2 * linux/drivers/mmc/core/core.c
4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
6 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/completion.h>
17 #include <linux/device.h>
18 #include <linux/delay.h>
19 #include <linux/pagemap.h>
20 #include <linux/err.h>
21 #include <linux/leds.h>
22 #include <linux/scatterlist.h>
23 #include <linux/log2.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/suspend.h>
28 #include <linux/fault-inject.h>
29 #include <linux/random.h>
30 #include <linux/slab.h>
33 #include <linux/mmc/card.h>
34 #include <linux/mmc/host.h>
35 #include <linux/mmc/mmc.h>
36 #include <linux/mmc/sd.h>
37 #include <linux/mmc/slot-gpio.h>
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/mmc.h>
53 /* If the device is not responding */
54 #define MMC_CORE_TIMEOUT_MS (10 * 60 * 1000) /* 10 minute timeout */
56 /* The max erase timeout, used when host->max_busy_timeout isn't specified */
57 #define MMC_ERASE_TIMEOUT_MS (60 * 1000) /* 60 s */
59 static const unsigned freqs
[] = { 400000, 300000, 200000, 100000 };
62 * Enabling software CRCs on the data blocks can be a significant (30%)
63 * performance cost, and for other reasons may not always be desired.
64 * So we allow it it to be disabled.
67 module_param(use_spi_crc
, bool, 0);
69 static int mmc_schedule_delayed_work(struct delayed_work
*work
,
73 * We use the system_freezable_wq, because of two reasons.
74 * First, it allows several works (not the same work item) to be
75 * executed simultaneously. Second, the queue becomes frozen when
76 * userspace becomes frozen during system PM.
78 return queue_delayed_work(system_freezable_wq
, work
, delay
);
81 #ifdef CONFIG_FAIL_MMC_REQUEST
84 * Internal function. Inject random data errors.
85 * If mmc_data is NULL no errors are injected.
87 static void mmc_should_fail_request(struct mmc_host
*host
,
88 struct mmc_request
*mrq
)
90 struct mmc_command
*cmd
= mrq
->cmd
;
91 struct mmc_data
*data
= mrq
->data
;
92 static const int data_errors
[] = {
101 if (cmd
->error
|| data
->error
||
102 !should_fail(&host
->fail_mmc_request
, data
->blksz
* data
->blocks
))
105 data
->error
= data_errors
[prandom_u32() % ARRAY_SIZE(data_errors
)];
106 data
->bytes_xfered
= (prandom_u32() % (data
->bytes_xfered
>> 9)) << 9;
109 #else /* CONFIG_FAIL_MMC_REQUEST */
111 static inline void mmc_should_fail_request(struct mmc_host
*host
,
112 struct mmc_request
*mrq
)
116 #endif /* CONFIG_FAIL_MMC_REQUEST */
118 static inline void mmc_complete_cmd(struct mmc_request
*mrq
)
120 if (mrq
->cap_cmd_during_tfr
&& !completion_done(&mrq
->cmd_completion
))
121 complete_all(&mrq
->cmd_completion
);
124 void mmc_command_done(struct mmc_host
*host
, struct mmc_request
*mrq
)
126 if (!mrq
->cap_cmd_during_tfr
)
129 mmc_complete_cmd(mrq
);
131 pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n",
132 mmc_hostname(host
), mrq
->cmd
->opcode
);
134 EXPORT_SYMBOL(mmc_command_done
);
137 * mmc_request_done - finish processing an MMC request
138 * @host: MMC host which completed request
139 * @mrq: MMC request which request
141 * MMC drivers should call this function when they have completed
142 * their processing of a request.
144 void mmc_request_done(struct mmc_host
*host
, struct mmc_request
*mrq
)
146 struct mmc_command
*cmd
= mrq
->cmd
;
147 int err
= cmd
->error
;
149 /* Flag re-tuning needed on CRC errors */
150 if ((cmd
->opcode
!= MMC_SEND_TUNING_BLOCK
&&
151 cmd
->opcode
!= MMC_SEND_TUNING_BLOCK_HS200
) &&
152 (err
== -EILSEQ
|| (mrq
->sbc
&& mrq
->sbc
->error
== -EILSEQ
) ||
153 (mrq
->data
&& mrq
->data
->error
== -EILSEQ
) ||
154 (mrq
->stop
&& mrq
->stop
->error
== -EILSEQ
)))
155 mmc_retune_needed(host
);
157 if (err
&& cmd
->retries
&& mmc_host_is_spi(host
)) {
158 if (cmd
->resp
[0] & R1_SPI_ILLEGAL_COMMAND
)
162 if (host
->ongoing_mrq
== mrq
)
163 host
->ongoing_mrq
= NULL
;
165 mmc_complete_cmd(mrq
);
167 trace_mmc_request_done(host
, mrq
);
170 * We list various conditions for the command to be considered
173 * - There was no error, OK fine then
174 * - We are not doing some kind of retry
175 * - The card was removed (...so just complete everything no matter
176 * if there are errors or retries)
178 if (!err
|| !cmd
->retries
|| mmc_card_removed(host
->card
)) {
179 mmc_should_fail_request(host
, mrq
);
181 if (!host
->ongoing_mrq
)
182 led_trigger_event(host
->led
, LED_OFF
);
185 pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
186 mmc_hostname(host
), mrq
->sbc
->opcode
,
188 mrq
->sbc
->resp
[0], mrq
->sbc
->resp
[1],
189 mrq
->sbc
->resp
[2], mrq
->sbc
->resp
[3]);
192 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
193 mmc_hostname(host
), cmd
->opcode
, err
,
194 cmd
->resp
[0], cmd
->resp
[1],
195 cmd
->resp
[2], cmd
->resp
[3]);
198 pr_debug("%s: %d bytes transferred: %d\n",
200 mrq
->data
->bytes_xfered
, mrq
->data
->error
);
204 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
205 mmc_hostname(host
), mrq
->stop
->opcode
,
207 mrq
->stop
->resp
[0], mrq
->stop
->resp
[1],
208 mrq
->stop
->resp
[2], mrq
->stop
->resp
[3]);
212 * Request starter must handle retries - see
213 * mmc_wait_for_req_done().
219 EXPORT_SYMBOL(mmc_request_done
);
221 static void __mmc_start_request(struct mmc_host
*host
, struct mmc_request
*mrq
)
225 /* Assumes host controller has been runtime resumed by mmc_claim_host */
226 err
= mmc_retune(host
);
228 mrq
->cmd
->error
= err
;
229 mmc_request_done(host
, mrq
);
234 * For sdio rw commands we must wait for card busy otherwise some
235 * sdio devices won't work properly.
236 * And bypass I/O abort, reset and bus suspend operations.
238 if (sdio_is_io_busy(mrq
->cmd
->opcode
, mrq
->cmd
->arg
) &&
239 host
->ops
->card_busy
) {
240 int tries
= 500; /* Wait aprox 500ms at maximum */
242 while (host
->ops
->card_busy(host
) && --tries
)
246 mrq
->cmd
->error
= -EBUSY
;
247 mmc_request_done(host
, mrq
);
252 if (mrq
->cap_cmd_during_tfr
) {
253 host
->ongoing_mrq
= mrq
;
255 * Retry path could come through here without having waiting on
256 * cmd_completion, so ensure it is reinitialised.
258 reinit_completion(&mrq
->cmd_completion
);
261 trace_mmc_request_start(host
, mrq
);
264 host
->cqe_ops
->cqe_off(host
);
266 host
->ops
->request(host
, mrq
);
269 static void mmc_mrq_pr_debug(struct mmc_host
*host
, struct mmc_request
*mrq
,
273 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
274 mmc_hostname(host
), mrq
->sbc
->opcode
,
275 mrq
->sbc
->arg
, mrq
->sbc
->flags
);
279 pr_debug("%s: starting %sCMD%u arg %08x flags %08x\n",
280 mmc_hostname(host
), cqe
? "CQE direct " : "",
281 mrq
->cmd
->opcode
, mrq
->cmd
->arg
, mrq
->cmd
->flags
);
283 pr_debug("%s: starting CQE transfer for tag %d blkaddr %u\n",
284 mmc_hostname(host
), mrq
->tag
, mrq
->data
->blk_addr
);
288 pr_debug("%s: blksz %d blocks %d flags %08x "
289 "tsac %d ms nsac %d\n",
290 mmc_hostname(host
), mrq
->data
->blksz
,
291 mrq
->data
->blocks
, mrq
->data
->flags
,
292 mrq
->data
->timeout_ns
/ 1000000,
293 mrq
->data
->timeout_clks
);
297 pr_debug("%s: CMD%u arg %08x flags %08x\n",
298 mmc_hostname(host
), mrq
->stop
->opcode
,
299 mrq
->stop
->arg
, mrq
->stop
->flags
);
303 static int mmc_mrq_prep(struct mmc_host
*host
, struct mmc_request
*mrq
)
305 unsigned int i
, sz
= 0;
306 struct scatterlist
*sg
;
311 mrq
->cmd
->data
= mrq
->data
;
318 if (mrq
->data
->blksz
> host
->max_blk_size
||
319 mrq
->data
->blocks
> host
->max_blk_count
||
320 mrq
->data
->blocks
* mrq
->data
->blksz
> host
->max_req_size
)
323 for_each_sg(mrq
->data
->sg
, sg
, mrq
->data
->sg_len
, i
)
325 if (sz
!= mrq
->data
->blocks
* mrq
->data
->blksz
)
328 mrq
->data
->error
= 0;
329 mrq
->data
->mrq
= mrq
;
331 mrq
->data
->stop
= mrq
->stop
;
332 mrq
->stop
->error
= 0;
333 mrq
->stop
->mrq
= mrq
;
340 int mmc_start_request(struct mmc_host
*host
, struct mmc_request
*mrq
)
344 init_completion(&mrq
->cmd_completion
);
346 mmc_retune_hold(host
);
348 if (mmc_card_removed(host
->card
))
351 mmc_mrq_pr_debug(host
, mrq
, false);
353 WARN_ON(!host
->claimed
);
355 err
= mmc_mrq_prep(host
, mrq
);
359 led_trigger_event(host
->led
, LED_FULL
);
360 __mmc_start_request(host
, mrq
);
364 EXPORT_SYMBOL(mmc_start_request
);
366 static void mmc_wait_done(struct mmc_request
*mrq
)
368 complete(&mrq
->completion
);
371 static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host
*host
)
373 struct mmc_request
*ongoing_mrq
= READ_ONCE(host
->ongoing_mrq
);
376 * If there is an ongoing transfer, wait for the command line to become
379 if (ongoing_mrq
&& !completion_done(&ongoing_mrq
->cmd_completion
))
380 wait_for_completion(&ongoing_mrq
->cmd_completion
);
383 static int __mmc_start_req(struct mmc_host
*host
, struct mmc_request
*mrq
)
387 mmc_wait_ongoing_tfr_cmd(host
);
389 init_completion(&mrq
->completion
);
390 mrq
->done
= mmc_wait_done
;
392 err
= mmc_start_request(host
, mrq
);
394 mrq
->cmd
->error
= err
;
395 mmc_complete_cmd(mrq
);
396 complete(&mrq
->completion
);
402 void mmc_wait_for_req_done(struct mmc_host
*host
, struct mmc_request
*mrq
)
404 struct mmc_command
*cmd
;
407 wait_for_completion(&mrq
->completion
);
412 * If host has timed out waiting for the sanitize
413 * to complete, card might be still in programming state
414 * so let's try to bring the card out of programming
417 if (cmd
->sanitize_busy
&& cmd
->error
== -ETIMEDOUT
) {
418 if (!mmc_interrupt_hpi(host
->card
)) {
419 pr_warn("%s: %s: Interrupted sanitize\n",
420 mmc_hostname(host
), __func__
);
424 pr_err("%s: %s: Failed to interrupt sanitize\n",
425 mmc_hostname(host
), __func__
);
428 if (!cmd
->error
|| !cmd
->retries
||
429 mmc_card_removed(host
->card
))
432 mmc_retune_recheck(host
);
434 pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
435 mmc_hostname(host
), cmd
->opcode
, cmd
->error
);
438 __mmc_start_request(host
, mrq
);
441 mmc_retune_release(host
);
443 EXPORT_SYMBOL(mmc_wait_for_req_done
);
446 * mmc_cqe_start_req - Start a CQE request.
447 * @host: MMC host to start the request
448 * @mrq: request to start
450 * Start the request, re-tuning if needed and it is possible. Returns an error
451 * code if the request fails to start or -EBUSY if CQE is busy.
453 int mmc_cqe_start_req(struct mmc_host
*host
, struct mmc_request
*mrq
)
458 * CQE cannot process re-tuning commands. Caller must hold retuning
459 * while CQE is in use. Re-tuning can happen here only when CQE has no
460 * active requests i.e. this is the first. Note, re-tuning will call
463 err
= mmc_retune(host
);
469 mmc_mrq_pr_debug(host
, mrq
, true);
471 err
= mmc_mrq_prep(host
, mrq
);
475 err
= host
->cqe_ops
->cqe_request(host
, mrq
);
479 trace_mmc_request_start(host
, mrq
);
485 pr_debug("%s: failed to start CQE direct CMD%u, error %d\n",
486 mmc_hostname(host
), mrq
->cmd
->opcode
, err
);
488 pr_debug("%s: failed to start CQE transfer for tag %d, error %d\n",
489 mmc_hostname(host
), mrq
->tag
, err
);
493 EXPORT_SYMBOL(mmc_cqe_start_req
);
496 * mmc_cqe_request_done - CQE has finished processing an MMC request
497 * @host: MMC host which completed request
498 * @mrq: MMC request which completed
500 * CQE drivers should call this function when they have completed
501 * their processing of a request.
503 void mmc_cqe_request_done(struct mmc_host
*host
, struct mmc_request
*mrq
)
505 mmc_should_fail_request(host
, mrq
);
507 /* Flag re-tuning needed on CRC errors */
508 if ((mrq
->cmd
&& mrq
->cmd
->error
== -EILSEQ
) ||
509 (mrq
->data
&& mrq
->data
->error
== -EILSEQ
))
510 mmc_retune_needed(host
);
512 trace_mmc_request_done(host
, mrq
);
515 pr_debug("%s: CQE req done (direct CMD%u): %d\n",
516 mmc_hostname(host
), mrq
->cmd
->opcode
, mrq
->cmd
->error
);
518 pr_debug("%s: CQE transfer done tag %d\n",
519 mmc_hostname(host
), mrq
->tag
);
523 pr_debug("%s: %d bytes transferred: %d\n",
525 mrq
->data
->bytes_xfered
, mrq
->data
->error
);
530 EXPORT_SYMBOL(mmc_cqe_request_done
);
533 * mmc_cqe_post_req - CQE post process of a completed MMC request
535 * @mrq: MMC request to be processed
537 void mmc_cqe_post_req(struct mmc_host
*host
, struct mmc_request
*mrq
)
539 if (host
->cqe_ops
->cqe_post_req
)
540 host
->cqe_ops
->cqe_post_req(host
, mrq
);
542 EXPORT_SYMBOL(mmc_cqe_post_req
);
544 /* Arbitrary 1 second timeout */
545 #define MMC_CQE_RECOVERY_TIMEOUT 1000
548 * mmc_cqe_recovery - Recover from CQE errors.
549 * @host: MMC host to recover
551 * Recovery consists of stopping CQE, stopping eMMC, discarding the queue in
552 * in eMMC, and discarding the queue in CQE. CQE must call
553 * mmc_cqe_request_done() on all requests. An error is returned if the eMMC
554 * fails to discard its queue.
556 int mmc_cqe_recovery(struct mmc_host
*host
)
558 struct mmc_command cmd
;
561 mmc_retune_hold_now(host
);
564 * Recovery is expected seldom, if at all, but it reduces performance,
565 * so make sure it is not completely silent.
567 pr_warn("%s: running CQE recovery\n", mmc_hostname(host
));
569 host
->cqe_ops
->cqe_recovery_start(host
);
571 memset(&cmd
, 0, sizeof(cmd
));
572 cmd
.opcode
= MMC_STOP_TRANSMISSION
,
573 cmd
.flags
= MMC_RSP_R1B
| MMC_CMD_AC
,
574 cmd
.flags
&= ~MMC_RSP_CRC
; /* Ignore CRC */
575 cmd
.busy_timeout
= MMC_CQE_RECOVERY_TIMEOUT
,
576 mmc_wait_for_cmd(host
, &cmd
, 0);
578 memset(&cmd
, 0, sizeof(cmd
));
579 cmd
.opcode
= MMC_CMDQ_TASK_MGMT
;
580 cmd
.arg
= 1; /* Discard entire queue */
581 cmd
.flags
= MMC_RSP_R1B
| MMC_CMD_AC
;
582 cmd
.flags
&= ~MMC_RSP_CRC
; /* Ignore CRC */
583 cmd
.busy_timeout
= MMC_CQE_RECOVERY_TIMEOUT
,
584 err
= mmc_wait_for_cmd(host
, &cmd
, 0);
586 host
->cqe_ops
->cqe_recovery_finish(host
);
588 mmc_retune_release(host
);
592 EXPORT_SYMBOL(mmc_cqe_recovery
);
595 * mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done
599 * mmc_is_req_done() is used with requests that have
600 * mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after
601 * starting a request and before waiting for it to complete. That is,
602 * either in between calls to mmc_start_req(), or after mmc_wait_for_req()
603 * and before mmc_wait_for_req_done(). If it is called at other times the
604 * result is not meaningful.
606 bool mmc_is_req_done(struct mmc_host
*host
, struct mmc_request
*mrq
)
608 return completion_done(&mrq
->completion
);
610 EXPORT_SYMBOL(mmc_is_req_done
);
613 * mmc_wait_for_req - start a request and wait for completion
614 * @host: MMC host to start command
615 * @mrq: MMC request to start
617 * Start a new MMC custom command request for a host, and wait
618 * for the command to complete. In the case of 'cap_cmd_during_tfr'
619 * requests, the transfer is ongoing and the caller can issue further
620 * commands that do not use the data lines, and then wait by calling
621 * mmc_wait_for_req_done().
622 * Does not attempt to parse the response.
624 void mmc_wait_for_req(struct mmc_host
*host
, struct mmc_request
*mrq
)
626 __mmc_start_req(host
, mrq
);
628 if (!mrq
->cap_cmd_during_tfr
)
629 mmc_wait_for_req_done(host
, mrq
);
631 EXPORT_SYMBOL(mmc_wait_for_req
);
634 * mmc_wait_for_cmd - start a command and wait for completion
635 * @host: MMC host to start command
636 * @cmd: MMC command to start
637 * @retries: maximum number of retries
639 * Start a new MMC command for a host, and wait for the command
640 * to complete. Return any error that occurred while the command
641 * was executing. Do not attempt to parse the response.
643 int mmc_wait_for_cmd(struct mmc_host
*host
, struct mmc_command
*cmd
, int retries
)
645 struct mmc_request mrq
= {};
647 WARN_ON(!host
->claimed
);
649 memset(cmd
->resp
, 0, sizeof(cmd
->resp
));
650 cmd
->retries
= retries
;
655 mmc_wait_for_req(host
, &mrq
);
660 EXPORT_SYMBOL(mmc_wait_for_cmd
);
663 * mmc_set_data_timeout - set the timeout for a data command
664 * @data: data phase for command
665 * @card: the MMC card associated with the data transfer
667 * Computes the data timeout parameters according to the
668 * correct algorithm given the card type.
670 void mmc_set_data_timeout(struct mmc_data
*data
, const struct mmc_card
*card
)
675 * SDIO cards only define an upper 1 s limit on access.
677 if (mmc_card_sdio(card
)) {
678 data
->timeout_ns
= 1000000000;
679 data
->timeout_clks
= 0;
684 * SD cards use a 100 multiplier rather than 10
686 mult
= mmc_card_sd(card
) ? 100 : 10;
689 * Scale up the multiplier (and therefore the timeout) by
690 * the r2w factor for writes.
692 if (data
->flags
& MMC_DATA_WRITE
)
693 mult
<<= card
->csd
.r2w_factor
;
695 data
->timeout_ns
= card
->csd
.taac_ns
* mult
;
696 data
->timeout_clks
= card
->csd
.taac_clks
* mult
;
699 * SD cards also have an upper limit on the timeout.
701 if (mmc_card_sd(card
)) {
702 unsigned int timeout_us
, limit_us
;
704 timeout_us
= data
->timeout_ns
/ 1000;
705 if (card
->host
->ios
.clock
)
706 timeout_us
+= data
->timeout_clks
* 1000 /
707 (card
->host
->ios
.clock
/ 1000);
709 if (data
->flags
& MMC_DATA_WRITE
)
711 * The MMC spec "It is strongly recommended
712 * for hosts to implement more than 500ms
713 * timeout value even if the card indicates
714 * the 250ms maximum busy length." Even the
715 * previous value of 300ms is known to be
716 * insufficient for some cards.
723 * SDHC cards always use these fixed values.
725 if (timeout_us
> limit_us
) {
726 data
->timeout_ns
= limit_us
* 1000;
727 data
->timeout_clks
= 0;
730 /* assign limit value if invalid */
732 data
->timeout_ns
= limit_us
* 1000;
736 * Some cards require longer data read timeout than indicated in CSD.
737 * Address this by setting the read timeout to a "reasonably high"
738 * value. For the cards tested, 600ms has proven enough. If necessary,
739 * this value can be increased if other problematic cards require this.
741 if (mmc_card_long_read_time(card
) && data
->flags
& MMC_DATA_READ
) {
742 data
->timeout_ns
= 600000000;
743 data
->timeout_clks
= 0;
747 * Some cards need very high timeouts if driven in SPI mode.
748 * The worst observed timeout was 900ms after writing a
749 * continuous stream of data until the internal logic
752 if (mmc_host_is_spi(card
->host
)) {
753 if (data
->flags
& MMC_DATA_WRITE
) {
754 if (data
->timeout_ns
< 1000000000)
755 data
->timeout_ns
= 1000000000; /* 1s */
757 if (data
->timeout_ns
< 100000000)
758 data
->timeout_ns
= 100000000; /* 100ms */
762 EXPORT_SYMBOL(mmc_set_data_timeout
);
765 * mmc_align_data_size - pads a transfer size to a more optimal value
766 * @card: the MMC card associated with the data transfer
767 * @sz: original transfer size
769 * Pads the original data size with a number of extra bytes in
770 * order to avoid controller bugs and/or performance hits
771 * (e.g. some controllers revert to PIO for certain sizes).
773 * Returns the improved size, which might be unmodified.
775 * Note that this function is only relevant when issuing a
776 * single scatter gather entry.
778 unsigned int mmc_align_data_size(struct mmc_card
*card
, unsigned int sz
)
781 * FIXME: We don't have a system for the controller to tell
782 * the core about its problems yet, so for now we just 32-bit
785 sz
= ((sz
+ 3) / 4) * 4;
789 EXPORT_SYMBOL(mmc_align_data_size
);
792 * Allow claiming an already claimed host if the context is the same or there is
793 * no context but the task is the same.
795 static inline bool mmc_ctx_matches(struct mmc_host
*host
, struct mmc_ctx
*ctx
,
796 struct task_struct
*task
)
798 return host
->claimer
== ctx
||
799 (!ctx
&& task
&& host
->claimer
->task
== task
);
802 static inline void mmc_ctx_set_claimer(struct mmc_host
*host
,
804 struct task_struct
*task
)
806 if (!host
->claimer
) {
810 host
->claimer
= &host
->default_ctx
;
813 host
->claimer
->task
= task
;
817 * __mmc_claim_host - exclusively claim a host
818 * @host: mmc host to claim
819 * @ctx: context that claims the host or NULL in which case the default
820 * context will be used
821 * @abort: whether or not the operation should be aborted
823 * Claim a host for a set of operations. If @abort is non null and
824 * dereference a non-zero value then this will return prematurely with
825 * that non-zero value without acquiring the lock. Returns zero
826 * with the lock held otherwise.
828 int __mmc_claim_host(struct mmc_host
*host
, struct mmc_ctx
*ctx
,
831 struct task_struct
*task
= ctx
? NULL
: current
;
832 DECLARE_WAITQUEUE(wait
, current
);
839 add_wait_queue(&host
->wq
, &wait
);
840 spin_lock_irqsave(&host
->lock
, flags
);
842 set_current_state(TASK_UNINTERRUPTIBLE
);
843 stop
= abort
? atomic_read(abort
) : 0;
844 if (stop
|| !host
->claimed
|| mmc_ctx_matches(host
, ctx
, task
))
846 spin_unlock_irqrestore(&host
->lock
, flags
);
848 spin_lock_irqsave(&host
->lock
, flags
);
850 set_current_state(TASK_RUNNING
);
853 mmc_ctx_set_claimer(host
, ctx
, task
);
854 host
->claim_cnt
+= 1;
855 if (host
->claim_cnt
== 1)
859 spin_unlock_irqrestore(&host
->lock
, flags
);
860 remove_wait_queue(&host
->wq
, &wait
);
863 pm_runtime_get_sync(mmc_dev(host
));
867 EXPORT_SYMBOL(__mmc_claim_host
);
870 * mmc_release_host - release a host
871 * @host: mmc host to release
873 * Release a MMC host, allowing others to claim the host
874 * for their operations.
876 void mmc_release_host(struct mmc_host
*host
)
880 WARN_ON(!host
->claimed
);
882 spin_lock_irqsave(&host
->lock
, flags
);
883 if (--host
->claim_cnt
) {
884 /* Release for nested claim */
885 spin_unlock_irqrestore(&host
->lock
, flags
);
888 host
->claimer
->task
= NULL
;
889 host
->claimer
= NULL
;
890 spin_unlock_irqrestore(&host
->lock
, flags
);
892 pm_runtime_mark_last_busy(mmc_dev(host
));
893 pm_runtime_put_autosuspend(mmc_dev(host
));
896 EXPORT_SYMBOL(mmc_release_host
);
899 * This is a helper function, which fetches a runtime pm reference for the
900 * card device and also claims the host.
902 void mmc_get_card(struct mmc_card
*card
, struct mmc_ctx
*ctx
)
904 pm_runtime_get_sync(&card
->dev
);
905 __mmc_claim_host(card
->host
, ctx
, NULL
);
907 EXPORT_SYMBOL(mmc_get_card
);
910 * This is a helper function, which releases the host and drops the runtime
911 * pm reference for the card device.
913 void mmc_put_card(struct mmc_card
*card
, struct mmc_ctx
*ctx
)
915 struct mmc_host
*host
= card
->host
;
917 WARN_ON(ctx
&& host
->claimer
!= ctx
);
919 mmc_release_host(host
);
920 pm_runtime_mark_last_busy(&card
->dev
);
921 pm_runtime_put_autosuspend(&card
->dev
);
923 EXPORT_SYMBOL(mmc_put_card
);
926 * Internal function that does the actual ios call to the host driver,
927 * optionally printing some debug output.
929 static inline void mmc_set_ios(struct mmc_host
*host
)
931 struct mmc_ios
*ios
= &host
->ios
;
933 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
934 "width %u timing %u\n",
935 mmc_hostname(host
), ios
->clock
, ios
->bus_mode
,
936 ios
->power_mode
, ios
->chip_select
, ios
->vdd
,
937 1 << ios
->bus_width
, ios
->timing
);
939 host
->ops
->set_ios(host
, ios
);
943 * Control chip select pin on a host.
945 void mmc_set_chip_select(struct mmc_host
*host
, int mode
)
947 host
->ios
.chip_select
= mode
;
952 * Sets the host clock to the highest possible frequency that
955 void mmc_set_clock(struct mmc_host
*host
, unsigned int hz
)
957 WARN_ON(hz
&& hz
< host
->f_min
);
959 if (hz
> host
->f_max
)
962 host
->ios
.clock
= hz
;
966 int mmc_execute_tuning(struct mmc_card
*card
)
968 struct mmc_host
*host
= card
->host
;
972 if (!host
->ops
->execute_tuning
)
976 host
->cqe_ops
->cqe_off(host
);
978 if (mmc_card_mmc(card
))
979 opcode
= MMC_SEND_TUNING_BLOCK_HS200
;
981 opcode
= MMC_SEND_TUNING_BLOCK
;
983 err
= host
->ops
->execute_tuning(host
, opcode
);
986 pr_err("%s: tuning execution failed: %d\n",
987 mmc_hostname(host
), err
);
989 mmc_retune_enable(host
);
995 * Change the bus mode (open drain/push-pull) of a host.
997 void mmc_set_bus_mode(struct mmc_host
*host
, unsigned int mode
)
999 host
->ios
.bus_mode
= mode
;
1004 * Change data bus width of a host.
1006 void mmc_set_bus_width(struct mmc_host
*host
, unsigned int width
)
1008 host
->ios
.bus_width
= width
;
1013 * Set initial state after a power cycle or a hw_reset.
1015 void mmc_set_initial_state(struct mmc_host
*host
)
1018 host
->cqe_ops
->cqe_off(host
);
1020 mmc_retune_disable(host
);
1022 if (mmc_host_is_spi(host
))
1023 host
->ios
.chip_select
= MMC_CS_HIGH
;
1025 host
->ios
.chip_select
= MMC_CS_DONTCARE
;
1026 host
->ios
.bus_mode
= MMC_BUSMODE_PUSHPULL
;
1027 host
->ios
.bus_width
= MMC_BUS_WIDTH_1
;
1028 host
->ios
.timing
= MMC_TIMING_LEGACY
;
1029 host
->ios
.drv_type
= 0;
1030 host
->ios
.enhanced_strobe
= false;
1033 * Make sure we are in non-enhanced strobe mode before we
1034 * actually enable it in ext_csd.
1036 if ((host
->caps2
& MMC_CAP2_HS400_ES
) &&
1037 host
->ops
->hs400_enhanced_strobe
)
1038 host
->ops
->hs400_enhanced_strobe(host
, &host
->ios
);
1044 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1045 * @vdd: voltage (mV)
1046 * @low_bits: prefer low bits in boundary cases
1048 * This function returns the OCR bit number according to the provided @vdd
1049 * value. If conversion is not possible a negative errno value returned.
1051 * Depending on the @low_bits flag the function prefers low or high OCR bits
1052 * on boundary voltages. For example,
1053 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1054 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1056 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1058 static int mmc_vdd_to_ocrbitnum(int vdd
, bool low_bits
)
1060 const int max_bit
= ilog2(MMC_VDD_35_36
);
1063 if (vdd
< 1650 || vdd
> 3600)
1066 if (vdd
>= 1650 && vdd
<= 1950)
1067 return ilog2(MMC_VDD_165_195
);
1072 /* Base 2000 mV, step 100 mV, bit's base 8. */
1073 bit
= (vdd
- 2000) / 100 + 8;
1080 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1081 * @vdd_min: minimum voltage value (mV)
1082 * @vdd_max: maximum voltage value (mV)
1084 * This function returns the OCR mask bits according to the provided @vdd_min
1085 * and @vdd_max values. If conversion is not possible the function returns 0.
1087 * Notes wrt boundary cases:
1088 * This function sets the OCR bits for all boundary voltages, for example
1089 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1090 * MMC_VDD_34_35 mask.
1092 u32
mmc_vddrange_to_ocrmask(int vdd_min
, int vdd_max
)
1096 if (vdd_max
< vdd_min
)
1099 /* Prefer high bits for the boundary vdd_max values. */
1100 vdd_max
= mmc_vdd_to_ocrbitnum(vdd_max
, false);
1104 /* Prefer low bits for the boundary vdd_min values. */
1105 vdd_min
= mmc_vdd_to_ocrbitnum(vdd_min
, true);
1109 /* Fill the mask, from max bit to min bit. */
1110 while (vdd_max
>= vdd_min
)
1111 mask
|= 1 << vdd_max
--;
1115 EXPORT_SYMBOL(mmc_vddrange_to_ocrmask
);
1120 * mmc_of_parse_voltage - return mask of supported voltages
1121 * @np: The device node need to be parsed.
1122 * @mask: mask of voltages available for MMC/SD/SDIO
1124 * Parse the "voltage-ranges" DT property, returning zero if it is not
1125 * found, negative errno if the voltage-range specification is invalid,
1126 * or one if the voltage-range is specified and successfully parsed.
1128 int mmc_of_parse_voltage(struct device_node
*np
, u32
*mask
)
1130 const u32
*voltage_ranges
;
1133 voltage_ranges
= of_get_property(np
, "voltage-ranges", &num_ranges
);
1134 num_ranges
= num_ranges
/ sizeof(*voltage_ranges
) / 2;
1135 if (!voltage_ranges
) {
1136 pr_debug("%pOF: voltage-ranges unspecified\n", np
);
1140 pr_err("%pOF: voltage-ranges empty\n", np
);
1144 for (i
= 0; i
< num_ranges
; i
++) {
1145 const int j
= i
* 2;
1148 ocr_mask
= mmc_vddrange_to_ocrmask(
1149 be32_to_cpu(voltage_ranges
[j
]),
1150 be32_to_cpu(voltage_ranges
[j
+ 1]));
1152 pr_err("%pOF: voltage-range #%d is invalid\n",
1161 EXPORT_SYMBOL(mmc_of_parse_voltage
);
1163 #endif /* CONFIG_OF */
1165 static int mmc_of_get_func_num(struct device_node
*node
)
1170 ret
= of_property_read_u32(node
, "reg", ®
);
1177 struct device_node
*mmc_of_find_child_device(struct mmc_host
*host
,
1180 struct device_node
*node
;
1182 if (!host
->parent
|| !host
->parent
->of_node
)
1185 for_each_child_of_node(host
->parent
->of_node
, node
) {
1186 if (mmc_of_get_func_num(node
) == func_num
)
1193 #ifdef CONFIG_REGULATOR
1196 * mmc_ocrbitnum_to_vdd - Convert a OCR bit number to its voltage
1197 * @vdd_bit: OCR bit number
1198 * @min_uV: minimum voltage value (mV)
1199 * @max_uV: maximum voltage value (mV)
1201 * This function returns the voltage range according to the provided OCR
1202 * bit number. If conversion is not possible a negative errno value returned.
1204 static int mmc_ocrbitnum_to_vdd(int vdd_bit
, int *min_uV
, int *max_uV
)
1212 * REVISIT mmc_vddrange_to_ocrmask() may have set some
1213 * bits this regulator doesn't quite support ... don't
1214 * be too picky, most cards and regulators are OK with
1215 * a 0.1V range goof (it's a small error percentage).
1217 tmp
= vdd_bit
- ilog2(MMC_VDD_165_195
);
1219 *min_uV
= 1650 * 1000;
1220 *max_uV
= 1950 * 1000;
1222 *min_uV
= 1900 * 1000 + tmp
* 100 * 1000;
1223 *max_uV
= *min_uV
+ 100 * 1000;
1230 * mmc_regulator_get_ocrmask - return mask of supported voltages
1231 * @supply: regulator to use
1233 * This returns either a negative errno, or a mask of voltages that
1234 * can be provided to MMC/SD/SDIO devices using the specified voltage
1235 * regulator. This would normally be called before registering the
1238 int mmc_regulator_get_ocrmask(struct regulator
*supply
)
1246 count
= regulator_count_voltages(supply
);
1250 for (i
= 0; i
< count
; i
++) {
1251 vdd_uV
= regulator_list_voltage(supply
, i
);
1255 vdd_mV
= vdd_uV
/ 1000;
1256 result
|= mmc_vddrange_to_ocrmask(vdd_mV
, vdd_mV
);
1260 vdd_uV
= regulator_get_voltage(supply
);
1264 vdd_mV
= vdd_uV
/ 1000;
1265 result
= mmc_vddrange_to_ocrmask(vdd_mV
, vdd_mV
);
1270 EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask
);
1273 * mmc_regulator_set_ocr - set regulator to match host->ios voltage
1274 * @mmc: the host to regulate
1275 * @supply: regulator to use
1276 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
1278 * Returns zero on success, else negative errno.
1280 * MMC host drivers may use this to enable or disable a regulator using
1281 * a particular supply voltage. This would normally be called from the
1284 int mmc_regulator_set_ocr(struct mmc_host
*mmc
,
1285 struct regulator
*supply
,
1286 unsigned short vdd_bit
)
1292 mmc_ocrbitnum_to_vdd(vdd_bit
, &min_uV
, &max_uV
);
1294 result
= regulator_set_voltage(supply
, min_uV
, max_uV
);
1295 if (result
== 0 && !mmc
->regulator_enabled
) {
1296 result
= regulator_enable(supply
);
1298 mmc
->regulator_enabled
= true;
1300 } else if (mmc
->regulator_enabled
) {
1301 result
= regulator_disable(supply
);
1303 mmc
->regulator_enabled
= false;
1307 dev_err(mmc_dev(mmc
),
1308 "could not set regulator OCR (%d)\n", result
);
1311 EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr
);
1313 static int mmc_regulator_set_voltage_if_supported(struct regulator
*regulator
,
1314 int min_uV
, int target_uV
,
1318 * Check if supported first to avoid errors since we may try several
1319 * signal levels during power up and don't want to show errors.
1321 if (!regulator_is_supported_voltage(regulator
, min_uV
, max_uV
))
1324 return regulator_set_voltage_triplet(regulator
, min_uV
, target_uV
,
1329 * mmc_regulator_set_vqmmc - Set VQMMC as per the ios
1331 * For 3.3V signaling, we try to match VQMMC to VMMC as closely as possible.
1332 * That will match the behavior of old boards where VQMMC and VMMC were supplied
1333 * by the same supply. The Bus Operating conditions for 3.3V signaling in the
1334 * SD card spec also define VQMMC in terms of VMMC.
1335 * If this is not possible we'll try the full 2.7-3.6V of the spec.
1337 * For 1.2V and 1.8V signaling we'll try to get as close as possible to the
1338 * requested voltage. This is definitely a good idea for UHS where there's a
1339 * separate regulator on the card that's trying to make 1.8V and it's best if
1342 * This function is expected to be used by a controller's
1343 * start_signal_voltage_switch() function.
1345 int mmc_regulator_set_vqmmc(struct mmc_host
*mmc
, struct mmc_ios
*ios
)
1347 struct device
*dev
= mmc_dev(mmc
);
1348 int ret
, volt
, min_uV
, max_uV
;
1350 /* If no vqmmc supply then we can't change the voltage */
1351 if (IS_ERR(mmc
->supply
.vqmmc
))
1354 switch (ios
->signal_voltage
) {
1355 case MMC_SIGNAL_VOLTAGE_120
:
1356 return mmc_regulator_set_voltage_if_supported(mmc
->supply
.vqmmc
,
1357 1100000, 1200000, 1300000);
1358 case MMC_SIGNAL_VOLTAGE_180
:
1359 return mmc_regulator_set_voltage_if_supported(mmc
->supply
.vqmmc
,
1360 1700000, 1800000, 1950000);
1361 case MMC_SIGNAL_VOLTAGE_330
:
1362 ret
= mmc_ocrbitnum_to_vdd(mmc
->ios
.vdd
, &volt
, &max_uV
);
1366 dev_dbg(dev
, "%s: found vmmc voltage range of %d-%duV\n",
1367 __func__
, volt
, max_uV
);
1369 min_uV
= max(volt
- 300000, 2700000);
1370 max_uV
= min(max_uV
+ 200000, 3600000);
1373 * Due to a limitation in the current implementation of
1374 * regulator_set_voltage_triplet() which is taking the lowest
1375 * voltage possible if below the target, search for a suitable
1376 * voltage in two steps and try to stay close to vmmc
1377 * with a 0.3V tolerance at first.
1379 if (!mmc_regulator_set_voltage_if_supported(mmc
->supply
.vqmmc
,
1380 min_uV
, volt
, max_uV
))
1383 return mmc_regulator_set_voltage_if_supported(mmc
->supply
.vqmmc
,
1384 2700000, volt
, 3600000);
1389 EXPORT_SYMBOL_GPL(mmc_regulator_set_vqmmc
);
1391 #endif /* CONFIG_REGULATOR */
1394 * mmc_regulator_get_supply - try to get VMMC and VQMMC regulators for a host
1395 * @mmc: the host to regulate
1397 * Returns 0 or errno. errno should be handled, it is either a critical error
1398 * or -EPROBE_DEFER. 0 means no critical error but it does not mean all
1399 * regulators have been found because they all are optional. If you require
1400 * certain regulators, you need to check separately in your driver if they got
1401 * populated after calling this function.
1403 int mmc_regulator_get_supply(struct mmc_host
*mmc
)
1405 struct device
*dev
= mmc_dev(mmc
);
1408 mmc
->supply
.vmmc
= devm_regulator_get_optional(dev
, "vmmc");
1409 mmc
->supply
.vqmmc
= devm_regulator_get_optional(dev
, "vqmmc");
1411 if (IS_ERR(mmc
->supply
.vmmc
)) {
1412 if (PTR_ERR(mmc
->supply
.vmmc
) == -EPROBE_DEFER
)
1413 return -EPROBE_DEFER
;
1414 dev_dbg(dev
, "No vmmc regulator found\n");
1416 ret
= mmc_regulator_get_ocrmask(mmc
->supply
.vmmc
);
1418 mmc
->ocr_avail
= ret
;
1420 dev_warn(dev
, "Failed getting OCR mask: %d\n", ret
);
1423 if (IS_ERR(mmc
->supply
.vqmmc
)) {
1424 if (PTR_ERR(mmc
->supply
.vqmmc
) == -EPROBE_DEFER
)
1425 return -EPROBE_DEFER
;
1426 dev_dbg(dev
, "No vqmmc regulator found\n");
1431 EXPORT_SYMBOL_GPL(mmc_regulator_get_supply
);
1434 * Mask off any voltages we don't support and select
1435 * the lowest voltage
1437 u32
mmc_select_voltage(struct mmc_host
*host
, u32 ocr
)
1442 * Sanity check the voltages that the card claims to
1446 dev_warn(mmc_dev(host
),
1447 "card claims to support voltages below defined range\n");
1451 ocr
&= host
->ocr_avail
;
1453 dev_warn(mmc_dev(host
), "no support for card's volts\n");
1457 if (host
->caps2
& MMC_CAP2_FULL_PWR_CYCLE
) {
1460 mmc_power_cycle(host
, ocr
);
1464 if (bit
!= host
->ios
.vdd
)
1465 dev_warn(mmc_dev(host
), "exceeding card's volts\n");
1471 int mmc_set_signal_voltage(struct mmc_host
*host
, int signal_voltage
)
1474 int old_signal_voltage
= host
->ios
.signal_voltage
;
1476 host
->ios
.signal_voltage
= signal_voltage
;
1477 if (host
->ops
->start_signal_voltage_switch
)
1478 err
= host
->ops
->start_signal_voltage_switch(host
, &host
->ios
);
1481 host
->ios
.signal_voltage
= old_signal_voltage
;
1487 int mmc_host_set_uhs_voltage(struct mmc_host
*host
)
1492 * During a signal voltage level switch, the clock must be gated
1493 * for 5 ms according to the SD spec
1495 clock
= host
->ios
.clock
;
1496 host
->ios
.clock
= 0;
1499 if (mmc_set_signal_voltage(host
, MMC_SIGNAL_VOLTAGE_180
))
1502 /* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1504 host
->ios
.clock
= clock
;
1510 int mmc_set_uhs_voltage(struct mmc_host
*host
, u32 ocr
)
1512 struct mmc_command cmd
= {};
1516 * If we cannot switch voltages, return failure so the caller
1517 * can continue without UHS mode
1519 if (!host
->ops
->start_signal_voltage_switch
)
1521 if (!host
->ops
->card_busy
)
1522 pr_warn("%s: cannot verify signal voltage switch\n",
1523 mmc_hostname(host
));
1525 cmd
.opcode
= SD_SWITCH_VOLTAGE
;
1527 cmd
.flags
= MMC_RSP_R1
| MMC_CMD_AC
;
1529 err
= mmc_wait_for_cmd(host
, &cmd
, 0);
1533 if (!mmc_host_is_spi(host
) && (cmd
.resp
[0] & R1_ERROR
))
1537 * The card should drive cmd and dat[0:3] low immediately
1538 * after the response of cmd11, but wait 1 ms to be sure
1541 if (host
->ops
->card_busy
&& !host
->ops
->card_busy(host
)) {
1546 if (mmc_host_set_uhs_voltage(host
)) {
1548 * Voltages may not have been switched, but we've already
1549 * sent CMD11, so a power cycle is required anyway
1555 /* Wait for at least 1 ms according to spec */
1559 * Failure to switch is indicated by the card holding
1562 if (host
->ops
->card_busy
&& host
->ops
->card_busy(host
))
1567 pr_debug("%s: Signal voltage switch failed, "
1568 "power cycling card\n", mmc_hostname(host
));
1569 mmc_power_cycle(host
, ocr
);
1576 * Select timing parameters for host.
1578 void mmc_set_timing(struct mmc_host
*host
, unsigned int timing
)
1580 host
->ios
.timing
= timing
;
1585 * Select appropriate driver type for host.
1587 void mmc_set_driver_type(struct mmc_host
*host
, unsigned int drv_type
)
1589 host
->ios
.drv_type
= drv_type
;
1593 int mmc_select_drive_strength(struct mmc_card
*card
, unsigned int max_dtr
,
1594 int card_drv_type
, int *drv_type
)
1596 struct mmc_host
*host
= card
->host
;
1597 int host_drv_type
= SD_DRIVER_TYPE_B
;
1601 if (!host
->ops
->select_drive_strength
)
1604 /* Use SD definition of driver strength for hosts */
1605 if (host
->caps
& MMC_CAP_DRIVER_TYPE_A
)
1606 host_drv_type
|= SD_DRIVER_TYPE_A
;
1608 if (host
->caps
& MMC_CAP_DRIVER_TYPE_C
)
1609 host_drv_type
|= SD_DRIVER_TYPE_C
;
1611 if (host
->caps
& MMC_CAP_DRIVER_TYPE_D
)
1612 host_drv_type
|= SD_DRIVER_TYPE_D
;
1615 * The drive strength that the hardware can support
1616 * depends on the board design. Pass the appropriate
1617 * information and let the hardware specific code
1618 * return what is possible given the options
1620 return host
->ops
->select_drive_strength(card
, max_dtr
,
1627 * Apply power to the MMC stack. This is a two-stage process.
1628 * First, we enable power to the card without the clock running.
1629 * We then wait a bit for the power to stabilise. Finally,
1630 * enable the bus drivers and clock to the card.
1632 * We must _NOT_ enable the clock prior to power stablising.
1634 * If a host does all the power sequencing itself, ignore the
1635 * initial MMC_POWER_UP stage.
1637 void mmc_power_up(struct mmc_host
*host
, u32 ocr
)
1639 if (host
->ios
.power_mode
== MMC_POWER_ON
)
1642 mmc_pwrseq_pre_power_on(host
);
1644 host
->ios
.vdd
= fls(ocr
) - 1;
1645 host
->ios
.power_mode
= MMC_POWER_UP
;
1646 /* Set initial state and call mmc_set_ios */
1647 mmc_set_initial_state(host
);
1649 /* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1650 if (!mmc_set_signal_voltage(host
, MMC_SIGNAL_VOLTAGE_330
))
1651 dev_dbg(mmc_dev(host
), "Initial signal voltage of 3.3v\n");
1652 else if (!mmc_set_signal_voltage(host
, MMC_SIGNAL_VOLTAGE_180
))
1653 dev_dbg(mmc_dev(host
), "Initial signal voltage of 1.8v\n");
1654 else if (!mmc_set_signal_voltage(host
, MMC_SIGNAL_VOLTAGE_120
))
1655 dev_dbg(mmc_dev(host
), "Initial signal voltage of 1.2v\n");
1658 * This delay should be sufficient to allow the power supply
1659 * to reach the minimum voltage.
1663 mmc_pwrseq_post_power_on(host
);
1665 host
->ios
.clock
= host
->f_init
;
1667 host
->ios
.power_mode
= MMC_POWER_ON
;
1671 * This delay must be at least 74 clock sizes, or 1 ms, or the
1672 * time required to reach a stable voltage.
1677 void mmc_power_off(struct mmc_host
*host
)
1679 if (host
->ios
.power_mode
== MMC_POWER_OFF
)
1682 mmc_pwrseq_power_off(host
);
1684 host
->ios
.clock
= 0;
1687 host
->ios
.power_mode
= MMC_POWER_OFF
;
1688 /* Set initial state and call mmc_set_ios */
1689 mmc_set_initial_state(host
);
1692 * Some configurations, such as the 802.11 SDIO card in the OLPC
1693 * XO-1.5, require a short delay after poweroff before the card
1694 * can be successfully turned on again.
1699 void mmc_power_cycle(struct mmc_host
*host
, u32 ocr
)
1701 mmc_power_off(host
);
1702 /* Wait at least 1 ms according to SD spec */
1704 mmc_power_up(host
, ocr
);
1708 * Cleanup when the last reference to the bus operator is dropped.
1710 static void __mmc_release_bus(struct mmc_host
*host
)
1712 WARN_ON(!host
->bus_dead
);
1714 host
->bus_ops
= NULL
;
1718 * Increase reference count of bus operator
1720 static inline void mmc_bus_get(struct mmc_host
*host
)
1722 unsigned long flags
;
1724 spin_lock_irqsave(&host
->lock
, flags
);
1726 spin_unlock_irqrestore(&host
->lock
, flags
);
1730 * Decrease reference count of bus operator and free it if
1731 * it is the last reference.
1733 static inline void mmc_bus_put(struct mmc_host
*host
)
1735 unsigned long flags
;
1737 spin_lock_irqsave(&host
->lock
, flags
);
1739 if ((host
->bus_refs
== 0) && host
->bus_ops
)
1740 __mmc_release_bus(host
);
1741 spin_unlock_irqrestore(&host
->lock
, flags
);
1745 * Assign a mmc bus handler to a host. Only one bus handler may control a
1746 * host at any given time.
1748 void mmc_attach_bus(struct mmc_host
*host
, const struct mmc_bus_ops
*ops
)
1750 unsigned long flags
;
1752 WARN_ON(!host
->claimed
);
1754 spin_lock_irqsave(&host
->lock
, flags
);
1756 WARN_ON(host
->bus_ops
);
1757 WARN_ON(host
->bus_refs
);
1759 host
->bus_ops
= ops
;
1763 spin_unlock_irqrestore(&host
->lock
, flags
);
1767 * Remove the current bus handler from a host.
1769 void mmc_detach_bus(struct mmc_host
*host
)
1771 unsigned long flags
;
1773 WARN_ON(!host
->claimed
);
1774 WARN_ON(!host
->bus_ops
);
1776 spin_lock_irqsave(&host
->lock
, flags
);
1780 spin_unlock_irqrestore(&host
->lock
, flags
);
1785 static void _mmc_detect_change(struct mmc_host
*host
, unsigned long delay
,
1789 * If the device is configured as wakeup, we prevent a new sleep for
1790 * 5 s to give provision for user space to consume the event.
1792 if (cd_irq
&& !(host
->caps
& MMC_CAP_NEEDS_POLL
) &&
1793 device_can_wakeup(mmc_dev(host
)))
1794 pm_wakeup_event(mmc_dev(host
), 5000);
1796 host
->detect_change
= 1;
1797 mmc_schedule_delayed_work(&host
->detect
, delay
);
1801 * mmc_detect_change - process change of state on a MMC socket
1802 * @host: host which changed state.
1803 * @delay: optional delay to wait before detection (jiffies)
1805 * MMC drivers should call this when they detect a card has been
1806 * inserted or removed. The MMC layer will confirm that any
1807 * present card is still functional, and initialize any newly
1810 void mmc_detect_change(struct mmc_host
*host
, unsigned long delay
)
1812 _mmc_detect_change(host
, delay
, true);
1814 EXPORT_SYMBOL(mmc_detect_change
);
1816 void mmc_init_erase(struct mmc_card
*card
)
1820 if (is_power_of_2(card
->erase_size
))
1821 card
->erase_shift
= ffs(card
->erase_size
) - 1;
1823 card
->erase_shift
= 0;
1826 * It is possible to erase an arbitrarily large area of an SD or MMC
1827 * card. That is not desirable because it can take a long time
1828 * (minutes) potentially delaying more important I/O, and also the
1829 * timeout calculations become increasingly hugely over-estimated.
1830 * Consequently, 'pref_erase' is defined as a guide to limit erases
1831 * to that size and alignment.
1833 * For SD cards that define Allocation Unit size, limit erases to one
1834 * Allocation Unit at a time.
1835 * For MMC, have a stab at ai good value and for modern cards it will
1836 * end up being 4MiB. Note that if the value is too small, it can end
1837 * up taking longer to erase. Also note, erase_size is already set to
1838 * High Capacity Erase Size if available when this function is called.
1840 if (mmc_card_sd(card
) && card
->ssr
.au
) {
1841 card
->pref_erase
= card
->ssr
.au
;
1842 card
->erase_shift
= ffs(card
->ssr
.au
) - 1;
1843 } else if (card
->erase_size
) {
1844 sz
= (card
->csd
.capacity
<< (card
->csd
.read_blkbits
- 9)) >> 11;
1846 card
->pref_erase
= 512 * 1024 / 512;
1848 card
->pref_erase
= 1024 * 1024 / 512;
1850 card
->pref_erase
= 2 * 1024 * 1024 / 512;
1852 card
->pref_erase
= 4 * 1024 * 1024 / 512;
1853 if (card
->pref_erase
< card
->erase_size
)
1854 card
->pref_erase
= card
->erase_size
;
1856 sz
= card
->pref_erase
% card
->erase_size
;
1858 card
->pref_erase
+= card
->erase_size
- sz
;
1861 card
->pref_erase
= 0;
1864 static unsigned int mmc_mmc_erase_timeout(struct mmc_card
*card
,
1865 unsigned int arg
, unsigned int qty
)
1867 unsigned int erase_timeout
;
1869 if (arg
== MMC_DISCARD_ARG
||
1870 (arg
== MMC_TRIM_ARG
&& card
->ext_csd
.rev
>= 6)) {
1871 erase_timeout
= card
->ext_csd
.trim_timeout
;
1872 } else if (card
->ext_csd
.erase_group_def
& 1) {
1873 /* High Capacity Erase Group Size uses HC timeouts */
1874 if (arg
== MMC_TRIM_ARG
)
1875 erase_timeout
= card
->ext_csd
.trim_timeout
;
1877 erase_timeout
= card
->ext_csd
.hc_erase_timeout
;
1879 /* CSD Erase Group Size uses write timeout */
1880 unsigned int mult
= (10 << card
->csd
.r2w_factor
);
1881 unsigned int timeout_clks
= card
->csd
.taac_clks
* mult
;
1882 unsigned int timeout_us
;
1884 /* Avoid overflow: e.g. taac_ns=80000000 mult=1280 */
1885 if (card
->csd
.taac_ns
< 1000000)
1886 timeout_us
= (card
->csd
.taac_ns
* mult
) / 1000;
1888 timeout_us
= (card
->csd
.taac_ns
/ 1000) * mult
;
1891 * ios.clock is only a target. The real clock rate might be
1892 * less but not that much less, so fudge it by multiplying by 2.
1895 timeout_us
+= (timeout_clks
* 1000) /
1896 (card
->host
->ios
.clock
/ 1000);
1898 erase_timeout
= timeout_us
/ 1000;
1901 * Theoretically, the calculation could underflow so round up
1902 * to 1ms in that case.
1908 /* Multiplier for secure operations */
1909 if (arg
& MMC_SECURE_ARGS
) {
1910 if (arg
== MMC_SECURE_ERASE_ARG
)
1911 erase_timeout
*= card
->ext_csd
.sec_erase_mult
;
1913 erase_timeout
*= card
->ext_csd
.sec_trim_mult
;
1916 erase_timeout
*= qty
;
1919 * Ensure at least a 1 second timeout for SPI as per
1920 * 'mmc_set_data_timeout()'
1922 if (mmc_host_is_spi(card
->host
) && erase_timeout
< 1000)
1923 erase_timeout
= 1000;
1925 return erase_timeout
;
1928 static unsigned int mmc_sd_erase_timeout(struct mmc_card
*card
,
1932 unsigned int erase_timeout
;
1934 if (card
->ssr
.erase_timeout
) {
1935 /* Erase timeout specified in SD Status Register (SSR) */
1936 erase_timeout
= card
->ssr
.erase_timeout
* qty
+
1937 card
->ssr
.erase_offset
;
1940 * Erase timeout not specified in SD Status Register (SSR) so
1941 * use 250ms per write block.
1943 erase_timeout
= 250 * qty
;
1946 /* Must not be less than 1 second */
1947 if (erase_timeout
< 1000)
1948 erase_timeout
= 1000;
1950 return erase_timeout
;
1953 static unsigned int mmc_erase_timeout(struct mmc_card
*card
,
1957 if (mmc_card_sd(card
))
1958 return mmc_sd_erase_timeout(card
, arg
, qty
);
1960 return mmc_mmc_erase_timeout(card
, arg
, qty
);
1963 static int mmc_do_erase(struct mmc_card
*card
, unsigned int from
,
1964 unsigned int to
, unsigned int arg
)
1966 struct mmc_command cmd
= {};
1967 unsigned int qty
= 0, busy_timeout
= 0;
1968 bool use_r1b_resp
= false;
1969 unsigned long timeout
;
1972 mmc_retune_hold(card
->host
);
1975 * qty is used to calculate the erase timeout which depends on how many
1976 * erase groups (or allocation units in SD terminology) are affected.
1977 * We count erasing part of an erase group as one erase group.
1978 * For SD, the allocation units are always a power of 2. For MMC, the
1979 * erase group size is almost certainly also power of 2, but it does not
1980 * seem to insist on that in the JEDEC standard, so we fall back to
1981 * division in that case. SD may not specify an allocation unit size,
1982 * in which case the timeout is based on the number of write blocks.
1984 * Note that the timeout for secure trim 2 will only be correct if the
1985 * number of erase groups specified is the same as the total of all
1986 * preceding secure trim 1 commands. Since the power may have been
1987 * lost since the secure trim 1 commands occurred, it is generally
1988 * impossible to calculate the secure trim 2 timeout correctly.
1990 if (card
->erase_shift
)
1991 qty
+= ((to
>> card
->erase_shift
) -
1992 (from
>> card
->erase_shift
)) + 1;
1993 else if (mmc_card_sd(card
))
1994 qty
+= to
- from
+ 1;
1996 qty
+= ((to
/ card
->erase_size
) -
1997 (from
/ card
->erase_size
)) + 1;
1999 if (!mmc_card_blockaddr(card
)) {
2004 if (mmc_card_sd(card
))
2005 cmd
.opcode
= SD_ERASE_WR_BLK_START
;
2007 cmd
.opcode
= MMC_ERASE_GROUP_START
;
2009 cmd
.flags
= MMC_RSP_SPI_R1
| MMC_RSP_R1
| MMC_CMD_AC
;
2010 err
= mmc_wait_for_cmd(card
->host
, &cmd
, 0);
2012 pr_err("mmc_erase: group start error %d, "
2013 "status %#x\n", err
, cmd
.resp
[0]);
2018 memset(&cmd
, 0, sizeof(struct mmc_command
));
2019 if (mmc_card_sd(card
))
2020 cmd
.opcode
= SD_ERASE_WR_BLK_END
;
2022 cmd
.opcode
= MMC_ERASE_GROUP_END
;
2024 cmd
.flags
= MMC_RSP_SPI_R1
| MMC_RSP_R1
| MMC_CMD_AC
;
2025 err
= mmc_wait_for_cmd(card
->host
, &cmd
, 0);
2027 pr_err("mmc_erase: group end error %d, status %#x\n",
2033 memset(&cmd
, 0, sizeof(struct mmc_command
));
2034 cmd
.opcode
= MMC_ERASE
;
2036 busy_timeout
= mmc_erase_timeout(card
, arg
, qty
);
2038 * If the host controller supports busy signalling and the timeout for
2039 * the erase operation does not exceed the max_busy_timeout, we should
2040 * use R1B response. Or we need to prevent the host from doing hw busy
2041 * detection, which is done by converting to a R1 response instead.
2043 if (card
->host
->max_busy_timeout
&&
2044 busy_timeout
> card
->host
->max_busy_timeout
) {
2045 cmd
.flags
= MMC_RSP_SPI_R1
| MMC_RSP_R1
| MMC_CMD_AC
;
2047 cmd
.flags
= MMC_RSP_SPI_R1B
| MMC_RSP_R1B
| MMC_CMD_AC
;
2048 cmd
.busy_timeout
= busy_timeout
;
2049 use_r1b_resp
= true;
2052 err
= mmc_wait_for_cmd(card
->host
, &cmd
, 0);
2054 pr_err("mmc_erase: erase error %d, status %#x\n",
2060 if (mmc_host_is_spi(card
->host
))
2064 * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling
2067 if ((card
->host
->caps
& MMC_CAP_WAIT_WHILE_BUSY
) && use_r1b_resp
)
2070 timeout
= jiffies
+ msecs_to_jiffies(busy_timeout
);
2072 memset(&cmd
, 0, sizeof(struct mmc_command
));
2073 cmd
.opcode
= MMC_SEND_STATUS
;
2074 cmd
.arg
= card
->rca
<< 16;
2075 cmd
.flags
= MMC_RSP_R1
| MMC_CMD_AC
;
2076 /* Do not retry else we can't see errors */
2077 err
= mmc_wait_for_cmd(card
->host
, &cmd
, 0);
2078 if (err
|| (cmd
.resp
[0] & 0xFDF92000)) {
2079 pr_err("error %d requesting status %#x\n",
2085 /* Timeout if the device never becomes ready for data and
2086 * never leaves the program state.
2088 if (time_after(jiffies
, timeout
)) {
2089 pr_err("%s: Card stuck in programming state! %s\n",
2090 mmc_hostname(card
->host
), __func__
);
2095 } while (!(cmd
.resp
[0] & R1_READY_FOR_DATA
) ||
2096 (R1_CURRENT_STATE(cmd
.resp
[0]) == R1_STATE_PRG
));
2098 mmc_retune_release(card
->host
);
2102 static unsigned int mmc_align_erase_size(struct mmc_card
*card
,
2107 unsigned int from_new
= *from
, nr_new
= nr
, rem
;
2110 * When the 'card->erase_size' is power of 2, we can use round_up/down()
2111 * to align the erase size efficiently.
2113 if (is_power_of_2(card
->erase_size
)) {
2114 unsigned int temp
= from_new
;
2116 from_new
= round_up(temp
, card
->erase_size
);
2117 rem
= from_new
- temp
;
2124 nr_new
= round_down(nr_new
, card
->erase_size
);
2126 rem
= from_new
% card
->erase_size
;
2128 rem
= card
->erase_size
- rem
;
2136 rem
= nr_new
% card
->erase_size
;
2144 *to
= from_new
+ nr_new
;
2151 * mmc_erase - erase sectors.
2152 * @card: card to erase
2153 * @from: first sector to erase
2154 * @nr: number of sectors to erase
2155 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
2157 * Caller must claim host before calling this function.
2159 int mmc_erase(struct mmc_card
*card
, unsigned int from
, unsigned int nr
,
2162 unsigned int rem
, to
= from
+ nr
;
2165 if (!(card
->host
->caps
& MMC_CAP_ERASE
) ||
2166 !(card
->csd
.cmdclass
& CCC_ERASE
))
2169 if (!card
->erase_size
)
2172 if (mmc_card_sd(card
) && arg
!= MMC_ERASE_ARG
)
2175 if ((arg
& MMC_SECURE_ARGS
) &&
2176 !(card
->ext_csd
.sec_feature_support
& EXT_CSD_SEC_ER_EN
))
2179 if ((arg
& MMC_TRIM_ARGS
) &&
2180 !(card
->ext_csd
.sec_feature_support
& EXT_CSD_SEC_GB_CL_EN
))
2183 if (arg
== MMC_SECURE_ERASE_ARG
) {
2184 if (from
% card
->erase_size
|| nr
% card
->erase_size
)
2188 if (arg
== MMC_ERASE_ARG
)
2189 nr
= mmc_align_erase_size(card
, &from
, &to
, nr
);
2197 /* 'from' and 'to' are inclusive */
2201 * Special case where only one erase-group fits in the timeout budget:
2202 * If the region crosses an erase-group boundary on this particular
2203 * case, we will be trimming more than one erase-group which, does not
2204 * fit in the timeout budget of the controller, so we need to split it
2205 * and call mmc_do_erase() twice if necessary. This special case is
2206 * identified by the card->eg_boundary flag.
2208 rem
= card
->erase_size
- (from
% card
->erase_size
);
2209 if ((arg
& MMC_TRIM_ARGS
) && (card
->eg_boundary
) && (nr
> rem
)) {
2210 err
= mmc_do_erase(card
, from
, from
+ rem
- 1, arg
);
2212 if ((err
) || (to
<= from
))
2216 return mmc_do_erase(card
, from
, to
, arg
);
2218 EXPORT_SYMBOL(mmc_erase
);
2220 int mmc_can_erase(struct mmc_card
*card
)
2222 if ((card
->host
->caps
& MMC_CAP_ERASE
) &&
2223 (card
->csd
.cmdclass
& CCC_ERASE
) && card
->erase_size
)
2227 EXPORT_SYMBOL(mmc_can_erase
);
2229 int mmc_can_trim(struct mmc_card
*card
)
2231 if ((card
->ext_csd
.sec_feature_support
& EXT_CSD_SEC_GB_CL_EN
) &&
2232 (!(card
->quirks
& MMC_QUIRK_TRIM_BROKEN
)))
2236 EXPORT_SYMBOL(mmc_can_trim
);
2238 int mmc_can_discard(struct mmc_card
*card
)
2241 * As there's no way to detect the discard support bit at v4.5
2242 * use the s/w feature support filed.
2244 if (card
->ext_csd
.feature_support
& MMC_DISCARD_FEATURE
)
2248 EXPORT_SYMBOL(mmc_can_discard
);
2250 int mmc_can_sanitize(struct mmc_card
*card
)
2252 if (!mmc_can_trim(card
) && !mmc_can_erase(card
))
2254 if (card
->ext_csd
.sec_feature_support
& EXT_CSD_SEC_SANITIZE
)
2258 EXPORT_SYMBOL(mmc_can_sanitize
);
2260 int mmc_can_secure_erase_trim(struct mmc_card
*card
)
2262 if ((card
->ext_csd
.sec_feature_support
& EXT_CSD_SEC_ER_EN
) &&
2263 !(card
->quirks
& MMC_QUIRK_SEC_ERASE_TRIM_BROKEN
))
2267 EXPORT_SYMBOL(mmc_can_secure_erase_trim
);
2269 int mmc_erase_group_aligned(struct mmc_card
*card
, unsigned int from
,
2272 if (!card
->erase_size
)
2274 if (from
% card
->erase_size
|| nr
% card
->erase_size
)
2278 EXPORT_SYMBOL(mmc_erase_group_aligned
);
2280 static unsigned int mmc_do_calc_max_discard(struct mmc_card
*card
,
2283 struct mmc_host
*host
= card
->host
;
2284 unsigned int max_discard
, x
, y
, qty
= 0, max_qty
, min_qty
, timeout
;
2285 unsigned int last_timeout
= 0;
2286 unsigned int max_busy_timeout
= host
->max_busy_timeout
?
2287 host
->max_busy_timeout
: MMC_ERASE_TIMEOUT_MS
;
2289 if (card
->erase_shift
) {
2290 max_qty
= UINT_MAX
>> card
->erase_shift
;
2291 min_qty
= card
->pref_erase
>> card
->erase_shift
;
2292 } else if (mmc_card_sd(card
)) {
2294 min_qty
= card
->pref_erase
;
2296 max_qty
= UINT_MAX
/ card
->erase_size
;
2297 min_qty
= card
->pref_erase
/ card
->erase_size
;
2301 * We should not only use 'host->max_busy_timeout' as the limitation
2302 * when deciding the max discard sectors. We should set a balance value
2303 * to improve the erase speed, and it can not get too long timeout at
2306 * Here we set 'card->pref_erase' as the minimal discard sectors no
2307 * matter what size of 'host->max_busy_timeout', but if the
2308 * 'host->max_busy_timeout' is large enough for more discard sectors,
2309 * then we can continue to increase the max discard sectors until we
2310 * get a balance value. In cases when the 'host->max_busy_timeout'
2311 * isn't specified, use the default max erase timeout.
2315 for (x
= 1; x
&& x
<= max_qty
&& max_qty
- x
>= qty
; x
<<= 1) {
2316 timeout
= mmc_erase_timeout(card
, arg
, qty
+ x
);
2318 if (qty
+ x
> min_qty
&& timeout
> max_busy_timeout
)
2321 if (timeout
< last_timeout
)
2323 last_timeout
= timeout
;
2333 * When specifying a sector range to trim, chances are we might cross
2334 * an erase-group boundary even if the amount of sectors is less than
2336 * If we can only fit one erase-group in the controller timeout budget,
2337 * we have to care that erase-group boundaries are not crossed by a
2338 * single trim operation. We flag that special case with "eg_boundary".
2339 * In all other cases we can just decrement qty and pretend that we
2340 * always touch (qty + 1) erase-groups as a simple optimization.
2343 card
->eg_boundary
= 1;
2347 /* Convert qty to sectors */
2348 if (card
->erase_shift
)
2349 max_discard
= qty
<< card
->erase_shift
;
2350 else if (mmc_card_sd(card
))
2351 max_discard
= qty
+ 1;
2353 max_discard
= qty
* card
->erase_size
;
2358 unsigned int mmc_calc_max_discard(struct mmc_card
*card
)
2360 struct mmc_host
*host
= card
->host
;
2361 unsigned int max_discard
, max_trim
;
2364 * Without erase_group_def set, MMC erase timeout depends on clock
2365 * frequence which can change. In that case, the best choice is
2366 * just the preferred erase size.
2368 if (mmc_card_mmc(card
) && !(card
->ext_csd
.erase_group_def
& 1))
2369 return card
->pref_erase
;
2371 max_discard
= mmc_do_calc_max_discard(card
, MMC_ERASE_ARG
);
2372 if (mmc_can_trim(card
)) {
2373 max_trim
= mmc_do_calc_max_discard(card
, MMC_TRIM_ARG
);
2374 if (max_trim
< max_discard
)
2375 max_discard
= max_trim
;
2376 } else if (max_discard
< card
->erase_size
) {
2379 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2380 mmc_hostname(host
), max_discard
, host
->max_busy_timeout
?
2381 host
->max_busy_timeout
: MMC_ERASE_TIMEOUT_MS
);
2384 EXPORT_SYMBOL(mmc_calc_max_discard
);
2386 bool mmc_card_is_blockaddr(struct mmc_card
*card
)
2388 return card
? mmc_card_blockaddr(card
) : false;
2390 EXPORT_SYMBOL(mmc_card_is_blockaddr
);
2392 int mmc_set_blocklen(struct mmc_card
*card
, unsigned int blocklen
)
2394 struct mmc_command cmd
= {};
2396 if (mmc_card_blockaddr(card
) || mmc_card_ddr52(card
) ||
2397 mmc_card_hs400(card
) || mmc_card_hs400es(card
))
2400 cmd
.opcode
= MMC_SET_BLOCKLEN
;
2402 cmd
.flags
= MMC_RSP_SPI_R1
| MMC_RSP_R1
| MMC_CMD_AC
;
2403 return mmc_wait_for_cmd(card
->host
, &cmd
, 5);
2405 EXPORT_SYMBOL(mmc_set_blocklen
);
2407 int mmc_set_blockcount(struct mmc_card
*card
, unsigned int blockcount
,
2410 struct mmc_command cmd
= {};
2412 cmd
.opcode
= MMC_SET_BLOCK_COUNT
;
2413 cmd
.arg
= blockcount
& 0x0000FFFF;
2416 cmd
.flags
= MMC_RSP_SPI_R1
| MMC_RSP_R1
| MMC_CMD_AC
;
2417 return mmc_wait_for_cmd(card
->host
, &cmd
, 5);
2419 EXPORT_SYMBOL(mmc_set_blockcount
);
2421 static void mmc_hw_reset_for_init(struct mmc_host
*host
)
2423 mmc_pwrseq_reset(host
);
2425 if (!(host
->caps
& MMC_CAP_HW_RESET
) || !host
->ops
->hw_reset
)
2427 host
->ops
->hw_reset(host
);
2430 int mmc_hw_reset(struct mmc_host
*host
)
2438 if (!host
->bus_ops
|| host
->bus_dead
|| !host
->bus_ops
->reset
) {
2443 ret
= host
->bus_ops
->reset(host
);
2447 pr_warn("%s: tried to reset card, got error %d\n",
2448 mmc_hostname(host
), ret
);
2452 EXPORT_SYMBOL(mmc_hw_reset
);
2454 static int mmc_rescan_try_freq(struct mmc_host
*host
, unsigned freq
)
2456 host
->f_init
= freq
;
2458 pr_debug("%s: %s: trying to init card at %u Hz\n",
2459 mmc_hostname(host
), __func__
, host
->f_init
);
2461 mmc_power_up(host
, host
->ocr_avail
);
2464 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2465 * do a hardware reset if possible.
2467 mmc_hw_reset_for_init(host
);
2470 * sdio_reset sends CMD52 to reset card. Since we do not know
2471 * if the card is being re-initialized, just send it. CMD52
2472 * should be ignored by SD/eMMC cards.
2473 * Skip it if we already know that we do not support SDIO commands
2475 if (!(host
->caps2
& MMC_CAP2_NO_SDIO
))
2480 if (!(host
->caps2
& MMC_CAP2_NO_SD
))
2481 mmc_send_if_cond(host
, host
->ocr_avail
);
2483 /* Order's important: probe SDIO, then SD, then MMC */
2484 if (!(host
->caps2
& MMC_CAP2_NO_SDIO
))
2485 if (!mmc_attach_sdio(host
))
2488 if (!(host
->caps2
& MMC_CAP2_NO_SD
))
2489 if (!mmc_attach_sd(host
))
2492 if (!(host
->caps2
& MMC_CAP2_NO_MMC
))
2493 if (!mmc_attach_mmc(host
))
2496 mmc_power_off(host
);
2500 int _mmc_detect_card_removed(struct mmc_host
*host
)
2504 if (!host
->card
|| mmc_card_removed(host
->card
))
2507 ret
= host
->bus_ops
->alive(host
);
2510 * Card detect status and alive check may be out of sync if card is
2511 * removed slowly, when card detect switch changes while card/slot
2512 * pads are still contacted in hardware (refer to "SD Card Mechanical
2513 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2514 * detect work 200ms later for this case.
2516 if (!ret
&& host
->ops
->get_cd
&& !host
->ops
->get_cd(host
)) {
2517 mmc_detect_change(host
, msecs_to_jiffies(200));
2518 pr_debug("%s: card removed too slowly\n", mmc_hostname(host
));
2522 mmc_card_set_removed(host
->card
);
2523 pr_debug("%s: card remove detected\n", mmc_hostname(host
));
2529 int mmc_detect_card_removed(struct mmc_host
*host
)
2531 struct mmc_card
*card
= host
->card
;
2534 WARN_ON(!host
->claimed
);
2539 if (!mmc_card_is_removable(host
))
2542 ret
= mmc_card_removed(card
);
2544 * The card will be considered unchanged unless we have been asked to
2545 * detect a change or host requires polling to provide card detection.
2547 if (!host
->detect_change
&& !(host
->caps
& MMC_CAP_NEEDS_POLL
))
2550 host
->detect_change
= 0;
2552 ret
= _mmc_detect_card_removed(host
);
2553 if (ret
&& (host
->caps
& MMC_CAP_NEEDS_POLL
)) {
2555 * Schedule a detect work as soon as possible to let a
2556 * rescan handle the card removal.
2558 cancel_delayed_work(&host
->detect
);
2559 _mmc_detect_change(host
, 0, false);
2565 EXPORT_SYMBOL(mmc_detect_card_removed
);
2567 void mmc_rescan(struct work_struct
*work
)
2569 struct mmc_host
*host
=
2570 container_of(work
, struct mmc_host
, detect
.work
);
2573 if (host
->rescan_disable
)
2576 /* If there is a non-removable card registered, only scan once */
2577 if (!mmc_card_is_removable(host
) && host
->rescan_entered
)
2579 host
->rescan_entered
= 1;
2581 if (host
->trigger_card_event
&& host
->ops
->card_event
) {
2582 mmc_claim_host(host
);
2583 host
->ops
->card_event(host
);
2584 mmc_release_host(host
);
2585 host
->trigger_card_event
= false;
2591 * if there is a _removable_ card registered, check whether it is
2594 if (host
->bus_ops
&& !host
->bus_dead
&& mmc_card_is_removable(host
))
2595 host
->bus_ops
->detect(host
);
2597 host
->detect_change
= 0;
2600 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2601 * the card is no longer present.
2606 /* if there still is a card present, stop here */
2607 if (host
->bus_ops
!= NULL
) {
2613 * Only we can add a new handler, so it's safe to
2614 * release the lock here.
2618 mmc_claim_host(host
);
2619 if (mmc_card_is_removable(host
) && host
->ops
->get_cd
&&
2620 host
->ops
->get_cd(host
) == 0) {
2621 mmc_power_off(host
);
2622 mmc_release_host(host
);
2626 for (i
= 0; i
< ARRAY_SIZE(freqs
); i
++) {
2627 if (!mmc_rescan_try_freq(host
, max(freqs
[i
], host
->f_min
)))
2629 if (freqs
[i
] <= host
->f_min
)
2632 mmc_release_host(host
);
2635 if (host
->caps
& MMC_CAP_NEEDS_POLL
)
2636 mmc_schedule_delayed_work(&host
->detect
, HZ
);
2639 void mmc_start_host(struct mmc_host
*host
)
2641 host
->f_init
= max(freqs
[0], host
->f_min
);
2642 host
->rescan_disable
= 0;
2643 host
->ios
.power_mode
= MMC_POWER_UNDEFINED
;
2645 if (!(host
->caps2
& MMC_CAP2_NO_PRESCAN_POWERUP
)) {
2646 mmc_claim_host(host
);
2647 mmc_power_up(host
, host
->ocr_avail
);
2648 mmc_release_host(host
);
2651 mmc_gpiod_request_cd_irq(host
);
2652 _mmc_detect_change(host
, 0, false);
2655 void mmc_stop_host(struct mmc_host
*host
)
2657 if (host
->slot
.cd_irq
>= 0) {
2658 if (host
->slot
.cd_wake_enabled
)
2659 disable_irq_wake(host
->slot
.cd_irq
);
2660 disable_irq(host
->slot
.cd_irq
);
2663 host
->rescan_disable
= 1;
2664 cancel_delayed_work_sync(&host
->detect
);
2666 /* clear pm flags now and let card drivers set them as needed */
2670 if (host
->bus_ops
&& !host
->bus_dead
) {
2671 /* Calling bus_ops->remove() with a claimed host can deadlock */
2672 host
->bus_ops
->remove(host
);
2673 mmc_claim_host(host
);
2674 mmc_detach_bus(host
);
2675 mmc_power_off(host
);
2676 mmc_release_host(host
);
2682 mmc_claim_host(host
);
2683 mmc_power_off(host
);
2684 mmc_release_host(host
);
2687 int mmc_power_save_host(struct mmc_host
*host
)
2691 pr_debug("%s: %s: powering down\n", mmc_hostname(host
), __func__
);
2695 if (!host
->bus_ops
|| host
->bus_dead
) {
2700 if (host
->bus_ops
->power_save
)
2701 ret
= host
->bus_ops
->power_save(host
);
2705 mmc_power_off(host
);
2709 EXPORT_SYMBOL(mmc_power_save_host
);
2711 int mmc_power_restore_host(struct mmc_host
*host
)
2715 pr_debug("%s: %s: powering up\n", mmc_hostname(host
), __func__
);
2719 if (!host
->bus_ops
|| host
->bus_dead
) {
2724 mmc_power_up(host
, host
->card
->ocr
);
2725 ret
= host
->bus_ops
->power_restore(host
);
2731 EXPORT_SYMBOL(mmc_power_restore_host
);
2733 #ifdef CONFIG_PM_SLEEP
2734 /* Do the card removal on suspend if card is assumed removeable
2735 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2738 static int mmc_pm_notify(struct notifier_block
*notify_block
,
2739 unsigned long mode
, void *unused
)
2741 struct mmc_host
*host
= container_of(
2742 notify_block
, struct mmc_host
, pm_notify
);
2743 unsigned long flags
;
2747 case PM_HIBERNATION_PREPARE
:
2748 case PM_SUSPEND_PREPARE
:
2749 case PM_RESTORE_PREPARE
:
2750 spin_lock_irqsave(&host
->lock
, flags
);
2751 host
->rescan_disable
= 1;
2752 spin_unlock_irqrestore(&host
->lock
, flags
);
2753 cancel_delayed_work_sync(&host
->detect
);
2758 /* Validate prerequisites for suspend */
2759 if (host
->bus_ops
->pre_suspend
)
2760 err
= host
->bus_ops
->pre_suspend(host
);
2764 if (!mmc_card_is_removable(host
)) {
2765 dev_warn(mmc_dev(host
),
2766 "pre_suspend failed for non-removable host: "
2768 /* Avoid removing non-removable hosts */
2772 /* Calling bus_ops->remove() with a claimed host can deadlock */
2773 host
->bus_ops
->remove(host
);
2774 mmc_claim_host(host
);
2775 mmc_detach_bus(host
);
2776 mmc_power_off(host
);
2777 mmc_release_host(host
);
2781 case PM_POST_SUSPEND
:
2782 case PM_POST_HIBERNATION
:
2783 case PM_POST_RESTORE
:
2785 spin_lock_irqsave(&host
->lock
, flags
);
2786 host
->rescan_disable
= 0;
2787 spin_unlock_irqrestore(&host
->lock
, flags
);
2788 _mmc_detect_change(host
, 0, false);
2795 void mmc_register_pm_notifier(struct mmc_host
*host
)
2797 host
->pm_notify
.notifier_call
= mmc_pm_notify
;
2798 register_pm_notifier(&host
->pm_notify
);
2801 void mmc_unregister_pm_notifier(struct mmc_host
*host
)
2803 unregister_pm_notifier(&host
->pm_notify
);
2807 static int __init
mmc_init(void)
2811 ret
= mmc_register_bus();
2815 ret
= mmc_register_host_class();
2817 goto unregister_bus
;
2819 ret
= sdio_register_bus();
2821 goto unregister_host_class
;
2825 unregister_host_class
:
2826 mmc_unregister_host_class();
2828 mmc_unregister_bus();
2832 static void __exit
mmc_exit(void)
2834 sdio_unregister_bus();
2835 mmc_unregister_host_class();
2836 mmc_unregister_bus();
2839 subsys_initcall(mmc_init
);
2840 module_exit(mmc_exit
);
2842 MODULE_LICENSE("GPL");