chan->cd = kzalloc(sizeof(*chan->cd), GFP_KERNEL);
2404 if (!chan->cd) {
2405 kfree(chan);
2406 return -ENOMEM;
2408 chan->cd->bus_id = "memcpy";
2409 chan->cd->periph_buses = pl08x->pd->mem_buses;
2410 chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
2411 if (!chan->name) {
2412 kfree(chan->cd);
2413 kfree(chan);
2414 return -ENOMEM;
2417 dev_dbg(&pl08x->adev->dev,
2418 "initialize virtual channel \"%s\"\n",
2419 chan->name);
2421 chan->vc.desc_free = pl08x_desc_free;
2422 vchan_init(&chan->vc, dmadev);
2424 dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n",
2425 i, slave ? "slave" : "memcpy");
2426 return i;
2429 static void pl08x_free_virtual_channels(struct dma_device *dmadev)
2431 struct pl08x_dma_chan *chan = NULL;
2432 struct pl08x_dma_chan *next;
2434 list_for_each_entry_safe(chan,
2435 next, &dmadev->channels, vc.chan.device_node) {
2436 list_del(&chan->vc.chan.device_node);
2437 kfree(chan);
2441 #ifdef CONFIG_DEBUG_FS
2442 static const char *pl08x_state_str(enum pl08x_dma_chan_state state)
2444 switch (state) {
2445 case PL08X_CHAN_IDLE:
2446 return "idle";
2447 case PL08X_CHAN_RUNNING:
2448 return "running";
2449 case PL08X_CHAN_PAUSED:
2450 return "paused";
2451 case PL08X_CHAN_WAITING:
2452 return "waiting";
2453 default:
2454 break;
2456 return "UNKNOWN STATE";
2459 static int pl08x_debugfs_show(struct seq_file *s, void *data)
2461 struct pl08x_driver_data *pl08x = s->private;
2462 struct pl08x_dma_chan *chan;
2463 struct pl08x_phy_chan *ch;
2464 unsigned long flags;
2465 int i;
2467 seq_printf(s, "PL08x physical channels:\n");
2468 seq_printf(s, "CHANNEL:\tUSER:\n");
2469 seq_printf(s, "--------\t-----\n");
2470 for (i = 0; i < pl08x->vd->channels; i++) {
2471 struct pl08x_dma_chan *virt_chan;
2473 ch = &pl08x->phy_chans[i];
2475 spin_lock_irqsave(&ch->lock, flags);
2476 virt_chan = ch->serving;
2478 seq_printf(s, "%d\t\t%s%s\n",
2479 ch->id,
2480 virt_chan ? virt_chan->name : "(none)",
2481 ch->locked ? " LOCKED" : "");
2483 spin_unlock_irqrestore(&ch->lock, flags);
2486 seq_printf(s, "\nPL08x virtual memcpy channels:\n");
2487 seq_printf(s, "CHANNEL:\tSTATE:\n");
2488 seq_printf(s, "--------\t------\n");
2489 list_for_each_entry(chan, &pl08x->memcpy.channels, vc.chan.device_node) {
2490 seq_printf(s, "%s\t\t%s\n", chan->name,
2491 pl08x_state_str(chan->state));
2494 if (pl08x->has_slave) {
2495 seq_printf(s, "\nPL08x virtual slave channels:\n");
2496 seq_printf(s, "CHANNEL:\tSTATE:\n");
2497 seq_printf(s, "--------\t------\n");
2498 list_for_each_entry(chan, &pl08x->slave.channels,
2499 vc.chan.device_node) {
2500 seq_printf(s, "%s\t\t%s\n", chan->name,
2501 pl08x_state_str(chan->state));
2505 return 0;
2508 static int pl08x_debugfs_open(struct inode *inode, struct file *file)
2510 return single_open(file, pl08x_debugfs_show, inode->i_private);
2513 static const struct file_operations pl08x_debugfs_operations = {
2514 .open = pl08x_debugfs_open,
2515 .read = seq_read,
2516 .llseek = seq_lseek,
2517 .release = single_release,
2520 static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
2522 /* Expose a simple debugfs interface to view all clocks */
2523 (void) debugfs_create_file(dev_name(&pl08x->adev->dev),
2524 S_IFREG | S_IRUGO, NULL, pl08x,
2525 &pl08x_debugfs_operations);
2528 #else
2529 static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
2532 #endif
2534 #ifdef CONFIG_OF
2535 static struct dma_chan *pl08x_find_chan_id(struct pl08x_driver_data *pl08x,
2536 u32 id)
2538 struct pl08x_dma_chan *chan;
2540 /* Trying to get a slave channel from something with no slave support */
2541 if (!pl08x->has_slave)
2542 return NULL;
2544 list_for_each_entry(chan, &pl08x->slave.channels, vc.chan.device_node) {
2545 if (chan->signal == id)
2546 return &chan->vc.chan;
2549 return NULL;
2552 static struct dma_chan *pl08x_of_xlate(struct of_phandle_args *dma_spec,
2553 struct of_dma *ofdma)
2555 struct pl08x_driver_data *pl08x = ofdma->of_dma_data;
2556 struct dma_chan *dma_chan;
2557 struct pl08x_dma_chan *plchan;
2559 if (!pl08x)
2560 return NULL;
2562 if (dma_spec->args_count != 2) {
2563 dev_err(&pl08x->adev->dev,
2564 "DMA channel translation requires two cells\n");
2565 return NULL;
2568 dma_chan = pl08x_find_chan_id(pl08x, dma_spec->args[0]);
2569 if (!dma_chan) {
2570 dev_err(&pl08x->adev->dev,
2571 "DMA slave channel not found\n");
2572 return NULL;
2575 plchan = to_pl08x_chan(dma_chan);
2576 dev_dbg(&pl08x->adev->dev,
2577 "translated channel for signal %d\n",
2578 dma_spec->args[0]);
2580 /* Augment channel data for applicable AHB buses */
2581 plchan->cd->periph_buses = dma_spec->args[1];
2582 return dma_get_slave_channel(dma_chan);
2585 static int pl08x_of_probe(struct amba_device *adev,
2586 struct pl08x_driver_data *pl08x,
2587 struct device_node *np)
2589 struct pl08x_platform_data *pd;
2590 struct pl08x_channel_data *chanp = NULL;
2591 u32 val;
2592 int ret;
2593 int i;
2595 pd = devm_kzalloc(&adev->dev, sizeof(*pd), GFP_KERNEL);
2596 if (!pd)
2597 return -ENOMEM;
2599 /* Eligible bus masters for fetching LLIs */
2600 if (of_property_read_bool(np, "lli-bus-interface-ahb1"))
2601 pd->lli_buses |= PL08X_AHB1;
2602 if (of_property_read_bool(np, "lli-bus-interface-ahb2"))
2603 pd->lli_buses |= PL08X_AHB2;
2604 if (!pd->lli_buses) {
2605 dev_info(&adev->dev, "no bus masters for LLIs stated, assume all\n");
2606 pd->lli_buses |= PL08X_AHB1 | PL08X_AHB2;
2609 /* Eligible bus masters for memory access */
2610 if (of_property_read_bool(np, "mem-bus-interface-ahb1"))
2611 pd->mem_buses |= PL08X_AHB1;
2612 if (of_property_read_bool(np, "mem-bus-interface-ahb2"))
2613 pd->mem_buses |= PL08X_AHB2;
2614 if (!pd->mem_buses) {
2615 dev_info(&adev->dev, "no bus masters for memory stated, assume all\n");
2616 pd->mem_buses |= PL08X_AHB1 | PL08X_AHB2;
2619 /* Parse the memcpy channel properties */
2620 ret = of_property_read_u32(np, "memcpy-burst-size", &val);
2621 if (ret) {
2622 dev_info(&adev->dev, "no memcpy burst size specified, using 1 byte\n");
2623 val = 1;
2625 switch (val) {
2626 default:
2627 dev_err(&adev->dev, "illegal burst size for memcpy, set to 1\n");
2628 /* Fall through */
2629 case 1:
2630 pd->memcpy_burst_size = PL08X_BURST_SZ_1;
2631 break;
2632 case 4:
2633 pd->memcpy_burst_size = PL08X_BURST_SZ_4;
2634 break;
2635 case 8:
2636 pd->memcpy_burst_size = PL08X_BURST_SZ_8;
2637 break;
2638 case 16:
2639 pd->memcpy_burst_size = PL08X_BURST_SZ_16;
2640 break;
2641 case 32:
2642 pd->memcpy_burst_size = PL08X_BURST_SZ_32;
2643 break;
2644 case 64:
2645 pd->memcpy_burst_size = PL08X_BURST_SZ_64;
2646 break;
2647 case 128:
2648 pd->memcpy_burst_size = PL08X_BURST_SZ_128;
2649 break;
2650 case 256:
2651 pd->memcpy_burst_size = PL08X_BURST_SZ_256;
2652 break;
2655 ret = of_property_read_u32(np, "memcpy-bus-width", &val);
2656 if (ret) {
2657 dev_info(&adev->dev, "no memcpy bus width specified, using 8 bits\n");
2658 val = 8;
2660 switch (val) {
2661 default:
2662 dev_err(&adev->dev, "illegal bus width for memcpy, set to 8 bits\n");
2663 /* Fall through */
2664 case 8:
2665 pd->memcpy_bus_width = PL08X_BUS_WIDTH_8_BITS;
2666 break;
2667 case 16:
2668 pd->memcpy_bus_width = PL08X_BUS_WIDTH_16_BITS;
2669 break;
2670 case 32:
2671 pd->memcpy_bus_width = PL08X_BUS_WIDTH_32_BITS;
2672 break;
2676 * Allocate channel data for all possible slave channels (one
2677 * for each possible signal), channels will then be allocated
2678 * for a device and have it's AHB interfaces set up at
2679 * translation time.
2681 if (pl08x->vd->signals) {
2682 chanp = devm_kcalloc(&adev->dev,
2683 pl08x->vd->signals,
2684 sizeof(struct pl08x_channel_data),
2685 GFP_KERNEL);
2686 if (!chanp)
2687 return -ENOMEM;
2689 pd->slave_channels = chanp;
2690 for (i = 0; i < pl08x->vd->signals; i++) {
2692 * chanp->periph_buses will be assigned at translation
2694 chanp->bus_id = kasprintf(GFP_KERNEL, "slave%d", i);
2695 chanp++;
2697 pd->num_slave_channels = pl08x->vd->signals;
2700 pl08x->pd = pd;
2702 return of_dma_controller_register(adev->dev.of_node, pl08x_of_xlate,
2703 pl08x);
2705 #else
2706 static inline int pl08x_of_probe(struct amba_device *adev,
2707 struct pl08x_driver_data *pl08x,
2708 struct device_node *np)
2710 return -EINVAL;
2712 #endif
2714 static int pl08x_probe(struct amba_device *adev, const struct amba_id *id)
2716 struct pl08x_driver_data *pl08x;
2717 struct vendor_data *vd = id->data;
2718 struct device_node *np = adev->dev.of_node;
2719 u32 tsfr_size;
2720 int ret = 0;
2721 int i;
2723 ret = amba_request_regions(adev, NULL);
2724 if (ret)
2725 return ret;
2727 /* Ensure that we can do DMA */
2728 ret = dma_set_mask_and_coherent(&adev->dev, DMA_BIT_MASK(32));
2729 if (ret)
2730 goto out_no_pl08x;
2732 /* Create the driver state holder */
2733 pl08x = kzalloc(sizeof(*pl08x), GFP_KERNEL);
2734 if (!pl08x) {
2735 ret = -ENOMEM;
2736 goto out_no_pl08x;
2739 /* Assign useful pointers to the driver state */
2740 pl08x->adev = adev;
2741 pl08x->vd = vd;
2743 pl08x->base = ioremap(adev->res.start, resource_size(&adev->res));
2744 if (!pl08x->base) {
2745 ret = -ENOMEM;
2746 goto out_no_ioremap;
2749 if (vd->ftdmac020) {
2750 u32 val;
2752 val = readl(pl08x->base + FTDMAC020_REVISION);
2753 dev_info(&pl08x->adev->dev, "FTDMAC020 %d.%d rel %d\n",
2754 (val >> 16) & 0xff, (val >> 8) & 0xff, val & 0xff);
2755 val = readl(pl08x->base + FTDMAC020_FEATURE);
2756 dev_info(&pl08x->adev->dev, "FTDMAC020 %d channels, "
2757 "%s built-in bridge, %s, %s linked lists\n",
2758 (val >> 12) & 0x0f,
2759 (val & BIT(10)) ? "no" : "has",
2760 (val & BIT(9)) ? "AHB0 and AHB1" : "AHB0",
2761 (val & BIT(8)) ? "supports" : "does not support");
2763 /* Vendor data from feature register */
2764 if (!(val & BIT(8)))
2765 dev_warn(&pl08x->adev->dev,
2766 "linked lists not supported, required\n");
2767 vd->channels = (val >> 12) & 0x0f;
2768 vd->dualmaster = !!(val & BIT(9));
2771 /* Initialize memcpy engine */
2772 dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask);
2773 pl08x->memcpy.dev = &adev->dev;
2774 pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources;
2775 pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy;
2776 pl08x->memcpy.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
2777 pl08x->memcpy.device_tx_status = pl08x_dma_tx_status;
2778 pl08x->memcpy.device_issue_pending = pl08x_issue_pending;
2779 pl08x->memcpy.device_config = pl08x_config;
2780 pl08x->memcpy.device_pause = pl08x_pause;
2781 pl08x->memcpy.device_resume = pl08x_resume;
2782 pl08x->memcpy.device_terminate_all = pl08x_terminate_all;
2783 pl08x->memcpy.device_synchronize = pl08x_synchronize;
2784 pl08x->memcpy.src_addr_widths = PL80X_DMA_BUSWIDTHS;
2785 pl08x->memcpy.dst_addr_widths = PL80X_DMA_BUSWIDTHS;
2786 pl08x->memcpy.directions = BIT(DMA_MEM_TO_MEM);
2787 pl08x->memcpy.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
2788 if (vd->ftdmac020)
2789 pl08x->memcpy.copy_align = DMAENGINE_ALIGN_4_BYTES;
2793 * Initialize slave engine, if the block has no signals, that means
2794 * we have no slave support.
2796 if (vd->signals) {
2797 pl08x->has_slave = true;
2798 dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask);
2799 dma_cap_set(DMA_CYCLIC, pl08x->slave.cap_mask);
2800 pl08x->slave.dev = &adev->dev;
2801 pl08x->slave.device_free_chan_resources =
2802 pl08x_free_chan_resources;
2803 pl08x->slave.device_prep_dma_interrupt =
2804 pl08x_prep_dma_interrupt;
2805 pl08x->slave.device_tx_status = pl08x_dma_tx_status;
2806 pl08x->slave.device_issue_pending = pl08x_issue_pending;
2807 pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg;
2808 pl08x->slave.device_prep_dma_cyclic = pl08x_prep_dma_cyclic;
2809 pl08x->slave.device_config = pl08x_config;
2810 pl08x->slave.device_pause = pl08x_pause;
2811 pl08x->slave.device_resume = pl08x_resume;
2812 pl08x->slave.device_terminate_all = pl08x_terminate_all;
2813 pl08x->slave.device_synchronize = pl08x_synchronize;
2814 pl08x->slave.src_addr_widths = PL80X_DMA_BUSWIDTHS;
2815 pl08x->slave.dst_addr_widths = PL80X_DMA_BUSWIDTHS;
2816 pl08x->slave.directions =
2817 BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
2818 pl08x->slave.residue_granularity =
2819 DMA_RESIDUE_GRANULARITY_SEGMENT;
2822 /* Get the platform data */
2823 pl08x->pd = dev_get_platdata(&adev->dev);
2824 if (!pl08x->pd) {
2825 if (np) {
2826 ret = pl08x_of_probe(adev, pl08x, np);
2827 if (ret)
2828 goto out_no_platdata;
2829 } else {
2830 dev_err(&adev->dev, "no platform data supplied\n");
2831 ret = -EINVAL;
2832 goto out_no_platdata;
2834 } else {
2835 pl08x->slave.filter.map = pl08x->pd->slave_map;
2836 pl08x->slave.filter.mapcnt = pl08x->pd->slave_map_len;
2837 pl08x->slave.filter.fn = pl08x_filter_fn;
2840 /* By default, AHB1 only. If dualmaster, from platform */
2841 pl08x->lli_buses = PL08X_AHB1;
2842 pl08x->mem_buses = PL08X_AHB1;
2843 if (pl08x->vd->dualmaster) {
2844 pl08x->lli_buses = pl08x->pd->lli_buses;
2845 pl08x->mem_buses = pl08x->pd->mem_buses;
2848 if (vd->pl080s)
2849 pl08x->lli_words = PL080S_LLI_WORDS;
2850 else
2851 pl08x->lli_words = PL080_LLI_WORDS;
2852 tsfr_size = MAX_NUM_TSFR_LLIS * pl08x->lli_words * sizeof(u32);
2854 /* A DMA memory pool for LLIs, align on 1-byte boundary */
2855 pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev,
2856 tsfr_size, PL08X_ALIGN, 0);
2857 if (!pl08x->pool) {
2858 ret = -ENOMEM;
2859 goto out_no_lli_pool;
2862 /* Turn on the PL08x */
2863 pl08x_ensure_on(pl08x);
2865 /* Clear any pending interrupts */
2866 if (vd->ftdmac020)
2867 /* This variant has error IRQs in bits 16-19 */
2868 writel(0x0000FFFF, pl08x->base + PL080_ERR_CLEAR);
2869 else
2870 writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
2871 writel(0x000000FF, pl08x->base + PL080_TC_CLEAR);
2873 /* Attach the interrupt handler */
2874 ret = request_irq(adev->irq[0], pl08x_irq, 0, DRIVER_NAME, pl08x);
2875 if (ret) {
2876 dev_err(&adev->dev, "%s failed to request interrupt %d\n",
2877 __func__, adev->irq[0]);
2878 goto out_no_irq;
2881 /* Initialize physical channels */
2882 pl08x->phy_chans = kzalloc((vd->channels * sizeof(*pl08x->phy_chans)),
2883 GFP_KERNEL);
2884 if (!pl08x->phy_chans) {
2885 ret = -ENOMEM;
2886 goto out_no_phychans;
2889 for (i = 0; i < vd->channels; i++) {
2890 struct pl08x_phy_chan *ch = &pl08x->phy_chans[i];
2892 ch->id = i;
2893 ch->base = pl08x->base + PL080_Cx_BASE(i);
2894 if (vd->ftdmac020) {
2895 /* FTDMA020 has a special channel busy register */
2896 ch->reg_busy = ch->base + FTDMAC020_CH_BUSY;
2897 ch->reg_config = ch->base + FTDMAC020_CH_CFG;
2898 ch->reg_control = ch->base + FTDMAC020_CH_CSR;
2899 ch->reg_src = ch->base + FTDMAC020_CH_SRC_ADDR;
2900 ch->reg_dst = ch->base + FTDMAC020_CH_DST_ADDR;
2901 ch->reg_lli = ch->base + FTDMAC020_CH_LLP;
2902 ch->ftdmac020 = true;
2903 } else {
2904 ch->reg_config = ch->base + vd->config_offset;
2905 ch->reg_control = ch->base + PL080_CH_CONTROL;
2906 ch->reg_src = ch->base + PL080_CH_SRC_ADDR;
2907 ch->reg_dst = ch->base + PL080_CH_DST_ADDR;
2908 ch->reg_lli = ch->base + PL080_CH_LLI;
2910 if (vd->pl080s)
2911 ch->pl080s = true;
2913 spin_lock_init(&ch->lock);
2916 * Nomadik variants can have channels that are locked
2917 * down for the secure world only. Lock up these channels
2918 * by perpetually serving a dummy virtual channel.
2920 if (vd->nomadik) {
2921 u32 val;
2923 val = readl(ch->reg_config);
2924 if (val & (PL080N_CONFIG_ITPROT | PL080N_CONFIG_SECPROT)) {
2925 dev_info(&adev->dev, "physical channel %d reserved for secure access only\n", i);
2926 ch->locked = true;
2930 dev_dbg(&adev->dev, "physical channel %d is %s\n",
2931 i, pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE");
2934 /* Register as many memcpy channels as there are physical channels */
2935 ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy,
2936 pl08x->vd->channels, false);
2937 if (ret <= 0) {
2938 dev_warn(&pl08x->adev->dev,
2939 "%s failed to enumerate memcpy channels - %d\n",
2940 __func__, ret);
2941 goto out_no_memcpy;
2944 /* Register slave channels */
2945 if (pl08x->has_slave) {
2946 ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave,
2947 pl08x->pd->num_slave_channels, true);
2948 if (ret < 0) {
2949 dev_warn(&pl08x->adev->dev,
2950 "%s failed to enumerate slave channels - %d\n",
2951 __func__, ret);
2952 goto out_no_slave;
2956 ret = dma_async_device_register(&pl08x->memcpy);
2957 if (ret) {
2958 dev_warn(&pl08x->adev->dev,
2959 "%s failed to register memcpy as an async device - %d\n",
2960 __func__, ret);
2961 goto out_no_memcpy_reg;
2964 if (pl08x->has_slave) {
2965 ret = dma_async_device_register(&pl08x->slave);
2966 if (ret) {
2967 dev_warn(&pl08x->adev->dev,
2968 "%s failed to register slave as an async device - %d\n",
2969 __func__, ret);
2970 goto out_no_slave_reg;
2974 amba_set_drvdata(adev, pl08x);
2975 init_pl08x_debugfs(pl08x);
2976 dev_info(&pl08x->adev->dev, "DMA: PL%03x%s rev%u at 0x%08llx irq %d\n",
2977 amba_part(adev), pl08x->vd->pl080s ? "s" : "", amba_rev(adev),
2978 (unsigned long long)adev->res.start, adev->irq[0]);
2980 return 0;
2982 out_no_slave_reg:
2983 dma_async_device_unregister(&pl08x->memcpy);
2984 out_no_memcpy_reg:
2985 if (pl08x->has_slave)
2986 pl08x_free_virtual_channels(&pl08x->slave);
2987 out_no_slave:
2988 pl08x_free_virtual_channels(&pl08x->memcpy);
2989 out_no_memcpy:
2990 kfree(pl08x->phy_chans);
2991 out_no_phychans:
2992 free_irq(adev->irq[0], pl08x);
2993 out_no_irq:
2994 dma_pool_destroy(pl08x->pool);
2995 out_no_lli_pool:
2996 out_no_platdata:
2997 iounmap(pl08x->base);
2998 out_no_ioremap:
2999 kfree(pl08x);
3000 out_no_pl08x:
3001 amba_release_regions(adev);
3002 return ret;
3005 /* PL080 has 8 channels and the PL080 have just 2 */
3006 static struct vendor_data vendor_pl080 = {
3007 .config_offset = PL080_CH_CONFIG,
3008 .channels = 8,
3009 .signals = 16,
3010 .dualmaster = true,
3011 .max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
3014 static struct vendor_data vendor_nomadik = {
3015 .config_offset = PL080_CH_CONFIG,
3016 .channels = 8,
3017 .signals = 32,
3018 .dualmaster = true,
3019 .nomadik = true,
3020 .max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
3023 static struct vendor_data vendor_pl080s = {
3024 .config_offset = PL080S_CH_CONFIG,
3025 .channels = 8,
3026 .signals = 32,
3027 .pl080s = true,
3028 .max_transfer_size = PL080S_CONTROL_TRANSFER_SIZE_MASK,
3031 static struct vendor_data vendor_pl081 = {
3032 .config_offset = PL080_CH_CONFIG,
3033 .channels = 2,
3034 .signals = 16,
3035 .dualmaster = false,
3036 .max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
3039 static struct vendor_data vendor_ftdmac020 = {
3040 .config_offset = PL080_CH_CONFIG,
3041 .ftdmac020 = true,
3042 .max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
3045 static const struct amba_id pl08x_ids[] = {
3046 /* Samsung PL080S variant */
3048 .id = 0x0a141080,
3049 .mask = 0xffffffff,
3050 .data = &vendor_pl080s,
3052 /* PL080 */
3054 .id = 0x00041080,
3055 .mask = 0x000fffff,
3056 .data = &vendor_pl080,
3058 /* PL081 */
3060 .id = 0x00041081,
3061 .mask = 0x000fffff,
3062 .data = &vendor_pl081,
3064 /* Nomadik 8815 PL080 variant */
3066 .id = 0x00280080,
3067 .mask = 0x00ffffff,
3068 .data = &vendor_nomadik,
3070 /* Faraday Technology FTDMAC020 */
3072 .id = 0x0003b080,
3073 .mask = 0x000fffff,
3074 .data = &vendor_ftdmac020,
3076 { 0, 0 },
3079 MODULE_DEVICE_TABLE(amba, pl08x_ids);
3081 static struct amba_driver pl08x_amba_driver = {
3082 .drv.name = DRIVER_NAME,
3083 .id_table = pl08x_ids,
3084 .probe = pl08x_probe,
3087 static int __init pl08x_init(void)
3089 int retval;
3090 retval = amba_driver_register(&pl08x_amba_driver);
3091 if (retval)
3092 printk(KERN_WARNING DRIVER_NAME
3093 "failed to register as an AMBA device (%d)\n",
3094 retval);
3095 return retval;
3097 subsys_initcall(pl08x_init);