2 * Copyright (C) ST-Ericsson AB 2012
4 * Main and Back-up battery management driver.
6 * Note: Backup battery management is required in case of Li-Ion battery and not
7 * for capacitive battery. HREF boards have capacitive battery and hence backup
8 * battery management is not used and the supported code is available in this
11 * License Terms: GNU General Public License v2
13 * Johan Palsson <johan.palsson@stericsson.com>
14 * Karl Komierowski <karl.komierowski@stericsson.com>
15 * Arun R Murthy <arun.murthy@stericsson.com>
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/device.h>
21 #include <linux/interrupt.h>
22 #include <linux/platform_device.h>
23 #include <linux/power_supply.h>
24 #include <linux/kobject.h>
25 #include <linux/slab.h>
26 #include <linux/delay.h>
27 #include <linux/time.h>
28 #include <linux/time64.h>
30 #include <linux/completion.h>
31 #include <linux/mfd/core.h>
32 #include <linux/mfd/abx500.h>
33 #include <linux/mfd/abx500/ab8500.h>
34 #include <linux/mfd/abx500/ab8500-bm.h>
35 #include <linux/mfd/abx500/ab8500-gpadc.h>
36 #include <linux/kernel.h>
38 #define MILLI_TO_MICRO 1000
39 #define FG_LSB_IN_MA 1627
40 #define QLSB_NANO_AMP_HOURS_X10 1071
41 #define INS_CURR_TIMEOUT (3 * HZ)
43 #define SEC_TO_SAMPLE(S) (S * 4)
45 #define NBR_AVG_SAMPLES 20
47 #define LOW_BAT_CHECK_INTERVAL (HZ / 16) /* 62.5 ms */
49 #define VALID_CAPACITY_SEC (45 * 60) /* 45 minutes */
50 #define BATT_OK_MIN 2360 /* mV */
51 #define BATT_OK_INCREMENT 50 /* mV */
52 #define BATT_OK_MAX_NR_INCREMENTS 0xE
57 #define interpolate(x, x1, y1, x2, y2) \
58 ((y1) + ((((y2) - (y1)) * ((x) - (x1))) / ((x2) - (x1))));
61 * struct ab8500_fg_interrupts - ab8500 fg interupts
62 * @name: name of the interrupt
63 * @isr function pointer to the isr
65 struct ab8500_fg_interrupts
{
67 irqreturn_t (*isr
)(int irq
, void *data
);
70 enum ab8500_fg_discharge_state
{
71 AB8500_FG_DISCHARGE_INIT
,
72 AB8500_FG_DISCHARGE_INITMEASURING
,
73 AB8500_FG_DISCHARGE_INIT_RECOVERY
,
74 AB8500_FG_DISCHARGE_RECOVERY
,
75 AB8500_FG_DISCHARGE_READOUT_INIT
,
76 AB8500_FG_DISCHARGE_READOUT
,
77 AB8500_FG_DISCHARGE_WAKEUP
,
80 static char *discharge_state
[] = {
82 "DISCHARGE_INITMEASURING",
83 "DISCHARGE_INIT_RECOVERY",
85 "DISCHARGE_READOUT_INIT",
90 enum ab8500_fg_charge_state
{
91 AB8500_FG_CHARGE_INIT
,
92 AB8500_FG_CHARGE_READOUT
,
95 static char *charge_state
[] = {
100 enum ab8500_fg_calibration_state
{
101 AB8500_FG_CALIB_INIT
,
102 AB8500_FG_CALIB_WAIT
,
106 struct ab8500_fg_avg_cap
{
108 int samples
[NBR_AVG_SAMPLES
];
109 time64_t time_stamps
[NBR_AVG_SAMPLES
];
115 struct ab8500_fg_cap_scaling
{
118 int disable_cap_level
;
122 struct ab8500_fg_battery_capacity
{
132 struct ab8500_fg_cap_scaling cap_scale
;
135 struct ab8500_fg_flags
{
147 bool batt_id_received
;
150 struct inst_curr_result_list
{
151 struct list_head list
;
156 * struct ab8500_fg - ab8500 FG device information
157 * @dev: Pointer to the structure device
158 * @node: a list of AB8500 FGs, hence prepared for reentrance
159 * @irq holds the CCEOC interrupt number
160 * @vbat: Battery voltage in mV
161 * @vbat_nom: Nominal battery voltage in mV
162 * @inst_curr: Instantenous battery current in mA
163 * @avg_curr: Average battery current in mA
164 * @bat_temp battery temperature
165 * @fg_samples: Number of samples used in the FG accumulation
166 * @accu_charge: Accumulated charge from the last conversion
167 * @recovery_cnt: Counter for recovery mode
168 * @high_curr_cnt: Counter for high current mode
169 * @init_cnt: Counter for init mode
170 * @low_bat_cnt Counter for number of consecutive low battery measures
171 * @nbr_cceoc_irq_cnt Counter for number of CCEOC irqs received since enabled
172 * @recovery_needed: Indicate if recovery is needed
173 * @high_curr_mode: Indicate if we're in high current mode
174 * @init_capacity: Indicate if initial capacity measuring should be done
175 * @turn_off_fg: True if fg was off before current measurement
176 * @calib_state State during offset calibration
177 * @discharge_state: Current discharge state
178 * @charge_state: Current charge state
179 * @ab8500_fg_started Completion struct used for the instant current start
180 * @ab8500_fg_complete Completion struct used for the instant current reading
181 * @flags: Structure for information about events triggered
182 * @bat_cap: Structure for battery capacity specific parameters
183 * @avg_cap: Average capacity filter
184 * @parent: Pointer to the struct ab8500
185 * @gpadc: Pointer to the struct gpadc
186 * @bm: Platform specific battery management information
187 * @fg_psy: Structure that holds the FG specific battery properties
188 * @fg_wq: Work queue for running the FG algorithm
189 * @fg_periodic_work: Work to run the FG algorithm periodically
190 * @fg_low_bat_work: Work to check low bat condition
191 * @fg_reinit_work Work used to reset and reinitialise the FG algorithm
192 * @fg_work: Work to run the FG algorithm instantly
193 * @fg_acc_cur_work: Work to read the FG accumulator
194 * @fg_check_hw_failure_work: Work for checking HW state
195 * @cc_lock: Mutex for locking the CC
196 * @fg_kobject: Structure of type kobject
200 struct list_head node
;
213 int nbr_cceoc_irq_cnt
;
214 bool recovery_needed
;
218 enum ab8500_fg_calibration_state calib_state
;
219 enum ab8500_fg_discharge_state discharge_state
;
220 enum ab8500_fg_charge_state charge_state
;
221 struct completion ab8500_fg_started
;
222 struct completion ab8500_fg_complete
;
223 struct ab8500_fg_flags flags
;
224 struct ab8500_fg_battery_capacity bat_cap
;
225 struct ab8500_fg_avg_cap avg_cap
;
226 struct ab8500
*parent
;
227 struct ab8500_gpadc
*gpadc
;
228 struct abx500_bm_data
*bm
;
229 struct power_supply
*fg_psy
;
230 struct workqueue_struct
*fg_wq
;
231 struct delayed_work fg_periodic_work
;
232 struct delayed_work fg_low_bat_work
;
233 struct delayed_work fg_reinit_work
;
234 struct work_struct fg_work
;
235 struct work_struct fg_acc_cur_work
;
236 struct delayed_work fg_check_hw_failure_work
;
237 struct mutex cc_lock
;
238 struct kobject fg_kobject
;
240 static LIST_HEAD(ab8500_fg_list
);
243 * ab8500_fg_get() - returns a reference to the primary AB8500 fuel gauge
244 * (i.e. the first fuel gauge in the instance list)
246 struct ab8500_fg
*ab8500_fg_get(void)
248 return list_first_entry_or_null(&ab8500_fg_list
, struct ab8500_fg
,
252 /* Main battery properties */
253 static enum power_supply_property ab8500_fg_props
[] = {
254 POWER_SUPPLY_PROP_VOLTAGE_NOW
,
255 POWER_SUPPLY_PROP_CURRENT_NOW
,
256 POWER_SUPPLY_PROP_CURRENT_AVG
,
257 POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN
,
258 POWER_SUPPLY_PROP_ENERGY_FULL
,
259 POWER_SUPPLY_PROP_ENERGY_NOW
,
260 POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN
,
261 POWER_SUPPLY_PROP_CHARGE_FULL
,
262 POWER_SUPPLY_PROP_CHARGE_NOW
,
263 POWER_SUPPLY_PROP_CAPACITY
,
264 POWER_SUPPLY_PROP_CAPACITY_LEVEL
,
268 * This array maps the raw hex value to lowbat voltage used by the AB8500
269 * Values taken from the UM0836
271 static int ab8500_fg_lowbat_voltage_map
[] = {
338 static u8
ab8500_volt_to_regval(int voltage
)
342 if (voltage
< ab8500_fg_lowbat_voltage_map
[0])
345 for (i
= 0; i
< ARRAY_SIZE(ab8500_fg_lowbat_voltage_map
); i
++) {
346 if (voltage
< ab8500_fg_lowbat_voltage_map
[i
])
350 /* If not captured above, return index of last element */
351 return (u8
) ARRAY_SIZE(ab8500_fg_lowbat_voltage_map
) - 1;
355 * ab8500_fg_is_low_curr() - Low or high current mode
356 * @di: pointer to the ab8500_fg structure
357 * @curr: the current to base or our decision on
359 * Low current mode if the current consumption is below a certain threshold
361 static int ab8500_fg_is_low_curr(struct ab8500_fg
*di
, int curr
)
364 * We want to know if we're in low current mode
366 if (curr
> -di
->bm
->fg_params
->high_curr_threshold
)
373 * ab8500_fg_add_cap_sample() - Add capacity to average filter
374 * @di: pointer to the ab8500_fg structure
375 * @sample: the capacity in mAh to add to the filter
377 * A capacity is added to the filter and a new mean capacity is calculated and
380 static int ab8500_fg_add_cap_sample(struct ab8500_fg
*di
, int sample
)
382 struct timespec64 ts64
;
383 struct ab8500_fg_avg_cap
*avg
= &di
->avg_cap
;
385 getnstimeofday64(&ts64
);
388 avg
->sum
+= sample
- avg
->samples
[avg
->pos
];
389 avg
->samples
[avg
->pos
] = sample
;
390 avg
->time_stamps
[avg
->pos
] = ts64
.tv_sec
;
393 if (avg
->pos
== NBR_AVG_SAMPLES
)
396 if (avg
->nbr_samples
< NBR_AVG_SAMPLES
)
400 * Check the time stamp for each sample. If too old,
401 * replace with latest sample
403 } while (ts64
.tv_sec
- VALID_CAPACITY_SEC
> avg
->time_stamps
[avg
->pos
]);
405 avg
->avg
= avg
->sum
/ avg
->nbr_samples
;
411 * ab8500_fg_clear_cap_samples() - Clear average filter
412 * @di: pointer to the ab8500_fg structure
414 * The capacity filter is is reset to zero.
416 static void ab8500_fg_clear_cap_samples(struct ab8500_fg
*di
)
419 struct ab8500_fg_avg_cap
*avg
= &di
->avg_cap
;
422 avg
->nbr_samples
= 0;
426 for (i
= 0; i
< NBR_AVG_SAMPLES
; i
++) {
428 avg
->time_stamps
[i
] = 0;
433 * ab8500_fg_fill_cap_sample() - Fill average filter
434 * @di: pointer to the ab8500_fg structure
435 * @sample: the capacity in mAh to fill the filter with
437 * The capacity filter is filled with a capacity in mAh
439 static void ab8500_fg_fill_cap_sample(struct ab8500_fg
*di
, int sample
)
442 struct timespec64 ts64
;
443 struct ab8500_fg_avg_cap
*avg
= &di
->avg_cap
;
445 getnstimeofday64(&ts64
);
447 for (i
= 0; i
< NBR_AVG_SAMPLES
; i
++) {
448 avg
->samples
[i
] = sample
;
449 avg
->time_stamps
[i
] = ts64
.tv_sec
;
453 avg
->nbr_samples
= NBR_AVG_SAMPLES
;
454 avg
->sum
= sample
* NBR_AVG_SAMPLES
;
459 * ab8500_fg_coulomb_counter() - enable coulomb counter
460 * @di: pointer to the ab8500_fg structure
461 * @enable: enable/disable
463 * Enable/Disable coulomb counter.
464 * On failure returns negative value.
466 static int ab8500_fg_coulomb_counter(struct ab8500_fg
*di
, bool enable
)
469 mutex_lock(&di
->cc_lock
);
471 /* To be able to reprogram the number of samples, we have to
472 * first stop the CC and then enable it again */
473 ret
= abx500_set_register_interruptible(di
->dev
, AB8500_RTC
,
474 AB8500_RTC_CC_CONF_REG
, 0x00);
478 /* Program the samples */
479 ret
= abx500_set_register_interruptible(di
->dev
,
480 AB8500_GAS_GAUGE
, AB8500_GASG_CC_NCOV_ACCU
,
486 ret
= abx500_set_register_interruptible(di
->dev
, AB8500_RTC
,
487 AB8500_RTC_CC_CONF_REG
,
488 (CC_DEEP_SLEEP_ENA
| CC_PWR_UP_ENA
));
492 di
->flags
.fg_enabled
= true;
494 /* Clear any pending read requests */
495 ret
= abx500_mask_and_set_register_interruptible(di
->dev
,
496 AB8500_GAS_GAUGE
, AB8500_GASG_CC_CTRL_REG
,
497 (RESET_ACCU
| READ_REQ
), 0);
501 ret
= abx500_set_register_interruptible(di
->dev
,
502 AB8500_GAS_GAUGE
, AB8500_GASG_CC_NCOV_ACCU_CTRL
, 0);
507 ret
= abx500_set_register_interruptible(di
->dev
, AB8500_RTC
,
508 AB8500_RTC_CC_CONF_REG
, 0);
512 di
->flags
.fg_enabled
= false;
515 dev_dbg(di
->dev
, " CC enabled: %d Samples: %d\n",
516 enable
, di
->fg_samples
);
518 mutex_unlock(&di
->cc_lock
);
522 dev_err(di
->dev
, "%s Enabling coulomb counter failed\n", __func__
);
523 mutex_unlock(&di
->cc_lock
);
528 * ab8500_fg_inst_curr_start() - start battery instantaneous current
529 * @di: pointer to the ab8500_fg structure
531 * Returns 0 or error code
532 * Note: This is part "one" and has to be called before
533 * ab8500_fg_inst_curr_finalize()
535 int ab8500_fg_inst_curr_start(struct ab8500_fg
*di
)
540 mutex_lock(&di
->cc_lock
);
542 di
->nbr_cceoc_irq_cnt
= 0;
543 ret
= abx500_get_register_interruptible(di
->dev
, AB8500_RTC
,
544 AB8500_RTC_CC_CONF_REG
, ®_val
);
548 if (!(reg_val
& CC_PWR_UP_ENA
)) {
549 dev_dbg(di
->dev
, "%s Enable FG\n", __func__
);
550 di
->turn_off_fg
= true;
552 /* Program the samples */
553 ret
= abx500_set_register_interruptible(di
->dev
,
554 AB8500_GAS_GAUGE
, AB8500_GASG_CC_NCOV_ACCU
,
560 ret
= abx500_set_register_interruptible(di
->dev
, AB8500_RTC
,
561 AB8500_RTC_CC_CONF_REG
,
562 (CC_DEEP_SLEEP_ENA
| CC_PWR_UP_ENA
));
566 di
->turn_off_fg
= false;
570 reinit_completion(&di
->ab8500_fg_started
);
571 reinit_completion(&di
->ab8500_fg_complete
);
574 /* Note: cc_lock is still locked */
577 mutex_unlock(&di
->cc_lock
);
582 * ab8500_fg_inst_curr_started() - check if fg conversion has started
583 * @di: pointer to the ab8500_fg structure
585 * Returns 1 if conversion started, 0 if still waiting
587 int ab8500_fg_inst_curr_started(struct ab8500_fg
*di
)
589 return completion_done(&di
->ab8500_fg_started
);
593 * ab8500_fg_inst_curr_done() - check if fg conversion is done
594 * @di: pointer to the ab8500_fg structure
596 * Returns 1 if conversion done, 0 if still waiting
598 int ab8500_fg_inst_curr_done(struct ab8500_fg
*di
)
600 return completion_done(&di
->ab8500_fg_complete
);
604 * ab8500_fg_inst_curr_finalize() - battery instantaneous current
605 * @di: pointer to the ab8500_fg structure
606 * @res: battery instantenous current(on success)
608 * Returns 0 or an error code
609 * Note: This is part "two" and has to be called at earliest 250 ms
610 * after ab8500_fg_inst_curr_start()
612 int ab8500_fg_inst_curr_finalize(struct ab8500_fg
*di
, int *res
)
617 unsigned long timeout
;
619 if (!completion_done(&di
->ab8500_fg_complete
)) {
620 timeout
= wait_for_completion_timeout(
621 &di
->ab8500_fg_complete
,
623 dev_dbg(di
->dev
, "Finalize time: %d ms\n",
624 jiffies_to_msecs(INS_CURR_TIMEOUT
- timeout
));
627 disable_irq(di
->irq
);
628 di
->nbr_cceoc_irq_cnt
= 0;
629 dev_err(di
->dev
, "completion timed out [%d]\n",
635 disable_irq(di
->irq
);
636 di
->nbr_cceoc_irq_cnt
= 0;
638 ret
= abx500_mask_and_set_register_interruptible(di
->dev
,
639 AB8500_GAS_GAUGE
, AB8500_GASG_CC_CTRL_REG
,
642 /* 100uS between read request and read is needed */
643 usleep_range(100, 100);
645 /* Read CC Sample conversion value Low and high */
646 ret
= abx500_get_register_interruptible(di
->dev
, AB8500_GAS_GAUGE
,
647 AB8500_GASG_CC_SMPL_CNVL_REG
, &low
);
651 ret
= abx500_get_register_interruptible(di
->dev
, AB8500_GAS_GAUGE
,
652 AB8500_GASG_CC_SMPL_CNVH_REG
, &high
);
657 * negative value for Discharging
658 * convert 2's compliment into decimal
661 val
= (low
| (high
<< 8) | 0xFFFFE000);
663 val
= (low
| (high
<< 8));
666 * Convert to unit value in mA
667 * Full scale input voltage is
668 * 63.160mV => LSB = 63.160mV/(4096*res) = 1.542mA
669 * Given a 250ms conversion cycle time the LSB corresponds
670 * to 107.1 nAh. Convert to current by dividing by the conversion
671 * time in hours (250ms = 1 / (3600 * 4)h)
672 * 107.1nAh assumes 10mOhm, but fg_res is in 0.1mOhm
674 val
= (val
* QLSB_NANO_AMP_HOURS_X10
* 36 * 4) /
675 (1000 * di
->bm
->fg_res
);
677 if (di
->turn_off_fg
) {
678 dev_dbg(di
->dev
, "%s Disable FG\n", __func__
);
680 /* Clear any pending read requests */
681 ret
= abx500_set_register_interruptible(di
->dev
,
682 AB8500_GAS_GAUGE
, AB8500_GASG_CC_CTRL_REG
, 0);
687 ret
= abx500_set_register_interruptible(di
->dev
, AB8500_RTC
,
688 AB8500_RTC_CC_CONF_REG
, 0);
692 mutex_unlock(&di
->cc_lock
);
697 mutex_unlock(&di
->cc_lock
);
702 * ab8500_fg_inst_curr_blocking() - battery instantaneous current
703 * @di: pointer to the ab8500_fg structure
704 * @res: battery instantenous current(on success)
706 * Returns 0 else error code
708 int ab8500_fg_inst_curr_blocking(struct ab8500_fg
*di
)
711 unsigned long timeout
;
714 ret
= ab8500_fg_inst_curr_start(di
);
716 dev_err(di
->dev
, "Failed to initialize fg_inst\n");
720 /* Wait for CC to actually start */
721 if (!completion_done(&di
->ab8500_fg_started
)) {
722 timeout
= wait_for_completion_timeout(
723 &di
->ab8500_fg_started
,
725 dev_dbg(di
->dev
, "Start time: %d ms\n",
726 jiffies_to_msecs(INS_CURR_TIMEOUT
- timeout
));
729 dev_err(di
->dev
, "completion timed out [%d]\n",
735 ret
= ab8500_fg_inst_curr_finalize(di
, &res
);
737 dev_err(di
->dev
, "Failed to finalize fg_inst\n");
741 dev_dbg(di
->dev
, "%s instant current: %d", __func__
, res
);
744 disable_irq(di
->irq
);
745 mutex_unlock(&di
->cc_lock
);
750 * ab8500_fg_acc_cur_work() - average battery current
751 * @work: pointer to the work_struct structure
753 * Updated the average battery current obtained from the
756 static void ab8500_fg_acc_cur_work(struct work_struct
*work
)
762 struct ab8500_fg
*di
= container_of(work
,
763 struct ab8500_fg
, fg_acc_cur_work
);
765 mutex_lock(&di
->cc_lock
);
766 ret
= abx500_set_register_interruptible(di
->dev
, AB8500_GAS_GAUGE
,
767 AB8500_GASG_CC_NCOV_ACCU_CTRL
, RD_NCONV_ACCU_REQ
);
771 ret
= abx500_get_register_interruptible(di
->dev
, AB8500_GAS_GAUGE
,
772 AB8500_GASG_CC_NCOV_ACCU_LOW
, &low
);
776 ret
= abx500_get_register_interruptible(di
->dev
, AB8500_GAS_GAUGE
,
777 AB8500_GASG_CC_NCOV_ACCU_MED
, &med
);
781 ret
= abx500_get_register_interruptible(di
->dev
, AB8500_GAS_GAUGE
,
782 AB8500_GASG_CC_NCOV_ACCU_HIGH
, &high
);
786 /* Check for sign bit in case of negative value, 2's compliment */
788 val
= (low
| (med
<< 8) | (high
<< 16) | 0xFFE00000);
790 val
= (low
| (med
<< 8) | (high
<< 16));
794 * Given a 250ms conversion cycle time the LSB corresponds
796 * 112.9nAh assumes 10mOhm, but fg_res is in 0.1mOhm
798 di
->accu_charge
= (val
* QLSB_NANO_AMP_HOURS_X10
) /
799 (100 * di
->bm
->fg_res
);
802 * Convert to unit value in mA
803 * by dividing by the conversion
804 * time in hours (= samples / (3600 * 4)h)
805 * and multiply with 1000
807 di
->avg_curr
= (val
* QLSB_NANO_AMP_HOURS_X10
* 36) /
808 (1000 * di
->bm
->fg_res
* (di
->fg_samples
/ 4));
810 di
->flags
.conv_done
= true;
812 mutex_unlock(&di
->cc_lock
);
814 queue_work(di
->fg_wq
, &di
->fg_work
);
816 dev_dbg(di
->dev
, "fg_res: %d, fg_samples: %d, gasg: %d, accu_charge: %d \n",
817 di
->bm
->fg_res
, di
->fg_samples
, val
, di
->accu_charge
);
821 "Failed to read or write gas gauge registers\n");
822 mutex_unlock(&di
->cc_lock
);
823 queue_work(di
->fg_wq
, &di
->fg_work
);
827 * ab8500_fg_bat_voltage() - get battery voltage
828 * @di: pointer to the ab8500_fg structure
830 * Returns battery voltage(on success) else error code
832 static int ab8500_fg_bat_voltage(struct ab8500_fg
*di
)
837 vbat
= ab8500_gpadc_convert(di
->gpadc
, MAIN_BAT_V
);
840 "%s gpadc conversion failed, using previous value\n",
850 * ab8500_fg_volt_to_capacity() - Voltage based capacity
851 * @di: pointer to the ab8500_fg structure
852 * @voltage: The voltage to convert to a capacity
854 * Returns battery capacity in per mille based on voltage
856 static int ab8500_fg_volt_to_capacity(struct ab8500_fg
*di
, int voltage
)
859 const struct abx500_v_to_cap
*tbl
;
862 tbl
= di
->bm
->bat_type
[di
->bm
->batt_id
].v_to_cap_tbl
,
863 tbl_size
= di
->bm
->bat_type
[di
->bm
->batt_id
].n_v_cap_tbl_elements
;
865 for (i
= 0; i
< tbl_size
; ++i
) {
866 if (voltage
> tbl
[i
].voltage
)
870 if ((i
> 0) && (i
< tbl_size
)) {
871 cap
= interpolate(voltage
,
873 tbl
[i
].capacity
* 10,
875 tbl
[i
-1].capacity
* 10);
882 dev_dbg(di
->dev
, "%s Vbat: %d, Cap: %d per mille",
883 __func__
, voltage
, cap
);
889 * ab8500_fg_uncomp_volt_to_capacity() - Uncompensated voltage based capacity
890 * @di: pointer to the ab8500_fg structure
892 * Returns battery capacity based on battery voltage that is not compensated
893 * for the voltage drop due to the load
895 static int ab8500_fg_uncomp_volt_to_capacity(struct ab8500_fg
*di
)
897 di
->vbat
= ab8500_fg_bat_voltage(di
);
898 return ab8500_fg_volt_to_capacity(di
, di
->vbat
);
902 * ab8500_fg_battery_resistance() - Returns the battery inner resistance
903 * @di: pointer to the ab8500_fg structure
905 * Returns battery inner resistance added with the fuel gauge resistor value
906 * to get the total resistance in the whole link from gnd to bat+ node.
908 static int ab8500_fg_battery_resistance(struct ab8500_fg
*di
)
911 const struct batres_vs_temp
*tbl
;
914 tbl
= di
->bm
->bat_type
[di
->bm
->batt_id
].batres_tbl
;
915 tbl_size
= di
->bm
->bat_type
[di
->bm
->batt_id
].n_batres_tbl_elements
;
917 for (i
= 0; i
< tbl_size
; ++i
) {
918 if (di
->bat_temp
/ 10 > tbl
[i
].temp
)
922 if ((i
> 0) && (i
< tbl_size
)) {
923 resist
= interpolate(di
->bat_temp
/ 10,
929 resist
= tbl
[0].resist
;
931 resist
= tbl
[tbl_size
- 1].resist
;
934 dev_dbg(di
->dev
, "%s Temp: %d battery internal resistance: %d"
935 " fg resistance %d, total: %d (mOhm)\n",
936 __func__
, di
->bat_temp
, resist
, di
->bm
->fg_res
/ 10,
937 (di
->bm
->fg_res
/ 10) + resist
);
939 /* fg_res variable is in 0.1mOhm */
940 resist
+= di
->bm
->fg_res
/ 10;
946 * ab8500_fg_load_comp_volt_to_capacity() - Load compensated voltage based capacity
947 * @di: pointer to the ab8500_fg structure
949 * Returns battery capacity based on battery voltage that is load compensated
950 * for the voltage drop
952 static int ab8500_fg_load_comp_volt_to_capacity(struct ab8500_fg
*di
)
958 ab8500_fg_inst_curr_start(di
);
961 vbat
+= ab8500_fg_bat_voltage(di
);
963 usleep_range(5000, 6000);
964 } while (!ab8500_fg_inst_curr_done(di
));
966 ab8500_fg_inst_curr_finalize(di
, &di
->inst_curr
);
969 res
= ab8500_fg_battery_resistance(di
);
971 /* Use Ohms law to get the load compensated voltage */
972 vbat_comp
= di
->vbat
- (di
->inst_curr
* res
) / 1000;
974 dev_dbg(di
->dev
, "%s Measured Vbat: %dmV,Compensated Vbat %dmV, "
975 "R: %dmOhm, Current: %dmA Vbat Samples: %d\n",
976 __func__
, di
->vbat
, vbat_comp
, res
, di
->inst_curr
, i
);
978 return ab8500_fg_volt_to_capacity(di
, vbat_comp
);
982 * ab8500_fg_convert_mah_to_permille() - Capacity in mAh to permille
983 * @di: pointer to the ab8500_fg structure
984 * @cap_mah: capacity in mAh
986 * Converts capacity in mAh to capacity in permille
988 static int ab8500_fg_convert_mah_to_permille(struct ab8500_fg
*di
, int cap_mah
)
990 return (cap_mah
* 1000) / di
->bat_cap
.max_mah_design
;
994 * ab8500_fg_convert_permille_to_mah() - Capacity in permille to mAh
995 * @di: pointer to the ab8500_fg structure
996 * @cap_pm: capacity in permille
998 * Converts capacity in permille to capacity in mAh
1000 static int ab8500_fg_convert_permille_to_mah(struct ab8500_fg
*di
, int cap_pm
)
1002 return cap_pm
* di
->bat_cap
.max_mah_design
/ 1000;
1006 * ab8500_fg_convert_mah_to_uwh() - Capacity in mAh to uWh
1007 * @di: pointer to the ab8500_fg structure
1008 * @cap_mah: capacity in mAh
1010 * Converts capacity in mAh to capacity in uWh
1012 static int ab8500_fg_convert_mah_to_uwh(struct ab8500_fg
*di
, int cap_mah
)
1017 div_res
= ((u64
) cap_mah
) * ((u64
) di
->vbat_nom
);
1018 div_rem
= do_div(div_res
, 1000);
1020 /* Make sure to round upwards if necessary */
1021 if (div_rem
>= 1000 / 2)
1024 return (int) div_res
;
1028 * ab8500_fg_calc_cap_charging() - Calculate remaining capacity while charging
1029 * @di: pointer to the ab8500_fg structure
1031 * Return the capacity in mAh based on previous calculated capcity and the FG
1032 * accumulator register value. The filter is filled with this capacity
1034 static int ab8500_fg_calc_cap_charging(struct ab8500_fg
*di
)
1036 dev_dbg(di
->dev
, "%s cap_mah %d accu_charge %d\n",
1041 /* Capacity should not be less than 0 */
1042 if (di
->bat_cap
.mah
+ di
->accu_charge
> 0)
1043 di
->bat_cap
.mah
+= di
->accu_charge
;
1045 di
->bat_cap
.mah
= 0;
1047 * We force capacity to 100% once when the algorithm
1048 * reports that it's full.
1050 if (di
->bat_cap
.mah
>= di
->bat_cap
.max_mah_design
||
1051 di
->flags
.force_full
) {
1052 di
->bat_cap
.mah
= di
->bat_cap
.max_mah_design
;
1055 ab8500_fg_fill_cap_sample(di
, di
->bat_cap
.mah
);
1056 di
->bat_cap
.permille
=
1057 ab8500_fg_convert_mah_to_permille(di
, di
->bat_cap
.mah
);
1059 /* We need to update battery voltage and inst current when charging */
1060 di
->vbat
= ab8500_fg_bat_voltage(di
);
1061 di
->inst_curr
= ab8500_fg_inst_curr_blocking(di
);
1063 return di
->bat_cap
.mah
;
1067 * ab8500_fg_calc_cap_discharge_voltage() - Capacity in discharge with voltage
1068 * @di: pointer to the ab8500_fg structure
1069 * @comp: if voltage should be load compensated before capacity calc
1071 * Return the capacity in mAh based on the battery voltage. The voltage can
1072 * either be load compensated or not. This value is added to the filter and a
1073 * new mean value is calculated and returned.
1075 static int ab8500_fg_calc_cap_discharge_voltage(struct ab8500_fg
*di
, bool comp
)
1080 permille
= ab8500_fg_load_comp_volt_to_capacity(di
);
1082 permille
= ab8500_fg_uncomp_volt_to_capacity(di
);
1084 mah
= ab8500_fg_convert_permille_to_mah(di
, permille
);
1086 di
->bat_cap
.mah
= ab8500_fg_add_cap_sample(di
, mah
);
1087 di
->bat_cap
.permille
=
1088 ab8500_fg_convert_mah_to_permille(di
, di
->bat_cap
.mah
);
1090 return di
->bat_cap
.mah
;
1094 * ab8500_fg_calc_cap_discharge_fg() - Capacity in discharge with FG
1095 * @di: pointer to the ab8500_fg structure
1097 * Return the capacity in mAh based on previous calculated capcity and the FG
1098 * accumulator register value. This value is added to the filter and a
1099 * new mean value is calculated and returned.
1101 static int ab8500_fg_calc_cap_discharge_fg(struct ab8500_fg
*di
)
1103 int permille_volt
, permille
;
1105 dev_dbg(di
->dev
, "%s cap_mah %d accu_charge %d\n",
1110 /* Capacity should not be less than 0 */
1111 if (di
->bat_cap
.mah
+ di
->accu_charge
> 0)
1112 di
->bat_cap
.mah
+= di
->accu_charge
;
1114 di
->bat_cap
.mah
= 0;
1116 if (di
->bat_cap
.mah
>= di
->bat_cap
.max_mah_design
)
1117 di
->bat_cap
.mah
= di
->bat_cap
.max_mah_design
;
1120 * Check against voltage based capacity. It can not be lower
1121 * than what the uncompensated voltage says
1123 permille
= ab8500_fg_convert_mah_to_permille(di
, di
->bat_cap
.mah
);
1124 permille_volt
= ab8500_fg_uncomp_volt_to_capacity(di
);
1126 if (permille
< permille_volt
) {
1127 di
->bat_cap
.permille
= permille_volt
;
1128 di
->bat_cap
.mah
= ab8500_fg_convert_permille_to_mah(di
,
1129 di
->bat_cap
.permille
);
1131 dev_dbg(di
->dev
, "%s voltage based: perm %d perm_volt %d\n",
1136 ab8500_fg_fill_cap_sample(di
, di
->bat_cap
.mah
);
1138 ab8500_fg_fill_cap_sample(di
, di
->bat_cap
.mah
);
1139 di
->bat_cap
.permille
=
1140 ab8500_fg_convert_mah_to_permille(di
, di
->bat_cap
.mah
);
1143 return di
->bat_cap
.mah
;
1147 * ab8500_fg_capacity_level() - Get the battery capacity level
1148 * @di: pointer to the ab8500_fg structure
1150 * Get the battery capacity level based on the capacity in percent
1152 static int ab8500_fg_capacity_level(struct ab8500_fg
*di
)
1156 percent
= DIV_ROUND_CLOSEST(di
->bat_cap
.permille
, 10);
1158 if (percent
<= di
->bm
->cap_levels
->critical
||
1160 ret
= POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL
;
1161 else if (percent
<= di
->bm
->cap_levels
->low
)
1162 ret
= POWER_SUPPLY_CAPACITY_LEVEL_LOW
;
1163 else if (percent
<= di
->bm
->cap_levels
->normal
)
1164 ret
= POWER_SUPPLY_CAPACITY_LEVEL_NORMAL
;
1165 else if (percent
<= di
->bm
->cap_levels
->high
)
1166 ret
= POWER_SUPPLY_CAPACITY_LEVEL_HIGH
;
1168 ret
= POWER_SUPPLY_CAPACITY_LEVEL_FULL
;
1174 * ab8500_fg_calculate_scaled_capacity() - Capacity scaling
1175 * @di: pointer to the ab8500_fg structure
1177 * Calculates the capacity to be shown to upper layers. Scales the capacity
1178 * to have 100% as a reference from the actual capacity upon removal of charger
1179 * when charging is in maintenance mode.
1181 static int ab8500_fg_calculate_scaled_capacity(struct ab8500_fg
*di
)
1183 struct ab8500_fg_cap_scaling
*cs
= &di
->bat_cap
.cap_scale
;
1184 int capacity
= di
->bat_cap
.prev_percent
;
1190 * As long as we are in fully charge mode scale the capacity
1193 if (di
->flags
.fully_charged
) {
1194 cs
->cap_to_scale
[0] = 100;
1195 cs
->cap_to_scale
[1] =
1196 max(capacity
, di
->bm
->fg_params
->maint_thres
);
1197 dev_dbg(di
->dev
, "Scale cap with %d/%d\n",
1198 cs
->cap_to_scale
[0], cs
->cap_to_scale
[1]);
1201 /* Calculates the scaled capacity. */
1202 if ((cs
->cap_to_scale
[0] != cs
->cap_to_scale
[1])
1203 && (cs
->cap_to_scale
[1] > 0))
1205 DIV_ROUND_CLOSEST(di
->bat_cap
.prev_percent
*
1206 cs
->cap_to_scale
[0],
1207 cs
->cap_to_scale
[1]));
1209 if (di
->flags
.charging
) {
1210 if (capacity
< cs
->disable_cap_level
) {
1211 cs
->disable_cap_level
= capacity
;
1212 dev_dbg(di
->dev
, "Cap to stop scale lowered %d%%\n",
1213 cs
->disable_cap_level
);
1214 } else if (!di
->flags
.fully_charged
) {
1215 if (di
->bat_cap
.prev_percent
>=
1216 cs
->disable_cap_level
) {
1217 dev_dbg(di
->dev
, "Disabling scaled capacity\n");
1219 capacity
= di
->bat_cap
.prev_percent
;
1222 "Waiting in cap to level %d%%\n",
1223 cs
->disable_cap_level
);
1224 capacity
= cs
->disable_cap_level
;
1233 * ab8500_fg_update_cap_scalers() - Capacity scaling
1234 * @di: pointer to the ab8500_fg structure
1236 * To be called when state change from charge<->discharge to update
1237 * the capacity scalers.
1239 static void ab8500_fg_update_cap_scalers(struct ab8500_fg
*di
)
1241 struct ab8500_fg_cap_scaling
*cs
= &di
->bat_cap
.cap_scale
;
1245 if (di
->flags
.charging
) {
1246 di
->bat_cap
.cap_scale
.disable_cap_level
=
1247 di
->bat_cap
.cap_scale
.scaled_cap
;
1248 dev_dbg(di
->dev
, "Cap to stop scale at charge %d%%\n",
1249 di
->bat_cap
.cap_scale
.disable_cap_level
);
1251 if (cs
->scaled_cap
!= 100) {
1252 cs
->cap_to_scale
[0] = cs
->scaled_cap
;
1253 cs
->cap_to_scale
[1] = di
->bat_cap
.prev_percent
;
1255 cs
->cap_to_scale
[0] = 100;
1256 cs
->cap_to_scale
[1] =
1257 max(di
->bat_cap
.prev_percent
,
1258 di
->bm
->fg_params
->maint_thres
);
1261 dev_dbg(di
->dev
, "Cap to scale at discharge %d/%d\n",
1262 cs
->cap_to_scale
[0], cs
->cap_to_scale
[1]);
1267 * ab8500_fg_check_capacity_limits() - Check if capacity has changed
1268 * @di: pointer to the ab8500_fg structure
1269 * @init: capacity is allowed to go up in init mode
1271 * Check if capacity or capacity limit has changed and notify the system
1272 * about it using the power_supply framework
1274 static void ab8500_fg_check_capacity_limits(struct ab8500_fg
*di
, bool init
)
1276 bool changed
= false;
1277 int percent
= DIV_ROUND_CLOSEST(di
->bat_cap
.permille
, 10);
1279 di
->bat_cap
.level
= ab8500_fg_capacity_level(di
);
1281 if (di
->bat_cap
.level
!= di
->bat_cap
.prev_level
) {
1283 * We do not allow reported capacity level to go up
1284 * unless we're charging or if we're in init
1286 if (!(!di
->flags
.charging
&& di
->bat_cap
.level
>
1287 di
->bat_cap
.prev_level
) || init
) {
1288 dev_dbg(di
->dev
, "level changed from %d to %d\n",
1289 di
->bat_cap
.prev_level
,
1291 di
->bat_cap
.prev_level
= di
->bat_cap
.level
;
1294 dev_dbg(di
->dev
, "level not allowed to go up "
1295 "since no charger is connected: %d to %d\n",
1296 di
->bat_cap
.prev_level
,
1302 * If we have received the LOW_BAT IRQ, set capacity to 0 to initiate
1305 if (di
->flags
.low_bat
) {
1306 dev_dbg(di
->dev
, "Battery low, set capacity to 0\n");
1307 di
->bat_cap
.prev_percent
= 0;
1308 di
->bat_cap
.permille
= 0;
1310 di
->bat_cap
.prev_mah
= 0;
1311 di
->bat_cap
.mah
= 0;
1313 } else if (di
->flags
.fully_charged
) {
1315 * We report 100% if algorithm reported fully charged
1316 * and show 100% during maintenance charging (scaling).
1318 if (di
->flags
.force_full
) {
1319 di
->bat_cap
.prev_percent
= percent
;
1320 di
->bat_cap
.prev_mah
= di
->bat_cap
.mah
;
1324 if (!di
->bat_cap
.cap_scale
.enable
&&
1325 di
->bm
->capacity_scaling
) {
1326 di
->bat_cap
.cap_scale
.enable
= true;
1327 di
->bat_cap
.cap_scale
.cap_to_scale
[0] = 100;
1328 di
->bat_cap
.cap_scale
.cap_to_scale
[1] =
1329 di
->bat_cap
.prev_percent
;
1330 di
->bat_cap
.cap_scale
.disable_cap_level
= 100;
1332 } else if (di
->bat_cap
.prev_percent
!= percent
) {
1334 "battery reported full "
1335 "but capacity dropping: %d\n",
1337 di
->bat_cap
.prev_percent
= percent
;
1338 di
->bat_cap
.prev_mah
= di
->bat_cap
.mah
;
1342 } else if (di
->bat_cap
.prev_percent
!= percent
) {
1345 * We will not report 0% unless we've got
1346 * the LOW_BAT IRQ, no matter what the FG
1349 di
->bat_cap
.prev_percent
= 1;
1353 } else if (!(!di
->flags
.charging
&&
1354 percent
> di
->bat_cap
.prev_percent
) || init
) {
1356 * We do not allow reported capacity to go up
1357 * unless we're charging or if we're in init
1360 "capacity changed from %d to %d (%d)\n",
1361 di
->bat_cap
.prev_percent
,
1363 di
->bat_cap
.permille
);
1364 di
->bat_cap
.prev_percent
= percent
;
1365 di
->bat_cap
.prev_mah
= di
->bat_cap
.mah
;
1369 dev_dbg(di
->dev
, "capacity not allowed to go up since "
1370 "no charger is connected: %d to %d (%d)\n",
1371 di
->bat_cap
.prev_percent
,
1373 di
->bat_cap
.permille
);
1378 if (di
->bm
->capacity_scaling
) {
1379 di
->bat_cap
.cap_scale
.scaled_cap
=
1380 ab8500_fg_calculate_scaled_capacity(di
);
1382 dev_info(di
->dev
, "capacity=%d (%d)\n",
1383 di
->bat_cap
.prev_percent
,
1384 di
->bat_cap
.cap_scale
.scaled_cap
);
1386 power_supply_changed(di
->fg_psy
);
1387 if (di
->flags
.fully_charged
&& di
->flags
.force_full
) {
1388 dev_dbg(di
->dev
, "Battery full, notifying.\n");
1389 di
->flags
.force_full
= false;
1390 sysfs_notify(&di
->fg_kobject
, NULL
, "charge_full");
1392 sysfs_notify(&di
->fg_kobject
, NULL
, "charge_now");
1396 static void ab8500_fg_charge_state_to(struct ab8500_fg
*di
,
1397 enum ab8500_fg_charge_state new_state
)
1399 dev_dbg(di
->dev
, "Charge state from %d [%s] to %d [%s]\n",
1401 charge_state
[di
->charge_state
],
1403 charge_state
[new_state
]);
1405 di
->charge_state
= new_state
;
1408 static void ab8500_fg_discharge_state_to(struct ab8500_fg
*di
,
1409 enum ab8500_fg_discharge_state new_state
)
1411 dev_dbg(di
->dev
, "Disharge state from %d [%s] to %d [%s]\n",
1412 di
->discharge_state
,
1413 discharge_state
[di
->discharge_state
],
1415 discharge_state
[new_state
]);
1417 di
->discharge_state
= new_state
;
1421 * ab8500_fg_algorithm_charging() - FG algorithm for when charging
1422 * @di: pointer to the ab8500_fg structure
1424 * Battery capacity calculation state machine for when we're charging
1426 static void ab8500_fg_algorithm_charging(struct ab8500_fg
*di
)
1429 * If we change to discharge mode
1430 * we should start with recovery
1432 if (di
->discharge_state
!= AB8500_FG_DISCHARGE_INIT_RECOVERY
)
1433 ab8500_fg_discharge_state_to(di
,
1434 AB8500_FG_DISCHARGE_INIT_RECOVERY
);
1436 switch (di
->charge_state
) {
1437 case AB8500_FG_CHARGE_INIT
:
1438 di
->fg_samples
= SEC_TO_SAMPLE(
1439 di
->bm
->fg_params
->accu_charging
);
1441 ab8500_fg_coulomb_counter(di
, true);
1442 ab8500_fg_charge_state_to(di
, AB8500_FG_CHARGE_READOUT
);
1446 case AB8500_FG_CHARGE_READOUT
:
1448 * Read the FG and calculate the new capacity
1450 mutex_lock(&di
->cc_lock
);
1451 if (!di
->flags
.conv_done
&& !di
->flags
.force_full
) {
1452 /* Wasn't the CC IRQ that got us here */
1453 mutex_unlock(&di
->cc_lock
);
1454 dev_dbg(di
->dev
, "%s CC conv not done\n",
1459 di
->flags
.conv_done
= false;
1460 mutex_unlock(&di
->cc_lock
);
1462 ab8500_fg_calc_cap_charging(di
);
1470 /* Check capacity limits */
1471 ab8500_fg_check_capacity_limits(di
, false);
1474 static void force_capacity(struct ab8500_fg
*di
)
1478 ab8500_fg_clear_cap_samples(di
);
1479 cap
= di
->bat_cap
.user_mah
;
1480 if (cap
> di
->bat_cap
.max_mah_design
) {
1481 dev_dbg(di
->dev
, "Remaining cap %d can't be bigger than total"
1482 " %d\n", cap
, di
->bat_cap
.max_mah_design
);
1483 cap
= di
->bat_cap
.max_mah_design
;
1485 ab8500_fg_fill_cap_sample(di
, di
->bat_cap
.user_mah
);
1486 di
->bat_cap
.permille
= ab8500_fg_convert_mah_to_permille(di
, cap
);
1487 di
->bat_cap
.mah
= cap
;
1488 ab8500_fg_check_capacity_limits(di
, true);
1491 static bool check_sysfs_capacity(struct ab8500_fg
*di
)
1493 int cap
, lower
, upper
;
1496 cap
= di
->bat_cap
.user_mah
;
1498 cap_permille
= ab8500_fg_convert_mah_to_permille(di
,
1499 di
->bat_cap
.user_mah
);
1501 lower
= di
->bat_cap
.permille
- di
->bm
->fg_params
->user_cap_limit
* 10;
1502 upper
= di
->bat_cap
.permille
+ di
->bm
->fg_params
->user_cap_limit
* 10;
1506 /* 1000 is permille, -> 100 percent */
1510 dev_dbg(di
->dev
, "Capacity limits:"
1511 " (Lower: %d User: %d Upper: %d) [user: %d, was: %d]\n",
1512 lower
, cap_permille
, upper
, cap
, di
->bat_cap
.mah
);
1514 /* If within limits, use the saved capacity and exit estimation...*/
1515 if (cap_permille
> lower
&& cap_permille
< upper
) {
1516 dev_dbg(di
->dev
, "OK! Using users cap %d uAh now\n", cap
);
1520 dev_dbg(di
->dev
, "Capacity from user out of limits, ignoring");
1525 * ab8500_fg_algorithm_discharging() - FG algorithm for when discharging
1526 * @di: pointer to the ab8500_fg structure
1528 * Battery capacity calculation state machine for when we're discharging
1530 static void ab8500_fg_algorithm_discharging(struct ab8500_fg
*di
)
1534 /* If we change to charge mode we should start with init */
1535 if (di
->charge_state
!= AB8500_FG_CHARGE_INIT
)
1536 ab8500_fg_charge_state_to(di
, AB8500_FG_CHARGE_INIT
);
1538 switch (di
->discharge_state
) {
1539 case AB8500_FG_DISCHARGE_INIT
:
1540 /* We use the FG IRQ to work on */
1542 di
->fg_samples
= SEC_TO_SAMPLE(di
->bm
->fg_params
->init_timer
);
1543 ab8500_fg_coulomb_counter(di
, true);
1544 ab8500_fg_discharge_state_to(di
,
1545 AB8500_FG_DISCHARGE_INITMEASURING
);
1547 /* Intentional fallthrough */
1548 case AB8500_FG_DISCHARGE_INITMEASURING
:
1550 * Discard a number of samples during startup.
1551 * After that, use compensated voltage for a few
1552 * samples to get an initial capacity.
1553 * Then go to READOUT
1555 sleep_time
= di
->bm
->fg_params
->init_timer
;
1557 /* Discard the first [x] seconds */
1558 if (di
->init_cnt
> di
->bm
->fg_params
->init_discard_time
) {
1559 ab8500_fg_calc_cap_discharge_voltage(di
, true);
1561 ab8500_fg_check_capacity_limits(di
, true);
1564 di
->init_cnt
+= sleep_time
;
1565 if (di
->init_cnt
> di
->bm
->fg_params
->init_total_time
)
1566 ab8500_fg_discharge_state_to(di
,
1567 AB8500_FG_DISCHARGE_READOUT_INIT
);
1571 case AB8500_FG_DISCHARGE_INIT_RECOVERY
:
1572 di
->recovery_cnt
= 0;
1573 di
->recovery_needed
= true;
1574 ab8500_fg_discharge_state_to(di
,
1575 AB8500_FG_DISCHARGE_RECOVERY
);
1577 /* Intentional fallthrough */
1579 case AB8500_FG_DISCHARGE_RECOVERY
:
1580 sleep_time
= di
->bm
->fg_params
->recovery_sleep_timer
;
1583 * We should check the power consumption
1584 * If low, go to READOUT (after x min) or
1585 * RECOVERY_SLEEP if time left.
1586 * If high, go to READOUT
1588 di
->inst_curr
= ab8500_fg_inst_curr_blocking(di
);
1590 if (ab8500_fg_is_low_curr(di
, di
->inst_curr
)) {
1591 if (di
->recovery_cnt
>
1592 di
->bm
->fg_params
->recovery_total_time
) {
1593 di
->fg_samples
= SEC_TO_SAMPLE(
1594 di
->bm
->fg_params
->accu_high_curr
);
1595 ab8500_fg_coulomb_counter(di
, true);
1596 ab8500_fg_discharge_state_to(di
,
1597 AB8500_FG_DISCHARGE_READOUT
);
1598 di
->recovery_needed
= false;
1600 queue_delayed_work(di
->fg_wq
,
1601 &di
->fg_periodic_work
,
1604 di
->recovery_cnt
+= sleep_time
;
1606 di
->fg_samples
= SEC_TO_SAMPLE(
1607 di
->bm
->fg_params
->accu_high_curr
);
1608 ab8500_fg_coulomb_counter(di
, true);
1609 ab8500_fg_discharge_state_to(di
,
1610 AB8500_FG_DISCHARGE_READOUT
);
1614 case AB8500_FG_DISCHARGE_READOUT_INIT
:
1615 di
->fg_samples
= SEC_TO_SAMPLE(
1616 di
->bm
->fg_params
->accu_high_curr
);
1617 ab8500_fg_coulomb_counter(di
, true);
1618 ab8500_fg_discharge_state_to(di
,
1619 AB8500_FG_DISCHARGE_READOUT
);
1622 case AB8500_FG_DISCHARGE_READOUT
:
1623 di
->inst_curr
= ab8500_fg_inst_curr_blocking(di
);
1625 if (ab8500_fg_is_low_curr(di
, di
->inst_curr
)) {
1626 /* Detect mode change */
1627 if (di
->high_curr_mode
) {
1628 di
->high_curr_mode
= false;
1629 di
->high_curr_cnt
= 0;
1632 if (di
->recovery_needed
) {
1633 ab8500_fg_discharge_state_to(di
,
1634 AB8500_FG_DISCHARGE_INIT_RECOVERY
);
1636 queue_delayed_work(di
->fg_wq
,
1637 &di
->fg_periodic_work
, 0);
1642 ab8500_fg_calc_cap_discharge_voltage(di
, true);
1644 mutex_lock(&di
->cc_lock
);
1645 if (!di
->flags
.conv_done
) {
1646 /* Wasn't the CC IRQ that got us here */
1647 mutex_unlock(&di
->cc_lock
);
1648 dev_dbg(di
->dev
, "%s CC conv not done\n",
1653 di
->flags
.conv_done
= false;
1654 mutex_unlock(&di
->cc_lock
);
1656 /* Detect mode change */
1657 if (!di
->high_curr_mode
) {
1658 di
->high_curr_mode
= true;
1659 di
->high_curr_cnt
= 0;
1662 di
->high_curr_cnt
+=
1663 di
->bm
->fg_params
->accu_high_curr
;
1664 if (di
->high_curr_cnt
>
1665 di
->bm
->fg_params
->high_curr_time
)
1666 di
->recovery_needed
= true;
1668 ab8500_fg_calc_cap_discharge_fg(di
);
1671 ab8500_fg_check_capacity_limits(di
, false);
1675 case AB8500_FG_DISCHARGE_WAKEUP
:
1676 ab8500_fg_calc_cap_discharge_voltage(di
, true);
1678 di
->fg_samples
= SEC_TO_SAMPLE(
1679 di
->bm
->fg_params
->accu_high_curr
);
1680 ab8500_fg_coulomb_counter(di
, true);
1681 ab8500_fg_discharge_state_to(di
,
1682 AB8500_FG_DISCHARGE_READOUT
);
1684 ab8500_fg_check_capacity_limits(di
, false);
1694 * ab8500_fg_algorithm_calibrate() - Internal columb counter offset calibration
1695 * @di: pointer to the ab8500_fg structure
1698 static void ab8500_fg_algorithm_calibrate(struct ab8500_fg
*di
)
1702 switch (di
->calib_state
) {
1703 case AB8500_FG_CALIB_INIT
:
1704 dev_dbg(di
->dev
, "Calibration ongoing...\n");
1706 ret
= abx500_mask_and_set_register_interruptible(di
->dev
,
1707 AB8500_GAS_GAUGE
, AB8500_GASG_CC_CTRL_REG
,
1708 CC_INT_CAL_N_AVG_MASK
, CC_INT_CAL_SAMPLES_8
);
1712 ret
= abx500_mask_and_set_register_interruptible(di
->dev
,
1713 AB8500_GAS_GAUGE
, AB8500_GASG_CC_CTRL_REG
,
1714 CC_INTAVGOFFSET_ENA
, CC_INTAVGOFFSET_ENA
);
1717 di
->calib_state
= AB8500_FG_CALIB_WAIT
;
1719 case AB8500_FG_CALIB_END
:
1720 ret
= abx500_mask_and_set_register_interruptible(di
->dev
,
1721 AB8500_GAS_GAUGE
, AB8500_GASG_CC_CTRL_REG
,
1722 CC_MUXOFFSET
, CC_MUXOFFSET
);
1725 di
->flags
.calibrate
= false;
1726 dev_dbg(di
->dev
, "Calibration done...\n");
1727 queue_delayed_work(di
->fg_wq
, &di
->fg_periodic_work
, 0);
1729 case AB8500_FG_CALIB_WAIT
:
1730 dev_dbg(di
->dev
, "Calibration WFI\n");
1736 /* Something went wrong, don't calibrate then */
1737 dev_err(di
->dev
, "failed to calibrate the CC\n");
1738 di
->flags
.calibrate
= false;
1739 di
->calib_state
= AB8500_FG_CALIB_INIT
;
1740 queue_delayed_work(di
->fg_wq
, &di
->fg_periodic_work
, 0);
1744 * ab8500_fg_algorithm() - Entry point for the FG algorithm
1745 * @di: pointer to the ab8500_fg structure
1747 * Entry point for the battery capacity calculation state machine
1749 static void ab8500_fg_algorithm(struct ab8500_fg
*di
)
1751 if (di
->flags
.calibrate
)
1752 ab8500_fg_algorithm_calibrate(di
);
1754 if (di
->flags
.charging
)
1755 ab8500_fg_algorithm_charging(di
);
1757 ab8500_fg_algorithm_discharging(di
);
1760 dev_dbg(di
->dev
, "[FG_DATA] %d %d %d %d %d %d %d %d %d %d "
1761 "%d %d %d %d %d %d %d\n",
1762 di
->bat_cap
.max_mah_design
,
1763 di
->bat_cap
.max_mah
,
1765 di
->bat_cap
.permille
,
1767 di
->bat_cap
.prev_mah
,
1768 di
->bat_cap
.prev_percent
,
1769 di
->bat_cap
.prev_level
,
1776 di
->discharge_state
,
1778 di
->recovery_needed
);
1782 * ab8500_fg_periodic_work() - Run the FG state machine periodically
1783 * @work: pointer to the work_struct structure
1785 * Work queue function for periodic work
1787 static void ab8500_fg_periodic_work(struct work_struct
*work
)
1789 struct ab8500_fg
*di
= container_of(work
, struct ab8500_fg
,
1790 fg_periodic_work
.work
);
1792 if (di
->init_capacity
) {
1793 /* Get an initial capacity calculation */
1794 ab8500_fg_calc_cap_discharge_voltage(di
, true);
1795 ab8500_fg_check_capacity_limits(di
, true);
1796 di
->init_capacity
= false;
1798 queue_delayed_work(di
->fg_wq
, &di
->fg_periodic_work
, 0);
1799 } else if (di
->flags
.user_cap
) {
1800 if (check_sysfs_capacity(di
)) {
1801 ab8500_fg_check_capacity_limits(di
, true);
1802 if (di
->flags
.charging
)
1803 ab8500_fg_charge_state_to(di
,
1804 AB8500_FG_CHARGE_INIT
);
1806 ab8500_fg_discharge_state_to(di
,
1807 AB8500_FG_DISCHARGE_READOUT_INIT
);
1809 di
->flags
.user_cap
= false;
1810 queue_delayed_work(di
->fg_wq
, &di
->fg_periodic_work
, 0);
1812 ab8500_fg_algorithm(di
);
1817 * ab8500_fg_check_hw_failure_work() - Check OVV_BAT condition
1818 * @work: pointer to the work_struct structure
1820 * Work queue function for checking the OVV_BAT condition
1822 static void ab8500_fg_check_hw_failure_work(struct work_struct
*work
)
1827 struct ab8500_fg
*di
= container_of(work
, struct ab8500_fg
,
1828 fg_check_hw_failure_work
.work
);
1831 * If we have had a battery over-voltage situation,
1832 * check ovv-bit to see if it should be reset.
1834 ret
= abx500_get_register_interruptible(di
->dev
,
1835 AB8500_CHARGER
, AB8500_CH_STAT_REG
,
1838 dev_err(di
->dev
, "%s ab8500 read failed\n", __func__
);
1841 if ((reg_value
& BATT_OVV
) == BATT_OVV
) {
1842 if (!di
->flags
.bat_ovv
) {
1843 dev_dbg(di
->dev
, "Battery OVV\n");
1844 di
->flags
.bat_ovv
= true;
1845 power_supply_changed(di
->fg_psy
);
1847 /* Not yet recovered from ovv, reschedule this test */
1848 queue_delayed_work(di
->fg_wq
, &di
->fg_check_hw_failure_work
,
1851 dev_dbg(di
->dev
, "Battery recovered from OVV\n");
1852 di
->flags
.bat_ovv
= false;
1853 power_supply_changed(di
->fg_psy
);
1858 * ab8500_fg_low_bat_work() - Check LOW_BAT condition
1859 * @work: pointer to the work_struct structure
1861 * Work queue function for checking the LOW_BAT condition
1863 static void ab8500_fg_low_bat_work(struct work_struct
*work
)
1867 struct ab8500_fg
*di
= container_of(work
, struct ab8500_fg
,
1868 fg_low_bat_work
.work
);
1870 vbat
= ab8500_fg_bat_voltage(di
);
1872 /* Check if LOW_BAT still fulfilled */
1873 if (vbat
< di
->bm
->fg_params
->lowbat_threshold
) {
1874 /* Is it time to shut down? */
1875 if (di
->low_bat_cnt
< 1) {
1876 di
->flags
.low_bat
= true;
1877 dev_warn(di
->dev
, "Shut down pending...\n");
1880 * Else we need to re-schedule this check to be able to detect
1881 * if the voltage increases again during charging or
1882 * due to decreasing load.
1885 dev_warn(di
->dev
, "Battery voltage still LOW\n");
1886 queue_delayed_work(di
->fg_wq
, &di
->fg_low_bat_work
,
1887 round_jiffies(LOW_BAT_CHECK_INTERVAL
));
1890 di
->flags
.low_bat_delay
= false;
1891 di
->low_bat_cnt
= 10;
1892 dev_warn(di
->dev
, "Battery voltage OK again\n");
1895 /* This is needed to dispatch LOW_BAT */
1896 ab8500_fg_check_capacity_limits(di
, false);
1900 * ab8500_fg_battok_calc - calculate the bit pattern corresponding
1901 * to the target voltage.
1902 * @di: pointer to the ab8500_fg structure
1903 * @target: target voltage
1905 * Returns bit pattern closest to the target voltage
1906 * valid return values are 0-14. (0-BATT_OK_MAX_NR_INCREMENTS)
1909 static int ab8500_fg_battok_calc(struct ab8500_fg
*di
, int target
)
1911 if (target
> BATT_OK_MIN
+
1912 (BATT_OK_INCREMENT
* BATT_OK_MAX_NR_INCREMENTS
))
1913 return BATT_OK_MAX_NR_INCREMENTS
;
1914 if (target
< BATT_OK_MIN
)
1916 return (target
- BATT_OK_MIN
) / BATT_OK_INCREMENT
;
1920 * ab8500_fg_battok_init_hw_register - init battok levels
1921 * @di: pointer to the ab8500_fg structure
1925 static int ab8500_fg_battok_init_hw_register(struct ab8500_fg
*di
)
1935 sel0
= di
->bm
->fg_params
->battok_falling_th_sel0
;
1936 sel1
= di
->bm
->fg_params
->battok_raising_th_sel1
;
1938 cbp_sel0
= ab8500_fg_battok_calc(di
, sel0
);
1939 cbp_sel1
= ab8500_fg_battok_calc(di
, sel1
);
1941 selected
= BATT_OK_MIN
+ cbp_sel0
* BATT_OK_INCREMENT
;
1943 if (selected
!= sel0
)
1944 dev_warn(di
->dev
, "Invalid voltage step:%d, using %d %d\n",
1945 sel0
, selected
, cbp_sel0
);
1947 selected
= BATT_OK_MIN
+ cbp_sel1
* BATT_OK_INCREMENT
;
1949 if (selected
!= sel1
)
1950 dev_warn(di
->dev
, "Invalid voltage step:%d, using %d %d\n",
1951 sel1
, selected
, cbp_sel1
);
1953 new_val
= cbp_sel0
| (cbp_sel1
<< 4);
1955 dev_dbg(di
->dev
, "using: %x %d %d\n", new_val
, cbp_sel0
, cbp_sel1
);
1956 ret
= abx500_set_register_interruptible(di
->dev
, AB8500_SYS_CTRL2_BLOCK
,
1957 AB8500_BATT_OK_REG
, new_val
);
1962 * ab8500_fg_instant_work() - Run the FG state machine instantly
1963 * @work: pointer to the work_struct structure
1965 * Work queue function for instant work
1967 static void ab8500_fg_instant_work(struct work_struct
*work
)
1969 struct ab8500_fg
*di
= container_of(work
, struct ab8500_fg
, fg_work
);
1971 ab8500_fg_algorithm(di
);
1975 * ab8500_fg_cc_data_end_handler() - end of data conversion isr.
1976 * @irq: interrupt number
1977 * @_di: pointer to the ab8500_fg structure
1979 * Returns IRQ status(IRQ_HANDLED)
1981 static irqreturn_t
ab8500_fg_cc_data_end_handler(int irq
, void *_di
)
1983 struct ab8500_fg
*di
= _di
;
1984 if (!di
->nbr_cceoc_irq_cnt
) {
1985 di
->nbr_cceoc_irq_cnt
++;
1986 complete(&di
->ab8500_fg_started
);
1988 di
->nbr_cceoc_irq_cnt
= 0;
1989 complete(&di
->ab8500_fg_complete
);
1995 * ab8500_fg_cc_int_calib_handler () - end of calibration isr.
1996 * @irq: interrupt number
1997 * @_di: pointer to the ab8500_fg structure
1999 * Returns IRQ status(IRQ_HANDLED)
2001 static irqreturn_t
ab8500_fg_cc_int_calib_handler(int irq
, void *_di
)
2003 struct ab8500_fg
*di
= _di
;
2004 di
->calib_state
= AB8500_FG_CALIB_END
;
2005 queue_delayed_work(di
->fg_wq
, &di
->fg_periodic_work
, 0);
2010 * ab8500_fg_cc_convend_handler() - isr to get battery avg current.
2011 * @irq: interrupt number
2012 * @_di: pointer to the ab8500_fg structure
2014 * Returns IRQ status(IRQ_HANDLED)
2016 static irqreturn_t
ab8500_fg_cc_convend_handler(int irq
, void *_di
)
2018 struct ab8500_fg
*di
= _di
;
2020 queue_work(di
->fg_wq
, &di
->fg_acc_cur_work
);
2026 * ab8500_fg_batt_ovv_handler() - Battery OVV occured
2027 * @irq: interrupt number
2028 * @_di: pointer to the ab8500_fg structure
2030 * Returns IRQ status(IRQ_HANDLED)
2032 static irqreturn_t
ab8500_fg_batt_ovv_handler(int irq
, void *_di
)
2034 struct ab8500_fg
*di
= _di
;
2036 dev_dbg(di
->dev
, "Battery OVV\n");
2038 /* Schedule a new HW failure check */
2039 queue_delayed_work(di
->fg_wq
, &di
->fg_check_hw_failure_work
, 0);
2045 * ab8500_fg_lowbatf_handler() - Battery voltage is below LOW threshold
2046 * @irq: interrupt number
2047 * @_di: pointer to the ab8500_fg structure
2049 * Returns IRQ status(IRQ_HANDLED)
2051 static irqreturn_t
ab8500_fg_lowbatf_handler(int irq
, void *_di
)
2053 struct ab8500_fg
*di
= _di
;
2055 /* Initiate handling in ab8500_fg_low_bat_work() if not already initiated. */
2056 if (!di
->flags
.low_bat_delay
) {
2057 dev_warn(di
->dev
, "Battery voltage is below LOW threshold\n");
2058 di
->flags
.low_bat_delay
= true;
2060 * Start a timer to check LOW_BAT again after some time
2061 * This is done to avoid shutdown on single voltage dips
2063 queue_delayed_work(di
->fg_wq
, &di
->fg_low_bat_work
,
2064 round_jiffies(LOW_BAT_CHECK_INTERVAL
));
2070 * ab8500_fg_get_property() - get the fg properties
2071 * @psy: pointer to the power_supply structure
2072 * @psp: pointer to the power_supply_property structure
2073 * @val: pointer to the power_supply_propval union
2075 * This function gets called when an application tries to get the
2076 * fg properties by reading the sysfs files.
2077 * voltage_now: battery voltage
2078 * current_now: battery instant current
2079 * current_avg: battery average current
2080 * charge_full_design: capacity where battery is considered full
2081 * charge_now: battery capacity in nAh
2082 * capacity: capacity in percent
2083 * capacity_level: capacity level
2085 * Returns error code in case of failure else 0 on success
2087 static int ab8500_fg_get_property(struct power_supply
*psy
,
2088 enum power_supply_property psp
,
2089 union power_supply_propval
*val
)
2091 struct ab8500_fg
*di
= power_supply_get_drvdata(psy
);
2094 * If battery is identified as unknown and charging of unknown
2095 * batteries is disabled, we always report 100% capacity and
2096 * capacity level UNKNOWN, since we can't calculate
2097 * remaining capacity
2101 case POWER_SUPPLY_PROP_VOLTAGE_NOW
:
2102 if (di
->flags
.bat_ovv
)
2103 val
->intval
= BATT_OVV_VALUE
* 1000;
2105 val
->intval
= di
->vbat
* 1000;
2107 case POWER_SUPPLY_PROP_CURRENT_NOW
:
2108 val
->intval
= di
->inst_curr
* 1000;
2110 case POWER_SUPPLY_PROP_CURRENT_AVG
:
2111 val
->intval
= di
->avg_curr
* 1000;
2113 case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN
:
2114 val
->intval
= ab8500_fg_convert_mah_to_uwh(di
,
2115 di
->bat_cap
.max_mah_design
);
2117 case POWER_SUPPLY_PROP_ENERGY_FULL
:
2118 val
->intval
= ab8500_fg_convert_mah_to_uwh(di
,
2119 di
->bat_cap
.max_mah
);
2121 case POWER_SUPPLY_PROP_ENERGY_NOW
:
2122 if (di
->flags
.batt_unknown
&& !di
->bm
->chg_unknown_bat
&&
2123 di
->flags
.batt_id_received
)
2124 val
->intval
= ab8500_fg_convert_mah_to_uwh(di
,
2125 di
->bat_cap
.max_mah
);
2127 val
->intval
= ab8500_fg_convert_mah_to_uwh(di
,
2128 di
->bat_cap
.prev_mah
);
2130 case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN
:
2131 val
->intval
= di
->bat_cap
.max_mah_design
;
2133 case POWER_SUPPLY_PROP_CHARGE_FULL
:
2134 val
->intval
= di
->bat_cap
.max_mah
;
2136 case POWER_SUPPLY_PROP_CHARGE_NOW
:
2137 if (di
->flags
.batt_unknown
&& !di
->bm
->chg_unknown_bat
&&
2138 di
->flags
.batt_id_received
)
2139 val
->intval
= di
->bat_cap
.max_mah
;
2141 val
->intval
= di
->bat_cap
.prev_mah
;
2143 case POWER_SUPPLY_PROP_CAPACITY
:
2144 if (di
->flags
.batt_unknown
&& !di
->bm
->chg_unknown_bat
&&
2145 di
->flags
.batt_id_received
)
2148 val
->intval
= di
->bat_cap
.prev_percent
;
2150 case POWER_SUPPLY_PROP_CAPACITY_LEVEL
:
2151 if (di
->flags
.batt_unknown
&& !di
->bm
->chg_unknown_bat
&&
2152 di
->flags
.batt_id_received
)
2153 val
->intval
= POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN
;
2155 val
->intval
= di
->bat_cap
.prev_level
;
2163 static int ab8500_fg_get_ext_psy_data(struct device
*dev
, void *data
)
2165 struct power_supply
*psy
;
2166 struct power_supply
*ext
= dev_get_drvdata(dev
);
2167 const char **supplicants
= (const char **)ext
->supplied_to
;
2168 struct ab8500_fg
*di
;
2169 union power_supply_propval ret
;
2172 psy
= (struct power_supply
*)data
;
2173 di
= power_supply_get_drvdata(psy
);
2176 * For all psy where the name of your driver
2177 * appears in any supplied_to
2179 j
= match_string(supplicants
, ext
->num_supplicants
, psy
->desc
->name
);
2183 /* Go through all properties for the psy */
2184 for (j
= 0; j
< ext
->desc
->num_properties
; j
++) {
2185 enum power_supply_property prop
;
2186 prop
= ext
->desc
->properties
[j
];
2188 if (power_supply_get_property(ext
, prop
, &ret
))
2192 case POWER_SUPPLY_PROP_STATUS
:
2193 switch (ext
->desc
->type
) {
2194 case POWER_SUPPLY_TYPE_BATTERY
:
2195 switch (ret
.intval
) {
2196 case POWER_SUPPLY_STATUS_UNKNOWN
:
2197 case POWER_SUPPLY_STATUS_DISCHARGING
:
2198 case POWER_SUPPLY_STATUS_NOT_CHARGING
:
2199 if (!di
->flags
.charging
)
2201 di
->flags
.charging
= false;
2202 di
->flags
.fully_charged
= false;
2203 if (di
->bm
->capacity_scaling
)
2204 ab8500_fg_update_cap_scalers(di
);
2205 queue_work(di
->fg_wq
, &di
->fg_work
);
2207 case POWER_SUPPLY_STATUS_FULL
:
2208 if (di
->flags
.fully_charged
)
2210 di
->flags
.fully_charged
= true;
2211 di
->flags
.force_full
= true;
2212 /* Save current capacity as maximum */
2213 di
->bat_cap
.max_mah
= di
->bat_cap
.mah
;
2214 queue_work(di
->fg_wq
, &di
->fg_work
);
2216 case POWER_SUPPLY_STATUS_CHARGING
:
2217 if (di
->flags
.charging
&&
2218 !di
->flags
.fully_charged
)
2220 di
->flags
.charging
= true;
2221 di
->flags
.fully_charged
= false;
2222 if (di
->bm
->capacity_scaling
)
2223 ab8500_fg_update_cap_scalers(di
);
2224 queue_work(di
->fg_wq
, &di
->fg_work
);
2231 case POWER_SUPPLY_PROP_TECHNOLOGY
:
2232 switch (ext
->desc
->type
) {
2233 case POWER_SUPPLY_TYPE_BATTERY
:
2234 if (!di
->flags
.batt_id_received
&&
2235 di
->bm
->batt_id
!= BATTERY_UNKNOWN
) {
2236 const struct abx500_battery_type
*b
;
2238 b
= &(di
->bm
->bat_type
[di
->bm
->batt_id
]);
2240 di
->flags
.batt_id_received
= true;
2242 di
->bat_cap
.max_mah_design
=
2244 b
->charge_full_design
;
2246 di
->bat_cap
.max_mah
=
2247 di
->bat_cap
.max_mah_design
;
2249 di
->vbat_nom
= b
->nominal_voltage
;
2253 di
->flags
.batt_unknown
= false;
2255 di
->flags
.batt_unknown
= true;
2261 case POWER_SUPPLY_PROP_TEMP
:
2262 switch (ext
->desc
->type
) {
2263 case POWER_SUPPLY_TYPE_BATTERY
:
2264 if (di
->flags
.batt_id_received
)
2265 di
->bat_temp
= ret
.intval
;
2279 * ab8500_fg_init_hw_registers() - Set up FG related registers
2280 * @di: pointer to the ab8500_fg structure
2282 * Set up battery OVV, low battery voltage registers
2284 static int ab8500_fg_init_hw_registers(struct ab8500_fg
*di
)
2288 /* Set VBAT OVV threshold */
2289 ret
= abx500_mask_and_set_register_interruptible(di
->dev
,
2295 dev_err(di
->dev
, "failed to set BATT_OVV\n");
2299 /* Enable VBAT OVV detection */
2300 ret
= abx500_mask_and_set_register_interruptible(di
->dev
,
2306 dev_err(di
->dev
, "failed to enable BATT_OVV\n");
2310 /* Low Battery Voltage */
2311 ret
= abx500_set_register_interruptible(di
->dev
,
2312 AB8500_SYS_CTRL2_BLOCK
,
2314 ab8500_volt_to_regval(
2315 di
->bm
->fg_params
->lowbat_threshold
) << 1 |
2318 dev_err(di
->dev
, "%s write failed\n", __func__
);
2322 /* Battery OK threshold */
2323 ret
= ab8500_fg_battok_init_hw_register(di
);
2325 dev_err(di
->dev
, "BattOk init write failed.\n");
2329 if (((is_ab8505(di
->parent
) || is_ab9540(di
->parent
)) &&
2330 abx500_get_chip_id(di
->dev
) >= AB8500_CUT2P0
)
2331 || is_ab8540(di
->parent
)) {
2332 ret
= abx500_set_register_interruptible(di
->dev
, AB8500_RTC
,
2333 AB8505_RTC_PCUT_MAX_TIME_REG
, di
->bm
->fg_params
->pcut_max_time
);
2336 dev_err(di
->dev
, "%s write failed AB8505_RTC_PCUT_MAX_TIME_REG\n", __func__
);
2340 ret
= abx500_set_register_interruptible(di
->dev
, AB8500_RTC
,
2341 AB8505_RTC_PCUT_FLAG_TIME_REG
, di
->bm
->fg_params
->pcut_flag_time
);
2344 dev_err(di
->dev
, "%s write failed AB8505_RTC_PCUT_FLAG_TIME_REG\n", __func__
);
2348 ret
= abx500_set_register_interruptible(di
->dev
, AB8500_RTC
,
2349 AB8505_RTC_PCUT_RESTART_REG
, di
->bm
->fg_params
->pcut_max_restart
);
2352 dev_err(di
->dev
, "%s write failed AB8505_RTC_PCUT_RESTART_REG\n", __func__
);
2356 ret
= abx500_set_register_interruptible(di
->dev
, AB8500_RTC
,
2357 AB8505_RTC_PCUT_DEBOUNCE_REG
, di
->bm
->fg_params
->pcut_debounce_time
);
2360 dev_err(di
->dev
, "%s write failed AB8505_RTC_PCUT_DEBOUNCE_REG\n", __func__
);
2364 ret
= abx500_set_register_interruptible(di
->dev
, AB8500_RTC
,
2365 AB8505_RTC_PCUT_CTL_STATUS_REG
, di
->bm
->fg_params
->pcut_enable
);
2368 dev_err(di
->dev
, "%s write failed AB8505_RTC_PCUT_CTL_STATUS_REG\n", __func__
);
2377 * ab8500_fg_external_power_changed() - callback for power supply changes
2378 * @psy: pointer to the structure power_supply
2380 * This function is the entry point of the pointer external_power_changed
2381 * of the structure power_supply.
2382 * This function gets executed when there is a change in any external power
2383 * supply that this driver needs to be notified of.
2385 static void ab8500_fg_external_power_changed(struct power_supply
*psy
)
2387 struct ab8500_fg
*di
= power_supply_get_drvdata(psy
);
2389 class_for_each_device(power_supply_class
, NULL
,
2390 di
->fg_psy
, ab8500_fg_get_ext_psy_data
);
2394 * ab8500_fg_reinit_work() - work to reset the FG algorithm
2395 * @work: pointer to the work_struct structure
2397 * Used to reset the current battery capacity to be able to
2398 * retrigger a new voltage base capacity calculation. For
2399 * test and verification purpose.
2401 static void ab8500_fg_reinit_work(struct work_struct
*work
)
2403 struct ab8500_fg
*di
= container_of(work
, struct ab8500_fg
,
2404 fg_reinit_work
.work
);
2406 if (di
->flags
.calibrate
== false) {
2407 dev_dbg(di
->dev
, "Resetting FG state machine to init.\n");
2408 ab8500_fg_clear_cap_samples(di
);
2409 ab8500_fg_calc_cap_discharge_voltage(di
, true);
2410 ab8500_fg_charge_state_to(di
, AB8500_FG_CHARGE_INIT
);
2411 ab8500_fg_discharge_state_to(di
, AB8500_FG_DISCHARGE_INIT
);
2412 queue_delayed_work(di
->fg_wq
, &di
->fg_periodic_work
, 0);
2415 dev_err(di
->dev
, "Residual offset calibration ongoing "
2417 /* Wait one second until next try*/
2418 queue_delayed_work(di
->fg_wq
, &di
->fg_reinit_work
,
2423 /* Exposure to the sysfs interface */
2425 struct ab8500_fg_sysfs_entry
{
2426 struct attribute attr
;
2427 ssize_t (*show
)(struct ab8500_fg
*, char *);
2428 ssize_t (*store
)(struct ab8500_fg
*, const char *, size_t);
2431 static ssize_t
charge_full_show(struct ab8500_fg
*di
, char *buf
)
2433 return sprintf(buf
, "%d\n", di
->bat_cap
.max_mah
);
2436 static ssize_t
charge_full_store(struct ab8500_fg
*di
, const char *buf
,
2439 unsigned long charge_full
;
2442 ret
= kstrtoul(buf
, 10, &charge_full
);
2444 dev_dbg(di
->dev
, "Ret %zd charge_full %lu", ret
, charge_full
);
2447 di
->bat_cap
.max_mah
= (int) charge_full
;
2453 static ssize_t
charge_now_show(struct ab8500_fg
*di
, char *buf
)
2455 return sprintf(buf
, "%d\n", di
->bat_cap
.prev_mah
);
2458 static ssize_t
charge_now_store(struct ab8500_fg
*di
, const char *buf
,
2461 unsigned long charge_now
;
2464 ret
= kstrtoul(buf
, 10, &charge_now
);
2466 dev_dbg(di
->dev
, "Ret %zd charge_now %lu was %d",
2467 ret
, charge_now
, di
->bat_cap
.prev_mah
);
2470 di
->bat_cap
.user_mah
= (int) charge_now
;
2471 di
->flags
.user_cap
= true;
2473 queue_delayed_work(di
->fg_wq
, &di
->fg_periodic_work
, 0);
2478 static struct ab8500_fg_sysfs_entry charge_full_attr
=
2479 __ATTR(charge_full
, 0644, charge_full_show
, charge_full_store
);
2481 static struct ab8500_fg_sysfs_entry charge_now_attr
=
2482 __ATTR(charge_now
, 0644, charge_now_show
, charge_now_store
);
2485 ab8500_fg_show(struct kobject
*kobj
, struct attribute
*attr
, char *buf
)
2487 struct ab8500_fg_sysfs_entry
*entry
;
2488 struct ab8500_fg
*di
;
2490 entry
= container_of(attr
, struct ab8500_fg_sysfs_entry
, attr
);
2491 di
= container_of(kobj
, struct ab8500_fg
, fg_kobject
);
2496 return entry
->show(di
, buf
);
2499 ab8500_fg_store(struct kobject
*kobj
, struct attribute
*attr
, const char *buf
,
2502 struct ab8500_fg_sysfs_entry
*entry
;
2503 struct ab8500_fg
*di
;
2505 entry
= container_of(attr
, struct ab8500_fg_sysfs_entry
, attr
);
2506 di
= container_of(kobj
, struct ab8500_fg
, fg_kobject
);
2511 return entry
->store(di
, buf
, count
);
2514 static const struct sysfs_ops ab8500_fg_sysfs_ops
= {
2515 .show
= ab8500_fg_show
,
2516 .store
= ab8500_fg_store
,
2519 static struct attribute
*ab8500_fg_attrs
[] = {
2520 &charge_full_attr
.attr
,
2521 &charge_now_attr
.attr
,
2525 static struct kobj_type ab8500_fg_ktype
= {
2526 .sysfs_ops
= &ab8500_fg_sysfs_ops
,
2527 .default_attrs
= ab8500_fg_attrs
,
2531 * ab8500_fg_sysfs_exit() - de-init of sysfs entry
2532 * @di: pointer to the struct ab8500_chargalg
2534 * This function removes the entry in sysfs.
2536 static void ab8500_fg_sysfs_exit(struct ab8500_fg
*di
)
2538 kobject_del(&di
->fg_kobject
);
2542 * ab8500_fg_sysfs_init() - init of sysfs entry
2543 * @di: pointer to the struct ab8500_chargalg
2545 * This function adds an entry in sysfs.
2546 * Returns error code in case of failure else 0(on success)
2548 static int ab8500_fg_sysfs_init(struct ab8500_fg
*di
)
2552 ret
= kobject_init_and_add(&di
->fg_kobject
,
2556 dev_err(di
->dev
, "failed to create sysfs entry\n");
2561 static ssize_t
ab8505_powercut_flagtime_read(struct device
*dev
,
2562 struct device_attribute
*attr
,
2567 struct power_supply
*psy
= dev_get_drvdata(dev
);
2568 struct ab8500_fg
*di
= power_supply_get_drvdata(psy
);
2570 ret
= abx500_get_register_interruptible(di
->dev
, AB8500_RTC
,
2571 AB8505_RTC_PCUT_FLAG_TIME_REG
, ®_value
);
2574 dev_err(dev
, "Failed to read AB8505_RTC_PCUT_FLAG_TIME_REG\n");
2578 return scnprintf(buf
, PAGE_SIZE
, "%d\n", (reg_value
& 0x7F));
2584 static ssize_t
ab8505_powercut_flagtime_write(struct device
*dev
,
2585 struct device_attribute
*attr
,
2586 const char *buf
, size_t count
)
2589 long unsigned reg_value
;
2590 struct power_supply
*psy
= dev_get_drvdata(dev
);
2591 struct ab8500_fg
*di
= power_supply_get_drvdata(psy
);
2593 reg_value
= simple_strtoul(buf
, NULL
, 10);
2595 if (reg_value
> 0x7F) {
2596 dev_err(dev
, "Incorrect parameter, echo 0 (1.98s) - 127 (15.625ms) for flagtime\n");
2600 ret
= abx500_set_register_interruptible(di
->dev
, AB8500_RTC
,
2601 AB8505_RTC_PCUT_FLAG_TIME_REG
, (u8
)reg_value
);
2604 dev_err(dev
, "Failed to set AB8505_RTC_PCUT_FLAG_TIME_REG\n");
2610 static ssize_t
ab8505_powercut_maxtime_read(struct device
*dev
,
2611 struct device_attribute
*attr
,
2616 struct power_supply
*psy
= dev_get_drvdata(dev
);
2617 struct ab8500_fg
*di
= power_supply_get_drvdata(psy
);
2619 ret
= abx500_get_register_interruptible(di
->dev
, AB8500_RTC
,
2620 AB8505_RTC_PCUT_MAX_TIME_REG
, ®_value
);
2623 dev_err(dev
, "Failed to read AB8505_RTC_PCUT_MAX_TIME_REG\n");
2627 return scnprintf(buf
, PAGE_SIZE
, "%d\n", (reg_value
& 0x7F));
2634 static ssize_t
ab8505_powercut_maxtime_write(struct device
*dev
,
2635 struct device_attribute
*attr
,
2636 const char *buf
, size_t count
)
2640 struct power_supply
*psy
= dev_get_drvdata(dev
);
2641 struct ab8500_fg
*di
= power_supply_get_drvdata(psy
);
2643 reg_value
= simple_strtoul(buf
, NULL
, 10);
2644 if (reg_value
> 0x7F) {
2645 dev_err(dev
, "Incorrect parameter, echo 0 (0.0s) - 127 (1.98s) for maxtime\n");
2649 ret
= abx500_set_register_interruptible(di
->dev
, AB8500_RTC
,
2650 AB8505_RTC_PCUT_MAX_TIME_REG
, (u8
)reg_value
);
2653 dev_err(dev
, "Failed to set AB8505_RTC_PCUT_MAX_TIME_REG\n");
2659 static ssize_t
ab8505_powercut_restart_read(struct device
*dev
,
2660 struct device_attribute
*attr
,
2665 struct power_supply
*psy
= dev_get_drvdata(dev
);
2666 struct ab8500_fg
*di
= power_supply_get_drvdata(psy
);
2668 ret
= abx500_get_register_interruptible(di
->dev
, AB8500_RTC
,
2669 AB8505_RTC_PCUT_RESTART_REG
, ®_value
);
2672 dev_err(dev
, "Failed to read AB8505_RTC_PCUT_RESTART_REG\n");
2676 return scnprintf(buf
, PAGE_SIZE
, "%d\n", (reg_value
& 0xF));
2682 static ssize_t
ab8505_powercut_restart_write(struct device
*dev
,
2683 struct device_attribute
*attr
,
2684 const char *buf
, size_t count
)
2688 struct power_supply
*psy
= dev_get_drvdata(dev
);
2689 struct ab8500_fg
*di
= power_supply_get_drvdata(psy
);
2691 reg_value
= simple_strtoul(buf
, NULL
, 10);
2692 if (reg_value
> 0xF) {
2693 dev_err(dev
, "Incorrect parameter, echo 0 - 15 for number of restart\n");
2697 ret
= abx500_set_register_interruptible(di
->dev
, AB8500_RTC
,
2698 AB8505_RTC_PCUT_RESTART_REG
, (u8
)reg_value
);
2701 dev_err(dev
, "Failed to set AB8505_RTC_PCUT_RESTART_REG\n");
2708 static ssize_t
ab8505_powercut_timer_read(struct device
*dev
,
2709 struct device_attribute
*attr
,
2714 struct power_supply
*psy
= dev_get_drvdata(dev
);
2715 struct ab8500_fg
*di
= power_supply_get_drvdata(psy
);
2717 ret
= abx500_get_register_interruptible(di
->dev
, AB8500_RTC
,
2718 AB8505_RTC_PCUT_TIME_REG
, ®_value
);
2721 dev_err(dev
, "Failed to read AB8505_RTC_PCUT_TIME_REG\n");
2725 return scnprintf(buf
, PAGE_SIZE
, "%d\n", (reg_value
& 0x7F));
2731 static ssize_t
ab8505_powercut_restart_counter_read(struct device
*dev
,
2732 struct device_attribute
*attr
,
2737 struct power_supply
*psy
= dev_get_drvdata(dev
);
2738 struct ab8500_fg
*di
= power_supply_get_drvdata(psy
);
2740 ret
= abx500_get_register_interruptible(di
->dev
, AB8500_RTC
,
2741 AB8505_RTC_PCUT_RESTART_REG
, ®_value
);
2744 dev_err(dev
, "Failed to read AB8505_RTC_PCUT_RESTART_REG\n");
2748 return scnprintf(buf
, PAGE_SIZE
, "%d\n", (reg_value
& 0xF0) >> 4);
2754 static ssize_t
ab8505_powercut_read(struct device
*dev
,
2755 struct device_attribute
*attr
,
2760 struct power_supply
*psy
= dev_get_drvdata(dev
);
2761 struct ab8500_fg
*di
= power_supply_get_drvdata(psy
);
2763 ret
= abx500_get_register_interruptible(di
->dev
, AB8500_RTC
,
2764 AB8505_RTC_PCUT_CTL_STATUS_REG
, ®_value
);
2769 return scnprintf(buf
, PAGE_SIZE
, "%d\n", (reg_value
& 0x1));
2775 static ssize_t
ab8505_powercut_write(struct device
*dev
,
2776 struct device_attribute
*attr
,
2777 const char *buf
, size_t count
)
2781 struct power_supply
*psy
= dev_get_drvdata(dev
);
2782 struct ab8500_fg
*di
= power_supply_get_drvdata(psy
);
2784 reg_value
= simple_strtoul(buf
, NULL
, 10);
2785 if (reg_value
> 0x1) {
2786 dev_err(dev
, "Incorrect parameter, echo 0/1 to disable/enable Pcut feature\n");
2790 ret
= abx500_set_register_interruptible(di
->dev
, AB8500_RTC
,
2791 AB8505_RTC_PCUT_CTL_STATUS_REG
, (u8
)reg_value
);
2794 dev_err(dev
, "Failed to set AB8505_RTC_PCUT_CTL_STATUS_REG\n");
2800 static ssize_t
ab8505_powercut_flag_read(struct device
*dev
,
2801 struct device_attribute
*attr
,
2807 struct power_supply
*psy
= dev_get_drvdata(dev
);
2808 struct ab8500_fg
*di
= power_supply_get_drvdata(psy
);
2810 ret
= abx500_get_register_interruptible(di
->dev
, AB8500_RTC
,
2811 AB8505_RTC_PCUT_CTL_STATUS_REG
, ®_value
);
2814 dev_err(dev
, "Failed to read AB8505_RTC_PCUT_CTL_STATUS_REG\n");
2818 return scnprintf(buf
, PAGE_SIZE
, "%d\n", ((reg_value
& 0x10) >> 4));
2824 static ssize_t
ab8505_powercut_debounce_read(struct device
*dev
,
2825 struct device_attribute
*attr
,
2830 struct power_supply
*psy
= dev_get_drvdata(dev
);
2831 struct ab8500_fg
*di
= power_supply_get_drvdata(psy
);
2833 ret
= abx500_get_register_interruptible(di
->dev
, AB8500_RTC
,
2834 AB8505_RTC_PCUT_DEBOUNCE_REG
, ®_value
);
2837 dev_err(dev
, "Failed to read AB8505_RTC_PCUT_DEBOUNCE_REG\n");
2841 return scnprintf(buf
, PAGE_SIZE
, "%d\n", (reg_value
& 0x7));
2847 static ssize_t
ab8505_powercut_debounce_write(struct device
*dev
,
2848 struct device_attribute
*attr
,
2849 const char *buf
, size_t count
)
2853 struct power_supply
*psy
= dev_get_drvdata(dev
);
2854 struct ab8500_fg
*di
= power_supply_get_drvdata(psy
);
2856 reg_value
= simple_strtoul(buf
, NULL
, 10);
2857 if (reg_value
> 0x7) {
2858 dev_err(dev
, "Incorrect parameter, echo 0 to 7 for debounce setting\n");
2862 ret
= abx500_set_register_interruptible(di
->dev
, AB8500_RTC
,
2863 AB8505_RTC_PCUT_DEBOUNCE_REG
, (u8
)reg_value
);
2866 dev_err(dev
, "Failed to set AB8505_RTC_PCUT_DEBOUNCE_REG\n");
2872 static ssize_t
ab8505_powercut_enable_status_read(struct device
*dev
,
2873 struct device_attribute
*attr
,
2878 struct power_supply
*psy
= dev_get_drvdata(dev
);
2879 struct ab8500_fg
*di
= power_supply_get_drvdata(psy
);
2881 ret
= abx500_get_register_interruptible(di
->dev
, AB8500_RTC
,
2882 AB8505_RTC_PCUT_CTL_STATUS_REG
, ®_value
);
2885 dev_err(dev
, "Failed to read AB8505_RTC_PCUT_CTL_STATUS_REG\n");
2889 return scnprintf(buf
, PAGE_SIZE
, "%d\n", ((reg_value
& 0x20) >> 5));
2895 static struct device_attribute ab8505_fg_sysfs_psy_attrs
[] = {
2896 __ATTR(powercut_flagtime
, (S_IRUGO
| S_IWUSR
| S_IWGRP
),
2897 ab8505_powercut_flagtime_read
, ab8505_powercut_flagtime_write
),
2898 __ATTR(powercut_maxtime
, (S_IRUGO
| S_IWUSR
| S_IWGRP
),
2899 ab8505_powercut_maxtime_read
, ab8505_powercut_maxtime_write
),
2900 __ATTR(powercut_restart_max
, (S_IRUGO
| S_IWUSR
| S_IWGRP
),
2901 ab8505_powercut_restart_read
, ab8505_powercut_restart_write
),
2902 __ATTR(powercut_timer
, S_IRUGO
, ab8505_powercut_timer_read
, NULL
),
2903 __ATTR(powercut_restart_counter
, S_IRUGO
,
2904 ab8505_powercut_restart_counter_read
, NULL
),
2905 __ATTR(powercut_enable
, (S_IRUGO
| S_IWUSR
| S_IWGRP
),
2906 ab8505_powercut_read
, ab8505_powercut_write
),
2907 __ATTR(powercut_flag
, S_IRUGO
, ab8505_powercut_flag_read
, NULL
),
2908 __ATTR(powercut_debounce_time
, (S_IRUGO
| S_IWUSR
| S_IWGRP
),
2909 ab8505_powercut_debounce_read
, ab8505_powercut_debounce_write
),
2910 __ATTR(powercut_enable_status
, S_IRUGO
,
2911 ab8505_powercut_enable_status_read
, NULL
),
2914 static int ab8500_fg_sysfs_psy_create_attrs(struct ab8500_fg
*di
)
2918 if (((is_ab8505(di
->parent
) || is_ab9540(di
->parent
)) &&
2919 abx500_get_chip_id(di
->dev
) >= AB8500_CUT2P0
)
2920 || is_ab8540(di
->parent
)) {
2921 for (i
= 0; i
< ARRAY_SIZE(ab8505_fg_sysfs_psy_attrs
); i
++)
2922 if (device_create_file(&di
->fg_psy
->dev
,
2923 &ab8505_fg_sysfs_psy_attrs
[i
]))
2924 goto sysfs_psy_create_attrs_failed_ab8505
;
2927 sysfs_psy_create_attrs_failed_ab8505
:
2928 dev_err(&di
->fg_psy
->dev
, "Failed creating sysfs psy attrs for ab8505.\n");
2930 device_remove_file(&di
->fg_psy
->dev
,
2931 &ab8505_fg_sysfs_psy_attrs
[i
]);
2936 static void ab8500_fg_sysfs_psy_remove_attrs(struct ab8500_fg
*di
)
2940 if (((is_ab8505(di
->parent
) || is_ab9540(di
->parent
)) &&
2941 abx500_get_chip_id(di
->dev
) >= AB8500_CUT2P0
)
2942 || is_ab8540(di
->parent
)) {
2943 for (i
= 0; i
< ARRAY_SIZE(ab8505_fg_sysfs_psy_attrs
); i
++)
2944 (void)device_remove_file(&di
->fg_psy
->dev
,
2945 &ab8505_fg_sysfs_psy_attrs
[i
]);
2949 /* Exposure to the sysfs interface <<END>> */
2951 #if defined(CONFIG_PM)
2952 static int ab8500_fg_resume(struct platform_device
*pdev
)
2954 struct ab8500_fg
*di
= platform_get_drvdata(pdev
);
2957 * Change state if we're not charging. If we're charging we will wake
2960 if (!di
->flags
.charging
) {
2961 ab8500_fg_discharge_state_to(di
, AB8500_FG_DISCHARGE_WAKEUP
);
2962 queue_work(di
->fg_wq
, &di
->fg_work
);
2968 static int ab8500_fg_suspend(struct platform_device
*pdev
,
2971 struct ab8500_fg
*di
= platform_get_drvdata(pdev
);
2973 flush_delayed_work(&di
->fg_periodic_work
);
2974 flush_work(&di
->fg_work
);
2975 flush_work(&di
->fg_acc_cur_work
);
2976 flush_delayed_work(&di
->fg_reinit_work
);
2977 flush_delayed_work(&di
->fg_low_bat_work
);
2978 flush_delayed_work(&di
->fg_check_hw_failure_work
);
2981 * If the FG is enabled we will disable it before going to suspend
2982 * only if we're not charging
2984 if (di
->flags
.fg_enabled
&& !di
->flags
.charging
)
2985 ab8500_fg_coulomb_counter(di
, false);
2990 #define ab8500_fg_suspend NULL
2991 #define ab8500_fg_resume NULL
2994 static int ab8500_fg_remove(struct platform_device
*pdev
)
2997 struct ab8500_fg
*di
= platform_get_drvdata(pdev
);
2999 list_del(&di
->node
);
3001 /* Disable coulomb counter */
3002 ret
= ab8500_fg_coulomb_counter(di
, false);
3004 dev_err(di
->dev
, "failed to disable coulomb counter\n");
3006 destroy_workqueue(di
->fg_wq
);
3007 ab8500_fg_sysfs_exit(di
);
3009 flush_scheduled_work();
3010 ab8500_fg_sysfs_psy_remove_attrs(di
);
3011 power_supply_unregister(di
->fg_psy
);
3015 /* ab8500 fg driver interrupts and their respective isr */
3016 static struct ab8500_fg_interrupts ab8500_fg_irq_th
[] = {
3017 {"NCONV_ACCU", ab8500_fg_cc_convend_handler
},
3018 {"BATT_OVV", ab8500_fg_batt_ovv_handler
},
3019 {"LOW_BAT_F", ab8500_fg_lowbatf_handler
},
3020 {"CC_INT_CALIB", ab8500_fg_cc_int_calib_handler
},
3023 static struct ab8500_fg_interrupts ab8500_fg_irq_bh
[] = {
3024 {"CCEOC", ab8500_fg_cc_data_end_handler
},
3027 static char *supply_interface
[] = {
3032 static const struct power_supply_desc ab8500_fg_desc
= {
3033 .name
= "ab8500_fg",
3034 .type
= POWER_SUPPLY_TYPE_BATTERY
,
3035 .properties
= ab8500_fg_props
,
3036 .num_properties
= ARRAY_SIZE(ab8500_fg_props
),
3037 .get_property
= ab8500_fg_get_property
,
3038 .external_power_changed
= ab8500_fg_external_power_changed
,
3041 static int ab8500_fg_probe(struct platform_device
*pdev
)
3043 struct device_node
*np
= pdev
->dev
.of_node
;
3044 struct abx500_bm_data
*plat
= pdev
->dev
.platform_data
;
3045 struct power_supply_config psy_cfg
= {};
3046 struct ab8500_fg
*di
;
3050 di
= devm_kzalloc(&pdev
->dev
, sizeof(*di
), GFP_KERNEL
);
3052 dev_err(&pdev
->dev
, "%s no mem for ab8500_fg\n", __func__
);
3057 dev_err(&pdev
->dev
, "no battery management data supplied\n");
3063 ret
= ab8500_bm_of_probe(&pdev
->dev
, np
, di
->bm
);
3065 dev_err(&pdev
->dev
, "failed to get battery information\n");
3070 mutex_init(&di
->cc_lock
);
3072 /* get parent data */
3073 di
->dev
= &pdev
->dev
;
3074 di
->parent
= dev_get_drvdata(pdev
->dev
.parent
);
3075 di
->gpadc
= ab8500_gpadc_get("ab8500-gpadc.0");
3077 psy_cfg
.supplied_to
= supply_interface
;
3078 psy_cfg
.num_supplicants
= ARRAY_SIZE(supply_interface
);
3079 psy_cfg
.drv_data
= di
;
3081 di
->bat_cap
.max_mah_design
= MILLI_TO_MICRO
*
3082 di
->bm
->bat_type
[di
->bm
->batt_id
].charge_full_design
;
3084 di
->bat_cap
.max_mah
= di
->bat_cap
.max_mah_design
;
3086 di
->vbat_nom
= di
->bm
->bat_type
[di
->bm
->batt_id
].nominal_voltage
;
3088 di
->init_capacity
= true;
3090 ab8500_fg_charge_state_to(di
, AB8500_FG_CHARGE_INIT
);
3091 ab8500_fg_discharge_state_to(di
, AB8500_FG_DISCHARGE_INIT
);
3093 /* Create a work queue for running the FG algorithm */
3094 di
->fg_wq
= alloc_ordered_workqueue("ab8500_fg_wq", WQ_MEM_RECLAIM
);
3095 if (di
->fg_wq
== NULL
) {
3096 dev_err(di
->dev
, "failed to create work queue\n");
3100 /* Init work for running the fg algorithm instantly */
3101 INIT_WORK(&di
->fg_work
, ab8500_fg_instant_work
);
3103 /* Init work for getting the battery accumulated current */
3104 INIT_WORK(&di
->fg_acc_cur_work
, ab8500_fg_acc_cur_work
);
3106 /* Init work for reinitialising the fg algorithm */
3107 INIT_DEFERRABLE_WORK(&di
->fg_reinit_work
,
3108 ab8500_fg_reinit_work
);
3110 /* Work delayed Queue to run the state machine */
3111 INIT_DEFERRABLE_WORK(&di
->fg_periodic_work
,
3112 ab8500_fg_periodic_work
);
3114 /* Work to check low battery condition */
3115 INIT_DEFERRABLE_WORK(&di
->fg_low_bat_work
,
3116 ab8500_fg_low_bat_work
);
3118 /* Init work for HW failure check */
3119 INIT_DEFERRABLE_WORK(&di
->fg_check_hw_failure_work
,
3120 ab8500_fg_check_hw_failure_work
);
3122 /* Reset battery low voltage flag */
3123 di
->flags
.low_bat
= false;
3125 /* Initialize low battery counter */
3126 di
->low_bat_cnt
= 10;
3128 /* Initialize OVV, and other registers */
3129 ret
= ab8500_fg_init_hw_registers(di
);
3131 dev_err(di
->dev
, "failed to initialize registers\n");
3132 goto free_inst_curr_wq
;
3135 /* Consider battery unknown until we're informed otherwise */
3136 di
->flags
.batt_unknown
= true;
3137 di
->flags
.batt_id_received
= false;
3139 /* Register FG power supply class */
3140 di
->fg_psy
= power_supply_register(di
->dev
, &ab8500_fg_desc
, &psy_cfg
);
3141 if (IS_ERR(di
->fg_psy
)) {
3142 dev_err(di
->dev
, "failed to register FG psy\n");
3143 ret
= PTR_ERR(di
->fg_psy
);
3144 goto free_inst_curr_wq
;
3147 di
->fg_samples
= SEC_TO_SAMPLE(di
->bm
->fg_params
->init_timer
);
3148 ab8500_fg_coulomb_counter(di
, true);
3151 * Initialize completion used to notify completion and start
3154 init_completion(&di
->ab8500_fg_started
);
3155 init_completion(&di
->ab8500_fg_complete
);
3157 /* Register primary interrupt handlers */
3158 for (i
= 0; i
< ARRAY_SIZE(ab8500_fg_irq_th
); i
++) {
3159 irq
= platform_get_irq_byname(pdev
, ab8500_fg_irq_th
[i
].name
);
3160 ret
= request_irq(irq
, ab8500_fg_irq_th
[i
].isr
,
3161 IRQF_SHARED
| IRQF_NO_SUSPEND
,
3162 ab8500_fg_irq_th
[i
].name
, di
);
3165 dev_err(di
->dev
, "failed to request %s IRQ %d: %d\n",
3166 ab8500_fg_irq_th
[i
].name
, irq
, ret
);
3169 dev_dbg(di
->dev
, "Requested %s IRQ %d: %d\n",
3170 ab8500_fg_irq_th
[i
].name
, irq
, ret
);
3173 /* Register threaded interrupt handler */
3174 irq
= platform_get_irq_byname(pdev
, ab8500_fg_irq_bh
[0].name
);
3175 ret
= request_threaded_irq(irq
, NULL
, ab8500_fg_irq_bh
[0].isr
,
3176 IRQF_SHARED
| IRQF_NO_SUSPEND
| IRQF_ONESHOT
,
3177 ab8500_fg_irq_bh
[0].name
, di
);
3180 dev_err(di
->dev
, "failed to request %s IRQ %d: %d\n",
3181 ab8500_fg_irq_bh
[0].name
, irq
, ret
);
3184 dev_dbg(di
->dev
, "Requested %s IRQ %d: %d\n",
3185 ab8500_fg_irq_bh
[0].name
, irq
, ret
);
3187 di
->irq
= platform_get_irq_byname(pdev
, "CCEOC");
3188 disable_irq(di
->irq
);
3189 di
->nbr_cceoc_irq_cnt
= 0;
3191 platform_set_drvdata(pdev
, di
);
3193 ret
= ab8500_fg_sysfs_init(di
);
3195 dev_err(di
->dev
, "failed to create sysfs entry\n");
3199 ret
= ab8500_fg_sysfs_psy_create_attrs(di
);
3201 dev_err(di
->dev
, "failed to create FG psy\n");
3202 ab8500_fg_sysfs_exit(di
);
3206 /* Calibrate the fg first time */
3207 di
->flags
.calibrate
= true;
3208 di
->calib_state
= AB8500_FG_CALIB_INIT
;
3210 /* Use room temp as default value until we get an update from driver. */
3213 /* Run the FG algorithm */
3214 queue_delayed_work(di
->fg_wq
, &di
->fg_periodic_work
, 0);
3216 list_add_tail(&di
->node
, &ab8500_fg_list
);
3221 power_supply_unregister(di
->fg_psy
);
3223 /* We also have to free all registered irqs */
3224 for (i
= 0; i
< ARRAY_SIZE(ab8500_fg_irq_th
); i
++) {
3225 irq
= platform_get_irq_byname(pdev
, ab8500_fg_irq_th
[i
].name
);
3228 irq
= platform_get_irq_byname(pdev
, ab8500_fg_irq_bh
[0].name
);
3231 destroy_workqueue(di
->fg_wq
);
3235 static const struct of_device_id ab8500_fg_match
[] = {
3236 { .compatible
= "stericsson,ab8500-fg", },
3240 static struct platform_driver ab8500_fg_driver
= {
3241 .probe
= ab8500_fg_probe
,
3242 .remove
= ab8500_fg_remove
,
3243 .suspend
= ab8500_fg_suspend
,
3244 .resume
= ab8500_fg_resume
,
3246 .name
= "ab8500-fg",
3247 .of_match_table
= ab8500_fg_match
,
3251 static int __init
ab8500_fg_init(void)
3253 return platform_driver_register(&ab8500_fg_driver
);
3256 static void __exit
ab8500_fg_exit(void)
3258 platform_driver_unregister(&ab8500_fg_driver
);
3261 subsys_initcall_sync(ab8500_fg_init
);
3262 module_exit(ab8500_fg_exit
);
3264 MODULE_LICENSE("GPL v2");
3265 MODULE_AUTHOR("Johan Palsson, Karl Komierowski");
3266 MODULE_ALIAS("platform:ab8500-fg");
3267 MODULE_DESCRIPTION("AB8500 Fuel Gauge driver");