1 /**************************************************************************
3 * Copyright 2006 Tungsten Graphics, Inc., Bismarck, ND., USA.
4 * Copyright 2016 Intel Corporation
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
22 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
23 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
24 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
25 * USE OR OTHER DEALINGS IN THE SOFTWARE.
28 **************************************************************************/
31 * Generic simple memory manager implementation. Intended to be used as a base
32 * class implementation for more advanced memory managers.
34 * Note that the algorithm used is quite simple and there might be substantial
35 * performance gains if a smarter free list is implemented. Currently it is
36 * just an unordered stack of free regions. This could easily be improved if
37 * an RB-tree is used instead. At least if we expect heavy fragmentation.
39 * Aligned allocations can also see improvement.
42 * Thomas Hellström <thomas-at-tungstengraphics-dot-com>
46 #include <drm/drm_mm.h>
47 #include <linux/slab.h>
48 #include <linux/seq_file.h>
49 #include <linux/export.h>
50 #include <linux/interval_tree_generic.h>
55 * drm_mm provides a simple range allocator. The drivers are free to use the
56 * resource allocator from the linux core if it suits them, the upside of drm_mm
57 * is that it's in the DRM core. Which means that it's easier to extend for
58 * some of the crazier special purpose needs of gpus.
60 * The main data struct is &drm_mm, allocations are tracked in &drm_mm_node.
61 * Drivers are free to embed either of them into their own suitable
62 * datastructures. drm_mm itself will not do any memory allocations of its own,
63 * so if drivers choose not to embed nodes they need to still allocate them
66 * The range allocator also supports reservation of preallocated blocks. This is
67 * useful for taking over initial mode setting configurations from the firmware,
68 * where an object needs to be created which exactly matches the firmware's
69 * scanout target. As long as the range is still free it can be inserted anytime
70 * after the allocator is initialized, which helps with avoiding looped
71 * dependencies in the driver load sequence.
73 * drm_mm maintains a stack of most recently freed holes, which of all
74 * simplistic datastructures seems to be a fairly decent approach to clustering
75 * allocations and avoiding too much fragmentation. This means free space
76 * searches are O(num_holes). Given that all the fancy features drm_mm supports
77 * something better would be fairly complex and since gfx thrashing is a fairly
78 * steep cliff not a real concern. Removing a node again is O(1).
80 * drm_mm supports a few features: Alignment and range restrictions can be
81 * supplied. Furthermore every &drm_mm_node has a color value (which is just an
82 * opaque unsigned long) which in conjunction with a driver callback can be used
83 * to implement sophisticated placement restrictions. The i915 DRM driver uses
84 * this to implement guard pages between incompatible caching domains in the
87 * Two behaviors are supported for searching and allocating: bottom-up and
88 * top-down. The default is bottom-up. Top-down allocation can be used if the
89 * memory area has different restrictions, or just to reduce fragmentation.
91 * Finally iteration helpers to walk all nodes and all holes are provided as are
92 * some basic allocator dumpers for debugging.
94 * Note that this range allocator is not thread-safe, drivers need to protect
95 * modifications with their own locking. The idea behind this is that for a full
96 * memory manager additional data needs to be protected anyway, hence internal
97 * locking would be fully redundant.
100 #ifdef CONFIG_DRM_DEBUG_MM
101 #include <linux/stackdepot.h>
103 #define STACKDEPTH 32
106 static noinline
void save_stack(struct drm_mm_node
*node
)
108 unsigned long entries
[STACKDEPTH
];
109 struct stack_trace trace
= {
111 .max_entries
= STACKDEPTH
,
115 save_stack_trace(&trace
);
116 if (trace
.nr_entries
!= 0 &&
117 trace
.entries
[trace
.nr_entries
-1] == ULONG_MAX
)
120 /* May be called under spinlock, so avoid sleeping */
121 node
->stack
= depot_save_stack(&trace
, GFP_NOWAIT
);
124 static void show_leaks(struct drm_mm
*mm
)
126 struct drm_mm_node
*node
;
127 unsigned long entries
[STACKDEPTH
];
130 buf
= kmalloc(BUFSZ
, GFP_KERNEL
);
134 list_for_each_entry(node
, drm_mm_nodes(mm
), node_list
) {
135 struct stack_trace trace
= {
137 .max_entries
= STACKDEPTH
141 DRM_ERROR("node [%08llx + %08llx]: unknown owner\n",
142 node
->start
, node
->size
);
146 depot_fetch_stack(node
->stack
, &trace
);
147 snprint_stack_trace(buf
, BUFSZ
, &trace
, 0);
148 DRM_ERROR("node [%08llx + %08llx]: inserted at\n%s",
149 node
->start
, node
->size
, buf
);
158 static void save_stack(struct drm_mm_node
*node
) { }
159 static void show_leaks(struct drm_mm
*mm
) { }
162 #define START(node) ((node)->start)
163 #define LAST(node) ((node)->start + (node)->size - 1)
165 INTERVAL_TREE_DEFINE(struct drm_mm_node
, rb
,
167 START
, LAST
, static inline, drm_mm_interval_tree
)
170 __drm_mm_interval_first(const struct drm_mm
*mm
, u64 start
, u64 last
)
172 return drm_mm_interval_tree_iter_first((struct rb_root_cached
*)&mm
->interval_tree
,
173 start
, last
) ?: (struct drm_mm_node
*)&mm
->head_node
;
175 EXPORT_SYMBOL(__drm_mm_interval_first
);
177 static void drm_mm_interval_tree_add_node(struct drm_mm_node
*hole_node
,
178 struct drm_mm_node
*node
)
180 struct drm_mm
*mm
= hole_node
->mm
;
181 struct rb_node
**link
, *rb
;
182 struct drm_mm_node
*parent
;
183 bool leftmost
= true;
185 node
->__subtree_last
= LAST(node
);
187 if (hole_node
->allocated
) {
190 parent
= rb_entry(rb
, struct drm_mm_node
, rb
);
191 if (parent
->__subtree_last
>= node
->__subtree_last
)
194 parent
->__subtree_last
= node
->__subtree_last
;
199 link
= &hole_node
->rb
.rb_right
;
203 link
= &mm
->interval_tree
.rb_root
.rb_node
;
208 parent
= rb_entry(rb
, struct drm_mm_node
, rb
);
209 if (parent
->__subtree_last
< node
->__subtree_last
)
210 parent
->__subtree_last
= node
->__subtree_last
;
211 if (node
->start
< parent
->start
)
212 link
= &parent
->rb
.rb_left
;
214 link
= &parent
->rb
.rb_right
;
219 rb_link_node(&node
->rb
, rb
, link
);
220 rb_insert_augmented_cached(&node
->rb
, &mm
->interval_tree
, leftmost
,
221 &drm_mm_interval_tree_augment
);
224 #define RB_INSERT(root, member, expr) do { \
225 struct rb_node **link = &root.rb_node, *rb = NULL; \
226 u64 x = expr(node); \
229 if (x < expr(rb_entry(rb, struct drm_mm_node, member))) \
230 link = &rb->rb_left; \
232 link = &rb->rb_right; \
234 rb_link_node(&node->member, rb, link); \
235 rb_insert_color(&node->member, &root); \
238 #define HOLE_SIZE(NODE) ((NODE)->hole_size)
239 #define HOLE_ADDR(NODE) (__drm_mm_hole_node_start(NODE))
241 static void add_hole(struct drm_mm_node
*node
)
243 struct drm_mm
*mm
= node
->mm
;
246 __drm_mm_hole_node_end(node
) - __drm_mm_hole_node_start(node
);
247 DRM_MM_BUG_ON(!drm_mm_hole_follows(node
));
249 RB_INSERT(mm
->holes_size
, rb_hole_size
, HOLE_SIZE
);
250 RB_INSERT(mm
->holes_addr
, rb_hole_addr
, HOLE_ADDR
);
252 list_add(&node
->hole_stack
, &mm
->hole_stack
);
255 static void rm_hole(struct drm_mm_node
*node
)
257 DRM_MM_BUG_ON(!drm_mm_hole_follows(node
));
259 list_del(&node
->hole_stack
);
260 rb_erase(&node
->rb_hole_size
, &node
->mm
->holes_size
);
261 rb_erase(&node
->rb_hole_addr
, &node
->mm
->holes_addr
);
264 DRM_MM_BUG_ON(drm_mm_hole_follows(node
));
267 static inline struct drm_mm_node
*rb_hole_size_to_node(struct rb_node
*rb
)
269 return rb_entry_safe(rb
, struct drm_mm_node
, rb_hole_size
);
272 static inline struct drm_mm_node
*rb_hole_addr_to_node(struct rb_node
*rb
)
274 return rb_entry_safe(rb
, struct drm_mm_node
, rb_hole_addr
);
277 static inline u64
rb_hole_size(struct rb_node
*rb
)
279 return rb_entry(rb
, struct drm_mm_node
, rb_hole_size
)->hole_size
;
282 static struct drm_mm_node
*best_hole(struct drm_mm
*mm
, u64 size
)
284 struct rb_node
*best
= NULL
;
285 struct rb_node
**link
= &mm
->holes_size
.rb_node
;
288 struct rb_node
*rb
= *link
;
290 if (size
<= rb_hole_size(rb
)) {
294 link
= &rb
->rb_right
;
298 return rb_hole_size_to_node(best
);
301 static struct drm_mm_node
*find_hole(struct drm_mm
*mm
, u64 addr
)
303 struct drm_mm_node
*node
= NULL
;
304 struct rb_node
**link
= &mm
->holes_addr
.rb_node
;
309 node
= rb_hole_addr_to_node(*link
);
310 hole_start
= __drm_mm_hole_node_start(node
);
312 if (addr
< hole_start
)
313 link
= &node
->rb_hole_addr
.rb_left
;
314 else if (addr
> hole_start
+ node
->hole_size
)
315 link
= &node
->rb_hole_addr
.rb_right
;
323 static struct drm_mm_node
*
324 first_hole(struct drm_mm
*mm
,
325 u64 start
, u64 end
, u64 size
,
326 enum drm_mm_insert_mode mode
)
328 if (RB_EMPTY_ROOT(&mm
->holes_size
))
333 case DRM_MM_INSERT_BEST
:
334 return best_hole(mm
, size
);
336 case DRM_MM_INSERT_LOW
:
337 return find_hole(mm
, start
);
339 case DRM_MM_INSERT_HIGH
:
340 return find_hole(mm
, end
);
342 case DRM_MM_INSERT_EVICT
:
343 return list_first_entry_or_null(&mm
->hole_stack
,
349 static struct drm_mm_node
*
350 next_hole(struct drm_mm
*mm
,
351 struct drm_mm_node
*node
,
352 enum drm_mm_insert_mode mode
)
356 case DRM_MM_INSERT_BEST
:
357 return rb_hole_size_to_node(rb_next(&node
->rb_hole_size
));
359 case DRM_MM_INSERT_LOW
:
360 return rb_hole_addr_to_node(rb_next(&node
->rb_hole_addr
));
362 case DRM_MM_INSERT_HIGH
:
363 return rb_hole_addr_to_node(rb_prev(&node
->rb_hole_addr
));
365 case DRM_MM_INSERT_EVICT
:
366 node
= list_next_entry(node
, hole_stack
);
367 return &node
->hole_stack
== &mm
->hole_stack
? NULL
: node
;
372 * drm_mm_reserve_node - insert an pre-initialized node
373 * @mm: drm_mm allocator to insert @node into
374 * @node: drm_mm_node to insert
376 * This functions inserts an already set-up &drm_mm_node into the allocator,
377 * meaning that start, size and color must be set by the caller. All other
378 * fields must be cleared to 0. This is useful to initialize the allocator with
379 * preallocated objects which must be set-up before the range allocator can be
380 * set-up, e.g. when taking over a firmware framebuffer.
383 * 0 on success, -ENOSPC if there's no hole where @node is.
385 int drm_mm_reserve_node(struct drm_mm
*mm
, struct drm_mm_node
*node
)
387 u64 end
= node
->start
+ node
->size
;
388 struct drm_mm_node
*hole
;
389 u64 hole_start
, hole_end
;
390 u64 adj_start
, adj_end
;
392 end
= node
->start
+ node
->size
;
393 if (unlikely(end
<= node
->start
))
396 /* Find the relevant hole to add our node to */
397 hole
= find_hole(mm
, node
->start
);
401 adj_start
= hole_start
= __drm_mm_hole_node_start(hole
);
402 adj_end
= hole_end
= hole_start
+ hole
->hole_size
;
404 if (mm
->color_adjust
)
405 mm
->color_adjust(hole
, node
->color
, &adj_start
, &adj_end
);
407 if (adj_start
> node
->start
|| adj_end
< end
)
412 list_add(&node
->node_list
, &hole
->node_list
);
413 drm_mm_interval_tree_add_node(hole
, node
);
414 node
->allocated
= true;
418 if (node
->start
> hole_start
)
426 EXPORT_SYMBOL(drm_mm_reserve_node
);
429 * drm_mm_insert_node_in_range - ranged search for space and insert @node
430 * @mm: drm_mm to allocate from
431 * @node: preallocate node to insert
432 * @size: size of the allocation
433 * @alignment: alignment of the allocation
434 * @color: opaque tag value to use for this node
435 * @range_start: start of the allowed range for this node
436 * @range_end: end of the allowed range for this node
437 * @mode: fine-tune the allocation search and placement
439 * The preallocated @node must be cleared to 0.
442 * 0 on success, -ENOSPC if there's no suitable hole.
444 int drm_mm_insert_node_in_range(struct drm_mm
* const mm
,
445 struct drm_mm_node
* const node
,
446 u64 size
, u64 alignment
,
448 u64 range_start
, u64 range_end
,
449 enum drm_mm_insert_mode mode
)
451 struct drm_mm_node
*hole
;
454 DRM_MM_BUG_ON(range_start
>= range_end
);
456 if (unlikely(size
== 0 || range_end
- range_start
< size
))
462 remainder_mask
= is_power_of_2(alignment
) ? alignment
- 1 : 0;
463 for (hole
= first_hole(mm
, range_start
, range_end
, size
, mode
); hole
;
464 hole
= next_hole(mm
, hole
, mode
)) {
465 u64 hole_start
= __drm_mm_hole_node_start(hole
);
466 u64 hole_end
= hole_start
+ hole
->hole_size
;
467 u64 adj_start
, adj_end
;
468 u64 col_start
, col_end
;
470 if (mode
== DRM_MM_INSERT_LOW
&& hole_start
>= range_end
)
473 if (mode
== DRM_MM_INSERT_HIGH
&& hole_end
<= range_start
)
476 col_start
= hole_start
;
478 if (mm
->color_adjust
)
479 mm
->color_adjust(hole
, color
, &col_start
, &col_end
);
481 adj_start
= max(col_start
, range_start
);
482 adj_end
= min(col_end
, range_end
);
484 if (adj_end
<= adj_start
|| adj_end
- adj_start
< size
)
487 if (mode
== DRM_MM_INSERT_HIGH
)
488 adj_start
= adj_end
- size
;
493 if (likely(remainder_mask
))
494 rem
= adj_start
& remainder_mask
;
496 div64_u64_rem(adj_start
, alignment
, &rem
);
499 if (mode
!= DRM_MM_INSERT_HIGH
)
500 adj_start
+= alignment
;
502 if (adj_start
< max(col_start
, range_start
) ||
503 min(col_end
, range_end
) - adj_start
< size
)
506 if (adj_end
<= adj_start
||
507 adj_end
- adj_start
< size
)
514 node
->start
= adj_start
;
518 list_add(&node
->node_list
, &hole
->node_list
);
519 drm_mm_interval_tree_add_node(hole
, node
);
520 node
->allocated
= true;
523 if (adj_start
> hole_start
)
525 if (adj_start
+ size
< hole_end
)
534 EXPORT_SYMBOL(drm_mm_insert_node_in_range
);
537 * drm_mm_remove_node - Remove a memory node from the allocator.
538 * @node: drm_mm_node to remove
540 * This just removes a node from its drm_mm allocator. The node does not need to
541 * be cleared again before it can be re-inserted into this or any other drm_mm
542 * allocator. It is a bug to call this function on a unallocated node.
544 void drm_mm_remove_node(struct drm_mm_node
*node
)
546 struct drm_mm
*mm
= node
->mm
;
547 struct drm_mm_node
*prev_node
;
549 DRM_MM_BUG_ON(!node
->allocated
);
550 DRM_MM_BUG_ON(node
->scanned_block
);
552 prev_node
= list_prev_entry(node
, node_list
);
554 if (drm_mm_hole_follows(node
))
557 drm_mm_interval_tree_remove(node
, &mm
->interval_tree
);
558 list_del(&node
->node_list
);
559 node
->allocated
= false;
561 if (drm_mm_hole_follows(prev_node
))
565 EXPORT_SYMBOL(drm_mm_remove_node
);
568 * drm_mm_replace_node - move an allocation from @old to @new
569 * @old: drm_mm_node to remove from the allocator
570 * @new: drm_mm_node which should inherit @old's allocation
572 * This is useful for when drivers embed the drm_mm_node structure and hence
573 * can't move allocations by reassigning pointers. It's a combination of remove
574 * and insert with the guarantee that the allocation start will match.
576 void drm_mm_replace_node(struct drm_mm_node
*old
, struct drm_mm_node
*new)
578 struct drm_mm
*mm
= old
->mm
;
580 DRM_MM_BUG_ON(!old
->allocated
);
584 list_replace(&old
->node_list
, &new->node_list
);
585 rb_replace_node_cached(&old
->rb
, &new->rb
, &mm
->interval_tree
);
587 if (drm_mm_hole_follows(old
)) {
588 list_replace(&old
->hole_stack
, &new->hole_stack
);
589 rb_replace_node(&old
->rb_hole_size
,
592 rb_replace_node(&old
->rb_hole_addr
,
597 old
->allocated
= false;
598 new->allocated
= true;
600 EXPORT_SYMBOL(drm_mm_replace_node
);
603 * DOC: lru scan roster
605 * Very often GPUs need to have continuous allocations for a given object. When
606 * evicting objects to make space for a new one it is therefore not most
607 * efficient when we simply start to select all objects from the tail of an LRU
608 * until there's a suitable hole: Especially for big objects or nodes that
609 * otherwise have special allocation constraints there's a good chance we evict
610 * lots of (smaller) objects unnecessarily.
612 * The DRM range allocator supports this use-case through the scanning
613 * interfaces. First a scan operation needs to be initialized with
614 * drm_mm_scan_init() or drm_mm_scan_init_with_range(). The driver adds
615 * objects to the roster, probably by walking an LRU list, but this can be
616 * freely implemented. Eviction candiates are added using
617 * drm_mm_scan_add_block() until a suitable hole is found or there are no
618 * further evictable objects. Eviction roster metadata is tracked in &struct
621 * The driver must walk through all objects again in exactly the reverse
622 * order to restore the allocator state. Note that while the allocator is used
623 * in the scan mode no other operation is allowed.
625 * Finally the driver evicts all objects selected (drm_mm_scan_remove_block()
626 * reported true) in the scan, and any overlapping nodes after color adjustment
627 * (drm_mm_scan_color_evict()). Adding and removing an object is O(1), and
628 * since freeing a node is also O(1) the overall complexity is
629 * O(scanned_objects). So like the free stack which needs to be walked before a
630 * scan operation even begins this is linear in the number of objects. It
631 * doesn't seem to hurt too badly.
635 * drm_mm_scan_init_with_range - initialize range-restricted lru scanning
637 * @mm: drm_mm to scan
638 * @size: size of the allocation
639 * @alignment: alignment of the allocation
640 * @color: opaque tag value to use for the allocation
641 * @start: start of the allowed range for the allocation
642 * @end: end of the allowed range for the allocation
643 * @mode: fine-tune the allocation search and placement
645 * This simply sets up the scanning routines with the parameters for the desired
649 * As long as the scan list is non-empty, no other operations than
650 * adding/removing nodes to/from the scan list are allowed.
652 void drm_mm_scan_init_with_range(struct drm_mm_scan
*scan
,
659 enum drm_mm_insert_mode mode
)
661 DRM_MM_BUG_ON(start
>= end
);
662 DRM_MM_BUG_ON(!size
|| size
> end
- start
);
663 DRM_MM_BUG_ON(mm
->scan_active
);
671 scan
->alignment
= alignment
;
672 scan
->remainder_mask
= is_power_of_2(alignment
) ? alignment
- 1 : 0;
676 DRM_MM_BUG_ON(end
<= start
);
677 scan
->range_start
= start
;
678 scan
->range_end
= end
;
680 scan
->hit_start
= U64_MAX
;
683 EXPORT_SYMBOL(drm_mm_scan_init_with_range
);
686 * drm_mm_scan_add_block - add a node to the scan list
687 * @scan: the active drm_mm scanner
688 * @node: drm_mm_node to add
690 * Add a node to the scan list that might be freed to make space for the desired
694 * True if a hole has been found, false otherwise.
696 bool drm_mm_scan_add_block(struct drm_mm_scan
*scan
,
697 struct drm_mm_node
*node
)
699 struct drm_mm
*mm
= scan
->mm
;
700 struct drm_mm_node
*hole
;
701 u64 hole_start
, hole_end
;
702 u64 col_start
, col_end
;
703 u64 adj_start
, adj_end
;
705 DRM_MM_BUG_ON(node
->mm
!= mm
);
706 DRM_MM_BUG_ON(!node
->allocated
);
707 DRM_MM_BUG_ON(node
->scanned_block
);
708 node
->scanned_block
= true;
711 /* Remove this block from the node_list so that we enlarge the hole
712 * (distance between the end of our previous node and the start of
713 * or next), without poisoning the link so that we can restore it
714 * later in drm_mm_scan_remove_block().
716 hole
= list_prev_entry(node
, node_list
);
717 DRM_MM_BUG_ON(list_next_entry(hole
, node_list
) != node
);
718 __list_del_entry(&node
->node_list
);
720 hole_start
= __drm_mm_hole_node_start(hole
);
721 hole_end
= __drm_mm_hole_node_end(hole
);
723 col_start
= hole_start
;
725 if (mm
->color_adjust
)
726 mm
->color_adjust(hole
, scan
->color
, &col_start
, &col_end
);
728 adj_start
= max(col_start
, scan
->range_start
);
729 adj_end
= min(col_end
, scan
->range_end
);
730 if (adj_end
<= adj_start
|| adj_end
- adj_start
< scan
->size
)
733 if (scan
->mode
== DRM_MM_INSERT_HIGH
)
734 adj_start
= adj_end
- scan
->size
;
736 if (scan
->alignment
) {
739 if (likely(scan
->remainder_mask
))
740 rem
= adj_start
& scan
->remainder_mask
;
742 div64_u64_rem(adj_start
, scan
->alignment
, &rem
);
745 if (scan
->mode
!= DRM_MM_INSERT_HIGH
)
746 adj_start
+= scan
->alignment
;
747 if (adj_start
< max(col_start
, scan
->range_start
) ||
748 min(col_end
, scan
->range_end
) - adj_start
< scan
->size
)
751 if (adj_end
<= adj_start
||
752 adj_end
- adj_start
< scan
->size
)
757 scan
->hit_start
= adj_start
;
758 scan
->hit_end
= adj_start
+ scan
->size
;
760 DRM_MM_BUG_ON(scan
->hit_start
>= scan
->hit_end
);
761 DRM_MM_BUG_ON(scan
->hit_start
< hole_start
);
762 DRM_MM_BUG_ON(scan
->hit_end
> hole_end
);
766 EXPORT_SYMBOL(drm_mm_scan_add_block
);
769 * drm_mm_scan_remove_block - remove a node from the scan list
770 * @scan: the active drm_mm scanner
771 * @node: drm_mm_node to remove
773 * Nodes **must** be removed in exactly the reverse order from the scan list as
774 * they have been added (e.g. using list_add() as they are added and then
775 * list_for_each() over that eviction list to remove), otherwise the internal
776 * state of the memory manager will be corrupted.
778 * When the scan list is empty, the selected memory nodes can be freed. An
779 * immediately following drm_mm_insert_node_in_range_generic() or one of the
780 * simpler versions of that function with !DRM_MM_SEARCH_BEST will then return
781 * the just freed block (because its at the top of the free_stack list).
784 * True if this block should be evicted, false otherwise. Will always
785 * return false when no hole has been found.
787 bool drm_mm_scan_remove_block(struct drm_mm_scan
*scan
,
788 struct drm_mm_node
*node
)
790 struct drm_mm_node
*prev_node
;
792 DRM_MM_BUG_ON(node
->mm
!= scan
->mm
);
793 DRM_MM_BUG_ON(!node
->scanned_block
);
794 node
->scanned_block
= false;
796 DRM_MM_BUG_ON(!node
->mm
->scan_active
);
797 node
->mm
->scan_active
--;
799 /* During drm_mm_scan_add_block() we decoupled this node leaving
800 * its pointers intact. Now that the caller is walking back along
801 * the eviction list we can restore this block into its rightful
802 * place on the full node_list. To confirm that the caller is walking
803 * backwards correctly we check that prev_node->next == node->next,
804 * i.e. both believe the same node should be on the other side of the
807 prev_node
= list_prev_entry(node
, node_list
);
808 DRM_MM_BUG_ON(list_next_entry(prev_node
, node_list
) !=
809 list_next_entry(node
, node_list
));
810 list_add(&node
->node_list
, &prev_node
->node_list
);
812 return (node
->start
+ node
->size
> scan
->hit_start
&&
813 node
->start
< scan
->hit_end
);
815 EXPORT_SYMBOL(drm_mm_scan_remove_block
);
818 * drm_mm_scan_color_evict - evict overlapping nodes on either side of hole
819 * @scan: drm_mm scan with target hole
821 * After completing an eviction scan and removing the selected nodes, we may
822 * need to remove a few more nodes from either side of the target hole if
823 * mm.color_adjust is being used.
826 * A node to evict, or NULL if there are no overlapping nodes.
828 struct drm_mm_node
*drm_mm_scan_color_evict(struct drm_mm_scan
*scan
)
830 struct drm_mm
*mm
= scan
->mm
;
831 struct drm_mm_node
*hole
;
832 u64 hole_start
, hole_end
;
834 DRM_MM_BUG_ON(list_empty(&mm
->hole_stack
));
836 if (!mm
->color_adjust
)
839 hole
= list_first_entry(&mm
->hole_stack
, typeof(*hole
), hole_stack
);
840 hole_start
= __drm_mm_hole_node_start(hole
);
841 hole_end
= hole_start
+ hole
->hole_size
;
843 DRM_MM_BUG_ON(hole_start
> scan
->hit_start
);
844 DRM_MM_BUG_ON(hole_end
< scan
->hit_end
);
846 mm
->color_adjust(hole
, scan
->color
, &hole_start
, &hole_end
);
847 if (hole_start
> scan
->hit_start
)
849 if (hole_end
< scan
->hit_end
)
850 return list_next_entry(hole
, node_list
);
854 EXPORT_SYMBOL(drm_mm_scan_color_evict
);
857 * drm_mm_init - initialize a drm-mm allocator
858 * @mm: the drm_mm structure to initialize
859 * @start: start of the range managed by @mm
860 * @size: end of the range managed by @mm
862 * Note that @mm must be cleared to 0 before calling this function.
864 void drm_mm_init(struct drm_mm
*mm
, u64 start
, u64 size
)
866 DRM_MM_BUG_ON(start
+ size
<= start
);
868 mm
->color_adjust
= NULL
;
870 INIT_LIST_HEAD(&mm
->hole_stack
);
871 mm
->interval_tree
= RB_ROOT_CACHED
;
872 mm
->holes_size
= RB_ROOT
;
873 mm
->holes_addr
= RB_ROOT
;
875 /* Clever trick to avoid a special case in the free hole tracking. */
876 INIT_LIST_HEAD(&mm
->head_node
.node_list
);
877 mm
->head_node
.allocated
= false;
878 mm
->head_node
.mm
= mm
;
879 mm
->head_node
.start
= start
+ size
;
880 mm
->head_node
.size
= -size
;
881 add_hole(&mm
->head_node
);
885 EXPORT_SYMBOL(drm_mm_init
);
888 * drm_mm_takedown - clean up a drm_mm allocator
889 * @mm: drm_mm allocator to clean up
891 * Note that it is a bug to call this function on an allocator which is not
894 void drm_mm_takedown(struct drm_mm
*mm
)
896 if (WARN(!drm_mm_clean(mm
),
897 "Memory manager not clean during takedown.\n"))
900 EXPORT_SYMBOL(drm_mm_takedown
);
902 static u64
drm_mm_dump_hole(struct drm_printer
*p
, const struct drm_mm_node
*entry
)
906 size
= entry
->hole_size
;
908 start
= drm_mm_hole_node_start(entry
);
909 drm_printf(p
, "%#018llx-%#018llx: %llu: free\n",
910 start
, start
+ size
, size
);
916 * drm_mm_print - print allocator state
917 * @mm: drm_mm allocator to print
918 * @p: DRM printer to use
920 void drm_mm_print(const struct drm_mm
*mm
, struct drm_printer
*p
)
922 const struct drm_mm_node
*entry
;
923 u64 total_used
= 0, total_free
= 0, total
= 0;
925 total_free
+= drm_mm_dump_hole(p
, &mm
->head_node
);
927 drm_mm_for_each_node(entry
, mm
) {
928 drm_printf(p
, "%#018llx-%#018llx: %llu: used\n", entry
->start
,
929 entry
->start
+ entry
->size
, entry
->size
);
930 total_used
+= entry
->size
;
931 total_free
+= drm_mm_dump_hole(p
, entry
);
933 total
= total_free
+ total_used
;
935 drm_printf(p
, "total: %llu, used %llu free %llu\n", total
,
936 total_used
, total_free
);
938 EXPORT_SYMBOL(drm_mm_print
);