x86/intel_rdt: Fix incorrect returned value when creating rdgroup sub-directory in...
[cris-mirror.git] / drivers / regulator / core.c
blobdd4708c58480d277e0346f9b287831b080f8af6b
1 /*
2 * core.c -- Voltage/Current Regulator framework.
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/gpio/consumer.h>
28 #include <linux/of.h>
29 #include <linux/regmap.h>
30 #include <linux/regulator/of_regulator.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/regulator/driver.h>
33 #include <linux/regulator/machine.h>
34 #include <linux/module.h>
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/regulator.h>
39 #include "dummy.h"
40 #include "internal.h"
42 #define rdev_crit(rdev, fmt, ...) \
43 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_err(rdev, fmt, ...) \
45 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_warn(rdev, fmt, ...) \
47 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_info(rdev, fmt, ...) \
49 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 #define rdev_dbg(rdev, fmt, ...) \
51 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
53 static DEFINE_MUTEX(regulator_list_mutex);
54 static LIST_HEAD(regulator_map_list);
55 static LIST_HEAD(regulator_ena_gpio_list);
56 static LIST_HEAD(regulator_supply_alias_list);
57 static bool has_full_constraints;
59 static struct dentry *debugfs_root;
62 * struct regulator_map
64 * Used to provide symbolic supply names to devices.
66 struct regulator_map {
67 struct list_head list;
68 const char *dev_name; /* The dev_name() for the consumer */
69 const char *supply;
70 struct regulator_dev *regulator;
74 * struct regulator_enable_gpio
76 * Management for shared enable GPIO pin
78 struct regulator_enable_gpio {
79 struct list_head list;
80 struct gpio_desc *gpiod;
81 u32 enable_count; /* a number of enabled shared GPIO */
82 u32 request_count; /* a number of requested shared GPIO */
83 unsigned int ena_gpio_invert:1;
87 * struct regulator_supply_alias
89 * Used to map lookups for a supply onto an alternative device.
91 struct regulator_supply_alias {
92 struct list_head list;
93 struct device *src_dev;
94 const char *src_supply;
95 struct device *alias_dev;
96 const char *alias_supply;
99 static int _regulator_is_enabled(struct regulator_dev *rdev);
100 static int _regulator_disable(struct regulator_dev *rdev);
101 static int _regulator_get_voltage(struct regulator_dev *rdev);
102 static int _regulator_get_current_limit(struct regulator_dev *rdev);
103 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
104 static int _notifier_call_chain(struct regulator_dev *rdev,
105 unsigned long event, void *data);
106 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
107 int min_uV, int max_uV);
108 static struct regulator *create_regulator(struct regulator_dev *rdev,
109 struct device *dev,
110 const char *supply_name);
111 static void _regulator_put(struct regulator *regulator);
113 static const char *rdev_get_name(struct regulator_dev *rdev)
115 if (rdev->constraints && rdev->constraints->name)
116 return rdev->constraints->name;
117 else if (rdev->desc->name)
118 return rdev->desc->name;
119 else
120 return "";
123 static bool have_full_constraints(void)
125 return has_full_constraints || of_have_populated_dt();
128 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
130 if (!rdev->constraints) {
131 rdev_err(rdev, "no constraints\n");
132 return false;
135 if (rdev->constraints->valid_ops_mask & ops)
136 return true;
138 return false;
141 static inline struct regulator_dev *rdev_get_supply(struct regulator_dev *rdev)
143 if (rdev && rdev->supply)
144 return rdev->supply->rdev;
146 return NULL;
150 * regulator_lock_supply - lock a regulator and its supplies
151 * @rdev: regulator source
153 static void regulator_lock_supply(struct regulator_dev *rdev)
155 int i;
157 for (i = 0; rdev; rdev = rdev_get_supply(rdev), i++)
158 mutex_lock_nested(&rdev->mutex, i);
162 * regulator_unlock_supply - unlock a regulator and its supplies
163 * @rdev: regulator source
165 static void regulator_unlock_supply(struct regulator_dev *rdev)
167 struct regulator *supply;
169 while (1) {
170 mutex_unlock(&rdev->mutex);
171 supply = rdev->supply;
173 if (!rdev->supply)
174 return;
176 rdev = supply->rdev;
181 * of_get_regulator - get a regulator device node based on supply name
182 * @dev: Device pointer for the consumer (of regulator) device
183 * @supply: regulator supply name
185 * Extract the regulator device node corresponding to the supply name.
186 * returns the device node corresponding to the regulator if found, else
187 * returns NULL.
189 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
191 struct device_node *regnode = NULL;
192 char prop_name[32]; /* 32 is max size of property name */
194 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
196 snprintf(prop_name, 32, "%s-supply", supply);
197 regnode = of_parse_phandle(dev->of_node, prop_name, 0);
199 if (!regnode) {
200 dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
201 prop_name, dev->of_node);
202 return NULL;
204 return regnode;
207 /* Platform voltage constraint check */
208 static int regulator_check_voltage(struct regulator_dev *rdev,
209 int *min_uV, int *max_uV)
211 BUG_ON(*min_uV > *max_uV);
213 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
214 rdev_err(rdev, "voltage operation not allowed\n");
215 return -EPERM;
218 if (*max_uV > rdev->constraints->max_uV)
219 *max_uV = rdev->constraints->max_uV;
220 if (*min_uV < rdev->constraints->min_uV)
221 *min_uV = rdev->constraints->min_uV;
223 if (*min_uV > *max_uV) {
224 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
225 *min_uV, *max_uV);
226 return -EINVAL;
229 return 0;
232 /* return 0 if the state is valid */
233 static int regulator_check_states(suspend_state_t state)
235 return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
238 /* Make sure we select a voltage that suits the needs of all
239 * regulator consumers
241 static int regulator_check_consumers(struct regulator_dev *rdev,
242 int *min_uV, int *max_uV,
243 suspend_state_t state)
245 struct regulator *regulator;
246 struct regulator_voltage *voltage;
248 list_for_each_entry(regulator, &rdev->consumer_list, list) {
249 voltage = &regulator->voltage[state];
251 * Assume consumers that didn't say anything are OK
252 * with anything in the constraint range.
254 if (!voltage->min_uV && !voltage->max_uV)
255 continue;
257 if (*max_uV > voltage->max_uV)
258 *max_uV = voltage->max_uV;
259 if (*min_uV < voltage->min_uV)
260 *min_uV = voltage->min_uV;
263 if (*min_uV > *max_uV) {
264 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
265 *min_uV, *max_uV);
266 return -EINVAL;
269 return 0;
272 /* current constraint check */
273 static int regulator_check_current_limit(struct regulator_dev *rdev,
274 int *min_uA, int *max_uA)
276 BUG_ON(*min_uA > *max_uA);
278 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
279 rdev_err(rdev, "current operation not allowed\n");
280 return -EPERM;
283 if (*max_uA > rdev->constraints->max_uA)
284 *max_uA = rdev->constraints->max_uA;
285 if (*min_uA < rdev->constraints->min_uA)
286 *min_uA = rdev->constraints->min_uA;
288 if (*min_uA > *max_uA) {
289 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
290 *min_uA, *max_uA);
291 return -EINVAL;
294 return 0;
297 /* operating mode constraint check */
298 static int regulator_mode_constrain(struct regulator_dev *rdev,
299 unsigned int *mode)
301 switch (*mode) {
302 case REGULATOR_MODE_FAST:
303 case REGULATOR_MODE_NORMAL:
304 case REGULATOR_MODE_IDLE:
305 case REGULATOR_MODE_STANDBY:
306 break;
307 default:
308 rdev_err(rdev, "invalid mode %x specified\n", *mode);
309 return -EINVAL;
312 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
313 rdev_err(rdev, "mode operation not allowed\n");
314 return -EPERM;
317 /* The modes are bitmasks, the most power hungry modes having
318 * the lowest values. If the requested mode isn't supported
319 * try higher modes. */
320 while (*mode) {
321 if (rdev->constraints->valid_modes_mask & *mode)
322 return 0;
323 *mode /= 2;
326 return -EINVAL;
329 static inline struct regulator_state *
330 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
332 if (rdev->constraints == NULL)
333 return NULL;
335 switch (state) {
336 case PM_SUSPEND_STANDBY:
337 return &rdev->constraints->state_standby;
338 case PM_SUSPEND_MEM:
339 return &rdev->constraints->state_mem;
340 case PM_SUSPEND_MAX:
341 return &rdev->constraints->state_disk;
342 default:
343 return NULL;
347 static ssize_t regulator_uV_show(struct device *dev,
348 struct device_attribute *attr, char *buf)
350 struct regulator_dev *rdev = dev_get_drvdata(dev);
351 ssize_t ret;
353 mutex_lock(&rdev->mutex);
354 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
355 mutex_unlock(&rdev->mutex);
357 return ret;
359 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
361 static ssize_t regulator_uA_show(struct device *dev,
362 struct device_attribute *attr, char *buf)
364 struct regulator_dev *rdev = dev_get_drvdata(dev);
366 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
368 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
370 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
371 char *buf)
373 struct regulator_dev *rdev = dev_get_drvdata(dev);
375 return sprintf(buf, "%s\n", rdev_get_name(rdev));
377 static DEVICE_ATTR_RO(name);
379 static ssize_t regulator_print_opmode(char *buf, int mode)
381 switch (mode) {
382 case REGULATOR_MODE_FAST:
383 return sprintf(buf, "fast\n");
384 case REGULATOR_MODE_NORMAL:
385 return sprintf(buf, "normal\n");
386 case REGULATOR_MODE_IDLE:
387 return sprintf(buf, "idle\n");
388 case REGULATOR_MODE_STANDBY:
389 return sprintf(buf, "standby\n");
391 return sprintf(buf, "unknown\n");
394 static ssize_t regulator_opmode_show(struct device *dev,
395 struct device_attribute *attr, char *buf)
397 struct regulator_dev *rdev = dev_get_drvdata(dev);
399 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
401 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
403 static ssize_t regulator_print_state(char *buf, int state)
405 if (state > 0)
406 return sprintf(buf, "enabled\n");
407 else if (state == 0)
408 return sprintf(buf, "disabled\n");
409 else
410 return sprintf(buf, "unknown\n");
413 static ssize_t regulator_state_show(struct device *dev,
414 struct device_attribute *attr, char *buf)
416 struct regulator_dev *rdev = dev_get_drvdata(dev);
417 ssize_t ret;
419 mutex_lock(&rdev->mutex);
420 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
421 mutex_unlock(&rdev->mutex);
423 return ret;
425 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
427 static ssize_t regulator_status_show(struct device *dev,
428 struct device_attribute *attr, char *buf)
430 struct regulator_dev *rdev = dev_get_drvdata(dev);
431 int status;
432 char *label;
434 status = rdev->desc->ops->get_status(rdev);
435 if (status < 0)
436 return status;
438 switch (status) {
439 case REGULATOR_STATUS_OFF:
440 label = "off";
441 break;
442 case REGULATOR_STATUS_ON:
443 label = "on";
444 break;
445 case REGULATOR_STATUS_ERROR:
446 label = "error";
447 break;
448 case REGULATOR_STATUS_FAST:
449 label = "fast";
450 break;
451 case REGULATOR_STATUS_NORMAL:
452 label = "normal";
453 break;
454 case REGULATOR_STATUS_IDLE:
455 label = "idle";
456 break;
457 case REGULATOR_STATUS_STANDBY:
458 label = "standby";
459 break;
460 case REGULATOR_STATUS_BYPASS:
461 label = "bypass";
462 break;
463 case REGULATOR_STATUS_UNDEFINED:
464 label = "undefined";
465 break;
466 default:
467 return -ERANGE;
470 return sprintf(buf, "%s\n", label);
472 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
474 static ssize_t regulator_min_uA_show(struct device *dev,
475 struct device_attribute *attr, char *buf)
477 struct regulator_dev *rdev = dev_get_drvdata(dev);
479 if (!rdev->constraints)
480 return sprintf(buf, "constraint not defined\n");
482 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
484 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
486 static ssize_t regulator_max_uA_show(struct device *dev,
487 struct device_attribute *attr, char *buf)
489 struct regulator_dev *rdev = dev_get_drvdata(dev);
491 if (!rdev->constraints)
492 return sprintf(buf, "constraint not defined\n");
494 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
496 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
498 static ssize_t regulator_min_uV_show(struct device *dev,
499 struct device_attribute *attr, char *buf)
501 struct regulator_dev *rdev = dev_get_drvdata(dev);
503 if (!rdev->constraints)
504 return sprintf(buf, "constraint not defined\n");
506 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
508 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
510 static ssize_t regulator_max_uV_show(struct device *dev,
511 struct device_attribute *attr, char *buf)
513 struct regulator_dev *rdev = dev_get_drvdata(dev);
515 if (!rdev->constraints)
516 return sprintf(buf, "constraint not defined\n");
518 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
520 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
522 static ssize_t regulator_total_uA_show(struct device *dev,
523 struct device_attribute *attr, char *buf)
525 struct regulator_dev *rdev = dev_get_drvdata(dev);
526 struct regulator *regulator;
527 int uA = 0;
529 mutex_lock(&rdev->mutex);
530 list_for_each_entry(regulator, &rdev->consumer_list, list)
531 uA += regulator->uA_load;
532 mutex_unlock(&rdev->mutex);
533 return sprintf(buf, "%d\n", uA);
535 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
537 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
538 char *buf)
540 struct regulator_dev *rdev = dev_get_drvdata(dev);
541 return sprintf(buf, "%d\n", rdev->use_count);
543 static DEVICE_ATTR_RO(num_users);
545 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
546 char *buf)
548 struct regulator_dev *rdev = dev_get_drvdata(dev);
550 switch (rdev->desc->type) {
551 case REGULATOR_VOLTAGE:
552 return sprintf(buf, "voltage\n");
553 case REGULATOR_CURRENT:
554 return sprintf(buf, "current\n");
556 return sprintf(buf, "unknown\n");
558 static DEVICE_ATTR_RO(type);
560 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
561 struct device_attribute *attr, char *buf)
563 struct regulator_dev *rdev = dev_get_drvdata(dev);
565 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
567 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
568 regulator_suspend_mem_uV_show, NULL);
570 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
571 struct device_attribute *attr, char *buf)
573 struct regulator_dev *rdev = dev_get_drvdata(dev);
575 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
577 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
578 regulator_suspend_disk_uV_show, NULL);
580 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
581 struct device_attribute *attr, char *buf)
583 struct regulator_dev *rdev = dev_get_drvdata(dev);
585 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
587 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
588 regulator_suspend_standby_uV_show, NULL);
590 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
591 struct device_attribute *attr, char *buf)
593 struct regulator_dev *rdev = dev_get_drvdata(dev);
595 return regulator_print_opmode(buf,
596 rdev->constraints->state_mem.mode);
598 static DEVICE_ATTR(suspend_mem_mode, 0444,
599 regulator_suspend_mem_mode_show, NULL);
601 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
602 struct device_attribute *attr, char *buf)
604 struct regulator_dev *rdev = dev_get_drvdata(dev);
606 return regulator_print_opmode(buf,
607 rdev->constraints->state_disk.mode);
609 static DEVICE_ATTR(suspend_disk_mode, 0444,
610 regulator_suspend_disk_mode_show, NULL);
612 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
613 struct device_attribute *attr, char *buf)
615 struct regulator_dev *rdev = dev_get_drvdata(dev);
617 return regulator_print_opmode(buf,
618 rdev->constraints->state_standby.mode);
620 static DEVICE_ATTR(suspend_standby_mode, 0444,
621 regulator_suspend_standby_mode_show, NULL);
623 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
624 struct device_attribute *attr, char *buf)
626 struct regulator_dev *rdev = dev_get_drvdata(dev);
628 return regulator_print_state(buf,
629 rdev->constraints->state_mem.enabled);
631 static DEVICE_ATTR(suspend_mem_state, 0444,
632 regulator_suspend_mem_state_show, NULL);
634 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
635 struct device_attribute *attr, char *buf)
637 struct regulator_dev *rdev = dev_get_drvdata(dev);
639 return regulator_print_state(buf,
640 rdev->constraints->state_disk.enabled);
642 static DEVICE_ATTR(suspend_disk_state, 0444,
643 regulator_suspend_disk_state_show, NULL);
645 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
646 struct device_attribute *attr, char *buf)
648 struct regulator_dev *rdev = dev_get_drvdata(dev);
650 return regulator_print_state(buf,
651 rdev->constraints->state_standby.enabled);
653 static DEVICE_ATTR(suspend_standby_state, 0444,
654 regulator_suspend_standby_state_show, NULL);
656 static ssize_t regulator_bypass_show(struct device *dev,
657 struct device_attribute *attr, char *buf)
659 struct regulator_dev *rdev = dev_get_drvdata(dev);
660 const char *report;
661 bool bypass;
662 int ret;
664 ret = rdev->desc->ops->get_bypass(rdev, &bypass);
666 if (ret != 0)
667 report = "unknown";
668 else if (bypass)
669 report = "enabled";
670 else
671 report = "disabled";
673 return sprintf(buf, "%s\n", report);
675 static DEVICE_ATTR(bypass, 0444,
676 regulator_bypass_show, NULL);
678 /* Calculate the new optimum regulator operating mode based on the new total
679 * consumer load. All locks held by caller */
680 static int drms_uA_update(struct regulator_dev *rdev)
682 struct regulator *sibling;
683 int current_uA = 0, output_uV, input_uV, err;
684 unsigned int mode;
686 lockdep_assert_held_once(&rdev->mutex);
689 * first check to see if we can set modes at all, otherwise just
690 * tell the consumer everything is OK.
692 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
693 return 0;
695 if (!rdev->desc->ops->get_optimum_mode &&
696 !rdev->desc->ops->set_load)
697 return 0;
699 if (!rdev->desc->ops->set_mode &&
700 !rdev->desc->ops->set_load)
701 return -EINVAL;
703 /* calc total requested load */
704 list_for_each_entry(sibling, &rdev->consumer_list, list)
705 current_uA += sibling->uA_load;
707 current_uA += rdev->constraints->system_load;
709 if (rdev->desc->ops->set_load) {
710 /* set the optimum mode for our new total regulator load */
711 err = rdev->desc->ops->set_load(rdev, current_uA);
712 if (err < 0)
713 rdev_err(rdev, "failed to set load %d\n", current_uA);
714 } else {
715 /* get output voltage */
716 output_uV = _regulator_get_voltage(rdev);
717 if (output_uV <= 0) {
718 rdev_err(rdev, "invalid output voltage found\n");
719 return -EINVAL;
722 /* get input voltage */
723 input_uV = 0;
724 if (rdev->supply)
725 input_uV = regulator_get_voltage(rdev->supply);
726 if (input_uV <= 0)
727 input_uV = rdev->constraints->input_uV;
728 if (input_uV <= 0) {
729 rdev_err(rdev, "invalid input voltage found\n");
730 return -EINVAL;
733 /* now get the optimum mode for our new total regulator load */
734 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
735 output_uV, current_uA);
737 /* check the new mode is allowed */
738 err = regulator_mode_constrain(rdev, &mode);
739 if (err < 0) {
740 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
741 current_uA, input_uV, output_uV);
742 return err;
745 err = rdev->desc->ops->set_mode(rdev, mode);
746 if (err < 0)
747 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
750 return err;
753 static int suspend_set_state(struct regulator_dev *rdev,
754 suspend_state_t state)
756 int ret = 0;
757 struct regulator_state *rstate;
759 rstate = regulator_get_suspend_state(rdev, state);
760 if (rstate == NULL)
761 return 0;
763 /* If we have no suspend mode configration don't set anything;
764 * only warn if the driver implements set_suspend_voltage or
765 * set_suspend_mode callback.
767 if (rstate->enabled != ENABLE_IN_SUSPEND &&
768 rstate->enabled != DISABLE_IN_SUSPEND) {
769 if (rdev->desc->ops->set_suspend_voltage ||
770 rdev->desc->ops->set_suspend_mode)
771 rdev_warn(rdev, "No configuration\n");
772 return 0;
775 if (rstate->enabled == ENABLE_IN_SUSPEND &&
776 rdev->desc->ops->set_suspend_enable)
777 ret = rdev->desc->ops->set_suspend_enable(rdev);
778 else if (rstate->enabled == DISABLE_IN_SUSPEND &&
779 rdev->desc->ops->set_suspend_disable)
780 ret = rdev->desc->ops->set_suspend_disable(rdev);
781 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
782 ret = 0;
784 if (ret < 0) {
785 rdev_err(rdev, "failed to enabled/disable\n");
786 return ret;
789 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
790 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
791 if (ret < 0) {
792 rdev_err(rdev, "failed to set voltage\n");
793 return ret;
797 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
798 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
799 if (ret < 0) {
800 rdev_err(rdev, "failed to set mode\n");
801 return ret;
805 return ret;
808 static void print_constraints(struct regulator_dev *rdev)
810 struct regulation_constraints *constraints = rdev->constraints;
811 char buf[160] = "";
812 size_t len = sizeof(buf) - 1;
813 int count = 0;
814 int ret;
816 if (constraints->min_uV && constraints->max_uV) {
817 if (constraints->min_uV == constraints->max_uV)
818 count += scnprintf(buf + count, len - count, "%d mV ",
819 constraints->min_uV / 1000);
820 else
821 count += scnprintf(buf + count, len - count,
822 "%d <--> %d mV ",
823 constraints->min_uV / 1000,
824 constraints->max_uV / 1000);
827 if (!constraints->min_uV ||
828 constraints->min_uV != constraints->max_uV) {
829 ret = _regulator_get_voltage(rdev);
830 if (ret > 0)
831 count += scnprintf(buf + count, len - count,
832 "at %d mV ", ret / 1000);
835 if (constraints->uV_offset)
836 count += scnprintf(buf + count, len - count, "%dmV offset ",
837 constraints->uV_offset / 1000);
839 if (constraints->min_uA && constraints->max_uA) {
840 if (constraints->min_uA == constraints->max_uA)
841 count += scnprintf(buf + count, len - count, "%d mA ",
842 constraints->min_uA / 1000);
843 else
844 count += scnprintf(buf + count, len - count,
845 "%d <--> %d mA ",
846 constraints->min_uA / 1000,
847 constraints->max_uA / 1000);
850 if (!constraints->min_uA ||
851 constraints->min_uA != constraints->max_uA) {
852 ret = _regulator_get_current_limit(rdev);
853 if (ret > 0)
854 count += scnprintf(buf + count, len - count,
855 "at %d mA ", ret / 1000);
858 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
859 count += scnprintf(buf + count, len - count, "fast ");
860 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
861 count += scnprintf(buf + count, len - count, "normal ");
862 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
863 count += scnprintf(buf + count, len - count, "idle ");
864 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
865 count += scnprintf(buf + count, len - count, "standby");
867 if (!count)
868 scnprintf(buf, len, "no parameters");
870 rdev_dbg(rdev, "%s\n", buf);
872 if ((constraints->min_uV != constraints->max_uV) &&
873 !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
874 rdev_warn(rdev,
875 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
878 static int machine_constraints_voltage(struct regulator_dev *rdev,
879 struct regulation_constraints *constraints)
881 const struct regulator_ops *ops = rdev->desc->ops;
882 int ret;
884 /* do we need to apply the constraint voltage */
885 if (rdev->constraints->apply_uV &&
886 rdev->constraints->min_uV && rdev->constraints->max_uV) {
887 int target_min, target_max;
888 int current_uV = _regulator_get_voltage(rdev);
889 if (current_uV < 0) {
890 rdev_err(rdev,
891 "failed to get the current voltage(%d)\n",
892 current_uV);
893 return current_uV;
897 * If we're below the minimum voltage move up to the
898 * minimum voltage, if we're above the maximum voltage
899 * then move down to the maximum.
901 target_min = current_uV;
902 target_max = current_uV;
904 if (current_uV < rdev->constraints->min_uV) {
905 target_min = rdev->constraints->min_uV;
906 target_max = rdev->constraints->min_uV;
909 if (current_uV > rdev->constraints->max_uV) {
910 target_min = rdev->constraints->max_uV;
911 target_max = rdev->constraints->max_uV;
914 if (target_min != current_uV || target_max != current_uV) {
915 rdev_info(rdev, "Bringing %duV into %d-%duV\n",
916 current_uV, target_min, target_max);
917 ret = _regulator_do_set_voltage(
918 rdev, target_min, target_max);
919 if (ret < 0) {
920 rdev_err(rdev,
921 "failed to apply %d-%duV constraint(%d)\n",
922 target_min, target_max, ret);
923 return ret;
928 /* constrain machine-level voltage specs to fit
929 * the actual range supported by this regulator.
931 if (ops->list_voltage && rdev->desc->n_voltages) {
932 int count = rdev->desc->n_voltages;
933 int i;
934 int min_uV = INT_MAX;
935 int max_uV = INT_MIN;
936 int cmin = constraints->min_uV;
937 int cmax = constraints->max_uV;
939 /* it's safe to autoconfigure fixed-voltage supplies
940 and the constraints are used by list_voltage. */
941 if (count == 1 && !cmin) {
942 cmin = 1;
943 cmax = INT_MAX;
944 constraints->min_uV = cmin;
945 constraints->max_uV = cmax;
948 /* voltage constraints are optional */
949 if ((cmin == 0) && (cmax == 0))
950 return 0;
952 /* else require explicit machine-level constraints */
953 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
954 rdev_err(rdev, "invalid voltage constraints\n");
955 return -EINVAL;
958 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
959 for (i = 0; i < count; i++) {
960 int value;
962 value = ops->list_voltage(rdev, i);
963 if (value <= 0)
964 continue;
966 /* maybe adjust [min_uV..max_uV] */
967 if (value >= cmin && value < min_uV)
968 min_uV = value;
969 if (value <= cmax && value > max_uV)
970 max_uV = value;
973 /* final: [min_uV..max_uV] valid iff constraints valid */
974 if (max_uV < min_uV) {
975 rdev_err(rdev,
976 "unsupportable voltage constraints %u-%uuV\n",
977 min_uV, max_uV);
978 return -EINVAL;
981 /* use regulator's subset of machine constraints */
982 if (constraints->min_uV < min_uV) {
983 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
984 constraints->min_uV, min_uV);
985 constraints->min_uV = min_uV;
987 if (constraints->max_uV > max_uV) {
988 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
989 constraints->max_uV, max_uV);
990 constraints->max_uV = max_uV;
994 return 0;
997 static int machine_constraints_current(struct regulator_dev *rdev,
998 struct regulation_constraints *constraints)
1000 const struct regulator_ops *ops = rdev->desc->ops;
1001 int ret;
1003 if (!constraints->min_uA && !constraints->max_uA)
1004 return 0;
1006 if (constraints->min_uA > constraints->max_uA) {
1007 rdev_err(rdev, "Invalid current constraints\n");
1008 return -EINVAL;
1011 if (!ops->set_current_limit || !ops->get_current_limit) {
1012 rdev_warn(rdev, "Operation of current configuration missing\n");
1013 return 0;
1016 /* Set regulator current in constraints range */
1017 ret = ops->set_current_limit(rdev, constraints->min_uA,
1018 constraints->max_uA);
1019 if (ret < 0) {
1020 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1021 return ret;
1024 return 0;
1027 static int _regulator_do_enable(struct regulator_dev *rdev);
1030 * set_machine_constraints - sets regulator constraints
1031 * @rdev: regulator source
1032 * @constraints: constraints to apply
1034 * Allows platform initialisation code to define and constrain
1035 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
1036 * Constraints *must* be set by platform code in order for some
1037 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1038 * set_mode.
1040 static int set_machine_constraints(struct regulator_dev *rdev,
1041 const struct regulation_constraints *constraints)
1043 int ret = 0;
1044 const struct regulator_ops *ops = rdev->desc->ops;
1046 if (constraints)
1047 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1048 GFP_KERNEL);
1049 else
1050 rdev->constraints = kzalloc(sizeof(*constraints),
1051 GFP_KERNEL);
1052 if (!rdev->constraints)
1053 return -ENOMEM;
1055 ret = machine_constraints_voltage(rdev, rdev->constraints);
1056 if (ret != 0)
1057 return ret;
1059 ret = machine_constraints_current(rdev, rdev->constraints);
1060 if (ret != 0)
1061 return ret;
1063 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1064 ret = ops->set_input_current_limit(rdev,
1065 rdev->constraints->ilim_uA);
1066 if (ret < 0) {
1067 rdev_err(rdev, "failed to set input limit\n");
1068 return ret;
1072 /* do we need to setup our suspend state */
1073 if (rdev->constraints->initial_state) {
1074 ret = suspend_set_state(rdev, rdev->constraints->initial_state);
1075 if (ret < 0) {
1076 rdev_err(rdev, "failed to set suspend state\n");
1077 return ret;
1081 if (rdev->constraints->initial_mode) {
1082 if (!ops->set_mode) {
1083 rdev_err(rdev, "no set_mode operation\n");
1084 return -EINVAL;
1087 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1088 if (ret < 0) {
1089 rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1090 return ret;
1094 /* If the constraints say the regulator should be on at this point
1095 * and we have control then make sure it is enabled.
1097 if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1098 ret = _regulator_do_enable(rdev);
1099 if (ret < 0 && ret != -EINVAL) {
1100 rdev_err(rdev, "failed to enable\n");
1101 return ret;
1105 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1106 && ops->set_ramp_delay) {
1107 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1108 if (ret < 0) {
1109 rdev_err(rdev, "failed to set ramp_delay\n");
1110 return ret;
1114 if (rdev->constraints->pull_down && ops->set_pull_down) {
1115 ret = ops->set_pull_down(rdev);
1116 if (ret < 0) {
1117 rdev_err(rdev, "failed to set pull down\n");
1118 return ret;
1122 if (rdev->constraints->soft_start && ops->set_soft_start) {
1123 ret = ops->set_soft_start(rdev);
1124 if (ret < 0) {
1125 rdev_err(rdev, "failed to set soft start\n");
1126 return ret;
1130 if (rdev->constraints->over_current_protection
1131 && ops->set_over_current_protection) {
1132 ret = ops->set_over_current_protection(rdev);
1133 if (ret < 0) {
1134 rdev_err(rdev, "failed to set over current protection\n");
1135 return ret;
1139 if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1140 bool ad_state = (rdev->constraints->active_discharge ==
1141 REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1143 ret = ops->set_active_discharge(rdev, ad_state);
1144 if (ret < 0) {
1145 rdev_err(rdev, "failed to set active discharge\n");
1146 return ret;
1150 print_constraints(rdev);
1151 return 0;
1155 * set_supply - set regulator supply regulator
1156 * @rdev: regulator name
1157 * @supply_rdev: supply regulator name
1159 * Called by platform initialisation code to set the supply regulator for this
1160 * regulator. This ensures that a regulators supply will also be enabled by the
1161 * core if it's child is enabled.
1163 static int set_supply(struct regulator_dev *rdev,
1164 struct regulator_dev *supply_rdev)
1166 int err;
1168 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1170 if (!try_module_get(supply_rdev->owner))
1171 return -ENODEV;
1173 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1174 if (rdev->supply == NULL) {
1175 err = -ENOMEM;
1176 return err;
1178 supply_rdev->open_count++;
1180 return 0;
1184 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1185 * @rdev: regulator source
1186 * @consumer_dev_name: dev_name() string for device supply applies to
1187 * @supply: symbolic name for supply
1189 * Allows platform initialisation code to map physical regulator
1190 * sources to symbolic names for supplies for use by devices. Devices
1191 * should use these symbolic names to request regulators, avoiding the
1192 * need to provide board-specific regulator names as platform data.
1194 static int set_consumer_device_supply(struct regulator_dev *rdev,
1195 const char *consumer_dev_name,
1196 const char *supply)
1198 struct regulator_map *node;
1199 int has_dev;
1201 if (supply == NULL)
1202 return -EINVAL;
1204 if (consumer_dev_name != NULL)
1205 has_dev = 1;
1206 else
1207 has_dev = 0;
1209 list_for_each_entry(node, &regulator_map_list, list) {
1210 if (node->dev_name && consumer_dev_name) {
1211 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1212 continue;
1213 } else if (node->dev_name || consumer_dev_name) {
1214 continue;
1217 if (strcmp(node->supply, supply) != 0)
1218 continue;
1220 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1221 consumer_dev_name,
1222 dev_name(&node->regulator->dev),
1223 node->regulator->desc->name,
1224 supply,
1225 dev_name(&rdev->dev), rdev_get_name(rdev));
1226 return -EBUSY;
1229 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1230 if (node == NULL)
1231 return -ENOMEM;
1233 node->regulator = rdev;
1234 node->supply = supply;
1236 if (has_dev) {
1237 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1238 if (node->dev_name == NULL) {
1239 kfree(node);
1240 return -ENOMEM;
1244 list_add(&node->list, &regulator_map_list);
1245 return 0;
1248 static void unset_regulator_supplies(struct regulator_dev *rdev)
1250 struct regulator_map *node, *n;
1252 list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1253 if (rdev == node->regulator) {
1254 list_del(&node->list);
1255 kfree(node->dev_name);
1256 kfree(node);
1261 #ifdef CONFIG_DEBUG_FS
1262 static ssize_t constraint_flags_read_file(struct file *file,
1263 char __user *user_buf,
1264 size_t count, loff_t *ppos)
1266 const struct regulator *regulator = file->private_data;
1267 const struct regulation_constraints *c = regulator->rdev->constraints;
1268 char *buf;
1269 ssize_t ret;
1271 if (!c)
1272 return 0;
1274 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1275 if (!buf)
1276 return -ENOMEM;
1278 ret = snprintf(buf, PAGE_SIZE,
1279 "always_on: %u\n"
1280 "boot_on: %u\n"
1281 "apply_uV: %u\n"
1282 "ramp_disable: %u\n"
1283 "soft_start: %u\n"
1284 "pull_down: %u\n"
1285 "over_current_protection: %u\n",
1286 c->always_on,
1287 c->boot_on,
1288 c->apply_uV,
1289 c->ramp_disable,
1290 c->soft_start,
1291 c->pull_down,
1292 c->over_current_protection);
1294 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1295 kfree(buf);
1297 return ret;
1300 #endif
1302 static const struct file_operations constraint_flags_fops = {
1303 #ifdef CONFIG_DEBUG_FS
1304 .open = simple_open,
1305 .read = constraint_flags_read_file,
1306 .llseek = default_llseek,
1307 #endif
1310 #define REG_STR_SIZE 64
1312 static struct regulator *create_regulator(struct regulator_dev *rdev,
1313 struct device *dev,
1314 const char *supply_name)
1316 struct regulator *regulator;
1317 char buf[REG_STR_SIZE];
1318 int err, size;
1320 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1321 if (regulator == NULL)
1322 return NULL;
1324 mutex_lock(&rdev->mutex);
1325 regulator->rdev = rdev;
1326 list_add(&regulator->list, &rdev->consumer_list);
1328 if (dev) {
1329 regulator->dev = dev;
1331 /* Add a link to the device sysfs entry */
1332 size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1333 dev->kobj.name, supply_name);
1334 if (size >= REG_STR_SIZE)
1335 goto overflow_err;
1337 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1338 if (regulator->supply_name == NULL)
1339 goto overflow_err;
1341 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1342 buf);
1343 if (err) {
1344 rdev_dbg(rdev, "could not add device link %s err %d\n",
1345 dev->kobj.name, err);
1346 /* non-fatal */
1348 } else {
1349 regulator->supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1350 if (regulator->supply_name == NULL)
1351 goto overflow_err;
1354 regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1355 rdev->debugfs);
1356 if (!regulator->debugfs) {
1357 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1358 } else {
1359 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1360 &regulator->uA_load);
1361 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1362 &regulator->voltage[PM_SUSPEND_ON].min_uV);
1363 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1364 &regulator->voltage[PM_SUSPEND_ON].max_uV);
1365 debugfs_create_file("constraint_flags", 0444,
1366 regulator->debugfs, regulator,
1367 &constraint_flags_fops);
1371 * Check now if the regulator is an always on regulator - if
1372 * it is then we don't need to do nearly so much work for
1373 * enable/disable calls.
1375 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1376 _regulator_is_enabled(rdev))
1377 regulator->always_on = true;
1379 mutex_unlock(&rdev->mutex);
1380 return regulator;
1381 overflow_err:
1382 list_del(&regulator->list);
1383 kfree(regulator);
1384 mutex_unlock(&rdev->mutex);
1385 return NULL;
1388 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1390 if (rdev->constraints && rdev->constraints->enable_time)
1391 return rdev->constraints->enable_time;
1392 if (!rdev->desc->ops->enable_time)
1393 return rdev->desc->enable_time;
1394 return rdev->desc->ops->enable_time(rdev);
1397 static struct regulator_supply_alias *regulator_find_supply_alias(
1398 struct device *dev, const char *supply)
1400 struct regulator_supply_alias *map;
1402 list_for_each_entry(map, &regulator_supply_alias_list, list)
1403 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1404 return map;
1406 return NULL;
1409 static void regulator_supply_alias(struct device **dev, const char **supply)
1411 struct regulator_supply_alias *map;
1413 map = regulator_find_supply_alias(*dev, *supply);
1414 if (map) {
1415 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1416 *supply, map->alias_supply,
1417 dev_name(map->alias_dev));
1418 *dev = map->alias_dev;
1419 *supply = map->alias_supply;
1423 static int regulator_match(struct device *dev, const void *data)
1425 struct regulator_dev *r = dev_to_rdev(dev);
1427 return strcmp(rdev_get_name(r), data) == 0;
1430 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1432 struct device *dev;
1434 dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1436 return dev ? dev_to_rdev(dev) : NULL;
1440 * regulator_dev_lookup - lookup a regulator device.
1441 * @dev: device for regulator "consumer".
1442 * @supply: Supply name or regulator ID.
1444 * If successful, returns a struct regulator_dev that corresponds to the name
1445 * @supply and with the embedded struct device refcount incremented by one.
1446 * The refcount must be dropped by calling put_device().
1447 * On failure one of the following ERR-PTR-encoded values is returned:
1448 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1449 * in the future.
1451 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1452 const char *supply)
1454 struct regulator_dev *r = NULL;
1455 struct device_node *node;
1456 struct regulator_map *map;
1457 const char *devname = NULL;
1459 regulator_supply_alias(&dev, &supply);
1461 /* first do a dt based lookup */
1462 if (dev && dev->of_node) {
1463 node = of_get_regulator(dev, supply);
1464 if (node) {
1465 r = of_find_regulator_by_node(node);
1466 if (r)
1467 return r;
1470 * We have a node, but there is no device.
1471 * assume it has not registered yet.
1473 return ERR_PTR(-EPROBE_DEFER);
1477 /* if not found, try doing it non-dt way */
1478 if (dev)
1479 devname = dev_name(dev);
1481 mutex_lock(&regulator_list_mutex);
1482 list_for_each_entry(map, &regulator_map_list, list) {
1483 /* If the mapping has a device set up it must match */
1484 if (map->dev_name &&
1485 (!devname || strcmp(map->dev_name, devname)))
1486 continue;
1488 if (strcmp(map->supply, supply) == 0 &&
1489 get_device(&map->regulator->dev)) {
1490 r = map->regulator;
1491 break;
1494 mutex_unlock(&regulator_list_mutex);
1496 if (r)
1497 return r;
1499 r = regulator_lookup_by_name(supply);
1500 if (r)
1501 return r;
1503 return ERR_PTR(-ENODEV);
1506 static int regulator_resolve_supply(struct regulator_dev *rdev)
1508 struct regulator_dev *r;
1509 struct device *dev = rdev->dev.parent;
1510 int ret;
1512 /* No supply to resovle? */
1513 if (!rdev->supply_name)
1514 return 0;
1516 /* Supply already resolved? */
1517 if (rdev->supply)
1518 return 0;
1520 r = regulator_dev_lookup(dev, rdev->supply_name);
1521 if (IS_ERR(r)) {
1522 ret = PTR_ERR(r);
1524 /* Did the lookup explicitly defer for us? */
1525 if (ret == -EPROBE_DEFER)
1526 return ret;
1528 if (have_full_constraints()) {
1529 r = dummy_regulator_rdev;
1530 get_device(&r->dev);
1531 } else {
1532 dev_err(dev, "Failed to resolve %s-supply for %s\n",
1533 rdev->supply_name, rdev->desc->name);
1534 return -EPROBE_DEFER;
1539 * If the supply's parent device is not the same as the
1540 * regulator's parent device, then ensure the parent device
1541 * is bound before we resolve the supply, in case the parent
1542 * device get probe deferred and unregisters the supply.
1544 if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
1545 if (!device_is_bound(r->dev.parent)) {
1546 put_device(&r->dev);
1547 return -EPROBE_DEFER;
1551 /* Recursively resolve the supply of the supply */
1552 ret = regulator_resolve_supply(r);
1553 if (ret < 0) {
1554 put_device(&r->dev);
1555 return ret;
1558 ret = set_supply(rdev, r);
1559 if (ret < 0) {
1560 put_device(&r->dev);
1561 return ret;
1564 /* Cascade always-on state to supply */
1565 if (_regulator_is_enabled(rdev)) {
1566 ret = regulator_enable(rdev->supply);
1567 if (ret < 0) {
1568 _regulator_put(rdev->supply);
1569 rdev->supply = NULL;
1570 return ret;
1574 return 0;
1577 /* Internal regulator request function */
1578 struct regulator *_regulator_get(struct device *dev, const char *id,
1579 enum regulator_get_type get_type)
1581 struct regulator_dev *rdev;
1582 struct regulator *regulator;
1583 const char *devname = dev ? dev_name(dev) : "deviceless";
1584 int ret;
1586 if (get_type >= MAX_GET_TYPE) {
1587 dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
1588 return ERR_PTR(-EINVAL);
1591 if (id == NULL) {
1592 pr_err("get() with no identifier\n");
1593 return ERR_PTR(-EINVAL);
1596 rdev = regulator_dev_lookup(dev, id);
1597 if (IS_ERR(rdev)) {
1598 ret = PTR_ERR(rdev);
1601 * If regulator_dev_lookup() fails with error other
1602 * than -ENODEV our job here is done, we simply return it.
1604 if (ret != -ENODEV)
1605 return ERR_PTR(ret);
1607 if (!have_full_constraints()) {
1608 dev_warn(dev,
1609 "incomplete constraints, dummy supplies not allowed\n");
1610 return ERR_PTR(-ENODEV);
1613 switch (get_type) {
1614 case NORMAL_GET:
1616 * Assume that a regulator is physically present and
1617 * enabled, even if it isn't hooked up, and just
1618 * provide a dummy.
1620 dev_warn(dev,
1621 "%s supply %s not found, using dummy regulator\n",
1622 devname, id);
1623 rdev = dummy_regulator_rdev;
1624 get_device(&rdev->dev);
1625 break;
1627 case EXCLUSIVE_GET:
1628 dev_warn(dev,
1629 "dummy supplies not allowed for exclusive requests\n");
1630 /* fall through */
1632 default:
1633 return ERR_PTR(-ENODEV);
1637 if (rdev->exclusive) {
1638 regulator = ERR_PTR(-EPERM);
1639 put_device(&rdev->dev);
1640 return regulator;
1643 if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1644 regulator = ERR_PTR(-EBUSY);
1645 put_device(&rdev->dev);
1646 return regulator;
1649 ret = regulator_resolve_supply(rdev);
1650 if (ret < 0) {
1651 regulator = ERR_PTR(ret);
1652 put_device(&rdev->dev);
1653 return regulator;
1656 if (!try_module_get(rdev->owner)) {
1657 regulator = ERR_PTR(-EPROBE_DEFER);
1658 put_device(&rdev->dev);
1659 return regulator;
1662 regulator = create_regulator(rdev, dev, id);
1663 if (regulator == NULL) {
1664 regulator = ERR_PTR(-ENOMEM);
1665 put_device(&rdev->dev);
1666 module_put(rdev->owner);
1667 return regulator;
1670 rdev->open_count++;
1671 if (get_type == EXCLUSIVE_GET) {
1672 rdev->exclusive = 1;
1674 ret = _regulator_is_enabled(rdev);
1675 if (ret > 0)
1676 rdev->use_count = 1;
1677 else
1678 rdev->use_count = 0;
1681 return regulator;
1685 * regulator_get - lookup and obtain a reference to a regulator.
1686 * @dev: device for regulator "consumer"
1687 * @id: Supply name or regulator ID.
1689 * Returns a struct regulator corresponding to the regulator producer,
1690 * or IS_ERR() condition containing errno.
1692 * Use of supply names configured via regulator_set_device_supply() is
1693 * strongly encouraged. It is recommended that the supply name used
1694 * should match the name used for the supply and/or the relevant
1695 * device pins in the datasheet.
1697 struct regulator *regulator_get(struct device *dev, const char *id)
1699 return _regulator_get(dev, id, NORMAL_GET);
1701 EXPORT_SYMBOL_GPL(regulator_get);
1704 * regulator_get_exclusive - obtain exclusive access to a regulator.
1705 * @dev: device for regulator "consumer"
1706 * @id: Supply name or regulator ID.
1708 * Returns a struct regulator corresponding to the regulator producer,
1709 * or IS_ERR() condition containing errno. Other consumers will be
1710 * unable to obtain this regulator while this reference is held and the
1711 * use count for the regulator will be initialised to reflect the current
1712 * state of the regulator.
1714 * This is intended for use by consumers which cannot tolerate shared
1715 * use of the regulator such as those which need to force the
1716 * regulator off for correct operation of the hardware they are
1717 * controlling.
1719 * Use of supply names configured via regulator_set_device_supply() is
1720 * strongly encouraged. It is recommended that the supply name used
1721 * should match the name used for the supply and/or the relevant
1722 * device pins in the datasheet.
1724 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1726 return _regulator_get(dev, id, EXCLUSIVE_GET);
1728 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1731 * regulator_get_optional - obtain optional access to a regulator.
1732 * @dev: device for regulator "consumer"
1733 * @id: Supply name or regulator ID.
1735 * Returns a struct regulator corresponding to the regulator producer,
1736 * or IS_ERR() condition containing errno.
1738 * This is intended for use by consumers for devices which can have
1739 * some supplies unconnected in normal use, such as some MMC devices.
1740 * It can allow the regulator core to provide stub supplies for other
1741 * supplies requested using normal regulator_get() calls without
1742 * disrupting the operation of drivers that can handle absent
1743 * supplies.
1745 * Use of supply names configured via regulator_set_device_supply() is
1746 * strongly encouraged. It is recommended that the supply name used
1747 * should match the name used for the supply and/or the relevant
1748 * device pins in the datasheet.
1750 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1752 return _regulator_get(dev, id, OPTIONAL_GET);
1754 EXPORT_SYMBOL_GPL(regulator_get_optional);
1756 /* regulator_list_mutex lock held by regulator_put() */
1757 static void _regulator_put(struct regulator *regulator)
1759 struct regulator_dev *rdev;
1761 if (IS_ERR_OR_NULL(regulator))
1762 return;
1764 lockdep_assert_held_once(&regulator_list_mutex);
1766 rdev = regulator->rdev;
1768 debugfs_remove_recursive(regulator->debugfs);
1770 /* remove any sysfs entries */
1771 if (regulator->dev)
1772 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1773 mutex_lock(&rdev->mutex);
1774 list_del(&regulator->list);
1776 rdev->open_count--;
1777 rdev->exclusive = 0;
1778 put_device(&rdev->dev);
1779 mutex_unlock(&rdev->mutex);
1781 kfree_const(regulator->supply_name);
1782 kfree(regulator);
1784 module_put(rdev->owner);
1788 * regulator_put - "free" the regulator source
1789 * @regulator: regulator source
1791 * Note: drivers must ensure that all regulator_enable calls made on this
1792 * regulator source are balanced by regulator_disable calls prior to calling
1793 * this function.
1795 void regulator_put(struct regulator *regulator)
1797 mutex_lock(&regulator_list_mutex);
1798 _regulator_put(regulator);
1799 mutex_unlock(&regulator_list_mutex);
1801 EXPORT_SYMBOL_GPL(regulator_put);
1804 * regulator_register_supply_alias - Provide device alias for supply lookup
1806 * @dev: device that will be given as the regulator "consumer"
1807 * @id: Supply name or regulator ID
1808 * @alias_dev: device that should be used to lookup the supply
1809 * @alias_id: Supply name or regulator ID that should be used to lookup the
1810 * supply
1812 * All lookups for id on dev will instead be conducted for alias_id on
1813 * alias_dev.
1815 int regulator_register_supply_alias(struct device *dev, const char *id,
1816 struct device *alias_dev,
1817 const char *alias_id)
1819 struct regulator_supply_alias *map;
1821 map = regulator_find_supply_alias(dev, id);
1822 if (map)
1823 return -EEXIST;
1825 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1826 if (!map)
1827 return -ENOMEM;
1829 map->src_dev = dev;
1830 map->src_supply = id;
1831 map->alias_dev = alias_dev;
1832 map->alias_supply = alias_id;
1834 list_add(&map->list, &regulator_supply_alias_list);
1836 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1837 id, dev_name(dev), alias_id, dev_name(alias_dev));
1839 return 0;
1841 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1844 * regulator_unregister_supply_alias - Remove device alias
1846 * @dev: device that will be given as the regulator "consumer"
1847 * @id: Supply name or regulator ID
1849 * Remove a lookup alias if one exists for id on dev.
1851 void regulator_unregister_supply_alias(struct device *dev, const char *id)
1853 struct regulator_supply_alias *map;
1855 map = regulator_find_supply_alias(dev, id);
1856 if (map) {
1857 list_del(&map->list);
1858 kfree(map);
1861 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1864 * regulator_bulk_register_supply_alias - register multiple aliases
1866 * @dev: device that will be given as the regulator "consumer"
1867 * @id: List of supply names or regulator IDs
1868 * @alias_dev: device that should be used to lookup the supply
1869 * @alias_id: List of supply names or regulator IDs that should be used to
1870 * lookup the supply
1871 * @num_id: Number of aliases to register
1873 * @return 0 on success, an errno on failure.
1875 * This helper function allows drivers to register several supply
1876 * aliases in one operation. If any of the aliases cannot be
1877 * registered any aliases that were registered will be removed
1878 * before returning to the caller.
1880 int regulator_bulk_register_supply_alias(struct device *dev,
1881 const char *const *id,
1882 struct device *alias_dev,
1883 const char *const *alias_id,
1884 int num_id)
1886 int i;
1887 int ret;
1889 for (i = 0; i < num_id; ++i) {
1890 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1891 alias_id[i]);
1892 if (ret < 0)
1893 goto err;
1896 return 0;
1898 err:
1899 dev_err(dev,
1900 "Failed to create supply alias %s,%s -> %s,%s\n",
1901 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1903 while (--i >= 0)
1904 regulator_unregister_supply_alias(dev, id[i]);
1906 return ret;
1908 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1911 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1913 * @dev: device that will be given as the regulator "consumer"
1914 * @id: List of supply names or regulator IDs
1915 * @num_id: Number of aliases to unregister
1917 * This helper function allows drivers to unregister several supply
1918 * aliases in one operation.
1920 void regulator_bulk_unregister_supply_alias(struct device *dev,
1921 const char *const *id,
1922 int num_id)
1924 int i;
1926 for (i = 0; i < num_id; ++i)
1927 regulator_unregister_supply_alias(dev, id[i]);
1929 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1932 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1933 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1934 const struct regulator_config *config)
1936 struct regulator_enable_gpio *pin;
1937 struct gpio_desc *gpiod;
1938 int ret;
1940 gpiod = gpio_to_desc(config->ena_gpio);
1942 list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1943 if (pin->gpiod == gpiod) {
1944 rdev_dbg(rdev, "GPIO %d is already used\n",
1945 config->ena_gpio);
1946 goto update_ena_gpio_to_rdev;
1950 ret = gpio_request_one(config->ena_gpio,
1951 GPIOF_DIR_OUT | config->ena_gpio_flags,
1952 rdev_get_name(rdev));
1953 if (ret)
1954 return ret;
1956 pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1957 if (pin == NULL) {
1958 gpio_free(config->ena_gpio);
1959 return -ENOMEM;
1962 pin->gpiod = gpiod;
1963 pin->ena_gpio_invert = config->ena_gpio_invert;
1964 list_add(&pin->list, &regulator_ena_gpio_list);
1966 update_ena_gpio_to_rdev:
1967 pin->request_count++;
1968 rdev->ena_pin = pin;
1969 return 0;
1972 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1974 struct regulator_enable_gpio *pin, *n;
1976 if (!rdev->ena_pin)
1977 return;
1979 /* Free the GPIO only in case of no use */
1980 list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1981 if (pin->gpiod == rdev->ena_pin->gpiod) {
1982 if (pin->request_count <= 1) {
1983 pin->request_count = 0;
1984 gpiod_put(pin->gpiod);
1985 list_del(&pin->list);
1986 kfree(pin);
1987 rdev->ena_pin = NULL;
1988 return;
1989 } else {
1990 pin->request_count--;
1997 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1998 * @rdev: regulator_dev structure
1999 * @enable: enable GPIO at initial use?
2001 * GPIO is enabled in case of initial use. (enable_count is 0)
2002 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2004 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2006 struct regulator_enable_gpio *pin = rdev->ena_pin;
2008 if (!pin)
2009 return -EINVAL;
2011 if (enable) {
2012 /* Enable GPIO at initial use */
2013 if (pin->enable_count == 0)
2014 gpiod_set_value_cansleep(pin->gpiod,
2015 !pin->ena_gpio_invert);
2017 pin->enable_count++;
2018 } else {
2019 if (pin->enable_count > 1) {
2020 pin->enable_count--;
2021 return 0;
2024 /* Disable GPIO if not used */
2025 if (pin->enable_count <= 1) {
2026 gpiod_set_value_cansleep(pin->gpiod,
2027 pin->ena_gpio_invert);
2028 pin->enable_count = 0;
2032 return 0;
2036 * _regulator_enable_delay - a delay helper function
2037 * @delay: time to delay in microseconds
2039 * Delay for the requested amount of time as per the guidelines in:
2041 * Documentation/timers/timers-howto.txt
2043 * The assumption here is that regulators will never be enabled in
2044 * atomic context and therefore sleeping functions can be used.
2046 static void _regulator_enable_delay(unsigned int delay)
2048 unsigned int ms = delay / 1000;
2049 unsigned int us = delay % 1000;
2051 if (ms > 0) {
2053 * For small enough values, handle super-millisecond
2054 * delays in the usleep_range() call below.
2056 if (ms < 20)
2057 us += ms * 1000;
2058 else
2059 msleep(ms);
2063 * Give the scheduler some room to coalesce with any other
2064 * wakeup sources. For delays shorter than 10 us, don't even
2065 * bother setting up high-resolution timers and just busy-
2066 * loop.
2068 if (us >= 10)
2069 usleep_range(us, us + 100);
2070 else
2071 udelay(us);
2074 static int _regulator_do_enable(struct regulator_dev *rdev)
2076 int ret, delay;
2078 /* Query before enabling in case configuration dependent. */
2079 ret = _regulator_get_enable_time(rdev);
2080 if (ret >= 0) {
2081 delay = ret;
2082 } else {
2083 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
2084 delay = 0;
2087 trace_regulator_enable(rdev_get_name(rdev));
2089 if (rdev->desc->off_on_delay) {
2090 /* if needed, keep a distance of off_on_delay from last time
2091 * this regulator was disabled.
2093 unsigned long start_jiffy = jiffies;
2094 unsigned long intended, max_delay, remaining;
2096 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2097 intended = rdev->last_off_jiffy + max_delay;
2099 if (time_before(start_jiffy, intended)) {
2100 /* calc remaining jiffies to deal with one-time
2101 * timer wrapping.
2102 * in case of multiple timer wrapping, either it can be
2103 * detected by out-of-range remaining, or it cannot be
2104 * detected and we gets a panelty of
2105 * _regulator_enable_delay().
2107 remaining = intended - start_jiffy;
2108 if (remaining <= max_delay)
2109 _regulator_enable_delay(
2110 jiffies_to_usecs(remaining));
2114 if (rdev->ena_pin) {
2115 if (!rdev->ena_gpio_state) {
2116 ret = regulator_ena_gpio_ctrl(rdev, true);
2117 if (ret < 0)
2118 return ret;
2119 rdev->ena_gpio_state = 1;
2121 } else if (rdev->desc->ops->enable) {
2122 ret = rdev->desc->ops->enable(rdev);
2123 if (ret < 0)
2124 return ret;
2125 } else {
2126 return -EINVAL;
2129 /* Allow the regulator to ramp; it would be useful to extend
2130 * this for bulk operations so that the regulators can ramp
2131 * together. */
2132 trace_regulator_enable_delay(rdev_get_name(rdev));
2134 _regulator_enable_delay(delay);
2136 trace_regulator_enable_complete(rdev_get_name(rdev));
2138 return 0;
2141 /* locks held by regulator_enable() */
2142 static int _regulator_enable(struct regulator_dev *rdev)
2144 int ret;
2146 lockdep_assert_held_once(&rdev->mutex);
2148 /* check voltage and requested load before enabling */
2149 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
2150 drms_uA_update(rdev);
2152 if (rdev->use_count == 0) {
2153 /* The regulator may on if it's not switchable or left on */
2154 ret = _regulator_is_enabled(rdev);
2155 if (ret == -EINVAL || ret == 0) {
2156 if (!regulator_ops_is_valid(rdev,
2157 REGULATOR_CHANGE_STATUS))
2158 return -EPERM;
2160 ret = _regulator_do_enable(rdev);
2161 if (ret < 0)
2162 return ret;
2164 _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2165 NULL);
2166 } else if (ret < 0) {
2167 rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2168 return ret;
2170 /* Fallthrough on positive return values - already enabled */
2173 rdev->use_count++;
2175 return 0;
2179 * regulator_enable - enable regulator output
2180 * @regulator: regulator source
2182 * Request that the regulator be enabled with the regulator output at
2183 * the predefined voltage or current value. Calls to regulator_enable()
2184 * must be balanced with calls to regulator_disable().
2186 * NOTE: the output value can be set by other drivers, boot loader or may be
2187 * hardwired in the regulator.
2189 int regulator_enable(struct regulator *regulator)
2191 struct regulator_dev *rdev = regulator->rdev;
2192 int ret = 0;
2194 if (regulator->always_on)
2195 return 0;
2197 if (rdev->supply) {
2198 ret = regulator_enable(rdev->supply);
2199 if (ret != 0)
2200 return ret;
2203 mutex_lock(&rdev->mutex);
2204 ret = _regulator_enable(rdev);
2205 mutex_unlock(&rdev->mutex);
2207 if (ret != 0 && rdev->supply)
2208 regulator_disable(rdev->supply);
2210 return ret;
2212 EXPORT_SYMBOL_GPL(regulator_enable);
2214 static int _regulator_do_disable(struct regulator_dev *rdev)
2216 int ret;
2218 trace_regulator_disable(rdev_get_name(rdev));
2220 if (rdev->ena_pin) {
2221 if (rdev->ena_gpio_state) {
2222 ret = regulator_ena_gpio_ctrl(rdev, false);
2223 if (ret < 0)
2224 return ret;
2225 rdev->ena_gpio_state = 0;
2228 } else if (rdev->desc->ops->disable) {
2229 ret = rdev->desc->ops->disable(rdev);
2230 if (ret != 0)
2231 return ret;
2234 /* cares about last_off_jiffy only if off_on_delay is required by
2235 * device.
2237 if (rdev->desc->off_on_delay)
2238 rdev->last_off_jiffy = jiffies;
2240 trace_regulator_disable_complete(rdev_get_name(rdev));
2242 return 0;
2245 /* locks held by regulator_disable() */
2246 static int _regulator_disable(struct regulator_dev *rdev)
2248 int ret = 0;
2250 lockdep_assert_held_once(&rdev->mutex);
2252 if (WARN(rdev->use_count <= 0,
2253 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2254 return -EIO;
2256 /* are we the last user and permitted to disable ? */
2257 if (rdev->use_count == 1 &&
2258 (rdev->constraints && !rdev->constraints->always_on)) {
2260 /* we are last user */
2261 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2262 ret = _notifier_call_chain(rdev,
2263 REGULATOR_EVENT_PRE_DISABLE,
2264 NULL);
2265 if (ret & NOTIFY_STOP_MASK)
2266 return -EINVAL;
2268 ret = _regulator_do_disable(rdev);
2269 if (ret < 0) {
2270 rdev_err(rdev, "failed to disable\n");
2271 _notifier_call_chain(rdev,
2272 REGULATOR_EVENT_ABORT_DISABLE,
2273 NULL);
2274 return ret;
2276 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2277 NULL);
2280 rdev->use_count = 0;
2281 } else if (rdev->use_count > 1) {
2282 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
2283 drms_uA_update(rdev);
2285 rdev->use_count--;
2288 return ret;
2292 * regulator_disable - disable regulator output
2293 * @regulator: regulator source
2295 * Disable the regulator output voltage or current. Calls to
2296 * regulator_enable() must be balanced with calls to
2297 * regulator_disable().
2299 * NOTE: this will only disable the regulator output if no other consumer
2300 * devices have it enabled, the regulator device supports disabling and
2301 * machine constraints permit this operation.
2303 int regulator_disable(struct regulator *regulator)
2305 struct regulator_dev *rdev = regulator->rdev;
2306 int ret = 0;
2308 if (regulator->always_on)
2309 return 0;
2311 mutex_lock(&rdev->mutex);
2312 ret = _regulator_disable(rdev);
2313 mutex_unlock(&rdev->mutex);
2315 if (ret == 0 && rdev->supply)
2316 regulator_disable(rdev->supply);
2318 return ret;
2320 EXPORT_SYMBOL_GPL(regulator_disable);
2322 /* locks held by regulator_force_disable() */
2323 static int _regulator_force_disable(struct regulator_dev *rdev)
2325 int ret = 0;
2327 lockdep_assert_held_once(&rdev->mutex);
2329 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2330 REGULATOR_EVENT_PRE_DISABLE, NULL);
2331 if (ret & NOTIFY_STOP_MASK)
2332 return -EINVAL;
2334 ret = _regulator_do_disable(rdev);
2335 if (ret < 0) {
2336 rdev_err(rdev, "failed to force disable\n");
2337 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2338 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2339 return ret;
2342 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2343 REGULATOR_EVENT_DISABLE, NULL);
2345 return 0;
2349 * regulator_force_disable - force disable regulator output
2350 * @regulator: regulator source
2352 * Forcibly disable the regulator output voltage or current.
2353 * NOTE: this *will* disable the regulator output even if other consumer
2354 * devices have it enabled. This should be used for situations when device
2355 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2357 int regulator_force_disable(struct regulator *regulator)
2359 struct regulator_dev *rdev = regulator->rdev;
2360 int ret;
2362 mutex_lock(&rdev->mutex);
2363 regulator->uA_load = 0;
2364 ret = _regulator_force_disable(regulator->rdev);
2365 mutex_unlock(&rdev->mutex);
2367 if (rdev->supply)
2368 while (rdev->open_count--)
2369 regulator_disable(rdev->supply);
2371 return ret;
2373 EXPORT_SYMBOL_GPL(regulator_force_disable);
2375 static void regulator_disable_work(struct work_struct *work)
2377 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2378 disable_work.work);
2379 int count, i, ret;
2381 mutex_lock(&rdev->mutex);
2383 BUG_ON(!rdev->deferred_disables);
2385 count = rdev->deferred_disables;
2386 rdev->deferred_disables = 0;
2389 * Workqueue functions queue the new work instance while the previous
2390 * work instance is being processed. Cancel the queued work instance
2391 * as the work instance under processing does the job of the queued
2392 * work instance.
2394 cancel_delayed_work(&rdev->disable_work);
2396 for (i = 0; i < count; i++) {
2397 ret = _regulator_disable(rdev);
2398 if (ret != 0)
2399 rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2402 mutex_unlock(&rdev->mutex);
2404 if (rdev->supply) {
2405 for (i = 0; i < count; i++) {
2406 ret = regulator_disable(rdev->supply);
2407 if (ret != 0) {
2408 rdev_err(rdev,
2409 "Supply disable failed: %d\n", ret);
2416 * regulator_disable_deferred - disable regulator output with delay
2417 * @regulator: regulator source
2418 * @ms: miliseconds until the regulator is disabled
2420 * Execute regulator_disable() on the regulator after a delay. This
2421 * is intended for use with devices that require some time to quiesce.
2423 * NOTE: this will only disable the regulator output if no other consumer
2424 * devices have it enabled, the regulator device supports disabling and
2425 * machine constraints permit this operation.
2427 int regulator_disable_deferred(struct regulator *regulator, int ms)
2429 struct regulator_dev *rdev = regulator->rdev;
2431 if (regulator->always_on)
2432 return 0;
2434 if (!ms)
2435 return regulator_disable(regulator);
2437 mutex_lock(&rdev->mutex);
2438 rdev->deferred_disables++;
2439 mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2440 msecs_to_jiffies(ms));
2441 mutex_unlock(&rdev->mutex);
2443 return 0;
2445 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2447 static int _regulator_is_enabled(struct regulator_dev *rdev)
2449 /* A GPIO control always takes precedence */
2450 if (rdev->ena_pin)
2451 return rdev->ena_gpio_state;
2453 /* If we don't know then assume that the regulator is always on */
2454 if (!rdev->desc->ops->is_enabled)
2455 return 1;
2457 return rdev->desc->ops->is_enabled(rdev);
2460 static int _regulator_list_voltage(struct regulator_dev *rdev,
2461 unsigned selector, int lock)
2463 const struct regulator_ops *ops = rdev->desc->ops;
2464 int ret;
2466 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2467 return rdev->desc->fixed_uV;
2469 if (ops->list_voltage) {
2470 if (selector >= rdev->desc->n_voltages)
2471 return -EINVAL;
2472 if (lock)
2473 mutex_lock(&rdev->mutex);
2474 ret = ops->list_voltage(rdev, selector);
2475 if (lock)
2476 mutex_unlock(&rdev->mutex);
2477 } else if (rdev->is_switch && rdev->supply) {
2478 ret = _regulator_list_voltage(rdev->supply->rdev,
2479 selector, lock);
2480 } else {
2481 return -EINVAL;
2484 if (ret > 0) {
2485 if (ret < rdev->constraints->min_uV)
2486 ret = 0;
2487 else if (ret > rdev->constraints->max_uV)
2488 ret = 0;
2491 return ret;
2495 * regulator_is_enabled - is the regulator output enabled
2496 * @regulator: regulator source
2498 * Returns positive if the regulator driver backing the source/client
2499 * has requested that the device be enabled, zero if it hasn't, else a
2500 * negative errno code.
2502 * Note that the device backing this regulator handle can have multiple
2503 * users, so it might be enabled even if regulator_enable() was never
2504 * called for this particular source.
2506 int regulator_is_enabled(struct regulator *regulator)
2508 int ret;
2510 if (regulator->always_on)
2511 return 1;
2513 mutex_lock(&regulator->rdev->mutex);
2514 ret = _regulator_is_enabled(regulator->rdev);
2515 mutex_unlock(&regulator->rdev->mutex);
2517 return ret;
2519 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2522 * regulator_count_voltages - count regulator_list_voltage() selectors
2523 * @regulator: regulator source
2525 * Returns number of selectors, or negative errno. Selectors are
2526 * numbered starting at zero, and typically correspond to bitfields
2527 * in hardware registers.
2529 int regulator_count_voltages(struct regulator *regulator)
2531 struct regulator_dev *rdev = regulator->rdev;
2533 if (rdev->desc->n_voltages)
2534 return rdev->desc->n_voltages;
2536 if (!rdev->is_switch || !rdev->supply)
2537 return -EINVAL;
2539 return regulator_count_voltages(rdev->supply);
2541 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2544 * regulator_list_voltage - enumerate supported voltages
2545 * @regulator: regulator source
2546 * @selector: identify voltage to list
2547 * Context: can sleep
2549 * Returns a voltage that can be passed to @regulator_set_voltage(),
2550 * zero if this selector code can't be used on this system, or a
2551 * negative errno.
2553 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2555 return _regulator_list_voltage(regulator->rdev, selector, 1);
2557 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2560 * regulator_get_regmap - get the regulator's register map
2561 * @regulator: regulator source
2563 * Returns the register map for the given regulator, or an ERR_PTR value
2564 * if the regulator doesn't use regmap.
2566 struct regmap *regulator_get_regmap(struct regulator *regulator)
2568 struct regmap *map = regulator->rdev->regmap;
2570 return map ? map : ERR_PTR(-EOPNOTSUPP);
2574 * regulator_get_hardware_vsel_register - get the HW voltage selector register
2575 * @regulator: regulator source
2576 * @vsel_reg: voltage selector register, output parameter
2577 * @vsel_mask: mask for voltage selector bitfield, output parameter
2579 * Returns the hardware register offset and bitmask used for setting the
2580 * regulator voltage. This might be useful when configuring voltage-scaling
2581 * hardware or firmware that can make I2C requests behind the kernel's back,
2582 * for example.
2584 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2585 * and 0 is returned, otherwise a negative errno is returned.
2587 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2588 unsigned *vsel_reg,
2589 unsigned *vsel_mask)
2591 struct regulator_dev *rdev = regulator->rdev;
2592 const struct regulator_ops *ops = rdev->desc->ops;
2594 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2595 return -EOPNOTSUPP;
2597 *vsel_reg = rdev->desc->vsel_reg;
2598 *vsel_mask = rdev->desc->vsel_mask;
2600 return 0;
2602 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2605 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2606 * @regulator: regulator source
2607 * @selector: identify voltage to list
2609 * Converts the selector to a hardware-specific voltage selector that can be
2610 * directly written to the regulator registers. The address of the voltage
2611 * register can be determined by calling @regulator_get_hardware_vsel_register.
2613 * On error a negative errno is returned.
2615 int regulator_list_hardware_vsel(struct regulator *regulator,
2616 unsigned selector)
2618 struct regulator_dev *rdev = regulator->rdev;
2619 const struct regulator_ops *ops = rdev->desc->ops;
2621 if (selector >= rdev->desc->n_voltages)
2622 return -EINVAL;
2623 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2624 return -EOPNOTSUPP;
2626 return selector;
2628 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2631 * regulator_get_linear_step - return the voltage step size between VSEL values
2632 * @regulator: regulator source
2634 * Returns the voltage step size between VSEL values for linear
2635 * regulators, or return 0 if the regulator isn't a linear regulator.
2637 unsigned int regulator_get_linear_step(struct regulator *regulator)
2639 struct regulator_dev *rdev = regulator->rdev;
2641 return rdev->desc->uV_step;
2643 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2646 * regulator_is_supported_voltage - check if a voltage range can be supported
2648 * @regulator: Regulator to check.
2649 * @min_uV: Minimum required voltage in uV.
2650 * @max_uV: Maximum required voltage in uV.
2652 * Returns a boolean or a negative error code.
2654 int regulator_is_supported_voltage(struct regulator *regulator,
2655 int min_uV, int max_uV)
2657 struct regulator_dev *rdev = regulator->rdev;
2658 int i, voltages, ret;
2660 /* If we can't change voltage check the current voltage */
2661 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
2662 ret = regulator_get_voltage(regulator);
2663 if (ret >= 0)
2664 return min_uV <= ret && ret <= max_uV;
2665 else
2666 return ret;
2669 /* Any voltage within constrains range is fine? */
2670 if (rdev->desc->continuous_voltage_range)
2671 return min_uV >= rdev->constraints->min_uV &&
2672 max_uV <= rdev->constraints->max_uV;
2674 ret = regulator_count_voltages(regulator);
2675 if (ret < 0)
2676 return ret;
2677 voltages = ret;
2679 for (i = 0; i < voltages; i++) {
2680 ret = regulator_list_voltage(regulator, i);
2682 if (ret >= min_uV && ret <= max_uV)
2683 return 1;
2686 return 0;
2688 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2690 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
2691 int max_uV)
2693 const struct regulator_desc *desc = rdev->desc;
2695 if (desc->ops->map_voltage)
2696 return desc->ops->map_voltage(rdev, min_uV, max_uV);
2698 if (desc->ops->list_voltage == regulator_list_voltage_linear)
2699 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
2701 if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
2702 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
2704 return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
2707 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
2708 int min_uV, int max_uV,
2709 unsigned *selector)
2711 struct pre_voltage_change_data data;
2712 int ret;
2714 data.old_uV = _regulator_get_voltage(rdev);
2715 data.min_uV = min_uV;
2716 data.max_uV = max_uV;
2717 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2718 &data);
2719 if (ret & NOTIFY_STOP_MASK)
2720 return -EINVAL;
2722 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
2723 if (ret >= 0)
2724 return ret;
2726 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2727 (void *)data.old_uV);
2729 return ret;
2732 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
2733 int uV, unsigned selector)
2735 struct pre_voltage_change_data data;
2736 int ret;
2738 data.old_uV = _regulator_get_voltage(rdev);
2739 data.min_uV = uV;
2740 data.max_uV = uV;
2741 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2742 &data);
2743 if (ret & NOTIFY_STOP_MASK)
2744 return -EINVAL;
2746 ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
2747 if (ret >= 0)
2748 return ret;
2750 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2751 (void *)data.old_uV);
2753 return ret;
2756 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
2757 int old_uV, int new_uV)
2759 unsigned int ramp_delay = 0;
2761 if (rdev->constraints->ramp_delay)
2762 ramp_delay = rdev->constraints->ramp_delay;
2763 else if (rdev->desc->ramp_delay)
2764 ramp_delay = rdev->desc->ramp_delay;
2765 else if (rdev->constraints->settling_time)
2766 return rdev->constraints->settling_time;
2767 else if (rdev->constraints->settling_time_up &&
2768 (new_uV > old_uV))
2769 return rdev->constraints->settling_time_up;
2770 else if (rdev->constraints->settling_time_down &&
2771 (new_uV < old_uV))
2772 return rdev->constraints->settling_time_down;
2774 if (ramp_delay == 0) {
2775 rdev_dbg(rdev, "ramp_delay not set\n");
2776 return 0;
2779 return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
2782 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2783 int min_uV, int max_uV)
2785 int ret;
2786 int delay = 0;
2787 int best_val = 0;
2788 unsigned int selector;
2789 int old_selector = -1;
2790 const struct regulator_ops *ops = rdev->desc->ops;
2791 int old_uV = _regulator_get_voltage(rdev);
2793 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2795 min_uV += rdev->constraints->uV_offset;
2796 max_uV += rdev->constraints->uV_offset;
2799 * If we can't obtain the old selector there is not enough
2800 * info to call set_voltage_time_sel().
2802 if (_regulator_is_enabled(rdev) &&
2803 ops->set_voltage_time_sel && ops->get_voltage_sel) {
2804 old_selector = ops->get_voltage_sel(rdev);
2805 if (old_selector < 0)
2806 return old_selector;
2809 if (ops->set_voltage) {
2810 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
2811 &selector);
2813 if (ret >= 0) {
2814 if (ops->list_voltage)
2815 best_val = ops->list_voltage(rdev,
2816 selector);
2817 else
2818 best_val = _regulator_get_voltage(rdev);
2821 } else if (ops->set_voltage_sel) {
2822 ret = regulator_map_voltage(rdev, min_uV, max_uV);
2823 if (ret >= 0) {
2824 best_val = ops->list_voltage(rdev, ret);
2825 if (min_uV <= best_val && max_uV >= best_val) {
2826 selector = ret;
2827 if (old_selector == selector)
2828 ret = 0;
2829 else
2830 ret = _regulator_call_set_voltage_sel(
2831 rdev, best_val, selector);
2832 } else {
2833 ret = -EINVAL;
2836 } else {
2837 ret = -EINVAL;
2840 if (ret)
2841 goto out;
2843 if (ops->set_voltage_time_sel) {
2845 * Call set_voltage_time_sel if successfully obtained
2846 * old_selector
2848 if (old_selector >= 0 && old_selector != selector)
2849 delay = ops->set_voltage_time_sel(rdev, old_selector,
2850 selector);
2851 } else {
2852 if (old_uV != best_val) {
2853 if (ops->set_voltage_time)
2854 delay = ops->set_voltage_time(rdev, old_uV,
2855 best_val);
2856 else
2857 delay = _regulator_set_voltage_time(rdev,
2858 old_uV,
2859 best_val);
2863 if (delay < 0) {
2864 rdev_warn(rdev, "failed to get delay: %d\n", delay);
2865 delay = 0;
2868 /* Insert any necessary delays */
2869 if (delay >= 1000) {
2870 mdelay(delay / 1000);
2871 udelay(delay % 1000);
2872 } else if (delay) {
2873 udelay(delay);
2876 if (best_val >= 0) {
2877 unsigned long data = best_val;
2879 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2880 (void *)data);
2883 out:
2884 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2886 return ret;
2889 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
2890 int min_uV, int max_uV, suspend_state_t state)
2892 struct regulator_state *rstate;
2893 int uV, sel;
2895 rstate = regulator_get_suspend_state(rdev, state);
2896 if (rstate == NULL)
2897 return -EINVAL;
2899 if (min_uV < rstate->min_uV)
2900 min_uV = rstate->min_uV;
2901 if (max_uV > rstate->max_uV)
2902 max_uV = rstate->max_uV;
2904 sel = regulator_map_voltage(rdev, min_uV, max_uV);
2905 if (sel < 0)
2906 return sel;
2908 uV = rdev->desc->ops->list_voltage(rdev, sel);
2909 if (uV >= min_uV && uV <= max_uV)
2910 rstate->uV = uV;
2912 return 0;
2915 static int regulator_set_voltage_unlocked(struct regulator *regulator,
2916 int min_uV, int max_uV,
2917 suspend_state_t state)
2919 struct regulator_dev *rdev = regulator->rdev;
2920 struct regulator_voltage *voltage = &regulator->voltage[state];
2921 int ret = 0;
2922 int old_min_uV, old_max_uV;
2923 int current_uV;
2924 int best_supply_uV = 0;
2925 int supply_change_uV = 0;
2927 /* If we're setting the same range as last time the change
2928 * should be a noop (some cpufreq implementations use the same
2929 * voltage for multiple frequencies, for example).
2931 if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
2932 goto out;
2934 /* If we're trying to set a range that overlaps the current voltage,
2935 * return successfully even though the regulator does not support
2936 * changing the voltage.
2938 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
2939 current_uV = _regulator_get_voltage(rdev);
2940 if (min_uV <= current_uV && current_uV <= max_uV) {
2941 voltage->min_uV = min_uV;
2942 voltage->max_uV = max_uV;
2943 goto out;
2947 /* sanity check */
2948 if (!rdev->desc->ops->set_voltage &&
2949 !rdev->desc->ops->set_voltage_sel) {
2950 ret = -EINVAL;
2951 goto out;
2954 /* constraints check */
2955 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2956 if (ret < 0)
2957 goto out;
2959 /* restore original values in case of error */
2960 old_min_uV = voltage->min_uV;
2961 old_max_uV = voltage->max_uV;
2962 voltage->min_uV = min_uV;
2963 voltage->max_uV = max_uV;
2965 ret = regulator_check_consumers(rdev, &min_uV, &max_uV, state);
2966 if (ret < 0)
2967 goto out2;
2969 if (rdev->supply &&
2970 regulator_ops_is_valid(rdev->supply->rdev,
2971 REGULATOR_CHANGE_VOLTAGE) &&
2972 (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
2973 rdev->desc->ops->get_voltage_sel))) {
2974 int current_supply_uV;
2975 int selector;
2977 selector = regulator_map_voltage(rdev, min_uV, max_uV);
2978 if (selector < 0) {
2979 ret = selector;
2980 goto out2;
2983 best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
2984 if (best_supply_uV < 0) {
2985 ret = best_supply_uV;
2986 goto out2;
2989 best_supply_uV += rdev->desc->min_dropout_uV;
2991 current_supply_uV = _regulator_get_voltage(rdev->supply->rdev);
2992 if (current_supply_uV < 0) {
2993 ret = current_supply_uV;
2994 goto out2;
2997 supply_change_uV = best_supply_uV - current_supply_uV;
3000 if (supply_change_uV > 0) {
3001 ret = regulator_set_voltage_unlocked(rdev->supply,
3002 best_supply_uV, INT_MAX, state);
3003 if (ret) {
3004 dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
3005 ret);
3006 goto out2;
3010 if (state == PM_SUSPEND_ON)
3011 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3012 else
3013 ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3014 max_uV, state);
3015 if (ret < 0)
3016 goto out2;
3018 if (supply_change_uV < 0) {
3019 ret = regulator_set_voltage_unlocked(rdev->supply,
3020 best_supply_uV, INT_MAX, state);
3021 if (ret)
3022 dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
3023 ret);
3024 /* No need to fail here */
3025 ret = 0;
3028 out:
3029 return ret;
3030 out2:
3031 voltage->min_uV = old_min_uV;
3032 voltage->max_uV = old_max_uV;
3034 return ret;
3038 * regulator_set_voltage - set regulator output voltage
3039 * @regulator: regulator source
3040 * @min_uV: Minimum required voltage in uV
3041 * @max_uV: Maximum acceptable voltage in uV
3043 * Sets a voltage regulator to the desired output voltage. This can be set
3044 * during any regulator state. IOW, regulator can be disabled or enabled.
3046 * If the regulator is enabled then the voltage will change to the new value
3047 * immediately otherwise if the regulator is disabled the regulator will
3048 * output at the new voltage when enabled.
3050 * NOTE: If the regulator is shared between several devices then the lowest
3051 * request voltage that meets the system constraints will be used.
3052 * Regulator system constraints must be set for this regulator before
3053 * calling this function otherwise this call will fail.
3055 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
3057 int ret = 0;
3059 regulator_lock_supply(regulator->rdev);
3061 ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
3062 PM_SUSPEND_ON);
3064 regulator_unlock_supply(regulator->rdev);
3066 return ret;
3068 EXPORT_SYMBOL_GPL(regulator_set_voltage);
3070 static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
3071 suspend_state_t state, bool en)
3073 struct regulator_state *rstate;
3075 rstate = regulator_get_suspend_state(rdev, state);
3076 if (rstate == NULL)
3077 return -EINVAL;
3079 if (!rstate->changeable)
3080 return -EPERM;
3082 rstate->enabled = en;
3084 return 0;
3087 int regulator_suspend_enable(struct regulator_dev *rdev,
3088 suspend_state_t state)
3090 return regulator_suspend_toggle(rdev, state, true);
3092 EXPORT_SYMBOL_GPL(regulator_suspend_enable);
3094 int regulator_suspend_disable(struct regulator_dev *rdev,
3095 suspend_state_t state)
3097 struct regulator *regulator;
3098 struct regulator_voltage *voltage;
3101 * if any consumer wants this regulator device keeping on in
3102 * suspend states, don't set it as disabled.
3104 list_for_each_entry(regulator, &rdev->consumer_list, list) {
3105 voltage = &regulator->voltage[state];
3106 if (voltage->min_uV || voltage->max_uV)
3107 return 0;
3110 return regulator_suspend_toggle(rdev, state, false);
3112 EXPORT_SYMBOL_GPL(regulator_suspend_disable);
3114 static int _regulator_set_suspend_voltage(struct regulator *regulator,
3115 int min_uV, int max_uV,
3116 suspend_state_t state)
3118 struct regulator_dev *rdev = regulator->rdev;
3119 struct regulator_state *rstate;
3121 rstate = regulator_get_suspend_state(rdev, state);
3122 if (rstate == NULL)
3123 return -EINVAL;
3125 if (rstate->min_uV == rstate->max_uV) {
3126 rdev_err(rdev, "The suspend voltage can't be changed!\n");
3127 return -EPERM;
3130 return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
3133 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
3134 int max_uV, suspend_state_t state)
3136 int ret = 0;
3138 /* PM_SUSPEND_ON is handled by regulator_set_voltage() */
3139 if (regulator_check_states(state) || state == PM_SUSPEND_ON)
3140 return -EINVAL;
3142 regulator_lock_supply(regulator->rdev);
3144 ret = _regulator_set_suspend_voltage(regulator, min_uV,
3145 max_uV, state);
3147 regulator_unlock_supply(regulator->rdev);
3149 return ret;
3151 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
3154 * regulator_set_voltage_time - get raise/fall time
3155 * @regulator: regulator source
3156 * @old_uV: starting voltage in microvolts
3157 * @new_uV: target voltage in microvolts
3159 * Provided with the starting and ending voltage, this function attempts to
3160 * calculate the time in microseconds required to rise or fall to this new
3161 * voltage.
3163 int regulator_set_voltage_time(struct regulator *regulator,
3164 int old_uV, int new_uV)
3166 struct regulator_dev *rdev = regulator->rdev;
3167 const struct regulator_ops *ops = rdev->desc->ops;
3168 int old_sel = -1;
3169 int new_sel = -1;
3170 int voltage;
3171 int i;
3173 if (ops->set_voltage_time)
3174 return ops->set_voltage_time(rdev, old_uV, new_uV);
3175 else if (!ops->set_voltage_time_sel)
3176 return _regulator_set_voltage_time(rdev, old_uV, new_uV);
3178 /* Currently requires operations to do this */
3179 if (!ops->list_voltage || !rdev->desc->n_voltages)
3180 return -EINVAL;
3182 for (i = 0; i < rdev->desc->n_voltages; i++) {
3183 /* We only look for exact voltage matches here */
3184 voltage = regulator_list_voltage(regulator, i);
3185 if (voltage < 0)
3186 return -EINVAL;
3187 if (voltage == 0)
3188 continue;
3189 if (voltage == old_uV)
3190 old_sel = i;
3191 if (voltage == new_uV)
3192 new_sel = i;
3195 if (old_sel < 0 || new_sel < 0)
3196 return -EINVAL;
3198 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
3200 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
3203 * regulator_set_voltage_time_sel - get raise/fall time
3204 * @rdev: regulator source device
3205 * @old_selector: selector for starting voltage
3206 * @new_selector: selector for target voltage
3208 * Provided with the starting and target voltage selectors, this function
3209 * returns time in microseconds required to rise or fall to this new voltage
3211 * Drivers providing ramp_delay in regulation_constraints can use this as their
3212 * set_voltage_time_sel() operation.
3214 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
3215 unsigned int old_selector,
3216 unsigned int new_selector)
3218 int old_volt, new_volt;
3220 /* sanity check */
3221 if (!rdev->desc->ops->list_voltage)
3222 return -EINVAL;
3224 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
3225 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
3227 if (rdev->desc->ops->set_voltage_time)
3228 return rdev->desc->ops->set_voltage_time(rdev, old_volt,
3229 new_volt);
3230 else
3231 return _regulator_set_voltage_time(rdev, old_volt, new_volt);
3233 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3236 * regulator_sync_voltage - re-apply last regulator output voltage
3237 * @regulator: regulator source
3239 * Re-apply the last configured voltage. This is intended to be used
3240 * where some external control source the consumer is cooperating with
3241 * has caused the configured voltage to change.
3243 int regulator_sync_voltage(struct regulator *regulator)
3245 struct regulator_dev *rdev = regulator->rdev;
3246 struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
3247 int ret, min_uV, max_uV;
3249 mutex_lock(&rdev->mutex);
3251 if (!rdev->desc->ops->set_voltage &&
3252 !rdev->desc->ops->set_voltage_sel) {
3253 ret = -EINVAL;
3254 goto out;
3257 /* This is only going to work if we've had a voltage configured. */
3258 if (!voltage->min_uV && !voltage->max_uV) {
3259 ret = -EINVAL;
3260 goto out;
3263 min_uV = voltage->min_uV;
3264 max_uV = voltage->max_uV;
3266 /* This should be a paranoia check... */
3267 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3268 if (ret < 0)
3269 goto out;
3271 ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
3272 if (ret < 0)
3273 goto out;
3275 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3277 out:
3278 mutex_unlock(&rdev->mutex);
3279 return ret;
3281 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
3283 static int _regulator_get_voltage(struct regulator_dev *rdev)
3285 int sel, ret;
3286 bool bypassed;
3288 if (rdev->desc->ops->get_bypass) {
3289 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
3290 if (ret < 0)
3291 return ret;
3292 if (bypassed) {
3293 /* if bypassed the regulator must have a supply */
3294 if (!rdev->supply) {
3295 rdev_err(rdev,
3296 "bypassed regulator has no supply!\n");
3297 return -EPROBE_DEFER;
3300 return _regulator_get_voltage(rdev->supply->rdev);
3304 if (rdev->desc->ops->get_voltage_sel) {
3305 sel = rdev->desc->ops->get_voltage_sel(rdev);
3306 if (sel < 0)
3307 return sel;
3308 ret = rdev->desc->ops->list_voltage(rdev, sel);
3309 } else if (rdev->desc->ops->get_voltage) {
3310 ret = rdev->desc->ops->get_voltage(rdev);
3311 } else if (rdev->desc->ops->list_voltage) {
3312 ret = rdev->desc->ops->list_voltage(rdev, 0);
3313 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
3314 ret = rdev->desc->fixed_uV;
3315 } else if (rdev->supply) {
3316 ret = _regulator_get_voltage(rdev->supply->rdev);
3317 } else {
3318 return -EINVAL;
3321 if (ret < 0)
3322 return ret;
3323 return ret - rdev->constraints->uV_offset;
3327 * regulator_get_voltage - get regulator output voltage
3328 * @regulator: regulator source
3330 * This returns the current regulator voltage in uV.
3332 * NOTE: If the regulator is disabled it will return the voltage value. This
3333 * function should not be used to determine regulator state.
3335 int regulator_get_voltage(struct regulator *regulator)
3337 int ret;
3339 regulator_lock_supply(regulator->rdev);
3341 ret = _regulator_get_voltage(regulator->rdev);
3343 regulator_unlock_supply(regulator->rdev);
3345 return ret;
3347 EXPORT_SYMBOL_GPL(regulator_get_voltage);
3350 * regulator_set_current_limit - set regulator output current limit
3351 * @regulator: regulator source
3352 * @min_uA: Minimum supported current in uA
3353 * @max_uA: Maximum supported current in uA
3355 * Sets current sink to the desired output current. This can be set during
3356 * any regulator state. IOW, regulator can be disabled or enabled.
3358 * If the regulator is enabled then the current will change to the new value
3359 * immediately otherwise if the regulator is disabled the regulator will
3360 * output at the new current when enabled.
3362 * NOTE: Regulator system constraints must be set for this regulator before
3363 * calling this function otherwise this call will fail.
3365 int regulator_set_current_limit(struct regulator *regulator,
3366 int min_uA, int max_uA)
3368 struct regulator_dev *rdev = regulator->rdev;
3369 int ret;
3371 mutex_lock(&rdev->mutex);
3373 /* sanity check */
3374 if (!rdev->desc->ops->set_current_limit) {
3375 ret = -EINVAL;
3376 goto out;
3379 /* constraints check */
3380 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
3381 if (ret < 0)
3382 goto out;
3384 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
3385 out:
3386 mutex_unlock(&rdev->mutex);
3387 return ret;
3389 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
3391 static int _regulator_get_current_limit(struct regulator_dev *rdev)
3393 int ret;
3395 mutex_lock(&rdev->mutex);
3397 /* sanity check */
3398 if (!rdev->desc->ops->get_current_limit) {
3399 ret = -EINVAL;
3400 goto out;
3403 ret = rdev->desc->ops->get_current_limit(rdev);
3404 out:
3405 mutex_unlock(&rdev->mutex);
3406 return ret;
3410 * regulator_get_current_limit - get regulator output current
3411 * @regulator: regulator source
3413 * This returns the current supplied by the specified current sink in uA.
3415 * NOTE: If the regulator is disabled it will return the current value. This
3416 * function should not be used to determine regulator state.
3418 int regulator_get_current_limit(struct regulator *regulator)
3420 return _regulator_get_current_limit(regulator->rdev);
3422 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
3425 * regulator_set_mode - set regulator operating mode
3426 * @regulator: regulator source
3427 * @mode: operating mode - one of the REGULATOR_MODE constants
3429 * Set regulator operating mode to increase regulator efficiency or improve
3430 * regulation performance.
3432 * NOTE: Regulator system constraints must be set for this regulator before
3433 * calling this function otherwise this call will fail.
3435 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
3437 struct regulator_dev *rdev = regulator->rdev;
3438 int ret;
3439 int regulator_curr_mode;
3441 mutex_lock(&rdev->mutex);
3443 /* sanity check */
3444 if (!rdev->desc->ops->set_mode) {
3445 ret = -EINVAL;
3446 goto out;
3449 /* return if the same mode is requested */
3450 if (rdev->desc->ops->get_mode) {
3451 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
3452 if (regulator_curr_mode == mode) {
3453 ret = 0;
3454 goto out;
3458 /* constraints check */
3459 ret = regulator_mode_constrain(rdev, &mode);
3460 if (ret < 0)
3461 goto out;
3463 ret = rdev->desc->ops->set_mode(rdev, mode);
3464 out:
3465 mutex_unlock(&rdev->mutex);
3466 return ret;
3468 EXPORT_SYMBOL_GPL(regulator_set_mode);
3470 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
3472 int ret;
3474 mutex_lock(&rdev->mutex);
3476 /* sanity check */
3477 if (!rdev->desc->ops->get_mode) {
3478 ret = -EINVAL;
3479 goto out;
3482 ret = rdev->desc->ops->get_mode(rdev);
3483 out:
3484 mutex_unlock(&rdev->mutex);
3485 return ret;
3489 * regulator_get_mode - get regulator operating mode
3490 * @regulator: regulator source
3492 * Get the current regulator operating mode.
3494 unsigned int regulator_get_mode(struct regulator *regulator)
3496 return _regulator_get_mode(regulator->rdev);
3498 EXPORT_SYMBOL_GPL(regulator_get_mode);
3500 static int _regulator_get_error_flags(struct regulator_dev *rdev,
3501 unsigned int *flags)
3503 int ret;
3505 mutex_lock(&rdev->mutex);
3507 /* sanity check */
3508 if (!rdev->desc->ops->get_error_flags) {
3509 ret = -EINVAL;
3510 goto out;
3513 ret = rdev->desc->ops->get_error_flags(rdev, flags);
3514 out:
3515 mutex_unlock(&rdev->mutex);
3516 return ret;
3520 * regulator_get_error_flags - get regulator error information
3521 * @regulator: regulator source
3522 * @flags: pointer to store error flags
3524 * Get the current regulator error information.
3526 int regulator_get_error_flags(struct regulator *regulator,
3527 unsigned int *flags)
3529 return _regulator_get_error_flags(regulator->rdev, flags);
3531 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
3534 * regulator_set_load - set regulator load
3535 * @regulator: regulator source
3536 * @uA_load: load current
3538 * Notifies the regulator core of a new device load. This is then used by
3539 * DRMS (if enabled by constraints) to set the most efficient regulator
3540 * operating mode for the new regulator loading.
3542 * Consumer devices notify their supply regulator of the maximum power
3543 * they will require (can be taken from device datasheet in the power
3544 * consumption tables) when they change operational status and hence power
3545 * state. Examples of operational state changes that can affect power
3546 * consumption are :-
3548 * o Device is opened / closed.
3549 * o Device I/O is about to begin or has just finished.
3550 * o Device is idling in between work.
3552 * This information is also exported via sysfs to userspace.
3554 * DRMS will sum the total requested load on the regulator and change
3555 * to the most efficient operating mode if platform constraints allow.
3557 * On error a negative errno is returned.
3559 int regulator_set_load(struct regulator *regulator, int uA_load)
3561 struct regulator_dev *rdev = regulator->rdev;
3562 int ret;
3564 mutex_lock(&rdev->mutex);
3565 regulator->uA_load = uA_load;
3566 ret = drms_uA_update(rdev);
3567 mutex_unlock(&rdev->mutex);
3569 return ret;
3571 EXPORT_SYMBOL_GPL(regulator_set_load);
3574 * regulator_allow_bypass - allow the regulator to go into bypass mode
3576 * @regulator: Regulator to configure
3577 * @enable: enable or disable bypass mode
3579 * Allow the regulator to go into bypass mode if all other consumers
3580 * for the regulator also enable bypass mode and the machine
3581 * constraints allow this. Bypass mode means that the regulator is
3582 * simply passing the input directly to the output with no regulation.
3584 int regulator_allow_bypass(struct regulator *regulator, bool enable)
3586 struct regulator_dev *rdev = regulator->rdev;
3587 int ret = 0;
3589 if (!rdev->desc->ops->set_bypass)
3590 return 0;
3592 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
3593 return 0;
3595 mutex_lock(&rdev->mutex);
3597 if (enable && !regulator->bypass) {
3598 rdev->bypass_count++;
3600 if (rdev->bypass_count == rdev->open_count) {
3601 ret = rdev->desc->ops->set_bypass(rdev, enable);
3602 if (ret != 0)
3603 rdev->bypass_count--;
3606 } else if (!enable && regulator->bypass) {
3607 rdev->bypass_count--;
3609 if (rdev->bypass_count != rdev->open_count) {
3610 ret = rdev->desc->ops->set_bypass(rdev, enable);
3611 if (ret != 0)
3612 rdev->bypass_count++;
3616 if (ret == 0)
3617 regulator->bypass = enable;
3619 mutex_unlock(&rdev->mutex);
3621 return ret;
3623 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3626 * regulator_register_notifier - register regulator event notifier
3627 * @regulator: regulator source
3628 * @nb: notifier block
3630 * Register notifier block to receive regulator events.
3632 int regulator_register_notifier(struct regulator *regulator,
3633 struct notifier_block *nb)
3635 return blocking_notifier_chain_register(&regulator->rdev->notifier,
3636 nb);
3638 EXPORT_SYMBOL_GPL(regulator_register_notifier);
3641 * regulator_unregister_notifier - unregister regulator event notifier
3642 * @regulator: regulator source
3643 * @nb: notifier block
3645 * Unregister regulator event notifier block.
3647 int regulator_unregister_notifier(struct regulator *regulator,
3648 struct notifier_block *nb)
3650 return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3651 nb);
3653 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3655 /* notify regulator consumers and downstream regulator consumers.
3656 * Note mutex must be held by caller.
3658 static int _notifier_call_chain(struct regulator_dev *rdev,
3659 unsigned long event, void *data)
3661 /* call rdev chain first */
3662 return blocking_notifier_call_chain(&rdev->notifier, event, data);
3666 * regulator_bulk_get - get multiple regulator consumers
3668 * @dev: Device to supply
3669 * @num_consumers: Number of consumers to register
3670 * @consumers: Configuration of consumers; clients are stored here.
3672 * @return 0 on success, an errno on failure.
3674 * This helper function allows drivers to get several regulator
3675 * consumers in one operation. If any of the regulators cannot be
3676 * acquired then any regulators that were allocated will be freed
3677 * before returning to the caller.
3679 int regulator_bulk_get(struct device *dev, int num_consumers,
3680 struct regulator_bulk_data *consumers)
3682 int i;
3683 int ret;
3685 for (i = 0; i < num_consumers; i++)
3686 consumers[i].consumer = NULL;
3688 for (i = 0; i < num_consumers; i++) {
3689 consumers[i].consumer = regulator_get(dev,
3690 consumers[i].supply);
3691 if (IS_ERR(consumers[i].consumer)) {
3692 ret = PTR_ERR(consumers[i].consumer);
3693 dev_err(dev, "Failed to get supply '%s': %d\n",
3694 consumers[i].supply, ret);
3695 consumers[i].consumer = NULL;
3696 goto err;
3700 return 0;
3702 err:
3703 while (--i >= 0)
3704 regulator_put(consumers[i].consumer);
3706 return ret;
3708 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3710 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3712 struct regulator_bulk_data *bulk = data;
3714 bulk->ret = regulator_enable(bulk->consumer);
3718 * regulator_bulk_enable - enable multiple regulator consumers
3720 * @num_consumers: Number of consumers
3721 * @consumers: Consumer data; clients are stored here.
3722 * @return 0 on success, an errno on failure
3724 * This convenience API allows consumers to enable multiple regulator
3725 * clients in a single API call. If any consumers cannot be enabled
3726 * then any others that were enabled will be disabled again prior to
3727 * return.
3729 int regulator_bulk_enable(int num_consumers,
3730 struct regulator_bulk_data *consumers)
3732 ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3733 int i;
3734 int ret = 0;
3736 for (i = 0; i < num_consumers; i++) {
3737 if (consumers[i].consumer->always_on)
3738 consumers[i].ret = 0;
3739 else
3740 async_schedule_domain(regulator_bulk_enable_async,
3741 &consumers[i], &async_domain);
3744 async_synchronize_full_domain(&async_domain);
3746 /* If any consumer failed we need to unwind any that succeeded */
3747 for (i = 0; i < num_consumers; i++) {
3748 if (consumers[i].ret != 0) {
3749 ret = consumers[i].ret;
3750 goto err;
3754 return 0;
3756 err:
3757 for (i = 0; i < num_consumers; i++) {
3758 if (consumers[i].ret < 0)
3759 pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3760 consumers[i].ret);
3761 else
3762 regulator_disable(consumers[i].consumer);
3765 return ret;
3767 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3770 * regulator_bulk_disable - disable multiple regulator consumers
3772 * @num_consumers: Number of consumers
3773 * @consumers: Consumer data; clients are stored here.
3774 * @return 0 on success, an errno on failure
3776 * This convenience API allows consumers to disable multiple regulator
3777 * clients in a single API call. If any consumers cannot be disabled
3778 * then any others that were disabled will be enabled again prior to
3779 * return.
3781 int regulator_bulk_disable(int num_consumers,
3782 struct regulator_bulk_data *consumers)
3784 int i;
3785 int ret, r;
3787 for (i = num_consumers - 1; i >= 0; --i) {
3788 ret = regulator_disable(consumers[i].consumer);
3789 if (ret != 0)
3790 goto err;
3793 return 0;
3795 err:
3796 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3797 for (++i; i < num_consumers; ++i) {
3798 r = regulator_enable(consumers[i].consumer);
3799 if (r != 0)
3800 pr_err("Failed to re-enable %s: %d\n",
3801 consumers[i].supply, r);
3804 return ret;
3806 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3809 * regulator_bulk_force_disable - force disable multiple regulator consumers
3811 * @num_consumers: Number of consumers
3812 * @consumers: Consumer data; clients are stored here.
3813 * @return 0 on success, an errno on failure
3815 * This convenience API allows consumers to forcibly disable multiple regulator
3816 * clients in a single API call.
3817 * NOTE: This should be used for situations when device damage will
3818 * likely occur if the regulators are not disabled (e.g. over temp).
3819 * Although regulator_force_disable function call for some consumers can
3820 * return error numbers, the function is called for all consumers.
3822 int regulator_bulk_force_disable(int num_consumers,
3823 struct regulator_bulk_data *consumers)
3825 int i;
3826 int ret = 0;
3828 for (i = 0; i < num_consumers; i++) {
3829 consumers[i].ret =
3830 regulator_force_disable(consumers[i].consumer);
3832 /* Store first error for reporting */
3833 if (consumers[i].ret && !ret)
3834 ret = consumers[i].ret;
3837 return ret;
3839 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3842 * regulator_bulk_free - free multiple regulator consumers
3844 * @num_consumers: Number of consumers
3845 * @consumers: Consumer data; clients are stored here.
3847 * This convenience API allows consumers to free multiple regulator
3848 * clients in a single API call.
3850 void regulator_bulk_free(int num_consumers,
3851 struct regulator_bulk_data *consumers)
3853 int i;
3855 for (i = 0; i < num_consumers; i++) {
3856 regulator_put(consumers[i].consumer);
3857 consumers[i].consumer = NULL;
3860 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3863 * regulator_notifier_call_chain - call regulator event notifier
3864 * @rdev: regulator source
3865 * @event: notifier block
3866 * @data: callback-specific data.
3868 * Called by regulator drivers to notify clients a regulator event has
3869 * occurred. We also notify regulator clients downstream.
3870 * Note lock must be held by caller.
3872 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3873 unsigned long event, void *data)
3875 lockdep_assert_held_once(&rdev->mutex);
3877 _notifier_call_chain(rdev, event, data);
3878 return NOTIFY_DONE;
3881 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3884 * regulator_mode_to_status - convert a regulator mode into a status
3886 * @mode: Mode to convert
3888 * Convert a regulator mode into a status.
3890 int regulator_mode_to_status(unsigned int mode)
3892 switch (mode) {
3893 case REGULATOR_MODE_FAST:
3894 return REGULATOR_STATUS_FAST;
3895 case REGULATOR_MODE_NORMAL:
3896 return REGULATOR_STATUS_NORMAL;
3897 case REGULATOR_MODE_IDLE:
3898 return REGULATOR_STATUS_IDLE;
3899 case REGULATOR_MODE_STANDBY:
3900 return REGULATOR_STATUS_STANDBY;
3901 default:
3902 return REGULATOR_STATUS_UNDEFINED;
3905 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3907 static struct attribute *regulator_dev_attrs[] = {
3908 &dev_attr_name.attr,
3909 &dev_attr_num_users.attr,
3910 &dev_attr_type.attr,
3911 &dev_attr_microvolts.attr,
3912 &dev_attr_microamps.attr,
3913 &dev_attr_opmode.attr,
3914 &dev_attr_state.attr,
3915 &dev_attr_status.attr,
3916 &dev_attr_bypass.attr,
3917 &dev_attr_requested_microamps.attr,
3918 &dev_attr_min_microvolts.attr,
3919 &dev_attr_max_microvolts.attr,
3920 &dev_attr_min_microamps.attr,
3921 &dev_attr_max_microamps.attr,
3922 &dev_attr_suspend_standby_state.attr,
3923 &dev_attr_suspend_mem_state.attr,
3924 &dev_attr_suspend_disk_state.attr,
3925 &dev_attr_suspend_standby_microvolts.attr,
3926 &dev_attr_suspend_mem_microvolts.attr,
3927 &dev_attr_suspend_disk_microvolts.attr,
3928 &dev_attr_suspend_standby_mode.attr,
3929 &dev_attr_suspend_mem_mode.attr,
3930 &dev_attr_suspend_disk_mode.attr,
3931 NULL
3935 * To avoid cluttering sysfs (and memory) with useless state, only
3936 * create attributes that can be meaningfully displayed.
3938 static umode_t regulator_attr_is_visible(struct kobject *kobj,
3939 struct attribute *attr, int idx)
3941 struct device *dev = kobj_to_dev(kobj);
3942 struct regulator_dev *rdev = dev_to_rdev(dev);
3943 const struct regulator_ops *ops = rdev->desc->ops;
3944 umode_t mode = attr->mode;
3946 /* these three are always present */
3947 if (attr == &dev_attr_name.attr ||
3948 attr == &dev_attr_num_users.attr ||
3949 attr == &dev_attr_type.attr)
3950 return mode;
3952 /* some attributes need specific methods to be displayed */
3953 if (attr == &dev_attr_microvolts.attr) {
3954 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3955 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3956 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3957 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
3958 return mode;
3959 return 0;
3962 if (attr == &dev_attr_microamps.attr)
3963 return ops->get_current_limit ? mode : 0;
3965 if (attr == &dev_attr_opmode.attr)
3966 return ops->get_mode ? mode : 0;
3968 if (attr == &dev_attr_state.attr)
3969 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
3971 if (attr == &dev_attr_status.attr)
3972 return ops->get_status ? mode : 0;
3974 if (attr == &dev_attr_bypass.attr)
3975 return ops->get_bypass ? mode : 0;
3977 /* some attributes are type-specific */
3978 if (attr == &dev_attr_requested_microamps.attr)
3979 return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
3981 /* constraints need specific supporting methods */
3982 if (attr == &dev_attr_min_microvolts.attr ||
3983 attr == &dev_attr_max_microvolts.attr)
3984 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
3986 if (attr == &dev_attr_min_microamps.attr ||
3987 attr == &dev_attr_max_microamps.attr)
3988 return ops->set_current_limit ? mode : 0;
3990 if (attr == &dev_attr_suspend_standby_state.attr ||
3991 attr == &dev_attr_suspend_mem_state.attr ||
3992 attr == &dev_attr_suspend_disk_state.attr)
3993 return mode;
3995 if (attr == &dev_attr_suspend_standby_microvolts.attr ||
3996 attr == &dev_attr_suspend_mem_microvolts.attr ||
3997 attr == &dev_attr_suspend_disk_microvolts.attr)
3998 return ops->set_suspend_voltage ? mode : 0;
4000 if (attr == &dev_attr_suspend_standby_mode.attr ||
4001 attr == &dev_attr_suspend_mem_mode.attr ||
4002 attr == &dev_attr_suspend_disk_mode.attr)
4003 return ops->set_suspend_mode ? mode : 0;
4005 return mode;
4008 static const struct attribute_group regulator_dev_group = {
4009 .attrs = regulator_dev_attrs,
4010 .is_visible = regulator_attr_is_visible,
4013 static const struct attribute_group *regulator_dev_groups[] = {
4014 &regulator_dev_group,
4015 NULL
4018 static void regulator_dev_release(struct device *dev)
4020 struct regulator_dev *rdev = dev_get_drvdata(dev);
4022 kfree(rdev->constraints);
4023 of_node_put(rdev->dev.of_node);
4024 kfree(rdev);
4027 static void rdev_init_debugfs(struct regulator_dev *rdev)
4029 struct device *parent = rdev->dev.parent;
4030 const char *rname = rdev_get_name(rdev);
4031 char name[NAME_MAX];
4033 /* Avoid duplicate debugfs directory names */
4034 if (parent && rname == rdev->desc->name) {
4035 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
4036 rname);
4037 rname = name;
4040 rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
4041 if (!rdev->debugfs) {
4042 rdev_warn(rdev, "Failed to create debugfs directory\n");
4043 return;
4046 debugfs_create_u32("use_count", 0444, rdev->debugfs,
4047 &rdev->use_count);
4048 debugfs_create_u32("open_count", 0444, rdev->debugfs,
4049 &rdev->open_count);
4050 debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
4051 &rdev->bypass_count);
4054 static int regulator_register_resolve_supply(struct device *dev, void *data)
4056 struct regulator_dev *rdev = dev_to_rdev(dev);
4058 if (regulator_resolve_supply(rdev))
4059 rdev_dbg(rdev, "unable to resolve supply\n");
4061 return 0;
4065 * regulator_register - register regulator
4066 * @regulator_desc: regulator to register
4067 * @cfg: runtime configuration for regulator
4069 * Called by regulator drivers to register a regulator.
4070 * Returns a valid pointer to struct regulator_dev on success
4071 * or an ERR_PTR() on error.
4073 struct regulator_dev *
4074 regulator_register(const struct regulator_desc *regulator_desc,
4075 const struct regulator_config *cfg)
4077 const struct regulation_constraints *constraints = NULL;
4078 const struct regulator_init_data *init_data;
4079 struct regulator_config *config = NULL;
4080 static atomic_t regulator_no = ATOMIC_INIT(-1);
4081 struct regulator_dev *rdev;
4082 struct device *dev;
4083 int ret, i;
4085 if (regulator_desc == NULL || cfg == NULL)
4086 return ERR_PTR(-EINVAL);
4088 dev = cfg->dev;
4089 WARN_ON(!dev);
4091 if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
4092 return ERR_PTR(-EINVAL);
4094 if (regulator_desc->type != REGULATOR_VOLTAGE &&
4095 regulator_desc->type != REGULATOR_CURRENT)
4096 return ERR_PTR(-EINVAL);
4098 /* Only one of each should be implemented */
4099 WARN_ON(regulator_desc->ops->get_voltage &&
4100 regulator_desc->ops->get_voltage_sel);
4101 WARN_ON(regulator_desc->ops->set_voltage &&
4102 regulator_desc->ops->set_voltage_sel);
4104 /* If we're using selectors we must implement list_voltage. */
4105 if (regulator_desc->ops->get_voltage_sel &&
4106 !regulator_desc->ops->list_voltage) {
4107 return ERR_PTR(-EINVAL);
4109 if (regulator_desc->ops->set_voltage_sel &&
4110 !regulator_desc->ops->list_voltage) {
4111 return ERR_PTR(-EINVAL);
4114 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
4115 if (rdev == NULL)
4116 return ERR_PTR(-ENOMEM);
4119 * Duplicate the config so the driver could override it after
4120 * parsing init data.
4122 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
4123 if (config == NULL) {
4124 kfree(rdev);
4125 return ERR_PTR(-ENOMEM);
4128 init_data = regulator_of_get_init_data(dev, regulator_desc, config,
4129 &rdev->dev.of_node);
4130 if (!init_data) {
4131 init_data = config->init_data;
4132 rdev->dev.of_node = of_node_get(config->of_node);
4135 mutex_init(&rdev->mutex);
4136 rdev->reg_data = config->driver_data;
4137 rdev->owner = regulator_desc->owner;
4138 rdev->desc = regulator_desc;
4139 if (config->regmap)
4140 rdev->regmap = config->regmap;
4141 else if (dev_get_regmap(dev, NULL))
4142 rdev->regmap = dev_get_regmap(dev, NULL);
4143 else if (dev->parent)
4144 rdev->regmap = dev_get_regmap(dev->parent, NULL);
4145 INIT_LIST_HEAD(&rdev->consumer_list);
4146 INIT_LIST_HEAD(&rdev->list);
4147 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
4148 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
4150 /* preform any regulator specific init */
4151 if (init_data && init_data->regulator_init) {
4152 ret = init_data->regulator_init(rdev->reg_data);
4153 if (ret < 0)
4154 goto clean;
4157 if ((config->ena_gpio || config->ena_gpio_initialized) &&
4158 gpio_is_valid(config->ena_gpio)) {
4159 mutex_lock(&regulator_list_mutex);
4160 ret = regulator_ena_gpio_request(rdev, config);
4161 mutex_unlock(&regulator_list_mutex);
4162 if (ret != 0) {
4163 rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
4164 config->ena_gpio, ret);
4165 goto clean;
4169 /* register with sysfs */
4170 rdev->dev.class = &regulator_class;
4171 rdev->dev.parent = dev;
4172 dev_set_name(&rdev->dev, "regulator.%lu",
4173 (unsigned long) atomic_inc_return(&regulator_no));
4175 /* set regulator constraints */
4176 if (init_data)
4177 constraints = &init_data->constraints;
4179 if (init_data && init_data->supply_regulator)
4180 rdev->supply_name = init_data->supply_regulator;
4181 else if (regulator_desc->supply_name)
4182 rdev->supply_name = regulator_desc->supply_name;
4185 * Attempt to resolve the regulator supply, if specified,
4186 * but don't return an error if we fail because we will try
4187 * to resolve it again later as more regulators are added.
4189 if (regulator_resolve_supply(rdev))
4190 rdev_dbg(rdev, "unable to resolve supply\n");
4192 ret = set_machine_constraints(rdev, constraints);
4193 if (ret < 0)
4194 goto wash;
4196 /* add consumers devices */
4197 if (init_data) {
4198 mutex_lock(&regulator_list_mutex);
4199 for (i = 0; i < init_data->num_consumer_supplies; i++) {
4200 ret = set_consumer_device_supply(rdev,
4201 init_data->consumer_supplies[i].dev_name,
4202 init_data->consumer_supplies[i].supply);
4203 if (ret < 0) {
4204 mutex_unlock(&regulator_list_mutex);
4205 dev_err(dev, "Failed to set supply %s\n",
4206 init_data->consumer_supplies[i].supply);
4207 goto unset_supplies;
4210 mutex_unlock(&regulator_list_mutex);
4213 if (!rdev->desc->ops->get_voltage &&
4214 !rdev->desc->ops->list_voltage &&
4215 !rdev->desc->fixed_uV)
4216 rdev->is_switch = true;
4218 ret = device_register(&rdev->dev);
4219 if (ret != 0) {
4220 put_device(&rdev->dev);
4221 goto unset_supplies;
4224 dev_set_drvdata(&rdev->dev, rdev);
4225 rdev_init_debugfs(rdev);
4227 /* try to resolve regulators supply since a new one was registered */
4228 class_for_each_device(&regulator_class, NULL, NULL,
4229 regulator_register_resolve_supply);
4230 kfree(config);
4231 return rdev;
4233 unset_supplies:
4234 mutex_lock(&regulator_list_mutex);
4235 unset_regulator_supplies(rdev);
4236 mutex_unlock(&regulator_list_mutex);
4237 wash:
4238 kfree(rdev->constraints);
4239 mutex_lock(&regulator_list_mutex);
4240 regulator_ena_gpio_free(rdev);
4241 mutex_unlock(&regulator_list_mutex);
4242 clean:
4243 kfree(rdev);
4244 kfree(config);
4245 return ERR_PTR(ret);
4247 EXPORT_SYMBOL_GPL(regulator_register);
4250 * regulator_unregister - unregister regulator
4251 * @rdev: regulator to unregister
4253 * Called by regulator drivers to unregister a regulator.
4255 void regulator_unregister(struct regulator_dev *rdev)
4257 if (rdev == NULL)
4258 return;
4260 if (rdev->supply) {
4261 while (rdev->use_count--)
4262 regulator_disable(rdev->supply);
4263 regulator_put(rdev->supply);
4265 mutex_lock(&regulator_list_mutex);
4266 debugfs_remove_recursive(rdev->debugfs);
4267 flush_work(&rdev->disable_work.work);
4268 WARN_ON(rdev->open_count);
4269 unset_regulator_supplies(rdev);
4270 list_del(&rdev->list);
4271 regulator_ena_gpio_free(rdev);
4272 mutex_unlock(&regulator_list_mutex);
4273 device_unregister(&rdev->dev);
4275 EXPORT_SYMBOL_GPL(regulator_unregister);
4277 #ifdef CONFIG_SUSPEND
4278 static int _regulator_suspend_late(struct device *dev, void *data)
4280 struct regulator_dev *rdev = dev_to_rdev(dev);
4281 suspend_state_t *state = data;
4282 int ret;
4284 mutex_lock(&rdev->mutex);
4285 ret = suspend_set_state(rdev, *state);
4286 mutex_unlock(&rdev->mutex);
4288 return ret;
4292 * regulator_suspend_late - prepare regulators for system wide suspend
4293 * @state: system suspend state
4295 * Configure each regulator with it's suspend operating parameters for state.
4297 static int regulator_suspend_late(struct device *dev)
4299 suspend_state_t state = pm_suspend_target_state;
4301 return class_for_each_device(&regulator_class, NULL, &state,
4302 _regulator_suspend_late);
4304 static int _regulator_resume_early(struct device *dev, void *data)
4306 int ret = 0;
4307 struct regulator_dev *rdev = dev_to_rdev(dev);
4308 suspend_state_t *state = data;
4309 struct regulator_state *rstate;
4311 rstate = regulator_get_suspend_state(rdev, *state);
4312 if (rstate == NULL)
4313 return -EINVAL;
4315 mutex_lock(&rdev->mutex);
4317 if (rdev->desc->ops->resume_early &&
4318 (rstate->enabled == ENABLE_IN_SUSPEND ||
4319 rstate->enabled == DISABLE_IN_SUSPEND))
4320 ret = rdev->desc->ops->resume_early(rdev);
4322 mutex_unlock(&rdev->mutex);
4324 return ret;
4327 static int regulator_resume_early(struct device *dev)
4329 suspend_state_t state = pm_suspend_target_state;
4331 return class_for_each_device(&regulator_class, NULL, &state,
4332 _regulator_resume_early);
4335 #else /* !CONFIG_SUSPEND */
4337 #define regulator_suspend_late NULL
4338 #define regulator_resume_early NULL
4340 #endif /* !CONFIG_SUSPEND */
4342 #ifdef CONFIG_PM
4343 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
4344 .suspend_late = regulator_suspend_late,
4345 .resume_early = regulator_resume_early,
4347 #endif
4349 struct class regulator_class = {
4350 .name = "regulator",
4351 .dev_release = regulator_dev_release,
4352 .dev_groups = regulator_dev_groups,
4353 #ifdef CONFIG_PM
4354 .pm = &regulator_pm_ops,
4355 #endif
4358 * regulator_has_full_constraints - the system has fully specified constraints
4360 * Calling this function will cause the regulator API to disable all
4361 * regulators which have a zero use count and don't have an always_on
4362 * constraint in a late_initcall.
4364 * The intention is that this will become the default behaviour in a
4365 * future kernel release so users are encouraged to use this facility
4366 * now.
4368 void regulator_has_full_constraints(void)
4370 has_full_constraints = 1;
4372 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
4375 * rdev_get_drvdata - get rdev regulator driver data
4376 * @rdev: regulator
4378 * Get rdev regulator driver private data. This call can be used in the
4379 * regulator driver context.
4381 void *rdev_get_drvdata(struct regulator_dev *rdev)
4383 return rdev->reg_data;
4385 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
4388 * regulator_get_drvdata - get regulator driver data
4389 * @regulator: regulator
4391 * Get regulator driver private data. This call can be used in the consumer
4392 * driver context when non API regulator specific functions need to be called.
4394 void *regulator_get_drvdata(struct regulator *regulator)
4396 return regulator->rdev->reg_data;
4398 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
4401 * regulator_set_drvdata - set regulator driver data
4402 * @regulator: regulator
4403 * @data: data
4405 void regulator_set_drvdata(struct regulator *regulator, void *data)
4407 regulator->rdev->reg_data = data;
4409 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
4412 * regulator_get_id - get regulator ID
4413 * @rdev: regulator
4415 int rdev_get_id(struct regulator_dev *rdev)
4417 return rdev->desc->id;
4419 EXPORT_SYMBOL_GPL(rdev_get_id);
4421 struct device *rdev_get_dev(struct regulator_dev *rdev)
4423 return &rdev->dev;
4425 EXPORT_SYMBOL_GPL(rdev_get_dev);
4427 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
4429 return reg_init_data->driver_data;
4431 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
4433 #ifdef CONFIG_DEBUG_FS
4434 static int supply_map_show(struct seq_file *sf, void *data)
4436 struct regulator_map *map;
4438 list_for_each_entry(map, &regulator_map_list, list) {
4439 seq_printf(sf, "%s -> %s.%s\n",
4440 rdev_get_name(map->regulator), map->dev_name,
4441 map->supply);
4444 return 0;
4447 static int supply_map_open(struct inode *inode, struct file *file)
4449 return single_open(file, supply_map_show, inode->i_private);
4451 #endif
4453 static const struct file_operations supply_map_fops = {
4454 #ifdef CONFIG_DEBUG_FS
4455 .open = supply_map_open,
4456 .read = seq_read,
4457 .llseek = seq_lseek,
4458 .release = single_release,
4459 #endif
4462 #ifdef CONFIG_DEBUG_FS
4463 struct summary_data {
4464 struct seq_file *s;
4465 struct regulator_dev *parent;
4466 int level;
4469 static void regulator_summary_show_subtree(struct seq_file *s,
4470 struct regulator_dev *rdev,
4471 int level);
4473 static int regulator_summary_show_children(struct device *dev, void *data)
4475 struct regulator_dev *rdev = dev_to_rdev(dev);
4476 struct summary_data *summary_data = data;
4478 if (rdev->supply && rdev->supply->rdev == summary_data->parent)
4479 regulator_summary_show_subtree(summary_data->s, rdev,
4480 summary_data->level + 1);
4482 return 0;
4485 static void regulator_summary_show_subtree(struct seq_file *s,
4486 struct regulator_dev *rdev,
4487 int level)
4489 struct regulation_constraints *c;
4490 struct regulator *consumer;
4491 struct summary_data summary_data;
4493 if (!rdev)
4494 return;
4496 seq_printf(s, "%*s%-*s %3d %4d %6d ",
4497 level * 3 + 1, "",
4498 30 - level * 3, rdev_get_name(rdev),
4499 rdev->use_count, rdev->open_count, rdev->bypass_count);
4501 seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
4502 seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000);
4504 c = rdev->constraints;
4505 if (c) {
4506 switch (rdev->desc->type) {
4507 case REGULATOR_VOLTAGE:
4508 seq_printf(s, "%5dmV %5dmV ",
4509 c->min_uV / 1000, c->max_uV / 1000);
4510 break;
4511 case REGULATOR_CURRENT:
4512 seq_printf(s, "%5dmA %5dmA ",
4513 c->min_uA / 1000, c->max_uA / 1000);
4514 break;
4518 seq_puts(s, "\n");
4520 list_for_each_entry(consumer, &rdev->consumer_list, list) {
4521 if (consumer->dev && consumer->dev->class == &regulator_class)
4522 continue;
4524 seq_printf(s, "%*s%-*s ",
4525 (level + 1) * 3 + 1, "",
4526 30 - (level + 1) * 3,
4527 consumer->dev ? dev_name(consumer->dev) : "deviceless");
4529 switch (rdev->desc->type) {
4530 case REGULATOR_VOLTAGE:
4531 seq_printf(s, "%37dmV %5dmV",
4532 consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
4533 consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
4534 break;
4535 case REGULATOR_CURRENT:
4536 break;
4539 seq_puts(s, "\n");
4542 summary_data.s = s;
4543 summary_data.level = level;
4544 summary_data.parent = rdev;
4546 class_for_each_device(&regulator_class, NULL, &summary_data,
4547 regulator_summary_show_children);
4550 static int regulator_summary_show_roots(struct device *dev, void *data)
4552 struct regulator_dev *rdev = dev_to_rdev(dev);
4553 struct seq_file *s = data;
4555 if (!rdev->supply)
4556 regulator_summary_show_subtree(s, rdev, 0);
4558 return 0;
4561 static int regulator_summary_show(struct seq_file *s, void *data)
4563 seq_puts(s, " regulator use open bypass voltage current min max\n");
4564 seq_puts(s, "-------------------------------------------------------------------------------\n");
4566 class_for_each_device(&regulator_class, NULL, s,
4567 regulator_summary_show_roots);
4569 return 0;
4572 static int regulator_summary_open(struct inode *inode, struct file *file)
4574 return single_open(file, regulator_summary_show, inode->i_private);
4576 #endif
4578 static const struct file_operations regulator_summary_fops = {
4579 #ifdef CONFIG_DEBUG_FS
4580 .open = regulator_summary_open,
4581 .read = seq_read,
4582 .llseek = seq_lseek,
4583 .release = single_release,
4584 #endif
4587 static int __init regulator_init(void)
4589 int ret;
4591 ret = class_register(&regulator_class);
4593 debugfs_root = debugfs_create_dir("regulator", NULL);
4594 if (!debugfs_root)
4595 pr_warn("regulator: Failed to create debugfs directory\n");
4597 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
4598 &supply_map_fops);
4600 debugfs_create_file("regulator_summary", 0444, debugfs_root,
4601 NULL, &regulator_summary_fops);
4603 regulator_dummy_init();
4605 return ret;
4608 /* init early to allow our consumers to complete system booting */
4609 core_initcall(regulator_init);
4611 static int __init regulator_late_cleanup(struct device *dev, void *data)
4613 struct regulator_dev *rdev = dev_to_rdev(dev);
4614 const struct regulator_ops *ops = rdev->desc->ops;
4615 struct regulation_constraints *c = rdev->constraints;
4616 int enabled, ret;
4618 if (c && c->always_on)
4619 return 0;
4621 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
4622 return 0;
4624 mutex_lock(&rdev->mutex);
4626 if (rdev->use_count)
4627 goto unlock;
4629 /* If we can't read the status assume it's on. */
4630 if (ops->is_enabled)
4631 enabled = ops->is_enabled(rdev);
4632 else
4633 enabled = 1;
4635 if (!enabled)
4636 goto unlock;
4638 if (have_full_constraints()) {
4639 /* We log since this may kill the system if it goes
4640 * wrong. */
4641 rdev_info(rdev, "disabling\n");
4642 ret = _regulator_do_disable(rdev);
4643 if (ret != 0)
4644 rdev_err(rdev, "couldn't disable: %d\n", ret);
4645 } else {
4646 /* The intention is that in future we will
4647 * assume that full constraints are provided
4648 * so warn even if we aren't going to do
4649 * anything here.
4651 rdev_warn(rdev, "incomplete constraints, leaving on\n");
4654 unlock:
4655 mutex_unlock(&rdev->mutex);
4657 return 0;
4660 static int __init regulator_init_complete(void)
4663 * Since DT doesn't provide an idiomatic mechanism for
4664 * enabling full constraints and since it's much more natural
4665 * with DT to provide them just assume that a DT enabled
4666 * system has full constraints.
4668 if (of_have_populated_dt())
4669 has_full_constraints = true;
4672 * Regulators may had failed to resolve their input supplies
4673 * when were registered, either because the input supply was
4674 * not registered yet or because its parent device was not
4675 * bound yet. So attempt to resolve the input supplies for
4676 * pending regulators before trying to disable unused ones.
4678 class_for_each_device(&regulator_class, NULL, NULL,
4679 regulator_register_resolve_supply);
4681 /* If we have a full configuration then disable any regulators
4682 * we have permission to change the status for and which are
4683 * not in use or always_on. This is effectively the default
4684 * for DT and ACPI as they have full constraints.
4686 class_for_each_device(&regulator_class, NULL, NULL,
4687 regulator_late_cleanup);
4689 return 0;
4691 late_initcall_sync(regulator_init_complete);